
(FPCore (x y) :precision binary64 (* (* 3 (sqrt x)) (- (+ y (/ 1 (* x 9))) 1)))
double code(double x, double y) {
return (3.0 * sqrt(x)) * ((y + (1.0 / (x * 9.0))) - 1.0);
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
code = (3.0d0 * sqrt(x)) * ((y + (1.0d0 / (x * 9.0d0))) - 1.0d0)
end function
public static double code(double x, double y) {
return (3.0 * Math.sqrt(x)) * ((y + (1.0 / (x * 9.0))) - 1.0);
}
def code(x, y): return (3.0 * math.sqrt(x)) * ((y + (1.0 / (x * 9.0))) - 1.0)
function code(x, y) return Float64(Float64(3.0 * sqrt(x)) * Float64(Float64(y + Float64(1.0 / Float64(x * 9.0))) - 1.0)) end
function tmp = code(x, y) tmp = (3.0 * sqrt(x)) * ((y + (1.0 / (x * 9.0))) - 1.0); end
code[x_, y_] := N[(N[(3 * N[Sqrt[x], $MachinePrecision]), $MachinePrecision] * N[(N[(y + N[(1 / N[(x * 9), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] - 1), $MachinePrecision]), $MachinePrecision]
\left(3 \cdot \sqrt{x}\right) \cdot \left(\left(y + \frac{1}{x \cdot 9}\right) - 1\right)
Herbie found 11 alternatives:
| Alternative | Accuracy | Speedup |
|---|
(FPCore (x y) :precision binary64 (* (* 3 (sqrt x)) (- (+ y (/ 1 (* x 9))) 1)))
double code(double x, double y) {
return (3.0 * sqrt(x)) * ((y + (1.0 / (x * 9.0))) - 1.0);
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
code = (3.0d0 * sqrt(x)) * ((y + (1.0d0 / (x * 9.0d0))) - 1.0d0)
end function
public static double code(double x, double y) {
return (3.0 * Math.sqrt(x)) * ((y + (1.0 / (x * 9.0))) - 1.0);
}
def code(x, y): return (3.0 * math.sqrt(x)) * ((y + (1.0 / (x * 9.0))) - 1.0)
function code(x, y) return Float64(Float64(3.0 * sqrt(x)) * Float64(Float64(y + Float64(1.0 / Float64(x * 9.0))) - 1.0)) end
function tmp = code(x, y) tmp = (3.0 * sqrt(x)) * ((y + (1.0 / (x * 9.0))) - 1.0); end
code[x_, y_] := N[(N[(3 * N[Sqrt[x], $MachinePrecision]), $MachinePrecision] * N[(N[(y + N[(1 / N[(x * 9), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] - 1), $MachinePrecision]), $MachinePrecision]
\left(3 \cdot \sqrt{x}\right) \cdot \left(\left(y + \frac{1}{x \cdot 9}\right) - 1\right)
(FPCore (x y) :precision binary64 (134-z0z1z2z3z4 3 (/ (- (* y 9) (/ -1 x)) 9) (sqrt x) (sqrt x) 1))
\mathsf{134\_z0z1z2z3z4}\left(3, \left(\frac{y \cdot 9 - \frac{-1}{x}}{9}\right), \left(\sqrt{x}\right), \left(\sqrt{x}\right), 1\right)
Initial program 99.4%
lift-*.f64N/A
lift-*.f64N/A
associate-*l*N/A
lift--.f64N/A
sub-flipN/A
metadata-evalN/A
distribute-rgt-inN/A
fp-cancel-sign-sub-invN/A
metadata-evalN/A
metadata-evalN/A
lift-sqrt.f64N/A
sqrt-fabs-revN/A
lift-sqrt.f64N/A
mul-fabsN/A
*-commutativeN/A
mul-fabsN/A
lift-sqrt.f64N/A
sqrt-fabs-revN/A
lift-sqrt.f64N/A
metadata-evalN/A
Applied rewrites99.5%
lift-+.f64N/A
lift-/.f64N/A
metadata-evalN/A
associate-/r*N/A
*-commutativeN/A
