Graphics.Rendering.Plot.Render.Plot.Axis:renderAxisLine from plot-0.2.3.4, A

Percentage Accurate: 98.2% → 98.2%
Time: 38.7s
Alternatives: 14
Speedup: 1.0×

Specification

?
\[x + y \cdot \frac{z - t}{z - a} \]
(FPCore (x y z t a)
  :precision binary64
  (+ x (* y (/ (- z t) (- z a)))))
double code(double x, double y, double z, double t, double a) {
	return x + (y * ((z - t) / (z - a)));
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z, t, a)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8), intent (in) :: t
    real(8), intent (in) :: a
    code = x + (y * ((z - t) / (z - a)))
end function
public static double code(double x, double y, double z, double t, double a) {
	return x + (y * ((z - t) / (z - a)));
}
def code(x, y, z, t, a):
	return x + (y * ((z - t) / (z - a)))
function code(x, y, z, t, a)
	return Float64(x + Float64(y * Float64(Float64(z - t) / Float64(z - a))))
end
function tmp = code(x, y, z, t, a)
	tmp = x + (y * ((z - t) / (z - a)));
end
code[x_, y_, z_, t_, a_] := N[(x + N[(y * N[(N[(z - t), $MachinePrecision] / N[(z - a), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
x + y \cdot \frac{z - t}{z - a}

Local Percentage Accuracy vs ?

The average percentage accuracy by input value. Horizontal axis shows value of an input variable; the variable is choosen in the title. Vertical axis is accuracy; higher is better. Red represent the original program, while blue represents Herbie's suggestion. These can be toggled with buttons below the plot. The line is an average while dots represent individual samples.

Accuracy vs Speed?

Herbie found 14 alternatives:

AlternativeAccuracySpeedup
The accuracy (vertical axis) and speed (horizontal axis) of each alternatives. Up and to the right is better. The red square shows the initial program, and each blue circle shows an alternative.The line shows the best available speed-accuracy tradeoffs.

Initial Program: 98.2% accurate, 1.0× speedup?

\[x + y \cdot \frac{z - t}{z - a} \]
(FPCore (x y z t a)
  :precision binary64
  (+ x (* y (/ (- z t) (- z a)))))
double code(double x, double y, double z, double t, double a) {
	return x + (y * ((z - t) / (z - a)));
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z, t, a)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8), intent (in) :: t
    real(8), intent (in) :: a
    code = x + (y * ((z - t) / (z - a)))
end function
public static double code(double x, double y, double z, double t, double a) {
	return x + (y * ((z - t) / (z - a)));
}
def code(x, y, z, t, a):
	return x + (y * ((z - t) / (z - a)))
function code(x, y, z, t, a)
	return Float64(x + Float64(y * Float64(Float64(z - t) / Float64(z - a))))
end
function tmp = code(x, y, z, t, a)
	tmp = x + (y * ((z - t) / (z - a)));
end
code[x_, y_, z_, t_, a_] := N[(x + N[(y * N[(N[(z - t), $MachinePrecision] / N[(z - a), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
x + y \cdot \frac{z - t}{z - a}

Alternative 1: 88.8% accurate, 0.3× speedup?

\[\begin{array}{l} t_1 := \frac{z - t}{z - a}\\ t_2 := \frac{y}{a - z} \cdot t\\ \mathbf{if}\;t\_1 \leq -500000000000000024173346057776829528764197422945257127936:\\ \;\;\;\;t\_2\\ \mathbf{elif}\;t\_1 \leq \frac{5764607523034235}{576460752303423488}:\\ \;\;\;\;x - \frac{y}{a} \cdot \left(z - t\right)\\ \mathbf{elif}\;t\_1 \leq 99999999999999994416755247254933381274972870380190006824232035607637985622760311004411949604741731366073618283536318464:\\ \;\;\;\;x + y \cdot \frac{z - t}{z}\\ \mathbf{else}:\\ \;\;\;\;t\_2\\ \end{array} \]
(FPCore (x y z t a)
  :precision binary64
  (let* ((t_1 (/ (- z t) (- z a))) (t_2 (* (/ y (- a z)) t)))
  (if (<=
       t_1
       -500000000000000024173346057776829528764197422945257127936)
    t_2
    (if (<= t_1 5764607523034235/576460752303423488)
      (- x (* (/ y a) (- z t)))
      (if (<=
           t_1
           99999999999999994416755247254933381274972870380190006824232035607637985622760311004411949604741731366073618283536318464)
        (+ x (* y (/ (- z t) z)))
        t_2)))))
double code(double x, double y, double z, double t, double a) {
	double t_1 = (z - t) / (z - a);
	double t_2 = (y / (a - z)) * t;
	double tmp;
	if (t_1 <= -5e+56) {
		tmp = t_2;
	} else if (t_1 <= 0.01) {
		tmp = x - ((y / a) * (z - t));
	} else if (t_1 <= 1e+119) {
		tmp = x + (y * ((z - t) / z));
	} else {
		tmp = t_2;
	}
	return tmp;
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z, t, a)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8), intent (in) :: t
    real(8), intent (in) :: a
    real(8) :: t_1
    real(8) :: t_2
    real(8) :: tmp
    t_1 = (z - t) / (z - a)
    t_2 = (y / (a - z)) * t
    if (t_1 <= (-5d+56)) then
        tmp = t_2
    else if (t_1 <= 0.01d0) then
        tmp = x - ((y / a) * (z - t))
    else if (t_1 <= 1d+119) then
        tmp = x + (y * ((z - t) / z))
    else
        tmp = t_2
    end if
    code = tmp
end function
public static double code(double x, double y, double z, double t, double a) {
	double t_1 = (z - t) / (z - a);
	double t_2 = (y / (a - z)) * t;
	double tmp;
	if (t_1 <= -5e+56) {
		tmp = t_2;
	} else if (t_1 <= 0.01) {
		tmp = x - ((y / a) * (z - t));
	} else if (t_1 <= 1e+119) {
		tmp = x + (y * ((z - t) / z));
	} else {
		tmp = t_2;
	}
	return tmp;
}
def code(x, y, z, t, a):
	t_1 = (z - t) / (z - a)
	t_2 = (y / (a - z)) * t
	tmp = 0
	if t_1 <= -5e+56:
		tmp = t_2
	elif t_1 <= 0.01:
		tmp = x - ((y / a) * (z - t))
	elif t_1 <= 1e+119:
		tmp = x + (y * ((z - t) / z))
	else:
		tmp = t_2
	return tmp
function code(x, y, z, t, a)
	t_1 = Float64(Float64(z - t) / Float64(z - a))
	t_2 = Float64(Float64(y / Float64(a - z)) * t)
	tmp = 0.0
	if (t_1 <= -5e+56)
		tmp = t_2;
	elseif (t_1 <= 0.01)
		tmp = Float64(x - Float64(Float64(y / a) * Float64(z - t)));
	elseif (t_1 <= 1e+119)
		tmp = Float64(x + Float64(y * Float64(Float64(z - t) / z)));
	else
		tmp = t_2;
	end
	return tmp
end
function tmp_2 = code(x, y, z, t, a)
	t_1 = (z - t) / (z - a);
	t_2 = (y / (a - z)) * t;
	tmp = 0.0;
	if (t_1 <= -5e+56)
		tmp = t_2;
	elseif (t_1 <= 0.01)
		tmp = x - ((y / a) * (z - t));
	elseif (t_1 <= 1e+119)
		tmp = x + (y * ((z - t) / z));
	else
		tmp = t_2;
	end
	tmp_2 = tmp;
end
code[x_, y_, z_, t_, a_] := Block[{t$95$1 = N[(N[(z - t), $MachinePrecision] / N[(z - a), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$2 = N[(N[(y / N[(a - z), $MachinePrecision]), $MachinePrecision] * t), $MachinePrecision]}, If[LessEqual[t$95$1, -500000000000000024173346057776829528764197422945257127936], t$95$2, If[LessEqual[t$95$1, 5764607523034235/576460752303423488], N[(x - N[(N[(y / a), $MachinePrecision] * N[(z - t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$1, 99999999999999994416755247254933381274972870380190006824232035607637985622760311004411949604741731366073618283536318464], N[(x + N[(y * N[(N[(z - t), $MachinePrecision] / z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], t$95$2]]]]]
\begin{array}{l}
t_1 := \frac{z - t}{z - a}\\
t_2 := \frac{y}{a - z} \cdot t\\
\mathbf{if}\;t\_1 \leq -500000000000000024173346057776829528764197422945257127936:\\
\;\;\;\;t\_2\\

\mathbf{elif}\;t\_1 \leq \frac{5764607523034235}{576460752303423488}:\\
\;\;\;\;x - \frac{y}{a} \cdot \left(z - t\right)\\

\mathbf{elif}\;t\_1 \leq 99999999999999994416755247254933381274972870380190006824232035607637985622760311004411949604741731366073618283536318464:\\
\;\;\;\;x + y \cdot \frac{z - t}{z}\\

\mathbf{else}:\\
\;\;\;\;t\_2\\


\end{array}
Derivation
  1. Split input into 3 regimes
  2. if (/.f64 (-.f64 z t) (-.f64 z a)) < -5.0000000000000002e56 or 9.9999999999999994e118 < (/.f64 (-.f64 z t) (-.f64 z a))

    1. Initial program 98.2%

      \[x + y \cdot \frac{z - t}{z - a} \]
    2. Applied rewrites95.8%

      \[\leadsto \color{blue}{x - \frac{y}{a - z} \cdot \left(z - t\right)} \]
    3. Taylor expanded in t around inf

      \[\leadsto \color{blue}{\frac{t \cdot y}{a - z}} \]
    4. Step-by-step derivation
      1. lower-/.f64N/A

        \[\leadsto \frac{t \cdot y}{\color{blue}{a - z}} \]
      2. lower-*.f64N/A

        \[\leadsto \frac{t \cdot y}{\color{blue}{a} - z} \]
      3. lower--.f6426.2%

        \[\leadsto \frac{t \cdot y}{a - \color{blue}{z}} \]
    5. Applied rewrites26.2%

      \[\leadsto \color{blue}{\frac{t \cdot y}{a - z}} \]
    6. Step-by-step derivation
      1. lift--.f64N/A

        \[\leadsto \frac{t \cdot y}{a - \color{blue}{z}} \]
      2. lift-/.f64N/A

        \[\leadsto \frac{t \cdot y}{\color{blue}{a - z}} \]
      3. lift-*.f64N/A

        \[\leadsto \frac{t \cdot y}{\color{blue}{a} - z} \]
      4. associate-/l*N/A

        \[\leadsto t \cdot \color{blue}{\frac{y}{a - z}} \]
      5. *-commutativeN/A

        \[\leadsto \frac{y}{a - z} \cdot \color{blue}{t} \]
      6. lower-*.f64N/A

        \[\leadsto \frac{y}{a - z} \cdot \color{blue}{t} \]
      7. lower-/.f64N/A

        \[\leadsto \frac{y}{a - z} \cdot t \]
      8. lift--.f6428.0%

        \[\leadsto \frac{y}{a - z} \cdot t \]
    7. Applied rewrites28.0%

      \[\leadsto \frac{y}{a - z} \cdot \color{blue}{t} \]

    if -5.0000000000000002e56 < (/.f64 (-.f64 z t) (-.f64 z a)) < 0.01

    1. Initial program 98.2%

      \[x + y \cdot \frac{z - t}{z - a} \]
    2. Applied rewrites95.8%

      \[\leadsto \color{blue}{x - \frac{y}{a - z} \cdot \left(z - t\right)} \]
    3. Taylor expanded in z around 0

      \[\leadsto x - \frac{y}{\color{blue}{a}} \cdot \left(z - t\right) \]
    4. Step-by-step derivation
      1. Applied rewrites60.4%

        \[\leadsto x - \frac{y}{\color{blue}{a}} \cdot \left(z - t\right) \]

      if 0.01 < (/.f64 (-.f64 z t) (-.f64 z a)) < 9.9999999999999994e118

      1. Initial program 98.2%

        \[x + y \cdot \frac{z - t}{z - a} \]
      2. Taylor expanded in a around 0

        \[\leadsto x + y \cdot \color{blue}{\frac{z - t}{z}} \]
      3. Step-by-step derivation
        1. lower-/.f64N/A

          \[\leadsto x + y \cdot \frac{z - t}{\color{blue}{z}} \]
        2. lower--.f6467.0%

          \[\leadsto x + y \cdot \frac{z - t}{z} \]
      4. Applied rewrites67.0%

        \[\leadsto x + y \cdot \color{blue}{\frac{z - t}{z}} \]
    5. Recombined 3 regimes into one program.
    6. Add Preprocessing

    Alternative 2: 84.7% accurate, 0.3× speedup?

    \[\begin{array}{l} t_1 := \frac{z - t}{z - a}\\ t_2 := \frac{y}{a - z} \cdot t\\ \mathbf{if}\;t\_1 \leq -1999999999999999960006936694788402363337610385794017036377296623661544829254857450929578869859984879509552150362154074112:\\ \;\;\;\;t\_2\\ \mathbf{elif}\;t\_1 \leq \frac{5764607523034235}{576460752303423488}:\\ \;\;\;\;x + y \cdot \frac{t}{a}\\ \mathbf{elif}\;t\_1 \leq 99999999999999994416755247254933381274972870380190006824232035607637985622760311004411949604741731366073618283536318464:\\ \;\;\;\;x + y \cdot \frac{z - t}{z}\\ \mathbf{else}:\\ \;\;\;\;t\_2\\ \end{array} \]
    (FPCore (x y z t a)
      :precision binary64
      (let* ((t_1 (/ (- z t) (- z a))) (t_2 (* (/ y (- a z)) t)))
      (if (<=
           t_1
           -1999999999999999960006936694788402363337610385794017036377296623661544829254857450929578869859984879509552150362154074112)
        t_2
        (if (<= t_1 5764607523034235/576460752303423488)
          (+ x (* y (/ t a)))
          (if (<=
               t_1
               99999999999999994416755247254933381274972870380190006824232035607637985622760311004411949604741731366073618283536318464)
            (+ x (* y (/ (- z t) z)))
            t_2)))))
    double code(double x, double y, double z, double t, double a) {
    	double t_1 = (z - t) / (z - a);
    	double t_2 = (y / (a - z)) * t;
    	double tmp;
    	if (t_1 <= -2e+120) {
    		tmp = t_2;
    	} else if (t_1 <= 0.01) {
    		tmp = x + (y * (t / a));
    	} else if (t_1 <= 1e+119) {
    		tmp = x + (y * ((z - t) / z));
    	} else {
    		tmp = t_2;
    	}
    	return tmp;
    }
    
    module fmin_fmax_functions
        implicit none
        private
        public fmax
        public fmin
    
        interface fmax
            module procedure fmax88
            module procedure fmax44
            module procedure fmax84
            module procedure fmax48
        end interface
        interface fmin
            module procedure fmin88
            module procedure fmin44
            module procedure fmin84
            module procedure fmin48
        end interface
    contains
        real(8) function fmax88(x, y) result (res)
            real(8), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(x, max(x, y), y /= y), x /= x)
        end function
        real(4) function fmax44(x, y) result (res)
            real(4), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(y, merge(x, max(x, y), y /= y), x /= x)
        end function
        real(8) function fmax84(x, y) result(res)
            real(8), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
        end function
        real(8) function fmax48(x, y) result(res)
            real(4), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
        end function
        real(8) function fmin88(x, y) result (res)
            real(8), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(x, min(x, y), y /= y), x /= x)
        end function
        real(4) function fmin44(x, y) result (res)
            real(4), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(y, merge(x, min(x, y), y /= y), x /= x)
        end function
        real(8) function fmin84(x, y) result(res)
            real(8), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
        end function
        real(8) function fmin48(x, y) result(res)
            real(4), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
        end function
    end module
    
    real(8) function code(x, y, z, t, a)
    use fmin_fmax_functions
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        real(8), intent (in) :: z
        real(8), intent (in) :: t
        real(8), intent (in) :: a
        real(8) :: t_1
        real(8) :: t_2
        real(8) :: tmp
        t_1 = (z - t) / (z - a)
        t_2 = (y / (a - z)) * t
        if (t_1 <= (-2d+120)) then
            tmp = t_2
        else if (t_1 <= 0.01d0) then
            tmp = x + (y * (t / a))
        else if (t_1 <= 1d+119) then
            tmp = x + (y * ((z - t) / z))
        else
            tmp = t_2
        end if
        code = tmp
    end function
    
