
(FPCore (x y z t) :precision binary64 (+ (/ x y) (/ (+ 2 (* (* z 2) (- 1 t))) (* t z))))
double code(double x, double y, double z, double t) {
return (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z));
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
code = (x / y) + ((2.0d0 + ((z * 2.0d0) * (1.0d0 - t))) / (t * z))
end function
public static double code(double x, double y, double z, double t) {
return (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z));
}
def code(x, y, z, t): return (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z))
function code(x, y, z, t) return Float64(Float64(x / y) + Float64(Float64(2.0 + Float64(Float64(z * 2.0) * Float64(1.0 - t))) / Float64(t * z))) end
function tmp = code(x, y, z, t) tmp = (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z)); end
code[x_, y_, z_, t_] := N[(N[(x / y), $MachinePrecision] + N[(N[(2 + N[(N[(z * 2), $MachinePrecision] * N[(1 - t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}
Herbie found 10 alternatives:
| Alternative | Accuracy | Speedup |
|---|
(FPCore (x y z t) :precision binary64 (+ (/ x y) (/ (+ 2 (* (* z 2) (- 1 t))) (* t z))))
double code(double x, double y, double z, double t) {
return (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z));
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
code = (x / y) + ((2.0d0 + ((z * 2.0d0) * (1.0d0 - t))) / (t * z))
end function
public static double code(double x, double y, double z, double t) {
return (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z));
}
def code(x, y, z, t): return (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z))
function code(x, y, z, t) return Float64(Float64(x / y) + Float64(Float64(2.0 + Float64(Float64(z * 2.0) * Float64(1.0 - t))) / Float64(t * z))) end
function tmp = code(x, y, z, t) tmp = (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z)); end
code[x_, y_, z_, t_] := N[(N[(x / y), $MachinePrecision] + N[(N[(2 + N[(N[(z * 2), $MachinePrecision] * N[(1 - t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}
(FPCore (x y z t) :precision binary64 (+ (/ x y) (/ (- (* (- 1 t) 2) (/ -2 z)) t)))
double code(double x, double y, double z, double t) {
return (x / y) + ((((1.0 - t) * 2.0) - (-2.0 / z)) / t);
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
code = (x / y) + ((((1.0d0 - t) * 2.0d0) - ((-2.0d0) / z)) / t)
end function
public static double code(double x, double y, double z, double t) {
return (x / y) + ((((1.0 - t) * 2.0) - (-2.0 / z)) / t);
}
def code(x, y, z, t): return (x / y) + ((((1.0 - t) * 2.0) - (-2.0 / z)) / t)
function code(x, y, z, t) return Float64(Float64(x / y) + Float64(Float64(Float64(Float64(1.0 - t) * 2.0) - Float64(-2.0 / z)) / t)) end
function tmp = code(x, y, z, t) tmp = (x / y) + ((((1.0 - t) * 2.0) - (-2.0 / z)) / t); end
code[x_, y_, z_, t_] := N[(N[(x / y), $MachinePrecision] + N[(N[(N[(N[(1 - t), $MachinePrecision] * 2), $MachinePrecision] - N[(-2 / z), $MachinePrecision]), $MachinePrecision] / t), $MachinePrecision]), $MachinePrecision]
\frac{x}{y} + \frac{\left(1 - t\right) \cdot 2 - \frac{-2}{z}}{t}
Initial program 87.4%
lift-/.f64N/A
lift-*.f64N/A
*-commutativeN/A
associate-/r*N/A
lower-/.f64N/A
lift-+.f64N/A
+-commutativeN/A
add-flipN/A
lift-*.f64N/A
lift-*.f64N/A
associate-*l*N/A
*-commutativeN/A
sub-to-fraction-revN/A
lower--.f64N/A
*-commutativeN/A
lower-*.f64N/A
lower-/.f64N/A
metadata-eval99.1%
Applied rewrites99.1%
(FPCore (x y z t) :precision binary64 (let* ((t_1 (+ (/ x y) (/ (+ 2 (* (* z 2) (- 1 t))) (* t z))))) (if (<= t_1 INFINITY) t_1 (+ (/ x y) -2))))
double code(double x, double y, double z, double t) {
double t_1 = (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z));
double tmp;
if (t_1 <= ((double) INFINITY)) {
tmp = t_1;
} else {
tmp = (x / y) + -2.0;
}
return tmp;
}
public static double code(double x, double y, double z, double t) {
double t_1 = (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z));