+-commutativeN/A
add-to-fractionN/A
associate-/r*N/A
lower-/.f64N/A
add-flipN/A
*-commutativeN/A
associate-*r*N/A
metadata-evalN/A
sub-to-fraction-revN/A
frac-2neg-revN/A
metadata-evalN/A
lower--.f64N/A
lower-*.f64N/A
metadata-evalN/A
frac-2neg-revN/A
lower-/.f6499.3%
Applied rewrites99.3%
(FPCore (x y) :precision binary64 (134-z0z1z2z3z4 3 (+ (/ 1 (* 9 x)) y) (sqrt x) (sqrt x) 1))
\mathsf{134\_z0z1z2z3z4}\left(3, \left(\frac{1}{9 \cdot x} + y\right), \left(\sqrt{x}\right), \left(\sqrt{x}\right), 1\right)
Initial program 99.4%
lift-*.f64N/A
lift-*.f64N/A
associate-*l*N/A
lift--.f64N/A
sub-flipN/A
metadata-evalN/A
distribute-rgt-inN/A
fp-cancel-sign-sub-invN/A
metadata-evalN/A
metadata-evalN/A
lift-sqrt.f64N/A
sqrt-fabs-revN/A
lift-sqrt.f64N/A
mul-fabsN/A
*-commutativeN/A
mul-fabsN/A
lift-sqrt.f64N/A
sqrt-fabs-revN/A
lift-sqrt.f64N/A
metadata-evalN/A
Applied rewrites99.5%
lift-/.f64N/A
metadata-evalN/A
associate-/r*N/A
*-commutativeN/A
lower-/.f64N/A
*-commutativeN/A
lower-*.f6499.5%
Applied rewrites99.5%
(FPCore (x y) :precision binary64 (134-z0z1z2z3z4 3 (+ (/ 1/9 x) y) (sqrt x) (sqrt x) 1))
\mathsf{134\_z0z1z2z3z4}\left(3, \left(\frac{\frac{1}{9}}{x} + y\right), \left(\sqrt{x}\right), \left(\sqrt{x}\right), 1\right)
Initial program 99.4%
lift-*.f64N/A
lift-*.f64N/A
associate-*l*N/A
lift--.f64N/A
sub-flipN/A
metadata-evalN/A
distribute-rgt-inN/A
fp-cancel-sign-sub-invN/A
metadata-evalN/A
metadata-evalN/A
lift-sqrt.f64N/A
sqrt-fabs-revN/A
lift-sqrt.f64N/A
mul-fabsN/A
*-commutativeN/A
mul-fabsN/A
lift-sqrt.f64N/A
sqrt-fabs-revN/A
lift-sqrt.f64N/A
metadata-evalN/A
Applied rewrites99.5%
(FPCore (x y) :precision binary64 (* (* (/ (- (- (* 9 y) (/ -1 x)) 9) 9) (sqrt x)) 3))
double code(double x, double y) {
return (((((9.0 * y) - (-1.0 / x)) - 9.0) / 9.0) * sqrt(x)) * 3.0;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
code = (((((9.0d0 * y) - ((-1.0d0) / x)) - 9.0d0) / 9.0d0) * sqrt(x)) * 3.0d0
end function
public static double code(double x, double y) {
return (((((9.0 * y) - (-1.0 / x)) - 9.0) / 9.0) * Math.sqrt(x)) * 3.0;
}
def code(x, y): return (((((9.0 * y) - (-1.0 / x)) - 9.0) / 9.0) * math.sqrt(x)) * 3.0
function code(x, y) return Float64(Float64(Float64(Float64(Float64(Float64(9.0 * y) - Float64(-1.0 / x)) - 9.0) / 9.0) * sqrt(x)) * 3.0) end
function tmp = code(x, y) tmp = (((((9.0 * y) - (-1.0 / x)) - 9.0) / 9.0) * sqrt(x)) * 3.0; end
code[x_, y_] := N[(N[(N[(N[(N[(N[(9 * y), $MachinePrecision] - N[(-1 / x), $MachinePrecision]), $MachinePrecision] - 9), $MachinePrecision] / 9), $MachinePrecision] * N[Sqrt[x], $MachinePrecision]), $MachinePrecision] * 3), $MachinePrecision]
\left(\frac{\left(9 \cdot y - \frac{-1}{x}\right) - 9}{9} \cdot \sqrt{x}\right) \cdot 3
Initial program 99.4%
lift-*.f64N/A
lift-*.f64N/A
