Data.HashTable.ST.Basic:computeOverhead from hashtables-1.2.0.2

Percentage Accurate: 87.4% → 99.5%
Time: 5.1s
Alternatives: 10
Speedup: 1.0×

Specification

?
\[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
(FPCore (x y z t)
  :precision binary64
  (+ (/ x y) (/ (+ 2 (* (* z 2) (- 1 t))) (* t z))))
double code(double x, double y, double z, double t) {
	return (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z));
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z, t)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8), intent (in) :: t
    code = (x / y) + ((2.0d0 + ((z * 2.0d0) * (1.0d0 - t))) / (t * z))
end function
public static double code(double x, double y, double z, double t) {
	return (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z));
}
def code(x, y, z, t):
	return (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z))
function code(x, y, z, t)
	return Float64(Float64(x / y) + Float64(Float64(2.0 + Float64(Float64(z * 2.0) * Float64(1.0 - t))) / Float64(t * z)))
end
function tmp = code(x, y, z, t)
	tmp = (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z));
end
code[x_, y_, z_, t_] := N[(N[(x / y), $MachinePrecision] + N[(N[(2 + N[(N[(z * 2), $MachinePrecision] * N[(1 - t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}

Local Percentage Accuracy vs ?

The average percentage accuracy by input value. Horizontal axis shows value of an input variable; the variable is choosen in the title. Vertical axis is accuracy; higher is better. Red represent the original program, while blue represents Herbie's suggestion. These can be toggled with buttons below the plot. The line is an average while dots represent individual samples.

Accuracy vs Speed?

Herbie found 10 alternatives:

AlternativeAccuracySpeedup
The accuracy (vertical axis) and speed (horizontal axis) of each alternatives. Up and to the right is better. The red square shows the initial program, and each blue circle shows an alternative.The line shows the best available speed-accuracy tradeoffs.

Initial Program: 87.4% accurate, 1.0× speedup?

\[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
(FPCore (x y z t)
  :precision binary64
  (+ (/ x y) (/ (+ 2 (* (* z 2) (- 1 t))) (* t z))))
double code(double x, double y, double z, double t) {
	return (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z));
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z, t)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8), intent (in) :: t
    code = (x / y) + ((2.0d0 + ((z * 2.0d0) * (1.0d0 - t))) / (t * z))
end function
public static double code(double x, double y, double z, double t) {
	return (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z));
}
def code(x, y, z, t):
	return (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z))
function code(x, y, z, t)
	return Float64(Float64(x / y) + Float64(Float64(2.0 + Float64(Float64(z * 2.0) * Float64(1.0 - t))) / Float64(t * z)))
end
function tmp = code(x, y, z, t)
	tmp = (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z));
end
code[x_, y_, z_, t_] := N[(N[(x / y), $MachinePrecision] + N[(N[(2 + N[(N[(z * 2), $MachinePrecision] * N[(1 - t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}

Alternative 1: 99.5% accurate, 1.0× speedup?

\[\frac{x}{y} + \frac{\left(1 - t\right) \cdot 2 - \frac{-2}{z}}{t} \]
(FPCore (x y z t)
  :precision binary64
  (+ (/ x y) (/ (- (* (- 1 t) 2) (/ -2 z)) t)))
double code(double x, double y, double z, double t) {
	return (x / y) + ((((1.0 - t) * 2.0) - (-2.0 / z)) / t);
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z, t)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8), intent (in) :: t
    code = (x / y) + ((((1.0d0 - t) * 2.0d0) - ((-2.0d0) / z)) / t)
end function
public static double code(double x, double y, double z, double t) {
	return (x / y) + ((((1.0 - t) * 2.0) - (-2.0 / z)) / t);
}
def code(x, y, z, t):
	return (x / y) + ((((1.0 - t) * 2.0) - (-2.0 / z)) / t)
function code(x, y, z, t)
	return Float64(Float64(x / y) + Float64(Float64(Float64(Float64(1.0 - t) * 2.0) - Float64(-2.0 / z)) / t))
end
function tmp = code(x, y, z, t)
	tmp = (x / y) + ((((1.0 - t) * 2.0) - (-2.0 / z)) / t);
end
code[x_, y_, z_, t_] := N[(N[(x / y), $MachinePrecision] + N[(N[(N[(N[(1 - t), $MachinePrecision] * 2), $MachinePrecision] - N[(-2 / z), $MachinePrecision]), $MachinePrecision] / t), $MachinePrecision]), $MachinePrecision]
\frac{x}{y} + \frac{\left(1 - t\right) \cdot 2 - \frac{-2}{z}}{t}
Derivation
  1. Initial program 87.4%

    \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
  2. Step-by-step derivation
    1. lift-/.f64N/A

      \[\leadsto \frac{x}{y} + \color{blue}{\frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}} \]
    2. lift-*.f64N/A

      \[\leadsto \frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{\color{blue}{t \cdot z}} \]
    3. *-commutativeN/A

      \[\leadsto \frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{\color{blue}{z \cdot t}} \]
    4. associate-/r*N/A

      \[\leadsto \frac{x}{y} + \color{blue}{\frac{\frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{z}}{t}} \]
    5. lower-/.f64N/A

      \[\leadsto \frac{x}{y} + \color{blue}{\frac{\frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{z}}{t}} \]
    6. lift-+.f64N/A

      \[\leadsto \frac{x}{y} + \frac{\frac{\color{blue}{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}}{z}}{t} \]
    7. +-commutativeN/A

      \[\leadsto \frac{x}{y} + \frac{\frac{\color{blue}{\left(z \cdot 2\right) \cdot \left(1 - t\right) + 2}}{z}}{t} \]
    8. add-flipN/A

      \[\leadsto \frac{x}{y} + \frac{\frac{\color{blue}{\left(z \cdot 2\right) \cdot \left(1 - t\right) - \left(\mathsf{neg}\left(2\right)\right)}}{z}}{t} \]
    9. lift-*.f64N/A

      \[\leadsto \frac{x}{y} + \frac{\frac{\color{blue}{\left(z \cdot 2\right) \cdot \left(1 - t\right)} - \left(\mathsf{neg}\left(2\right)\right)}{z}}{t} \]
    10. lift-*.f64N/A

      \[\leadsto \frac{x}{y} + \frac{\frac{\color{blue}{\left(z \cdot 2\right)} \cdot \left(1 - t\right) - \left(\mathsf{neg}\left(2\right)\right)}{z}}{t} \]
    11. associate-*l*N/A

      \[\leadsto \frac{x}{y} + \frac{\frac{\color{blue}{z \cdot \left(2 \cdot \left(1 - t\right)\right)} - \left(\mathsf{neg}\left(2\right)\right)}{z}}{t} \]
    12. *-commutativeN/A

      \[\leadsto \frac{x}{y} + \frac{\frac{\color{blue}{\left(2 \cdot \left(1 - t\right)\right) \cdot z} - \left(\mathsf{neg}\left(2\right)\right)}{z}}{t} \]
    13. sub-to-fraction-revN/A

      \[\leadsto \frac{x}{y} + \frac{\color{blue}{2 \cdot \left(1 - t\right) - \frac{\mathsf{neg}\left(2\right)}{z}}}{t} \]
    14. lower--.f64N/A

      \[\leadsto \frac{x}{y} + \frac{\color{blue}{2 \cdot \left(1 - t\right) - \frac{\mathsf{neg}\left(2\right)}{z}}}{t} \]
    15. *-commutativeN/A

      \[\leadsto \frac{x}{y} + \frac{\color{blue}{\left(1 - t\right) \cdot 2} - \frac{\mathsf{neg}\left(2\right)}{z}}{t} \]
    16. lower-*.f64N/A

      \[\leadsto \frac{x}{y} + \frac{\color{blue}{\left(1 - t\right) \cdot 2} - \frac{\mathsf{neg}\left(2\right)}{z}}{t} \]
    17. lower-/.f64N/A

      \[\leadsto \frac{x}{y} + \frac{\left(1 - t\right) \cdot 2 - \color{blue}{\frac{\mathsf{neg}\left(2\right)}{z}}}{t} \]
    18. metadata-eval99.1%

      \[\leadsto \frac{x}{y} + \frac{\left(1 - t\right) \cdot 2 - \frac{\color{blue}{-2}}{z}}{t} \]
  3. Applied rewrites99.1%

    \[\leadsto \frac{x}{y} + \color{blue}{\frac{\left(1 - t\right) \cdot 2 - \frac{-2}{z}}{t}} \]
  4. Add Preprocessing

Alternative 2: 99.1% accurate, 0.5× speedup?

\[\begin{array}{l} t_1 := \frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}\\ \mathbf{if}\;t\_1 \leq \infty:\\ \;\;\;\;t\_1\\ \mathbf{else}:\\ \;\;\;\;\frac{x}{y} + -2\\ \end{array} \]
(FPCore (x y z t)
  :precision binary64
  (let* ((t_1 (+ (/ x y) (/ (+ 2 (* (* z 2) (- 1 t))) (* t z)))))
  (if (<= t_1 INFINITY) t_1 (+ (/ x y) -2))))
double code(double x, double y, double z, double t) {
	double t_1 = (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z));
	double tmp;
	if (t_1 <= ((double) INFINITY)) {
		tmp = t_1;
	} else {
		tmp = (x / y) + -2.0;
	}
	return tmp;
}
public static double code(double x, double y, double z, double t) {
	double t_1 = (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z));
	double tmp;
	if (t_1 <= Double.POSITIVE_INFINITY) {
		tmp = t_1;
	} else {
		tmp = (x / y) + -2.0;
	}
	return tmp;
}
def code(x, y, z, t):
	t_1 = (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z))
	tmp = 0
	if t_1 <= math.inf:
		tmp = t_1
	else:
		tmp = (x / y) + -2.0
	return tmp
function code(x, y, z, t)
	t_1 = Float64(Float64(x / y) + Float64(Float64(2.0 + Float64(Float64(z * 2.0) * Float64(1.0 - t))) / Float64(t * z)))
	tmp = 0.0
	if (t_1 <= Inf)
		tmp = t_1;
	else
		tmp = Float64(Float64(x / y) + -2.0);
	end
	return tmp
end
function tmp_2 = code(x, y, z, t)
	t_1 = (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z));
	tmp = 0.0;
	if (t_1 <= Inf)
		tmp = t_1;
	else
		tmp = (x / y) + -2.0;
	end
	tmp_2 = tmp;
end
code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(x / y), $MachinePrecision] + N[(N[(2 + N[(N[(z * 2), $MachinePrecision] * N[(1 - t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$1, Infinity], t$95$1, N[(N[(x / y), $MachinePrecision] + -2), $MachinePrecision]]]
\begin{array}{l}
t_1 := \frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}\\
\mathbf{if}\;t\_1 \leq \infty:\\
\;\;\;\;t\_1\\

