Data.HashTable.ST.Basic:computeOverhead from hashtables-1.2.0.2

Percentage Accurate: 86.7% → 99.3%
Time: 4.5s
Alternatives: 11
Speedup: 1.0×

Specification

?
\[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
(FPCore (x y z t)
  :precision binary64
  (+ (/ x y) (/ (+ 2.0 (* (* z 2.0) (- 1.0 t))) (* t z))))
double code(double x, double y, double z, double t) {
	return (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z));
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z, t)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8), intent (in) :: t
    code = (x / y) + ((2.0d0 + ((z * 2.0d0) * (1.0d0 - t))) / (t * z))
end function
public static double code(double x, double y, double z, double t) {
	return (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z));
}
def code(x, y, z, t):
	return (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z))
function code(x, y, z, t)
	return Float64(Float64(x / y) + Float64(Float64(2.0 + Float64(Float64(z * 2.0) * Float64(1.0 - t))) / Float64(t * z)))
end
function tmp = code(x, y, z, t)
	tmp = (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z));
end
code[x_, y_, z_, t_] := N[(N[(x / y), $MachinePrecision] + N[(N[(2.0 + N[(N[(z * 2.0), $MachinePrecision] * N[(1.0 - t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}

Local Percentage Accuracy vs ?

The average percentage accuracy by input value. Horizontal axis shows value of an input variable; the variable is choosen in the title. Vertical axis is accuracy; higher is better. Red represent the original program, while blue represents Herbie's suggestion. These can be toggled with buttons below the plot. The line is an average while dots represent individual samples.

Accuracy vs Speed?

Herbie found 11 alternatives:

AlternativeAccuracySpeedup
The accuracy (vertical axis) and speed (horizontal axis) of each alternatives. Up and to the right is better. The red square shows the initial program, and each blue circle shows an alternative.The line shows the best available speed-accuracy tradeoffs.

Initial Program: 86.7% accurate, 1.0× speedup?

\[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
(FPCore (x y z t)
  :precision binary64
  (+ (/ x y) (/ (+ 2.0 (* (* z 2.0) (- 1.0 t))) (* t z))))
double code(double x, double y, double z, double t) {
	return (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z));
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z, t)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8), intent (in) :: t
    code = (x / y) + ((2.0d0 + ((z * 2.0d0) * (1.0d0 - t))) / (t * z))
end function
public static double code(double x, double y, double z, double t) {
	return (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z));
}
def code(x, y, z, t):
	return (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z))
function code(x, y, z, t)
	return Float64(Float64(x / y) + Float64(Float64(2.0 + Float64(Float64(z * 2.0) * Float64(1.0 - t))) / Float64(t * z)))
end
function tmp = code(x, y, z, t)
	tmp = (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z));
end
code[x_, y_, z_, t_] := N[(N[(x / y), $MachinePrecision] + N[(N[(2.0 + N[(N[(z * 2.0), $MachinePrecision] * N[(1.0 - t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}

Alternative 1: 99.3% accurate, 0.5× speedup?

\[\begin{array}{l} t_1 := \frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}\\ \mathbf{if}\;t\_1 \leq \infty:\\ \;\;\;\;t\_1\\ \mathbf{else}:\\ \;\;\;\;\frac{x}{y} + -2\\ \end{array} \]
(FPCore (x y z t)
  :precision binary64
  (let* ((t_1 (+ (/ x y) (/ (+ 2.0 (* (* z 2.0) (- 1.0 t))) (* t z)))))
  (if (<= t_1 INFINITY) t_1 (+ (/ x y) -2.0))))
double code(double x, double y, double z, double t) {
	double t_1 = (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z));
	double tmp;
	if (t_1 <= ((double) INFINITY)) {
		tmp = t_1;
	} else {
		tmp = (x / y) + -2.0;
	}
	return tmp;
}
public static double code(double x, double y, double z, double t) {
	double t_1 = (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z));
	double tmp;
	if (t_1 <= Double.POSITIVE_INFINITY) {
		tmp = t_1;
	} else {
		tmp = (x / y) + -2.0;
	}
	return tmp;
}
def code(x, y, z, t):
	t_1 = (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z))
	tmp = 0
	if t_1 <= math.inf:
		tmp = t_1
	else:
		tmp = (x / y) + -2.0
	return tmp
function code(x, y, z, t)
	t_1 = Float64(Float64(x / y) + Float64(Float64(2.0 + Float64(Float64(z * 2.0) * Float64(1.0 - t))) / Float64(t * z)))
	tmp = 0.0
	if (t_1 <= Inf)
		tmp = t_1;
	else
		tmp = Float64(Float64(x / y) + -2.0);
	end
	return tmp
end
function tmp_2 = code(x, y, z, t)
	t_1 = (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z));
	tmp = 0.0;
	if (t_1 <= Inf)
		tmp = t_1;
	else
		tmp = (x / y) + -2.0;
	end
	tmp_2 = tmp;
end
code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(x / y), $MachinePrecision] + N[(N[(2.0 + N[(N[(z * 2.0), $MachinePrecision] * N[(1.0 - t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$1, Infinity], t$95$1, N[(N[(x / y), $MachinePrecision] + -2.0), $MachinePrecision]]]
\begin{array}{l}
t_1 := \frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}\\
\mathbf{if}\;t\_1 \leq \infty:\\
\;\;\;\;t\_1\\

\mathbf{else}:\\
\;\;\;\;\frac{x}{y} + -2\\


\end{array}
Derivation
  1. Split input into 2 regimes
  2. if (+.f64 (/.f64 x y) (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z))) < +inf.0

    1. Initial program 86.7%

      \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]

    if +inf.0 < (+.f64 (/.f64 x y) (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)))

    1. Initial program 86.7%

      \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
    2. Taylor expanded in t around inf

      \[\leadsto \frac{x}{y} + \color{blue}{-2} \]
    3. Step-by-step derivation
      1. Applied rewrites54.0%

        \[\leadsto \frac{x}{y} + \color{blue}{-2} \]
    4. Recombined 2 regimes into one program.
    5. Add Preprocessing

    Alternative 2: 98.2% accurate, 0.3× speedup?

    \[\begin{array}{l} t_1 := \frac{\left(z + z\right) - -2}{t \cdot z} + \frac{x}{y}\\ t_2 := \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}\\ \mathbf{if}\;t\_2 \leq -4000000:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;t\_2 \leq 50:\\ \;\;\;\;\frac{x}{y} + 2 \cdot \frac{1 - t}{t}\\ \mathbf{elif}\;t\_2 \leq \infty:\\ \;\;\;\;t\_1\\ \mathbf{else}:\\ \;\;\;\;\frac{x}{y} + -2\\ \end{array} \]
    (FPCore (x y z t)
      :precision binary64
      (let* ((t_1 (+ (/ (- (+ z z) -2.0) (* t z)) (/ x y)))
           (t_2 (/ (+ 2.0 (* (* z 2.0) (- 1.0 t))) (* t z))))
      (if (<= t_2 -4000000.0)
        t_1
        (if (<= t_2 50.0)
          (+ (/ x y) (* 2.0 (/ (- 1.0 t) t)))
          (if (<= t_2 INFINITY) t_1 (+ (/ x y) -2.0))))))
    double code(double x, double y, double z, double t) {
    	double t_1 = (((z + z) - -2.0) / (t * z)) + (x / y);
    	double t_2 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z);
    	double tmp;
    	if (t_2 <= -4000000.0) {
    		tmp = t_1;
    	} else if (t_2 <= 50.0) {
    		tmp = (x / y) + (2.0 * ((1.0 - t) / t));
    	} else if (t_2 <= ((double) INFINITY)) {
    		tmp = t_1;
    	} else {
    		tmp = (x / y) + -2.0;
    	}
    	return tmp;
    }
    
    public static double code(double x, double y, double z, double t) {
    	double t_1 = (((z + z) - -2.0) / (t * z)) + (x / y);
    	double t_2 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z);
    	double tmp;
    	if (t_2 <= -4000000.0) {
    		tmp = t_1;
    	} else if (t_2 <= 50.0) {
    		tmp = (x / y) + (2.0 * ((1.0 - t) / t));
    	} else if (t_2 <= Double.POSITIVE_INFINITY) {
    		tmp = t_1;
    	} else {
    		tmp = (x / y) + -2.0;
    	}
    	return tmp;
    }
    