    public static double code(double x, double y, double z, double t, double a) {
    	double t_1 = (z - t) / (z - a);
    	double t_2 = (y / (a - z)) * t;
    	double tmp;
    	if (t_1 <= -2e+120) {
    		tmp = t_2;
    	} else if (t_1 <= 0.01) {
    		tmp = x + (y * (t / a));
    	} else if (t_1 <= 1e+119) {
    		tmp = x + (y * ((z - t) / z));
    	} else {
    		tmp = t_2;
    	}
    	return tmp;
    }
    
    def code(x, y, z, t, a):
    	t_1 = (z - t) / (z - a)
    	t_2 = (y / (a - z)) * t
    	tmp = 0
    	if t_1 <= -2e+120:
    		tmp = t_2
    	elif t_1 <= 0.01:
    		tmp = x + (y * (t / a))
    	elif t_1 <= 1e+119:
    		tmp = x + (y * ((z - t) / z))
    	else:
    		tmp = t_2
    	return tmp
    
    function code(x, y, z, t, a)
    	t_1 = Float64(Float64(z - t) / Float64(z - a))
    	t_2 = Float64(Float64(y / Float64(a - z)) * t)
    	tmp = 0.0
    	if (t_1 <= -2e+120)
    		tmp = t_2;
    	elseif (t_1 <= 0.01)
    		tmp = Float64(x + Float64(y * Float64(t / a)));
    	elseif (t_1 <= 1e+119)
    		tmp = Float64(x + Float64(y * Float64(Float64(z - t) / z)));
    	else
    		tmp = t_2;
    	end
    	return tmp
    end
    
    function tmp_2 = code(x, y, z, t, a)
    	t_1 = (z - t) / (z - a);
    	t_2 = (y / (a - z)) * t;
    	tmp = 0.0;
    	if (t_1 <= -2e+120)
    		tmp = t_2;
    	elseif (t_1 <= 0.01)
    		tmp = x + (y * (t / a));
    	elseif (t_1 <= 1e+119)
    		tmp = x + (y * ((z - t) / z));
    	else
    		tmp = t_2;
    	end
    	tmp_2 = tmp;
    end
    
    code[x_, y_, z_, t_, a_] := Block[{t$95$1 = N[(N[(z - t), $MachinePrecision] / N[(z - a), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$2 = N[(N[(y / N[(a - z), $MachinePrecision]), $MachinePrecision] * t), $MachinePrecision]}, If[LessEqual[t$95$1, -1999999999999999960006936694788402363337610385794017036377296623661544829254857450929578869859984879509552150362154074112], t$95$2, If[LessEqual[t$95$1, 5764607523034235/576460752303423488], N[(x + N[(y * N[(t / a), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$1, 99999999999999994416755247254933381274972870380190006824232035607637985622760311004411949604741731366073618283536318464], N[(x + N[(y * N[(N[(z - t), $MachinePrecision] / z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], t$95$2]]]]]
    
    \begin{array}{l}
    t_1 := \frac{z - t}{z - a}\\
    t_2 := \frac{y}{a - z} \cdot t\\
    \mathbf{if}\;t\_1 \leq -1999999999999999960006936694788402363337610385794017036377296623661544829254857450929578869859984879509552150362154074112:\\
    \;\;\;\;t\_2\\
    
    \mathbf{elif}\;t\_1 \leq \frac{5764607523034235}{576460752303423488}:\\
    \;\;\;\;x + y \cdot \frac{t}{a}\\
    
    \mathbf{elif}\;t\_1 \leq 99999999999999994416755247254933381274972870380190006824232035607637985622760311004411949604741731366073618283536318464:\\
    \;\;\;\;x + y \cdot \frac{z - t}{z}\\
    
    \mathbf{else}:\\
    \;\;\;\;t\_2\\
    
    
    \end{array}
    
    Derivation
    1. Split input into 3 regimes
    2. if (/.f64 (-.f64 z t) (-.f64 z a)) < -2e120 or 9.9999999999999994e118 < (/.f64 (-.f64 z t) (-.f64 z a))

      1. Initial program 98.2%

        \[x + y \cdot \frac{z - t}{z - a} \]
      2. Applied rewrites95.8%

        \[\leadsto \color{blue}{x - \frac{y}{a - z} \cdot \left(z - t\right)} \]
      3. Taylor expanded in t around inf

        \[\leadsto \color{blue}{\frac{t \cdot y}{a - z}} \]
      4. Step-by-step derivation
        1. lower-/.f64N/A

          \[\leadsto \frac{t \cdot y}{\color{blue}{a - z}} \]
        2. lower-*.f64N/A

          \[\leadsto \frac{t \cdot y}{\color{blue}{a} - z} \]
        3. lower--.f6426.2%

          \[\leadsto \frac{t \cdot y}{a - \color{blue}{z}} \]
      5. Applied rewrites26.2%

        \[\leadsto \color{blue}{\frac{t \cdot y}{a - z}} \]
      6. Step-by-step derivation
        1. lift--.f64N/A

          \[\leadsto \frac{t \cdot y}{a - \color{blue}{z}} \]
        2. lift-/.f64N/A

          \[\leadsto \frac{t \cdot y}{\color{blue}{a - z}} \]
        3. lift-*.f64N/A

          \[\leadsto \frac{t \cdot y}{\color{blue}{a} - z} \]
        4. associate-/l*N/A

          \[\leadsto t \cdot \color{blue}{\frac{y}{a - z}} \]
        5. *-commutativeN/A

          \[\leadsto \frac{y}{a - z} \cdot \color{blue}{t} \]
        6. lower-*.f64N/A

          \[\leadsto \frac{y}{a - z} \cdot \color{blue}{t} \]
        7. lower-/.f64N/A

          \[\leadsto \frac{y}{a - z} \cdot t \]
        8. lift--.f6428.0%

          \[\leadsto \frac{y}{a - z} \cdot t \]
      7. Applied rewrites28.0%

        \[\leadsto \frac{y}{a - z} \cdot \color{blue}{t} \]

      if -2e120 < (/.f64 (-.f64 z t) (-.f64 z a)) < 0.01

      1. Initial program 98.2%

        \[x + y \cdot \frac{z - t}{z - a} \]
      2. Taylor expanded in z around 0

        \[\leadsto x + y \cdot \color{blue}{\frac{t}{a}} \]
      3. Step-by-step derivation
        1. lower-/.f6461.4%

          \[\leadsto x + y \cdot \frac{t}{\color{blue}{a}} \]
      4. Applied rewrites61.4%

        \[\leadsto x + y \cdot \color{blue}{\frac{t}{a}} \]

      if 0.01 < (/.f64 (-.f64 z t) (-.f64 z a)) < 9.9999999999999994e118

      1. Initial program 98.2%

        \[x + y \cdot \frac{z - t}{z - a} \]
      2. Taylor expanded in a around 0

        \[\leadsto x + y \cdot \color{blue}{\frac{z - t}{z}} \]
      3. Step-by-step derivation
        1. lower-/.f64N/A

          \[\leadsto x + y \cdot \frac{z - t}{\color{blue}{z}} \]
        2. lower--.f6467.0%

          \[\leadsto x + y \cdot \frac{z - t}{z} \]
      4. Applied rewrites67.0%

        \[\leadsto x + y \cdot \color{blue}{\frac{z - t}{z}} \]
    3. Recombined 3 regimes into one program.
    4. Add Preprocessing

    Alternative 3: 84.2% accurate, 0.3× speedup?

    \[\begin{array}{l} t_1 := \frac{z - t}{z - a}\\ t_2 := \frac{y}{a - z} \cdot t\\ \mathbf{if}\;t\_1 \leq -1999999999999999960006936694788402363337610385794017036377296623661544829254857450929578869859984879509552150362154074112:\\ \;\;\;\;t\_2\\ \mathbf{elif}\;t\_1 \leq \frac{7307508186654515}{365375409332725729550921208179070754913983135744}:\\ \;\;\;\;x + y \cdot \frac{t}{a}\\ \mathbf{elif}\;t\_1 \leq 100000000000:\\ \;\;\;\;x + y \cdot \frac{z}{z - a}\\ \mathbf{else}:\\ \;\;\;\;t\_2\\ \end{array} \]
    (FPCore (x y z t a)
      :precision binary64
      (let* ((t_1 (/ (- z t) (- z a))) (t_2 (* (/ y (- a z)) t)))
      (if (<=
           t_1
           -1999999999999999960006936694788402363337610385794017036377296623661544829254857450929578869859984879509552150362154074112)
        t_2
        (if (<=
             t_1
             7307508186654515/365375409332725729550921208179070754913983135744)
          (+ x (* y (/ t a)))
          (if (<= t_1 100000000000) (+ x (* y (/ z (- z a)))) t_2)))))
    double code(double x, double y, double z, double t, double a) {
    	double t_1 = (z - t) / (z - a);
    	double t_2 = (y / (a - z)) * t;
    	double tmp;
    	if (t_1 <= -2e+120) {
    		tmp = t_2;
    	} else if (t_1 <= 2e-32) {
    		tmp = x + (y * (t / a));
    	} else if (t_1 <= 100000000000.0) {
    		tmp = x + (y * (z / (z - a)));
    	} else {
    		tmp = t_2;
    	}
    	return tmp;
    }
    
    module fmin_fmax_functions
        implicit none
        private
        public fmax
        public fmin
    
        interface fmax
            module procedure fmax88
            module procedure fmax44
            module procedure fmax84
            module procedure fmax48
        end interface
        interface fmin
            module procedure fmin88
            module procedure fmin44
            module procedure fmin84
            module procedure fmin48
        end interface
    contains
        real(8) function fmax88(x, y) result (res)
            real(8), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(x, max(x, y), y /= y), x /= x)
        end function
        real(4) function fmax44(x, y) result (res)
            real(4), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(y, merge(x, max(x, y), y /= y), x /= x)
        end function
        real(8) function fmax84(x, y) result(res)
            real(8), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
        end function
        real(8) function fmax48(x, y) result(res)
            real(4), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
        end function
        real(8) function fmin88(x, y) result (res)
            real(8), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(x, min(x, y), y /= y), x /= x)
        end function
        real(4) function fmin44(x, y) result (res)
            real(4), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(y, merge(x, min(x, y), y /= y), x /= x)
        end function
        real(8) function fmin84(x, y) result(res)
            real(8), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
        end function
        real(8) function fmin48(x, y) result(res)
            real(4), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
        end function
    end module
    
    real(8) function code(x, y, z, t, a)
    use fmin_fmax_functions
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        real(8), intent (in) :: z
        real(8), intent (in) :: t
        real(8), intent (in) :: a
        real(8) :: t_1
        real(8) :: t_2
        real(8) :: tmp
        t_1 = (z - t) / (z - a)
        t_2 = (y / (a - z)) * t
        if (t_1 <= (-2d+120)) then
            tmp = t_2
        else if (t_1 <= 2d-32) then
            tmp = x + (y * (t / a))
        else if (t_1 <= 100000000000.0d0) then
            tmp = x + (y * (z / (z - a)))
        else
            tmp = t_2
        end if
        code = tmp
    end function
    
    public static double code(double x, double y, double z, double t, double a) {
    	double t_1 = (z - t) / (z - a);
    	double t_2 = (y / (a - z)) * t;
    	double tmp;
    	if (t_1 <= -2e+120) {
    		tmp = t_2;
    	} else if (t_1 <= 2e-32) {
    		tmp = x + (y * (t / a));
    	} else if (t_1 <= 100000000000.0) {
    		tmp = x + (y * (z / (z - a)));
    	} else {
    		tmp = t_2;
    	}
    	return tmp;
    }
    
    def code(x, y, z, t, a):
    	t_1 = (z - t) / (z - a)
    	t_2 = (y / (a - z)) * t
    	tmp = 0
    	if t_1 <= -2e+120:
    		tmp = t_2
    	elif t_1 <= 2e-32:
    		tmp = x + (y * (t / a))
    	elif t_1 <= 100000000000.0:
    		tmp = x + (y * (z / (z - a)))
    	else:
    		tmp = t_2
    	return tmp
    
    function code(x, y, z, t, a)
    	t_1 = Float64(Float64(z - t) / Float64(z - a))
    	t_2 = Float64(Float64(y / Float64(a - z)) * t)
    	tmp = 0.0
    	if (t_1 <= -2e+120)
    		tmp = t_2;
    	elseif (t_1 <= 2e-32)
    		tmp = Float64(x + Float64(y * Float64(t / a)));
    	elseif (t_1 <= 100000000000.0)
    		tmp = Float64(x + Float64(y * Float64(z / Float64(z - a))));
    	else
    		tmp = t_2;
    	end
    	return tmp
    end
    
    function tmp_2 = code(x, y, z, t, a)
    	t_1 = (z - t) / (z - a);
    	t_2 = (y / (a - z)) * t;
    	tmp = 0.0;
    	if (t_1 <= -2e+120)
    		tmp = t_2;
    	elseif (t_1 <= 2e-32)
    		tmp = x + (y * (t / a));
    	elseif (t_1 <= 100000000000.0)
    		tmp = x + (y * (z / (z - a)));
    	else
    		tmp = t_2;
    	end
    	tmp_2 = tmp;
    end
    
    code[x_, y_, z_, t_, a_] := Block[{t$95$1 = N[(N[(z - t), $MachinePrecision] / N[(z - a), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$2 = N[(N[(y / N[(a - z), $MachinePrecision]), $MachinePrecision] * t), $MachinePrecision]}, If[LessEqual[t$95$1, -1999999999999999960006936694788402363337610385794017036377296623661544829254857450929578869859984879509552150362154074112], t$95$2, If[LessEqual[t$95$1, 7307508186654515/365375409332725729550921208179070754913983135744], N[(x + N[(y * N[(t / a), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$1, 100000000000], N[(x + N[(y * N[(z / N[(z - a), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], t$95$2]]]]]
    
    \begin{array}{l}
    t_1 := \frac{z - t}{z - a}\\
    t_2 := \frac{y}{a - z} \cdot t\\
    \mathbf{if}\;t\_1 \leq -1999999999999999960006936694788402363337610385794017036377296623661544829254857450929578869859984879509552150362154074112:\\
    \;\;\;\;t\_2\\
    
    \mathbf{elif}\;t\_1 \leq \frac{7307508186654515}{365375409332725729550921208179070754913983135744}:\\
    \;\;\;\;x + y \cdot \frac{t}{a}\\
    
    \mathbf{elif}\;t\_1 \leq 100000000000:\\
    \;\;\;\;x + y \cdot \frac{z}{z - a}\\
    
    \mathbf{else}:\\
    \;\;\;\;t\_2\\
    
    
    \end{array}
    
    Derivation
    1. Split input into 3 regimes
    2. if (/.f64 (-.f64 z t) (-.f64 z a)) < -2e120 or 1e11 < (/.f64 (-.f64 z t) (-.f64 z a))

      1. Initial program 98.2%

        \[x + y \cdot \frac{z - t}{z - a} \]
      2. Applied rewrites95.8%

        \[\leadsto \color{blue}{x - \frac{y}{a - z} \cdot \left(z - t\right)} \]
      3. Taylor expanded in t around inf

        \[\leadsto \color{blue}{\frac{t \cdot y}{a - z}} \]
      4. Step-by-step derivation
        1. lower-/.f64N/A

          \[\leadsto \frac{t \cdot y}{\color{blue}{a - z}} \]
        2. lower-*.f64N/A

          \[\leadsto \frac{t \cdot y}{\color{blue}{a} - z} \]
        3. lower--.f6426.2%

          \[\leadsto \frac{t \cdot y}{a - \color{blue}{z}} \]
      5. Applied rewrites26.2%

        \[\leadsto \color{blue}{\frac{t \cdot y}{a - z}} \]
      6. Step-by-step derivation
        1. lift--.f64N/A

          \[\leadsto \frac{t \cdot y}{a - \color{blue}{z}} \]
        2. lift-/.f64N/A

          \[\leadsto \frac{t \cdot y}{\color{blue}{a - z}} \]
        3. lift-*.f64N/A

          \[\leadsto \frac{t \cdot y}{\color{blue}{a} - z} \]
        4. associate-/l*N/A

          \[\leadsto t \cdot \color{blue}{\frac{y}{a - z}} \]
        5. *-commutativeN/A

          \[\leadsto \frac{y}{a - z} \cdot \color{blue}{t} \]
        6. lower-*.f64N/A

          \[\leadsto \frac{y}{a - z} \cdot \color{blue}{t} \]
        7. lower-/.f64N/A

          \[\leadsto \frac{y}{a - z} \cdot t \]
        8. lift--.f6428.0%

          \[\leadsto \frac{y}{a - z} \cdot t \]
      7. Applied rewrites28.0%

        \[\leadsto \frac{y}{a - z} \cdot \color{blue}{t} \]

      if -2e120 < (/.f64 (-.f64 z t) (-.f64 z a)) < 2.0000000000000001e-32

      1. Initial program 98.2%

        \[x + y \cdot \frac{z - t}{z - a} \]
      2. Taylor expanded in z around 0

        \[\leadsto x + y \cdot \color{blue}{\frac{t}{a}} \]
      3. Step-by-step derivation
        1. lower-/.f6461.4%

          \[\leadsto x + y \cdot \frac{t}{\color{blue}{a}} \]
      4. Applied rewrites61.4%

        \[\leadsto x + y \cdot \color{blue}{\frac{t}{a}} \]

      if 2.0000000000000001e-32 < (/.f64 (-.f64 z t) (-.f64 z a)) < 1e11

      1. Initial program 98.2%

        \[x + y \cdot \frac{z - t}{z - a} \]
      2. Taylor expanded in t around 0

        \[\leadsto x + y \cdot \color{blue}{\frac{z}{z - a}} \]
      3. Step-by-step derivation
        1. lower-/.f64N/A

          \[\leadsto x + y \cdot \frac{z}{\color{blue}{z - a}} \]
        2. lower--.f6472.2%

          \[\leadsto x + y \cdot \frac{z}{z - \color{blue}{a}} \]
      4. Applied rewrites72.2%

        \[\leadsto x + y \cdot \color{blue}{\frac{z}{z - a}} \]
    3. Recombined 3 regimes into one program.
    4. Add Preprocessing