associate-*l*N/A
*-commutativeN/A
lower-*.f64N/A
*-commutativeN/A
lower-*.f6499.4%
lift-+.f64N/A
+-commutativeN/A
lower-+.f6499.4%
lift-/.f64N/A
lift-*.f64N/A
*-commutativeN/A
associate-/r*N/A
lower-/.f64N/A
metadata-eval99.4%
Applied rewrites99.4%
lift--.f64N/A
lift-+.f64N/A
lift-/.f64N/A
mult-flip-revN/A
lift-/.f64N/A
lift-*.f64N/A
Applied rewrites99.3%
(FPCore (x y) :precision binary64 (* (* (- (+ (/ 1/9 x) y) 1) 3) (sqrt x)))
double code(double x, double y) {
return ((((0.1111111111111111 / x) + y) - 1.0) * 3.0) * sqrt(x);
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
code = ((((0.1111111111111111d0 / x) + y) - 1.0d0) * 3.0d0) * sqrt(x)
end function
public static double code(double x, double y) {
return ((((0.1111111111111111 / x) + y) - 1.0) * 3.0) * Math.sqrt(x);
}
def code(x, y): return ((((0.1111111111111111 / x) + y) - 1.0) * 3.0) * math.sqrt(x)
function code(x, y) return Float64(Float64(Float64(Float64(Float64(0.1111111111111111 / x) + y) - 1.0) * 3.0) * sqrt(x)) end
function tmp = code(x, y) tmp = ((((0.1111111111111111 / x) + y) - 1.0) * 3.0) * sqrt(x); end
code[x_, y_] := N[(N[(N[(N[(N[(1/9 / x), $MachinePrecision] + y), $MachinePrecision] - 1), $MachinePrecision] * 3), $MachinePrecision] * N[Sqrt[x], $MachinePrecision]), $MachinePrecision]
\left(\left(\left(\frac{\frac{1}{9}}{x} + y\right) - 1\right) \cdot 3\right) \cdot \sqrt{x}
Initial program 99.4%
lift-*.f64N/A
lift-*.f64N/A
associate-*l*N/A
*-commutativeN/A
associate-*r*N/A
lower-*.f64N/A
*-commutativeN/A
lower-*.f6499.4%
lift-+.f64N/A
+-commutativeN/A
lower-+.f6499.4%
lift-/.f64N/A
lift-*.f64N/A
*-commutativeN/A
associate-/r*N/A
lower-/.f64N/A
metadata-eval99.4%
Applied rewrites99.4%
(FPCore (x y)
:precision binary64
(let* ((t_0 (* 3 (sqrt x))) (t_1 (* t_0 (- (+ y (/ 1 (* x 9))) 1))))
(if (<= t_1 -50000000000000)
(* t_0 (- y 1))
(if (<=
t_1
5000000000000000184737728440291132704904589914921344225961389276075271829673609798608256554852704163723255876843616333657168501674786702085523096224137216)
(* 1/3 (* (sqrt x) (- (/ 1 x) 9)))
(* (* y 3) (sqrt x))))))double code(double x, double y) {
double t_0 = 3.0 * sqrt(x);
double t_1 = t_0 * ((y + (1.0 / (x * 9.0))) - 1.0);
double tmp;
if (t_1 <= -50000000000000.0) {
tmp = t_0 * (y - 1.0);
} else if (t_1 <= 5e+153) {
tmp = 0.3333333333333333 * (sqrt(x) * ((1.0 / x) - 9.0));
} else {
tmp = (y * 3.0) * sqrt(x);
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8) :: t_0
real(8) :: t_1
real(8) :: tmp
t_0 = 3.0d0 * sqrt(x)
t_1 = t_0 * ((y + (1.0d0 / (x * 9.0d0))) - 1.0d0)
if (t_1 <= (-50000000000000.0d0)) then
tmp = t_0 * (y - 1.0d0)
else if (t_1 <= 5d+153) then
tmp = 0.3333333333333333d0 * (sqrt(x) * ((1.0d0 / x) - 9.0d0))
else
tmp = (y * 3.0d0) * sqrt(x)
end if
code = tmp
end function