double tmp;
if (t_1 <= Double.POSITIVE_INFINITY) {
tmp = t_1;
} else {
tmp = (x / y) + -2.0;
}
return tmp;
}
def code(x, y, z, t): t_1 = (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z)) tmp = 0 if t_1 <= math.inf: tmp = t_1 else: tmp = (x / y) + -2.0 return tmp
function code(x, y, z, t) t_1 = Float64(Float64(x / y) + Float64(Float64(2.0 + Float64(Float64(z * 2.0) * Float64(1.0 - t))) / Float64(t * z))) tmp = 0.0 if (t_1 <= Inf) tmp = t_1; else tmp = Float64(Float64(x / y) + -2.0); end return tmp end
function tmp_2 = code(x, y, z, t) t_1 = (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z)); tmp = 0.0; if (t_1 <= Inf) tmp = t_1; else tmp = (x / y) + -2.0; end tmp_2 = tmp; end
code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(x / y), $MachinePrecision] + N[(N[(2 + N[(N[(z * 2), $MachinePrecision] * N[(1 - t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$1, Infinity], t$95$1, N[(N[(x / y), $MachinePrecision] + -2), $MachinePrecision]]]
\begin{array}{l}
t_1 := \frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}\\
\mathbf{if}\;t\_1 \leq \infty:\\
\;\;\;\;t\_1\\
\mathbf{else}:\\
\;\;\;\;\frac{x}{y} + -2\\
\end{array}
if (+.f64 (/.f64 x y) (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z))) < +inf.0Initial program 87.4%
if +inf.0 < (+.f64 (/.f64 x y) (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z))) Initial program 87.4%
Taylor expanded in t around inf
Applied rewrites53.8%
(FPCore (x y z t)
:precision binary64
(let* ((t_1 (+ (/ (- (+ z z) -2) (* t z)) (/ x y)))
(t_2 (+ (/ x y) (/ (+ 2 (* (* z 2) (- 1 t))) (* t z)))))
(if (<= t_2 -199999999999999995497619646912068059136)
t_1
(if (<= t_2 200000000000)
(+ (/ x y) (* 2 (/ (- 1 t) t)))
(if (<= t_2 INFINITY) t_1 (+ (/ x y) -2))))))double code(double x, double y, double z, double t) {
double t_1 = (((z + z) - -2.0) / (t * z)) + (x / y);
double t_2 = (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z));
double tmp;
if (t_2 <= -2e+38) {
tmp = t_1;
} else if (t_2 <= 200000000000.0) {
tmp = (x / y) + (2.0 * ((1.0 - t) / t));
} else if (t_2 <= ((double) INFINITY)) {
tmp = t_1;
} else {
tmp = (x / y) + -2.0;
}
return tmp;
}
public static double code(double x, double y, double z, double t) {
double t_1 = (((z + z) - -2.0) / (t * z)) + (x / y);
double t_2 = (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z));
double tmp;
if (t_2 <= -2e+38) {
tmp = t_1;
} else if (t_2 <= 200000000000.0) {
tmp = (x / y) + (2.0 * ((1.0 - t) / t));
} else if (t_2 <= Double.POSITIVE_INFINITY) {
tmp = t_1;
} else {
tmp = (x / y) + -2.0;
}
return tmp;
}
def code(x, y, z, t): t_1 = (((z + z) - -2.0) / (t * z)) + (x / y) t_2 = (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z)) tmp = 0 if t_2 <= -2e+38: tmp = t_1 elif t_2 <= 200000000000.0: tmp = (x / y) + (2.0 * ((1.0 - t) / t)) elif t_2 <= math.inf: tmp = t_1 else: tmp = (x / y) + -2.0 return tmp
function code(x, y, z, t) t_1 = Float64(Float64(Float64(Float64(z + z) - -2.0) / Float64(t * z)) + Float64(x / y)) t_2 = Float64(Float64(x / y) + Float64(Float64(2.0 + Float64(Float64(z * 2.0) * Float64(1.0 - t))) / Float64(t * z))) tmp = 0.0 if (t_2 <= -2e+38) tmp = t_1; elseif (t_2 <= 200000000000.0) tmp = Float64(Float64(x / y) + Float64(2.0 * Float64(Float64(1.0 - t) / t))); elseif (t_2 <= Inf) tmp = t_1; else tmp = Float64(Float64(x / y) + -2.0); end return tmp end
function tmp_2 = code(x, y, z, t) t_1 = (((z + z) - -2.0) / (t * z)) + (x / y); t_2 = (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z)); tmp = 0.0; if (t_2 <= -2e+38) tmp = t_1; elseif (t_2 <= 200000000000.0) tmp = (x / y) + (2.0 * ((1.0 - t) / t)); elseif (t_2 <= Inf) tmp = t_1; else tmp = (x / y) + -2.0; end tmp_2 = tmp; end