    Alternative 4: 83.7% accurate, 0.3× speedup?

    \[\begin{array}{l} t_1 := \frac{z - t}{z - a}\\ t_2 := \frac{y}{a - z} \cdot t\\ \mathbf{if}\;t\_1 \leq -1999999999999999960006936694788402363337610385794017036377296623661544829254857450929578869859984879509552150362154074112:\\ \;\;\;\;t\_2\\ \mathbf{elif}\;t\_1 \leq \frac{7378697629483821}{73786976294838206464}:\\ \;\;\;\;x + y \cdot \frac{t}{a}\\ \mathbf{elif}\;t\_1 \leq 100000000000:\\ \;\;\;\;x + y\\ \mathbf{else}:\\ \;\;\;\;t\_2\\ \end{array} \]
    (FPCore (x y z t a)
      :precision binary64
      (let* ((t_1 (/ (- z t) (- z a))) (t_2 (* (/ y (- a z)) t)))
      (if (<=
           t_1
           -1999999999999999960006936694788402363337610385794017036377296623661544829254857450929578869859984879509552150362154074112)
        t_2
        (if (<= t_1 7378697629483821/73786976294838206464)
          (+ x (* y (/ t a)))
          (if (<= t_1 100000000000) (+ x y) t_2)))))
    double code(double x, double y, double z, double t, double a) {
    	double t_1 = (z - t) / (z - a);
    	double t_2 = (y / (a - z)) * t;
    	double tmp;
    	if (t_1 <= -2e+120) {
    		tmp = t_2;
    	} else if (t_1 <= 0.0001) {
    		tmp = x + (y * (t / a));
    	} else if (t_1 <= 100000000000.0) {
    		tmp = x + y;
    	} else {
    		tmp = t_2;
    	}
    	return tmp;
    }
    
    module fmin_fmax_functions
        implicit none
        private
        public fmax
        public fmin
    
        interface fmax
            module procedure fmax88
            module procedure fmax44
            module procedure fmax84
            module procedure fmax48
        end interface
        interface fmin
            module procedure fmin88
            module procedure fmin44
            module procedure fmin84
            module procedure fmin48
        end interface
    contains
        real(8) function fmax88(x, y) result (res)
            real(8), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(x, max(x, y), y /= y), x /= x)
        end function
        real(4) function fmax44(x, y) result (res)
            real(4), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(y, merge(x, max(x, y), y /= y), x /= x)
        end function
        real(8) function fmax84(x, y) result(res)
            real(8), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
        end function
        real(8) function fmax48(x, y) result(res)
            real(4), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
        end function
        real(8) function fmin88(x, y) result (res)
            real(8), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(x, min(x, y), y /= y), x /= x)
        end function
        real(4) function fmin44(x, y) result (res)
            real(4), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(y, merge(x, min(x, y), y /= y), x /= x)
        end function
        real(8) function fmin84(x, y) result(res)
            real(8), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
        end function
        real(8) function fmin48(x, y) result(res)
            real(4), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
        end function
    end module
    
    real(8) function code(x, y, z, t, a)
    use fmin_fmax_functions
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        real(8), intent (in) :: z
        real(8), intent (in) :: t
        real(8), intent (in) :: a
        real(8) :: t_1
        real(8) :: t_2
        real(8) :: tmp
        t_1 = (z - t) / (z - a)
        t_2 = (y / (a - z)) * t
        if (t_1 <= (-2d+120)) then
            tmp = t_2
        else if (t_1 <= 0.0001d0) then
            tmp = x + (y * (t / a))
        else if (t_1 <= 100000000000.0d0) then
            tmp = x + y
        else
            tmp = t_2
        end if
        code = tmp
    end function
    
    public static double code(double x, double y, double z, double t, double a) {
    	double t_1 = (z - t) / (z - a);
    	double t_2 = (y / (a - z)) * t;
    	double tmp;
    	if (t_1 <= -2e+120) {
    		tmp = t_2;
    	} else if (t_1 <= 0.0001) {
    		tmp = x + (y * (t / a));
    	} else if (t_1 <= 100000000000.0) {
    		tmp = x + y;
    	} else {
    		tmp = t_2;
    	}
    	return tmp;
    }
    
    def code(x, y, z, t, a):
    	t_1 = (z - t) / (z - a)
    	t_2 = (y / (a - z)) * t
    	tmp = 0
    	if t_1 <= -2e+120:
    		tmp = t_2
    	elif t_1 <= 0.0001:
    		tmp = x + (y * (t / a))
    	elif t_1 <= 100000000000.0:
    		tmp = x + y
    	else:
    		tmp = t_2
    	return tmp
    
    function code(x, y, z, t, a)
    	t_1 = Float64(Float64(z - t) / Float64(z - a))
    	t_2 = Float64(Float64(y / Float64(a - z)) * t)
    	tmp = 0.0
    	if (t_1 <= -2e+120)
    		tmp = t_2;
    	elseif (t_1 <= 0.0001)
    		tmp = Float64(x + Float64(y * Float64(t / a)));
    	elseif (t_1 <= 100000000000.0)
    		tmp = Float64(x + y);
    	else
    		tmp = t_2;
    	end
    	return tmp
    end
    
    function tmp_2 = code(x, y, z, t, a)
    	t_1 = (z - t) / (z - a);
    	t_2 = (y / (a - z)) * t;
    	tmp = 0.0;
    	if (t_1 <= -2e+120)
    		tmp = t_2;
    	elseif (t_1 <= 0.0001)
    		tmp = x + (y * (t / a));
    	elseif (t_1 <= 100000000000.0)
    		tmp = x + y;
    	else
    		tmp = t_2;
    	end
    	tmp_2 = tmp;
    end
    
    code[x_, y_, z_, t_, a_] := Block[{t$95$1 = N[(N[(z - t), $MachinePrecision] / N[(z - a), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$2 = N[(N[(y / N[(a - z), $MachinePrecision]), $MachinePrecision] * t), $MachinePrecision]}, If[LessEqual[t$95$1, -1999999999999999960006936694788402363337610385794017036377296623661544829254857450929578869859984879509552150362154074112], t$95$2, If[LessEqual[t$95$1, 7378697629483821/73786976294838206464], N[(x + N[(y * N[(t / a), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$1, 100000000000], N[(x + y), $MachinePrecision], t$95$2]]]]]
    
    \begin{array}{l}
    t_1 := \frac{z - t}{z - a}\\
    t_2 := \frac{y}{a - z} \cdot t\\
    \mathbf{if}\;t\_1 \leq -1999999999999999960006936694788402363337610385794017036377296623661544829254857450929578869859984879509552150362154074112:\\
    \;\;\;\;t\_2\\
    
    \mathbf{elif}\;t\_1 \leq \frac{7378697629483821}{73786976294838206464}:\\
    \;\;\;\;x + y \cdot \frac{t}{a}\\
    
    \mathbf{elif}\;t\_1 \leq 100000000000:\\
    \;\;\;\;x + y\\
    
    \mathbf{else}:\\
    \;\;\;\;t\_2\\
    
    
    \end{array}
    
    Derivation
    1. Split input into 3 regimes
    2. if (/.f64 (-.f64 z t) (-.f64 z a)) < -2e120 or 1e11 < (/.f64 (-.f64 z t) (-.f64 z a))

      1. Initial program 98.2%

        \[x + y \cdot \frac{z - t}{z - a} \]
      2. Applied rewrites95.8%

        \[\leadsto \color{blue}{x - \frac{y}{a - z} \cdot \left(z - t\right)} \]
      3. Taylor expanded in t around inf

        \[\leadsto \color{blue}{\frac{t \cdot y}{a - z}} \]
      4. Step-by-step derivation
        1. lower-/.f64N/A

          \[\leadsto \frac{t \cdot y}{\color{blue}{a - z}} \]
        2. lower-*.f64N/A

          \[\leadsto \frac{t \cdot y}{\color{blue}{a} - z} \]
        3. lower--.f6426.2%

          \[\leadsto \frac{t \cdot y}{a - \color{blue}{z}} \]
      5. Applied rewrites26.2%

        \[\leadsto \color{blue}{\frac{t \cdot y}{a - z}} \]
      6. Step-by-step derivation
        1. lift--.f64N/A

          \[\leadsto \frac{t \cdot y}{a - \color{blue}{z}} \]
        2. lift-/.f64N/A

          \[\leadsto \frac{t \cdot y}{\color{blue}{a - z}} \]
        3. lift-*.f64N/A

          \[\leadsto \frac{t \cdot y}{\color{blue}{a} - z} \]
        4. associate-/l*N/A

          \[\leadsto t \cdot \color{blue}{\frac{y}{a - z}} \]
        5. *-commutativeN/A

          \[\leadsto \frac{y}{a - z} \cdot \color{blue}{t} \]
        6. lower-*.f64N/A

          \[\leadsto \frac{y}{a - z} \cdot \color{blue}{t} \]
        7. lower-/.f64N/A

          \[\leadsto \frac{y}{a - z} \cdot t \]
        8. lift--.f6428.0%

          \[\leadsto \frac{y}{a - z} \cdot t \]
      7. Applied rewrites28.0%

        \[\leadsto \frac{y}{a - z} \cdot \color{blue}{t} \]

      if -2e120 < (/.f64 (-.f64 z t) (-.f64 z a)) < 1e-4

      1. Initial program 98.2%

        \[x + y \cdot \frac{z - t}{z - a} \]
      2. Taylor expanded in z around 0

        \[\leadsto x + y \cdot \color{blue}{\frac{t}{a}} \]
      3. Step-by-step derivation
        1. lower-/.f6461.4%

          \[\leadsto x + y \cdot \frac{t}{\color{blue}{a}} \]
      4. Applied rewrites61.4%

        \[\leadsto x + y \cdot \color{blue}{\frac{t}{a}} \]

      if 1e-4 < (/.f64 (-.f64 z t) (-.f64 z a)) < 1e11

      1. Initial program 98.2%

        \[x + y \cdot \frac{z - t}{z - a} \]
      2. Taylor expanded in z around inf

        \[\leadsto \color{blue}{x + y} \]
      3. Step-by-step derivation
        1. lower-+.f6460.8%

          \[\leadsto x + \color{blue}{y} \]
      4. Applied rewrites60.8%

        \[\leadsto \color{blue}{x + y} \]
    3. Recombined 3 regimes into one program.
    4. Add Preprocessing

    Alternative 5: 81.9% accurate, 0.3× speedup?

    \[\begin{array}{l} t_1 := \frac{z - t}{z - a}\\ t_2 := \frac{y}{a - z} \cdot t\\ \mathbf{if}\;t\_1 \leq -500000000000000024173346057776829528764197422945257127936:\\ \;\;\;\;t\_2\\ \mathbf{elif}\;t\_1 \leq \frac{7307508186654515}{365375409332725729550921208179070754913983135744}:\\ \;\;\;\;x + \frac{t \cdot y}{a}\\ \mathbf{elif}\;t\_1 \leq 100000000000:\\ \;\;\;\;x + y\\ \mathbf{else}:\\ \;\;\;\;t\_2\\ \end{array} \]
    (FPCore (x y z t a)
      :precision binary64
      (let* ((t_1 (/ (- z t) (- z a))) (t_2 (* (/ y (- a z)) t)))
      (if (<=
           t_1
           -500000000000000024173346057776829528764197422945257127936)
        t_2
        (if (<=
             t_1
             7307508186654515/365375409332725729550921208179070754913983135744)
          (+ x (/ (* t y) a))
          (if (<= t_1 100000000000) (+ x y) t_2)))))
    double code(double x, double y, double z, double t, double a) {
    	double t_1 = (z - t) / (z - a);
    	double t_2 = (y / (a - z)) * t;
    	double tmp;
    	if (t_1 <= -5e+56) {
    		tmp = t_2;
    	} else if (t_1 <= 2e-32) {
    		tmp = x + ((t * y) / a);
    	} else if (t_1 <= 100000000000.0) {
    		tmp = x + y;
    	} else {
    		tmp = t_2;
    	}
    	return tmp;
    }
    
    module fmin_fmax_functions
        implicit none
        private
        public fmax
        public fmin
    
        interface fmax
            module procedure fmax88
            module procedure fmax44
            module procedure fmax84
            module procedure fmax48
        end interface
        interface fmin
            module procedure fmin88
            module procedure fmin44
            module procedure fmin84
            module procedure fmin48
        end interface
    contains
        real(8) function fmax88(x, y) result (res)
            real(8), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(x, max(x, y), y /= y), x /= x)
        end function
        real(4) function fmax44(x, y) result (res)
            real(4), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(y, merge(x, max(x, y), y /= y), x /= x)
        end function
        real(8) function fmax84(x, y) result(res)
            real(8), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
        end function
        real(8) function fmax48(x, y) result(res)
            real(4), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
        end function
        real(8) function fmin88(x, y) result (res)
            real(8), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(x, min(x, y), y /= y), x /= x)
        end function
        real(4) function fmin44(x, y) result (res)
            real(4), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(y, merge(x, min(x, y), y /= y), x /= x)
        end function
        real(8) function fmin84(x, y) result(res)
            real(8), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
        end function
        real(8) function fmin48(x, y) result(res)
            real(4), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
        end function
    end module
    
    real(8) function code(x, y, z, t, a)
    use fmin_fmax_functions
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        real(8), intent (in) :: z
        real(8), intent (in) :: t
        real(8), intent (in) :: a
        real(8) :: t_1
        real(8) :: t_2
        real(8) :: tmp
        t_1 = (z - t) / (z - a)
        t_2 = (y / (a - z)) * t
        if (t_1 <= (-5d+56)) then
            tmp = t_2
        else if (t_1 <= 2d-32) then
            tmp = x + ((t * y) / a)
        else if (t_1 <= 100000000000.0d0) then
            tmp = x + y
        else
            tmp = t_2
        end if
        code = tmp
    end function
    
    public static double code(double x, double y, double z, double t, double a) {
    	double t_1 = (z - t) / (z - a);
    	double t_2 = (y / (a - z)) * t;
    	double tmp;
    	if (t_1 <= -5e+56) {
    		tmp = t_2;
    	} else if (t_1 <= 2e-32) {
    		tmp = x + ((t * y) / a);
    	} else if (t_1 <= 100000000000.0) {
    		tmp = x + y;
    	} else {
    		tmp = t_2;
    	}
    	return tmp;
    }
    
    def code(x, y, z, t, a):
    	t_1 = (z - t) / (z - a)
    	t_2 = (y / (a - z)) * t
    	tmp = 0
    	if t_1 <= -5e+56:
    		tmp = t_2
    	elif t_1 <= 2e-32:
    		tmp = x + ((t * y) / a)
    	elif t_1 <= 100000000000.0:
    		tmp = x + y
    	else:
    		tmp = t_2
    	return tmp
    
    function code(x, y, z, t, a)
    	t_1 = Float64(Float64(z - t) / Float64(z - a))
    	t_2 = Float64(Float64(y / Float64(a - z)) * t)
    	tmp = 0.0
    	if (t_1 <= -5e+56)
    		tmp = t_2;
    	elseif (t_1 <= 2e-32)
    		tmp = Float64(x + Float64(Float64(t * y) / a));
    	elseif (t_1 <= 100000000000.0)
    		tmp = Float64(x + y);
    	else
    		tmp = t_2;
    	end
    	return tmp
    end
    
    function tmp_2 = code(x, y, z, t, a)
    	t_1 = (z - t) / (z - a);
    	t_2 = (y / (a - z)) * t;
    	tmp = 0.0;
    	if (t_1 <= -5e+56)
    		tmp = t_2;
    	elseif (t_1 <= 2e-32)
    		tmp = x + ((t * y) / a);
    	elseif (t_1 <= 100000000000.0)
    		tmp = x + y;
    	else
    		tmp = t_2;
    	end
    	tmp_2 = tmp;
    end
    
    code[x_, y_, z_, t_, a_] := Block[{t$95$1 = N[(N[(z - t), $MachinePrecision] / N[(z - a), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$2 = N[(N[(y / N[(a - z), $MachinePrecision]), $MachinePrecision] * t), $MachinePrecision]}, If[LessEqual[t$95$1, -500000000000000024173346057776829528764197422945257127936], t$95$2, If[LessEqual[t$95$1, 7307508186654515/365375409332725729550921208179070754913983135744], N[(x + N[(N[(t * y), $MachinePrecision] / a), $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$1, 100000000000], N[(x + y), $MachinePrecision], t$95$2]]]]]
    
    \begin{array}{l}
    t_1 := \frac{z - t}{z - a}\\
    t_2 := \frac{y}{a - z} \cdot t\\
    \mathbf{if}\;t\_1 \leq -500000000000000024173346057776829528764197422945257127936:\\
    \;\;\;\;t\_2\\
    