public static double code(double x, double y) {
double t_0 = 3.0 * Math.sqrt(x);
double t_1 = t_0 * ((y + (1.0 / (x * 9.0))) - 1.0);
double tmp;
if (t_1 <= -50000000000000.0) {
tmp = t_0 * (y - 1.0);
} else if (t_1 <= 5e+153) {
tmp = 0.3333333333333333 * (Math.sqrt(x) * ((1.0 / x) - 9.0));
} else {
tmp = (y * 3.0) * Math.sqrt(x);
}
return tmp;
}
def code(x, y): t_0 = 3.0 * math.sqrt(x) t_1 = t_0 * ((y + (1.0 / (x * 9.0))) - 1.0) tmp = 0 if t_1 <= -50000000000000.0: tmp = t_0 * (y - 1.0) elif t_1 <= 5e+153: tmp = 0.3333333333333333 * (math.sqrt(x) * ((1.0 / x) - 9.0)) else: tmp = (y * 3.0) * math.sqrt(x) return tmp
function code(x, y) t_0 = Float64(3.0 * sqrt(x)) t_1 = Float64(t_0 * Float64(Float64(y + Float64(1.0 / Float64(x * 9.0))) - 1.0)) tmp = 0.0 if (t_1 <= -50000000000000.0) tmp = Float64(t_0 * Float64(y - 1.0)); elseif (t_1 <= 5e+153) tmp = Float64(0.3333333333333333 * Float64(sqrt(x) * Float64(Float64(1.0 / x) - 9.0))); else tmp = Float64(Float64(y * 3.0) * sqrt(x)); end return tmp end
function tmp_2 = code(x, y) t_0 = 3.0 * sqrt(x); t_1 = t_0 * ((y + (1.0 / (x * 9.0))) - 1.0); tmp = 0.0; if (t_1 <= -50000000000000.0) tmp = t_0 * (y - 1.0); elseif (t_1 <= 5e+153) tmp = 0.3333333333333333 * (sqrt(x) * ((1.0 / x) - 9.0)); else tmp = (y * 3.0) * sqrt(x); end tmp_2 = tmp; end
code[x_, y_] := Block[{t$95$0 = N[(3 * N[Sqrt[x], $MachinePrecision]), $MachinePrecision]}, Block[{t$95$1 = N[(t$95$0 * N[(N[(y + N[(1 / N[(x * 9), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] - 1), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$1, -50000000000000], N[(t$95$0 * N[(y - 1), $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$1, 5000000000000000184737728440291132704904589914921344225961389276075271829673609798608256554852704163723255876843616333657168501674786702085523096224137216], N[(1/3 * N[(N[Sqrt[x], $MachinePrecision] * N[(N[(1 / x), $MachinePrecision] - 9), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[(N[(y * 3), $MachinePrecision] * N[Sqrt[x], $MachinePrecision]), $MachinePrecision]]]]]
\begin{array}{l}
t_0 := 3 \cdot \sqrt{x}\\
t_1 := t\_0 \cdot \left(\left(y + \frac{1}{x \cdot 9}\right) - 1\right)\\
\mathbf{if}\;t\_1 \leq -50000000000000:\\
\;\;\;\;t\_0 \cdot \left(y - 1\right)\\
\mathbf{elif}\;t\_1 \leq 5000000000000000184737728440291132704904589914921344225961389276075271829673609798608256554852704163723255876843616333657168501674786702085523096224137216:\\
\;\;\;\;\frac{1}{3} \cdot \left(\sqrt{x} \cdot \left(\frac{1}{x} - 9\right)\right)\\
\mathbf{else}:\\
\;\;\;\;\left(y \cdot 3\right) \cdot \sqrt{x}\\
\end{array}
if (*.f64 (*.f64 #s(literal 3 binary64) (sqrt.f64 x)) (-.f64 (+.f64 y (/.f64 #s(literal 1 binary64) (*.f64 x #s(literal 9 binary64)))) #s(literal 1 binary64))) < -5e13Initial program 99.4%