code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(N[(N[(z + z), $MachinePrecision] - -2), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision] + N[(x / y), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$2 = N[(N[(x / y), $MachinePrecision] + N[(N[(2 + N[(N[(z * 2), $MachinePrecision] * N[(1 - t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$2, -199999999999999995497619646912068059136], t$95$1, If[LessEqual[t$95$2, 200000000000], N[(N[(x / y), $MachinePrecision] + N[(2 * N[(N[(1 - t), $MachinePrecision] / t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$2, Infinity], t$95$1, N[(N[(x / y), $MachinePrecision] + -2), $MachinePrecision]]]]]]
\begin{array}{l}
t_1 := \frac{\left(z + z\right) - -2}{t \cdot z} + \frac{x}{y}\\
t_2 := \frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}\\
\mathbf{if}\;t\_2 \leq -199999999999999995497619646912068059136:\\
\;\;\;\;t\_1\\
\mathbf{elif}\;t\_2 \leq 200000000000:\\
\;\;\;\;\frac{x}{y} + 2 \cdot \frac{1 - t}{t}\\
\mathbf{elif}\;t\_2 \leq \infty:\\
\;\;\;\;t\_1\\
\mathbf{else}:\\
\;\;\;\;\frac{x}{y} + -2\\
\end{array}
if (+.f64 (/.f64 x y) (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z))) < -2e38 or 2e11 < (+.f64 (/.f64 x y) (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z))) < +inf.0Initial program 87.4%
Taylor expanded in t around 0
lower-+.f64N/A
lower-*.f6480.1%
Applied rewrites80.1%
lift-+.f64N/A
+-commutativeN/A
lower-+.f6480.1%
lift-+.f64N/A
+-commutativeN/A
add-flipN/A
metadata-evalN/A
lower--.f6480.1%
lift-*.f64N/A
count-2-revN/A
lower-+.f6480.1%
Applied rewrites80.1%
if -2e38 < (+.f64 (/.f64 x y) (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z))) < 2e11Initial program 87.4%
Taylor expanded in z around inf
lower-*.f64N/A
lower-/.f64N/A
lower--.f6471.3%
Applied rewrites71.3%
if +inf.0 < (+.f64 (/.f64 x y) (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z))) Initial program 87.4%
Taylor expanded in t around inf
Applied rewrites53.8%
(FPCore (x y z t)
:precision binary64
(let* ((t_1 (+ (/ (- (+ z z) -2) (* t z)) (/ x y))))
(if (<= (/ x y) -1000)
t_1
(if (<= (/ x y) 5000000000)
(/ (+ (* 2 (- 1 t)) (* 2 (/ 1 z))) t)
t_1))))double code(double x, double y, double z, double t) {
double t_1 = (((z + z) - -2.0) / (t * z)) + (x / y);
double tmp;
if ((x / y) <= -1000.0) {
tmp = t_1;
} else if ((x / y) <= 5000000000.0) {
tmp = ((2.0 * (1.0 - t)) + (2.0 * (1.0 / z))) / t;
} else {
tmp = t_1;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
real(8) :: t_1
real(8) :: tmp
t_1 = (((z + z) - (-2.0d0)) / (t * z)) + (x / y)
if ((x / y) <= (-1000.0d0)) then
tmp = t_1
else if ((x / y) <= 5000000000.0d0) then
tmp = ((2.0d0 * (1.0d0 - t)) + (2.0d0 * (1.0d0 / z))) / t
else
tmp = t_1
end if
code = tmp
end function
public static double code(double x, double y, double z, double t) {
double t_1 = (((z + z) - -2.0) / (t * z)) + (x / y);
double tmp;
if ((x / y) <= -1000.0) {
tmp = t_1;
} else if ((x / y) <= 5000000000.0) {
tmp = ((2.0 * (1.0 - t)) + (2.0 * (1.0 / z))) / t;
} else {
tmp = t_1;
}
return tmp;
}
def code(x, y, z, t): t_1 = (((z + z) - -2.0) / (t * z)) + (x / y) tmp = 0 if (x / y) <= -1000.0: tmp = t_1 elif (x / y) <= 5000000000.0: tmp = ((2.0 * (1.0 - t)) + (2.0 * (1.0 / z))) / t else: tmp = t_1 return tmp
function code(x, y, z, t) t_1 = Float64(Float64(Float64(Float64(z + z) - -2.0) / Float64(t * z)) + Float64(x / y)) tmp = 0.0 if (Float64(x / y) <= -1000.0) tmp = t_1; elseif (Float64(x / y) <= 5000000000.0) tmp = Float64(Float64(Float64(2.0 * Float64(1.0 - t)) + Float64(2.0 * Float64(1.0 / z))) / t); else tmp = t_1; end return tmp end
function tmp_2 = code(x, y, z, t) t_1 = (((z + z) - -2.0) / (t * z)) + (x / y); tmp = 0.0; if ((x / y) <= -1000.0) tmp = t_1; elseif ((x / y) <= 5000000000.0) tmp = ((2.0 * (1.0 - t)) + (2.0 * (1.0 / z))) / t; else tmp = t_1; end tmp_2 = tmp; end
code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(N[(N[(z + z), $MachinePrecision] - -2), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision] + N[(x / y), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[N[(x / y), $MachinePrecision], -1000], t$95$1, If[LessEqual[N[(x / y), $MachinePrecision], 5000000000], N[(N[(N[(2 * N[(1 - t), $MachinePrecision]), $MachinePrecision] + N[(2 * N[(1 / z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / t), $MachinePrecision], t$95$1]]]