\mathbf{else}:\\
\;\;\;\;\frac{x}{y} + -2\\


\end{array}
Derivation
  1. Split input into 2 regimes
  2. if (+.f64 (/.f64 x y) (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z))) < +inf.0

    1. Initial program 87.4%

      \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]

    if +inf.0 < (+.f64 (/.f64 x y) (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)))

    1. Initial program 87.4%

      \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
    2. Taylor expanded in t around inf

      \[\leadsto \frac{x}{y} + \color{blue}{-2} \]
    3. Step-by-step derivation
      1. Applied rewrites53.8%

        \[\leadsto \frac{x}{y} + \color{blue}{-2} \]
    4. Recombined 2 regimes into one program.
    5. Add Preprocessing

    Alternative 3: 98.3% accurate, 0.2× speedup?

    \[\begin{array}{l} t_1 := \frac{\left(z + z\right) - -2}{t \cdot z} + \frac{x}{y}\\ t_2 := \frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}\\ \mathbf{if}\;t\_2 \leq -199999999999999995497619646912068059136:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;t\_2 \leq 200000000000:\\ \;\;\;\;\frac{x}{y} + 2 \cdot \frac{1 - t}{t}\\ \mathbf{elif}\;t\_2 \leq \infty:\\ \;\;\;\;t\_1\\ \mathbf{else}:\\ \;\;\;\;\frac{x}{y} + -2\\ \end{array} \]
    (FPCore (x y z t)
      :precision binary64
      (let* ((t_1 (+ (/ (- (+ z z) -2) (* t z)) (/ x y)))
           (t_2 (+ (/ x y) (/ (+ 2 (* (* z 2) (- 1 t))) (* t z)))))
      (if (<= t_2 -199999999999999995497619646912068059136)
        t_1
        (if (<= t_2 200000000000)
          (+ (/ x y) (* 2 (/ (- 1 t) t)))
          (if (<= t_2 INFINITY) t_1 (+ (/ x y) -2))))))
    double code(double x, double y, double z, double t) {
    	double t_1 = (((z + z) - -2.0) / (t * z)) + (x / y);
    	double t_2 = (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z));
    	double tmp;
    	if (t_2 <= -2e+38) {
    		tmp = t_1;
    	} else if (t_2 <= 200000000000.0) {
    		tmp = (x / y) + (2.0 * ((1.0 - t) / t));
    	} else if (t_2 <= ((double) INFINITY)) {
    		tmp = t_1;
    	} else {
    		tmp = (x / y) + -2.0;
    	}
    	return tmp;
    }
    
    public static double code(double x, double y, double z, double t) {
    	double t_1 = (((z + z) - -2.0) / (t * z)) + (x / y);
    	double t_2 = (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z));
    	double tmp;
    	if (t_2 <= -2e+38) {
    		tmp = t_1;
    	} else if (t_2 <= 200000000000.0) {
    		tmp = (x / y) + (2.0 * ((1.0 - t) / t));
    	} else if (t_2 <= Double.POSITIVE_INFINITY) {
    		tmp = t_1;
    	} else {
    		tmp = (x / y) + -2.0;
    	}
    	return tmp;
    }
    
    def code(x, y, z, t):
    	t_1 = (((z + z) - -2.0) / (t * z)) + (x / y)
    	t_2 = (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z))
    	tmp = 0
    	if t_2 <= -2e+38:
    		tmp = t_1
    	elif t_2 <= 200000000000.0:
    		tmp = (x / y) + (2.0 * ((1.0 - t) / t))
    	elif t_2 <= math.inf:
    		tmp = t_1
    	else:
    		tmp = (x / y) + -2.0
    	return tmp
    
    function code(x, y, z, t)
    	t_1 = Float64(Float64(Float64(Float64(z + z) - -2.0) / Float64(t * z)) + Float64(x / y))
    	t_2 = Float64(Float64(x / y) + Float64(Float64(2.0 + Float64(Float64(z * 2.0) * Float64(1.0 - t))) / Float64(t * z)))
    	tmp = 0.0
    	if (t_2 <= -2e+38)
    		tmp = t_1;
    	elseif (t_2 <= 200000000000.0)
    		tmp = Float64(Float64(x / y) + Float64(2.0 * Float64(Float64(1.0 - t) / t)));
    	elseif (t_2 <= Inf)
    		tmp = t_1;
    	else
    		tmp = Float64(Float64(x / y) + -2.0);
    	end
    	return tmp
    end
    
    function tmp_2 = code(x, y, z, t)
    	t_1 = (((z + z) - -2.0) / (t * z)) + (x / y);
    	t_2 = (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z));
    	tmp = 0.0;
    	if (t_2 <= -2e+38)
    		tmp = t_1;
    	elseif (t_2 <= 200000000000.0)
    		tmp = (x / y) + (2.0 * ((1.0 - t) / t));
    	elseif (t_2 <= Inf)
    		tmp = t_1;
    	else
    		tmp = (x / y) + -2.0;
    	end
    	tmp_2 = tmp;
    end
    
    code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(N[(N[(z + z), $MachinePrecision] - -2), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision] + N[(x / y), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$2 = N[(N[(x / y), $MachinePrecision] + N[(N[(2 + N[(N[(z * 2), $MachinePrecision] * N[(1 - t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$2, -199999999999999995497619646912068059136], t$95$1, If[LessEqual[t$95$2, 200000000000], N[(N[(x / y), $MachinePrecision] + N[(2 * N[(N[(1 - t), $MachinePrecision] / t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$2, Infinity], t$95$1, N[(N[(x / y), $MachinePrecision] + -2), $MachinePrecision]]]]]]
    
    \begin{array}{l}
    t_1 := \frac{\left(z + z\right) - -2}{t \cdot z} + \frac{x}{y}\\
    t_2 := \frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}\\
    \mathbf{if}\;t\_2 \leq -199999999999999995497619646912068059136:\\
    \;\;\;\;t\_1\\
    
    \mathbf{elif}\;t\_2 \leq 200000000000:\\
    \;\;\;\;\frac{x}{y} + 2 \cdot \frac{1 - t}{t}\\
    
    \mathbf{elif}\;t\_2 \leq \infty:\\
    \;\;\;\;t\_1\\
    
    \mathbf{else}:\\
    \;\;\;\;\frac{x}{y} + -2\\
    
    
    \end{array}
    
    Derivation
    1. Split input into 3 regimes
    2. if (+.f64 (/.f64 x y) (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z))) < -2e38 or 2e11 < (+.f64 (/.f64 x y) (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z))) < +inf.0

      1. Initial program 87.4%

        \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
      2. Taylor expanded in t around 0

        \[\leadsto \frac{x}{y} + \frac{\color{blue}{2 + 2 \cdot z}}{t \cdot z} \]
      3. Step-by-step derivation
        1. lower-+.f64N/A

          \[\leadsto \frac{x}{y} + \frac{2 + \color{blue}{2 \cdot z}}{t \cdot z} \]
        2. lower-*.f6480.1%

          \[\leadsto \frac{x}{y} + \frac{2 + 2 \cdot \color{blue}{z}}{t \cdot z} \]
      4. Applied rewrites80.1%

        \[\leadsto \frac{x}{y} + \frac{\color{blue}{2 + 2 \cdot z}}{t \cdot z} \]
      5. Step-by-step derivation
        1. lift-+.f64N/A

          \[\leadsto \color{blue}{\frac{x}{y} + \frac{2 + 2 \cdot z}{t \cdot z}} \]
        2. +-commutativeN/A

          \[\leadsto \color{blue}{\frac{2 + 2 \cdot z}{t \cdot z} + \frac{x}{y}} \]
        3. lower-+.f6480.1%

          \[\leadsto \color{blue}{\frac{2 + 2 \cdot z}{t \cdot z} + \frac{x}{y}} \]
        4. lift-+.f64N/A

          \[\leadsto \frac{2 + \color{blue}{2 \cdot z}}{t \cdot z} + \frac{x}{y} \]
        5. +-commutativeN/A

          \[\leadsto \frac{2 \cdot z + \color{blue}{2}}{t \cdot z} + \frac{x}{y} \]
        6. add-flipN/A

          \[\leadsto \frac{2 \cdot z - \color{blue}{\left(\mathsf{neg}\left(2\right)\right)}}{t \cdot z} + \frac{x}{y} \]
        7. metadata-evalN/A

          \[\leadsto \frac{2 \cdot z - -2}{t \cdot z} + \frac{x}{y} \]
        8. lower--.f6480.1%

          \[\leadsto \frac{2 \cdot z - \color{blue}{-2}}{t \cdot z} + \frac{x}{y} \]
        9. lift-*.f64N/A

          \[\leadsto \frac{2 \cdot z - -2}{t \cdot z} + \frac{x}{y} \]
        10. count-2-revN/A

          \[\leadsto \frac{\left(z + z\right) - -2}{t \cdot z} + \frac{x}{y} \]
        11. lower-+.f6480.1%

          \[\leadsto \frac{\left(z + z\right) - -2}{t \cdot z} + \frac{x}{y} \]
      6. Applied rewrites80.1%

        \[\leadsto \color{blue}{\frac{\left(z + z\right) - -2}{t \cdot z} + \frac{x}{y}} \]

      if -2e38 < (+.f64 (/.f64 x y) (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z))) < 2e11

      1. Initial program 87.4%

        \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
      2. Taylor expanded in z around inf

        \[\leadsto \frac{x}{y} + \color{blue}{2 \cdot \frac{1 - t}{t}} \]
      3. Step-by-step derivation
        1. lower-*.f64N/A

          \[\leadsto \frac{x}{y} + 2 \cdot \color{blue}{\frac{1 - t}{t}} \]
        2. lower-/.f64N/A

          \[\leadsto \frac{x}{y} + 2 \cdot \frac{1 - t}{\color{blue}{t}} \]
        3. lower--.f6471.3%

          \[\leadsto \frac{x}{y} + 2 \cdot \frac{1 - t}{t} \]
      4. Applied rewrites71.3%

        \[\leadsto \frac{x}{y} + \color{blue}{2 \cdot \frac{1 - t}{t}} \]

      if +inf.0 < (+.f64 (/.f64 x y) (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)))