    \mathbf{elif}\;t\_1 \leq \frac{7307508186654515}{365375409332725729550921208179070754913983135744}:\\
    \;\;\;\;x + \frac{t \cdot y}{a}\\
    
    \mathbf{elif}\;t\_1 \leq 100000000000:\\
    \;\;\;\;x + y\\
    
    \mathbf{else}:\\
    \;\;\;\;t\_2\\
    
    
    \end{array}
    
    Derivation
    1. Split input into 3 regimes
    2. if (/.f64 (-.f64 z t) (-.f64 z a)) < -5.0000000000000002e56 or 1e11 < (/.f64 (-.f64 z t) (-.f64 z a))

      1. Initial program 98.2%

        \[x + y \cdot \frac{z - t}{z - a} \]
      2. Applied rewrites95.8%

        \[\leadsto \color{blue}{x - \frac{y}{a - z} \cdot \left(z - t\right)} \]
      3. Taylor expanded in t around inf

        \[\leadsto \color{blue}{\frac{t \cdot y}{a - z}} \]
      4. Step-by-step derivation
        1. lower-/.f64N/A

          \[\leadsto \frac{t \cdot y}{\color{blue}{a - z}} \]
        2. lower-*.f64N/A

          \[\leadsto \frac{t \cdot y}{\color{blue}{a} - z} \]
        3. lower--.f6426.2%

          \[\leadsto \frac{t \cdot y}{a - \color{blue}{z}} \]
      5. Applied rewrites26.2%

        \[\leadsto \color{blue}{\frac{t \cdot y}{a - z}} \]
      6. Step-by-step derivation
        1. lift--.f64N/A

          \[\leadsto \frac{t \cdot y}{a - \color{blue}{z}} \]
        2. lift-/.f64N/A

          \[\leadsto \frac{t \cdot y}{\color{blue}{a - z}} \]
        3. lift-*.f64N/A

          \[\leadsto \frac{t \cdot y}{\color{blue}{a} - z} \]
        4. associate-/l*N/A

          \[\leadsto t \cdot \color{blue}{\frac{y}{a - z}} \]
        5. *-commutativeN/A

          \[\leadsto \frac{y}{a - z} \cdot \color{blue}{t} \]
        6. lower-*.f64N/A

          \[\leadsto \frac{y}{a - z} \cdot \color{blue}{t} \]
        7. lower-/.f64N/A

          \[\leadsto \frac{y}{a - z} \cdot t \]
        8. lift--.f6428.0%

          \[\leadsto \frac{y}{a - z} \cdot t \]
      7. Applied rewrites28.0%

        \[\leadsto \frac{y}{a - z} \cdot \color{blue}{t} \]

      if -5.0000000000000002e56 < (/.f64 (-.f64 z t) (-.f64 z a)) < 2.0000000000000001e-32

      1. Initial program 98.2%

        \[x + y \cdot \frac{z - t}{z - a} \]
      2. Taylor expanded in z around 0

        \[\leadsto x + \color{blue}{\frac{t \cdot y}{a}} \]
      3. Step-by-step derivation
        1. lower-/.f64N/A

          \[\leadsto x + \frac{t \cdot y}{\color{blue}{a}} \]
        2. lower-*.f6460.0%

          \[\leadsto x + \frac{t \cdot y}{a} \]
      4. Applied rewrites60.0%

        \[\leadsto x + \color{blue}{\frac{t \cdot y}{a}} \]

      if 2.0000000000000001e-32 < (/.f64 (-.f64 z t) (-.f64 z a)) < 1e11

      1. Initial program 98.2%

        \[x + y \cdot \frac{z - t}{z - a} \]
      2. Taylor expanded in z around inf

        \[\leadsto \color{blue}{x + y} \]
      3. Step-by-step derivation
        1. lower-+.f6460.8%

          \[\leadsto x + \color{blue}{y} \]
      4. Applied rewrites60.8%

        \[\leadsto \color{blue}{x + y} \]
    3. Recombined 3 regimes into one program.
    4. Add Preprocessing

    Alternative 6: 78.4% accurate, 0.3× speedup?

    \[\begin{array}{l} t_1 := \frac{z - t}{z - a}\\ \mathbf{if}\;t\_1 \leq \frac{-3022314549036573}{604462909807314587353088}:\\ \;\;\;\;\frac{t}{a - z} \cdot y\\ \mathbf{elif}\;t\_1 \leq \frac{1942668892225729}{971334446112864535459730953411759453321203419526069760625906204869452142602604249088}:\\ \;\;\;\;1 \cdot x\\ \mathbf{elif}\;t\_1 \leq 100000000000:\\ \;\;\;\;x + y\\ \mathbf{else}:\\ \;\;\;\;\frac{y}{a - z} \cdot t\\ \end{array} \]
    (FPCore (x y z t a)
      :precision binary64
      (let* ((t_1 (/ (- z t) (- z a))))
      (if (<= t_1 -3022314549036573/604462909807314587353088)
        (* (/ t (- a z)) y)
        (if (<=
             t_1
             1942668892225729/971334446112864535459730953411759453321203419526069760625906204869452142602604249088)
          (* 1 x)
          (if (<= t_1 100000000000) (+ x y) (* (/ y (- a z)) t))))))
    double code(double x, double y, double z, double t, double a) {
    	double t_1 = (z - t) / (z - a);
    	double tmp;
    	if (t_1 <= -5e-9) {
    		tmp = (t / (a - z)) * y;
    	} else if (t_1 <= 2e-69) {
    		tmp = 1.0 * x;
    	} else if (t_1 <= 100000000000.0) {
    		tmp = x + y;
    	} else {
    		tmp = (y / (a - z)) * t;
    	}
    	return tmp;
    }
    
    module fmin_fmax_functions
        implicit none
        private
        public fmax
        public fmin
    
        interface fmax
            module procedure fmax88
            module procedure fmax44
            module procedure fmax84
            module procedure fmax48
        end interface
        interface fmin
            module procedure fmin88
            module procedure fmin44
            module procedure fmin84
            module procedure fmin48
        end interface
    contains
        real(8) function fmax88(x, y) result (res)
            real(8), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(x, max(x, y), y /= y), x /= x)
        end function
        real(4) function fmax44(x, y) result (res)
            real(4), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(y, merge(x, max(x, y), y /= y), x /= x)
        end function
        real(8) function fmax84(x, y) result(res)
            real(8), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
        end function
        real(8) function fmax48(x, y) result(res)
            real(4), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
        end function
        real(8) function fmin88(x, y) result (res)
            real(8), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(x, min(x, y), y /= y), x /= x)
        end function
        real(4) function fmin44(x, y) result (res)
            real(4), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(y, merge(x, min(x, y), y /= y), x /= x)
        end function
        real(8) function fmin84(x, y) result(res)
            real(8), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
        end function
        real(8) function fmin48(x, y) result(res)
            real(4), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
        end function
    end module
    
    real(8) function code(x, y, z, t, a)
    use fmin_fmax_functions
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        real(8), intent (in) :: z
        real(8), intent (in) :: t
        real(8), intent (in) :: a
        real(8) :: t_1
        real(8) :: tmp
        t_1 = (z - t) / (z - a)
        if (t_1 <= (-5d-9)) then
            tmp = (t / (a - z)) * y
        else if (t_1 <= 2d-69) then
            tmp = 1.0d0 * x
        else if (t_1 <= 100000000000.0d0) then
            tmp = x + y
        else
            tmp = (y / (a - z)) * t
        end if
        code = tmp
    end function
    
    public static double code(double x, double y, double z, double t, double a) {
    	double t_1 = (z - t) / (z - a);
    	double tmp;
    	if (t_1 <= -5e-9) {
    		tmp = (t / (a - z)) * y;
    	} else if (t_1 <= 2e-69) {
    		tmp = 1.0 * x;
    	} else if (t_1 <= 100000000000.0) {
    		tmp = x + y;
    	} else {
    		tmp = (y / (a - z)) * t;
    	}
    	return tmp;
    }
    
    def code(x, y, z, t, a):
    	t_1 = (z - t) / (z - a)
    	tmp = 0
    	if t_1 <= -5e-9:
    		tmp = (t / (a - z)) * y
    	elif t_1 <= 2e-69:
    		tmp = 1.0 * x
    	elif t_1 <= 100000000000.0:
    		tmp = x + y
    	else:
    		tmp = (y / (a - z)) * t
    	return tmp
    
    function code(x, y, z, t, a)
    	t_1 = Float64(Float64(z - t) / Float64(z - a))
    	tmp = 0.0
    	if (t_1 <= -5e-9)
    		tmp = Float64(Float64(t / Float64(a - z)) * y);
    	elseif (t_1 <= 2e-69)
    		tmp = Float64(1.0 * x);
    	elseif (t_1 <= 100000000000.0)
    		tmp = Float64(x + y);
    	else
    		tmp = Float64(Float64(y / Float64(a - z)) * t);
    	end
    	return tmp
    end
    
    function tmp_2 = code(x, y, z, t, a)
    	t_1 = (z - t) / (z - a);
    	tmp = 0.0;
    	if (t_1 <= -5e-9)
    		tmp = (t / (a - z)) * y;
    	elseif (t_1 <= 2e-69)
    		tmp = 1.0 * x;
    	elseif (t_1 <= 100000000000.0)
    		tmp = x + y;
    	else
    		tmp = (y / (a - z)) * t;
    	end
    	tmp_2 = tmp;
    end
    
    code[x_, y_, z_, t_, a_] := Block[{t$95$1 = N[(N[(z - t), $MachinePrecision] / N[(z - a), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$1, -3022314549036573/604462909807314587353088], N[(N[(t / N[(a - z), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision], If[LessEqual[t$95$1, 1942668892225729/971334446112864535459730953411759453321203419526069760625906204869452142602604249088], N[(1 * x), $MachinePrecision], If[LessEqual[t$95$1, 100000000000], N[(x + y), $MachinePrecision], N[(N[(y / N[(a - z), $MachinePrecision]), $MachinePrecision] * t), $MachinePrecision]]]]]
    
    \begin{array}{l}
    t_1 := \frac{z - t}{z - a}\\
    \mathbf{if}\;t\_1 \leq \frac{-3022314549036573}{604462909807314587353088}:\\
    \;\;\;\;\frac{t}{a - z} \cdot y\\
    
    \mathbf{elif}\;t\_1 \leq \frac{1942668892225729}{971334446112864535459730953411759453321203419526069760625906204869452142602604249088}:\\
    \;\;\;\;1 \cdot x\\
    
    \mathbf{elif}\;t\_1 \leq 100000000000:\\
    \;\;\;\;x + y\\
    
    \mathbf{else}:\\
    \;\;\;\;\frac{y}{a - z} \cdot t\\
    
    
    \end{array}
    
    Derivation
    1. Split input into 4 regimes
    2. if (/.f64 (-.f64 z t) (-.f64 z a)) < -5.0000000000000001e-9

      1. Initial program 98.2%

        \[x + y \cdot \frac{z - t}{z - a} \]
      2. Applied rewrites95.8%

        \[\leadsto \color{blue}{x - \frac{y}{a - z} \cdot \left(z - t\right)} \]
      3. Taylor expanded in t around inf

        \[\leadsto \color{blue}{\frac{t \cdot y}{a - z}} \]
      4. Step-by-step derivation
        1. lower-/.f64N/A

          \[\leadsto \frac{t \cdot y}{\color{blue}{a - z}} \]
        2. lower-*.f64N/A

          \[\leadsto \frac{t \cdot y}{\color{blue}{a} - z} \]
        3. lower--.f6426.2%

          \[\leadsto \frac{t \cdot y}{a - \color{blue}{z}} \]
      5. Applied rewrites26.2%

        \[\leadsto \color{blue}{\frac{t \cdot y}{a - z}} \]
      6. Step-by-step derivation
        1. lift--.f64N/A

          \[\leadsto \frac{t \cdot y}{a - \color{blue}{z}} \]
        2. lift-/.f64N/A

          \[\leadsto \frac{t \cdot y}{\color{blue}{a - z}} \]
        3. lift-*.f64N/A

          \[\leadsto \frac{t \cdot y}{\color{blue}{a} - z} \]
        4. *-commutativeN/A

          \[\leadsto \frac{y \cdot t}{\color{blue}{a} - z} \]
        5. associate-/l*N/A

          \[\leadsto y \cdot \color{blue}{\frac{t}{a - z}} \]
        6. *-commutativeN/A

          \[\leadsto \frac{t}{a - z} \cdot \color{blue}{y} \]
        7. lower-*.f64N/A

          \[\leadsto \frac{t}{a - z} \cdot \color{blue}{y} \]
        8. lower-/.f64N/A

          \[\leadsto \frac{t}{a - z} \cdot y \]
        9. lift--.f6428.2%

          \[\leadsto \frac{t}{a - z} \cdot y \]
      7. Applied rewrites28.2%

        \[\leadsto \frac{t}{a - z} \cdot \color{blue}{y} \]

      if -5.0000000000000001e-9 < (/.f64 (-.f64 z t) (-.f64 z a)) < 1.9999999999999999e-69

      1. Initial program 98.2%

        \[x + y \cdot \frac{z - t}{z - a} \]
      2. Taylor expanded in z around inf

        \[\leadsto \color{blue}{x + y} \]
      3. Step-by-step derivation
        1. lower-+.f6460.8%

          \[\leadsto x + \color{blue}{y} \]
      4. Applied rewrites60.8%

        \[\leadsto \color{blue}{x + y} \]
      5. Step-by-step derivation
        1. lift-+.f64N/A

          \[\leadsto x + \color{blue}{y} \]
        2. sum-to-multN/A

          \[\leadsto \left(1 + \frac{y}{x}\right) \cdot \color{blue}{x} \]
        3. lower-unsound-*.f64N/A

          \[\leadsto \left(1 + \frac{y}{x}\right) \cdot \color{blue}{x} \]
        4. metadata-evalN/A

          \[\leadsto \left(\left(\mathsf{neg}\left(-1\right)\right) + \frac{y}{x}\right) \cdot x \]
        5. lower-unsound-+.f64N/A

          \[\leadsto \left(\left(\mathsf{neg}\left(-1\right)\right) + \frac{y}{x}\right) \cdot x \]
        6. metadata-evalN/A

          \[\leadsto \left(1 + \frac{y}{x}\right) \cdot x \]
        7. lower-unsound-/.f6458.1%

          \[\leadsto \left(1 + \frac{y}{x}\right) \cdot x \]
      6. Applied rewrites58.1%

        \[\leadsto \left(1 + \frac{y}{x}\right) \cdot \color{blue}{x} \]
      7. Taylor expanded in x around inf

        \[\leadsto 1 \cdot x \]
      8. Step-by-step derivation
        1. Applied rewrites50.8%

          \[\leadsto 1 \cdot x \]

        if 1.9999999999999999e-69 < (/.f64 (-.f64 z t) (-.f64 z a)) < 1e11

        1. Initial program 98.2%

          \[x + y \cdot \frac{z - t}{z - a} \]
        2. Taylor expanded in z around inf

          \[\leadsto \color{blue}{x + y} \]
        3. Step-by-step derivation
          1. lower-+.f6460.8%

            \[\leadsto x + \color{blue}{y} \]
        4. Applied rewrites60.8%

          \[\leadsto \color{blue}{x + y} \]

        if 1e11 < (/.f64 (-.f64 z t) (-.f64 z a))