    def code(x, y, z, t):
    	t_1 = (((z + z) - -2.0) / (t * z)) + (x / y)
    	t_2 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z)
    	tmp = 0
    	if t_2 <= -4000000.0:
    		tmp = t_1
    	elif t_2 <= 50.0:
    		tmp = (x / y) + (2.0 * ((1.0 - t) / t))
    	elif t_2 <= math.inf:
    		tmp = t_1
    	else:
    		tmp = (x / y) + -2.0
    	return tmp
    
    function code(x, y, z, t)
    	t_1 = Float64(Float64(Float64(Float64(z + z) - -2.0) / Float64(t * z)) + Float64(x / y))
    	t_2 = Float64(Float64(2.0 + Float64(Float64(z * 2.0) * Float64(1.0 - t))) / Float64(t * z))
    	tmp = 0.0
    	if (t_2 <= -4000000.0)
    		tmp = t_1;
    	elseif (t_2 <= 50.0)
    		tmp = Float64(Float64(x / y) + Float64(2.0 * Float64(Float64(1.0 - t) / t)));
    	elseif (t_2 <= Inf)
    		tmp = t_1;
    	else
    		tmp = Float64(Float64(x / y) + -2.0);
    	end
    	return tmp
    end
    
    function tmp_2 = code(x, y, z, t)
    	t_1 = (((z + z) - -2.0) / (t * z)) + (x / y);
    	t_2 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z);
    	tmp = 0.0;
    	if (t_2 <= -4000000.0)
    		tmp = t_1;
    	elseif (t_2 <= 50.0)
    		tmp = (x / y) + (2.0 * ((1.0 - t) / t));
    	elseif (t_2 <= Inf)
    		tmp = t_1;
    	else
    		tmp = (x / y) + -2.0;
    	end
    	tmp_2 = tmp;
    end
    
    code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(N[(N[(z + z), $MachinePrecision] - -2.0), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision] + N[(x / y), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$2 = N[(N[(2.0 + N[(N[(z * 2.0), $MachinePrecision] * N[(1.0 - t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$2, -4000000.0], t$95$1, If[LessEqual[t$95$2, 50.0], N[(N[(x / y), $MachinePrecision] + N[(2.0 * N[(N[(1.0 - t), $MachinePrecision] / t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$2, Infinity], t$95$1, N[(N[(x / y), $MachinePrecision] + -2.0), $MachinePrecision]]]]]]
    
    \begin{array}{l}
    t_1 := \frac{\left(z + z\right) - -2}{t \cdot z} + \frac{x}{y}\\
    t_2 := \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}\\
    \mathbf{if}\;t\_2 \leq -4000000:\\
    \;\;\;\;t\_1\\
    
    \mathbf{elif}\;t\_2 \leq 50:\\
    \;\;\;\;\frac{x}{y} + 2 \cdot \frac{1 - t}{t}\\
    
    \mathbf{elif}\;t\_2 \leq \infty:\\
    \;\;\;\;t\_1\\
    
    \mathbf{else}:\\
    \;\;\;\;\frac{x}{y} + -2\\
    
    
    \end{array}
    
    Derivation
    1. Split input into 3 regimes
    2. if (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < -4e6 or 50 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < +inf.0

      1. Initial program 86.7%

        \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
      2. Taylor expanded in t around 0

        \[\leadsto \frac{x}{y} + \frac{\color{blue}{2 + 2 \cdot z}}{t \cdot z} \]
      3. Step-by-step derivation
        1. lower-+.f64N/A

          \[\leadsto \frac{x}{y} + \frac{2 + \color{blue}{2 \cdot z}}{t \cdot z} \]
        2. lower-*.f6480.5%

          \[\leadsto \frac{x}{y} + \frac{2 + 2 \cdot \color{blue}{z}}{t \cdot z} \]
      4. Applied rewrites80.5%

        \[\leadsto \frac{x}{y} + \frac{\color{blue}{2 + 2 \cdot z}}{t \cdot z} \]
      5. Step-by-step derivation
        1. lift-+.f64N/A

          \[\leadsto \color{blue}{\frac{x}{y} + \frac{2 + 2 \cdot z}{t \cdot z}} \]
        2. +-commutativeN/A

          \[\leadsto \color{blue}{\frac{2 + 2 \cdot z}{t \cdot z} + \frac{x}{y}} \]
        3. lower-+.f6480.5%

          \[\leadsto \color{blue}{\frac{2 + 2 \cdot z}{t \cdot z} + \frac{x}{y}} \]
        4. lift-+.f64N/A

          \[\leadsto \frac{2 + \color{blue}{2 \cdot z}}{t \cdot z} + \frac{x}{y} \]
        5. +-commutativeN/A

          \[\leadsto \frac{2 \cdot z + \color{blue}{2}}{t \cdot z} + \frac{x}{y} \]
        6. add-flipN/A

          \[\leadsto \frac{2 \cdot z - \color{blue}{\left(\mathsf{neg}\left(2\right)\right)}}{t \cdot z} + \frac{x}{y} \]
        7. metadata-evalN/A

          \[\leadsto \frac{2 \cdot z - -2}{t \cdot z} + \frac{x}{y} \]
        8. lower--.f6480.5%

          \[\leadsto \frac{2 \cdot z - \color{blue}{-2}}{t \cdot z} + \frac{x}{y} \]
        9. lift-*.f64N/A

          \[\leadsto \frac{2 \cdot z - -2}{t \cdot z} + \frac{x}{y} \]
        10. count-2-revN/A

          \[\leadsto \frac{\left(z + z\right) - -2}{t \cdot z} + \frac{x}{y} \]
        11. lower-+.f6480.5%

          \[\leadsto \frac{\left(z + z\right) - -2}{t \cdot z} + \frac{x}{y} \]
      6. Applied rewrites80.5%

        \[\leadsto \color{blue}{\frac{\left(z + z\right) - -2}{t \cdot z} + \frac{x}{y}} \]

      if -4e6 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < 50

      1. Initial program 86.7%

        \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
      2. Taylor expanded in z around inf

        \[\leadsto \frac{x}{y} + \color{blue}{2 \cdot \frac{1 - t}{t}} \]
      3. Step-by-step derivation
        1. lower-*.f64N/A

          \[\leadsto \frac{x}{y} + 2 \cdot \color{blue}{\frac{1 - t}{t}} \]
        2. lower-/.f64N/A

          \[\leadsto \frac{x}{y} + 2 \cdot \frac{1 - t}{\color{blue}{t}} \]
        3. lower--.f6471.9%

          \[\leadsto \frac{x}{y} + 2 \cdot \frac{1 - t}{t} \]
      4. Applied rewrites71.9%

        \[\leadsto \frac{x}{y} + \color{blue}{2 \cdot \frac{1 - t}{t}} \]

      if +inf.0 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z))

      1. Initial program 86.7%

        \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
      2. Taylor expanded in t around inf

        \[\leadsto \frac{x}{y} + \color{blue}{-2} \]
      3. Step-by-step derivation
        1. Applied rewrites54.0%

          \[\leadsto \frac{x}{y} + \color{blue}{-2} \]
      4. Recombined 3 regimes into one program.
      5. Add Preprocessing

      Alternative 3: 97.7% accurate, 0.6× speedup?