      1. Initial program 87.4%

        \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
      2. Taylor expanded in t around inf

        \[\leadsto \frac{x}{y} + \color{blue}{-2} \]
      3. Step-by-step derivation
        1. Applied rewrites53.8%

          \[\leadsto \frac{x}{y} + \color{blue}{-2} \]
      4. Recombined 3 regimes into one program.
      5. Add Preprocessing

      Alternative 4: 98.2% accurate, 0.6× speedup?

      \[\begin{array}{l} t_1 := \frac{\left(z + z\right) - -2}{t \cdot z} + \frac{x}{y}\\ \mathbf{if}\;\frac{x}{y} \leq -1000:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;\frac{x}{y} \leq 5000000000:\\ \;\;\;\;\frac{2 \cdot \left(1 - t\right) + 2 \cdot \frac{1}{z}}{t}\\ \mathbf{else}:\\ \;\;\;\;t\_1\\ \end{array} \]
      (FPCore (x y z t)
        :precision binary64
        (let* ((t_1 (+ (/ (- (+ z z) -2) (* t z)) (/ x y))))
        (if (<= (/ x y) -1000)
          t_1
          (if (<= (/ x y) 5000000000)
            (/ (+ (* 2 (- 1 t)) (* 2 (/ 1 z))) t)
            t_1))))
      double code(double x, double y, double z, double t) {
      	double t_1 = (((z + z) - -2.0) / (t * z)) + (x / y);
      	double tmp;
      	if ((x / y) <= -1000.0) {
      		tmp = t_1;
      	} else if ((x / y) <= 5000000000.0) {
      		tmp = ((2.0 * (1.0 - t)) + (2.0 * (1.0 / z))) / t;
      	} else {
      		tmp = t_1;
      	}
      	return tmp;
      }
      
      module fmin_fmax_functions
          implicit none
          private
          public fmax
          public fmin
      
          interface fmax
              module procedure fmax88
              module procedure fmax44
              module procedure fmax84
              module procedure fmax48
          end interface
          interface fmin
              module procedure fmin88
              module procedure fmin44
              module procedure fmin84
              module procedure fmin48
          end interface
      contains
          real(8) function fmax88(x, y) result (res)
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
          end function
          real(4) function fmax44(x, y) result (res)
              real(4), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
          end function
          real(8) function fmax84(x, y) result(res)
              real(8), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
          end function
          real(8) function fmax48(x, y) result(res)
              real(4), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
          end function
          real(8) function fmin88(x, y) result (res)
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
          end function
          real(4) function fmin44(x, y) result (res)
              real(4), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
          end function
          real(8) function fmin84(x, y) result(res)
              real(8), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
          end function
          real(8) function fmin48(x, y) result(res)
              real(4), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
          end function
      end module
      
      real(8) function code(x, y, z, t)
      use fmin_fmax_functions
          real(8), intent (in) :: x
          real(8), intent (in) :: y
          real(8), intent (in) :: z
          real(8), intent (in) :: t
          real(8) :: t_1
          real(8) :: tmp
          t_1 = (((z + z) - (-2.0d0)) / (t * z)) + (x / y)
          if ((x / y) <= (-1000.0d0)) then
              tmp = t_1
          else if ((x / y) <= 5000000000.0d0) then
              tmp = ((2.0d0 * (1.0d0 - t)) + (2.0d0 * (1.0d0 / z))) / t
          else
              tmp = t_1
          end if
          code = tmp
      end function
      
      public static double code(double x, double y, double z, double t) {
      	double t_1 = (((z + z) - -2.0) / (t * z)) + (x / y);
      	double tmp;
      	if ((x / y) <= -1000.0) {
      		tmp = t_1;
      	} else if ((x / y) <= 5000000000.0) {
      		tmp = ((2.0 * (1.0 - t)) + (2.0 * (1.0 / z))) / t;
      	} else {
      		tmp = t_1;
      	}
      	return tmp;
      }
      
      def code(x, y, z, t):
      	t_1 = (((z + z) - -2.0) / (t * z)) + (x / y)
      	tmp = 0
      	if (x / y) <= -1000.0:
      		tmp = t_1
      	elif (x / y) <= 5000000000.0:
      		tmp = ((2.0 * (1.0 - t)) + (2.0 * (1.0 / z))) / t
      	else:
      		tmp = t_1
      	return tmp
      
      function code(x, y, z, t)
      	t_1 = Float64(Float64(Float64(Float64(z + z) - -2.0) / Float64(t * z)) + Float64(x / y))
      	tmp = 0.0
      	if (Float64(x / y) <= -1000.0)
      		tmp = t_1;
      	elseif (Float64(x / y) <= 5000000000.0)
      		tmp = Float64(Float64(Float64(2.0 * Float64(1.0 - t)) + Float64(2.0 * Float64(1.0 / z))) / t);
      	else
      		tmp = t_1;
      	end
      	return tmp
      end
      
      function tmp_2 = code(x, y, z, t)
      	t_1 = (((z + z) - -2.0) / (t * z)) + (x / y);
      	tmp = 0.0;
      	if ((x / y) <= -1000.0)
      		tmp = t_1;
      	elseif ((x / y) <= 5000000000.0)
      		tmp = ((2.0 * (1.0 - t)) + (2.0 * (1.0 / z))) / t;
      	else
      		tmp = t_1;
      	end
      	tmp_2 = tmp;
      end
      
      code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(N[(N[(z + z), $MachinePrecision] - -2), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision] + N[(x / y), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[N[(x / y), $MachinePrecision], -1000], t$95$1, If[LessEqual[N[(x / y), $MachinePrecision], 5000000000], N[(N[(N[(2 * N[(1 - t), $MachinePrecision]), $MachinePrecision] + N[(2 * N[(1 / z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / t), $MachinePrecision], t$95$1]]]
      
      \begin{array}{l}
      t_1 := \frac{\left(z + z\right) - -2}{t \cdot z} + \frac{x}{y}\\
      \mathbf{if}\;\frac{x}{y} \leq -1000:\\
      \;\;\;\;t\_1\\
      
      \mathbf{elif}\;\frac{x}{y} \leq 5000000000:\\
      \;\;\;\;\frac{2 \cdot \left(1 - t\right) + 2 \cdot \frac{1}{z}}{t}\\
      
      \mathbf{else}:\\
      \;\;\;\;t\_1\\
      
      
      \end{array}
      
      Derivation
      1. Split input into 2 regimes
      2. if (/.f64 x y) < -1e3 or 5e9 < (/.f64 x y)

        1. Initial program 87.4%

          \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
        2. Taylor expanded in t around 0

          \[\leadsto \frac{x}{y} + \frac{\color{blue}{2 + 2 \cdot z}}{t \cdot z} \]
        3. Step-by-step derivation
          1. lower-+.f64N/A

            \[\leadsto \frac{x}{y} + \frac{2 + \color{blue}{2 \cdot z}}{t \cdot z} \]
          2. lower-*.f6480.1%

            \[\leadsto \frac{x}{y} + \frac{2 + 2 \cdot \color{blue}{z}}{t \cdot z} \]
        4. Applied rewrites80.1%

          \[\leadsto \frac{x}{y} + \frac{\color{blue}{2 + 2 \cdot z}}{t \cdot z} \]
        5. Step-by-step derivation
          1. lift-+.f64N/A

            \[\leadsto \color{blue}{\frac{x}{y} + \frac{2 + 2 \cdot z}{t \cdot z}} \]
          2. +-commutativeN/A

            \[\leadsto \color{blue}{\frac{2 + 2 \cdot z}{t \cdot z} + \frac{x}{y}} \]
          3. lower-+.f6480.1%

            \[\leadsto \color{blue}{\frac{2 + 2 \cdot z}{t \cdot z} + \frac{x}{y}} \]
          4. lift-+.f64N/A

            \[\leadsto \frac{2 + \color{blue}{2 \cdot z}}{t \cdot z} + \frac{x}{y} \]
          5. +-commutativeN/A

            \[\leadsto \frac{2 \cdot z + \color{blue}{2}}{t \cdot z} + \frac{x}{y} \]
          6. add-flipN/A

            \[\leadsto \frac{2 \cdot z - \color{blue}{\left(\mathsf{neg}\left(2\right)\right)}}{t \cdot z} + \frac{x}{y} \]
          7. metadata-evalN/A

            \[\leadsto \frac{2 \cdot z - -2}{t \cdot z} + \frac{x}{y} \]
          8. lower--.f6480.1%

            \[\leadsto \frac{2 \cdot z - \color{blue}{-2}}{t \cdot z} + \frac{x}{y} \]
          9. lift-*.f64N/A

            \[\leadsto \frac{2 \cdot z - -2}{t \cdot z} + \frac{x}{y} \]
          10. count-2-revN/A

            \[\leadsto \frac{\left(z + z\right) - -2}{t \cdot z} + \frac{x}{y} \]
          11. lower-+.f6480.1%

            \[\leadsto \frac{\left(z + z\right) - -2}{t \cdot z} + \frac{x}{y} \]
        6. Applied rewrites80.1%

          \[\leadsto \color{blue}{\frac{\left(z + z\right) - -2}{t \cdot z} + \frac{x}{y}} \]

        if -1e3 < (/.f64 x y) < 5e9

        1. Initial program 87.4%

          \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
        2. Step-by-step derivation
          1. lift-+.f64N/A

            \[\leadsto \color{blue}{\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}} \]
          2. +-commutativeN/A

            \[\leadsto \color{blue}{\frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} + \frac{x}{y}} \]
          3. lift-/.f64N/A

            \[\leadsto \color{blue}{\frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}} + \frac{x}{y} \]
          4. lift-*.f64N/A

            \[\leadsto \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{\color{blue}{t \cdot z}} + \frac{x}{y} \]
          5. *-commutativeN/A

            \[\leadsto \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{\color{blue}{z \cdot t}} + \frac{x}{y} \]
          6. associate-/r*N/A

            \[\leadsto \color{blue}{\frac{\frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{z}}{t}} + \frac{x}{y} \]
          7. lift-/.f64N/A

            \[\leadsto \frac{\frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{z}}{t} + \color{blue}{\frac{x}{y}} \]
          8. common-denominatorN/A