\begin{array}{l}
t_1 := \frac{\left(z + z\right) - -2}{t \cdot z} + \frac{x}{y}\\
\mathbf{if}\;\frac{x}{y} \leq -1000:\\
\;\;\;\;t\_1\\
\mathbf{elif}\;\frac{x}{y} \leq 5000000000:\\
\;\;\;\;\frac{2 \cdot \left(1 - t\right) + 2 \cdot \frac{1}{z}}{t}\\
\mathbf{else}:\\
\;\;\;\;t\_1\\
\end{array}
if (/.f64 x y) < -1e3 or 5e9 < (/.f64 x y) Initial program 87.4%
Taylor expanded in t around 0
lower-+.f64N/A
lower-*.f6480.1%
Applied rewrites80.1%
lift-+.f64N/A
+-commutativeN/A
lower-+.f6480.1%
lift-+.f64N/A
+-commutativeN/A
add-flipN/A
metadata-evalN/A
lower--.f6480.1%
lift-*.f64N/A
count-2-revN/A
lower-+.f6480.1%
Applied rewrites80.1%
if -1e3 < (/.f64 x y) < 5e9Initial program 87.4%
lift-+.f64N/A
+-commutativeN/A
lift-/.f64N/A
lift-*.f64N/A
*-commutativeN/A
associate-/r*N/A
lift-/.f64N/A
common-denominatorN/A
lower-/.f64N/A
Applied rewrites74.9%
Taylor expanded in x around 0
lower-/.f64N/A
lower-+.f64N/A
lower-*.f64N/A
lower--.f64N/A
lower-*.f64N/A
lower-/.f6466.5%
Applied rewrites66.5%
(FPCore (x y z t)
:precision binary64
(let* ((t_1 (+ (/ x y) (* 2 (/ (- 1 t) t)))))
(if (<=
z
-8920298079412249/89202980794122492566142873090593446023921664)
t_1
(if (<=
z
4253529586511731/170141183460469231731687303715884105728)
(+ (/ x y) (/ (/ 2 z) t))
t_1))))double code(double x, double y, double z, double t) {
double t_1 = (x / y) + (2.0 * ((1.0 - t) / t));
double tmp;
if (z <= -1e-28) {
tmp = t_1;
} else if (z <= 2.5e-23) {
tmp = (x / y) + ((2.0 / z) / t);
} else {
tmp = t_1;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
real(8) :: t_1
real(8) :: tmp
t_1 = (x / y) + (2.0d0 * ((1.0d0 - t) / t))
if (z <= (-1d-28)) then
tmp = t_1
else if (z <= 2.5d-23) then
tmp = (x / y) + ((2.0d0 / z) / t)
else
tmp = t_1
end if
code = tmp
end function
public static double code(double x, double y, double z, double t) {
double t_1 = (x / y) + (2.0 * ((1.0 - t) / t));
double tmp;
if (z <= -1e-28) {
tmp = t_1;
} else if (z <= 2.5e-23) {
tmp = (x / y) + ((2.0 / z) / t);
} else {
tmp = t_1;
}
return tmp;
}
def code(x, y, z, t): t_1 = (x / y) + (2.0 * ((1.0 - t) / t)) tmp = 0 if z <= -1e-28: tmp = t_1 elif z <= 2.5e-23: tmp = (x / y) + ((2.0 / z) / t) else: tmp = t_1 return tmp
function code(x, y, z, t) t_1 = Float64(Float64(x / y) + Float64(2.0 * Float64(Float64(1.0 - t) / t))) tmp = 0.0 if (z <= -1e-28) tmp = t_1; elseif (z <= 2.5e-23) tmp = Float64(Float64(x / y) + Float64(Float64(2.0 / z) / t)); else tmp = t_1; end return tmp end
function tmp_2 = code(x, y, z, t) t_1 = (x / y) + (2.0 * ((1.0 - t) / t)); tmp = 0.0; if (z <= -1e-28) tmp = t_1; elseif (z <= 2.5e-23) tmp = (x / y) + ((2.0 / z) / t); else tmp = t_1; end tmp_2 = tmp; end
code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(x / y), $MachinePrecision] + N[(2 * N[(N[(1 - t), $MachinePrecision] / t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[z, -8920298079412249/89202980794122492566142873090593446023921664], t$95$1, If[LessEqual[z, 4253529586511731/170141183460469231731687303715884105728], N[(N[(x / y), $MachinePrecision] + N[(N[(2 / z), $MachinePrecision] / t), $MachinePrecision]), $MachinePrecision], t$95$1]]]
\begin{array}{l}
t_1 := \frac{x}{y} + 2 \cdot \frac{1 - t}{t}\\
\mathbf{if}\;z \leq \frac{-8920298079412249}{89202980794122492566142873090593446023921664}:\\
\;\;\;\;t\_1\\
\mathbf{elif}\;z \leq \frac{4253529586511731}{170141183460469231731687303715884105728}:\\
\;\;\;\;\frac{x}{y} + \frac{\frac{2}{z}}{t}\\
\mathbf{else}:\\
\;\;\;\;t\_1\\
\end{array}
if z < -9.9999999999999997e-29 or 2.5000000000000001e-23 < z Initial program 87.4%
Taylor expanded in z around inf
lower-*.f64N/A
lower-/.f64N/A
lower--.f6471.3%
Applied rewrites71.3%
if -9.9999999999999997e-29 < z < 2.5000000000000001e-23Initial program 87.4%
lift-/.f64N/A
