Data.Array.Repa.Algorithms.Pixel:doubleRmsOfRGB8 from repa-algorithms-3.4.0.1

Percentage Accurate: 45.8% → 99.4%
Time: 3.3s
Alternatives: 2
Speedup: 2.7×

Specification

?
\[\begin{array}{l} \\ \sqrt{\frac{\left(x \cdot x + y \cdot y\right) + z \cdot z}{3}} \end{array} \]
(FPCore (x y z)
 :precision binary64
 (sqrt (/ (+ (+ (* x x) (* y y)) (* z z)) 3.0)))
double code(double x, double y, double z) {
	return sqrt(((((x * x) + (y * y)) + (z * z)) / 3.0));
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    code = sqrt(((((x * x) + (y * y)) + (z * z)) / 3.0d0))
end function
public static double code(double x, double y, double z) {
	return Math.sqrt(((((x * x) + (y * y)) + (z * z)) / 3.0));
}
def code(x, y, z):
	return math.sqrt(((((x * x) + (y * y)) + (z * z)) / 3.0))
function code(x, y, z)
	return sqrt(Float64(Float64(Float64(Float64(x * x) + Float64(y * y)) + Float64(z * z)) / 3.0))
end
function tmp = code(x, y, z)
	tmp = sqrt(((((x * x) + (y * y)) + (z * z)) / 3.0));
end
code[x_, y_, z_] := N[Sqrt[N[(N[(N[(N[(x * x), $MachinePrecision] + N[(y * y), $MachinePrecision]), $MachinePrecision] + N[(z * z), $MachinePrecision]), $MachinePrecision] / 3.0), $MachinePrecision]], $MachinePrecision]
\begin{array}{l}

\\
\sqrt{\frac{\left(x \cdot x + y \cdot y\right) + z \cdot z}{3}}
\end{array}

Sampling outcomes in binary64 precision:

Local Percentage Accuracy vs ?

The average percentage accuracy by input value. Horizontal axis shows value of an input variable; the variable is choosen in the title. Vertical axis is accuracy; higher is better. Red represent the original program, while blue represents Herbie's suggestion. These can be toggled with buttons below the plot. The line is an average while dots represent individual samples.

Accuracy vs Speed?

Herbie found 2 alternatives:

AlternativeAccuracySpeedup
The accuracy (vertical axis) and speed (horizontal axis) of each alternatives. Up and to the right is better. The red square shows the initial program, and each blue circle shows an alternative.The line shows the best available speed-accuracy tradeoffs.

Initial Program: 45.8% accurate, 1.0× speedup?

\[\begin{array}{l} \\ \sqrt{\frac{\left(x \cdot x + y \cdot y\right) + z \cdot z}{3}} \end{array} \]
(FPCore (x y z)
 :precision binary64
 (sqrt (/ (+ (+ (* x x) (* y y)) (* z z)) 3.0)))
double code(double x, double y, double z) {
	return sqrt(((((x * x) + (y * y)) + (z * z)) / 3.0));
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    code = sqrt(((((x * x) + (y * y)) + (z * z)) / 3.0d0))
end function
public static double code(double x, double y, double z) {
	return Math.sqrt(((((x * x) + (y * y)) + (z * z)) / 3.0));
}
def code(x, y, z):
	return math.sqrt(((((x * x) + (y * y)) + (z * z)) / 3.0))
function code(x, y, z)
	return sqrt(Float64(Float64(Float64(Float64(x * x) + Float64(y * y)) + Float64(z * z)) / 3.0))
end
function tmp = code(x, y, z)
	tmp = sqrt(((((x * x) + (y * y)) + (z * z)) / 3.0));
end
code[x_, y_, z_] := N[Sqrt[N[(N[(N[(N[(x * x), $MachinePrecision] + N[(y * y), $MachinePrecision]), $MachinePrecision] + N[(z * z), $MachinePrecision]), $MachinePrecision] / 3.0), $MachinePrecision]], $MachinePrecision]
\begin{array}{l}

\\
\sqrt{\frac{\left(x \cdot x + y \cdot y\right) + z \cdot z}{3}}
\end{array}

Alternative 1: 99.4% accurate, 0.4× speedup?

