Numeric.SpecFunctions:logGamma from math-functions-0.1.5.2

Percentage Accurate: 55.5% → 84.4%
Time: 31.0s
Alternatives: 12
Speedup: 1.4×

Specification

?
\[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
(FPCore (x y z t a b c i)
  :precision binary64
  (/
 (+
  (*
   (+
    (* (+ (* (+ (* x y) z) y) 54929528941/2000000) y)
    28832688827/125000)
   y)
  t)
 (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i)))
double code(double x, double y, double z, double t, double a, double b, double c, double i) {
	return ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i);
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z, t, a, b, c, i)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8), intent (in) :: t
    real(8), intent (in) :: a
    real(8), intent (in) :: b
    real(8), intent (in) :: c
    real(8), intent (in) :: i
    code = ((((((((x * y) + z) * y) + 27464.7644705d0) * y) + 230661.510616d0) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)
end function
public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
	return ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i);
}
def code(x, y, z, t, a, b, c, i):
	return ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)
function code(x, y, z, t, a, b, c, i)
	return Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i))
end
function tmp = code(x, y, z, t, a, b, c, i)
	tmp = ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i);
end
code[x_, y_, z_, t_, a_, b_, c_, i_] := N[(N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 54929528941/2000000), $MachinePrecision] * y), $MachinePrecision] + 28832688827/125000), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]), $MachinePrecision]
\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i}

Local Percentage Accuracy vs ?

The average percentage accuracy by input value. Horizontal axis shows value of an input variable; the variable is choosen in the title. Vertical axis is accuracy; higher is better. Red represent the original program, while blue represents Herbie's suggestion. These can be toggled with buttons below the plot. The line is an average while dots represent individual samples.

Accuracy vs Speed?

Herbie found 12 alternatives:

AlternativeAccuracySpeedup
The accuracy (vertical axis) and speed (horizontal axis) of each alternatives. Up and to the right is better. The red square shows the initial program, and each blue circle shows an alternative.The line shows the best available speed-accuracy tradeoffs.

Initial Program: 55.5% accurate, 1.0× speedup?

\[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
(FPCore (x y z t a b c i)
  :precision binary64
  (/
 (+
  (*
   (+
    (* (+ (* (+ (* x y) z) y) 54929528941/2000000) y)
    28832688827/125000)
   y)
  t)
 (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i)))
double code(double x, double y, double z, double t, double a, double b, double c, double i) {
	return ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i);
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z, t, a, b, c, i)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8), intent (in) :: t
    real(8), intent (in) :: a
    real(8), intent (in) :: b
    real(8), intent (in) :: c
    real(8), intent (in) :: i
    code = ((((((((x * y) + z) * y) + 27464.7644705d0) * y) + 230661.510616d0) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)
end function
public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
	return ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i);
}
def code(x, y, z, t, a, b, c, i):
	return ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)
function code(x, y, z, t, a, b, c, i)
	return Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i))
end
function tmp = code(x, y, z, t, a, b, c, i)
	tmp = ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i);
end
code[x_, y_, z_, t_, a_, b_, c_, i_] := N[(N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 54929528941/2000000), $MachinePrecision] * y), $MachinePrecision] + 28832688827/125000), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]), $MachinePrecision]
\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i}

Alternative 1: 84.4% accurate, 0.4× speedup?

\[\begin{array}{l} \mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \leq \infty:\\ \;\;\;\;\mathsf{134\_z0z1z2z3z4}\left(\left(\frac{1}{i + \left(c + \left(b + \left(a + y\right) \cdot y\right) \cdot y\right) \cdot y}\right), \left(\left(\left(z + x \cdot y\right) \cdot y - \frac{-54929528941}{2000000}\right) \cdot y - \frac{-28832688827}{125000}\right), y, t, -1\right)\\ \mathbf{else}:\\ \;\;\;\;x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y}\\ \end{array} \]
(FPCore (x y z t a b c i)
  :precision binary64
  (if (<=
     (/
      (+
       (*
        (+
         (* (+ (* (+ (* x y) z) y) 54929528941/2000000) y)
         28832688827/125000)
        y)
       t)
      (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i))
     INFINITY)
  (134-z0z1z2z3z4
   (/ 1 (+ i (* (+ c (* (+ b (* (+ a y) y)) y)) y)))
   (-
    (* (- (* (+ z (* x y)) y) -54929528941/2000000) y)
    -28832688827/125000)
   y
   t
   -1)
  (+ x (* -1 (/ (* z (- (/ a y) 1)) y)))))
\begin{array}{l}
\mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \leq \infty:\\
\;\;\;\;\mathsf{134\_z0z1z2z3z4}\left(\left(\frac{1}{i + \left(c + \left(b + \left(a + y\right) \cdot y\right) \cdot y\right) \cdot y}\right), \left(\left(\left(z + x \cdot y\right) \cdot y - \frac{-54929528941}{2000000}\right) \cdot y - \frac{-28832688827}{125000}\right), y, t, -1\right)\\

\mathbf{else}:\\
\;\;\;\;x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y}\\


\end{array}
Derivation
  1. Split input into 2 regimes
  2. if (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < +inf.0

    1. Initial program 55.5%

      \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
    2. Applied rewrites56.0%

      \[\leadsto \color{blue}{\frac{t}{i + \left(c + \left(b + \left(a + y\right) \cdot y\right) \cdot y\right) \cdot y} - \left(\frac{-28832688827}{125000} - \left(\left(z + y \cdot x\right) \cdot y - \frac{-54929528941}{2000000}\right) \cdot y\right) \cdot \frac{y}{i + \left(c + \left(b + \left(a + y\right) \cdot y\right) \cdot y\right) \cdot y}} \]
    3. Applied rewrites55.1%

      \[\leadsto \color{blue}{\frac{1}{\frac{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i}{\left(\left(\left(x \cdot y + z\right) \cdot y - \frac{-54929528941}{2000000}\right) \cdot y - \frac{-28832688827}{125000}\right) \cdot y + t}}} \]
    4. Applied rewrites56.1%

      \[\leadsto \color{blue}{\mathsf{134\_z0z1z2z3z4}\left(\left(\frac{1}{i + \left(c + \left(b + \left(a + y\right) \cdot y\right) \cdot y\right) \cdot y}\right), \left(\left(\left(z + x \cdot y\right) \cdot y - \frac{-54929528941}{2000000}\right) \cdot y - \frac{-28832688827}{125000}\right), y, t, -1\right)} \]

    if +inf.0 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i))

    1. Initial program 55.5%

      \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
    2. Step-by-step derivation
      1. lift-+.f64N/A

        \[\leadsto \frac{\color{blue}{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
      2. sum-to-multN/A

        \[\leadsto \frac{\color{blue}{\left(1 + \frac{t}{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y}\right) \cdot \left(\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y\right)}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
      3. lower-unsound-*.f64N/A

        \[\leadsto \frac{\color{blue}{\left(1 + \frac{t}{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y}\right) \cdot \left(\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y\right)}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
    3. Applied rewrites46.1%

      \[\leadsto \frac{\color{blue}{\left(1 + \frac{t}{\left(\left(\left(z + y \cdot x\right) \cdot y - \frac{-54929528941}{2000000}\right) \cdot y - \frac{-28832688827}{125000}\right) \cdot y}\right) \cdot \left(\left(\left(\left(z + y \cdot x\right) \cdot y - \frac{-54929528941}{2000000}\right) \cdot y - \frac{-28832688827}{125000}\right) \cdot y\right)}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
    4. Taylor expanded in y around -inf

      \[\leadsto \color{blue}{x + -1 \cdot \frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{y}} \]
    5. Step-by-step derivation
      1. lower-+.f64N/A

        \[\leadsto x + \color{blue}{-1 \cdot \frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{y}} \]
      2. lower-*.f64N/A

        \[\leadsto x + -1 \cdot \color{blue}{\frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{y}} \]
      3. lower-/.f64N/A

        \[\leadsto x + -1 \cdot \frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{\color{blue}{y}} \]
    6. Applied rewrites26.8%

      \[\leadsto \color{blue}{x + -1 \cdot \frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{y}} \]
    7. Taylor expanded in z around inf

      \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]
    8. Step-by-step derivation
      1. lower-*.f64N/A

        \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]
      2. lower--.f64N/A

        \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]
      3. lower-/.f6433.4%

        \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]
    9. Applied rewrites33.4%

      \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]
  3. Recombined 2 regimes into one program.
  4. Add Preprocessing

Alternative 2: 84.0% accurate, 0.5× speedup?

\[\begin{array}{l} t_1 := \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i}\\ \mathbf{if}\;t\_1 \leq \infty:\\ \;\;\;\;t\_1\\ \mathbf{else}:\\ \;\;\;\;x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y}\\ \end{array} \]
(FPCore (x y z t a b c i)
  :precision binary64
  (let* ((t_1
        (/
         (+
          (*
           (+
            (* (+ (* (+ (* x y) z) y) 54929528941/2000000) y)
            28832688827/125000)
           y)
          t)
         (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i))))
  (if (<= t_1 INFINITY) t_1 (+ x (* -1 (/ (* z (- (/ a y) 1)) y))))))
double code(double x, double y, double z, double t, double a, double b, double c, double i) {
	double t_1 = ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i);
	double tmp;
	if (t_1 <= ((double) INFINITY)) {
		tmp = t_1;
	} else {
		tmp = x + (-1.0 * ((z * ((a / y) - 1.0)) / y));
	}
	return tmp;
}
public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
	double t_1 = ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i);
	double tmp;
	if (t_1 <= Double.POSITIVE_INFINITY) {
		tmp = t_1;
	} else {
		tmp = x + (-1.0 * ((z * ((a / y) - 1.0)) / y));
	}
	return tmp;
}
def code(x, y, z, t, a, b, c, i):
	t_1 = ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)
	tmp = 0
	if t_1 <= math.inf:
		tmp = t_1
	else:
		tmp = x + (-1.0 * ((z * ((a / y) - 1.0)) / y))
	return tmp
function code(x, y, z, t, a, b, c, i)
	t_1 = Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i))
	tmp = 0.0
	if (t_1 <= Inf)
		tmp = t_1;
	else
		tmp = Float64(x + Float64(-1.0 * Float64(Float64(z * Float64(Float64(a / y) - 1.0)) / y)));
	end
	return tmp
end
function tmp_2 = code(x, y, z, t, a, b, c, i)
	t_1 = ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i);
	tmp = 0.0;
	if (t_1 <= Inf)
		tmp = t_1;
	else
		tmp = x + (-1.0 * ((z * ((a / y) - 1.0)) / y));
	end
	tmp_2 = tmp;
end
code[x_, y_, z_, t_, a_, b_, c_, i_] := Block[{t$95$1 = N[(N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 54929528941/2000000), $MachinePrecision] * y), $MachinePrecision] + 28832688827/125000), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$1, Infinity], t$95$1, N[(x + N[(-1 * N[(N[(z * N[(N[(a / y), $MachinePrecision] - 1), $MachinePrecision]), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]]
\begin{array}{l}
t_1 := \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i}\\
\mathbf{if}\;t\_1 \leq \infty:\\
\;\;\;\;t\_1\\