lift-*.f64N/A
*-commutativeN/A
associate-/r*N/A
lower-/.f64N/A
lift-+.f64N/A
+-commutativeN/A
add-flipN/A
lift-*.f64N/A
lift-*.f64N/A
associate-*l*N/A
*-commutativeN/A
sub-to-fraction-revN/A
lower--.f64N/A
*-commutativeN/A
lower-*.f64N/A
lower-/.f64N/A
metadata-eval99.1%
Applied rewrites99.1%
Taylor expanded in z around 0
lower-/.f6462.8%
Applied rewrites62.8%
(FPCore (x y z t)
:precision binary64
(let* ((t_1 (+ (/ x y) (* 2 (/ (- 1 t) t)))))
(if (<=
z
-8920298079412249/89202980794122492566142873090593446023921664)
t_1
(if (<=
z
4253529586511731/170141183460469231731687303715884105728)
(+ (/ x y) (/ 2 (* t z)))
t_1))))double code(double x, double y, double z, double t) {
double t_1 = (x / y) + (2.0 * ((1.0 - t) / t));
double tmp;
if (z <= -1e-28) {
tmp = t_1;
} else if (z <= 2.5e-23) {
tmp = (x / y) + (2.0 / (t * z));
} else {
tmp = t_1;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
real(8) :: t_1
real(8) :: tmp
t_1 = (x / y) + (2.0d0 * ((1.0d0 - t) / t))
if (z <= (-1d-28)) then
tmp = t_1
else if (z <= 2.5d-23) then
tmp = (x / y) + (2.0d0 / (t * z))
else
tmp = t_1
end if
code = tmp
end function
public static double code(double x, double y, double z, double t) {
double t_1 = (x / y) + (2.0 * ((1.0 - t) / t));
double tmp;
if (z <= -1e-28) {
tmp = t_1;
} else if (z <= 2.5e-23) {
tmp = (x / y) + (2.0 / (t * z));
} else {
tmp = t_1;
}
return tmp;
}
def code(x, y, z, t): t_1 = (x / y) + (2.0 * ((1.0 - t) / t)) tmp = 0 if z <= -1e-28: tmp = t_1 elif z <= 2.5e-23: tmp = (x / y) + (2.0 / (t * z)) else: tmp = t_1 return tmp
function code(x, y, z, t) t_1 = Float64(Float64(x / y) + Float64(2.0 * Float64(Float64(1.0 - t) / t))) tmp = 0.0 if (z <= -1e-28) tmp = t_1; elseif (z <= 2.5e-23) tmp = Float64(Float64(x / y) + Float64(2.0 / Float64(t * z))); else tmp = t_1; end return tmp end
function tmp_2 = code(x, y, z, t) t_1 = (x / y) + (2.0 * ((1.0 - t) / t)); tmp = 0.0; if (z <= -1e-28) tmp = t_1; elseif (z <= 2.5e-23) tmp = (x / y) + (2.0 / (t * z)); else tmp = t_1; end tmp_2 = tmp; end
code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(x / y), $MachinePrecision] + N[(2 * N[(N[(1 - t), $MachinePrecision] / t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[z, -8920298079412249/89202980794122492566142873090593446023921664], t$95$1, If[LessEqual[z, 4253529586511731/170141183460469231731687303715884105728], N[(N[(x / y), $MachinePrecision] + N[(2 / N[(t * z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], t$95$1]]]
\begin{array}{l}
t_1 := \frac{x}{y} + 2 \cdot \frac{1 - t}{t}\\
\mathbf{if}\;z \leq \frac{-8920298079412249}{89202980794122492566142873090593446023921664}:\\
\;\;\;\;t\_1\\
\mathbf{elif}\;z \leq \frac{4253529586511731}{170141183460469231731687303715884105728}:\\
\;\;\;\;\frac{x}{y} + \frac{2}{t \cdot z}\\
\mathbf{else}:\\
\;\;\;\;t\_1\\
\end{array}
if z < -9.9999999999999997e-29 or 2.5000000000000001e-23 < z Initial program 87.4%
Taylor expanded in z around inf
lower-*.f64N/A
lower-/.f64N/A
lower--.f6471.3%
Applied rewrites71.3%
if -9.9999999999999997e-29 < z < 2.5000000000000001e-23Initial program 87.4%
Taylor expanded in z around 0
Applied rewrites62.8%
(FPCore (x y z t)
:precision binary64
(let* ((t_1 (+ (/ x y) -2))
(t_2 (/ (+ 2 (* (* z 2) (- 1 t))) (* t z))))
(if (<=
t_2
-9999999999999999549291066784979473595300225087383524118479625982517885450291174622154390152298057300868772377386949310916067328)
(/ (+ 2 (* 2 (/ 1 z))) t)
(if (<= t_2 -200000)
(+ (/ x y) (/ 2 t))
(if (<= t_2 -2)
t_1
(if (<= t_2 INFINITY)
(/ (+ 2 (* 2 (* z (- 1 t)))) (* t z))
t_1))))))double code(double x, double y, double z, double t) {
double t_1 = (x / y) + -2.0;
double t_2 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z);
double tmp;
if (t_2 <= -1e+127) {
tmp = (2.0 + (2.0 * (1.0 / z))) / t;
} else if (t_2 <= -200000.0) {
tmp = (x / y) + (2.0 / t);
} else if (t_2 <= -2.0) {
tmp = t_1;
} else if (t_2 <= ((double) INFINITY)) {
tmp = (2.0 + (2.0 * (z * (1.0 - t)))) / (t * z);