      \[\begin{array}{l} t_1 := \frac{\left(z + z\right) - -2}{t \cdot z} + \frac{x}{y}\\ \mathbf{if}\;\frac{x}{y} \leq -5000:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;\frac{x}{y} \leq 10^{-24}:\\ \;\;\;\;2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z}\\ \mathbf{else}:\\ \;\;\;\;t\_1\\ \end{array} \]
      (FPCore (x y z t)
        :precision binary64
        (let* ((t_1 (+ (/ (- (+ z z) -2.0) (* t z)) (/ x y))))
        (if (<= (/ x y) -5000.0)
          t_1
          (if (<= (/ x y) 1e-24)
            (+ (* 2.0 (/ (- 1.0 t) t)) (* 2.0 (/ 1.0 (* t z))))
            t_1))))
      double code(double x, double y, double z, double t) {
      	double t_1 = (((z + z) - -2.0) / (t * z)) + (x / y);
      	double tmp;
      	if ((x / y) <= -5000.0) {
      		tmp = t_1;
      	} else if ((x / y) <= 1e-24) {
      		tmp = (2.0 * ((1.0 - t) / t)) + (2.0 * (1.0 / (t * z)));
      	} else {
      		tmp = t_1;
      	}
      	return tmp;
      }
      
      module fmin_fmax_functions
          implicit none
          private
          public fmax
          public fmin
      
          interface fmax
              module procedure fmax88
              module procedure fmax44
              module procedure fmax84
              module procedure fmax48
          end interface
          interface fmin
              module procedure fmin88
              module procedure fmin44
              module procedure fmin84
              module procedure fmin48
          end interface
      contains
          real(8) function fmax88(x, y) result (res)
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
          end function
          real(4) function fmax44(x, y) result (res)
              real(4), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
          end function
          real(8) function fmax84(x, y) result(res)
              real(8), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
          end function
          real(8) function fmax48(x, y) result(res)
              real(4), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
          end function
          real(8) function fmin88(x, y) result (res)
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
          end function
          real(4) function fmin44(x, y) result (res)
              real(4), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
          end function
          real(8) function fmin84(x, y) result(res)
              real(8), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
          end function
          real(8) function fmin48(x, y) result(res)
              real(4), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
          end function
      end module
      
      real(8) function code(x, y, z, t)
      use fmin_fmax_functions
          real(8), intent (in) :: x
          real(8), intent (in) :: y
          real(8), intent (in) :: z
          real(8), intent (in) :: t
          real(8) :: t_1
          real(8) :: tmp
          t_1 = (((z + z) - (-2.0d0)) / (t * z)) + (x / y)
          if ((x / y) <= (-5000.0d0)) then
              tmp = t_1
          else if ((x / y) <= 1d-24) then
              tmp = (2.0d0 * ((1.0d0 - t) / t)) + (2.0d0 * (1.0d0 / (t * z)))
          else
              tmp = t_1
          end if
          code = tmp
      end function
      
      public static double code(double x, double y, double z, double t) {
      	double t_1 = (((z + z) - -2.0) / (t * z)) + (x / y);
      	double tmp;
      	if ((x / y) <= -5000.0) {
      		tmp = t_1;
      	} else if ((x / y) <= 1e-24) {
      		tmp = (2.0 * ((1.0 - t) / t)) + (2.0 * (1.0 / (t * z)));
      	} else {
      		tmp = t_1;
      	}
      	return tmp;
      }
      
      def code(x, y, z, t):
      	t_1 = (((z + z) - -2.0) / (t * z)) + (x / y)
      	tmp = 0
      	if (x / y) <= -5000.0:
      		tmp = t_1
      	elif (x / y) <= 1e-24:
      		tmp = (2.0 * ((1.0 - t) / t)) + (2.0 * (1.0 / (t * z)))
      	else:
      		tmp = t_1
      	return tmp
      
      function code(x, y, z, t)
      	t_1 = Float64(Float64(Float64(Float64(z + z) - -2.0) / Float64(t * z)) + Float64(x / y))
      	tmp = 0.0
      	if (Float64(x / y) <= -5000.0)
      		tmp = t_1;
      	elseif (Float64(x / y) <= 1e-24)
      		tmp = Float64(Float64(2.0 * Float64(Float64(1.0 - t) / t)) + Float64(2.0 * Float64(1.0 / Float64(t * z))));
      	else
      		tmp = t_1;
      	end
      	return tmp
      end
      
      function tmp_2 = code(x, y, z, t)
      	t_1 = (((z + z) - -2.0) / (t * z)) + (x / y);
      	tmp = 0.0;
      	if ((x / y) <= -5000.0)
      		tmp = t_1;
      	elseif ((x / y) <= 1e-24)
      		tmp = (2.0 * ((1.0 - t) / t)) + (2.0 * (1.0 / (t * z)));
      	else
      		tmp = t_1;
      	end
      	tmp_2 = tmp;
      end
      
      code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(N[(N[(z + z), $MachinePrecision] - -2.0), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision] + N[(x / y), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[N[(x / y), $MachinePrecision], -5000.0], t$95$1, If[LessEqual[N[(x / y), $MachinePrecision], 1e-24], N[(N[(2.0 * N[(N[(1.0 - t), $MachinePrecision] / t), $MachinePrecision]), $MachinePrecision] + N[(2.0 * N[(1.0 / N[(t * z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], t$95$1]]]
      
      \begin{array}{l}
      t_1 := \frac{\left(z + z\right) - -2}{t \cdot z} + \frac{x}{y}\\
      \mathbf{if}\;\frac{x}{y} \leq -5000:\\
      \;\;\;\;t\_1\\
      
      \mathbf{elif}\;\frac{x}{y} \leq 10^{-24}:\\
      \;\;\;\;2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z}\\
      
      \mathbf{else}:\\
      \;\;\;\;t\_1\\
      
      
      \end{array}
      
      Derivation
      1. Split input into 2 regimes
      2. if (/.f64 x y) < -5e3 or 9.9999999999999992e-25 < (/.f64 x y)

        1. Initial program 86.7%

          \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
        2. Taylor expanded in t around 0

          \[\leadsto \frac{x}{y} + \frac{\color{blue}{2 + 2 \cdot z}}{t \cdot z} \]
        3. Step-by-step derivation
          1. lower-+.f64N/A

            \[\leadsto \frac{x}{y} + \frac{2 + \color{blue}{2 \cdot z}}{t \cdot z} \]
          2. lower-*.f6480.5%

            \[\leadsto \frac{x}{y} + \frac{2 + 2 \cdot \color{blue}{z}}{t \cdot z} \]
        4. Applied rewrites80.5%

          \[\leadsto \frac{x}{y} + \frac{\color{blue}{2 + 2 \cdot z}}{t \cdot z} \]
        5. Step-by-step derivation
          1. lift-+.f64N/A

            \[\leadsto \color{blue}{\frac{x}{y} + \frac{2 + 2 \cdot z}{t \cdot z}} \]
          2. +-commutativeN/A

            \[\leadsto \color{blue}{\frac{2 + 2 \cdot z}{t \cdot z} + \frac{x}{y}} \]
          3. lower-+.f6480.5%

            \[\leadsto \color{blue}{\frac{2 + 2 \cdot z}{t \cdot z} + \frac{x}{y}} \]
          4. lift-+.f64N/A

            \[\leadsto \frac{2 + \color{blue}{2 \cdot z}}{t \cdot z} + \frac{x}{y} \]
          5. +-commutativeN/A

            \[\leadsto \frac{2 \cdot z + \color{blue}{2}}{t \cdot z} + \frac{x}{y} \]
          6. add-flipN/A

            \[\leadsto \frac{2 \cdot z - \color{blue}{\left(\mathsf{neg}\left(2\right)\right)}}{t \cdot z} + \frac{x}{y} \]
          7. metadata-evalN/A

            \[\leadsto \frac{2 \cdot z - -2}{t \cdot z} + \frac{x}{y} \]
          8. lower--.f6480.5%

            \[\leadsto \frac{2 \cdot z - \color{blue}{-2}}{t \cdot z} + \frac{x}{y} \]
          9. lift-*.f64N/A

            \[\leadsto \frac{2 \cdot z - -2}{t \cdot z} + \frac{x}{y} \]
          10. count-2-revN/A

            \[\leadsto \frac{\left(z + z\right) - -2}{t \cdot z} + \frac{x}{y} \]
          11. lower-+.f6480.5%

            \[\leadsto \frac{\left(z + z\right) - -2}{t \cdot z} + \frac{x}{y} \]
        6. Applied rewrites80.5%

          \[\leadsto \color{blue}{\frac{\left(z + z\right) - -2}{t \cdot z} + \frac{x}{y}} \]

        if -5e3 < (/.f64 x y) < 9.9999999999999992e-25

        1. Initial program 86.7%

          \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
        2. Taylor expanded in x around 0

          \[\leadsto \color{blue}{2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z}} \]
        3. Step-by-step derivation
          1. lower-+.f64N/A

            \[\leadsto 2 \cdot \frac{1 - t}{t} + \color{blue}{2 \cdot \frac{1}{t \cdot z}} \]
          2. lower-*.f64N/A

            \[\leadsto 2 \cdot \frac{1 - t}{t} + \color{blue}{2} \cdot \frac{1}{t \cdot z} \]
          3. lower-/.f64N/A

            \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z} \]
          4. lower--.f64N/A

            \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z} \]
          5. lower-*.f64N/A

            \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \color{blue}{\frac{1}{t \cdot z}} \]
          6. lower-/.f64N/A

            \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{\color{blue}{t \cdot z}} \]
          7. lower-*.f6465.8%