        1. Initial program 98.2%

          \[x + y \cdot \frac{z - t}{z - a} \]
        2. Applied rewrites95.8%

          \[\leadsto \color{blue}{x - \frac{y}{a - z} \cdot \left(z - t\right)} \]
        3. Taylor expanded in t around inf

          \[\leadsto \color{blue}{\frac{t \cdot y}{a - z}} \]
        4. Step-by-step derivation
          1. lower-/.f64N/A

            \[\leadsto \frac{t \cdot y}{\color{blue}{a - z}} \]
          2. lower-*.f64N/A

            \[\leadsto \frac{t \cdot y}{\color{blue}{a} - z} \]
          3. lower--.f6426.2%

            \[\leadsto \frac{t \cdot y}{a - \color{blue}{z}} \]
        5. Applied rewrites26.2%

          \[\leadsto \color{blue}{\frac{t \cdot y}{a - z}} \]
        6. Step-by-step derivation
          1. lift--.f64N/A

            \[\leadsto \frac{t \cdot y}{a - \color{blue}{z}} \]
          2. lift-/.f64N/A

            \[\leadsto \frac{t \cdot y}{\color{blue}{a - z}} \]
          3. lift-*.f64N/A

            \[\leadsto \frac{t \cdot y}{\color{blue}{a} - z} \]
          4. associate-/l*N/A

            \[\leadsto t \cdot \color{blue}{\frac{y}{a - z}} \]
          5. *-commutativeN/A

            \[\leadsto \frac{y}{a - z} \cdot \color{blue}{t} \]
          6. lower-*.f64N/A

            \[\leadsto \frac{y}{a - z} \cdot \color{blue}{t} \]
          7. lower-/.f64N/A

            \[\leadsto \frac{y}{a - z} \cdot t \]
          8. lift--.f6428.0%

            \[\leadsto \frac{y}{a - z} \cdot t \]
        7. Applied rewrites28.0%

          \[\leadsto \frac{y}{a - z} \cdot \color{blue}{t} \]
      9. Recombined 4 regimes into one program.
      10. Add Preprocessing

      Alternative 7: 78.4% accurate, 0.3× speedup?

      \[\begin{array}{l} t_1 := \frac{z - t}{z - a}\\ t_2 := \frac{t}{a - z} \cdot y\\ \mathbf{if}\;t\_1 \leq \frac{-3022314549036573}{604462909807314587353088}:\\ \;\;\;\;t\_2\\ \mathbf{elif}\;t\_1 \leq \frac{1942668892225729}{971334446112864535459730953411759453321203419526069760625906204869452142602604249088}:\\ \;\;\;\;1 \cdot x\\ \mathbf{elif}\;t\_1 \leq 100000000000:\\ \;\;\;\;x + y\\ \mathbf{else}:\\ \;\;\;\;t\_2\\ \end{array} \]
      (FPCore (x y z t a)
        :precision binary64
        (let* ((t_1 (/ (- z t) (- z a))) (t_2 (* (/ t (- a z)) y)))
        (if (<= t_1 -3022314549036573/604462909807314587353088)
          t_2
          (if (<=
               t_1
               1942668892225729/971334446112864535459730953411759453321203419526069760625906204869452142602604249088)
            (* 1 x)
            (if (<= t_1 100000000000) (+ x y) t_2)))))
      double code(double x, double y, double z, double t, double a) {
      	double t_1 = (z - t) / (z - a);
      	double t_2 = (t / (a - z)) * y;
      	double tmp;
      	if (t_1 <= -5e-9) {
      		tmp = t_2;
      	} else if (t_1 <= 2e-69) {
      		tmp = 1.0 * x;
      	} else if (t_1 <= 100000000000.0) {
      		tmp = x + y;
      	} else {
      		tmp = t_2;
      	}
      	return tmp;
      }
      
      module fmin_fmax_functions
          implicit none
          private
          public fmax
          public fmin
      
          interface fmax
              module procedure fmax88
              module procedure fmax44
              module procedure fmax84
              module procedure fmax48
          end interface
          interface fmin
              module procedure fmin88
              module procedure fmin44
              module procedure fmin84
              module procedure fmin48
          end interface
      contains
          real(8) function fmax88(x, y) result (res)
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
          end function
          real(4) function fmax44(x, y) result (res)
              real(4), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
          end function
          real(8) function fmax84(x, y) result(res)
              real(8), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
          end function
          real(8) function fmax48(x, y) result(res)
              real(4), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
          end function
          real(8) function fmin88(x, y) result (res)
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
          end function
          real(4) function fmin44(x, y) result (res)
              real(4), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
          end function
          real(8) function fmin84(x, y) result(res)
              real(8), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
          end function
          real(8) function fmin48(x, y) result(res)
              real(4), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
          end function
      end module
      
      real(8) function code(x, y, z, t, a)
      use fmin_fmax_functions
          real(8), intent (in) :: x
          real(8), intent (in) :: y
          real(8), intent (in) :: z
          real(8), intent (in) :: t
          real(8), intent (in) :: a
          real(8) :: t_1
          real(8) :: t_2
          real(8) :: tmp
          t_1 = (z - t) / (z - a)
          t_2 = (t / (a - z)) * y
          if (t_1 <= (-5d-9)) then
              tmp = t_2
          else if (t_1 <= 2d-69) then
              tmp = 1.0d0 * x
          else if (t_1 <= 100000000000.0d0) then
              tmp = x + y
          else
              tmp = t_2
          end if
          code = tmp
      end function
      
      public static double code(double x, double y, double z, double t, double a) {
      	double t_1 = (z - t) / (z - a);
      	double t_2 = (t / (a - z)) * y;
      	double tmp;
      	if (t_1 <= -5e-9) {
      		tmp = t_2;
      	} else if (t_1 <= 2e-69) {
      		tmp = 1.0 * x;
      	} else if (t_1 <= 100000000000.0) {
      		tmp = x + y;
      	} else {
      		tmp = t_2;
      	}
      	return tmp;
      }
      
      def code(x, y, z, t, a):
      	t_1 = (z - t) / (z - a)
      	t_2 = (t / (a - z)) * y
      	tmp = 0
      	if t_1 <= -5e-9:
      		tmp = t_2
      	elif t_1 <= 2e-69:
      		tmp = 1.0 * x
      	elif t_1 <= 100000000000.0:
      		tmp = x + y
      	else:
      		tmp = t_2
      	return tmp
      
      function code(x, y, z, t, a)
      	t_1 = Float64(Float64(z - t) / Float64(z - a))
      	t_2 = Float64(Float64(t / Float64(a - z)) * y)
      	tmp = 0.0
      	if (t_1 <= -5e-9)
      		tmp = t_2;
      	elseif (t_1 <= 2e-69)
      		tmp = Float64(1.0 * x);
      	elseif (t_1 <= 100000000000.0)
      		tmp = Float64(x + y);
      	else
      		tmp = t_2;
      	end
      	return tmp
      end
      
      function tmp_2 = code(x, y, z, t, a)
      	t_1 = (z - t) / (z - a);
      	t_2 = (t / (a - z)) * y;
      	tmp = 0.0;
      	if (t_1 <= -5e-9)
      		tmp = t_2;
      	elseif (t_1 <= 2e-69)
      		tmp = 1.0 * x;
      	elseif (t_1 <= 100000000000.0)
      		tmp = x + y;
      	else
      		tmp = t_2;
      	end
      	tmp_2 = tmp;
      end
      
      code[x_, y_, z_, t_, a_] := Block[{t$95$1 = N[(N[(z - t), $MachinePrecision] / N[(z - a), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$2 = N[(N[(t / N[(a - z), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision]}, If[LessEqual[t$95$1, -3022314549036573/604462909807314587353088], t$95$2, If[LessEqual[t$95$1, 1942668892225729/971334446112864535459730953411759453321203419526069760625906204869452142602604249088], N[(1 * x), $MachinePrecision], If[LessEqual[t$95$1, 100000000000], N[(x + y), $MachinePrecision], t$95$2]]]]]
      
      \begin{array}{l}
      t_1 := \frac{z - t}{z - a}\\
      t_2 := \frac{t}{a - z} \cdot y\\
      \mathbf{if}\;t\_1 \leq \frac{-3022314549036573}{604462909807314587353088}:\\
      \;\;\;\;t\_2\\
      
      \mathbf{elif}\;t\_1 \leq \frac{1942668892225729}{971334446112864535459730953411759453321203419526069760625906204869452142602604249088}:\\
      \;\;\;\;1 \cdot x\\
      
      \mathbf{elif}\;t\_1 \leq 100000000000:\\
      \;\;\;\;x + y\\
      
      \mathbf{else}:\\
      \;\;\;\;t\_2\\
      
      
      \end{array}
      
      Derivation
      1. Split input into 3 regimes
      2. if (/.f64 (-.f64 z t) (-.f64 z a)) < -5.0000000000000001e-9 or 1e11 < (/.f64 (-.f64 z t) (-.f64 z a))

        1. Initial program 98.2%

          \[x + y \cdot \frac{z - t}{z - a} \]
        2. Applied rewrites95.8%

          \[\leadsto \color{blue}{x - \frac{y}{a - z} \cdot \left(z - t\right)} \]
        3. Taylor expanded in t around inf

          \[\leadsto \color{blue}{\frac{t \cdot y}{a - z}} \]
        4. Step-by-step derivation
          1. lower-/.f64N/A

            \[\leadsto \frac{t \cdot y}{\color{blue}{a - z}} \]
          2. lower-*.f64N/A

            \[\leadsto \frac{t \cdot y}{\color{blue}{a} - z} \]
          3. lower--.f6426.2%

            \[\leadsto \frac{t \cdot y}{a - \color{blue}{z}} \]
        5. Applied rewrites26.2%

          \[\leadsto \color{blue}{\frac{t \cdot y}{a - z}} \]
        6. Step-by-step derivation
          1. lift--.f64N/A

            \[\leadsto \frac{t \cdot y}{a - \color{blue}{z}} \]
          2. lift-/.f64N/A

            \[\leadsto \frac{t \cdot y}{\color{blue}{a - z}} \]
          3. lift-*.f64N/A

            \[\leadsto \frac{t \cdot y}{\color{blue}{a} - z} \]
          4. *-commutativeN/A

            \[\leadsto \frac{y \cdot t}{\color{blue}{a} - z} \]
          5. associate-/l*N/A

            \[\leadsto y \cdot \color{blue}{\frac{t}{a - z}} \]
          6. *-commutativeN/A

            \[\leadsto \frac{t}{a - z} \cdot \color{blue}{y} \]
          7. lower-*.f64N/A

            \[\leadsto \frac{t}{a - z} \cdot \color{blue}{y} \]
          8. lower-/.f64N/A

            \[\leadsto \frac{t}{a - z} \cdot y \]
          9. lift--.f6428.2%

            \[\leadsto \frac{t}{a - z} \cdot y \]
        7. Applied rewrites28.2%

          \[\leadsto \frac{t}{a - z} \cdot \color{blue}{y} \]

        if -5.0000000000000001e-9 < (/.f64 (-.f64 z t) (-.f64 z a)) < 1.9999999999999999e-69

        1. Initial program 98.2%

          \[x + y \cdot \frac{z - t}{z - a} \]
        2. Taylor expanded in z around inf

          \[\leadsto \color{blue}{x + y} \]
        3. Step-by-step derivation
          1. lower-+.f6460.8%

            \[\leadsto x + \color{blue}{y} \]
        4. Applied rewrites60.8%

          \[\leadsto \color{blue}{x + y} \]
        5. Step-by-step derivation
          1. lift-+.f64N/A

            \[\leadsto x + \color{blue}{y} \]
          2. sum-to-multN/A

            \[\leadsto \left(1 + \frac{y}{x}\right) \cdot \color{blue}{x} \]
          3. lower-unsound-*.f64N/A

            \[\leadsto \left(1 + \frac{y}{x}\right) \cdot \color{blue}{x} \]
          4. metadata-evalN/A

            \[\leadsto \left(\left(\mathsf{neg}\left(-1\right)\right) + \frac{y}{x}\right) \cdot x \]
          5. lower-unsound-+.f64N/A

            \[\leadsto \left(\left(\mathsf{neg}\left(-1\right)\right) + \frac{y}{x}\right) \cdot x \]
          6. metadata-evalN/A

            \[\leadsto \left(1 + \frac{y}{x}\right) \cdot x \]
          7. lower-unsound-/.f6458.1%

            \[\leadsto \left(1 + \frac{y}{x}\right) \cdot x \]
        6. Applied rewrites58.1%

          \[\leadsto \left(1 + \frac{y}{x}\right) \cdot \color{blue}{x} \]
        7. Taylor expanded in x around inf

          \[\leadsto 1 \cdot x \]
        8. Step-by-step derivation
          1. Applied rewrites50.8%

            \[\leadsto 1 \cdot x \]

          if 1.9999999999999999e-69 < (/.f64 (-.f64 z t) (-.f64 z a)) < 1e11

          1. Initial program 98.2%

            \[x + y \cdot \frac{z - t}{z - a} \]
          2. Taylor expanded in z around inf

            \[\leadsto \color{blue}{x + y} \]
          3. Step-by-step derivation
            1. lower-+.f6460.8%

              \[\leadsto x + \color{blue}{y} \]
          4. Applied rewrites60.8%

            \[\leadsto \color{blue}{x + y} \]
        9. Recombined 3 regimes into one program.
        10. Add Preprocessing

        Alternative 8: 72.1% accurate, 0.3× speedup?

        \[\begin{array}{l} t_1 := \frac{z - t}{z - a}\\ t_2 := \frac{y \cdot \left(z - t\right)}{z}\\ \mathbf{if}\;t\_1 \leq -1999999999999999960006936694788402363337610385794017036377296623661544829254857450929578869859984879509552150362154074112:\\ \;\;\;\;t\_2\\ \mathbf{elif}\;t\_1 \leq \frac{1942668892225729}{971334446112864535459730953411759453321203419526069760625906204869452142602604249088}:\\ \;\;\;\;1 \cdot x\\ \mathbf{elif}\;t\_1 \leq 99999999999999994416755247254933381274972870380190006824232035607637985622760311004411949604741731366073618283536318464:\\ \;\;\;\;x + y\\ \mathbf{else}:\\ \;\;\;\;t\_2\\ \end{array} \]
        (FPCore (x y z t a)
          :precision binary64
          (let* ((t_1 (/ (- z t) (- z a))) (t_2 (/ (* y (- z t)) z)))
          (if (<=
               t_1
               -1999999999999999960006936694788402363337610385794017036377296623661544829254857450929578869859984879509552150362154074112)
            t_2
            (if (<=
                 t_1
                 1942668892225729/971334446112864535459730953411759453321203419526069760625906204869452142602604249088)
              (* 1 x)
              (if (<=
                   t_1
                   99999999999999994416755247254933381274972870380190006824232035607637985622760311004411949604741731366073618283536318464)
                (+ x y)
                t_2)))))
        double code(double x, double y, double z, double t, double a) {
        	double t_1 = (z - t) / (z - a);
        	double t_2 = (y * (z - t)) / z;
        	double tmp;
        	if (t_1 <= -2e+120) {
        		tmp = t_2;
        	} else if (t_1 <= 2e-69) {
        		tmp = 1.0 * x;
        	} else if (t_1 <= 1e+119) {
        		tmp = x + y;
        	} else {
        		tmp = t_2;
        	}
        	return tmp;
        }
        
        module fmin_fmax_functions
            implicit none
            private
            public fmax
            public fmin
        
            interface fmax
                module procedure fmax88
                module procedure fmax44
                module procedure fmax84
                module procedure fmax48
            end interface
            interface fmin
                module procedure fmin88
                module procedure fmin44
                module procedure fmin84
                module procedure fmin48
            end interface
        contains
            real(8) function fmax88(x, y) result (res)
                real(8), intent (in) :: x
                real(8), intent (in) :: y
                res = merge(y, merge(x, max(x, y), y /= y), x /= x)
            end function
            real(4) function fmax44(x, y) result (res)
                real(4), intent (in) :: x
                real(4), intent (in) :: y
                res = merge(y, merge(x, max(x, y), y /= y), x /= x)
            end function
            real(8) function fmax84(x, y) result(res)
                real(8), intent (in) :: x
                real(4), intent (in) :: y
                res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
            end function
            real(8) function fmax48(x, y) result(res)
                real(4), intent (in) :: x
                real(8), intent (in) :: y
                res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
            end function
            real(8) function fmin88(x, y) result (res)
                real(8), intent (in) :: x
                real(8), intent (in) :: y
                res = merge(y, merge(x, min(x, y), y /= y), x /= x)
            end function
            real(4) function fmin44(x, y) result (res)
                real(4), intent (in) :: x
                real(4), intent (in) :: y
                res = merge(y, merge(x, min(x, y), y /= y), x /= x)
            end function
            real(8) function fmin84(x, y) result(res)
                real(8), intent (in) :: x
                real(4), intent (in) :: y
                res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
            end function
            real(8) function fmin48(x, y) result(res)
                real(4), intent (in) :: x
                real(8), intent (in) :: y
                res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
            end function
        end module
        