Taylor expanded in x around inf
Applied rewrites62.8%
if -5e13 < (*.f64 (*.f64 #s(literal 3 binary64) (sqrt.f64 x)) (-.f64 (+.f64 y (/.f64 #s(literal 1 binary64) (*.f64 x #s(literal 9 binary64)))) #s(literal 1 binary64))) < 5.0000000000000002e153Initial program 99.4%
lift-*.f64N/A
lift-*.f64N/A
associate-*l*N/A
*-commutativeN/A
lower-*.f64N/A
*-commutativeN/A
lower-*.f6499.4%
lift-+.f64N/A
+-commutativeN/A
lower-+.f6499.4%
lift-/.f64N/A
lift-*.f64N/A
*-commutativeN/A
associate-/r*N/A
lower-/.f64N/A
metadata-eval99.4%
Applied rewrites99.4%
lift--.f64N/A
lift-+.f64N/A
lift-/.f64N/A
mult-flip-revN/A
lift-/.f64N/A
lift-*.f64N/A
Applied rewrites99.3%
Taylor expanded in y around 0
lower-*.f64N/A
lower-*.f64N/A
lower-sqrt.f64N/A
lower--.f64N/A
lower-/.f6461.9%
Applied rewrites61.9%
if 5.0000000000000002e153 < (*.f64 (*.f64 #s(literal 3 binary64) (sqrt.f64 x)) (-.f64 (+.f64 y (/.f64 #s(literal 1 binary64) (*.f64 x #s(literal 9 binary64)))) #s(literal 1 binary64))) Initial program 99.4%
Taylor expanded in y around inf
lower-*.f64N/A
lower-*.f64N/A
lower-sqrt.f6438.8%
Applied rewrites38.8%
lift-*.f64N/A
lift-*.f64N/A
associate-*r*N/A
lower-*.f64N/A
*-commutativeN/A
lower-*.f6438.8%
Applied rewrites38.8%
(FPCore (x y)
:precision binary64
(let* ((t_0 (* 3 (sqrt x))) (t_1 (* t_0 (- (+ y (/ 1 (* x 9))) 1))))
(if (<= t_1 -3602879701896397/9007199254740992)
(* t_0 (- y 1))
(if (<=
t_1
5000000000000000184737728440291132704904589914921344225961389276075271829673609798608256554852704163723255876843616333657168501674786702085523096224137216)
(* 1/3 (/ (sqrt x) x))
(* (* y 3) (sqrt x))))))double code(double x, double y) {
double t_0 = 3.0 * sqrt(x);
double t_1 = t_0 * ((y + (1.0 / (x * 9.0))) - 1.0);
double tmp;
if (t_1 <= -0.4) {
tmp = t_0 * (y - 1.0);
} else if (t_1 <= 5e+153) {
tmp = 0.3333333333333333 * (sqrt(x) / x);
} else {
tmp = (y * 3.0) * sqrt(x);
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8) :: t_0
real(8) :: t_1
real(8) :: tmp
t_0 = 3.0d0 * sqrt(x)
t_1 = t_0 * ((y + (1.0d0 / (x * 9.0d0))) - 1.0d0)
if (t_1 <= (-0.4d0)) then
tmp = t_0 * (y - 1.0d0)
else if (t_1 <= 5d+153) then
tmp = 0.3333333333333333d0 * (sqrt(x) / x)
else
tmp = (y * 3.0d0) * sqrt(x)
end if
code = tmp
end function
public static double code(double x, double y) {
double t_0 = 3.0 * Math.sqrt(x);
double t_1 = t_0 * ((y + (1.0 / (x * 9.0))) - 1.0);
double tmp;
if (t_1 <= -0.4) {
tmp = t_0 * (y - 1.0);
} else if (t_1 <= 5e+153) {
tmp = 0.3333333333333333 * (Math.sqrt(x) / x);
} else {
tmp = (y * 3.0) * Math.sqrt(x);
}
return tmp;
}
def code(x, y): t_0 = 3.0 * math.sqrt(x) t_1 = t_0 * ((y + (1.0 / (x * 9.0))) - 1.0) tmp = 0 if t_1 <= -0.4: tmp = t_0 * (y - 1.0) elif t_1 <= 5e+153: tmp = 0.3333333333333333 * (math.sqrt(x) / x) else: tmp = (y * 3.0) * math.sqrt(x) return tmp