            \[\leadsto \color{blue}{\frac{\frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{z} \cdot y + x \cdot t}{t \cdot y}} \]
          9. lower-/.f64N/A

            \[\leadsto \color{blue}{\frac{\frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{z} \cdot y + x \cdot t}{t \cdot y}} \]
        3. Applied rewrites74.9%

          \[\leadsto \color{blue}{\frac{\left(\left(1 - t\right) \cdot 2 - \frac{-2}{z}\right) \cdot y + x \cdot t}{t \cdot y}} \]
        4. Taylor expanded in x around 0

          \[\leadsto \color{blue}{\frac{2 \cdot \left(1 - t\right) + 2 \cdot \frac{1}{z}}{t}} \]
        5. Step-by-step derivation
          1. lower-/.f64N/A

            \[\leadsto \frac{2 \cdot \left(1 - t\right) + 2 \cdot \frac{1}{z}}{\color{blue}{t}} \]
          2. lower-+.f64N/A

            \[\leadsto \frac{2 \cdot \left(1 - t\right) + 2 \cdot \frac{1}{z}}{t} \]
          3. lower-*.f64N/A

            \[\leadsto \frac{2 \cdot \left(1 - t\right) + 2 \cdot \frac{1}{z}}{t} \]
          4. lower--.f64N/A

            \[\leadsto \frac{2 \cdot \left(1 - t\right) + 2 \cdot \frac{1}{z}}{t} \]
          5. lower-*.f64N/A

            \[\leadsto \frac{2 \cdot \left(1 - t\right) + 2 \cdot \frac{1}{z}}{t} \]
          6. lower-/.f6466.5%

            \[\leadsto \frac{2 \cdot \left(1 - t\right) + 2 \cdot \frac{1}{z}}{t} \]
        6. Applied rewrites66.5%

          \[\leadsto \color{blue}{\frac{2 \cdot \left(1 - t\right) + 2 \cdot \frac{1}{z}}{t}} \]
      3. Recombined 2 regimes into one program.
      4. Add Preprocessing

      Alternative 5: 92.1% accurate, 1.0× speedup?

      \[\begin{array}{l} t_1 := \frac{x}{y} + 2 \cdot \frac{1 - t}{t}\\ \mathbf{if}\;z \leq \frac{-8920298079412249}{89202980794122492566142873090593446023921664}:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;z \leq \frac{4253529586511731}{170141183460469231731687303715884105728}:\\ \;\;\;\;\frac{x}{y} + \frac{\frac{2}{z}}{t}\\ \mathbf{else}:\\ \;\;\;\;t\_1\\ \end{array} \]
      (FPCore (x y z t)
        :precision binary64
        (let* ((t_1 (+ (/ x y) (* 2 (/ (- 1 t) t)))))
        (if (<=
             z
             -8920298079412249/89202980794122492566142873090593446023921664)
          t_1
          (if (<=
               z
               4253529586511731/170141183460469231731687303715884105728)
            (+ (/ x y) (/ (/ 2 z) t))
            t_1))))
      double code(double x, double y, double z, double t) {
      	double t_1 = (x / y) + (2.0 * ((1.0 - t) / t));
      	double tmp;
      	if (z <= -1e-28) {
      		tmp = t_1;
      	} else if (z <= 2.5e-23) {
      		tmp = (x / y) + ((2.0 / z) / t);
      	} else {
      		tmp = t_1;
      	}
      	return tmp;
      }
      
      module fmin_fmax_functions
          implicit none
          private
          public fmax
          public fmin
      
          interface fmax
              module procedure fmax88
              module procedure fmax44
              module procedure fmax84
              module procedure fmax48
          end interface
          interface fmin
              module procedure fmin88
              module procedure fmin44
              module procedure fmin84
              module procedure fmin48
          end interface
      contains
          real(8) function fmax88(x, y) result (res)
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
          end function
          real(4) function fmax44(x, y) result (res)
              real(4), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
          end function
          real(8) function fmax84(x, y) result(res)
              real(8), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
          end function
          real(8) function fmax48(x, y) result(res)
              real(4), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
          end function
          real(8) function fmin88(x, y) result (res)
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
          end function
          real(4) function fmin44(x, y) result (res)
              real(4), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
          end function
          real(8) function fmin84(x, y) result(res)
              real(8), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
          end function
          real(8) function fmin48(x, y) result(res)
              real(4), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
          end function
      end module
      
      real(8) function code(x, y, z, t)
      use fmin_fmax_functions
          real(8), intent (in) :: x
          real(8), intent (in) :: y
          real(8), intent (in) :: z
          real(8), intent (in) :: t
          real(8) :: t_1
          real(8) :: tmp
          t_1 = (x / y) + (2.0d0 * ((1.0d0 - t) / t))
          if (z <= (-1d-28)) then
              tmp = t_1
          else if (z <= 2.5d-23) then
              tmp = (x / y) + ((2.0d0 / z) / t)
          else
              tmp = t_1
          end if
          code = tmp
      end function
      
      public static double code(double x, double y, double z, double t) {
      	double t_1 = (x / y) + (2.0 * ((1.0 - t) / t));
      	double tmp;
      	if (z <= -1e-28) {
      		tmp = t_1;
      	} else if (z <= 2.5e-23) {
      		tmp = (x / y) + ((2.0 / z) / t);
      	} else {
      		tmp = t_1;
      	}
      	return tmp;
      }
      
      def code(x, y, z, t):
      	t_1 = (x / y) + (2.0 * ((1.0 - t) / t))
      	tmp = 0
      	if z <= -1e-28:
      		tmp = t_1
      	elif z <= 2.5e-23:
      		tmp = (x / y) + ((2.0 / z) / t)
      	else:
      		tmp = t_1
      	return tmp
      
      function code(x, y, z, t)
      	t_1 = Float64(Float64(x / y) + Float64(2.0 * Float64(Float64(1.0 - t) / t)))
      	tmp = 0.0
      	if (z <= -1e-28)
      		tmp = t_1;
      	elseif (z <= 2.5e-23)
      		tmp = Float64(Float64(x / y) + Float64(Float64(2.0 / z) / t));
      	else
      		tmp = t_1;
      	end
      	return tmp
      end
      
      function tmp_2 = code(x, y, z, t)
      	t_1 = (x / y) + (2.0 * ((1.0 - t) / t));
      	tmp = 0.0;
      	if (z <= -1e-28)
      		tmp = t_1;
      	elseif (z <= 2.5e-23)
      		tmp = (x / y) + ((2.0 / z) / t);
      	else
      		tmp = t_1;
      	end
      	tmp_2 = tmp;
      end
      
      code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(x / y), $MachinePrecision] + N[(2 * N[(N[(1 - t), $MachinePrecision] / t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[z, -8920298079412249/89202980794122492566142873090593446023921664], t$95$1, If[LessEqual[z, 4253529586511731/170141183460469231731687303715884105728], N[(N[(x / y), $MachinePrecision] + N[(N[(2 / z), $MachinePrecision] / t), $MachinePrecision]), $MachinePrecision], t$95$1]]]
      
      \begin{array}{l}
      t_1 := \frac{x}{y} + 2 \cdot \frac{1 - t}{t}\\
      \mathbf{if}\;z \leq \frac{-8920298079412249}{89202980794122492566142873090593446023921664}:\\
      \;\;\;\;t\_1\\
      
      \mathbf{elif}\;z \leq \frac{4253529586511731}{170141183460469231731687303715884105728}:\\
      \;\;\;\;\frac{x}{y} + \frac{\frac{2}{z}}{t}\\
      
      \mathbf{else}:\\
      \;\;\;\;t\_1\\
      
      
      \end{array}
      
      Derivation
      1. Split input into 2 regimes
      2. if z < -9.9999999999999997e-29 or 2.5000000000000001e-23 < z

        1. Initial program 87.4%

          \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
        2. Taylor expanded in z around inf

          \[\leadsto \frac{x}{y} + \color{blue}{2 \cdot \frac{1 - t}{t}} \]
        3. Step-by-step derivation
          1. lower-*.f64N/A

            \[\leadsto \frac{x}{y} + 2 \cdot \color{blue}{\frac{1 - t}{t}} \]
          2. lower-/.f64N/A

            \[\leadsto \frac{x}{y} + 2 \cdot \frac{1 - t}{\color{blue}{t}} \]
          3. lower--.f6471.3%

            \[\leadsto \frac{x}{y} + 2 \cdot \frac{1 - t}{t} \]
        4. Applied rewrites71.3%

          \[\leadsto \frac{x}{y} + \color{blue}{2 \cdot \frac{1 - t}{t}} \]

        if -9.9999999999999997e-29 < z < 2.5000000000000001e-23

        1. Initial program 87.4%

          \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
        2. Step-by-step derivation
          1. lift-/.f64N/A

            \[\leadsto \frac{x}{y} + \color{blue}{\frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}} \]
          2. lift-*.f64N/A

            \[\leadsto \frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{\color{blue}{t \cdot z}} \]
          3. *-commutativeN/A

            \[\leadsto \frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{\color{blue}{z \cdot t}} \]
          4. associate-/r*N/A

            \[\leadsto \frac{x}{y} + \color{blue}{\frac{\frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{z}}{t}} \]
          5. lower-/.f64N/A

            \[\leadsto \frac{x}{y} + \color{blue}{\frac{\frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{z}}{t}} \]
          6. lift-+.f64N/A

            \[\leadsto \frac{x}{y} + \frac{\frac{\color{blue}{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}}{z}}{t} \]
          7. +-commutativeN/A

            \[\leadsto \frac{x}{y} + \frac{\frac{\color{blue}{\left(z \cdot 2\right) \cdot \left(1 - t\right) + 2}}{z}}{t} \]
          8. add-flipN/A

            \[\leadsto \frac{x}{y} + \frac{\frac{\color{blue}{\left(z \cdot 2\right) \cdot \left(1 - t\right) - \left(\mathsf{neg}\left(2\right)\right)}}{z}}{t} \]
          9. lift-*.f64N/A

            \[\leadsto \frac{x}{y} + \frac{\frac{\color{blue}{\left(z \cdot 2\right) \cdot \left(1 - t\right)} - \left(\mathsf{neg}\left(2\right)\right)}{z}}{t} \]
          10. lift-*.f64N/A