\mathbf{else}:\\
\;\;\;\;x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y}\\


\end{array}
Derivation
  1. Split input into 2 regimes
  2. if (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < +inf.0

    1. Initial program 55.5%

      \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]

    if +inf.0 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i))

    1. Initial program 55.5%

      \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
    2. Step-by-step derivation
      1. lift-+.f64N/A

        \[\leadsto \frac{\color{blue}{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
      2. sum-to-multN/A

        \[\leadsto \frac{\color{blue}{\left(1 + \frac{t}{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y}\right) \cdot \left(\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y\right)}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
      3. lower-unsound-*.f64N/A

        \[\leadsto \frac{\color{blue}{\left(1 + \frac{t}{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y}\right) \cdot \left(\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y\right)}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
    3. Applied rewrites46.1%

      \[\leadsto \frac{\color{blue}{\left(1 + \frac{t}{\left(\left(\left(z + y \cdot x\right) \cdot y - \frac{-54929528941}{2000000}\right) \cdot y - \frac{-28832688827}{125000}\right) \cdot y}\right) \cdot \left(\left(\left(\left(z + y \cdot x\right) \cdot y - \frac{-54929528941}{2000000}\right) \cdot y - \frac{-28832688827}{125000}\right) \cdot y\right)}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
    4. Taylor expanded in y around -inf

      \[\leadsto \color{blue}{x + -1 \cdot \frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{y}} \]
    5. Step-by-step derivation
      1. lower-+.f64N/A

        \[\leadsto x + \color{blue}{-1 \cdot \frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{y}} \]
      2. lower-*.f64N/A

        \[\leadsto x + -1 \cdot \color{blue}{\frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{y}} \]
      3. lower-/.f64N/A

        \[\leadsto x + -1 \cdot \frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{\color{blue}{y}} \]
    6. Applied rewrites26.8%

      \[\leadsto \color{blue}{x + -1 \cdot \frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{y}} \]
    7. Taylor expanded in z around inf

      \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]
    8. Step-by-step derivation
      1. lower-*.f64N/A

        \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]
      2. lower--.f64N/A

        \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]
      3. lower-/.f6433.4%

        \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]
    9. Applied rewrites33.4%

      \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]
  3. Recombined 2 regimes into one program.
  4. Add Preprocessing

Alternative 3: 80.1% accurate, 1.0× speedup?

\[\begin{array}{l} t_1 := x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y}\\ \mathbf{if}\;y \leq -2200000000000000000000:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;y \leq 131999999999999993854998690473563335426048:\\ \;\;\;\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(b \cdot y + c\right) \cdot y + i}\\ \mathbf{else}:\\ \;\;\;\;t\_1\\ \end{array} \]
(FPCore (x y z t a b c i)
  :precision binary64
  (let* ((t_1 (+ x (* -1 (/ (* z (- (/ a y) 1)) y)))))
  (if (<= y -2200000000000000000000)
    t_1
    (if (<= y 131999999999999993854998690473563335426048)
      (/
       (+
        (*
         (+
          (* (+ (* (+ (* x y) z) y) 54929528941/2000000) y)
          28832688827/125000)
         y)
        t)
       (+ (* (+ (* b y) c) y) i))
      t_1))))
double code(double x, double y, double z, double t, double a, double b, double c, double i) {
	double t_1 = x + (-1.0 * ((z * ((a / y) - 1.0)) / y));
	double tmp;
	if (y <= -2.2e+21) {
		tmp = t_1;
	} else if (y <= 1.32e+41) {
		tmp = ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / ((((b * y) + c) * y) + i);
	} else {
		tmp = t_1;
	}
	return tmp;
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z, t, a, b, c, i)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8), intent (in) :: t
    real(8), intent (in) :: a
    real(8), intent (in) :: b
    real(8), intent (in) :: c
    real(8), intent (in) :: i
    real(8) :: t_1
    real(8) :: tmp
    t_1 = x + ((-1.0d0) * ((z * ((a / y) - 1.0d0)) / y))
    if (y <= (-2.2d+21)) then
        tmp = t_1
    else if (y <= 1.32d+41) then
        tmp = ((((((((x * y) + z) * y) + 27464.7644705d0) * y) + 230661.510616d0) * y) + t) / ((((b * y) + c) * y) + i)
    else
        tmp = t_1
    end if
    code = tmp
end function
public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
	double t_1 = x + (-1.0 * ((z * ((a / y) - 1.0)) / y));
	double tmp;
	if (y <= -2.2e+21) {
		tmp = t_1;
	} else if (y <= 1.32e+41) {
		tmp = ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / ((((b * y) + c) * y) + i);
	} else {
		tmp = t_1;
	}
	return tmp;
}
def code(x, y, z, t, a, b, c, i):
	t_1 = x + (-1.0 * ((z * ((a / y) - 1.0)) / y))
	tmp = 0
	if y <= -2.2e+21:
		tmp = t_1
	elif y <= 1.32e+41:
		tmp = ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / ((((b * y) + c) * y) + i)
	else:
		tmp = t_1
	return tmp
function code(x, y, z, t, a, b, c, i)
	t_1 = Float64(x + Float64(-1.0 * Float64(Float64(z * Float64(Float64(a / y) - 1.0)) / y)))
	tmp = 0.0
	if (y <= -2.2e+21)
		tmp = t_1;
	elseif (y <= 1.32e+41)
		tmp = Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / Float64(Float64(Float64(Float64(b * y) + c) * y) + i));
	else
		tmp = t_1;
	end
	return tmp
end
function tmp_2 = code(x, y, z, t, a, b, c, i)
	t_1 = x + (-1.0 * ((z * ((a / y) - 1.0)) / y));
	tmp = 0.0;
	if (y <= -2.2e+21)
		tmp = t_1;
	elseif (y <= 1.32e+41)
		tmp = ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / ((((b * y) + c) * y) + i);
	else
		tmp = t_1;
	end
	tmp_2 = tmp;
end
code[x_, y_, z_, t_, a_, b_, c_, i_] := Block[{t$95$1 = N[(x + N[(-1 * N[(N[(z * N[(N[(a / y), $MachinePrecision] - 1), $MachinePrecision]), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[y, -2200000000000000000000], t$95$1, If[LessEqual[y, 131999999999999993854998690473563335426048], N[(N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 54929528941/2000000), $MachinePrecision] * y), $MachinePrecision] + 28832688827/125000), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / N[(N[(N[(N[(b * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]), $MachinePrecision], t$95$1]]]
\begin{array}{l}
t_1 := x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y}\\
\mathbf{if}\;y \leq -2200000000000000000000:\\
\;\;\;\;t\_1\\

\mathbf{elif}\;y \leq 131999999999999993854998690473563335426048:\\
\;\;\;\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(b \cdot y + c\right) \cdot y + i}\\

\mathbf{else}:\\
\;\;\;\;t\_1\\


\end{array}
Derivation
  1. Split input into 2 regimes
  2. if y < -2.2e21 or 1.3199999999999999e41 < y

    1. Initial program 55.5%

      \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
    2. Step-by-step derivation
      1. lift-+.f64N/A

        \[\leadsto \frac{\color{blue}{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
      2. sum-to-multN/A

        \[\leadsto \frac{\color{blue}{\left(1 + \frac{t}{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y}\right) \cdot \left(\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y\right)}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
      3. lower-unsound-*.f64N/A

        \[\leadsto \frac{\color{blue}{\left(1 + \frac{t}{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y}\right) \cdot \left(\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y\right)}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
    3. Applied rewrites46.1%

      \[\leadsto \frac{\color{blue}{\left(1 + \frac{t}{\left(\left(\left(z + y \cdot x\right) \cdot y - \frac{-54929528941}{2000000}\right) \cdot y - \frac{-28832688827}{125000}\right) \cdot y}\right) \cdot \left(\left(\left(\left(z + y \cdot x\right) \cdot y - \frac{-54929528941}{2000000}\right) \cdot y - \frac{-28832688827}{125000}\right) \cdot y\right)}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
    4. Taylor expanded in y around -inf

      \[\leadsto \color{blue}{x + -1 \cdot \frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{y}} \]
    5. Step-by-step derivation
      1. lower-+.f64N/A

        \[\leadsto x + \color{blue}{-1 \cdot \frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{y}} \]
      2. lower-*.f64N/A

        \[\leadsto x + -1 \cdot \color{blue}{\frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{y}} \]
      3. lower-/.f64N/A

        \[\leadsto x + -1 \cdot \frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{\color{blue}{y}} \]
    6. Applied rewrites26.8%

      \[\leadsto \color{blue}{x + -1 \cdot \frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{y}} \]
    7. Taylor expanded in z around inf

      \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]
    8. Step-by-step derivation
      1. lower-*.f64N/A

        \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]
      2. lower--.f64N/A

        \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]
      3. lower-/.f6433.4%

        \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]
    9. Applied rewrites33.4%

      \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]

    if -2.2e21 < y < 1.3199999999999999e41

    1. Initial program 55.5%

      \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
    2. Taylor expanded in y around 0

      \[\leadsto \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\color{blue}{b} \cdot y + c\right) \cdot y + i} \]
    3. Step-by-step derivation
      1. Applied rewrites50.5%

        \[\leadsto \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\color{blue}{b} \cdot y + c\right) \cdot y + i} \]
    4. Recombined 2 regimes into one program.
    5. Add Preprocessing

    Alternative 4: 79.7% accurate, 0.5× speedup?