} else {
tmp = t_1;
}
return tmp;
}
public static double code(double x, double y, double z, double t) {
double t_1 = (x / y) + -2.0;
double t_2 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z);
double tmp;
if (t_2 <= -1e+127) {
tmp = (2.0 + (2.0 * (1.0 / z))) / t;
} else if (t_2 <= -200000.0) {
tmp = (x / y) + (2.0 / t);
} else if (t_2 <= -2.0) {
tmp = t_1;
} else if (t_2 <= Double.POSITIVE_INFINITY) {
tmp = (2.0 + (2.0 * (z * (1.0 - t)))) / (t * z);
} else {
tmp = t_1;
}
return tmp;
}
def code(x, y, z, t): t_1 = (x / y) + -2.0 t_2 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z) tmp = 0 if t_2 <= -1e+127: tmp = (2.0 + (2.0 * (1.0 / z))) / t elif t_2 <= -200000.0: tmp = (x / y) + (2.0 / t) elif t_2 <= -2.0: tmp = t_1 elif t_2 <= math.inf: tmp = (2.0 + (2.0 * (z * (1.0 - t)))) / (t * z) else: tmp = t_1 return tmp
function code(x, y, z, t) t_1 = Float64(Float64(x / y) + -2.0) t_2 = Float64(Float64(2.0 + Float64(Float64(z * 2.0) * Float64(1.0 - t))) / Float64(t * z)) tmp = 0.0 if (t_2 <= -1e+127) tmp = Float64(Float64(2.0 + Float64(2.0 * Float64(1.0 / z))) / t); elseif (t_2 <= -200000.0) tmp = Float64(Float64(x / y) + Float64(2.0 / t)); elseif (t_2 <= -2.0) tmp = t_1; elseif (t_2 <= Inf) tmp = Float64(Float64(2.0 + Float64(2.0 * Float64(z * Float64(1.0 - t)))) / Float64(t * z)); else tmp = t_1; end return tmp end
function tmp_2 = code(x, y, z, t) t_1 = (x / y) + -2.0; t_2 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z); tmp = 0.0; if (t_2 <= -1e+127) tmp = (2.0 + (2.0 * (1.0 / z))) / t; elseif (t_2 <= -200000.0) tmp = (x / y) + (2.0 / t); elseif (t_2 <= -2.0) tmp = t_1; elseif (t_2 <= Inf) tmp = (2.0 + (2.0 * (z * (1.0 - t)))) / (t * z); else tmp = t_1; end tmp_2 = tmp; end
code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(x / y), $MachinePrecision] + -2), $MachinePrecision]}, Block[{t$95$2 = N[(N[(2 + N[(N[(z * 2), $MachinePrecision] * N[(1 - t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$2, -9999999999999999549291066784979473595300225087383524118479625982517885450291174622154390152298057300868772377386949310916067328], N[(N[(2 + N[(2 * N[(1 / z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / t), $MachinePrecision], If[LessEqual[t$95$2, -200000], N[(N[(x / y), $MachinePrecision] + N[(2 / t), $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$2, -2], t$95$1, If[LessEqual[t$95$2, Infinity], N[(N[(2 + N[(2 * N[(z * N[(1 - t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision], t$95$1]]]]]]
\begin{array}{l}
t_1 := \frac{x}{y} + -2\\
t_2 := \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}\\
\mathbf{if}\;t\_2 \leq -9999999999999999549291066784979473595300225087383524118479625982517885450291174622154390152298057300868772377386949310916067328:\\
\;\;\;\;\frac{2 + 2 \cdot \frac{1}{z}}{t}\\
\mathbf{elif}\;t\_2 \leq -200000:\\
\;\;\;\;\frac{x}{y} + \frac{2}{t}\\
\mathbf{elif}\;t\_2 \leq -2:\\
\;\;\;\;t\_1\\
\mathbf{elif}\;t\_2 \leq \infty:\\
\;\;\;\;\frac{2 + 2 \cdot \left(z \cdot \left(1 - t\right)\right)}{t \cdot z}\\
\mathbf{else}:\\
\;\;\;\;t\_1\\
\end{array}
if (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < -9.9999999999999995e126Initial program 87.4%
Taylor expanded in t around 0
lower-/.f64N/A
lower-+.f64N/A
lower-*.f64N/A
lower-/.f6448.2%
Applied rewrites48.2%
if -9.9999999999999995e126 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < -2e5Initial program 87.4%
Taylor expanded in z around inf
lower-*.f64N/A
lower-/.f64N/A
lower--.f6471.3%
Applied rewrites71.3%
Taylor expanded in t around 0
lower-/.f6452.8%
Applied rewrites52.8%
if -2e5 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < -2 or +inf.0 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) Initial program 87.4%
Taylor expanded in t around inf
Applied rewrites53.8%
if -2 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < +inf.0Initial program 87.4%
Taylor expanded in t around inf
Applied rewrites53.8%