            \[\leadsto \frac{x}{y} + \frac{\frac{\color{blue}{\left(z \cdot 2\right)} \cdot \left(1 - t\right) - \left(\mathsf{neg}\left(2\right)\right)}{z}}{t} \]
          11. associate-*l*N/A

            \[\leadsto \frac{x}{y} + \frac{\frac{\color{blue}{z \cdot \left(2 \cdot \left(1 - t\right)\right)} - \left(\mathsf{neg}\left(2\right)\right)}{z}}{t} \]
          12. *-commutativeN/A

            \[\leadsto \frac{x}{y} + \frac{\frac{\color{blue}{\left(2 \cdot \left(1 - t\right)\right) \cdot z} - \left(\mathsf{neg}\left(2\right)\right)}{z}}{t} \]
          13. sub-to-fraction-revN/A

            \[\leadsto \frac{x}{y} + \frac{\color{blue}{2 \cdot \left(1 - t\right) - \frac{\mathsf{neg}\left(2\right)}{z}}}{t} \]
          14. lower--.f64N/A

            \[\leadsto \frac{x}{y} + \frac{\color{blue}{2 \cdot \left(1 - t\right) - \frac{\mathsf{neg}\left(2\right)}{z}}}{t} \]
          15. *-commutativeN/A

            \[\leadsto \frac{x}{y} + \frac{\color{blue}{\left(1 - t\right) \cdot 2} - \frac{\mathsf{neg}\left(2\right)}{z}}{t} \]
          16. lower-*.f64N/A

            \[\leadsto \frac{x}{y} + \frac{\color{blue}{\left(1 - t\right) \cdot 2} - \frac{\mathsf{neg}\left(2\right)}{z}}{t} \]
          17. lower-/.f64N/A

            \[\leadsto \frac{x}{y} + \frac{\left(1 - t\right) \cdot 2 - \color{blue}{\frac{\mathsf{neg}\left(2\right)}{z}}}{t} \]
          18. metadata-eval99.1%

            \[\leadsto \frac{x}{y} + \frac{\left(1 - t\right) \cdot 2 - \frac{\color{blue}{-2}}{z}}{t} \]
        3. Applied rewrites99.1%

          \[\leadsto \frac{x}{y} + \color{blue}{\frac{\left(1 - t\right) \cdot 2 - \frac{-2}{z}}{t}} \]
        4. Taylor expanded in z around 0

          \[\leadsto \frac{x}{y} + \frac{\color{blue}{\frac{2}{z}}}{t} \]
        5. Step-by-step derivation
          1. lower-/.f6462.8%

            \[\leadsto \frac{x}{y} + \frac{\frac{2}{\color{blue}{z}}}{t} \]
        6. Applied rewrites62.8%

          \[\leadsto \frac{x}{y} + \frac{\color{blue}{\frac{2}{z}}}{t} \]
      3. Recombined 2 regimes into one program.
      4. Add Preprocessing

      Alternative 6: 92.1% accurate, 1.0× speedup?

      \[\begin{array}{l} t_1 := \frac{x}{y} + 2 \cdot \frac{1 - t}{t}\\ \mathbf{if}\;z \leq \frac{-8920298079412249}{89202980794122492566142873090593446023921664}:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;z \leq \frac{4253529586511731}{170141183460469231731687303715884105728}:\\ \;\;\;\;\frac{x}{y} + \frac{2}{t \cdot z}\\ \mathbf{else}:\\ \;\;\;\;t\_1\\ \end{array} \]
      (FPCore (x y z t)
        :precision binary64
        (let* ((t_1 (+ (/ x y) (* 2 (/ (- 1 t) t)))))
        (if (<=
             z
             -8920298079412249/89202980794122492566142873090593446023921664)
          t_1
          (if (<=
               z
               4253529586511731/170141183460469231731687303715884105728)
            (+ (/ x y) (/ 2 (* t z)))
            t_1))))
      double code(double x, double y, double z, double t) {
      	double t_1 = (x / y) + (2.0 * ((1.0 - t) / t));
      	double tmp;
      	if (z <= -1e-28) {
      		tmp = t_1;
      	} else if (z <= 2.5e-23) {
      		tmp = (x / y) + (2.0 / (t * z));
      	} else {
      		tmp = t_1;
      	}
      	return tmp;
      }
      
      module fmin_fmax_functions
          implicit none
          private
          public fmax
          public fmin
      
          interface fmax
              module procedure fmax88
              module procedure fmax44
              module procedure fmax84
              module procedure fmax48
          end interface
          interface fmin
              module procedure fmin88
              module procedure fmin44
              module procedure fmin84
              module procedure fmin48
          end interface
      contains
          real(8) function fmax88(x, y) result (res)
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
          end function
          real(4) function fmax44(x, y) result (res)
              real(4), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
          end function
          real(8) function fmax84(x, y) result(res)
              real(8), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
          end function
          real(8) function fmax48(x, y) result(res)
              real(4), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
          end function
          real(8) function fmin88(x, y) result (res)
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
          end function
          real(4) function fmin44(x, y) result (res)
              real(4), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
          end function
          real(8) function fmin84(x, y) result(res)
              real(8), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
          end function
          real(8) function fmin48(x, y) result(res)
              real(4), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
          end function
      end module
      
      real(8) function code(x, y, z, t)
      use fmin_fmax_functions
          real(8), intent (in) :: x
          real(8), intent (in) :: y
          real(8), intent (in) :: z
          real(8), intent (in) :: t
          real(8) :: t_1
          real(8) :: tmp
          t_1 = (x / y) + (2.0d0 * ((1.0d0 - t) / t))
          if (z <= (-1d-28)) then
              tmp = t_1
          else if (z <= 2.5d-23) then
              tmp = (x / y) + (2.0d0 / (t * z))
          else
              tmp = t_1
          end if
          code = tmp
      end function
      
      public static double code(double x, double y, double z, double t) {
      	double t_1 = (x / y) + (2.0 * ((1.0 - t) / t));
      	double tmp;
      	if (z <= -1e-28) {
      		tmp = t_1;
      	} else if (z <= 2.5e-23) {
      		tmp = (x / y) + (2.0 / (t * z));
      	} else {
      		tmp = t_1;
      	}
      	return tmp;
      }
      
      def code(x, y, z, t):
      	t_1 = (x / y) + (2.0 * ((1.0 - t) / t))
      	tmp = 0
      	if z <= -1e-28:
      		tmp = t_1
      	elif z <= 2.5e-23:
      		tmp = (x / y) + (2.0 / (t * z))
      	else:
      		tmp = t_1
      	return tmp
      
      function code(x, y, z, t)
      	t_1 = Float64(Float64(x / y) + Float64(2.0 * Float64(Float64(1.0 - t) / t)))
      	tmp = 0.0
      	if (z <= -1e-28)
      		tmp = t_1;
      	elseif (z <= 2.5e-23)
      		tmp = Float64(Float64(x / y) + Float64(2.0 / Float64(t * z)));
      	else
      		tmp = t_1;
      	end
      	return tmp
      end
      
      function tmp_2 = code(x, y, z, t)
      	t_1 = (x / y) + (2.0 * ((1.0 - t) / t));
      	tmp = 0.0;
      	if (z <= -1e-28)
      		tmp = t_1;
      	elseif (z <= 2.5e-23)
      		tmp = (x / y) + (2.0 / (t * z));
      	else
      		tmp = t_1;
      	end
      	tmp_2 = tmp;
      end
      
      code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(x / y), $MachinePrecision] + N[(2 * N[(N[(1 - t), $MachinePrecision] / t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[z, -8920298079412249/89202980794122492566142873090593446023921664], t$95$1, If[LessEqual[z, 4253529586511731/170141183460469231731687303715884105728], N[(N[(x / y), $MachinePrecision] + N[(2 / N[(t * z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], t$95$1]]]
      
      \begin{array}{l}
      t_1 := \frac{x}{y} + 2 \cdot \frac{1 - t}{t}\\
      \mathbf{if}\;z \leq \frac{-8920298079412249}{89202980794122492566142873090593446023921664}:\\
      \;\;\;\;t\_1\\
      
      \mathbf{elif}\;z \leq \frac{4253529586511731}{170141183460469231731687303715884105728}:\\
      \;\;\;\;\frac{x}{y} + \frac{2}{t \cdot z}\\
      
      \mathbf{else}:\\
      \;\;\;\;t\_1\\
      
      
      \end{array}
      
      Derivation
      1. Split input into 2 regimes
      2. if z < -9.9999999999999997e-29 or 2.5000000000000001e-23 < z

        1. Initial program 87.4%

          \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
        2. Taylor expanded in z around inf

          \[\leadsto \frac{x}{y} + \color{blue}{2 \cdot \frac{1 - t}{t}} \]
        3. Step-by-step derivation
          1. lower-*.f64N/A

            \[\leadsto \frac{x}{y} + 2 \cdot \color{blue}{\frac{1 - t}{t}} \]
          2. lower-/.f64N/A

            \[\leadsto \frac{x}{y} + 2 \cdot \frac{1 - t}{\color{blue}{t}} \]
          3. lower--.f6471.3%

            \[\leadsto \frac{x}{y} + 2 \cdot \frac{1 - t}{t} \]
        4. Applied rewrites71.3%

          \[\leadsto \frac{x}{y} + \color{blue}{2 \cdot \frac{1 - t}{t}} \]

        if -9.9999999999999997e-29 < z < 2.5000000000000001e-23

        1. Initial program 87.4%

          \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
        2. Taylor expanded in z around 0

          \[\leadsto \frac{x}{y} + \frac{\color{blue}{2}}{t \cdot z} \]
        3. Step-by-step derivation
          1. Applied rewrites62.8%

            \[\leadsto \frac{x}{y} + \frac{\color{blue}{2}}{t \cdot z} \]
        4. Recombined 2 regimes into one program.
        5. Add Preprocessing

        Alternative 7: 85.5% accurate, 0.3× speedup?