    \[\begin{array}{l} t_1 := \left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i\\ \mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{t\_1} \leq \infty:\\ \;\;\;\;\frac{\left(\left(z \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{t\_1}\\ \mathbf{else}:\\ \;\;\;\;x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y}\\ \end{array} \]
    (FPCore (x y z t a b c i)
      :precision binary64
      (let* ((t_1 (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i)))
      (if (<=
           (/
            (+
             (*
              (+
               (* (+ (* (+ (* x y) z) y) 54929528941/2000000) y)
               28832688827/125000)
              y)
             t)
            t_1)
           INFINITY)
        (/
         (+
          (*
           (+ (* (+ (* z y) 54929528941/2000000) y) 28832688827/125000)
           y)
          t)
         t_1)
        (+ x (* -1 (/ (* z (- (/ a y) 1)) y))))))
    double code(double x, double y, double z, double t, double a, double b, double c, double i) {
    	double t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i;
    	double tmp;
    	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= ((double) INFINITY)) {
    		tmp = ((((((z * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1;
    	} else {
    		tmp = x + (-1.0 * ((z * ((a / y) - 1.0)) / y));
    	}
    	return tmp;
    }
    
    public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
    	double t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i;
    	double tmp;
    	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= Double.POSITIVE_INFINITY) {
    		tmp = ((((((z * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1;
    	} else {
    		tmp = x + (-1.0 * ((z * ((a / y) - 1.0)) / y));
    	}
    	return tmp;
    }
    
    def code(x, y, z, t, a, b, c, i):
    	t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i
    	tmp = 0
    	if (((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= math.inf:
    		tmp = ((((((z * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1
    	else:
    		tmp = x + (-1.0 * ((z * ((a / y) - 1.0)) / y))
    	return tmp
    
    function code(x, y, z, t, a, b, c, i)
    	t_1 = Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i)
    	tmp = 0.0
    	if (Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= Inf)
    		tmp = Float64(Float64(Float64(Float64(Float64(Float64(Float64(z * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1);
    	else
    		tmp = Float64(x + Float64(-1.0 * Float64(Float64(z * Float64(Float64(a / y) - 1.0)) / y)));
    	end
    	return tmp
    end
    
    function tmp_2 = code(x, y, z, t, a, b, c, i)
    	t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i;
    	tmp = 0.0;
    	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= Inf)
    		tmp = ((((((z * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1;
    	else
    		tmp = x + (-1.0 * ((z * ((a / y) - 1.0)) / y));
    	end
    	tmp_2 = tmp;
    end
    
    code[x_, y_, z_, t_, a_, b_, c_, i_] := Block[{t$95$1 = N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]}, If[LessEqual[N[(N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 54929528941/2000000), $MachinePrecision] * y), $MachinePrecision] + 28832688827/125000), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / t$95$1), $MachinePrecision], Infinity], N[(N[(N[(N[(N[(N[(N[(z * y), $MachinePrecision] + 54929528941/2000000), $MachinePrecision] * y), $MachinePrecision] + 28832688827/125000), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / t$95$1), $MachinePrecision], N[(x + N[(-1 * N[(N[(z * N[(N[(a / y), $MachinePrecision] - 1), $MachinePrecision]), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]]
    
    \begin{array}{l}
    t_1 := \left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i\\
    \mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{t\_1} \leq \infty:\\
    \;\;\;\;\frac{\left(\left(z \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{t\_1}\\
    
    \mathbf{else}:\\
    \;\;\;\;x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y}\\
    
    
    \end{array}
    
    Derivation
    1. Split input into 2 regimes
    2. if (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < +inf.0

      1. Initial program 55.5%

        \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
      2. Taylor expanded in x around 0

        \[\leadsto \frac{\left(\left(\color{blue}{z} \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
      3. Step-by-step derivation
        1. Applied rewrites51.8%

          \[\leadsto \frac{\left(\left(\color{blue}{z} \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]

        if +inf.0 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i))

        1. Initial program 55.5%

          \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
        2. Step-by-step derivation
          1. lift-+.f64N/A

            \[\leadsto \frac{\color{blue}{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
          2. sum-to-multN/A

            \[\leadsto \frac{\color{blue}{\left(1 + \frac{t}{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y}\right) \cdot \left(\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y\right)}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
          3. lower-unsound-*.f64N/A

            \[\leadsto \frac{\color{blue}{\left(1 + \frac{t}{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y}\right) \cdot \left(\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y\right)}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
        3. Applied rewrites46.1%

          \[\leadsto \frac{\color{blue}{\left(1 + \frac{t}{\left(\left(\left(z + y \cdot x\right) \cdot y - \frac{-54929528941}{2000000}\right) \cdot y - \frac{-28832688827}{125000}\right) \cdot y}\right) \cdot \left(\left(\left(\left(z + y \cdot x\right) \cdot y - \frac{-54929528941}{2000000}\right) \cdot y - \frac{-28832688827}{125000}\right) \cdot y\right)}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
        4. Taylor expanded in y around -inf

          \[\leadsto \color{blue}{x + -1 \cdot \frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{y}} \]
        5. Step-by-step derivation
          1. lower-+.f64N/A

            \[\leadsto x + \color{blue}{-1 \cdot \frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{y}} \]
          2. lower-*.f64N/A

            \[\leadsto x + -1 \cdot \color{blue}{\frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{y}} \]
          3. lower-/.f64N/A

            \[\leadsto x + -1 \cdot \frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{\color{blue}{y}} \]
        6. Applied rewrites26.8%

          \[\leadsto \color{blue}{x + -1 \cdot \frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{y}} \]
        7. Taylor expanded in z around inf

          \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]
        8. Step-by-step derivation
          1. lower-*.f64N/A

            \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]
          2. lower--.f64N/A

            \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]
          3. lower-/.f6433.4%

            \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]
        9. Applied rewrites33.4%

          \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]
      4. Recombined 2 regimes into one program.
      5. Add Preprocessing

      Alternative 5: 75.4% accurate, 1.2× speedup?

      \[\begin{array}{l} t_1 := x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y}\\ \mathbf{if}\;y \leq \frac{-8275667163517223}{43556142965880123323311949751266331066368}:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;y \leq 131999999999999993854998690473563335426048:\\ \;\;\;\;\frac{\frac{28832688827}{125000} \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i}\\ \mathbf{else}:\\ \;\;\;\;t\_1\\ \end{array} \]
      (FPCore (x y z t a b c i)
        :precision binary64
        (let* ((t_1 (+ x (* -1 (/ (* z (- (/ a y) 1)) y)))))
        (if (<=
             y
             -8275667163517223/43556142965880123323311949751266331066368)
          t_1
          (if (<= y 131999999999999993854998690473563335426048)
            (/
             (+ (* 28832688827/125000 y) t)
             (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i))
            t_1))))
      double code(double x, double y, double z, double t, double a, double b, double c, double i) {
      	double t_1 = x + (-1.0 * ((z * ((a / y) - 1.0)) / y));
      	double tmp;
      	if (y <= -1.9e-25) {
      		tmp = t_1;
      	} else if (y <= 1.32e+41) {
      		tmp = ((230661.510616 * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i);
      	} else {
      		tmp = t_1;
      	}
      	return tmp;
      }
      
      module fmin_fmax_functions
          implicit none
          private
          public fmax
          public fmin
      
          interface fmax
              module procedure fmax88
              module procedure fmax44
              module procedure fmax84
              module procedure fmax48
          end interface
          interface fmin
              module procedure fmin88
              module procedure fmin44
              module procedure fmin84
              module procedure fmin48
          end interface
      contains
          real(8) function fmax88(x, y) result (res)
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
          end function
          real(4) function fmax44(x, y) result (res)
              real(4), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
          end function
          real(8) function fmax84(x, y) result(res)
              real(8), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
          end function
          real(8) function fmax48(x, y) result(res)
              real(4), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
          end function
          real(8) function fmin88(x, y) result (res)
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
          end function
          real(4) function fmin44(x, y) result (res)
              real(4), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
          end function
          real(8) function fmin84(x, y) result(res)
              real(8), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
          end function
          real(8) function fmin48(x, y) result(res)
              real(4), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
          end function
      end module
      
      real(8) function code(x, y, z, t, a, b, c, i)
      use fmin_fmax_functions
          real(8), intent (in) :: x
          real(8), intent (in) :: y
          real(8), intent (in) :: z
          real(8), intent (in) :: t
          real(8), intent (in) :: a
          real(8), intent (in) :: b
          real(8), intent (in) :: c
          real(8), intent (in) :: i
          real(8) :: t_1
          real(8) :: tmp
          t_1 = x + ((-1.0d0) * ((z * ((a / y) - 1.0d0)) / y))
          if (y <= (-1.9d-25)) then
              tmp = t_1
          else if (y <= 1.32d+41) then
              tmp = ((230661.510616d0 * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)
          else
              tmp = t_1
          end if
          code = tmp
      end function
      
      public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
      	double t_1 = x + (-1.0 * ((z * ((a / y) - 1.0)) / y));
      	double tmp;
      	if (y <= -1.9e-25) {
      		tmp = t_1;
      	} else if (y <= 1.32e+41) {
      		tmp = ((230661.510616 * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i);
      	} else {
      		tmp = t_1;
      	}
      	return tmp;
      }
      
      def code(x, y, z, t, a, b, c, i):
      	t_1 = x + (-1.0 * ((z * ((a / y) - 1.0)) / y))
      	tmp = 0
      	if y <= -1.9e-25:
      		tmp = t_1
      	elif y <= 1.32e+41:
      		tmp = ((230661.510616 * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)
      	else:
      		tmp = t_1
      	return tmp
      
      function code(x, y, z, t, a, b, c, i)
      	t_1 = Float64(x + Float64(-1.0 * Float64(Float64(z * Float64(Float64(a / y) - 1.0)) / y)))
      	tmp = 0.0
      	if (y <= -1.9e-25)
      		tmp = t_1;
      	elseif (y <= 1.32e+41)
      		tmp = Float64(Float64(Float64(230661.510616 * y) + t) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i));
      	else
      		tmp = t_1;
      	end
      	return tmp
      end
      
      function tmp_2 = code(x, y, z, t, a, b, c, i)
      	t_1 = x + (-1.0 * ((z * ((a / y) - 1.0)) / y));
      	tmp = 0.0;
      	if (y <= -1.9e-25)
      		tmp = t_1;
      	elseif (y <= 1.32e+41)
      		tmp = ((230661.510616 * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i);
      	else
      		tmp = t_1;
      	end
      	tmp_2 = tmp;
      end
      
      code[x_, y_, z_, t_, a_, b_, c_, i_] := Block[{t$95$1 = N[(x + N[(-1 * N[(N[(z * N[(N[(a / y), $MachinePrecision] - 1), $MachinePrecision]), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[y, -8275667163517223/43556142965880123323311949751266331066368], t$95$1, If[LessEqual[y, 131999999999999993854998690473563335426048], N[(N[(N[(28832688827/125000 * y), $MachinePrecision] + t), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]), $MachinePrecision], t$95$1]]]
      
      \begin{array}{l}
      t_1 := x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y}\\
      \mathbf{if}\;y \leq \frac{-8275667163517223}{43556142965880123323311949751266331066368}:\\
      \;\;\;\;t\_1\\
      
      \mathbf{elif}\;y \leq 131999999999999993854998690473563335426048:\\
      \;\;\;\;\frac{\frac{28832688827}{125000} \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i}\\
      