lift-+.f64N/A
+-commutativeN/A
lift-/.f64N/A
add-to-fractionN/A
lower-/.f64N/A
lower-+.f64N/A
lower-*.f6453.8%
Applied rewrites53.8%
Taylor expanded in x around 0
lower-/.f64N/A
lower-+.f64N/A
lower-*.f64N/A
lower-*.f64N/A
lower--.f64N/A
lower-*.f6460.6%
Applied rewrites60.6%
(FPCore (x y z t)
:precision binary64
(let* ((t_1 (+ (/ x y) -2))
(t_2 (/ (+ 2 (* 2 (/ 1 z))) t))
(t_3 (/ (+ 2 (* (* z 2) (- 1 t))) (* t z))))
(if (<=
t_3
-9999999999999999549291066784979473595300225087383524118479625982517885450291174622154390152298057300868772377386949310916067328)
t_2
(if (<= t_3 -200000)
(+ (/ x y) (/ 2 t))
(if (<= t_3 -1) t_1 (if (<= t_3 INFINITY) t_2 t_1))))))double code(double x, double y, double z, double t) {
double t_1 = (x / y) + -2.0;
double t_2 = (2.0 + (2.0 * (1.0 / z))) / t;
double t_3 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z);
double tmp;
if (t_3 <= -1e+127) {
tmp = t_2;
} else if (t_3 <= -200000.0) {
tmp = (x / y) + (2.0 / t);
} else if (t_3 <= -1.0) {
tmp = t_1;
} else if (t_3 <= ((double) INFINITY)) {
tmp = t_2;
} else {
tmp = t_1;
}
return tmp;
}
public static double code(double x, double y, double z, double t) {
double t_1 = (x / y) + -2.0;
double t_2 = (2.0 + (2.0 * (1.0 / z))) / t;
double t_3 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z);
double tmp;
if (t_3 <= -1e+127) {
tmp = t_2;
} else if (t_3 <= -200000.0) {
tmp = (x / y) + (2.0 / t);
} else if (t_3 <= -1.0) {
tmp = t_1;
} else if (t_3 <= Double.POSITIVE_INFINITY) {
tmp = t_2;
} else {
tmp = t_1;
}
return tmp;
}
def code(x, y, z, t): t_1 = (x / y) + -2.0 t_2 = (2.0 + (2.0 * (1.0 / z))) / t t_3 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z) tmp = 0 if t_3 <= -1e+127: tmp = t_2 elif t_3 <= -200000.0: tmp = (x / y) + (2.0 / t) elif t_3 <= -1.0: tmp = t_1 elif t_3 <= math.inf: tmp = t_2 else: tmp = t_1 return tmp
function code(x, y, z, t) t_1 = Float64(Float64(x / y) + -2.0) t_2 = Float64(Float64(2.0 + Float64(2.0 * Float64(1.0 / z))) / t) t_3 = Float64(Float64(2.0 + Float64(Float64(z * 2.0) * Float64(1.0 - t))) / Float64(t * z)) tmp = 0.0 if (t_3 <= -1e+127) tmp = t_2; elseif (t_3 <= -200000.0) tmp = Float64(Float64(x / y) + Float64(2.0 / t)); elseif (t_3 <= -1.0) tmp = t_1; elseif (t_3 <= Inf) tmp = t_2; else tmp = t_1; end return tmp end
function tmp_2 = code(x, y, z, t) t_1 = (x / y) + -2.0; t_2 = (2.0 + (2.0 * (1.0 / z))) / t; t_3 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z); tmp = 0.0; if (t_3 <= -1e+127) tmp = t_2; elseif (t_3 <= -200000.0) tmp = (x / y) + (2.0 / t); elseif (t_3 <= -1.0) tmp = t_1; elseif (t_3 <= Inf) tmp = t_2; else tmp = t_1; end tmp_2 = tmp; end
code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(x / y), $MachinePrecision] + -2), $MachinePrecision]}, Block[{t$95$2 = N[(N[(2 + N[(2 * N[(1 / z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / t), $MachinePrecision]}, Block[{t$95$3 = N[(N[(2 + N[(N[(z * 2), $MachinePrecision] * N[(1 - t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$3, -9999999999999999549291066784979473595300225087383524118479625982517885450291174622154390152298057300868772377386949310916067328], t$95$2, If[LessEqual[t$95$3, -200000], N[(N[(x / y), $MachinePrecision] + N[(2 / t), $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$3, -1], t$95$1, If[LessEqual[t$95$3, Infinity], t$95$2, t$95$1]]]]]]]
\begin{array}{l}
t_1 := \frac{x}{y} + -2\\
t_2 := \frac{2 + 2 \cdot \frac{1}{z}}{t}\\
t_3 := \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}\\
\mathbf{if}\;t\_3 \leq -9999999999999999549291066784979473595300225087383524118479625982517885450291174622154390152298057300868772377386949310916067328:\\
\;\;\;\;t\_2\\
\mathbf{elif}\;t\_3 \leq -200000:\\
\;\;\;\;\frac{x}{y} + \frac{2}{t}\\
\mathbf{elif}\;t\_3 \leq -1:\\
\;\;\;\;t\_1\\
\mathbf{elif}\;t\_3 \leq \infty:\\
\;\;\;\;t\_2\\
\mathbf{else}:\\
\;\;\;\;t\_1\\
\end{array}