        \[\begin{array}{l} t_1 := \frac{x}{y} + -2\\ t_2 := \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}\\ \mathbf{if}\;t\_2 \leq -9999999999999999549291066784979473595300225087383524118479625982517885450291174622154390152298057300868772377386949310916067328:\\ \;\;\;\;\frac{2 + 2 \cdot \frac{1}{z}}{t}\\ \mathbf{elif}\;t\_2 \leq -200000:\\ \;\;\;\;\frac{x}{y} + \frac{2}{t}\\ \mathbf{elif}\;t\_2 \leq -2:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;t\_2 \leq \infty:\\ \;\;\;\;\frac{2 + 2 \cdot \left(z \cdot \left(1 - t\right)\right)}{t \cdot z}\\ \mathbf{else}:\\ \;\;\;\;t\_1\\ \end{array} \]
        (FPCore (x y z t)
          :precision binary64
          (let* ((t_1 (+ (/ x y) -2))
               (t_2 (/ (+ 2 (* (* z 2) (- 1 t))) (* t z))))
          (if (<=
               t_2
               -9999999999999999549291066784979473595300225087383524118479625982517885450291174622154390152298057300868772377386949310916067328)
            (/ (+ 2 (* 2 (/ 1 z))) t)
            (if (<= t_2 -200000)
              (+ (/ x y) (/ 2 t))
              (if (<= t_2 -2)
                t_1
                (if (<= t_2 INFINITY)
                  (/ (+ 2 (* 2 (* z (- 1 t)))) (* t z))
                  t_1))))))
        double code(double x, double y, double z, double t) {
        	double t_1 = (x / y) + -2.0;
        	double t_2 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z);
        	double tmp;
        	if (t_2 <= -1e+127) {
        		tmp = (2.0 + (2.0 * (1.0 / z))) / t;
        	} else if (t_2 <= -200000.0) {
        		tmp = (x / y) + (2.0 / t);
        	} else if (t_2 <= -2.0) {
        		tmp = t_1;
        	} else if (t_2 <= ((double) INFINITY)) {
        		tmp = (2.0 + (2.0 * (z * (1.0 - t)))) / (t * z);
        	} else {
        		tmp = t_1;
        	}
        	return tmp;
        }
        
        public static double code(double x, double y, double z, double t) {
        	double t_1 = (x / y) + -2.0;
        	double t_2 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z);
        	double tmp;
        	if (t_2 <= -1e+127) {
        		tmp = (2.0 + (2.0 * (1.0 / z))) / t;
        	} else if (t_2 <= -200000.0) {
        		tmp = (x / y) + (2.0 / t);
        	} else if (t_2 <= -2.0) {
        		tmp = t_1;
        	} else if (t_2 <= Double.POSITIVE_INFINITY) {
        		tmp = (2.0 + (2.0 * (z * (1.0 - t)))) / (t * z);
        	} else {
        		tmp = t_1;
        	}
        	return tmp;
        }
        
        def code(x, y, z, t):
        	t_1 = (x / y) + -2.0
        	t_2 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z)
        	tmp = 0
        	if t_2 <= -1e+127:
        		tmp = (2.0 + (2.0 * (1.0 / z))) / t
        	elif t_2 <= -200000.0:
        		tmp = (x / y) + (2.0 / t)
        	elif t_2 <= -2.0:
        		tmp = t_1
        	elif t_2 <= math.inf:
        		tmp = (2.0 + (2.0 * (z * (1.0 - t)))) / (t * z)
        	else:
        		tmp = t_1
        	return tmp
        
        function code(x, y, z, t)
        	t_1 = Float64(Float64(x / y) + -2.0)
        	t_2 = Float64(Float64(2.0 + Float64(Float64(z * 2.0) * Float64(1.0 - t))) / Float64(t * z))
        	tmp = 0.0
        	if (t_2 <= -1e+127)
        		tmp = Float64(Float64(2.0 + Float64(2.0 * Float64(1.0 / z))) / t);
        	elseif (t_2 <= -200000.0)
        		tmp = Float64(Float64(x / y) + Float64(2.0 / t));
        	elseif (t_2 <= -2.0)
        		tmp = t_1;
        	elseif (t_2 <= Inf)
        		tmp = Float64(Float64(2.0 + Float64(2.0 * Float64(z * Float64(1.0 - t)))) / Float64(t * z));
        	else
        		tmp = t_1;
        	end
        	return tmp
        end
        
        function tmp_2 = code(x, y, z, t)
        	t_1 = (x / y) + -2.0;
        	t_2 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z);
        	tmp = 0.0;
        	if (t_2 <= -1e+127)
        		tmp = (2.0 + (2.0 * (1.0 / z))) / t;
        	elseif (t_2 <= -200000.0)
        		tmp = (x / y) + (2.0 / t);
        	elseif (t_2 <= -2.0)
        		tmp = t_1;
        	elseif (t_2 <= Inf)
        		tmp = (2.0 + (2.0 * (z * (1.0 - t)))) / (t * z);
        	else
        		tmp = t_1;
        	end
        	tmp_2 = tmp;
        end
        
        code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(x / y), $MachinePrecision] + -2), $MachinePrecision]}, Block[{t$95$2 = N[(N[(2 + N[(N[(z * 2), $MachinePrecision] * N[(1 - t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$2, -9999999999999999549291066784979473595300225087383524118479625982517885450291174622154390152298057300868772377386949310916067328], N[(N[(2 + N[(2 * N[(1 / z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / t), $MachinePrecision], If[LessEqual[t$95$2, -200000], N[(N[(x / y), $MachinePrecision] + N[(2 / t), $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$2, -2], t$95$1, If[LessEqual[t$95$2, Infinity], N[(N[(2 + N[(2 * N[(z * N[(1 - t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision], t$95$1]]]]]]
        
        \begin{array}{l}
        t_1 := \frac{x}{y} + -2\\
        t_2 := \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}\\
        \mathbf{if}\;t\_2 \leq -9999999999999999549291066784979473595300225087383524118479625982517885450291174622154390152298057300868772377386949310916067328:\\
        \;\;\;\;\frac{2 + 2 \cdot \frac{1}{z}}{t}\\
        
        \mathbf{elif}\;t\_2 \leq -200000:\\
        \;\;\;\;\frac{x}{y} + \frac{2}{t}\\
        
        \mathbf{elif}\;t\_2 \leq -2:\\
        \;\;\;\;t\_1\\
        
        \mathbf{elif}\;t\_2 \leq \infty:\\
        \;\;\;\;\frac{2 + 2 \cdot \left(z \cdot \left(1 - t\right)\right)}{t \cdot z}\\
        
        \mathbf{else}:\\
        \;\;\;\;t\_1\\
        
        
        \end{array}
        
        Derivation
        1. Split input into 4 regimes
        2. if (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < -9.9999999999999995e126

          1. Initial program 87.4%

            \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
          2. Taylor expanded in t around 0

            \[\leadsto \color{blue}{\frac{2 + 2 \cdot \frac{1}{z}}{t}} \]
          3. Step-by-step derivation
            1. lower-/.f64N/A

              \[\leadsto \frac{2 + 2 \cdot \frac{1}{z}}{\color{blue}{t}} \]
            2. lower-+.f64N/A

              \[\leadsto \frac{2 + 2 \cdot \frac{1}{z}}{t} \]
            3. lower-*.f64N/A

              \[\leadsto \frac{2 + 2 \cdot \frac{1}{z}}{t} \]
            4. lower-/.f6448.2%

              \[\leadsto \frac{2 + 2 \cdot \frac{1}{z}}{t} \]
          4. Applied rewrites48.2%

            \[\leadsto \color{blue}{\frac{2 + 2 \cdot \frac{1}{z}}{t}} \]

          if -9.9999999999999995e126 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < -2e5

          1. Initial program 87.4%

            \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
          2. Taylor expanded in z around inf

            \[\leadsto \frac{x}{y} + \color{blue}{2 \cdot \frac{1 - t}{t}} \]
          3. Step-by-step derivation
            1. lower-*.f64N/A

              \[\leadsto \frac{x}{y} + 2 \cdot \color{blue}{\frac{1 - t}{t}} \]
            2. lower-/.f64N/A

              \[\leadsto \frac{x}{y} + 2 \cdot \frac{1 - t}{\color{blue}{t}} \]
            3. lower--.f6471.3%

              \[\leadsto \frac{x}{y} + 2 \cdot \frac{1 - t}{t} \]
          4. Applied rewrites71.3%

            \[\leadsto \frac{x}{y} + \color{blue}{2 \cdot \frac{1 - t}{t}} \]
          5. Taylor expanded in t around 0

            \[\leadsto \frac{x}{y} + \frac{2}{\color{blue}{t}} \]
          6. Step-by-step derivation
            1. lower-/.f6452.8%

              \[\leadsto \frac{x}{y} + \frac{2}{t} \]
          7. Applied rewrites52.8%

            \[\leadsto \frac{x}{y} + \frac{2}{\color{blue}{t}} \]

          if -2e5 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < -2 or +inf.0 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z))

          1. Initial program 87.4%

            \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
          2. Taylor expanded in t around inf

            \[\leadsto \frac{x}{y} + \color{blue}{-2} \]
          3. Step-by-step derivation
            1. Applied rewrites53.8%

              \[\leadsto \frac{x}{y} + \color{blue}{-2} \]

            if -2 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < +inf.0

            1. Initial program 87.4%

              \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
            2. Taylor expanded in t around inf

              \[\leadsto \frac{x}{y} + \color{blue}{-2} \]
            3. Step-by-step derivation
              1. Applied rewrites53.8%

                \[\leadsto \frac{x}{y} + \color{blue}{-2} \]
              2. Step-by-step derivation
                1. lift-+.f64N/A

                  \[\leadsto \color{blue}{\frac{x}{y} + -2} \]
                2. +-commutativeN/A

                  \[\leadsto \color{blue}{-2 + \frac{x}{y}} \]
                3. lift-/.f64N/A

                  \[\leadsto -2 + \color{blue}{\frac{x}{y}} \]
                4. add-to-fractionN/A

                  \[\leadsto \color{blue}{\frac{-2 \cdot y + x}{y}} \]
                5. lower-/.f64N/A

                  \[\leadsto \color{blue}{\frac{-2 \cdot y + x}{y}} \]
                6. lower-+.f64N/A

                  \[\leadsto \frac{\color{blue}{-2 \cdot y + x}}{y} \]
                7. lower-*.f6453.8%

                  \[\leadsto \frac{\color{blue}{-2 \cdot y} + x}{y} \]
              3. Applied rewrites53.8%

                \[\leadsto \color{blue}{\frac{-2 \cdot y + x}{y}} \]
              4. Taylor expanded in x around 0

                \[\leadsto \color{blue}{\frac{2 + 2 \cdot \left(z \cdot \left(1 - t\right)\right)}{t \cdot z}} \]
              5. Step-by-step derivation
                1. lower-/.f64N/A

                  \[\leadsto \frac{2 + 2 \cdot \left(z \cdot \left(1 - t\right)\right)}{\color{blue}{t \cdot z}} \]
                2. lower-+.f64N/A

                  \[\leadsto \frac{2 + 2 \cdot \left(z \cdot \left(1 - t\right)\right)}{\color{blue}{t} \cdot z} \]
                3. lower-*.f64N/A

                  \[\leadsto \frac{2 + 2 \cdot \left(z \cdot \left(1 - t\right)\right)}{t \cdot z} \]
                4. lower-*.f64N/A

                  \[\leadsto \frac{2 + 2 \cdot \left(z \cdot \left(1 - t\right)\right)}{t \cdot z} \]
                5. lower--.f64N/A

                  \[\leadsto \frac{2 + 2 \cdot \left(z \cdot \left(1 - t\right)\right)}{t \cdot z} \]
                6. lower-*.f6460.6%

                  \[\leadsto \frac{2 + 2 \cdot \left(z \cdot \left(1 - t\right)\right)}{t \cdot \color{blue}{z}} \]
              6. Applied rewrites60.6%

                \[\leadsto \color{blue}{\frac{2 + 2 \cdot \left(z \cdot \left(1 - t\right)\right)}{t \cdot z}} \]
            4. Recombined 4 regimes into one program.
            5. Add Preprocessing

