
(FPCore (d1 d2 d3) :precision binary64 (+ (+ (* d1 3) (* d1 d2)) (* d1 d3)))
double code(double d1, double d2, double d3) {
return ((d1 * 3.0) + (d1 * d2)) + (d1 * d3);
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(d1, d2, d3)
use fmin_fmax_functions
real(8), intent (in) :: d1
real(8), intent (in) :: d2
real(8), intent (in) :: d3
code = ((d1 * 3.0d0) + (d1 * d2)) + (d1 * d3)
end function
public static double code(double d1, double d2, double d3) {
return ((d1 * 3.0) + (d1 * d2)) + (d1 * d3);
}
def code(d1, d2, d3): return ((d1 * 3.0) + (d1 * d2)) + (d1 * d3)
function code(d1, d2, d3) return Float64(Float64(Float64(d1 * 3.0) + Float64(d1 * d2)) + Float64(d1 * d3)) end
function tmp = code(d1, d2, d3) tmp = ((d1 * 3.0) + (d1 * d2)) + (d1 * d3); end
code[d1_, d2_, d3_] := N[(N[(N[(d1 * 3), $MachinePrecision] + N[(d1 * d2), $MachinePrecision]), $MachinePrecision] + N[(d1 * d3), $MachinePrecision]), $MachinePrecision]
\left(d1 \cdot 3 + d1 \cdot d2\right) + d1 \cdot d3
Herbie found 3 alternatives:
| Alternative | Accuracy | Speedup |
|---|
(FPCore (d1 d2 d3) :precision binary64 (+ (+ (* d1 3) (* d1 d2)) (* d1 d3)))
double code(double d1, double d2, double d3) {
return ((d1 * 3.0) + (d1 * d2)) + (d1 * d3);
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(d1, d2, d3)
use fmin_fmax_functions
real(8), intent (in) :: d1
real(8), intent (in) :: d2
real(8), intent (in) :: d3
code = ((d1 * 3.0d0) + (d1 * d2)) + (d1 * d3)
end function
public static double code(double d1, double d2, double d3) {
return ((d1 * 3.0) + (d1 * d2)) + (d1 * d3);
}
def code(d1, d2, d3): return ((d1 * 3.0) + (d1 * d2)) + (d1 * d3)
function code(d1, d2, d3) return Float64(Float64(Float64(d1 * 3.0) + Float64(d1 * d2)) + Float64(d1 * d3)) end
function tmp = code(d1, d2, d3) tmp = ((d1 * 3.0) + (d1 * d2)) + (d1 * d3); end
code[d1_, d2_, d3_] := N[(N[(N[(d1 * 3), $MachinePrecision] + N[(d1 * d2), $MachinePrecision]), $MachinePrecision] + N[(d1 * d3), $MachinePrecision]), $MachinePrecision]
\left(d1 \cdot 3 + d1 \cdot d2\right) + d1 \cdot d3
(FPCore (d1 d2 d3) :precision binary64 (* (- (+ d3 d2) -3) d1))
double code(double d1, double d2, double d3) {
return ((d3 + d2) - -3.0) * d1;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(d1, d2, d3)
use fmin_fmax_functions
real(8), intent (in) :: d1
real(8), intent (in) :: d2
real(8), intent (in) :: d3
code = ((d3 + d2) - (-3.0d0)) * d1
end function
public static double code(double d1, double d2, double d3) {
return ((d3 + d2) - -3.0) * d1;
}
def code(d1, d2, d3): return ((d3 + d2) - -3.0) * d1
function code(d1, d2, d3) return Float64(Float64(Float64(d3 + d2) - -3.0) * d1) end
function tmp = code(d1, d2, d3) tmp = ((d3 + d2) - -3.0) * d1; end
code[d1_, d2_, d3_] := N[(N[(N[(d3 + d2), $MachinePrecision] - -3), $MachinePrecision] * d1), $MachinePrecision]
\left(\left(d3 + d2\right) - -3\right) \cdot d1
Initial program 97.7%
lift-+.f64N/A
lift-+.f64N/A
lift-*.f64N/A
lift-*.f64N/A
distribute-lft-outN/A
lift-*.f64N/A
distribute-lft-outN/A