            \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot \color{blue}{z}} \]
        4. Applied rewrites65.8%

          \[\leadsto \color{blue}{2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z}} \]
      3. Recombined 2 regimes into one program.
      4. Add Preprocessing

      Alternative 4: 90.6% accurate, 1.0× speedup?

      \[\begin{array}{l} t_1 := \frac{x}{y} + 2 \cdot \frac{1 - t}{t}\\ \mathbf{if}\;z \leq -1.65 \cdot 10^{-23}:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;z \leq 8.8 \cdot 10^{-119}:\\ \;\;\;\;\frac{x}{y} + \frac{2}{t \cdot z}\\ \mathbf{else}:\\ \;\;\;\;t\_1\\ \end{array} \]
      (FPCore (x y z t)
        :precision binary64
        (let* ((t_1 (+ (/ x y) (* 2.0 (/ (- 1.0 t) t)))))
        (if (<= z -1.65e-23)
          t_1
          (if (<= z 8.8e-119) (+ (/ x y) (/ 2.0 (* t z))) t_1))))
      double code(double x, double y, double z, double t) {
      	double t_1 = (x / y) + (2.0 * ((1.0 - t) / t));
      	double tmp;
      	if (z <= -1.65e-23) {
      		tmp = t_1;
      	} else if (z <= 8.8e-119) {
      		tmp = (x / y) + (2.0 / (t * z));
      	} else {
      		tmp = t_1;
      	}
      	return tmp;
      }
      
      module fmin_fmax_functions
          implicit none
          private
          public fmax
          public fmin
      
          interface fmax
              module procedure fmax88
              module procedure fmax44
              module procedure fmax84
              module procedure fmax48
          end interface
          interface fmin
              module procedure fmin88
              module procedure fmin44
              module procedure fmin84
              module procedure fmin48
          end interface
      contains
          real(8) function fmax88(x, y) result (res)
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
          end function
          real(4) function fmax44(x, y) result (res)
              real(4), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
          end function
          real(8) function fmax84(x, y) result(res)
              real(8), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
          end function
          real(8) function fmax48(x, y) result(res)
              real(4), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
          end function
          real(8) function fmin88(x, y) result (res)
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
          end function
          real(4) function fmin44(x, y) result (res)
              real(4), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
          end function
          real(8) function fmin84(x, y) result(res)
              real(8), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
          end function
          real(8) function fmin48(x, y) result(res)
              real(4), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
          end function
      end module
      
      real(8) function code(x, y, z, t)
      use fmin_fmax_functions
          real(8), intent (in) :: x
          real(8), intent (in) :: y
          real(8), intent (in) :: z
          real(8), intent (in) :: t
          real(8) :: t_1
          real(8) :: tmp
          t_1 = (x / y) + (2.0d0 * ((1.0d0 - t) / t))
          if (z <= (-1.65d-23)) then
              tmp = t_1
          else if (z <= 8.8d-119) then
              tmp = (x / y) + (2.0d0 / (t * z))
          else
              tmp = t_1
          end if
          code = tmp
      end function
      
      public static double code(double x, double y, double z, double t) {
      	double t_1 = (x / y) + (2.0 * ((1.0 - t) / t));
      	double tmp;
      	if (z <= -1.65e-23) {
      		tmp = t_1;
      	} else if (z <= 8.8e-119) {
      		tmp = (x / y) + (2.0 / (t * z));
      	} else {
      		tmp = t_1;
      	}
      	return tmp;
      }
      
      def code(x, y, z, t):
      	t_1 = (x / y) + (2.0 * ((1.0 - t) / t))
      	tmp = 0
      	if z <= -1.65e-23:
      		tmp = t_1
      	elif z <= 8.8e-119:
      		tmp = (x / y) + (2.0 / (t * z))
      	else:
      		tmp = t_1
      	return tmp
      
      function code(x, y, z, t)
      	t_1 = Float64(Float64(x / y) + Float64(2.0 * Float64(Float64(1.0 - t) / t)))
      	tmp = 0.0
      	if (z <= -1.65e-23)
      		tmp = t_1;
      	elseif (z <= 8.8e-119)
      		tmp = Float64(Float64(x / y) + Float64(2.0 / Float64(t * z)));
      	else
      		tmp = t_1;
      	end
      	return tmp
      end
      
      function tmp_2 = code(x, y, z, t)
      	t_1 = (x / y) + (2.0 * ((1.0 - t) / t));
      	tmp = 0.0;
      	if (z <= -1.65e-23)
      		tmp = t_1;
      	elseif (z <= 8.8e-119)
      		tmp = (x / y) + (2.0 / (t * z));
      	else
      		tmp = t_1;
      	end
      	tmp_2 = tmp;
      end
      
      code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(x / y), $MachinePrecision] + N[(2.0 * N[(N[(1.0 - t), $MachinePrecision] / t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[z, -1.65e-23], t$95$1, If[LessEqual[z, 8.8e-119], N[(N[(x / y), $MachinePrecision] + N[(2.0 / N[(t * z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], t$95$1]]]
      
      \begin{array}{l}
      t_1 := \frac{x}{y} + 2 \cdot \frac{1 - t}{t}\\
      \mathbf{if}\;z \leq -1.65 \cdot 10^{-23}:\\
      \;\;\;\;t\_1\\
      
      \mathbf{elif}\;z \leq 8.8 \cdot 10^{-119}:\\
      \;\;\;\;\frac{x}{y} + \frac{2}{t \cdot z}\\
      
      \mathbf{else}:\\
      \;\;\;\;t\_1\\
      
      
      \end{array}
      
      Derivation
      1. Split input into 2 regimes
      2. if z < -1.6500000000000001e-23 or 8.8000000000000002e-119 < z

        1. Initial program 86.7%

          \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
        2. Taylor expanded in z around inf

          \[\leadsto \frac{x}{y} + \color{blue}{2 \cdot \frac{1 - t}{t}} \]
        3. Step-by-step derivation
          1. lower-*.f64N/A

            \[\leadsto \frac{x}{y} + 2 \cdot \color{blue}{\frac{1 - t}{t}} \]
          2. lower-/.f64N/A

            \[\leadsto \frac{x}{y} + 2 \cdot \frac{1 - t}{\color{blue}{t}} \]
          3. lower--.f6471.9%

            \[\leadsto \frac{x}{y} + 2 \cdot \frac{1 - t}{t} \]
        4. Applied rewrites71.9%

          \[\leadsto \frac{x}{y} + \color{blue}{2 \cdot \frac{1 - t}{t}} \]

        if -1.6500000000000001e-23 < z < 8.8000000000000002e-119

        1. Initial program 86.7%

          \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
        2. Taylor expanded in z around 0

          \[\leadsto \frac{x}{y} + \frac{\color{blue}{2}}{t \cdot z} \]
        3. Step-by-step derivation
          1. Applied rewrites62.6%

            \[\leadsto \frac{x}{y} + \frac{\color{blue}{2}}{t \cdot z} \]
        4. Recombined 2 regimes into one program.
        5. Add Preprocessing

        Alternative 5: 84.1% accurate, 0.3× speedup?

        \[\begin{array}{l} t_1 := \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}\\ t_2 := \frac{x}{y} + -2\\ \mathbf{if}\;t\_1 \leq -5 \cdot 10^{+43}:\\ \;\;\;\;\frac{\frac{2}{z} - -2}{t}\\ \mathbf{elif}\;t\_1 \leq 10^{+51}:\\ \;\;\;\;t\_2\\ \mathbf{elif}\;t\_1 \leq \infty:\\ \;\;\;\;\frac{1 + z}{t \cdot z} \cdot 2\\ \mathbf{else}:\\ \;\;\;\;t\_2\\ \end{array} \]
        (FPCore (x y z t)
          :precision binary64
          (let* ((t_1 (/ (+ 2.0 (* (* z 2.0) (- 1.0 t))) (* t z)))
               (t_2 (+ (/ x y) -2.0)))
          (if (<= t_1 -5e+43)
            (/ (- (/ 2.0 z) -2.0) t)
            (if (<= t_1 1e+51)
              t_2
              (if (<= t_1 INFINITY) (* (/ (+ 1.0 z) (* t z)) 2.0) t_2)))))
        double code(double x, double y, double z, double t) {
        	double t_1 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z);
        	double t_2 = (x / y) + -2.0;
        	double tmp;
        	if (t_1 <= -5e+43) {
        		tmp = ((2.0 / z) - -2.0) / t;
        	} else if (t_1 <= 1e+51) {
        		tmp = t_2;
        	} else if (t_1 <= ((double) INFINITY)) {
        		tmp = ((1.0 + z) / (t * z)) * 2.0;
        	} else {
        		tmp = t_2;
        	}
        	return tmp;
        }
        