      \mathbf{else}:\\
      \;\;\;\;t\_1\\
      
      
      \end{array}
      
      Derivation
      1. Split input into 2 regimes
      2. if y < -1.8999999999999999e-25 or 1.3199999999999999e41 < y

        1. Initial program 55.5%

          \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
        2. Step-by-step derivation
          1. lift-+.f64N/A

            \[\leadsto \frac{\color{blue}{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
          2. sum-to-multN/A

            \[\leadsto \frac{\color{blue}{\left(1 + \frac{t}{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y}\right) \cdot \left(\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y\right)}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
          3. lower-unsound-*.f64N/A

            \[\leadsto \frac{\color{blue}{\left(1 + \frac{t}{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y}\right) \cdot \left(\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y\right)}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
        3. Applied rewrites46.1%

          \[\leadsto \frac{\color{blue}{\left(1 + \frac{t}{\left(\left(\left(z + y \cdot x\right) \cdot y - \frac{-54929528941}{2000000}\right) \cdot y - \frac{-28832688827}{125000}\right) \cdot y}\right) \cdot \left(\left(\left(\left(z + y \cdot x\right) \cdot y - \frac{-54929528941}{2000000}\right) \cdot y - \frac{-28832688827}{125000}\right) \cdot y\right)}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
        4. Taylor expanded in y around -inf

          \[\leadsto \color{blue}{x + -1 \cdot \frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{y}} \]
        5. Step-by-step derivation
          1. lower-+.f64N/A

            \[\leadsto x + \color{blue}{-1 \cdot \frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{y}} \]
          2. lower-*.f64N/A

            \[\leadsto x + -1 \cdot \color{blue}{\frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{y}} \]
          3. lower-/.f64N/A

            \[\leadsto x + -1 \cdot \frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{\color{blue}{y}} \]
        6. Applied rewrites26.8%

          \[\leadsto \color{blue}{x + -1 \cdot \frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{y}} \]
        7. Taylor expanded in z around inf

          \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]
        8. Step-by-step derivation
          1. lower-*.f64N/A

            \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]
          2. lower--.f64N/A

            \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]
          3. lower-/.f6433.4%

            \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]
        9. Applied rewrites33.4%

          \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]

        if -1.8999999999999999e-25 < y < 1.3199999999999999e41

        1. Initial program 55.5%

          \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
        2. Taylor expanded in y around 0

          \[\leadsto \frac{\left(\color{blue}{\frac{54929528941}{2000000}} \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
        3. Step-by-step derivation
          1. Applied rewrites47.3%

            \[\leadsto \frac{\left(\color{blue}{\frac{54929528941}{2000000}} \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
          2. Taylor expanded in y around 0

            \[\leadsto \frac{\color{blue}{\frac{28832688827}{125000}} \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
          3. Step-by-step derivation
            1. Applied rewrites47.1%

              \[\leadsto \frac{\color{blue}{\frac{28832688827}{125000}} \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
          4. Recombined 2 regimes into one program.
          5. Add Preprocessing

          Alternative 6: 74.5% accurate, 0.5× speedup?

          \[\begin{array}{l} t_1 := \left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i\\ \mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{t\_1} \leq \infty:\\ \;\;\;\;\frac{\left(\frac{54929528941}{2000000} \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{t\_1}\\ \mathbf{else}:\\ \;\;\;\;x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y}\\ \end{array} \]
          (FPCore (x y z t a b c i)
            :precision binary64
            (let* ((t_1 (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i)))
            (if (<=
                 (/
                  (+
                   (*
                    (+
                     (* (+ (* (+ (* x y) z) y) 54929528941/2000000) y)
                     28832688827/125000)
                    y)
                   t)
                  t_1)
                 INFINITY)
              (/
               (+ (* (+ (* 54929528941/2000000 y) 28832688827/125000) y) t)
               t_1)
              (+ x (* -1 (/ (* z (- (/ a y) 1)) y))))))
          double code(double x, double y, double z, double t, double a, double b, double c, double i) {
          	double t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i;
          	double tmp;
          	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= ((double) INFINITY)) {
          		tmp = ((((27464.7644705 * y) + 230661.510616) * y) + t) / t_1;
          	} else {
          		tmp = x + (-1.0 * ((z * ((a / y) - 1.0)) / y));
          	}
          	return tmp;
          }
          
          public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
          	double t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i;
          	double tmp;
          	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= Double.POSITIVE_INFINITY) {
          		tmp = ((((27464.7644705 * y) + 230661.510616) * y) + t) / t_1;
          	} else {
          		tmp = x + (-1.0 * ((z * ((a / y) - 1.0)) / y));
          	}
          	return tmp;
          }
          
          def code(x, y, z, t, a, b, c, i):
          	t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i
          	tmp = 0
          	if (((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= math.inf:
          		tmp = ((((27464.7644705 * y) + 230661.510616) * y) + t) / t_1
          	else:
          		tmp = x + (-1.0 * ((z * ((a / y) - 1.0)) / y))
          	return tmp
          
          function code(x, y, z, t, a, b, c, i)
          	t_1 = Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i)
          	tmp = 0.0
          	if (Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= Inf)
          		tmp = Float64(Float64(Float64(Float64(Float64(27464.7644705 * y) + 230661.510616) * y) + t) / t_1);
          	else
          		tmp = Float64(x + Float64(-1.0 * Float64(Float64(z * Float64(Float64(a / y) - 1.0)) / y)));
          	end
          	return tmp
          end
          
          function tmp_2 = code(x, y, z, t, a, b, c, i)
          	t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i;
          	tmp = 0.0;
          	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= Inf)
          		tmp = ((((27464.7644705 * y) + 230661.510616) * y) + t) / t_1;
          	else
          		tmp = x + (-1.0 * ((z * ((a / y) - 1.0)) / y));
          	end
          	tmp_2 = tmp;
          end
          
          code[x_, y_, z_, t_, a_, b_, c_, i_] := Block[{t$95$1 = N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]}, If[LessEqual[N[(N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 54929528941/2000000), $MachinePrecision] * y), $MachinePrecision] + 28832688827/125000), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / t$95$1), $MachinePrecision], Infinity], N[(N[(N[(N[(N[(54929528941/2000000 * y), $MachinePrecision] + 28832688827/125000), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / t$95$1), $MachinePrecision], N[(x + N[(-1 * N[(N[(z * N[(N[(a / y), $MachinePrecision] - 1), $MachinePrecision]), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]]
          
          \begin{array}{l}
          t_1 := \left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i\\
          \mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{t\_1} \leq \infty:\\
          \;\;\;\;\frac{\left(\frac{54929528941}{2000000} \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{t\_1}\\
          
          \mathbf{else}:\\
          \;\;\;\;x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y}\\
          
          
          \end{array}
          
          Derivation
          1. Split input into 2 regimes
          2. if (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < +inf.0

            1. Initial program 55.5%

              \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
            2. Taylor expanded in y around 0

              \[\leadsto \frac{\left(\color{blue}{\frac{54929528941}{2000000}} \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
            3. Step-by-step derivation
              1. Applied rewrites47.3%

                \[\leadsto \frac{\left(\color{blue}{\frac{54929528941}{2000000}} \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]

              if +inf.0 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i))

              1. Initial program 55.5%

                \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
              2. Step-by-step derivation
                1. lift-+.f64N/A

                  \[\leadsto \frac{\color{blue}{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                2. sum-to-multN/A

                  \[\leadsto \frac{\color{blue}{\left(1 + \frac{t}{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y}\right) \cdot \left(\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y\right)}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                3. lower-unsound-*.f64N/A

                  \[\leadsto \frac{\color{blue}{\left(1 + \frac{t}{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y}\right) \cdot \left(\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y\right)}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
              3. Applied rewrites46.1%

                \[\leadsto \frac{\color{blue}{\left(1 + \frac{t}{\left(\left(\left(z + y \cdot x\right) \cdot y - \frac{-54929528941}{2000000}\right) \cdot y - \frac{-28832688827}{125000}\right) \cdot y}\right) \cdot \left(\left(\left(\left(z + y \cdot x\right) \cdot y - \frac{-54929528941}{2000000}\right) \cdot y - \frac{-28832688827}{125000}\right) \cdot y\right)}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
              4. Taylor expanded in y around -inf

                \[\leadsto \color{blue}{x + -1 \cdot \frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{y}} \]
              5. Step-by-step derivation
                1. lower-+.f64N/A

                  \[\leadsto x + \color{blue}{-1 \cdot \frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{y}} \]
                2. lower-*.f64N/A

                  \[\leadsto x + -1 \cdot \color{blue}{\frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{y}} \]
                3. lower-/.f64N/A

                  \[\leadsto x + -1 \cdot \frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{\color{blue}{y}} \]
              6. Applied rewrites26.8%

                \[\leadsto \color{blue}{x + -1 \cdot \frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{y}} \]
              7. Taylor expanded in z around inf

                \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]
              8. Step-by-step derivation
                1. lower-*.f64N/A

                  \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]
                2. lower--.f64N/A

                  \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]
                3. lower-/.f6433.4%

                  \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]
              9. Applied rewrites33.4%

                \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]
            4. Recombined 2 regimes into one program.
            5. Add Preprocessing

            Alternative 7: 67.4% accurate, 1.4× speedup?