\[\begin{array}{l} x_m = \left|x\right| \\ y_m = \left|y\right| \\ z_m = \left|z\right| \\ [x_m, y_m, z_m] = \mathsf{sort}([x_m, y_m, z_m])\\ \\ \mathsf{hypot}\left(z\_m, y\_m\right) \cdot \sqrt{0.3333333333333333} \end{array} \]
x_m = (fabs.f64 x)
y_m = (fabs.f64 y)
z_m = (fabs.f64 z)
NOTE: x_m, y_m, and z_m should be sorted in increasing order before calling this function.
(FPCore (x_m y_m z_m)
 :precision binary64
 (* (hypot z_m y_m) (sqrt 0.3333333333333333)))
x_m = fabs(x);
y_m = fabs(y);
z_m = fabs(z);
assert(x_m < y_m && y_m < z_m);
double code(double x_m, double y_m, double z_m) {
	return hypot(z_m, y_m) * sqrt(0.3333333333333333);
}
x_m = Math.abs(x);
y_m = Math.abs(y);
z_m = Math.abs(z);
assert x_m < y_m && y_m < z_m;
public static double code(double x_m, double y_m, double z_m) {
	return Math.hypot(z_m, y_m) * Math.sqrt(0.3333333333333333);
}
x_m = math.fabs(x)
y_m = math.fabs(y)
z_m = math.fabs(z)
[x_m, y_m, z_m] = sort([x_m, y_m, z_m])
def code(x_m, y_m, z_m):
	return math.hypot(z_m, y_m) * math.sqrt(0.3333333333333333)
x_m = abs(x)
y_m = abs(y)
z_m = abs(z)
x_m, y_m, z_m = sort([x_m, y_m, z_m])
function code(x_m, y_m, z_m)
	return Float64(hypot(z_m, y_m) * sqrt(0.3333333333333333))
end
x_m = abs(x);
y_m = abs(y);
z_m = abs(z);
x_m, y_m, z_m = num2cell(sort([x_m, y_m, z_m])){:}
function tmp = code(x_m, y_m, z_m)
	tmp = hypot(z_m, y_m) * sqrt(0.3333333333333333);
end
x_m = N[Abs[x], $MachinePrecision]
y_m = N[Abs[y], $MachinePrecision]
z_m = N[Abs[z], $MachinePrecision]
NOTE: x_m, y_m, and z_m should be sorted in increasing order before calling this function.
code[x$95$m_, y$95$m_, z$95$m_] := N[(N[Sqrt[z$95$m ^ 2 + y$95$m ^ 2], $MachinePrecision] * N[Sqrt[0.3333333333333333], $MachinePrecision]), $MachinePrecision]
\begin{array}{l}
x_m = \left|x\right|
\\
y_m = \left|y\right|
\\
z_m = \left|z\right|
\\
[x_m, y_m, z_m] = \mathsf{sort}([x_m, y_m, z_m])\\
\\
\mathsf{hypot}\left(z\_m, y\_m\right) \cdot \sqrt{0.3333333333333333}
\end{array}
Derivation
  1. Initial program 44.2%

    \[\sqrt{\frac{\left(x \cdot x + y \cdot y\right) + z \cdot z}{3}} \]
  2. Add Preprocessing
  3. Taylor expanded in x around 0

    \[\leadsto \color{blue}{\sqrt{\frac{1}{3}} \cdot \sqrt{{y}^{2} + {z}^{2}}} \]
  4. Step-by-step derivation
    1. *-commutativeN/A

      \[\leadsto \sqrt{{y}^{2} + {z}^{2}} \cdot \color{blue}{\sqrt{\frac{1}{3}}} \]
    2. lower-*.f64N/A

      \[\leadsto \sqrt{{y}^{2} + {z}^{2}} \cdot \color{blue}{\sqrt{\frac{1}{3}}} \]
    3. +-commutativeN/A

      \[\leadsto \sqrt{{z}^{2} + {y}^{2}} \cdot \sqrt{\frac{1}{3}} \]
    4. pow2N/A

      \[\leadsto \sqrt{z \cdot z + {y}^{2}} \cdot \sqrt{\frac{1}{3}} \]
    5. pow2N/A

      \[\leadsto \sqrt{z \cdot z + y \cdot y} \cdot \sqrt{\frac{1}{3}} \]
    6. lower-hypot.f64N/A

      \[\leadsto \mathsf{hypot}\left(z, y\right) \cdot \sqrt{\color{blue}{\frac{1}{3}}} \]
    7. lower-sqrt.f6470.9

      \[\leadsto \mathsf{hypot}\left(z, y\right) \cdot \sqrt{0.3333333333333333} \]
  5. Applied rewrites70.9%

    \[\leadsto \color{blue}{\mathsf{hypot}\left(z, y\right) \cdot \sqrt{0.3333333333333333}} \]
  6. Add Preprocessing

Alternative 2: 98.1% accurate, 2.7× speedup?