        public static double code(double x, double y, double z, double t) {
        	double t_1 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z);
        	double t_2 = (x / y) + -2.0;
        	double tmp;
        	if (t_1 <= -5e+43) {
        		tmp = ((2.0 / z) - -2.0) / t;
        	} else if (t_1 <= 1e+51) {
        		tmp = t_2;
        	} else if (t_1 <= Double.POSITIVE_INFINITY) {
        		tmp = ((1.0 + z) / (t * z)) * 2.0;
        	} else {
        		tmp = t_2;
        	}
        	return tmp;
        }
        
        def code(x, y, z, t):
        	t_1 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z)
        	t_2 = (x / y) + -2.0
        	tmp = 0
        	if t_1 <= -5e+43:
        		tmp = ((2.0 / z) - -2.0) / t
        	elif t_1 <= 1e+51:
        		tmp = t_2
        	elif t_1 <= math.inf:
        		tmp = ((1.0 + z) / (t * z)) * 2.0
        	else:
        		tmp = t_2
        	return tmp
        
        function code(x, y, z, t)
        	t_1 = Float64(Float64(2.0 + Float64(Float64(z * 2.0) * Float64(1.0 - t))) / Float64(t * z))
        	t_2 = Float64(Float64(x / y) + -2.0)
        	tmp = 0.0
        	if (t_1 <= -5e+43)
        		tmp = Float64(Float64(Float64(2.0 / z) - -2.0) / t);
        	elseif (t_1 <= 1e+51)
        		tmp = t_2;
        	elseif (t_1 <= Inf)
        		tmp = Float64(Float64(Float64(1.0 + z) / Float64(t * z)) * 2.0);
        	else
        		tmp = t_2;
        	end
        	return tmp
        end
        
        function tmp_2 = code(x, y, z, t)
        	t_1 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z);
        	t_2 = (x / y) + -2.0;
        	tmp = 0.0;
        	if (t_1 <= -5e+43)
        		tmp = ((2.0 / z) - -2.0) / t;
        	elseif (t_1 <= 1e+51)
        		tmp = t_2;
        	elseif (t_1 <= Inf)
        		tmp = ((1.0 + z) / (t * z)) * 2.0;
        	else
        		tmp = t_2;
        	end
        	tmp_2 = tmp;
        end
        
        code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(2.0 + N[(N[(z * 2.0), $MachinePrecision] * N[(1.0 - t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$2 = N[(N[(x / y), $MachinePrecision] + -2.0), $MachinePrecision]}, If[LessEqual[t$95$1, -5e+43], N[(N[(N[(2.0 / z), $MachinePrecision] - -2.0), $MachinePrecision] / t), $MachinePrecision], If[LessEqual[t$95$1, 1e+51], t$95$2, If[LessEqual[t$95$1, Infinity], N[(N[(N[(1.0 + z), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision] * 2.0), $MachinePrecision], t$95$2]]]]]
        
        \begin{array}{l}
        t_1 := \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}\\
        t_2 := \frac{x}{y} + -2\\
        \mathbf{if}\;t\_1 \leq -5 \cdot 10^{+43}:\\
        \;\;\;\;\frac{\frac{2}{z} - -2}{t}\\
        
        \mathbf{elif}\;t\_1 \leq 10^{+51}:\\
        \;\;\;\;t\_2\\
        
        \mathbf{elif}\;t\_1 \leq \infty:\\
        \;\;\;\;\frac{1 + z}{t \cdot z} \cdot 2\\
        
        \mathbf{else}:\\
        \;\;\;\;t\_2\\
        
        
        \end{array}
        
        Derivation
        1. Split input into 3 regimes
        2. if (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < -5.0000000000000004e43

          1. Initial program 86.7%

            \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
          2. Taylor expanded in t around 0

            \[\leadsto \color{blue}{\frac{2 + 2 \cdot \frac{1}{z}}{t}} \]
          3. Step-by-step derivation
            1. lower-/.f64N/A

              \[\leadsto \frac{2 + 2 \cdot \frac{1}{z}}{\color{blue}{t}} \]
            2. lower-+.f64N/A

              \[\leadsto \frac{2 + 2 \cdot \frac{1}{z}}{t} \]
            3. lower-*.f64N/A

              \[\leadsto \frac{2 + 2 \cdot \frac{1}{z}}{t} \]
            4. lower-/.f6447.9%

              \[\leadsto \frac{2 + 2 \cdot \frac{1}{z}}{t} \]
          4. Applied rewrites47.9%

            \[\leadsto \color{blue}{\frac{2 + 2 \cdot \frac{1}{z}}{t}} \]
          5. Step-by-step derivation
            1. lift-+.f64N/A

              \[\leadsto \frac{2 + 2 \cdot \frac{1}{z}}{t} \]
            2. +-commutativeN/A

              \[\leadsto \frac{2 \cdot \frac{1}{z} + 2}{t} \]
            3. add-flipN/A

              \[\leadsto \frac{2 \cdot \frac{1}{z} - \left(\mathsf{neg}\left(2\right)\right)}{t} \]
            4. metadata-evalN/A

              \[\leadsto \frac{2 \cdot \frac{1}{z} - -2}{t} \]
            5. lower--.f6447.9%

              \[\leadsto \frac{2 \cdot \frac{1}{z} - -2}{t} \]
            6. lift-*.f64N/A

              \[\leadsto \frac{2 \cdot \frac{1}{z} - -2}{t} \]
            7. lift-/.f64N/A

              \[\leadsto \frac{2 \cdot \frac{1}{z} - -2}{t} \]
            8. mult-flip-revN/A

              \[\leadsto \frac{\frac{2}{z} - -2}{t} \]
            9. lower-/.f6447.9%

              \[\leadsto \frac{\frac{2}{z} - -2}{t} \]
          6. Applied rewrites47.9%

            \[\leadsto \frac{\frac{2}{z} - -2}{t} \]

          if -5.0000000000000004e43 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < 9.9999999999999999e50 or +inf.0 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z))

          1. Initial program 86.7%

            \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
          2. Taylor expanded in t around inf

            \[\leadsto \frac{x}{y} + \color{blue}{-2} \]
          3. Step-by-step derivation
            1. Applied rewrites54.0%

              \[\leadsto \frac{x}{y} + \color{blue}{-2} \]

            if 9.9999999999999999e50 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < +inf.0

            1. Initial program 86.7%

              \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
            2. Taylor expanded in x around 0

              \[\leadsto \color{blue}{2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z}} \]
            3. Step-by-step derivation
              1. lower-+.f64N/A

                \[\leadsto 2 \cdot \frac{1 - t}{t} + \color{blue}{2 \cdot \frac{1}{t \cdot z}} \]
              2. lower-*.f64N/A

                \[\leadsto 2 \cdot \frac{1 - t}{t} + \color{blue}{2} \cdot \frac{1}{t \cdot z} \]
              3. lower-/.f64N/A

                \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z} \]
              4. lower--.f64N/A

                \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z} \]
              5. lower-*.f64N/A

                \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \color{blue}{\frac{1}{t \cdot z}} \]
              6. lower-/.f64N/A

                \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{\color{blue}{t \cdot z}} \]
              7. lower-*.f6465.8%

                \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot \color{blue}{z}} \]
            4. Applied rewrites65.8%

              \[\leadsto \color{blue}{2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z}} \]
            5. Step-by-step derivation
              1. lift-+.f64N/A

                \[\leadsto 2 \cdot \frac{1 - t}{t} + \color{blue}{2 \cdot \frac{1}{t \cdot z}} \]
              2. lift-*.f64N/A

                \[\leadsto 2 \cdot \frac{1 - t}{t} + \color{blue}{2} \cdot \frac{1}{t \cdot z} \]
              3. lift-*.f64N/A