            \[\begin{array}{l} t_1 := x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y}\\ \mathbf{if}\;y \leq \frac{-8275667163517223}{43556142965880123323311949751266331066368}:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;y \leq 131999999999999993854998690473563335426048:\\ \;\;\;\;\frac{t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i}\\ \mathbf{else}:\\ \;\;\;\;t\_1\\ \end{array} \]
            (FPCore (x y z t a b c i)
              :precision binary64
              (let* ((t_1 (+ x (* -1 (/ (* z (- (/ a y) 1)) y)))))
              (if (<=
                   y
                   -8275667163517223/43556142965880123323311949751266331066368)
                t_1
                (if (<= y 131999999999999993854998690473563335426048)
                  (/ t (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i))
                  t_1))))
            double code(double x, double y, double z, double t, double a, double b, double c, double i) {
            	double t_1 = x + (-1.0 * ((z * ((a / y) - 1.0)) / y));
            	double tmp;
            	if (y <= -1.9e-25) {
            		tmp = t_1;
            	} else if (y <= 1.32e+41) {
            		tmp = t / (((((((y + a) * y) + b) * y) + c) * y) + i);
            	} else {
            		tmp = t_1;
            	}
            	return tmp;
            }
            
            module fmin_fmax_functions
                implicit none
                private
                public fmax
                public fmin
            
                interface fmax
                    module procedure fmax88
                    module procedure fmax44
                    module procedure fmax84
                    module procedure fmax48
                end interface
                interface fmin
                    module procedure fmin88
                    module procedure fmin44
                    module procedure fmin84
                    module procedure fmin48
                end interface
            contains
                real(8) function fmax88(x, y) result (res)
                    real(8), intent (in) :: x
                    real(8), intent (in) :: y
                    res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                end function
                real(4) function fmax44(x, y) result (res)
                    real(4), intent (in) :: x
                    real(4), intent (in) :: y
                    res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                end function
                real(8) function fmax84(x, y) result(res)
                    real(8), intent (in) :: x
                    real(4), intent (in) :: y
                    res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                end function
                real(8) function fmax48(x, y) result(res)
                    real(4), intent (in) :: x
                    real(8), intent (in) :: y
                    res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                end function
                real(8) function fmin88(x, y) result (res)
                    real(8), intent (in) :: x
                    real(8), intent (in) :: y
                    res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                end function
                real(4) function fmin44(x, y) result (res)
                    real(4), intent (in) :: x
                    real(4), intent (in) :: y
                    res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                end function
                real(8) function fmin84(x, y) result(res)
                    real(8), intent (in) :: x
                    real(4), intent (in) :: y
                    res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                end function
                real(8) function fmin48(x, y) result(res)
                    real(4), intent (in) :: x
                    real(8), intent (in) :: y
                    res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                end function
            end module
            
            real(8) function code(x, y, z, t, a, b, c, i)
            use fmin_fmax_functions
                real(8), intent (in) :: x
                real(8), intent (in) :: y
                real(8), intent (in) :: z
                real(8), intent (in) :: t
                real(8), intent (in) :: a
                real(8), intent (in) :: b
                real(8), intent (in) :: c
                real(8), intent (in) :: i
                real(8) :: t_1
                real(8) :: tmp
                t_1 = x + ((-1.0d0) * ((z * ((a / y) - 1.0d0)) / y))
                if (y <= (-1.9d-25)) then
                    tmp = t_1
                else if (y <= 1.32d+41) then
                    tmp = t / (((((((y + a) * y) + b) * y) + c) * y) + i)
                else
                    tmp = t_1
                end if
                code = tmp
            end function
            
            public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
            	double t_1 = x + (-1.0 * ((z * ((a / y) - 1.0)) / y));
            	double tmp;
            	if (y <= -1.9e-25) {
            		tmp = t_1;
            	} else if (y <= 1.32e+41) {
            		tmp = t / (((((((y + a) * y) + b) * y) + c) * y) + i);
            	} else {
            		tmp = t_1;
            	}
            	return tmp;
            }
            
            def code(x, y, z, t, a, b, c, i):
            	t_1 = x + (-1.0 * ((z * ((a / y) - 1.0)) / y))
            	tmp = 0
            	if y <= -1.9e-25:
            		tmp = t_1
            	elif y <= 1.32e+41:
            		tmp = t / (((((((y + a) * y) + b) * y) + c) * y) + i)
            	else:
            		tmp = t_1
            	return tmp
            
            function code(x, y, z, t, a, b, c, i)
            	t_1 = Float64(x + Float64(-1.0 * Float64(Float64(z * Float64(Float64(a / y) - 1.0)) / y)))
            	tmp = 0.0
            	if (y <= -1.9e-25)
            		tmp = t_1;
            	elseif (y <= 1.32e+41)
            		tmp = Float64(t / Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i));
            	else
            		tmp = t_1;
            	end
            	return tmp
            end
            
            function tmp_2 = code(x, y, z, t, a, b, c, i)
            	t_1 = x + (-1.0 * ((z * ((a / y) - 1.0)) / y));
            	tmp = 0.0;
            	if (y <= -1.9e-25)
            		tmp = t_1;
            	elseif (y <= 1.32e+41)
            		tmp = t / (((((((y + a) * y) + b) * y) + c) * y) + i);
            	else
            		tmp = t_1;
            	end
            	tmp_2 = tmp;
            end
            
            code[x_, y_, z_, t_, a_, b_, c_, i_] := Block[{t$95$1 = N[(x + N[(-1 * N[(N[(z * N[(N[(a / y), $MachinePrecision] - 1), $MachinePrecision]), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[y, -8275667163517223/43556142965880123323311949751266331066368], t$95$1, If[LessEqual[y, 131999999999999993854998690473563335426048], N[(t / N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]), $MachinePrecision], t$95$1]]]
            
            \begin{array}{l}
            t_1 := x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y}\\
            \mathbf{if}\;y \leq \frac{-8275667163517223}{43556142965880123323311949751266331066368}:\\
            \;\;\;\;t\_1\\
            
            \mathbf{elif}\;y \leq 131999999999999993854998690473563335426048:\\
            \;\;\;\;\frac{t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i}\\
            
            \mathbf{else}:\\
            \;\;\;\;t\_1\\
            
            
            \end{array}
            
            Derivation
            1. Split input into 2 regimes
            2. if y < -1.8999999999999999e-25 or 1.3199999999999999e41 < y

              1. Initial program 55.5%

                \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
              2. Step-by-step derivation
                1. lift-+.f64N/A

                  \[\leadsto \frac{\color{blue}{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                2. sum-to-multN/A

                  \[\leadsto \frac{\color{blue}{\left(1 + \frac{t}{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y}\right) \cdot \left(\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y\right)}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                3. lower-unsound-*.f64N/A

                  \[\leadsto \frac{\color{blue}{\left(1 + \frac{t}{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y}\right) \cdot \left(\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y\right)}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
              3. Applied rewrites46.1%

                \[\leadsto \frac{\color{blue}{\left(1 + \frac{t}{\left(\left(\left(z + y \cdot x\right) \cdot y - \frac{-54929528941}{2000000}\right) \cdot y - \frac{-28832688827}{125000}\right) \cdot y}\right) \cdot \left(\left(\left(\left(z + y \cdot x\right) \cdot y - \frac{-54929528941}{2000000}\right) \cdot y - \frac{-28832688827}{125000}\right) \cdot y\right)}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
              4. Taylor expanded in y around -inf

                \[\leadsto \color{blue}{x + -1 \cdot \frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{y}} \]
              5. Step-by-step derivation
                1. lower-+.f64N/A

                  \[\leadsto x + \color{blue}{-1 \cdot \frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{y}} \]
                2. lower-*.f64N/A

                  \[\leadsto x + -1 \cdot \color{blue}{\frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{y}} \]
                3. lower-/.f64N/A

                  \[\leadsto x + -1 \cdot \frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{\color{blue}{y}} \]
              6. Applied rewrites26.8%

                \[\leadsto \color{blue}{x + -1 \cdot \frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{y}} \]
              7. Taylor expanded in z around inf

                \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]
              8. Step-by-step derivation
                1. lower-*.f64N/A

                  \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]
                2. lower--.f64N/A

                  \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]
                3. lower-/.f6433.4%

                  \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]
              9. Applied rewrites33.4%

                \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]

              if -1.8999999999999999e-25 < y < 1.3199999999999999e41

              1. Initial program 55.5%

                \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
              2. Taylor expanded in y around 0

                \[\leadsto \frac{\left(\color{blue}{\frac{54929528941}{2000000}} \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
              3. Step-by-step derivation
                1. Applied rewrites47.3%

                  \[\leadsto \frac{\left(\color{blue}{\frac{54929528941}{2000000}} \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                2. Taylor expanded in y around 0

                  \[\leadsto \frac{\color{blue}{t}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                3. Step-by-step derivation
                  1. Applied rewrites39.9%

                    \[\leadsto \frac{\color{blue}{t}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                4. Recombined 2 regimes into one program.
                5. Add Preprocessing

                Alternative 8: 57.2% accurate, 1.4× speedup?

                \[\begin{array}{l} t_1 := x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y}\\ \mathbf{if}\;y \leq \frac{-5444517870735015}{2722258935367507707706996859454145691648}:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;y \leq 20499999999999999986131350259736876692371668992:\\ \;\;\;\;\frac{t}{i}\\ \mathbf{else}:\\ \;\;\;\;t\_1\\ \end{array} \]
                (FPCore (x y z t a b c i)
                  :precision binary64
                  (let* ((t_1 (+ x (* -1 (/ (* z (- (/ a y) 1)) y)))))
                  (if (<=
                       y
                       -5444517870735015/2722258935367507707706996859454145691648)
                    t_1
                    (if (<= y 20499999999999999986131350259736876692371668992)
                      (/ t i)
                      t_1))))
                double code(double x, double y, double z, double t, double a, double b, double c, double i) {
                	double t_1 = x + (-1.0 * ((z * ((a / y) - 1.0)) / y));
                	double tmp;
                	if (y <= -2e-24) {
                		tmp = t_1;
                	} else if (y <= 2.05e+46) {
                		tmp = t / i;
                	} else {
                		tmp = t_1;
                	}
                	return tmp;
                }
                
                module fmin_fmax_functions
                    implicit none
                    private
                    public fmax
                    public fmin
                
                    interface fmax
                        module procedure fmax88
                        module procedure fmax44
                        module procedure fmax84
                        module procedure fmax48
                    end interface
                    interface fmin
                        module procedure fmin88
                        module procedure fmin44
                        module procedure fmin84
                        module procedure fmin48
                    end interface
                contains
                    real(8) function fmax88(x, y) result (res)
                        real(8), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                    end function
                    real(4) function fmax44(x, y) result (res)
                        real(4), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                    end function
                    real(8) function fmax84(x, y) result(res)
                        real(8), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                    end function
                    real(8) function fmax48(x, y) result(res)
                        real(4), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                    end function
                    real(8) function fmin88(x, y) result (res)
                        real(8), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                    end function
                    real(4) function fmin44(x, y) result (res)
                        real(4), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                    end function
                    real(8) function fmin84(x, y) result(res)
                        real(8), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                    end function
                    real(8) function fmin48(x, y) result(res)
                        real(4), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                    end function
                end module
                
                real(8) function code(x, y, z, t, a, b, c, i)
                use fmin_fmax_functions
                    real(8), intent (in) :: x
                    real(8), intent (in) :: y
                    real(8), intent (in) :: z
                    real(8), intent (in) :: t
                    real(8), intent (in) :: a
                    real(8), intent (in) :: b
                    real(8), intent (in) :: c
                    real(8), intent (in) :: i
                    real(8) :: t_1
                    real(8) :: tmp
                    t_1 = x + ((-1.0d0) * ((z * ((a / y) - 1.0d0)) / y))
                    if (y <= (-2d-24)) then
                        tmp = t_1
                    else if (y <= 2.05d+46) then
                        tmp = t / i
                    else
                        tmp = t_1
                    end if
                    code = tmp
                end function
                