\[\begin{array}{l} x_m = \left|x\right| \\ y_m = \left|y\right| \\ z_m = \left|z\right| \\ [x_m, y_m, z_m] = \mathsf{sort}([x_m, y_m, z_m])\\ \\ \sqrt{0.3333333333333333} \cdot z\_m \end{array} \]
x_m = (fabs.f64 x)
y_m = (fabs.f64 y)
z_m = (fabs.f64 z)
NOTE: x_m, y_m, and z_m should be sorted in increasing order before calling this function.
(FPCore (x_m y_m z_m) :precision binary64 (* (sqrt 0.3333333333333333) z_m))
x_m = fabs(x);
y_m = fabs(y);
z_m = fabs(z);
assert(x_m < y_m && y_m < z_m);
double code(double x_m, double y_m, double z_m) {
	return sqrt(0.3333333333333333) * z_m;
}
x_m =     private
y_m =     private
z_m =     private
NOTE: x_m, y_m, and z_m should be sorted in increasing order before calling this function.
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x_m, y_m, z_m)
use fmin_fmax_functions
    real(8), intent (in) :: x_m
    real(8), intent (in) :: y_m
    real(8), intent (in) :: z_m
    code = sqrt(0.3333333333333333d0) * z_m
end function
x_m = Math.abs(x);
y_m = Math.abs(y);
z_m = Math.abs(z);
assert x_m < y_m && y_m < z_m;
public static double code(double x_m, double y_m, double z_m) {
	return Math.sqrt(0.3333333333333333) * z_m;
}
x_m = math.fabs(x)
y_m = math.fabs(y)
z_m = math.fabs(z)
[x_m, y_m, z_m] = sort([x_m, y_m, z_m])
def code(x_m, y_m, z_m):
	return math.sqrt(0.3333333333333333) * z_m
x_m = abs(x)
y_m = abs(y)
z_m = abs(z)
x_m, y_m, z_m = sort([x_m, y_m, z_m])
function code(x_m, y_m, z_m)
	return Float64(sqrt(0.3333333333333333) * z_m)
end
x_m = abs(x);
y_m = abs(y);
z_m = abs(z);
x_m, y_m, z_m = num2cell(sort([x_m, y_m, z_m])){:}
function tmp = code(x_m, y_m, z_m)
	tmp = sqrt(0.3333333333333333) * z_m;
end
x_m = N[Abs[x], $MachinePrecision]
y_m = N[Abs[y], $MachinePrecision]
z_m = N[Abs[z], $MachinePrecision]
NOTE: x_m, y_m, and z_m should be sorted in increasing order before calling this function.
code[x$95$m_, y$95$m_, z$95$m_] := N[(N[Sqrt[0.3333333333333333], $MachinePrecision] * z$95$m), $MachinePrecision]
\begin{array}{l}
x_m = \left|x\right|
\\
y_m = \left|y\right|
\\
z_m = \left|z\right|
\\
[x_m, y_m, z_m] = \mathsf{sort}([x_m, y_m, z_m])\\
\\
\sqrt{0.3333333333333333} \cdot z\_m
\end{array}
Derivation
  1. Initial program 44.2%

    \[\sqrt{\frac{\left(x \cdot x + y \cdot y\right) + z \cdot z}{3}} \]
  2. Add Preprocessing
  3. Taylor expanded in z around inf

    \[\leadsto \color{blue}{z \cdot \sqrt{\frac{1}{3}}} \]
  4. Step-by-step derivation
    1. *-commutativeN/A

      \[\leadsto \sqrt{\frac{1}{3}} \cdot \color{blue}{z} \]
    2. lower-*.f64N/A

      \[\leadsto \sqrt{\frac{1}{3}} \cdot \color{blue}{z} \]
    3. lower-sqrt.f6420.4

      \[\leadsto \sqrt{0.3333333333333333} \cdot z \]
  5. Applied rewrites20.4%

    \[\leadsto \color{blue}{\sqrt{0.3333333333333333} \cdot z} \]
  6. Add Preprocessing

Developer Target 1: 97.3% accurate, 0.7× speedup?