                \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \color{blue}{\frac{1}{t \cdot z}} \]
              4. distribute-lft-outN/A

                \[\leadsto 2 \cdot \color{blue}{\left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right)} \]
              5. *-commutativeN/A

                \[\leadsto \left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right) \cdot \color{blue}{2} \]
              6. lower-*.f64N/A

                \[\leadsto \left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right) \cdot \color{blue}{2} \]
              7. lift-/.f64N/A

                \[\leadsto \left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right) \cdot 2 \]
              8. lift-/.f64N/A

                \[\leadsto \left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right) \cdot 2 \]
              9. lift-*.f64N/A

                \[\leadsto \left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right) \cdot 2 \]
              10. associate-/r*N/A

                \[\leadsto \left(\frac{1 - t}{t} + \frac{\frac{1}{t}}{z}\right) \cdot 2 \]
              11. frac-addN/A

                \[\leadsto \frac{\left(1 - t\right) \cdot z + t \cdot \frac{1}{t}}{t \cdot z} \cdot 2 \]
              12. lift-*.f64N/A

                \[\leadsto \frac{\left(1 - t\right) \cdot z + t \cdot \frac{1}{t}}{t \cdot z} \cdot 2 \]
              13. lower-/.f64N/A

                \[\leadsto \frac{\left(1 - t\right) \cdot z + t \cdot \frac{1}{t}}{t \cdot z} \cdot 2 \]
              14. mult-flipN/A

                \[\leadsto \frac{\left(1 - t\right) \cdot z + \frac{t}{t}}{t \cdot z} \cdot 2 \]
              15. *-inversesN/A

                \[\leadsto \frac{\left(1 - t\right) \cdot z + 1}{t \cdot z} \cdot 2 \]
              16. lower-+.f64N/A

                \[\leadsto \frac{\left(1 - t\right) \cdot z + 1}{t \cdot z} \cdot 2 \]
              17. lower-*.f6459.9%

                \[\leadsto \frac{\left(1 - t\right) \cdot z + 1}{t \cdot z} \cdot 2 \]
            6. Applied rewrites59.9%

              \[\leadsto \frac{\left(1 - t\right) \cdot z + 1}{t \cdot z} \cdot \color{blue}{2} \]
            7. Taylor expanded in t around 0

              \[\leadsto \frac{1 + z}{t \cdot z} \cdot 2 \]
            8. Step-by-step derivation
              1. lower-+.f6447.9%

                \[\leadsto \frac{1 + z}{t \cdot z} \cdot 2 \]
            9. Applied rewrites47.9%

              \[\leadsto \frac{1 + z}{t \cdot z} \cdot 2 \]
          4. Recombined 3 regimes into one program.
          5. Add Preprocessing

          Alternative 6: 84.1% accurate, 0.3× speedup?

          \[\begin{array}{l} t_1 := \frac{1 + z}{t \cdot z} \cdot 2\\ t_2 := \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}\\ t_3 := \frac{x}{y} + -2\\ \mathbf{if}\;t\_2 \leq -5 \cdot 10^{+43}:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;t\_2 \leq 10^{+51}:\\ \;\;\;\;t\_3\\ \mathbf{elif}\;t\_2 \leq \infty:\\ \;\;\;\;t\_1\\ \mathbf{else}:\\ \;\;\;\;t\_3\\ \end{array} \]
          (FPCore (x y z t)
            :precision binary64
            (let* ((t_1 (* (/ (+ 1.0 z) (* t z)) 2.0))
                 (t_2 (/ (+ 2.0 (* (* z 2.0) (- 1.0 t))) (* t z)))
                 (t_3 (+ (/ x y) -2.0)))
            (if (<= t_2 -5e+43)
              t_1
              (if (<= t_2 1e+51) t_3 (if (<= t_2 INFINITY) t_1 t_3)))))
          double code(double x, double y, double z, double t) {
          	double t_1 = ((1.0 + z) / (t * z)) * 2.0;
          	double t_2 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z);
          	double t_3 = (x / y) + -2.0;
          	double tmp;
          	if (t_2 <= -5e+43) {
          		tmp = t_1;
          	} else if (t_2 <= 1e+51) {
          		tmp = t_3;
          	} else if (t_2 <= ((double) INFINITY)) {
          		tmp = t_1;
          	} else {
          		tmp = t_3;
          	}
          	return tmp;
          }
          
          public static double code(double x, double y, double z, double t) {
          	double t_1 = ((1.0 + z) / (t * z)) * 2.0;
          	double t_2 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z);
          	double t_3 = (x / y) + -2.0;
          	double tmp;
          	if (t_2 <= -5e+43) {
          		tmp = t_1;
          	} else if (t_2 <= 1e+51) {
          		tmp = t_3;
          	} else if (t_2 <= Double.POSITIVE_INFINITY) {
          		tmp = t_1;
          	} else {
          		tmp = t_3;
          	}
          	return tmp;
          }
          
          def code(x, y, z, t):
          	t_1 = ((1.0 + z) / (t * z)) * 2.0
          	t_2 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z)
          	t_3 = (x / y) + -2.0
          	tmp = 0
          	if t_2 <= -5e+43:
          		tmp = t_1
          	elif t_2 <= 1e+51:
          		tmp = t_3
          	elif t_2 <= math.inf:
          		tmp = t_1
          	else:
          		tmp = t_3
          	return tmp
          
          function code(x, y, z, t)
          	t_1 = Float64(Float64(Float64(1.0 + z) / Float64(t * z)) * 2.0)
          	t_2 = Float64(Float64(2.0 + Float64(Float64(z * 2.0) * Float64(1.0 - t))) / Float64(t * z))
          	t_3 = Float64(Float64(x / y) + -2.0)
          	tmp = 0.0
          	if (t_2 <= -5e+43)
          		tmp = t_1;
          	elseif (t_2 <= 1e+51)
          		tmp = t_3;
          	elseif (t_2 <= Inf)
          		tmp = t_1;
          	else
          		tmp = t_3;
          	end
          	return tmp
          end
          
          function tmp_2 = code(x, y, z, t)
          	t_1 = ((1.0 + z) / (t * z)) * 2.0;
          	t_2 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z);
          	t_3 = (x / y) + -2.0;
          	tmp = 0.0;
          	if (t_2 <= -5e+43)
          		tmp = t_1;
          	elseif (t_2 <= 1e+51)
          		tmp = t_3;
          	elseif (t_2 <= Inf)
          		tmp = t_1;
          	else
          		tmp = t_3;
          	end
          	tmp_2 = tmp;
          end
          
          code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(N[(1.0 + z), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision] * 2.0), $MachinePrecision]}, Block[{t$95$2 = N[(N[(2.0 + N[(N[(z * 2.0), $MachinePrecision] * N[(1.0 - t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$3 = N[(N[(x / y), $MachinePrecision] + -2.0), $MachinePrecision]}, If[LessEqual[t$95$2, -5e+43], t$95$1, If[LessEqual[t$95$2, 1e+51], t$95$3, If[LessEqual[t$95$2, Infinity], t$95$1, t$95$3]]]]]]
          
          \begin{array}{l}
          t_1 := \frac{1 + z}{t \cdot z} \cdot 2\\
          t_2 := \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}\\
          t_3 := \frac{x}{y} + -2\\
          \mathbf{if}\;t\_2 \leq -5 \cdot 10^{+43}:\\
          \;\;\;\;t\_1\\
          
          \mathbf{elif}\;t\_2 \leq 10^{+51}:\\
          \;\;\;\;t\_3\\
          
          \mathbf{elif}\;t\_2 \leq \infty:\\
          \;\;\;\;t\_1\\
          
          \mathbf{else}:\\
          \;\;\;\;t\_3\\
          
          
          \end{array}
          
          Derivation
          1. Split input into 2 regimes
          2. if (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < -5.0000000000000004e43 or 9.9999999999999999e50 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < +inf.0

            1. Initial program 86.7%

              \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
            2. Taylor expanded in x around 0

              \[\leadsto \color{blue}{2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z}} \]
            3. Step-by-step derivation
              1. lower-+.f64N/A

                \[\leadsto 2 \cdot \frac{1 - t}{t} + \color{blue}{2 \cdot \frac{1}{t \cdot z}} \]
              2. lower-*.f64N/A

                \[\leadsto 2 \cdot \frac{1 - t}{t} + \color{blue}{2} \cdot \frac{1}{t \cdot z} \]
              3. lower-/.f64N/A

                \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z} \]
              4. lower--.f64N/A

                \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z} \]
              5. lower-*.f64N/A

                \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \color{blue}{\frac{1}{t \cdot z}} \]
              6. lower-/.f64N/A

                \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{\color{blue}{t \cdot z}} \]
              7. lower-*.f6465.8%