function code(x, y) t_0 = Float64(3.0 * sqrt(x)) t_1 = Float64(t_0 * Float64(Float64(y + Float64(1.0 / Float64(x * 9.0))) - 1.0)) tmp = 0.0 if (t_1 <= -0.4) tmp = Float64(t_0 * Float64(y - 1.0)); elseif (t_1 <= 5e+153) tmp = Float64(0.3333333333333333 * Float64(sqrt(x) / x)); else tmp = Float64(Float64(y * 3.0) * sqrt(x)); end return tmp end
function tmp_2 = code(x, y) t_0 = 3.0 * sqrt(x); t_1 = t_0 * ((y + (1.0 / (x * 9.0))) - 1.0); tmp = 0.0; if (t_1 <= -0.4) tmp = t_0 * (y - 1.0); elseif (t_1 <= 5e+153) tmp = 0.3333333333333333 * (sqrt(x) / x); else tmp = (y * 3.0) * sqrt(x); end tmp_2 = tmp; end
code[x_, y_] := Block[{t$95$0 = N[(3 * N[Sqrt[x], $MachinePrecision]), $MachinePrecision]}, Block[{t$95$1 = N[(t$95$0 * N[(N[(y + N[(1 / N[(x * 9), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] - 1), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$1, -3602879701896397/9007199254740992], N[(t$95$0 * N[(y - 1), $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$1, 5000000000000000184737728440291132704904589914921344225961389276075271829673609798608256554852704163723255876843616333657168501674786702085523096224137216], N[(1/3 * N[(N[Sqrt[x], $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision], N[(N[(y * 3), $MachinePrecision] * N[Sqrt[x], $MachinePrecision]), $MachinePrecision]]]]]
\begin{array}{l}
t_0 := 3 \cdot \sqrt{x}\\
t_1 := t\_0 \cdot \left(\left(y + \frac{1}{x \cdot 9}\right) - 1\right)\\
\mathbf{if}\;t\_1 \leq \frac{-3602879701896397}{9007199254740992}:\\
\;\;\;\;t\_0 \cdot \left(y - 1\right)\\
\mathbf{elif}\;t\_1 \leq 5000000000000000184737728440291132704904589914921344225961389276075271829673609798608256554852704163723255876843616333657168501674786702085523096224137216:\\
\;\;\;\;\frac{1}{3} \cdot \frac{\sqrt{x}}{x}\\
\mathbf{else}:\\
\;\;\;\;\left(y \cdot 3\right) \cdot \sqrt{x}\\
\end{array}
if (*.f64 (*.f64 #s(literal 3 binary64) (sqrt.f64 x)) (-.f64 (+.f64 y (/.f64 #s(literal 1 binary64) (*.f64 x #s(literal 9 binary64)))) #s(literal 1 binary64))) < -0.40000000000000002Initial program 99.4%
Taylor expanded in x around inf
Applied rewrites62.8%
if -0.40000000000000002 < (*.f64 (*.f64 #s(literal 3 binary64) (sqrt.f64 x)) (-.f64 (+.f64 y (/.f64 #s(literal 1 binary64) (*.f64 x #s(literal 9 binary64)))) #s(literal 1 binary64))) < 5.0000000000000002e153Initial program 99.4%
Taylor expanded in x around 0
lower-*.f64N/A
lower-/.f64N/A
lower-sqrt.f6437.2%
Applied rewrites37.2%
if 5.0000000000000002e153 < (*.f64 (*.f64 #s(literal 3 binary64) (sqrt.f64 x)) (-.f64 (+.f64 y (/.f64 #s(literal 1 binary64) (*.f64 x #s(literal 9 binary64)))) #s(literal 1 binary64))) Initial program 99.4%
Taylor expanded in y around inf
lower-*.f64N/A
lower-*.f64N/A
lower-sqrt.f6438.8%
Applied rewrites38.8%
lift-*.f64N/A