\[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;z < -6.396479394109776 \cdot 10^{+136}:\\ \;\;\;\;\frac{-z}{\sqrt{3}}\\ \mathbf{elif}\;z < 7.320293694404182 \cdot 10^{+117}:\\ \;\;\;\;\frac{\sqrt{\left(z \cdot z + x \cdot x\right) + y \cdot y}}{\sqrt{3}}\\ \mathbf{else}:\\ \;\;\;\;\sqrt{0.3333333333333333} \cdot z\\ \end{array} \end{array} \]
(FPCore (x y z)
 :precision binary64
 (if (< z -6.396479394109776e+136)
   (/ (- z) (sqrt 3.0))
   (if (< z 7.320293694404182e+117)
     (/ (sqrt (+ (+ (* z z) (* x x)) (* y y))) (sqrt 3.0))
     (* (sqrt 0.3333333333333333) z))))
double code(double x, double y, double z) {
	double tmp;
	if (z < -6.396479394109776e+136) {
		tmp = -z / sqrt(3.0);
	} else if (z < 7.320293694404182e+117) {
		tmp = sqrt((((z * z) + (x * x)) + (y * y))) / sqrt(3.0);
	} else {
		tmp = sqrt(0.3333333333333333) * z;
	}
	return tmp;
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8) :: tmp
    if (z < (-6.396479394109776d+136)) then
        tmp = -z / sqrt(3.0d0)
    else if (z < 7.320293694404182d+117) then
        tmp = sqrt((((z * z) + (x * x)) + (y * y))) / sqrt(3.0d0)
    else
        tmp = sqrt(0.3333333333333333d0) * z
    end if
    code = tmp
end function
public static double code(double x, double y, double z) {
	double tmp;
	if (z < -6.396479394109776e+136) {
		tmp = -z / Math.sqrt(3.0);
	} else if (z < 7.320293694404182e+117) {
		tmp = Math.sqrt((((z * z) + (x * x)) + (y * y))) / Math.sqrt(3.0);
	} else {
		tmp = Math.sqrt(0.3333333333333333) * z;
	}
	return tmp;
}
def code(x, y, z):
	tmp = 0
	if z < -6.396479394109776e+136:
		tmp = -z / math.sqrt(3.0)
	elif z < 7.320293694404182e+117:
		tmp = math.sqrt((((z * z) + (x * x)) + (y * y))) / math.sqrt(3.0)
	else:
		tmp = math.sqrt(0.3333333333333333) * z
	return tmp
function code(x, y, z)
	tmp = 0.0
	if (z < -6.396479394109776e+136)
		tmp = Float64(Float64(-z) / sqrt(3.0));
	elseif (z < 7.320293694404182e+117)
		tmp = Float64(sqrt(Float64(Float64(Float64(z * z) + Float64(x * x)) + Float64(y * y))) / sqrt(3.0));
	else
		tmp = Float64(sqrt(0.3333333333333333) * z);
	end
	return tmp
end
function tmp_2 = code(x, y, z)
	tmp = 0.0;
	if (z < -6.396479394109776e+136)
		tmp = -z / sqrt(3.0);
	elseif (z < 7.320293694404182e+117)
		tmp = sqrt((((z * z) + (x * x)) + (y * y))) / sqrt(3.0);
	else
		tmp = sqrt(0.3333333333333333) * z;
	end
	tmp_2 = tmp;
end
code[x_, y_, z_] := If[Less[z, -6.396479394109776e+136], N[((-z) / N[Sqrt[3.0], $MachinePrecision]), $MachinePrecision], If[Less[z, 7.320293694404182e+117], N[(N[Sqrt[N[(N[(N[(z * z), $MachinePrecision] + N[(x * x), $MachinePrecision]), $MachinePrecision] + N[(y * y), $MachinePrecision]), $MachinePrecision]], $MachinePrecision] / N[Sqrt[3.0], $MachinePrecision]), $MachinePrecision], N[(N[Sqrt[0.3333333333333333], $MachinePrecision] * z), $MachinePrecision]]]
\begin{array}{l}

\\
\begin{array}{l}
\mathbf{if}\;z < -6.396479394109776 \cdot 10^{+136}:\\
\;\;\;\;\frac{-z}{\sqrt{3}}\\

\mathbf{elif}\;z < 7.320293694404182 \cdot 10^{+117}:\\
\;\;\;\;\frac{\sqrt{\left(z \cdot z + x \cdot x\right) + y \cdot y}}{\sqrt{3}}\\

\mathbf{else}:\\
\;\;\;\;\sqrt{0.3333333333333333} \cdot z\\


\end{array}
\end{array}

Reproduce

?
herbie shell --seed 2025061 
(FPCore (x y z)
  :name "Data.Array.Repa.Algorithms.Pixel:doubleRmsOfRGB8 from repa-algorithms-3.4.0.1"
  :precision binary64

  :alt
  (! :herbie-platform default (if (< z -63964793941097760000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000) (/ (- z) (sqrt 3)) (if (< z 7320293694404182000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000) (/ (sqrt (+ (+ (* z z) (* x x)) (* y y))) (sqrt 3)) (* (sqrt 3333333333333333/10000000000000000) z))))

  (sqrt (/ (+ (+ (* x x) (* y y)) (* z z)) 3.0)))