                \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot \color{blue}{z}} \]
            4. Applied rewrites65.8%

              \[\leadsto \color{blue}{2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z}} \]
            5. Step-by-step derivation
              1. lift-+.f64N/A

                \[\leadsto 2 \cdot \frac{1 - t}{t} + \color{blue}{2 \cdot \frac{1}{t \cdot z}} \]
              2. lift-*.f64N/A

                \[\leadsto 2 \cdot \frac{1 - t}{t} + \color{blue}{2} \cdot \frac{1}{t \cdot z} \]
              3. lift-*.f64N/A

                \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \color{blue}{\frac{1}{t \cdot z}} \]
              4. distribute-lft-outN/A

                \[\leadsto 2 \cdot \color{blue}{\left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right)} \]
              5. *-commutativeN/A

                \[\leadsto \left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right) \cdot \color{blue}{2} \]
              6. lower-*.f64N/A

                \[\leadsto \left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right) \cdot \color{blue}{2} \]
              7. lift-/.f64N/A

                \[\leadsto \left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right) \cdot 2 \]
              8. lift-/.f64N/A

                \[\leadsto \left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right) \cdot 2 \]
              9. lift-*.f64N/A

                \[\leadsto \left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right) \cdot 2 \]
              10. associate-/r*N/A

                \[\leadsto \left(\frac{1 - t}{t} + \frac{\frac{1}{t}}{z}\right) \cdot 2 \]
              11. frac-addN/A

                \[\leadsto \frac{\left(1 - t\right) \cdot z + t \cdot \frac{1}{t}}{t \cdot z} \cdot 2 \]
              12. lift-*.f64N/A

                \[\leadsto \frac{\left(1 - t\right) \cdot z + t \cdot \frac{1}{t}}{t \cdot z} \cdot 2 \]
              13. lower-/.f64N/A

                \[\leadsto \frac{\left(1 - t\right) \cdot z + t \cdot \frac{1}{t}}{t \cdot z} \cdot 2 \]
              14. mult-flipN/A

                \[\leadsto \frac{\left(1 - t\right) \cdot z + \frac{t}{t}}{t \cdot z} \cdot 2 \]
              15. *-inversesN/A

                \[\leadsto \frac{\left(1 - t\right) \cdot z + 1}{t \cdot z} \cdot 2 \]
              16. lower-+.f64N/A

                \[\leadsto \frac{\left(1 - t\right) \cdot z + 1}{t \cdot z} \cdot 2 \]
              17. lower-*.f6459.9%

                \[\leadsto \frac{\left(1 - t\right) \cdot z + 1}{t \cdot z} \cdot 2 \]
            6. Applied rewrites59.9%

              \[\leadsto \frac{\left(1 - t\right) \cdot z + 1}{t \cdot z} \cdot \color{blue}{2} \]
            7. Taylor expanded in t around 0

              \[\leadsto \frac{1 + z}{t \cdot z} \cdot 2 \]
            8. Step-by-step derivation
              1. lower-+.f6447.9%

                \[\leadsto \frac{1 + z}{t \cdot z} \cdot 2 \]
            9. Applied rewrites47.9%

              \[\leadsto \frac{1 + z}{t \cdot z} \cdot 2 \]

            if -5.0000000000000004e43 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < 9.9999999999999999e50 or +inf.0 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z))

            1. Initial program 86.7%

              \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
            2. Taylor expanded in t around inf

              \[\leadsto \frac{x}{y} + \color{blue}{-2} \]
            3. Step-by-step derivation
              1. Applied rewrites54.0%

                \[\leadsto \frac{x}{y} + \color{blue}{-2} \]
            4. Recombined 2 regimes into one program.
            5. Add Preprocessing

            Alternative 7: 69.1% accurate, 0.3× speedup?

            \[\begin{array}{l} t_1 := \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}\\ t_2 := \frac{x}{y} + -2\\ \mathbf{if}\;t\_1 \leq -1 \cdot 10^{+234}:\\ \;\;\;\;\left(-1 + -1\right) - \frac{-2}{t \cdot z}\\ \mathbf{elif}\;t\_1 \leq -5 \cdot 10^{+43}:\\ \;\;\;\;\frac{1 - t}{t} \cdot 2\\ \mathbf{elif}\;t\_1 \leq 5 \cdot 10^{+89}:\\ \;\;\;\;t\_2\\ \mathbf{elif}\;t\_1 \leq \infty:\\ \;\;\;\;\frac{1}{t \cdot z} \cdot 2\\ \mathbf{else}:\\ \;\;\;\;t\_2\\ \end{array} \]
            (FPCore (x y z t)
              :precision binary64
              (let* ((t_1 (/ (+ 2.0 (* (* z 2.0) (- 1.0 t))) (* t z)))
                   (t_2 (+ (/ x y) -2.0)))
              (if (<= t_1 -1e+234)
                (- (+ -1.0 -1.0) (/ -2.0 (* t z)))
                (if (<= t_1 -5e+43)
                  (* (/ (- 1.0 t) t) 2.0)
                  (if (<= t_1 5e+89)
                    t_2
                    (if (<= t_1 INFINITY) (* (/ 1.0 (* t z)) 2.0) t_2))))))
            double code(double x, double y, double z, double t) {
            	double t_1 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z);
            	double t_2 = (x / y) + -2.0;
            	double tmp;
            	if (t_1 <= -1e+234) {
            		tmp = (-1.0 + -1.0) - (-2.0 / (t * z));
            	} else if (t_1 <= -5e+43) {
            		tmp = ((1.0 - t) / t) * 2.0;
            	} else if (t_1 <= 5e+89) {
            		tmp = t_2;
            	} else if (t_1 <= ((double) INFINITY)) {
            		tmp = (1.0 / (t * z)) * 2.0;
            	} else {
            		tmp = t_2;
            	}
            	return tmp;
            }
            
            public static double code(double x, double y, double z, double t) {
            	double t_1 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z);
            	double t_2 = (x / y) + -2.0;
            	double tmp;
            	if (t_1 <= -1e+234) {
            		tmp = (-1.0 + -1.0) - (-2.0 / (t * z));
            	} else if (t_1 <= -5e+43) {
            		tmp = ((1.0 - t) / t) * 2.0;
            	} else if (t_1 <= 5e+89) {
            		tmp = t_2;
            	} else if (t_1 <= Double.POSITIVE_INFINITY) {
            		tmp = (1.0 / (t * z)) * 2.0;
            	} else {
            		tmp = t_2;
            	}
            	return tmp;
            }
            
            def code(x, y, z, t):
            	t_1 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z)
            	t_2 = (x / y) + -2.0
            	tmp = 0
            	if t_1 <= -1e+234:
            		tmp = (-1.0 + -1.0) - (-2.0 / (t * z))
            	elif t_1 <= -5e+43:
            		tmp = ((1.0 - t) / t) * 2.0
            	elif t_1 <= 5e+89:
            		tmp = t_2
            	elif t_1 <= math.inf:
            		tmp = (1.0 / (t * z)) * 2.0
            	else:
            		tmp = t_2
            	return tmp
            
            function code(x, y, z, t)
            	t_1 = Float64(Float64(2.0 + Float64(Float64(z * 2.0) * Float64(1.0 - t))) / Float64(t * z))
            	t_2 = Float64(Float64(x / y) + -2.0)
            	tmp = 0.0
            	if (t_1 <= -1e+234)
            		tmp = Float64(Float64(-1.0 + -1.0) - Float64(-2.0 / Float64(t * z)));
            	elseif (t_1 <= -5e+43)
            		tmp = Float64(Float64(Float64(1.0 - t) / t) * 2.0);
            	elseif (t_1 <= 5e+89)
            		tmp = t_2;
            	elseif (t_1 <= Inf)
            		tmp = Float64(Float64(1.0 / Float64(t * z)) * 2.0);
            	else
            		tmp = t_2;
            	end
            	return tmp
            end
            
            function tmp_2 = code(x, y, z, t)
            	t_1 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z);
            	t_2 = (x / y) + -2.0;
            	tmp = 0.0;
            	if (t_1 <= -1e+234)
            		tmp = (-1.0 + -1.0) - (-2.0 / (t * z));
            	elseif (t_1 <= -5e+43)
            		tmp = ((1.0 - t) / t) * 2.0;
            	elseif (t_1 <= 5e+89)
            		tmp = t_2;
            	elseif (t_1 <= Inf)
            		tmp = (1.0 / (t * z)) * 2.0;
            	else
            		tmp = t_2;
            	end
            	tmp_2 = tmp;
            end
            
            code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(2.0 + N[(N[(z * 2.0), $MachinePrecision] * N[(1.0 - t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$2 = N[(N[(x / y), $MachinePrecision] + -2.0), $MachinePrecision]}, If[LessEqual[t$95$1, -1e+234], N[(N[(-1.0 + -1.0), $MachinePrecision] - N[(-2.0 / N[(t * z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$1, -5e+43], N[(N[(N[(1.0 - t), $MachinePrecision] / t), $MachinePrecision] * 2.0), $MachinePrecision], If[LessEqual[t$95$1, 5e+89], t$95$2, If[LessEqual[t$95$1, Infinity], N[(N[(1.0 / N[(t * z), $MachinePrecision]), $MachinePrecision] * 2.0), $MachinePrecision], t$95$2]]]]]]
            
            \begin{array}{l}
            t_1 := \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}\\
            t_2 := \frac{x}{y} + -2\\
            \mathbf{if}\;t\_1 \leq -1 \cdot 10^{+234}:\\
            \;\;\;\;\left(-1 + -1\right) - \frac{-2}{t \cdot z}\\
            