*-commutativeN/A
lower-*.f64N/A
associate-+l+N/A
+-commutativeN/A
add-flipN/A
lower--.f64N/A
+-commutativeN/A
lower-+.f64N/A
metadata-eval99.9%
Applied rewrites99.9%
(FPCore (d1 d2 d3)
:precision binary64
(*
(copysign 1 d1)
(if (<=
(+
(+ (* (fabs d1) 3) (* (fabs d1) (fmin d2 d3)))
(* (fabs d1) (fmax d2 d3)))
-1452164949685335/290432989937067004452746581669902453150636758136600480284330441272644659601641479208040686425030537224570063240272065048916911180770489396052896597871561450348236492274894506629430939420761276732468592926240515079310107169312085954718183386786847281838290059659012482973391669690368)
(* (+ 3 (fmin d2 d3)) (fabs d1))
(* (- (fmax d2 d3) -3) (fabs d1)))))double code(double d1, double d2, double d3) {
double tmp;
if ((((fabs(d1) * 3.0) + (fabs(d1) * fmin(d2, d3))) + (fabs(d1) * fmax(d2, d3))) <= -5e-267) {
tmp = (3.0 + fmin(d2, d3)) * fabs(d1);
} else {
tmp = (fmax(d2, d3) - -3.0) * fabs(d1);
}
return copysign(1.0, d1) * tmp;
}
public static double code(double d1, double d2, double d3) {
double tmp;
if ((((Math.abs(d1) * 3.0) + (Math.abs(d1) * fmin(d2, d3))) + (Math.abs(d1) * fmax(d2, d3))) <= -5e-267) {
tmp = (3.0 + fmin(d2, d3)) * Math.abs(d1);
} else {
tmp = (fmax(d2, d3) - -3.0) * Math.abs(d1);
}
return Math.copySign(1.0, d1) * tmp;
}
def code(d1, d2, d3): tmp = 0 if (((math.fabs(d1) * 3.0) + (math.fabs(d1) * fmin(d2, d3))) + (math.fabs(d1) * fmax(d2, d3))) <= -5e-267: tmp = (3.0 + fmin(d2, d3)) * math.fabs(d1) else: tmp = (fmax(d2, d3) - -3.0) * math.fabs(d1) return math.copysign(1.0, d1) * tmp
function code(d1, d2, d3) tmp = 0.0 if (Float64(Float64(Float64(abs(d1) * 3.0) + Float64(abs(d1) * fmin(d2, d3))) + Float64(abs(d1) * fmax(d2, d3))) <= -5e-267) tmp = Float64(Float64(3.0 + fmin(d2, d3)) * abs(d1)); else tmp = Float64(Float64(fmax(d2, d3) - -3.0) * abs(d1)); end return Float64(copysign(1.0, d1) * tmp) end
function tmp_2 = code(d1, d2, d3) tmp = 0.0; if ((((abs(d1) * 3.0) + (abs(d1) * min(d2, d3))) + (abs(d1) * max(d2, d3))) <= -5e-267) tmp = (3.0 + min(d2, d3)) * abs(d1); else tmp = (max(d2, d3) - -3.0) * abs(d1); end tmp_2 = (sign(d1) * abs(1.0)) * tmp; end
code[d1_, d2_, d3_] := N[(N[With[{TMP1 = Abs[1], TMP2 = Sign[d1]}, TMP1 * If[TMP2 == 0, 1, TMP2]], $MachinePrecision] * If[LessEqual[N[(N[(N[(N[Abs[d1], $MachinePrecision] * 3), $MachinePrecision] + N[(N[Abs[d1], $MachinePrecision] * N[Min[d2, d3], $MachinePrecision]), $MachinePrecision]), $MachinePrecision] + N[(N[Abs[d1], $MachinePrecision] * N[Max[d2, d3], $MachinePrecision]), $MachinePrecision]), $MachinePrecision], -1452164949685335/290432989937067004452746581669902453150636758136600480284330441272644659601641479208040686425030537224570063240272065048916911180770489396052896597871561450348236492274894506629430939420761276732468592926240515079310107169312085954718183386786847281838290059659012482973391669690368], N[(N[(3 + N[Min[d2, d3], $MachinePrecision]), $MachinePrecision] * N[Abs[d1], $MachinePrecision]), $MachinePrecision], N[(N[(N[Max[d2, d3], $MachinePrecision] - -3), $MachinePrecision] * N[Abs[d1], $MachinePrecision]), $MachinePrecision]]), $MachinePrecision]