        real(8) function code(x, y, z, t, a)
        use fmin_fmax_functions
            real(8), intent (in) :: x
            real(8), intent (in) :: y
            real(8), intent (in) :: z
            real(8), intent (in) :: t
            real(8), intent (in) :: a
            real(8) :: t_1
            real(8) :: t_2
            real(8) :: tmp
            t_1 = (z - t) / (z - a)
            t_2 = (y * (z - t)) / z
            if (t_1 <= (-2d+120)) then
                tmp = t_2
            else if (t_1 <= 2d-69) then
                tmp = 1.0d0 * x
            else if (t_1 <= 1d+119) then
                tmp = x + y
            else
                tmp = t_2
            end if
            code = tmp
        end function
        
        public static double code(double x, double y, double z, double t, double a) {
        	double t_1 = (z - t) / (z - a);
        	double t_2 = (y * (z - t)) / z;
        	double tmp;
        	if (t_1 <= -2e+120) {
        		tmp = t_2;
        	} else if (t_1 <= 2e-69) {
        		tmp = 1.0 * x;
        	} else if (t_1 <= 1e+119) {
        		tmp = x + y;
        	} else {
        		tmp = t_2;
        	}
        	return tmp;
        }
        
        def code(x, y, z, t, a):
        	t_1 = (z - t) / (z - a)
        	t_2 = (y * (z - t)) / z
        	tmp = 0
        	if t_1 <= -2e+120:
        		tmp = t_2
        	elif t_1 <= 2e-69:
        		tmp = 1.0 * x
        	elif t_1 <= 1e+119:
        		tmp = x + y
        	else:
        		tmp = t_2
        	return tmp
        
        function code(x, y, z, t, a)
        	t_1 = Float64(Float64(z - t) / Float64(z - a))
        	t_2 = Float64(Float64(y * Float64(z - t)) / z)
        	tmp = 0.0
        	if (t_1 <= -2e+120)
        		tmp = t_2;
        	elseif (t_1 <= 2e-69)
        		tmp = Float64(1.0 * x);
        	elseif (t_1 <= 1e+119)
        		tmp = Float64(x + y);
        	else
        		tmp = t_2;
        	end
        	return tmp
        end
        
        function tmp_2 = code(x, y, z, t, a)
        	t_1 = (z - t) / (z - a);
        	t_2 = (y * (z - t)) / z;
        	tmp = 0.0;
        	if (t_1 <= -2e+120)
        		tmp = t_2;
        	elseif (t_1 <= 2e-69)
        		tmp = 1.0 * x;
        	elseif (t_1 <= 1e+119)
        		tmp = x + y;
        	else
        		tmp = t_2;
        	end
        	tmp_2 = tmp;
        end
        
        code[x_, y_, z_, t_, a_] := Block[{t$95$1 = N[(N[(z - t), $MachinePrecision] / N[(z - a), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$2 = N[(N[(y * N[(z - t), $MachinePrecision]), $MachinePrecision] / z), $MachinePrecision]}, If[LessEqual[t$95$1, -1999999999999999960006936694788402363337610385794017036377296623661544829254857450929578869859984879509552150362154074112], t$95$2, If[LessEqual[t$95$1, 1942668892225729/971334446112864535459730953411759453321203419526069760625906204869452142602604249088], N[(1 * x), $MachinePrecision], If[LessEqual[t$95$1, 99999999999999994416755247254933381274972870380190006824232035607637985622760311004411949604741731366073618283536318464], N[(x + y), $MachinePrecision], t$95$2]]]]]
        
        \begin{array}{l}
        t_1 := \frac{z - t}{z - a}\\
        t_2 := \frac{y \cdot \left(z - t\right)}{z}\\
        \mathbf{if}\;t\_1 \leq -1999999999999999960006936694788402363337610385794017036377296623661544829254857450929578869859984879509552150362154074112:\\
        \;\;\;\;t\_2\\
        
        \mathbf{elif}\;t\_1 \leq \frac{1942668892225729}{971334446112864535459730953411759453321203419526069760625906204869452142602604249088}:\\
        \;\;\;\;1 \cdot x\\
        
        \mathbf{elif}\;t\_1 \leq 99999999999999994416755247254933381274972870380190006824232035607637985622760311004411949604741731366073618283536318464:\\
        \;\;\;\;x + y\\
        
        \mathbf{else}:\\
        \;\;\;\;t\_2\\
        
        
        \end{array}
        
        Derivation
        1. Split input into 3 regimes
        2. if (/.f64 (-.f64 z t) (-.f64 z a)) < -2e120 or 9.9999999999999994e118 < (/.f64 (-.f64 z t) (-.f64 z a))

          1. Initial program 98.2%

            \[x + y \cdot \frac{z - t}{z - a} \]
          2. Taylor expanded in x around 0

            \[\leadsto \color{blue}{\frac{y \cdot \left(z - t\right)}{z - a}} \]
          3. Step-by-step derivation
            1. lower-/.f64N/A

              \[\leadsto \frac{y \cdot \left(z - t\right)}{\color{blue}{z - a}} \]
            2. lower-*.f64N/A

              \[\leadsto \frac{y \cdot \left(z - t\right)}{\color{blue}{z} - a} \]
            3. lower--.f64N/A

              \[\leadsto \frac{y \cdot \left(z - t\right)}{z - a} \]
            4. lower--.f6439.7%

              \[\leadsto \frac{y \cdot \left(z - t\right)}{z - \color{blue}{a}} \]
          4. Applied rewrites39.7%

            \[\leadsto \color{blue}{\frac{y \cdot \left(z - t\right)}{z - a}} \]
          5. Taylor expanded in a around 0

            \[\leadsto \frac{y \cdot \left(z - t\right)}{\color{blue}{z}} \]
          6. Step-by-step derivation
            1. lower-/.f64N/A

              \[\leadsto \frac{y \cdot \left(z - t\right)}{z} \]
            2. lower-*.f64N/A

              \[\leadsto \frac{y \cdot \left(z - t\right)}{z} \]
            3. lower--.f6424.3%

              \[\leadsto \frac{y \cdot \left(z - t\right)}{z} \]
          7. Applied rewrites24.3%

            \[\leadsto \frac{y \cdot \left(z - t\right)}{\color{blue}{z}} \]

          if -2e120 < (/.f64 (-.f64 z t) (-.f64 z a)) < 1.9999999999999999e-69

          1. Initial program 98.2%

            \[x + y \cdot \frac{z - t}{z - a} \]
          2. Taylor expanded in z around inf

            \[\leadsto \color{blue}{x + y} \]
          3. Step-by-step derivation
            1. lower-+.f6460.8%

              \[\leadsto x + \color{blue}{y} \]
          4. Applied rewrites60.8%

            \[\leadsto \color{blue}{x + y} \]
          5. Step-by-step derivation
            1. lift-+.f64N/A

              \[\leadsto x + \color{blue}{y} \]
            2. sum-to-multN/A

              \[\leadsto \left(1 + \frac{y}{x}\right) \cdot \color{blue}{x} \]
            3. lower-unsound-*.f64N/A

              \[\leadsto \left(1 + \frac{y}{x}\right) \cdot \color{blue}{x} \]
            4. metadata-evalN/A

              \[\leadsto \left(\left(\mathsf{neg}\left(-1\right)\right) + \frac{y}{x}\right) \cdot x \]
            5. lower-unsound-+.f64N/A

              \[\leadsto \left(\left(\mathsf{neg}\left(-1\right)\right) + \frac{y}{x}\right) \cdot x \]
            6. metadata-evalN/A

              \[\leadsto \left(1 + \frac{y}{x}\right) \cdot x \]
            7. lower-unsound-/.f6458.1%

              \[\leadsto \left(1 + \frac{y}{x}\right) \cdot x \]
          6. Applied rewrites58.1%

            \[\leadsto \left(1 + \frac{y}{x}\right) \cdot \color{blue}{x} \]
          7. Taylor expanded in x around inf

            \[\leadsto 1 \cdot x \]
          8. Step-by-step derivation
            1. Applied rewrites50.8%

              \[\leadsto 1 \cdot x \]

            if 1.9999999999999999e-69 < (/.f64 (-.f64 z t) (-.f64 z a)) < 9.9999999999999994e118

            1. Initial program 98.2%

              \[x + y \cdot \frac{z - t}{z - a} \]
            2. Taylor expanded in z around inf

              \[\leadsto \color{blue}{x + y} \]
            3. Step-by-step derivation
              1. lower-+.f6460.8%

                \[\leadsto x + \color{blue}{y} \]
            4. Applied rewrites60.8%

              \[\leadsto \color{blue}{x + y} \]
          9. Recombined 3 regimes into one program.
          10. Add Preprocessing

          Alternative 9: 72.0% accurate, 0.3× speedup?

          \[\begin{array}{l} t_1 := \frac{z - t}{z - a}\\ \mathbf{if}\;t\_1 \leq -99999999999999997168788049560464200849936328366177157906432:\\ \;\;\;\;\frac{t}{a} \cdot y\\ \mathbf{elif}\;t\_1 \leq \frac{1942668892225729}{971334446112864535459730953411759453321203419526069760625906204869452142602604249088}:\\ \;\;\;\;1 \cdot x\\ \mathbf{elif}\;t\_1 \leq 99999999999999994416755247254933381274972870380190006824232035607637985622760311004411949604741731366073618283536318464:\\ \;\;\;\;x + y\\ \mathbf{else}:\\ \;\;\;\;\frac{y}{a} \cdot t\\ \end{array} \]
          (FPCore (x y z t a)
            :precision binary64
            (let* ((t_1 (/ (- z t) (- z a))))
            (if (<=
                 t_1
                 -99999999999999997168788049560464200849936328366177157906432)
              (* (/ t a) y)
              (if (<=
                   t_1
                   1942668892225729/971334446112864535459730953411759453321203419526069760625906204869452142602604249088)
                (* 1 x)
                (if (<=
                     t_1
                     99999999999999994416755247254933381274972870380190006824232035607637985622760311004411949604741731366073618283536318464)
                  (+ x y)
                  (* (/ y a) t))))))
          double code(double x, double y, double z, double t, double a) {
          	double t_1 = (z - t) / (z - a);
          	double tmp;
          	if (t_1 <= -1e+59) {
          		tmp = (t / a) * y;
          	} else if (t_1 <= 2e-69) {
          		tmp = 1.0 * x;
          	} else if (t_1 <= 1e+119) {
          		tmp = x + y;
          	} else {
          		tmp = (y / a) * t;
          	}
          	return tmp;
          }
          
          module fmin_fmax_functions
              implicit none
              private
              public fmax
              public fmin
          
              interface fmax
                  module procedure fmax88
                  module procedure fmax44
                  module procedure fmax84
                  module procedure fmax48
              end interface
              interface fmin
                  module procedure fmin88
                  module procedure fmin44
                  module procedure fmin84
                  module procedure fmin48
              end interface
          contains
              real(8) function fmax88(x, y) result (res)
                  real(8), intent (in) :: x
                  real(8), intent (in) :: y
                  res = merge(y, merge(x, max(x, y), y /= y), x /= x)
              end function
              real(4) function fmax44(x, y) result (res)
                  real(4), intent (in) :: x
                  real(4), intent (in) :: y
                  res = merge(y, merge(x, max(x, y), y /= y), x /= x)
              end function
              real(8) function fmax84(x, y) result(res)
                  real(8), intent (in) :: x
                  real(4), intent (in) :: y
                  res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
              end function
              real(8) function fmax48(x, y) result(res)
                  real(4), intent (in) :: x
                  real(8), intent (in) :: y
                  res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
              end function
              real(8) function fmin88(x, y) result (res)
                  real(8), intent (in) :: x
                  real(8), intent (in) :: y
                  res = merge(y, merge(x, min(x, y), y /= y), x /= x)
              end function
              real(4) function fmin44(x, y) result (res)
                  real(4), intent (in) :: x
                  real(4), intent (in) :: y
                  res = merge(y, merge(x, min(x, y), y /= y), x /= x)
              end function
              real(8) function fmin84(x, y) result(res)
                  real(8), intent (in) :: x
                  real(4), intent (in) :: y
                  res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
              end function
              real(8) function fmin48(x, y) result(res)
                  real(4), intent (in) :: x
                  real(8), intent (in) :: y
                  res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
              end function
          end module
          
          real(8) function code(x, y, z, t, a)
          use fmin_fmax_functions
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              real(8), intent (in) :: z
              real(8), intent (in) :: t
              real(8), intent (in) :: a
              real(8) :: t_1
              real(8) :: tmp
              t_1 = (z - t) / (z - a)
              if (t_1 <= (-1d+59)) then
                  tmp = (t / a) * y
              else if (t_1 <= 2d-69) then
                  tmp = 1.0d0 * x
              else if (t_1 <= 1d+119) then
                  tmp = x + y
              else
                  tmp = (y / a) * t
              end if
              code = tmp
          end function
          
          public static double code(double x, double y, double z, double t, double a) {
          	double t_1 = (z - t) / (z - a);
          	double tmp;
          	if (t_1 <= -1e+59) {
          		tmp = (t / a) * y;
          	} else if (t_1 <= 2e-69) {
          		tmp = 1.0 * x;
          	} else if (t_1 <= 1e+119) {
          		tmp = x + y;
          	} else {
          		tmp = (y / a) * t;
          	}
          	return tmp;
          }
          
          def code(x, y, z, t, a):
          	t_1 = (z - t) / (z - a)
          	tmp = 0
          	if t_1 <= -1e+59:
          		tmp = (t / a) * y
          	elif t_1 <= 2e-69:
          		tmp = 1.0 * x
          	elif t_1 <= 1e+119:
          		tmp = x + y
          	else:
          		tmp = (y / a) * t
          	return tmp
          
          function code(x, y, z, t, a)
          	t_1 = Float64(Float64(z - t) / Float64(z - a))
          	tmp = 0.0
          	if (t_1 <= -1e+59)
          		tmp = Float64(Float64(t / a) * y);
          	elseif (t_1 <= 2e-69)
          		tmp = Float64(1.0 * x);
          	elseif (t_1 <= 1e+119)
          		tmp = Float64(x + y);
          	else
          		tmp = Float64(Float64(y / a) * t);
          	end
          	return tmp
          end
          
          function tmp_2 = code(x, y, z, t, a)
          	t_1 = (z - t) / (z - a);
          	tmp = 0.0;
          	if (t_1 <= -1e+59)
          		tmp = (t / a) * y;
          	elseif (t_1 <= 2e-69)
          		tmp = 1.0 * x;
          	elseif (t_1 <= 1e+119)
          		tmp = x + y;
          	else
          		tmp = (y / a) * t;
          	end
          	tmp_2 = tmp;
          end
          
          code[x_, y_, z_, t_, a_] := Block[{t$95$1 = N[(N[(z - t), $MachinePrecision] / N[(z - a), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$1, -99999999999999997168788049560464200849936328366177157906432], N[(N[(t / a), $MachinePrecision] * y), $MachinePrecision], If[LessEqual[t$95$1, 1942668892225729/971334446112864535459730953411759453321203419526069760625906204869452142602604249088], N[(1 * x), $MachinePrecision], If[LessEqual[t$95$1, 99999999999999994416755247254933381274972870380190006824232035607637985622760311004411949604741731366073618283536318464], N[(x + y), $MachinePrecision], N[(N[(y / a), $MachinePrecision] * t), $MachinePrecision]]]]]
          
          \begin{array}{l}
          t_1 := \frac{z - t}{z - a}\\
          \mathbf{if}\;t\_1 \leq -99999999999999997168788049560464200849936328366177157906432:\\
          \;\;\;\;\frac{t}{a} \cdot y\\
          
          \mathbf{elif}\;t\_1 \leq \frac{1942668892225729}{971334446112864535459730953411759453321203419526069760625906204869452142602604249088}:\\
          \;\;\;\;1 \cdot x\\
          
          \mathbf{elif}\;t\_1 \leq 99999999999999994416755247254933381274972870380190006824232035607637985622760311004411949604741731366073618283536318464:\\
          \;\;\;\;x + y\\
          
          \mathbf{else}:\\
          \;\;\;\;\frac{y}{a} \cdot t\\
          
          
          \end{array}
          
          Derivation
          1. Split input into 4 regimes
          2. if (/.f64 (-.f64 z t) (-.f64 z a)) < -9.9999999999999997e58