lift-*.f64N/A
associate-*r*N/A
lower-*.f64N/A
*-commutativeN/A
lower-*.f6438.8%
Applied rewrites38.8%
(FPCore (x y)
:precision binary64
(if (<= y -4912146075884389/316912650057057350374175801344)
(* (* y 3) (sqrt x))
(if (<= y 237684487542793/4951760157141521099596496896)
(* (* 3 (sqrt x)) -1)
(* 3 (* y (sqrt x))))))double code(double x, double y) {
double tmp;
if (y <= -1.55e-14) {
tmp = (y * 3.0) * sqrt(x);
} else if (y <= 4.8e-14) {
tmp = (3.0 * sqrt(x)) * -1.0;
} else {
tmp = 3.0 * (y * sqrt(x));
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8) :: tmp
if (y <= (-1.55d-14)) then
tmp = (y * 3.0d0) * sqrt(x)
else if (y <= 4.8d-14) then
tmp = (3.0d0 * sqrt(x)) * (-1.0d0)
else
tmp = 3.0d0 * (y * sqrt(x))
end if
code = tmp
end function
public static double code(double x, double y) {
double tmp;
if (y <= -1.55e-14) {
tmp = (y * 3.0) * Math.sqrt(x);
} else if (y <= 4.8e-14) {
tmp = (3.0 * Math.sqrt(x)) * -1.0;
} else {
tmp = 3.0 * (y * Math.sqrt(x));
}
return tmp;
}
def code(x, y): tmp = 0 if y <= -1.55e-14: tmp = (y * 3.0) * math.sqrt(x) elif y <= 4.8e-14: tmp = (3.0 * math.sqrt(x)) * -1.0 else: tmp = 3.0 * (y * math.sqrt(x)) return tmp
function code(x, y) tmp = 0.0 if (y <= -1.55e-14) tmp = Float64(Float64(y * 3.0) * sqrt(x)); elseif (y <= 4.8e-14) tmp = Float64(Float64(3.0 * sqrt(x)) * -1.0); else tmp = Float64(3.0 * Float64(y * sqrt(x))); end return tmp end
function tmp_2 = code(x, y) tmp = 0.0; if (y <= -1.55e-14) tmp = (y * 3.0) * sqrt(x); elseif (y <= 4.8e-14) tmp = (3.0 * sqrt(x)) * -1.0; else tmp = 3.0 * (y * sqrt(x)); end tmp_2 = tmp; end
code[x_, y_] := If[LessEqual[y, -4912146075884389/316912650057057350374175801344], N[(N[(y * 3), $MachinePrecision] * N[Sqrt[x], $MachinePrecision]), $MachinePrecision], If[LessEqual[y, 237684487542793/4951760157141521099596496896], N[(N[(3 * N[Sqrt[x], $MachinePrecision]), $MachinePrecision] * -1), $MachinePrecision], N[(3 * N[(y * N[Sqrt[x], $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]]
\begin{array}{l}
\mathbf{if}\;y \leq \frac{-4912146075884389}{316912650057057350374175801344}:\\
\;\;\;\;\left(y \cdot 3\right) \cdot \sqrt{x}\\
\mathbf{elif}\;y \leq \frac{237684487542793}{4951760157141521099596496896}:\\
\;\;\;\;\left(3 \cdot \sqrt{x}\right) \cdot -1\\
\mathbf{else}:\\
\;\;\;\;3 \cdot \left(y \cdot \sqrt{x}\right)\\
\end{array}
if y < -1.55e-14Initial program 99.4%
Taylor expanded in y around inf
lower-*.f64N/A
lower-*.f64N/A
lower-sqrt.f6438.8%
Applied rewrites38.8%
lift-*.f64N/A
lift-*.f64N/A
associate-*r*N/A
lower-*.f64N/A
*-commutativeN/A
lower-*.f6438.8%
Applied rewrites38.8%
if -1.55e-14 < y < 4.7999999999999997e-14Initial program 99.4%
Taylor expanded in y around 0
lower--.f64N/A
lower-*.f64N/A
lower-/.f6461.9%
Applied rewrites61.9%
Taylor expanded in x around inf