\mathsf{copysign}\left(1, d1\right) \cdot \begin{array}{l}
\mathbf{if}\;\left(\left|d1\right| \cdot 3 + \left|d1\right| \cdot \mathsf{min}\left(d2, d3\right)\right) + \left|d1\right| \cdot \mathsf{max}\left(d2, d3\right) \leq \frac{-1452164949685335}{290432989937067004452746581669902453150636758136600480284330441272644659601641479208040686425030537224570063240272065048916911180770489396052896597871561450348236492274894506629430939420761276732468592926240515079310107169312085954718183386786847281838290059659012482973391669690368}:\\
\;\;\;\;\left(3 + \mathsf{min}\left(d2, d3\right)\right) \cdot \left|d1\right|\\
\mathbf{else}:\\
\;\;\;\;\left(\mathsf{max}\left(d2, d3\right) - -3\right) \cdot \left|d1\right|\\
\end{array}
if (+.f64 (+.f64 (*.f64 d1 #s(literal 3 binary64)) (*.f64 d1 d2)) (*.f64 d1 d3)) < -4.9999999999999999e-267Initial program 97.7%
lift-+.f64N/A
lift-+.f64N/A
lift-*.f64N/A
lift-*.f64N/A
distribute-lft-outN/A
lift-*.f64N/A
distribute-lft-outN/A
*-commutativeN/A
lower-*.f64N/A
associate-+l+N/A
+-commutativeN/A
add-flipN/A
lower--.f64N/A
+-commutativeN/A
lower-+.f64N/A
metadata-eval99.9%
Applied rewrites99.9%
Taylor expanded in d3 around 0
lower-+.f6464.7%
Applied rewrites64.7%
if -4.9999999999999999e-267 < (+.f64 (+.f64 (*.f64 d1 #s(literal 3 binary64)) (*.f64 d1 d2)) (*.f64 d1 d3)) Initial program 97.7%
lift-+.f64N/A
lift-+.f64N/A
lift-*.f64N/A
lift-*.f64N/A
distribute-lft-outN/A
lift-*.f64N/A
distribute-lft-outN/A
*-commutativeN/A
lower-*.f64N/A
associate-+l+N/A
+-commutativeN/A
add-flipN/A
lower--.f64N/A
+-commutativeN/A
lower-+.f64N/A
metadata-eval99.9%
Applied rewrites99.9%
Taylor expanded in d2 around 0
Applied rewrites63.6%
(FPCore (d1 d2 d3) :precision binary64 (* (+ 3 d2) d1))
double code(double d1, double d2, double d3) {
return (3.0 + d2) * d1;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(d1, d2, d3)
use fmin_fmax_functions
real(8), intent (in) :: d1
real(8), intent (in) :: d2
real(8), intent (in) :: d3
code = (3.0d0 + d2) * d1
end function
public static double code(double d1, double d2, double d3) {
return (3.0 + d2) * d1;
}
def code(d1, d2, d3): return (3.0 + d2) * d1
function code(d1, d2, d3) return Float64(Float64(3.0 + d2) * d1) end
function tmp = code(d1, d2, d3) tmp = (3.0 + d2) * d1; end
code[d1_, d2_, d3_] := N[(N[(3 + d2), $MachinePrecision] * d1), $MachinePrecision]
\left(3 + d2\right) \cdot d1
Initial program 97.7%
lift-+.f64N/A
lift-+.f64N/A
lift-*.f64N/A
lift-*.f64N/A
distribute-lft-outN/A
lift-*.f64N/A
distribute-lft-outN/A
*-commutativeN/A
lower-*.f64N/A
associate-+l+N/A
+-commutativeN/A
add-flipN/A
lower--.f64N/A
+-commutativeN/A
lower-+.f64N/A
metadata-eval99.9%
Applied rewrites99.9%
Taylor expanded in d3 around 0
lower-+.f6464.7%
Applied rewrites64.7%
herbie shell --seed 2025271 -o generate:evaluate
(FPCore (d1 d2 d3)
:name "FastMath test3"
:precision binary64
(+ (+ (* d1 3) (* d1 d2)) (* d1 d3)))