            1. Initial program 98.2%

              \[x + y \cdot \frac{z - t}{z - a} \]
            2. Applied rewrites95.8%

              \[\leadsto \color{blue}{x - \frac{y}{a - z} \cdot \left(z - t\right)} \]
            3. Taylor expanded in t around inf

              \[\leadsto \color{blue}{\frac{t \cdot y}{a - z}} \]
            4. Step-by-step derivation
              1. lower-/.f64N/A

                \[\leadsto \frac{t \cdot y}{\color{blue}{a - z}} \]
              2. lower-*.f64N/A

                \[\leadsto \frac{t \cdot y}{\color{blue}{a} - z} \]
              3. lower--.f6426.2%

                \[\leadsto \frac{t \cdot y}{a - \color{blue}{z}} \]
            5. Applied rewrites26.2%

              \[\leadsto \color{blue}{\frac{t \cdot y}{a - z}} \]
            6. Step-by-step derivation
              1. lift--.f64N/A

                \[\leadsto \frac{t \cdot y}{a - \color{blue}{z}} \]
              2. lift-/.f64N/A

                \[\leadsto \frac{t \cdot y}{\color{blue}{a - z}} \]
              3. lift-*.f64N/A

                \[\leadsto \frac{t \cdot y}{\color{blue}{a} - z} \]
              4. *-commutativeN/A

                \[\leadsto \frac{y \cdot t}{\color{blue}{a} - z} \]
              5. associate-/l*N/A

                \[\leadsto y \cdot \color{blue}{\frac{t}{a - z}} \]
              6. *-commutativeN/A

                \[\leadsto \frac{t}{a - z} \cdot \color{blue}{y} \]
              7. lower-*.f64N/A

                \[\leadsto \frac{t}{a - z} \cdot \color{blue}{y} \]
              8. lower-/.f64N/A

                \[\leadsto \frac{t}{a - z} \cdot y \]
              9. lift--.f6428.2%

                \[\leadsto \frac{t}{a - z} \cdot y \]
            7. Applied rewrites28.2%

              \[\leadsto \frac{t}{a - z} \cdot \color{blue}{y} \]
            8. Taylor expanded in z around 0

              \[\leadsto \frac{t}{a} \cdot y \]
            9. Step-by-step derivation
              1. Applied rewrites20.0%

                \[\leadsto \frac{t}{a} \cdot y \]

              if -9.9999999999999997e58 < (/.f64 (-.f64 z t) (-.f64 z a)) < 1.9999999999999999e-69

              1. Initial program 98.2%

                \[x + y \cdot \frac{z - t}{z - a} \]
              2. Taylor expanded in z around inf

                \[\leadsto \color{blue}{x + y} \]
              3. Step-by-step derivation
                1. lower-+.f6460.8%

                  \[\leadsto x + \color{blue}{y} \]
              4. Applied rewrites60.8%

                \[\leadsto \color{blue}{x + y} \]
              5. Step-by-step derivation
                1. lift-+.f64N/A

                  \[\leadsto x + \color{blue}{y} \]
                2. sum-to-multN/A

                  \[\leadsto \left(1 + \frac{y}{x}\right) \cdot \color{blue}{x} \]
                3. lower-unsound-*.f64N/A

                  \[\leadsto \left(1 + \frac{y}{x}\right) \cdot \color{blue}{x} \]
                4. metadata-evalN/A

                  \[\leadsto \left(\left(\mathsf{neg}\left(-1\right)\right) + \frac{y}{x}\right) \cdot x \]
                5. lower-unsound-+.f64N/A

                  \[\leadsto \left(\left(\mathsf{neg}\left(-1\right)\right) + \frac{y}{x}\right) \cdot x \]
                6. metadata-evalN/A

                  \[\leadsto \left(1 + \frac{y}{x}\right) \cdot x \]
                7. lower-unsound-/.f6458.1%

                  \[\leadsto \left(1 + \frac{y}{x}\right) \cdot x \]
              6. Applied rewrites58.1%

                \[\leadsto \left(1 + \frac{y}{x}\right) \cdot \color{blue}{x} \]
              7. Taylor expanded in x around inf

                \[\leadsto 1 \cdot x \]
              8. Step-by-step derivation
                1. Applied rewrites50.8%

                  \[\leadsto 1 \cdot x \]

                if 1.9999999999999999e-69 < (/.f64 (-.f64 z t) (-.f64 z a)) < 9.9999999999999994e118

                1. Initial program 98.2%

                  \[x + y \cdot \frac{z - t}{z - a} \]
                2. Taylor expanded in z around inf

                  \[\leadsto \color{blue}{x + y} \]
                3. Step-by-step derivation
                  1. lower-+.f6460.8%

                    \[\leadsto x + \color{blue}{y} \]
                4. Applied rewrites60.8%

                  \[\leadsto \color{blue}{x + y} \]

                if 9.9999999999999994e118 < (/.f64 (-.f64 z t) (-.f64 z a))

                1. Initial program 98.2%

                  \[x + y \cdot \frac{z - t}{z - a} \]
                2. Applied rewrites95.8%

                  \[\leadsto \color{blue}{x - \frac{y}{a - z} \cdot \left(z - t\right)} \]
                3. Taylor expanded in t around inf

                  \[\leadsto \color{blue}{\frac{t \cdot y}{a - z}} \]
                4. Step-by-step derivation
                  1. lower-/.f64N/A

                    \[\leadsto \frac{t \cdot y}{\color{blue}{a - z}} \]
                  2. lower-*.f64N/A

                    \[\leadsto \frac{t \cdot y}{\color{blue}{a} - z} \]
                  3. lower--.f6426.2%

                    \[\leadsto \frac{t \cdot y}{a - \color{blue}{z}} \]
                5. Applied rewrites26.2%

                  \[\leadsto \color{blue}{\frac{t \cdot y}{a - z}} \]
                6. Step-by-step derivation
                  1. lift--.f64N/A

                    \[\leadsto \frac{t \cdot y}{a - \color{blue}{z}} \]
                  2. lift-/.f64N/A

                    \[\leadsto \frac{t \cdot y}{\color{blue}{a - z}} \]
                  3. lift-*.f64N/A

                    \[\leadsto \frac{t \cdot y}{\color{blue}{a} - z} \]
                  4. associate-/l*N/A

                    \[\leadsto t \cdot \color{blue}{\frac{y}{a - z}} \]
                  5. *-commutativeN/A

                    \[\leadsto \frac{y}{a - z} \cdot \color{blue}{t} \]
                  6. lower-*.f64N/A

                    \[\leadsto \frac{y}{a - z} \cdot \color{blue}{t} \]
                  7. lower-/.f64N/A

                    \[\leadsto \frac{y}{a - z} \cdot t \]
                  8. lift--.f6428.0%

                    \[\leadsto \frac{y}{a - z} \cdot t \]
                7. Applied rewrites28.0%

                  \[\leadsto \frac{y}{a - z} \cdot \color{blue}{t} \]
                8. Taylor expanded in z around 0

                  \[\leadsto \frac{y}{a} \cdot t \]
                9. Step-by-step derivation
                  1. Applied rewrites19.7%

                    \[\leadsto \frac{y}{a} \cdot t \]
                10. Recombined 4 regimes into one program.
                11. Add Preprocessing

                Alternative 10: 71.9% accurate, 0.3× speedup?

                \[\begin{array}{l} t_1 := \frac{z - t}{z - a}\\ t_2 := \frac{t}{a} \cdot y\\ \mathbf{if}\;t\_1 \leq -99999999999999997168788049560464200849936328366177157906432:\\ \;\;\;\;t\_2\\ \mathbf{elif}\;t\_1 \leq \frac{1942668892225729}{971334446112864535459730953411759453321203419526069760625906204869452142602604249088}:\\ \;\;\;\;1 \cdot x\\ \mathbf{elif}\;t\_1 \leq 99999999999999994416755247254933381274972870380190006824232035607637985622760311004411949604741731366073618283536318464:\\ \;\;\;\;x + y\\ \mathbf{else}:\\ \;\;\;\;t\_2\\ \end{array} \]
                (FPCore (x y z t a)
                  :precision binary64
                  (let* ((t_1 (/ (- z t) (- z a))) (t_2 (* (/ t a) y)))
                  (if (<=
                       t_1
                       -99999999999999997168788049560464200849936328366177157906432)
                    t_2
                    (if (<=
                         t_1
                         1942668892225729/971334446112864535459730953411759453321203419526069760625906204869452142602604249088)
                      (* 1 x)
                      (if (<=
                           t_1
                           99999999999999994416755247254933381274972870380190006824232035607637985622760311004411949604741731366073618283536318464)
                        (+ x y)
                        t_2)))))
                double code(double x, double y, double z, double t, double a) {
                	double t_1 = (z - t) / (z - a);
                	double t_2 = (t / a) * y;
                	double tmp;
                	if (t_1 <= -1e+59) {
                		tmp = t_2;
                	} else if (t_1 <= 2e-69) {
                		tmp = 1.0 * x;
                	} else if (t_1 <= 1e+119) {
                		tmp = x + y;
                	} else {
                		tmp = t_2;
                	}
                	return tmp;
                }
                
                module fmin_fmax_functions
                    implicit none
                    private
                    public fmax
                    public fmin
                
                    interface fmax
                        module procedure fmax88
                        module procedure fmax44
                        module procedure fmax84
                        module procedure fmax48
                    end interface
                    interface fmin
                        module procedure fmin88
                        module procedure fmin44
                        module procedure fmin84
                        module procedure fmin48
                    end interface
                contains
                    real(8) function fmax88(x, y) result (res)
                        real(8), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                    end function
                    real(4) function fmax44(x, y) result (res)
                        real(4), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                    end function
                    real(8) function fmax84(x, y) result(res)
                        real(8), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                    end function
                    real(8) function fmax48(x, y) result(res)
                        real(4), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                    end function
                    real(8) function fmin88(x, y) result (res)
                        real(8), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                    end function
                    real(4) function fmin44(x, y) result (res)
                        real(4), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                    end function
                    real(8) function fmin84(x, y) result(res)
                        real(8), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                    end function
                    real(8) function fmin48(x, y) result(res)
                        real(4), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                    end function
                end module
                
                real(8) function code(x, y, z, t, a)
                use fmin_fmax_functions
                    real(8), intent (in) :: x
                    real(8), intent (in) :: y
                    real(8), intent (in) :: z
                    real(8), intent (in) :: t
                    real(8), intent (in) :: a
                    real(8) :: t_1
                    real(8) :: t_2
                    real(8) :: tmp
                    t_1 = (z - t) / (z - a)
                    t_2 = (t / a) * y
                    if (t_1 <= (-1d+59)) then
                        tmp = t_2
                    else if (t_1 <= 2d-69) then
                        tmp = 1.0d0 * x
                    else if (t_1 <= 1d+119) then
                        tmp = x + y
                    else
                        tmp = t_2
                    end if
                    code = tmp
                end function
                
                public static double code(double x, double y, double z, double t, double a) {
                	double t_1 = (z - t) / (z - a);
                	double t_2 = (t / a) * y;
                	double tmp;
                	if (t_1 <= -1e+59) {
                		tmp = t_2;
                	} else if (t_1 <= 2e-69) {
                		tmp = 1.0 * x;
                	} else if (t_1 <= 1e+119) {
                		tmp = x + y;
                	} else {
                		tmp = t_2;
                	}
                	return tmp;
                }
                
                def code(x, y, z, t, a):
                	t_1 = (z - t) / (z - a)
                	t_2 = (t / a) * y
                	tmp = 0
                	if t_1 <= -1e+59:
                		tmp = t_2
                	elif t_1 <= 2e-69:
                		tmp = 1.0 * x
                	elif t_1 <= 1e+119:
                		tmp = x + y
                	else:
                		tmp = t_2
                	return tmp
                
                function code(x, y, z, t, a)
                	t_1 = Float64(Float64(z - t) / Float64(z - a))
                	t_2 = Float64(Float64(t / a) * y)
                	tmp = 0.0
                	if (t_1 <= -1e+59)
                		tmp = t_2;
                	elseif (t_1 <= 2e-69)
                		tmp = Float64(1.0 * x);
                	elseif (t_1 <= 1e+119)
                		tmp = Float64(x + y);
                	else
                		tmp = t_2;
                	end
                	return tmp
                end
                
                function tmp_2 = code(x, y, z, t, a)
                	t_1 = (z - t) / (z - a);
                	t_2 = (t / a) * y;
                	tmp = 0.0;
                	if (t_1 <= -1e+59)
                		tmp = t_2;
                	elseif (t_1 <= 2e-69)
                		tmp = 1.0 * x;
                	elseif (t_1 <= 1e+119)
                		tmp = x + y;
                	else
                		tmp = t_2;
                	end
                	tmp_2 = tmp;
                end
                
                code[x_, y_, z_, t_, a_] := Block[{t$95$1 = N[(N[(z - t), $MachinePrecision] / N[(z - a), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$2 = N[(N[(t / a), $MachinePrecision] * y), $MachinePrecision]}, If[LessEqual[t$95$1, -99999999999999997168788049560464200849936328366177157906432], t$95$2, If[LessEqual[t$95$1, 1942668892225729/971334446112864535459730953411759453321203419526069760625906204869452142602604249088], N[(1 * x), $MachinePrecision], If[LessEqual[t$95$1, 99999999999999994416755247254933381274972870380190006824232035607637985622760311004411949604741731366073618283536318464], N[(x + y), $MachinePrecision], t$95$2]]]]]
                
                \begin{array}{l}
                t_1 := \frac{z - t}{z - a}\\
                t_2 := \frac{t}{a} \cdot y\\
                \mathbf{if}\;t\_1 \leq -99999999999999997168788049560464200849936328366177157906432:\\
                \;\;\;\;t\_2\\
                
                \mathbf{elif}\;t\_1 \leq \frac{1942668892225729}{971334446112864535459730953411759453321203419526069760625906204869452142602604249088}:\\
                \;\;\;\;1 \cdot x\\
                
                \mathbf{elif}\;t\_1 \leq 99999999999999994416755247254933381274972870380190006824232035607637985622760311004411949604741731366073618283536318464:\\
                \;\;\;\;x + y\\
                
                \mathbf{else}:\\
                \;\;\;\;t\_2\\
                
                
                \end{array}
                
                Derivation
                1. Split input into 3 regimes
                2. if (/.f64 (-.f64 z t) (-.f64 z a)) < -9.9999999999999997e58 or 9.9999999999999994e118 < (/.f64 (-.f64 z t) (-.f64 z a))

                  1. Initial program 98.2%

                    \[x + y \cdot \frac{z - t}{z - a} \]
                  2. Applied rewrites95.8%

                    \[\leadsto \color{blue}{x - \frac{y}{a - z} \cdot \left(z - t\right)} \]
                  3. Taylor expanded in t around inf

                    \[\leadsto \color{blue}{\frac{t \cdot y}{a - z}} \]
                  4. Step-by-step derivation
                    1. lower-/.f64N/A

                      \[\leadsto \frac{t \cdot y}{\color{blue}{a - z}} \]
                    2. lower-*.f64N/A

                      \[\leadsto \frac{t \cdot y}{\color{blue}{a} - z} \]
                    3. lower--.f6426.2%

                      \[\leadsto \frac{t \cdot y}{a - \color{blue}{z}} \]
                  5. Applied rewrites26.2%

                    \[\leadsto \color{blue}{\frac{t \cdot y}{a - z}} \]
                  6. Step-by-step derivation
                    1. lift--.f64N/A

                      \[\leadsto \frac{t \cdot y}{a - \color{blue}{z}} \]
                    2. lift-/.f64N/A

                      \[\leadsto \frac{t \cdot y}{\color{blue}{a - z}} \]
                    3. lift-*.f64N/A

                      \[\leadsto \frac{t \cdot y}{\color{blue}{a} - z} \]
                    4. *-commutativeN/A

                      \[\leadsto \frac{y \cdot t}{\color{blue}{a} - z} \]
                    5. associate-/l*N/A

                      \[\leadsto y \cdot \color{blue}{\frac{t}{a - z}} \]
                    6. *-commutativeN/A

                      \[\leadsto \frac{t}{a - z} \cdot \color{blue}{y} \]
                    7. lower-*.f64N/A

                      \[\leadsto \frac{t}{a - z} \cdot \color{blue}{y} \]
                    8. lower-/.f64N/A

                      \[\leadsto \frac{t}{a - z} \cdot y \]
                    9. lift--.f6428.2%

                      \[\leadsto \frac{t}{a - z} \cdot y \]
                  7. Applied rewrites28.2%

                    \[\leadsto \frac{t}{a - z} \cdot \color{blue}{y} \]
                  8. Taylor expanded in z around 0

                    \[\leadsto \frac{t}{a} \cdot y \]
                  9. Step-by-step derivation
                    1. Applied rewrites20.0%

                      \[\leadsto \frac{t}{a} \cdot y \]

                    if -9.9999999999999997e58 < (/.f64 (-.f64 z t) (-.f64 z a)) < 1.9999999999999999e-69