                public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
                	double t_1 = x + (-1.0 * ((z * ((a / y) - 1.0)) / y));
                	double tmp;
                	if (y <= -2e-24) {
                		tmp = t_1;
                	} else if (y <= 2.05e+46) {
                		tmp = t / i;
                	} else {
                		tmp = t_1;
                	}
                	return tmp;
                }
                
                def code(x, y, z, t, a, b, c, i):
                	t_1 = x + (-1.0 * ((z * ((a / y) - 1.0)) / y))
                	tmp = 0
                	if y <= -2e-24:
                		tmp = t_1
                	elif y <= 2.05e+46:
                		tmp = t / i
                	else:
                		tmp = t_1
                	return tmp
                
                function code(x, y, z, t, a, b, c, i)
                	t_1 = Float64(x + Float64(-1.0 * Float64(Float64(z * Float64(Float64(a / y) - 1.0)) / y)))
                	tmp = 0.0
                	if (y <= -2e-24)
                		tmp = t_1;
                	elseif (y <= 2.05e+46)
                		tmp = Float64(t / i);
                	else
                		tmp = t_1;
                	end
                	return tmp
                end
                
                function tmp_2 = code(x, y, z, t, a, b, c, i)
                	t_1 = x + (-1.0 * ((z * ((a / y) - 1.0)) / y));
                	tmp = 0.0;
                	if (y <= -2e-24)
                		tmp = t_1;
                	elseif (y <= 2.05e+46)
                		tmp = t / i;
                	else
                		tmp = t_1;
                	end
                	tmp_2 = tmp;
                end
                
                code[x_, y_, z_, t_, a_, b_, c_, i_] := Block[{t$95$1 = N[(x + N[(-1 * N[(N[(z * N[(N[(a / y), $MachinePrecision] - 1), $MachinePrecision]), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[y, -5444517870735015/2722258935367507707706996859454145691648], t$95$1, If[LessEqual[y, 20499999999999999986131350259736876692371668992], N[(t / i), $MachinePrecision], t$95$1]]]
                
                \begin{array}{l}
                t_1 := x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y}\\
                \mathbf{if}\;y \leq \frac{-5444517870735015}{2722258935367507707706996859454145691648}:\\
                \;\;\;\;t\_1\\
                
                \mathbf{elif}\;y \leq 20499999999999999986131350259736876692371668992:\\
                \;\;\;\;\frac{t}{i}\\
                
                \mathbf{else}:\\
                \;\;\;\;t\_1\\
                
                
                \end{array}
                
                Derivation
                1. Split input into 2 regimes
                2. if y < -1.9999999999999998e-24 or 2.05e46 < y

                  1. Initial program 55.5%

                    \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                  2. Step-by-step derivation
                    1. lift-+.f64N/A

                      \[\leadsto \frac{\color{blue}{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                    2. sum-to-multN/A

                      \[\leadsto \frac{\color{blue}{\left(1 + \frac{t}{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y}\right) \cdot \left(\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y\right)}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                    3. lower-unsound-*.f64N/A

                      \[\leadsto \frac{\color{blue}{\left(1 + \frac{t}{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y}\right) \cdot \left(\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y\right)}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                  3. Applied rewrites46.1%

                    \[\leadsto \frac{\color{blue}{\left(1 + \frac{t}{\left(\left(\left(z + y \cdot x\right) \cdot y - \frac{-54929528941}{2000000}\right) \cdot y - \frac{-28832688827}{125000}\right) \cdot y}\right) \cdot \left(\left(\left(\left(z + y \cdot x\right) \cdot y - \frac{-54929528941}{2000000}\right) \cdot y - \frac{-28832688827}{125000}\right) \cdot y\right)}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                  4. Taylor expanded in y around -inf

                    \[\leadsto \color{blue}{x + -1 \cdot \frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{y}} \]
                  5. Step-by-step derivation
                    1. lower-+.f64N/A

                      \[\leadsto x + \color{blue}{-1 \cdot \frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{y}} \]
                    2. lower-*.f64N/A

                      \[\leadsto x + -1 \cdot \color{blue}{\frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{y}} \]
                    3. lower-/.f64N/A

                      \[\leadsto x + -1 \cdot \frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{\color{blue}{y}} \]
                  6. Applied rewrites26.8%

                    \[\leadsto \color{blue}{x + -1 \cdot \frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{y}} \]
                  7. Taylor expanded in z around inf

                    \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]
                  8. Step-by-step derivation
                    1. lower-*.f64N/A

                      \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]
                    2. lower--.f64N/A

                      \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]
                    3. lower-/.f6433.4%

                      \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]
                  9. Applied rewrites33.4%

                    \[\leadsto x + -1 \cdot \frac{z \cdot \left(\frac{a}{y} - 1\right)}{y} \]

                  if -1.9999999999999998e-24 < y < 2.05e46

                  1. Initial program 55.5%

                    \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                  2. Taylor expanded in y around 0

                    \[\leadsto \color{blue}{\frac{t}{i}} \]
                  3. Step-by-step derivation
                    1. lower-/.f6428.3%

                      \[\leadsto \frac{t}{\color{blue}{i}} \]
                  4. Applied rewrites28.3%

                    \[\leadsto \color{blue}{\frac{t}{i}} \]
                3. Recombined 2 regimes into one program.
                4. Add Preprocessing

                Alternative 9: 55.2% accurate, 2.0× speedup?

                \[\begin{array}{l} t_1 := x + \frac{z - a \cdot x}{y}\\ \mathbf{if}\;y \leq \frac{-4738908354687757}{5575186299632655785383929568162090376495104}:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;y \leq 1649999999999999855891765734205098870781112901173248:\\ \;\;\;\;\frac{t}{i}\\ \mathbf{else}:\\ \;\;\;\;t\_1\\ \end{array} \]
                (FPCore (x y z t a b c i)
                  :precision binary64
                  (let* ((t_1 (+ x (/ (- z (* a x)) y))))
                  (if (<=
                       y
                       -4738908354687757/5575186299632655785383929568162090376495104)
                    t_1
                    (if (<= y 1649999999999999855891765734205098870781112901173248)
                      (/ t i)
                      t_1))))
                double code(double x, double y, double z, double t, double a, double b, double c, double i) {
                	double t_1 = x + ((z - (a * x)) / y);
                	double tmp;
                	if (y <= -8.5e-28) {
                		tmp = t_1;
                	} else if (y <= 1.65e+51) {
                		tmp = t / i;
                	} else {
                		tmp = t_1;
                	}
                	return tmp;
                }
                
                module fmin_fmax_functions
                    implicit none
                    private
                    public fmax
                    public fmin
                
                    interface fmax
                        module procedure fmax88
                        module procedure fmax44
                        module procedure fmax84
                        module procedure fmax48
                    end interface
                    interface fmin
                        module procedure fmin88
                        module procedure fmin44
                        module procedure fmin84
                        module procedure fmin48
                    end interface
                contains
                    real(8) function fmax88(x, y) result (res)
                        real(8), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                    end function
                    real(4) function fmax44(x, y) result (res)
                        real(4), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                    end function
                    real(8) function fmax84(x, y) result(res)
                        real(8), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                    end function
                    real(8) function fmax48(x, y) result(res)
                        real(4), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                    end function
                    real(8) function fmin88(x, y) result (res)
                        real(8), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                    end function
                    real(4) function fmin44(x, y) result (res)
                        real(4), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                    end function
                    real(8) function fmin84(x, y) result(res)
                        real(8), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                    end function
                    real(8) function fmin48(x, y) result(res)
                        real(4), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                    end function
                end module
                
                real(8) function code(x, y, z, t, a, b, c, i)
                use fmin_fmax_functions
                    real(8), intent (in) :: x
                    real(8), intent (in) :: y
                    real(8), intent (in) :: z
                    real(8), intent (in) :: t
                    real(8), intent (in) :: a
                    real(8), intent (in) :: b
                    real(8), intent (in) :: c
                    real(8), intent (in) :: i
                    real(8) :: t_1
                    real(8) :: tmp
                    t_1 = x + ((z - (a * x)) / y)
                    if (y <= (-8.5d-28)) then
                        tmp = t_1
                    else if (y <= 1.65d+51) then
                        tmp = t / i
                    else
                        tmp = t_1
                    end if
                    code = tmp
                end function
                
                public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
                	double t_1 = x + ((z - (a * x)) / y);
                	double tmp;
                	if (y <= -8.5e-28) {
                		tmp = t_1;
                	} else if (y <= 1.65e+51) {
                		tmp = t / i;
                	} else {
                		tmp = t_1;
                	}
                	return tmp;
                }
                
                def code(x, y, z, t, a, b, c, i):
                	t_1 = x + ((z - (a * x)) / y)
                	tmp = 0
                	if y <= -8.5e-28:
                		tmp = t_1
                	elif y <= 1.65e+51:
                		tmp = t / i
                	else:
                		tmp = t_1
                	return tmp
                
                function code(x, y, z, t, a, b, c, i)
                	t_1 = Float64(x + Float64(Float64(z - Float64(a * x)) / y))
                	tmp = 0.0
                	if (y <= -8.5e-28)
                		tmp = t_1;
                	elseif (y <= 1.65e+51)
                		tmp = Float64(t / i);
                	else
                		tmp = t_1;
                	end
                	return tmp
                end
                
                function tmp_2 = code(x, y, z, t, a, b, c, i)
                	t_1 = x + ((z - (a * x)) / y);
                	tmp = 0.0;
                	if (y <= -8.5e-28)
                		tmp = t_1;
                	elseif (y <= 1.65e+51)
                		tmp = t / i;
                	else
                		tmp = t_1;
                	end
                	tmp_2 = tmp;
                end
                
                code[x_, y_, z_, t_, a_, b_, c_, i_] := Block[{t$95$1 = N[(x + N[(N[(z - N[(a * x), $MachinePrecision]), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[y, -4738908354687757/5575186299632655785383929568162090376495104], t$95$1, If[LessEqual[y, 1649999999999999855891765734205098870781112901173248], N[(t / i), $MachinePrecision], t$95$1]]]
                
                \begin{array}{l}
                t_1 := x + \frac{z - a \cdot x}{y}\\
                \mathbf{if}\;y \leq \frac{-4738908354687757}{5575186299632655785383929568162090376495104}:\\
                \;\;\;\;t\_1\\
                
                \mathbf{elif}\;y \leq 1649999999999999855891765734205098870781112901173248:\\
                \;\;\;\;\frac{t}{i}\\
                