            Alternative 8: 85.3% accurate, 0.3× speedup?

            \[\begin{array}{l} t_1 := \frac{x}{y} + -2\\ t_2 := \frac{2 + 2 \cdot \frac{1}{z}}{t}\\ t_3 := \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}\\ \mathbf{if}\;t\_3 \leq -9999999999999999549291066784979473595300225087383524118479625982517885450291174622154390152298057300868772377386949310916067328:\\ \;\;\;\;t\_2\\ \mathbf{elif}\;t\_3 \leq -200000:\\ \;\;\;\;\frac{x}{y} + \frac{2}{t}\\ \mathbf{elif}\;t\_3 \leq -1:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;t\_3 \leq \infty:\\ \;\;\;\;t\_2\\ \mathbf{else}:\\ \;\;\;\;t\_1\\ \end{array} \]
            (FPCore (x y z t)
              :precision binary64
              (let* ((t_1 (+ (/ x y) -2))
                   (t_2 (/ (+ 2 (* 2 (/ 1 z))) t))
                   (t_3 (/ (+ 2 (* (* z 2) (- 1 t))) (* t z))))
              (if (<=
                   t_3
                   -9999999999999999549291066784979473595300225087383524118479625982517885450291174622154390152298057300868772377386949310916067328)
                t_2
                (if (<= t_3 -200000)
                  (+ (/ x y) (/ 2 t))
                  (if (<= t_3 -1) t_1 (if (<= t_3 INFINITY) t_2 t_1))))))
            double code(double x, double y, double z, double t) {
            	double t_1 = (x / y) + -2.0;
            	double t_2 = (2.0 + (2.0 * (1.0 / z))) / t;
            	double t_3 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z);
            	double tmp;
            	if (t_3 <= -1e+127) {
            		tmp = t_2;
            	} else if (t_3 <= -200000.0) {
            		tmp = (x / y) + (2.0 / t);
            	} else if (t_3 <= -1.0) {
            		tmp = t_1;
            	} else if (t_3 <= ((double) INFINITY)) {
            		tmp = t_2;
            	} else {
            		tmp = t_1;
            	}
            	return tmp;
            }
            
            public static double code(double x, double y, double z, double t) {
            	double t_1 = (x / y) + -2.0;
            	double t_2 = (2.0 + (2.0 * (1.0 / z))) / t;
            	double t_3 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z);
            	double tmp;
            	if (t_3 <= -1e+127) {
            		tmp = t_2;
            	} else if (t_3 <= -200000.0) {
            		tmp = (x / y) + (2.0 / t);
            	} else if (t_3 <= -1.0) {
            		tmp = t_1;
            	} else if (t_3 <= Double.POSITIVE_INFINITY) {
            		tmp = t_2;
            	} else {
            		tmp = t_1;
            	}
            	return tmp;
            }
            
            def code(x, y, z, t):
            	t_1 = (x / y) + -2.0
            	t_2 = (2.0 + (2.0 * (1.0 / z))) / t
            	t_3 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z)
            	tmp = 0
            	if t_3 <= -1e+127:
            		tmp = t_2
            	elif t_3 <= -200000.0:
            		tmp = (x / y) + (2.0 / t)
            	elif t_3 <= -1.0:
            		tmp = t_1
            	elif t_3 <= math.inf:
            		tmp = t_2
            	else:
            		tmp = t_1
            	return tmp
            
            function code(x, y, z, t)
            	t_1 = Float64(Float64(x / y) + -2.0)
            	t_2 = Float64(Float64(2.0 + Float64(2.0 * Float64(1.0 / z))) / t)
            	t_3 = Float64(Float64(2.0 + Float64(Float64(z * 2.0) * Float64(1.0 - t))) / Float64(t * z))
            	tmp = 0.0
            	if (t_3 <= -1e+127)
            		tmp = t_2;
            	elseif (t_3 <= -200000.0)
            		tmp = Float64(Float64(x / y) + Float64(2.0 / t));
            	elseif (t_3 <= -1.0)
            		tmp = t_1;
            	elseif (t_3 <= Inf)
            		tmp = t_2;
            	else
            		tmp = t_1;
            	end
            	return tmp
            end
            
            function tmp_2 = code(x, y, z, t)
            	t_1 = (x / y) + -2.0;
            	t_2 = (2.0 + (2.0 * (1.0 / z))) / t;
            	t_3 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z);
            	tmp = 0.0;
            	if (t_3 <= -1e+127)
            		tmp = t_2;
            	elseif (t_3 <= -200000.0)
            		tmp = (x / y) + (2.0 / t);
            	elseif (t_3 <= -1.0)
            		tmp = t_1;
            	elseif (t_3 <= Inf)
            		tmp = t_2;
            	else
            		tmp = t_1;
            	end
            	tmp_2 = tmp;
            end
            
            code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(x / y), $MachinePrecision] + -2), $MachinePrecision]}, Block[{t$95$2 = N[(N[(2 + N[(2 * N[(1 / z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / t), $MachinePrecision]}, Block[{t$95$3 = N[(N[(2 + N[(N[(z * 2), $MachinePrecision] * N[(1 - t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$3, -9999999999999999549291066784979473595300225087383524118479625982517885450291174622154390152298057300868772377386949310916067328], t$95$2, If[LessEqual[t$95$3, -200000], N[(N[(x / y), $MachinePrecision] + N[(2 / t), $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$3, -1], t$95$1, If[LessEqual[t$95$3, Infinity], t$95$2, t$95$1]]]]]]]
            
            \begin{array}{l}
            t_1 := \frac{x}{y} + -2\\
            t_2 := \frac{2 + 2 \cdot \frac{1}{z}}{t}\\
            t_3 := \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}\\
            \mathbf{if}\;t\_3 \leq -9999999999999999549291066784979473595300225087383524118479625982517885450291174622154390152298057300868772377386949310916067328:\\
            \;\;\;\;t\_2\\
            
            \mathbf{elif}\;t\_3 \leq -200000:\\
            \;\;\;\;\frac{x}{y} + \frac{2}{t}\\
            
            \mathbf{elif}\;t\_3 \leq -1:\\
            \;\;\;\;t\_1\\
            
            \mathbf{elif}\;t\_3 \leq \infty:\\
            \;\;\;\;t\_2\\
            
            \mathbf{else}:\\
            \;\;\;\;t\_1\\
            
            
            \end{array}
            
            Derivation
            1. Split input into 3 regimes
            2. if (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < -9.9999999999999995e126 or -1 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < +inf.0

              1. Initial program 87.4%

                \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
              2. Taylor expanded in t around 0

                \[\leadsto \color{blue}{\frac{2 + 2 \cdot \frac{1}{z}}{t}} \]
              3. Step-by-step derivation
                1. lower-/.f64N/A

                  \[\leadsto \frac{2 + 2 \cdot \frac{1}{z}}{\color{blue}{t}} \]
                2. lower-+.f64N/A

                  \[\leadsto \frac{2 + 2 \cdot \frac{1}{z}}{t} \]
                3. lower-*.f64N/A

                  \[\leadsto \frac{2 + 2 \cdot \frac{1}{z}}{t} \]
                4. lower-/.f6448.2%

                  \[\leadsto \frac{2 + 2 \cdot \frac{1}{z}}{t} \]
              4. Applied rewrites48.2%

                \[\leadsto \color{blue}{\frac{2 + 2 \cdot \frac{1}{z}}{t}} \]

              if -9.9999999999999995e126 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < -2e5

              1. Initial program 87.4%

                \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
              2. Taylor expanded in z around inf

                \[\leadsto \frac{x}{y} + \color{blue}{2 \cdot \frac{1 - t}{t}} \]
              3. Step-by-step derivation
                1. lower-*.f64N/A

                  \[\leadsto \frac{x}{y} + 2 \cdot \color{blue}{\frac{1 - t}{t}} \]
                2. lower-/.f64N/A

                  \[\leadsto \frac{x}{y} + 2 \cdot \frac{1 - t}{\color{blue}{t}} \]
                3. lower--.f6471.3%

                  \[\leadsto \frac{x}{y} + 2 \cdot \frac{1 - t}{t} \]
              4. Applied rewrites71.3%

                \[\leadsto \frac{x}{y} + \color{blue}{2 \cdot \frac{1 - t}{t}} \]
              5. Taylor expanded in t around 0

                \[\leadsto \frac{x}{y} + \frac{2}{\color{blue}{t}} \]
              6. Step-by-step derivation
                1. lower-/.f6452.8%

                  \[\leadsto \frac{x}{y} + \frac{2}{t} \]
              7. Applied rewrites52.8%

                \[\leadsto \frac{x}{y} + \frac{2}{\color{blue}{t}} \]

              if -2e5 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < -1 or +inf.0 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z))

              1. Initial program 87.4%

                \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
              2. Taylor expanded in t around inf

                \[\leadsto \frac{x}{y} + \color{blue}{-2} \]
              3. Step-by-step derivation
                1. Applied rewrites53.8%

                  \[\leadsto \frac{x}{y} + \color{blue}{-2} \]
              4. Recombined 3 regimes into one program.
              5. Add Preprocessing