                    1. Initial program 98.2%

                      \[x + y \cdot \frac{z - t}{z - a} \]
                    2. Taylor expanded in z around inf

                      \[\leadsto \color{blue}{x + y} \]
                    3. Step-by-step derivation
                      1. lower-+.f6460.8%

                        \[\leadsto x + \color{blue}{y} \]
                    4. Applied rewrites60.8%

                      \[\leadsto \color{blue}{x + y} \]
                    5. Step-by-step derivation
                      1. lift-+.f64N/A

                        \[\leadsto x + \color{blue}{y} \]
                      2. sum-to-multN/A

                        \[\leadsto \left(1 + \frac{y}{x}\right) \cdot \color{blue}{x} \]
                      3. lower-unsound-*.f64N/A

                        \[\leadsto \left(1 + \frac{y}{x}\right) \cdot \color{blue}{x} \]
                      4. metadata-evalN/A

                        \[\leadsto \left(\left(\mathsf{neg}\left(-1\right)\right) + \frac{y}{x}\right) \cdot x \]
                      5. lower-unsound-+.f64N/A

                        \[\leadsto \left(\left(\mathsf{neg}\left(-1\right)\right) + \frac{y}{x}\right) \cdot x \]
                      6. metadata-evalN/A

                        \[\leadsto \left(1 + \frac{y}{x}\right) \cdot x \]
                      7. lower-unsound-/.f6458.1%

                        \[\leadsto \left(1 + \frac{y}{x}\right) \cdot x \]
                    6. Applied rewrites58.1%

                      \[\leadsto \left(1 + \frac{y}{x}\right) \cdot \color{blue}{x} \]
                    7. Taylor expanded in x around inf

                      \[\leadsto 1 \cdot x \]
                    8. Step-by-step derivation
                      1. Applied rewrites50.8%

                        \[\leadsto 1 \cdot x \]

                      if 1.9999999999999999e-69 < (/.f64 (-.f64 z t) (-.f64 z a)) < 9.9999999999999994e118

                      1. Initial program 98.2%

                        \[x + y \cdot \frac{z - t}{z - a} \]
                      2. Taylor expanded in z around inf

                        \[\leadsto \color{blue}{x + y} \]
                      3. Step-by-step derivation
                        1. lower-+.f6460.8%

                          \[\leadsto x + \color{blue}{y} \]
                      4. Applied rewrites60.8%

                        \[\leadsto \color{blue}{x + y} \]
                    9. Recombined 3 regimes into one program.
                    10. Add Preprocessing

                    Alternative 11: 67.4% accurate, 0.9× speedup?

                    \[\begin{array}{l} \mathbf{if}\;\frac{z - t}{z - a} \leq \frac{1294652232923503}{196159429230833773869868419475239575503198607639501078528}:\\ \;\;\;\;1 \cdot x\\ \mathbf{else}:\\ \;\;\;\;x + y\\ \end{array} \]
                    (FPCore (x y z t a)
                      :precision binary64
                      (if (<=
                         (/ (- z t) (- z a))
                         1294652232923503/196159429230833773869868419475239575503198607639501078528)
                      (* 1 x)
                      (+ x y)))
                    double code(double x, double y, double z, double t, double a) {
                    	double tmp;
                    	if (((z - t) / (z - a)) <= 6.6e-42) {
                    		tmp = 1.0 * x;
                    	} else {
                    		tmp = x + y;
                    	}
                    	return tmp;
                    }
                    
                    module fmin_fmax_functions
                        implicit none
                        private
                        public fmax
                        public fmin
                    
                        interface fmax
                            module procedure fmax88
                            module procedure fmax44
                            module procedure fmax84
                            module procedure fmax48
                        end interface
                        interface fmin
                            module procedure fmin88
                            module procedure fmin44
                            module procedure fmin84
                            module procedure fmin48
                        end interface
                    contains
                        real(8) function fmax88(x, y) result (res)
                            real(8), intent (in) :: x
                            real(8), intent (in) :: y
                            res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                        end function
                        real(4) function fmax44(x, y) result (res)
                            real(4), intent (in) :: x
                            real(4), intent (in) :: y
                            res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                        end function
                        real(8) function fmax84(x, y) result(res)
                            real(8), intent (in) :: x
                            real(4), intent (in) :: y
                            res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                        end function
                        real(8) function fmax48(x, y) result(res)
                            real(4), intent (in) :: x
                            real(8), intent (in) :: y
                            res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                        end function
                        real(8) function fmin88(x, y) result (res)
                            real(8), intent (in) :: x
                            real(8), intent (in) :: y
                            res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                        end function
                        real(4) function fmin44(x, y) result (res)
                            real(4), intent (in) :: x
                            real(4), intent (in) :: y
                            res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                        end function
                        real(8) function fmin84(x, y) result(res)
                            real(8), intent (in) :: x
                            real(4), intent (in) :: y
                            res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                        end function
                        real(8) function fmin48(x, y) result(res)
                            real(4), intent (in) :: x
                            real(8), intent (in) :: y
                            res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                        end function
                    end module
                    
                    real(8) function code(x, y, z, t, a)
                    use fmin_fmax_functions
                        real(8), intent (in) :: x
                        real(8), intent (in) :: y
                        real(8), intent (in) :: z
                        real(8), intent (in) :: t
                        real(8), intent (in) :: a
                        real(8) :: tmp
                        if (((z - t) / (z - a)) <= 6.6d-42) then
                            tmp = 1.0d0 * x
                        else
                            tmp = x + y
                        end if
                        code = tmp
                    end function
                    
                    public static double code(double x, double y, double z, double t, double a) {
                    	double tmp;
                    	if (((z - t) / (z - a)) <= 6.6e-42) {
                    		tmp = 1.0 * x;
                    	} else {
                    		tmp = x + y;
                    	}
                    	return tmp;
                    }
                    
                    def code(x, y, z, t, a):
                    	tmp = 0
                    	if ((z - t) / (z - a)) <= 6.6e-42:
                    		tmp = 1.0 * x
                    	else:
                    		tmp = x + y
                    	return tmp
                    
                    function code(x, y, z, t, a)
                    	tmp = 0.0
                    	if (Float64(Float64(z - t) / Float64(z - a)) <= 6.6e-42)
                    		tmp = Float64(1.0 * x);
                    	else
                    		tmp = Float64(x + y);
                    	end
                    	return tmp
                    end
                    
                    function tmp_2 = code(x, y, z, t, a)
                    	tmp = 0.0;
                    	if (((z - t) / (z - a)) <= 6.6e-42)
                    		tmp = 1.0 * x;
                    	else
                    		tmp = x + y;
                    	end
                    	tmp_2 = tmp;
                    end
                    
                    code[x_, y_, z_, t_, a_] := If[LessEqual[N[(N[(z - t), $MachinePrecision] / N[(z - a), $MachinePrecision]), $MachinePrecision], 1294652232923503/196159429230833773869868419475239575503198607639501078528], N[(1 * x), $MachinePrecision], N[(x + y), $MachinePrecision]]
                    
                    \begin{array}{l}
                    \mathbf{if}\;\frac{z - t}{z - a} \leq \frac{1294652232923503}{196159429230833773869868419475239575503198607639501078528}:\\
                    \;\;\;\;1 \cdot x\\
                    
                    \mathbf{else}:\\
                    \;\;\;\;x + y\\
                    
                    
                    \end{array}
                    
                    Derivation
                    1. Split input into 2 regimes
                    2. if (/.f64 (-.f64 z t) (-.f64 z a)) < 6.6000000000000005e-42

                      1. Initial program 98.2%

                        \[x + y \cdot \frac{z - t}{z - a} \]
                      2. Taylor expanded in z around inf

                        \[\leadsto \color{blue}{x + y} \]
                      3. Step-by-step derivation
                        1. lower-+.f6460.8%

                          \[\leadsto x + \color{blue}{y} \]
                      4. Applied rewrites60.8%

                        \[\leadsto \color{blue}{x + y} \]
                      5. Step-by-step derivation
                        1. lift-+.f64N/A

                          \[\leadsto x + \color{blue}{y} \]
                        2. sum-to-multN/A

                          \[\leadsto \left(1 + \frac{y}{x}\right) \cdot \color{blue}{x} \]
                        3. lower-unsound-*.f64N/A

                          \[\leadsto \left(1 + \frac{y}{x}\right) \cdot \color{blue}{x} \]
                        4. metadata-evalN/A

                          \[\leadsto \left(\left(\mathsf{neg}\left(-1\right)\right) + \frac{y}{x}\right) \cdot x \]
                        5. lower-unsound-+.f64N/A

                          \[\leadsto \left(\left(\mathsf{neg}\left(-1\right)\right) + \frac{y}{x}\right) \cdot x \]
                        6. metadata-evalN/A

                          \[\leadsto \left(1 + \frac{y}{x}\right) \cdot x \]
                        7. lower-unsound-/.f6458.1%

                          \[\leadsto \left(1 + \frac{y}{x}\right) \cdot x \]
                      6. Applied rewrites58.1%

                        \[\leadsto \left(1 + \frac{y}{x}\right) \cdot \color{blue}{x} \]
                      7. Taylor expanded in x around inf

                        \[\leadsto 1 \cdot x \]
                      8. Step-by-step derivation
                        1. Applied rewrites50.8%

                          \[\leadsto 1 \cdot x \]

                        if 6.6000000000000005e-42 < (/.f64 (-.f64 z t) (-.f64 z a))

                        1. Initial program 98.2%

                          \[x + y \cdot \frac{z - t}{z - a} \]
                        2. Taylor expanded in z around inf

                          \[\leadsto \color{blue}{x + y} \]
                        3. Step-by-step derivation
                          1. lower-+.f6460.8%

                            \[\leadsto x + \color{blue}{y} \]
                        4. Applied rewrites60.8%

                          \[\leadsto \color{blue}{x + y} \]
                      9. Recombined 2 regimes into one program.
                      10. Add Preprocessing

                      Alternative 12: 60.8% accurate, 6.5× speedup?

                      \[x + y \]
                      (FPCore (x y z t a)
                        :precision binary64
                        (+ x y))
                      double code(double x, double y, double z, double t, double a) {
                      	return x + y;
                      }
                      
                      module fmin_fmax_functions
                          implicit none
                          private
                          public fmax
                          public fmin
                      
                          interface fmax
                              module procedure fmax88
                              module procedure fmax44
                              module procedure fmax84
                              module procedure fmax48
                          end interface
                          interface fmin
                              module procedure fmin88
                              module procedure fmin44
                              module procedure fmin84
                              module procedure fmin48
                          end interface
                      contains
                          real(8) function fmax88(x, y) result (res)
                              real(8), intent (in) :: x
                              real(8), intent (in) :: y
                              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                          end function
                          real(4) function fmax44(x, y) result (res)
                              real(4), intent (in) :: x
                              real(4), intent (in) :: y
                              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                          end function
                          real(8) function fmax84(x, y) result(res)
                              real(8), intent (in) :: x
                              real(4), intent (in) :: y
                              res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                          end function
                          real(8) function fmax48(x, y) result(res)
                              real(4), intent (in) :: x
                              real(8), intent (in) :: y
                              res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                          end function
                          real(8) function fmin88(x, y) result (res)
                              real(8), intent (in) :: x
                              real(8), intent (in) :: y
                              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                          end function
                          real(4) function fmin44(x, y) result (res)
                              real(4), intent (in) :: x
                              real(4), intent (in) :: y
                              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                          end function
                          real(8) function fmin84(x, y) result(res)
                              real(8), intent (in) :: x
                              real(4), intent (in) :: y
                              res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                          end function
                          real(8) function fmin48(x, y) result(res)
                              real(4), intent (in) :: x
                              real(8), intent (in) :: y
                              res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                          end function
                      end module
                      
                      real(8) function code(x, y, z, t, a)
                      use fmin_fmax_functions
                          real(8), intent (in) :: x
                          real(8), intent (in) :: y
                          real(8), intent (in) :: z
                          real(8), intent (in) :: t
                          real(8), intent (in) :: a
                          code = x + y
                      end function
                      
                      public static double code(double x, double y, double z, double t, double a) {
                      	return x + y;
                      }
                      
                      def code(x, y, z, t, a):
                      	return x + y
                      
                      function code(x, y, z, t, a)
                      	return Float64(x + y)
                      end
                      
                      function tmp = code(x, y, z, t, a)
                      	tmp = x + y;
                      end
                      
                      code[x_, y_, z_, t_, a_] := N[(x + y), $MachinePrecision]
                      
                      x + y
                      
                      Derivation
                      1. Initial program 98.2%

                        \[x + y \cdot \frac{z - t}{z - a} \]
                      2. Taylor expanded in z around inf

                        \[\leadsto \color{blue}{x + y} \]
                      3. Step-by-step derivation
                        1. lower-+.f6460.8%

                          \[\leadsto x + \color{blue}{y} \]
                      4. Applied rewrites60.8%

                        \[\leadsto \color{blue}{x + y} \]
                      5. Add Preprocessing

                      Alternative 13: 19.0% accurate, 26.0× speedup?

                      \[y \]
                      (FPCore (x y z t a)
                        :precision binary64
                        y)
                      double code(double x, double y, double z, double t, double a) {
                      	return y;
                      }
                      
                      module fmin_fmax_functions
                          implicit none
                          private
                          public fmax
                          public fmin
                      
                          interface fmax
                              module procedure fmax88
                              module procedure fmax44
                              module procedure fmax84
                              module procedure fmax48
                          end interface
                          interface fmin
                              module procedure fmin88
                              module procedure fmin44
                              module procedure fmin84
                              module procedure fmin48
                          end interface
                      contains
                          real(8) function fmax88(x, y) result (res)
                              real(8), intent (in) :: x
                              real(8), intent (in) :: y
                              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                          end function
                          real(4) function fmax44(x, y) result (res)
                              real(4), intent (in) :: x
                              real(4), intent (in) :: y
                              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                          end function
                          real(8) function fmax84(x, y) result(res)
                              real(8), intent (in) :: x
                              real(4), intent (in) :: y
                              res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                          end function
                          real(8) function fmax48(x, y) result(res)
                              real(4), intent (in) :: x
                              real(8), intent (in) :: y
                              res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                          end function
                          real(8) function fmin88(x, y) result (res)
                              real(8), intent (in) :: x
                              real(8), intent (in) :: y
                              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                          end function
                          real(4) function fmin44(x, y) result (res)
                              real(4), intent (in) :: x
                              real(4), intent (in) :: y
                              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                          end function
                          real(8) function fmin84(x, y) result(res)
                              real(8), intent (in) :: x
                              real(4), intent (in) :: y
                              res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                          end function
                          real(8) function fmin48(x, y) result(res)
                              real(4), intent (in) :: x
                              real(8), intent (in) :: y
                              res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                          end function
                      end module
                      
                      real(8) function code(x, y, z, t, a)
                      use fmin_fmax_functions
                          real(8), intent (in) :: x
                          real(8), intent (in) :: y
                          real(8), intent (in) :: z
                          real(8), intent (in) :: t
                          real(8), intent (in) :: a
                          code = y
                      end function
                      
                      public static double code(double x, double y, double z, double t, double a) {
                      	return y;
                      }
                      
                      def code(x, y, z, t, a):
                      	return y
                      
                      function code(x, y, z, t, a)
                      	return y
                      end
                      
                      function tmp = code(x, y, z, t, a)
                      	tmp = y;
                      end
                      
                      code[x_, y_, z_, t_, a_] := y
                      
                      y
                      
                      Derivation
                      1. Initial program 98.2%

                        \[x + y \cdot \frac{z - t}{z - a} \]
                      2. Taylor expanded in z around inf

                        \[\leadsto \color{blue}{x + y} \]
                      3. Step-by-step derivation
                        1. lower-+.f6460.8%

                          \[\leadsto x + \color{blue}{y} \]
                      4. Applied rewrites60.8%

                        \[\leadsto \color{blue}{x + y} \]
                      5. Taylor expanded in x around 0

                        \[\leadsto y \]
                      6. Step-by-step derivation
                        1. Applied rewrites19.0%

                          \[\leadsto y \]
                        2. Add Preprocessing

                        Reproduce

                        ?
                        herbie shell --seed 2025271 -o generate:evaluate
                        (FPCore (x y z t a)
                          :name "Graphics.Rendering.Plot.Render.Plot.Axis:renderAxisLine from plot-0.2.3.4, A"
                          :precision binary64
                          (+ x (* y (/ (- z t) (- z a)))))