                \mathbf{else}:\\
                \;\;\;\;t\_1\\
                
                
                \end{array}
                
                Derivation
                1. Split input into 2 regimes
                2. if y < -8.4999999999999993e-28 or 1.6499999999999999e51 < y

                  1. Initial program 55.5%

                    \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                  2. Step-by-step derivation
                    1. lift-+.f64N/A

                      \[\leadsto \frac{\color{blue}{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                    2. sum-to-multN/A

                      \[\leadsto \frac{\color{blue}{\left(1 + \frac{t}{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y}\right) \cdot \left(\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y\right)}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                    3. lower-unsound-*.f64N/A

                      \[\leadsto \frac{\color{blue}{\left(1 + \frac{t}{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y}\right) \cdot \left(\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y\right)}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                  3. Applied rewrites46.1%

                    \[\leadsto \frac{\color{blue}{\left(1 + \frac{t}{\left(\left(\left(z + y \cdot x\right) \cdot y - \frac{-54929528941}{2000000}\right) \cdot y - \frac{-28832688827}{125000}\right) \cdot y}\right) \cdot \left(\left(\left(\left(z + y \cdot x\right) \cdot y - \frac{-54929528941}{2000000}\right) \cdot y - \frac{-28832688827}{125000}\right) \cdot y\right)}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                  4. Taylor expanded in y around -inf

                    \[\leadsto \color{blue}{x + -1 \cdot \frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{y}} \]
                  5. Step-by-step derivation
                    1. lower-+.f64N/A

                      \[\leadsto x + \color{blue}{-1 \cdot \frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{y}} \]
                    2. lower-*.f64N/A

                      \[\leadsto x + -1 \cdot \color{blue}{\frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{y}} \]
                    3. lower-/.f64N/A

                      \[\leadsto x + -1 \cdot \frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{\color{blue}{y}} \]
                  6. Applied rewrites26.8%

                    \[\leadsto \color{blue}{x + -1 \cdot \frac{-1 \cdot \left(z - a \cdot x\right) + -1 \cdot \frac{\frac{54929528941}{2000000} + \left(-1 \cdot \left(a \cdot \left(z - a \cdot x\right)\right) + -1 \cdot \left(b \cdot x\right)\right)}{y}}{y}} \]
                  7. Taylor expanded in y around inf

                    \[\leadsto x + \frac{z - a \cdot x}{\color{blue}{y}} \]
                  8. Step-by-step derivation
                    1. lower-/.f64N/A

                      \[\leadsto x + \frac{z - a \cdot x}{y} \]
                    2. lower--.f64N/A

                      \[\leadsto x + \frac{z - a \cdot x}{y} \]
                    3. lower-*.f6431.5%

                      \[\leadsto x + \frac{z - a \cdot x}{y} \]
                  9. Applied rewrites31.5%

                    \[\leadsto x + \frac{z - a \cdot x}{\color{blue}{y}} \]

                  if -8.4999999999999993e-28 < y < 1.6499999999999999e51

                  1. Initial program 55.5%

                    \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                  2. Taylor expanded in y around 0

                    \[\leadsto \color{blue}{\frac{t}{i}} \]
                  3. Step-by-step derivation
                    1. lower-/.f6428.3%

                      \[\leadsto \frac{t}{\color{blue}{i}} \]
                  4. Applied rewrites28.3%

                    \[\leadsto \color{blue}{\frac{t}{i}} \]
                3. Recombined 2 regimes into one program.
                4. Add Preprocessing

                Alternative 10: 28.7% accurate, 3.1× speedup?

                \[\begin{array}{l} \mathbf{if}\;c \leq 539999999999999991694515579716069775339900875769553645781471547701820229645610440184144461360016568693244798992243850939959162875737667188198393165225891063010619944422157145334873141203173376:\\ \;\;\;\;\frac{t}{i}\\ \mathbf{else}:\\ \;\;\;\;\frac{t}{c \cdot y}\\ \end{array} \]
                (FPCore (x y z t a b c i)
                  :precision binary64
                  (if (<=
                     c
                     539999999999999991694515579716069775339900875769553645781471547701820229645610440184144461360016568693244798992243850939959162875737667188198393165225891063010619944422157145334873141203173376)
                  (/ t i)
                  (/ t (* c y))))
                double code(double x, double y, double z, double t, double a, double b, double c, double i) {
                	double tmp;
                	if (c <= 5.4e+191) {
                		tmp = t / i;
                	} else {
                		tmp = t / (c * y);
                	}
                	return tmp;
                }
                
                module fmin_fmax_functions
                    implicit none
                    private
                    public fmax
                    public fmin
                
                    interface fmax
                        module procedure fmax88
                        module procedure fmax44
                        module procedure fmax84
                        module procedure fmax48
                    end interface
                    interface fmin
                        module procedure fmin88
                        module procedure fmin44
                        module procedure fmin84
                        module procedure fmin48
                    end interface
                contains
                    real(8) function fmax88(x, y) result (res)
                        real(8), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                    end function
                    real(4) function fmax44(x, y) result (res)
                        real(4), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                    end function
                    real(8) function fmax84(x, y) result(res)
                        real(8), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                    end function
                    real(8) function fmax48(x, y) result(res)
                        real(4), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                    end function
                    real(8) function fmin88(x, y) result (res)
                        real(8), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                    end function
                    real(4) function fmin44(x, y) result (res)
                        real(4), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                    end function
                    real(8) function fmin84(x, y) result(res)
                        real(8), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                    end function
                    real(8) function fmin48(x, y) result(res)
                        real(4), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                    end function
                end module
                
                real(8) function code(x, y, z, t, a, b, c, i)
                use fmin_fmax_functions
                    real(8), intent (in) :: x
                    real(8), intent (in) :: y
                    real(8), intent (in) :: z
                    real(8), intent (in) :: t
                    real(8), intent (in) :: a
                    real(8), intent (in) :: b
                    real(8), intent (in) :: c
                    real(8), intent (in) :: i
                    real(8) :: tmp
                    if (c <= 5.4d+191) then
                        tmp = t / i
                    else
                        tmp = t / (c * y)
                    end if
                    code = tmp
                end function
                
                public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
                	double tmp;
                	if (c <= 5.4e+191) {
                		tmp = t / i;
                	} else {
                		tmp = t / (c * y);
                	}
                	return tmp;
                }
                
                def code(x, y, z, t, a, b, c, i):
                	tmp = 0
                	if c <= 5.4e+191:
                		tmp = t / i
                	else:
                		tmp = t / (c * y)
                	return tmp
                
                function code(x, y, z, t, a, b, c, i)
                	tmp = 0.0
                	if (c <= 5.4e+191)
                		tmp = Float64(t / i);
                	else
                		tmp = Float64(t / Float64(c * y));
                	end
                	return tmp
                end
                
                function tmp_2 = code(x, y, z, t, a, b, c, i)
                	tmp = 0.0;
                	if (c <= 5.4e+191)
                		tmp = t / i;
                	else
                		tmp = t / (c * y);
                	end
                	tmp_2 = tmp;
                end
                
                code[x_, y_, z_, t_, a_, b_, c_, i_] := If[LessEqual[c, 539999999999999991694515579716069775339900875769553645781471547701820229645610440184144461360016568693244798992243850939959162875737667188198393165225891063010619944422157145334873141203173376], N[(t / i), $MachinePrecision], N[(t / N[(c * y), $MachinePrecision]), $MachinePrecision]]
                
                \begin{array}{l}
                \mathbf{if}\;c \leq 539999999999999991694515579716069775339900875769553645781471547701820229645610440184144461360016568693244798992243850939959162875737667188198393165225891063010619944422157145334873141203173376:\\
                \;\;\;\;\frac{t}{i}\\
                
                \mathbf{else}:\\
                \;\;\;\;\frac{t}{c \cdot y}\\
                
                
                \end{array}
                
                Derivation
                1. Split input into 2 regimes
                2. if c < 5.3999999999999999e191

                  1. Initial program 55.5%

                    \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                  2. Taylor expanded in y around 0

                    \[\leadsto \color{blue}{\frac{t}{i}} \]
                  3. Step-by-step derivation
                    1. lower-/.f6428.3%

                      \[\leadsto \frac{t}{\color{blue}{i}} \]
                  4. Applied rewrites28.3%

                    \[\leadsto \color{blue}{\frac{t}{i}} \]

                  if 5.3999999999999999e191 < c

                  1. Initial program 55.5%

                    \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                  2. Applied rewrites56.0%

                    \[\leadsto \color{blue}{\frac{t}{i + \left(c + \left(b + \left(a + y\right) \cdot y\right) \cdot y\right) \cdot y} - \left(\frac{-28832688827}{125000} - \left(\left(z + y \cdot x\right) \cdot y - \frac{-54929528941}{2000000}\right) \cdot y\right) \cdot \frac{y}{i + \left(c + \left(b + \left(a + y\right) \cdot y\right) \cdot y\right) \cdot y}} \]
                  3. Taylor expanded in c around inf

                    \[\leadsto \color{blue}{\frac{\frac{t}{y} - -1 \cdot \left(\frac{28832688827}{125000} + y \cdot \left(\frac{54929528941}{2000000} + y \cdot \left(z + x \cdot y\right)\right)\right)}{c}} \]
                  4. Step-by-step derivation
                    1. lower-/.f64N/A

                      \[\leadsto \frac{\frac{t}{y} - -1 \cdot \left(\frac{28832688827}{125000} + y \cdot \left(\frac{54929528941}{2000000} + y \cdot \left(z + x \cdot y\right)\right)\right)}{\color{blue}{c}} \]
                  5. Applied rewrites14.0%

                    \[\leadsto \color{blue}{\frac{\frac{t}{y} - -1 \cdot \left(\frac{28832688827}{125000} + y \cdot \left(\frac{54929528941}{2000000} + y \cdot \left(z + x \cdot y\right)\right)\right)}{c}} \]
                  6. Taylor expanded in y around 0

                    \[\leadsto \frac{t}{\color{blue}{c \cdot y}} \]
                  7. Step-by-step derivation
                    1. lower-/.f64N/A

                      \[\leadsto \frac{t}{c \cdot \color{blue}{y}} \]
                    2. lower-*.f6412.0%

                      \[\leadsto \frac{t}{c \cdot y} \]
                  8. Applied rewrites12.0%

                    \[\leadsto \frac{t}{\color{blue}{c \cdot y}} \]
                3. Recombined 2 regimes into one program.
                4. Add Preprocessing

                Alternative 11: 28.7% accurate, 3.1× speedup?