              Alternative 9: 70.7% accurate, 1.2× speedup?

              \[\begin{array}{l} t_1 := \frac{x}{y} + -2\\ \mathbf{if}\;t \leq \frac{-5404319552844595}{9007199254740992}:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;t \leq \frac{7385903388887613}{18014398509481984}:\\ \;\;\;\;\frac{x}{y} + \frac{2}{t}\\ \mathbf{else}:\\ \;\;\;\;t\_1\\ \end{array} \]
              (FPCore (x y z t)
                :precision binary64
                (let* ((t_1 (+ (/ x y) -2)))
                (if (<= t -5404319552844595/9007199254740992)
                  t_1
                  (if (<= t 7385903388887613/18014398509481984)
                    (+ (/ x y) (/ 2 t))
                    t_1))))
              double code(double x, double y, double z, double t) {
              	double t_1 = (x / y) + -2.0;
              	double tmp;
              	if (t <= -0.6) {
              		tmp = t_1;
              	} else if (t <= 0.41) {
              		tmp = (x / y) + (2.0 / t);
              	} else {
              		tmp = t_1;
              	}
              	return tmp;
              }
              
              module fmin_fmax_functions
                  implicit none
                  private
                  public fmax
                  public fmin
              
                  interface fmax
                      module procedure fmax88
                      module procedure fmax44
                      module procedure fmax84
                      module procedure fmax48
                  end interface
                  interface fmin
                      module procedure fmin88
                      module procedure fmin44
                      module procedure fmin84
                      module procedure fmin48
                  end interface
              contains
                  real(8) function fmax88(x, y) result (res)
                      real(8), intent (in) :: x
                      real(8), intent (in) :: y
                      res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                  end function
                  real(4) function fmax44(x, y) result (res)
                      real(4), intent (in) :: x
                      real(4), intent (in) :: y
                      res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                  end function
                  real(8) function fmax84(x, y) result(res)
                      real(8), intent (in) :: x
                      real(4), intent (in) :: y
                      res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                  end function
                  real(8) function fmax48(x, y) result(res)
                      real(4), intent (in) :: x
                      real(8), intent (in) :: y
                      res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                  end function
                  real(8) function fmin88(x, y) result (res)
                      real(8), intent (in) :: x
                      real(8), intent (in) :: y
                      res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                  end function
                  real(4) function fmin44(x, y) result (res)
                      real(4), intent (in) :: x
                      real(4), intent (in) :: y
                      res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                  end function
                  real(8) function fmin84(x, y) result(res)
                      real(8), intent (in) :: x
                      real(4), intent (in) :: y
                      res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                  end function
                  real(8) function fmin48(x, y) result(res)
                      real(4), intent (in) :: x
                      real(8), intent (in) :: y
                      res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                  end function
              end module
              
              real(8) function code(x, y, z, t)
              use fmin_fmax_functions
                  real(8), intent (in) :: x
                  real(8), intent (in) :: y
                  real(8), intent (in) :: z
                  real(8), intent (in) :: t
                  real(8) :: t_1
                  real(8) :: tmp
                  t_1 = (x / y) + (-2.0d0)
                  if (t <= (-0.6d0)) then
                      tmp = t_1
                  else if (t <= 0.41d0) then
                      tmp = (x / y) + (2.0d0 / t)
                  else
                      tmp = t_1
                  end if
                  code = tmp
              end function
              
              public static double code(double x, double y, double z, double t) {
              	double t_1 = (x / y) + -2.0;
              	double tmp;
              	if (t <= -0.6) {
              		tmp = t_1;
              	} else if (t <= 0.41) {
              		tmp = (x / y) + (2.0 / t);
              	} else {
              		tmp = t_1;
              	}
              	return tmp;
              }
              
              def code(x, y, z, t):
              	t_1 = (x / y) + -2.0
              	tmp = 0
              	if t <= -0.6:
              		tmp = t_1
              	elif t <= 0.41:
              		tmp = (x / y) + (2.0 / t)
              	else:
              		tmp = t_1
              	return tmp
              
              function code(x, y, z, t)
              	t_1 = Float64(Float64(x / y) + -2.0)
              	tmp = 0.0
              	if (t <= -0.6)
              		tmp = t_1;
              	elseif (t <= 0.41)
              		tmp = Float64(Float64(x / y) + Float64(2.0 / t));
              	else
              		tmp = t_1;
              	end
              	return tmp
              end
              
              function tmp_2 = code(x, y, z, t)
              	t_1 = (x / y) + -2.0;
              	tmp = 0.0;
              	if (t <= -0.6)
              		tmp = t_1;
              	elseif (t <= 0.41)
              		tmp = (x / y) + (2.0 / t);
              	else
              		tmp = t_1;
              	end
              	tmp_2 = tmp;
              end
              
              code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(x / y), $MachinePrecision] + -2), $MachinePrecision]}, If[LessEqual[t, -5404319552844595/9007199254740992], t$95$1, If[LessEqual[t, 7385903388887613/18014398509481984], N[(N[(x / y), $MachinePrecision] + N[(2 / t), $MachinePrecision]), $MachinePrecision], t$95$1]]]
              
              \begin{array}{l}
              t_1 := \frac{x}{y} + -2\\
              \mathbf{if}\;t \leq \frac{-5404319552844595}{9007199254740992}:\\
              \;\;\;\;t\_1\\
              
              \mathbf{elif}\;t \leq \frac{7385903388887613}{18014398509481984}:\\
              \;\;\;\;\frac{x}{y} + \frac{2}{t}\\
              
              \mathbf{else}:\\
              \;\;\;\;t\_1\\
              
              
              \end{array}
              
              Derivation
              1. Split input into 2 regimes
              2. if t < -0.59999999999999998 or 0.40999999999999998 < t

                1. Initial program 87.4%

                  \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
                2. Taylor expanded in t around inf

                  \[\leadsto \frac{x}{y} + \color{blue}{-2} \]
                3. Step-by-step derivation
                  1. Applied rewrites53.8%

                    \[\leadsto \frac{x}{y} + \color{blue}{-2} \]

                  if -0.59999999999999998 < t < 0.40999999999999998

                  1. Initial program 87.4%

                    \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
                  2. Taylor expanded in z around inf

                    \[\leadsto \frac{x}{y} + \color{blue}{2 \cdot \frac{1 - t}{t}} \]
                  3. Step-by-step derivation
                    1. lower-*.f64N/A

                      \[\leadsto \frac{x}{y} + 2 \cdot \color{blue}{\frac{1 - t}{t}} \]
                    2. lower-/.f64N/A

                      \[\leadsto \frac{x}{y} + 2 \cdot \frac{1 - t}{\color{blue}{t}} \]
                    3. lower--.f6471.3%

                      \[\leadsto \frac{x}{y} + 2 \cdot \frac{1 - t}{t} \]
                  4. Applied rewrites71.3%

                    \[\leadsto \frac{x}{y} + \color{blue}{2 \cdot \frac{1 - t}{t}} \]
                  5. Taylor expanded in t around 0

                    \[\leadsto \frac{x}{y} + \frac{2}{\color{blue}{t}} \]
                  6. Step-by-step derivation
                    1. lower-/.f6452.8%

                      \[\leadsto \frac{x}{y} + \frac{2}{t} \]
                  7. Applied rewrites52.8%

                    \[\leadsto \frac{x}{y} + \frac{2}{\color{blue}{t}} \]
                4. Recombined 2 regimes into one program.
                5. Add Preprocessing

                Alternative 10: 53.8% accurate, 3.1× speedup?

                \[\frac{x}{y} + -2 \]
                (FPCore (x y z t)
                  :precision binary64
                  (+ (/ x y) -2))
                double code(double x, double y, double z, double t) {
                	return (x / y) + -2.0;
                }
                
                module fmin_fmax_functions
                    implicit none
                    private
                    public fmax
                    public fmin
                
                    interface fmax
                        module procedure fmax88
                        module procedure fmax44
                        module procedure fmax84
                        module procedure fmax48
                    end interface
                    interface fmin
                        module procedure fmin88
                        module procedure fmin44
                        module procedure fmin84
                        module procedure fmin48
                    end interface
                contains
                    real(8) function fmax88(x, y) result (res)
                        real(8), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                    end function
                    real(4) function fmax44(x, y) result (res)
                        real(4), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                    end function
                    real(8) function fmax84(x, y) result(res)
                        real(8), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                    end function
                    real(8) function fmax48(x, y) result(res)
                        real(4), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                    end function
                    real(8) function fmin88(x, y) result (res)
                        real(8), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                    end function
                    real(4) function fmin44(x, y) result (res)
                        real(4), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                    end function
                    real(8) function fmin84(x, y) result(res)
                        real(8), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                    end function
                    real(8) function fmin48(x, y) result(res)
                        real(4), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                    end function
                end module
                
                real(8) function code(x, y, z, t)
                use fmin_fmax_functions
                    real(8), intent (in) :: x
                    real(8), intent (in) :: y
                    real(8), intent (in) :: z
                    real(8), intent (in) :: t
                    code = (x / y) + (-2.0d0)
                end function
                
                public static double code(double x, double y, double z, double t) {
                	return (x / y) + -2.0;
                }
                
                def code(x, y, z, t):
                	return (x / y) + -2.0
                
                function code(x, y, z, t)
                	return Float64(Float64(x / y) + -2.0)
                end
                
                function tmp = code(x, y, z, t)
                	tmp = (x / y) + -2.0;
                end
                
                code[x_, y_, z_, t_] := N[(N[(x / y), $MachinePrecision] + -2), $MachinePrecision]
                
                \frac{x}{y} + -2
                
                Derivation
                1. Initial program 87.4%

                  \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
                2. Taylor expanded in t around inf

                  \[\leadsto \frac{x}{y} + \color{blue}{-2} \]
                3. Step-by-step derivation
                  1. Applied rewrites53.8%

                    \[\leadsto \frac{x}{y} + \color{blue}{-2} \]
                  2. Add Preprocessing

                  Reproduce

                  ?
                  herbie shell --seed 2025271 -o generate:evaluate
                  (FPCore (x y z t)
                    :name "Data.HashTable.ST.Basic:computeOverhead from hashtables-1.2.0.2"
                    :precision binary64
                    (+ (/ x y) (/ (+ 2 (* (* z 2) (- 1 t))) (* t z))))