if (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < -9.9999999999999995e126 or -1 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < +inf.0Initial program 87.4%
Taylor expanded in t around 0
lower-/.f64N/A
lower-+.f64N/A
lower-*.f64N/A
lower-/.f6448.2%
Applied rewrites48.2%
if -9.9999999999999995e126 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < -2e5Initial program 87.4%
Taylor expanded in z around inf
lower-*.f64N/A
lower-/.f64N/A
lower--.f6471.3%
Applied rewrites71.3%
Taylor expanded in t around 0
lower-/.f6452.8%
Applied rewrites52.8%
if -2e5 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < -1 or +inf.0 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) Initial program 87.4%
Taylor expanded in t around inf
Applied rewrites53.8%
(FPCore (x y z t)
:precision binary64
(let* ((t_1 (+ (/ x y) -2)))
(if (<= t -5404319552844595/9007199254740992)
t_1
(if (<= t 7385903388887613/18014398509481984)
(+ (/ x y) (/ 2 t))
t_1))))double code(double x, double y, double z, double t) {
double t_1 = (x / y) + -2.0;
double tmp;
if (t <= -0.6) {
tmp = t_1;
} else if (t <= 0.41) {
tmp = (x / y) + (2.0 / t);
} else {
tmp = t_1;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
real(8) :: t_1
real(8) :: tmp
t_1 = (x / y) + (-2.0d0)
if (t <= (-0.6d0)) then
tmp = t_1
else if (t <= 0.41d0) then
tmp = (x / y) + (2.0d0 / t)
else
tmp = t_1
end if
code = tmp
end function
public static double code(double x, double y, double z, double t) {
double t_1 = (x / y) + -2.0;
double tmp;
if (t <= -0.6) {
tmp = t_1;
} else if (t <= 0.41) {
tmp = (x / y) + (2.0 / t);
} else {
tmp = t_1;
}
return tmp;
}
def code(x, y, z, t): t_1 = (x / y) + -2.0 tmp = 0 if t <= -0.6: tmp = t_1 elif t <= 0.41: tmp = (x / y) + (2.0 / t) else: tmp = t_1 return tmp
function code(x, y, z, t) t_1 = Float64(Float64(x / y) + -2.0) tmp = 0.0 if (t <= -0.6) tmp = t_1; elseif (t <= 0.41) tmp = Float64(Float64(x / y) + Float64(2.0 / t)); else tmp = t_1; end return tmp end
function tmp_2 = code(x, y, z, t) t_1 = (x / y) + -2.0; tmp = 0.0; if (t <= -0.6) tmp = t_1; elseif (t <= 0.41) tmp = (x / y) + (2.0 / t); else tmp = t_1; end tmp_2 = tmp; end
code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(x / y), $MachinePrecision] + -2), $MachinePrecision]}, If[LessEqual[t, -5404319552844595/9007199254740992], t$95$1, If[LessEqual[t, 7385903388887613/18014398509481984], N[(N[(x / y), $MachinePrecision] + N[(2 / t), $MachinePrecision]), $MachinePrecision], t$95$1]]]
\begin{array}{l}
t_1 := \frac{x}{y} + -2\\
\mathbf{if}\;t \leq \frac{-5404319552844595}{9007199254740992}:\\
\;\;\;\;t\_1\\
\mathbf{elif}\;t \leq \frac{7385903388887613}{18014398509481984}:\\
\;\;\;\;\frac{x}{y} + \frac{2}{t}\\
\mathbf{else}:\\
\;\;\;\;t\_1\\
\end{array}
if t < -0.59999999999999998 or 0.40999999999999998 < t Initial program 87.4%
Taylor expanded in t around inf
Applied rewrites53.8%
if -0.59999999999999998 < t < 0.40999999999999998Initial program 87.4%
Taylor expanded in z around inf
lower-*.f64N/A
lower-/.f64N/A
lower--.f6471.3%
Applied rewrites71.3%
Taylor expanded in t around 0
lower-/.f6452.8%
Applied rewrites52.8%
(FPCore (x y z t) :precision binary64 (+ (/ x y) -2))
double code(double x, double y, double z, double t) {
return (x / y) + -2.0;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
code = (x / y) + (-2.0d0)
end function
public static double code(double x, double y, double z, double t) {
return (x / y) + -2.0;
}
def code(x, y, z, t): return (x / y) + -2.0
function code(x, y, z, t) return Float64(Float64(x / y) + -2.0) end
function tmp = code(x, y, z, t) tmp = (x / y) + -2.0; end
code[x_, y_, z_, t_] := N[(N[(x / y), $MachinePrecision] + -2), $MachinePrecision]
\frac{x}{y} + -2
Initial program 87.4%
Taylor expanded in t around inf
Applied rewrites53.8%
herbie shell --seed 2025271 -o generate:evaluate
(FPCore (x y z t)
:name "Data.HashTable.ST.Basic:computeOverhead from hashtables-1.2.0.2"
:precision binary64
(+ (/ x y) (/ (+ 2 (* (* z 2) (- 1 t))) (* t z))))