                \[\begin{array}{l} \mathbf{if}\;y \leq \frac{4958484807013127}{2361183241434822606848}:\\ \;\;\;\;\frac{t}{i}\\ \mathbf{else}:\\ \;\;\;\;\frac{z}{b} \cdot y\\ \end{array} \]
                (FPCore (x y z t a b c i)
                  :precision binary64
                  (if (<= y 4958484807013127/2361183241434822606848)
                  (/ t i)
                  (* (/ z b) y)))
                double code(double x, double y, double z, double t, double a, double b, double c, double i) {
                	double tmp;
                	if (y <= 2.1e-6) {
                		tmp = t / i;
                	} else {
                		tmp = (z / b) * y;
                	}
                	return tmp;
                }
                
                module fmin_fmax_functions
                    implicit none
                    private
                    public fmax
                    public fmin
                
                    interface fmax
                        module procedure fmax88
                        module procedure fmax44
                        module procedure fmax84
                        module procedure fmax48
                    end interface
                    interface fmin
                        module procedure fmin88
                        module procedure fmin44
                        module procedure fmin84
                        module procedure fmin48
                    end interface
                contains
                    real(8) function fmax88(x, y) result (res)
                        real(8), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                    end function
                    real(4) function fmax44(x, y) result (res)
                        real(4), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                    end function
                    real(8) function fmax84(x, y) result(res)
                        real(8), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                    end function
                    real(8) function fmax48(x, y) result(res)
                        real(4), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                    end function
                    real(8) function fmin88(x, y) result (res)
                        real(8), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                    end function
                    real(4) function fmin44(x, y) result (res)
                        real(4), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                    end function
                    real(8) function fmin84(x, y) result(res)
                        real(8), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                    end function
                    real(8) function fmin48(x, y) result(res)
                        real(4), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                    end function
                end module
                
                real(8) function code(x, y, z, t, a, b, c, i)
                use fmin_fmax_functions
                    real(8), intent (in) :: x
                    real(8), intent (in) :: y
                    real(8), intent (in) :: z
                    real(8), intent (in) :: t
                    real(8), intent (in) :: a
                    real(8), intent (in) :: b
                    real(8), intent (in) :: c
                    real(8), intent (in) :: i
                    real(8) :: tmp
                    if (y <= 2.1d-6) then
                        tmp = t / i
                    else
                        tmp = (z / b) * y
                    end if
                    code = tmp
                end function
                
                public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
                	double tmp;
                	if (y <= 2.1e-6) {
                		tmp = t / i;
                	} else {
                		tmp = (z / b) * y;
                	}
                	return tmp;
                }
                
                def code(x, y, z, t, a, b, c, i):
                	tmp = 0
                	if y <= 2.1e-6:
                		tmp = t / i
                	else:
                		tmp = (z / b) * y
                	return tmp
                
                function code(x, y, z, t, a, b, c, i)
                	tmp = 0.0
                	if (y <= 2.1e-6)
                		tmp = Float64(t / i);
                	else
                		tmp = Float64(Float64(z / b) * y);
                	end
                	return tmp
                end
                
                function tmp_2 = code(x, y, z, t, a, b, c, i)
                	tmp = 0.0;
                	if (y <= 2.1e-6)
                		tmp = t / i;
                	else
                		tmp = (z / b) * y;
                	end
                	tmp_2 = tmp;
                end
                
                code[x_, y_, z_, t_, a_, b_, c_, i_] := If[LessEqual[y, 4958484807013127/2361183241434822606848], N[(t / i), $MachinePrecision], N[(N[(z / b), $MachinePrecision] * y), $MachinePrecision]]
                
                \begin{array}{l}
                \mathbf{if}\;y \leq \frac{4958484807013127}{2361183241434822606848}:\\
                \;\;\;\;\frac{t}{i}\\
                
                \mathbf{else}:\\
                \;\;\;\;\frac{z}{b} \cdot y\\
                
                
                \end{array}
                
                Derivation
                1. Split input into 2 regimes
                2. if y < 2.0999999999999998e-6

                  1. Initial program 55.5%

                    \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                  2. Taylor expanded in y around 0

                    \[\leadsto \color{blue}{\frac{t}{i}} \]
                  3. Step-by-step derivation
                    1. lower-/.f6428.3%

                      \[\leadsto \frac{t}{\color{blue}{i}} \]
                  4. Applied rewrites28.3%

                    \[\leadsto \color{blue}{\frac{t}{i}} \]

                  if 2.0999999999999998e-6 < y

                  1. Initial program 55.5%

                    \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                  2. Applied rewrites56.0%

                    \[\leadsto \color{blue}{\frac{t}{i + \left(c + \left(b + \left(a + y\right) \cdot y\right) \cdot y\right) \cdot y} - \left(\frac{-28832688827}{125000} - \left(\left(z + y \cdot x\right) \cdot y - \frac{-54929528941}{2000000}\right) \cdot y\right) \cdot \frac{y}{i + \left(c + \left(b + \left(a + y\right) \cdot y\right) \cdot y\right) \cdot y}} \]
                  3. Taylor expanded in b around -inf

                    \[\leadsto \color{blue}{-1 \cdot \frac{-1 \cdot \frac{t}{{y}^{2}} - \left(\frac{54929528941}{2000000} + \left(\frac{28832688827}{125000} \cdot \frac{1}{y} + y \cdot \left(z + x \cdot y\right)\right)\right)}{b}} \]
                  4. Step-by-step derivation
                    1. lower-*.f64N/A

                      \[\leadsto -1 \cdot \color{blue}{\frac{-1 \cdot \frac{t}{{y}^{2}} - \left(\frac{54929528941}{2000000} + \left(\frac{28832688827}{125000} \cdot \frac{1}{y} + y \cdot \left(z + x \cdot y\right)\right)\right)}{b}} \]
                    2. lower-/.f64N/A

                      \[\leadsto -1 \cdot \frac{-1 \cdot \frac{t}{{y}^{2}} - \left(\frac{54929528941}{2000000} + \left(\frac{28832688827}{125000} \cdot \frac{1}{y} + y \cdot \left(z + x \cdot y\right)\right)\right)}{\color{blue}{b}} \]
                  5. Applied rewrites9.4%

                    \[\leadsto \color{blue}{-1 \cdot \frac{-1 \cdot \frac{t}{{y}^{2}} - \left(\frac{54929528941}{2000000} + \left(\frac{28832688827}{125000} \cdot \frac{1}{y} + y \cdot \left(z + x \cdot y\right)\right)\right)}{b}} \]
                  6. Taylor expanded in z around inf

                    \[\leadsto \frac{y \cdot z}{\color{blue}{b}} \]
                  7. Step-by-step derivation
                    1. lower-/.f64N/A

                      \[\leadsto \frac{y \cdot z}{b} \]
                    2. lower-*.f645.9%

                      \[\leadsto \frac{y \cdot z}{b} \]
                  8. Applied rewrites5.9%

                    \[\leadsto \frac{y \cdot z}{\color{blue}{b}} \]
                  9. Step-by-step derivation
                    1. lift-/.f64N/A

                      \[\leadsto \frac{y \cdot z}{b} \]
                    2. lift-*.f64N/A

                      \[\leadsto \frac{y \cdot z}{b} \]
                    3. associate-/l*N/A

                      \[\leadsto y \cdot \frac{z}{\color{blue}{b}} \]
                    4. *-commutativeN/A

                      \[\leadsto \frac{z}{b} \cdot y \]
                    5. lower-*.f64N/A

                      \[\leadsto \frac{z}{b} \cdot y \]
                    6. lower-/.f646.1%

                      \[\leadsto \frac{z}{b} \cdot y \]
                  10. Applied rewrites6.1%

                    \[\leadsto \frac{z}{b} \cdot y \]
                3. Recombined 2 regimes into one program.
                4. Add Preprocessing

                Alternative 12: 28.3% accurate, 5.9× speedup?

                \[\frac{t}{i} \]
                (FPCore (x y z t a b c i)
                  :precision binary64
                  (/ t i))
                double code(double x, double y, double z, double t, double a, double b, double c, double i) {
                	return t / i;
                }
                
                module fmin_fmax_functions
                    implicit none
                    private
                    public fmax
                    public fmin
                
                    interface fmax
                        module procedure fmax88
                        module procedure fmax44
                        module procedure fmax84
                        module procedure fmax48
                    end interface
                    interface fmin
                        module procedure fmin88
                        module procedure fmin44
                        module procedure fmin84
                        module procedure fmin48
                    end interface
                contains
                    real(8) function fmax88(x, y) result (res)
                        real(8), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                    end function
                    real(4) function fmax44(x, y) result (res)
                        real(4), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                    end function
                    real(8) function fmax84(x, y) result(res)
                        real(8), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                    end function
                    real(8) function fmax48(x, y) result(res)
                        real(4), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                    end function
                    real(8) function fmin88(x, y) result (res)
                        real(8), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                    end function
                    real(4) function fmin44(x, y) result (res)
                        real(4), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                    end function
                    real(8) function fmin84(x, y) result(res)
                        real(8), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                    end function
                    real(8) function fmin48(x, y) result(res)
                        real(4), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                    end function
                end module
                
                real(8) function code(x, y, z, t, a, b, c, i)
                use fmin_fmax_functions
                    real(8), intent (in) :: x
                    real(8), intent (in) :: y
                    real(8), intent (in) :: z
                    real(8), intent (in) :: t
                    real(8), intent (in) :: a
                    real(8), intent (in) :: b
                    real(8), intent (in) :: c
                    real(8), intent (in) :: i
                    code = t / i
                end function
                
                public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
                	return t / i;
                }
                
                def code(x, y, z, t, a, b, c, i):
                	return t / i
                
                function code(x, y, z, t, a, b, c, i)
                	return Float64(t / i)
                end
                
                function tmp = code(x, y, z, t, a, b, c, i)
                	tmp = t / i;
                end
                
                code[x_, y_, z_, t_, a_, b_, c_, i_] := N[(t / i), $MachinePrecision]
                
                \frac{t}{i}
                
                Derivation
                1. Initial program 55.5%

                  \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                2. Taylor expanded in y around 0

                  \[\leadsto \color{blue}{\frac{t}{i}} \]
                3. Step-by-step derivation
                  1. lower-/.f6428.3%

                    \[\leadsto \frac{t}{\color{blue}{i}} \]
                4. Applied rewrites28.3%

                  \[\leadsto \color{blue}{\frac{t}{i}} \]
                5. Add Preprocessing

                Reproduce

                ?
                herbie shell --seed 2025271 -o generate:evaluate
                (FPCore (x y z t a b c i)
                  :name "Numeric.SpecFunctions:logGamma from math-functions-0.1.5.2"
                  :precision binary64
                  (/ (+ (* (+ (* (+ (* (+ (* x y) z) y) 54929528941/2000000) y) 28832688827/125000) y) t) (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i)))