Applied rewrites25.8%
if 4.7999999999999997e-14 < y Initial program 99.4%
Taylor expanded in y around inf
lower-*.f64N/A
lower-*.f64N/A
lower-sqrt.f6438.8%
Applied rewrites38.8%
(FPCore (x y) :precision binary64 (* (* 3 (sqrt x)) (- y 1)))
double code(double x, double y) {
return (3.0 * sqrt(x)) * (y - 1.0);
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
code = (3.0d0 * sqrt(x)) * (y - 1.0d0)
end function
public static double code(double x, double y) {
return (3.0 * Math.sqrt(x)) * (y - 1.0);
}
def code(x, y): return (3.0 * math.sqrt(x)) * (y - 1.0)
function code(x, y) return Float64(Float64(3.0 * sqrt(x)) * Float64(y - 1.0)) end
function tmp = code(x, y) tmp = (3.0 * sqrt(x)) * (y - 1.0); end
code[x_, y_] := N[(N[(3 * N[Sqrt[x], $MachinePrecision]), $MachinePrecision] * N[(y - 1), $MachinePrecision]), $MachinePrecision]
\left(3 \cdot \sqrt{x}\right) \cdot \left(y - 1\right)
Initial program 99.4%
Taylor expanded in x around inf
Applied rewrites62.8%
(FPCore (x y) :precision binary64 (* (* y 3) (sqrt x)))
double code(double x, double y) {
return (y * 3.0) * sqrt(x);
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
code = (y * 3.0d0) * sqrt(x)
end function
public static double code(double x, double y) {
return (y * 3.0) * Math.sqrt(x);
}
def code(x, y): return (y * 3.0) * math.sqrt(x)
function code(x, y) return Float64(Float64(y * 3.0) * sqrt(x)) end
function tmp = code(x, y) tmp = (y * 3.0) * sqrt(x); end
code[x_, y_] := N[(N[(y * 3), $MachinePrecision] * N[Sqrt[x], $MachinePrecision]), $MachinePrecision]
\left(y \cdot 3\right) \cdot \sqrt{x}
Initial program 99.4%
Taylor expanded in y around inf
lower-*.f64N/A
lower-*.f64N/A
lower-sqrt.f6438.8%
Applied rewrites38.8%
lift-*.f64N/A
lift-*.f64N/A
associate-*r*N/A
lower-*.f64N/A
*-commutativeN/A
lower-*.f6438.8%
Applied rewrites38.8%
(FPCore (x y) :precision binary64 (* 3 (* y (sqrt x))))
double code(double x, double y) {
return 3.0 * (y * sqrt(x));
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
code = 3.0d0 * (y * sqrt(x))
end function
public static double code(double x, double y) {
return 3.0 * (y * Math.sqrt(x));
}
def code(x, y): return 3.0 * (y * math.sqrt(x))
function code(x, y) return Float64(3.0 * Float64(y * sqrt(x))) end
function tmp = code(x, y) tmp = 3.0 * (y * sqrt(x)); end
code[x_, y_] := N[(3 * N[(y * N[Sqrt[x], $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
3 \cdot \left(y \cdot \sqrt{x}\right)
Initial program 99.4%
Taylor expanded in y around inf
lower-*.f64N/A
lower-*.f64N/A
lower-sqrt.f6438.8%
Applied rewrites38.8%
herbie shell --seed 2025271 -o generate:evaluate
(FPCore (x y)
:name "Numeric.SpecFunctions:incompleteGamma from math-functions-0.1.5.2, B"
:precision binary64
(* (* 3 (sqrt x)) (- (+ y (/ 1 (* x 9))) 1)))