            \mathbf{elif}\;t\_1 \leq -5 \cdot 10^{+43}:\\
            \;\;\;\;\frac{1 - t}{t} \cdot 2\\
            
            \mathbf{elif}\;t\_1 \leq 5 \cdot 10^{+89}:\\
            \;\;\;\;t\_2\\
            
            \mathbf{elif}\;t\_1 \leq \infty:\\
            \;\;\;\;\frac{1}{t \cdot z} \cdot 2\\
            
            \mathbf{else}:\\
            \;\;\;\;t\_2\\
            
            
            \end{array}
            
            Derivation
            1. Split input into 4 regimes
            2. if (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < -1e234

              1. Initial program 86.7%

                \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
              2. Taylor expanded in x around 0

                \[\leadsto \color{blue}{2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z}} \]
              3. Step-by-step derivation
                1. lower-+.f64N/A

                  \[\leadsto 2 \cdot \frac{1 - t}{t} + \color{blue}{2 \cdot \frac{1}{t \cdot z}} \]
                2. lower-*.f64N/A

                  \[\leadsto 2 \cdot \frac{1 - t}{t} + \color{blue}{2} \cdot \frac{1}{t \cdot z} \]
                3. lower-/.f64N/A

                  \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z} \]
                4. lower--.f64N/A

                  \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z} \]
                5. lower-*.f64N/A

                  \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \color{blue}{\frac{1}{t \cdot z}} \]
                6. lower-/.f64N/A

                  \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{\color{blue}{t \cdot z}} \]
                7. lower-*.f6465.8%

                  \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot \color{blue}{z}} \]
              4. Applied rewrites65.8%

                \[\leadsto \color{blue}{2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z}} \]
              5. Taylor expanded in t around inf

                \[\leadsto 2 \cdot -1 + 2 \cdot \frac{1}{t \cdot z} \]
              6. Step-by-step derivation
                1. Applied rewrites47.7%

                  \[\leadsto 2 \cdot -1 + 2 \cdot \frac{1}{t \cdot z} \]
                2. Step-by-step derivation
                  1. lift-+.f64N/A

                    \[\leadsto 2 \cdot -1 + \color{blue}{2 \cdot \frac{1}{t \cdot z}} \]
                  2. add-flipN/A

                    \[\leadsto 2 \cdot -1 - \color{blue}{\left(\mathsf{neg}\left(2 \cdot \frac{1}{t \cdot z}\right)\right)} \]
                  3. lower--.f64N/A

                    \[\leadsto 2 \cdot -1 - \color{blue}{\left(\mathsf{neg}\left(2 \cdot \frac{1}{t \cdot z}\right)\right)} \]
                  4. lift-*.f64N/A

                    \[\leadsto 2 \cdot -1 - \left(\mathsf{neg}\left(\color{blue}{2 \cdot \frac{1}{t \cdot z}}\right)\right) \]
                  5. count-2-revN/A

                    \[\leadsto \left(-1 + -1\right) - \left(\mathsf{neg}\left(\color{blue}{2 \cdot \frac{1}{t \cdot z}}\right)\right) \]
                  6. lower-+.f64N/A

                    \[\leadsto \left(-1 + -1\right) - \left(\mathsf{neg}\left(\color{blue}{2 \cdot \frac{1}{t \cdot z}}\right)\right) \]
                  7. lift-*.f64N/A

                    \[\leadsto \left(-1 + -1\right) - \left(\mathsf{neg}\left(2 \cdot \frac{1}{t \cdot z}\right)\right) \]
                  8. lift-/.f64N/A

                    \[\leadsto \left(-1 + -1\right) - \left(\mathsf{neg}\left(2 \cdot \frac{1}{t \cdot z}\right)\right) \]
                  9. mult-flip-revN/A

                    \[\leadsto \left(-1 + -1\right) - \left(\mathsf{neg}\left(\frac{2}{t \cdot z}\right)\right) \]
                  10. distribute-neg-fracN/A

                    \[\leadsto \left(-1 + -1\right) - \frac{\mathsf{neg}\left(2\right)}{\color{blue}{t \cdot z}} \]
                  11. metadata-evalN/A

                    \[\leadsto \left(-1 + -1\right) - \frac{-2}{\color{blue}{t} \cdot z} \]
                  12. lower-/.f6447.7%

                    \[\leadsto \left(-1 + -1\right) - \frac{-2}{\color{blue}{t \cdot z}} \]
                3. Applied rewrites47.7%

                  \[\leadsto \left(-1 + -1\right) - \color{blue}{\frac{-2}{t \cdot z}} \]

                if -1e234 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < -5.0000000000000004e43

                1. Initial program 86.7%

                  \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
                2. Taylor expanded in x around 0

                  \[\leadsto \color{blue}{2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z}} \]
                3. Step-by-step derivation
                  1. lower-+.f64N/A

                    \[\leadsto 2 \cdot \frac{1 - t}{t} + \color{blue}{2 \cdot \frac{1}{t \cdot z}} \]
                  2. lower-*.f64N/A

                    \[\leadsto 2 \cdot \frac{1 - t}{t} + \color{blue}{2} \cdot \frac{1}{t \cdot z} \]
                  3. lower-/.f64N/A

                    \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z} \]
                  4. lower--.f64N/A

                    \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z} \]
                  5. lower-*.f64N/A

                    \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \color{blue}{\frac{1}{t \cdot z}} \]
                  6. lower-/.f64N/A

                    \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{\color{blue}{t \cdot z}} \]
                  7. lower-*.f6465.8%

                    \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot \color{blue}{z}} \]
                4. Applied rewrites65.8%

                  \[\leadsto \color{blue}{2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z}} \]
                5. Step-by-step derivation
                  1. lift-+.f64N/A

                    \[\leadsto 2 \cdot \frac{1 - t}{t} + \color{blue}{2 \cdot \frac{1}{t \cdot z}} \]
                  2. lift-*.f64N/A

                    \[\leadsto 2 \cdot \frac{1 - t}{t} + \color{blue}{2} \cdot \frac{1}{t \cdot z} \]
                  3. lift-*.f64N/A

                    \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \color{blue}{\frac{1}{t \cdot z}} \]
                  4. distribute-lft-outN/A

                    \[\leadsto 2 \cdot \color{blue}{\left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right)} \]
                  5. *-commutativeN/A

                    \[\leadsto \left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right) \cdot \color{blue}{2} \]
                  6. lower-*.f64N/A

                    \[\leadsto \left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right) \cdot \color{blue}{2} \]
                  7. lift-/.f64N/A

                    \[\leadsto \left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right) \cdot 2 \]
                  8. lift-/.f64N/A

                    \[\leadsto \left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right) \cdot 2 \]
                  9. lift-*.f64N/A

                    \[\leadsto \left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right) \cdot 2 \]
                  10. associate-/r*N/A

                    \[\leadsto \left(\frac{1 - t}{t} + \frac{\frac{1}{t}}{z}\right) \cdot 2 \]
                  11. frac-addN/A

                    \[\leadsto \frac{\left(1 - t\right) \cdot z + t \cdot \frac{1}{t}}{t \cdot z} \cdot 2 \]
                  12. lift-*.f64N/A

                    \[\leadsto \frac{\left(1 - t\right) \cdot z + t \cdot \frac{1}{t}}{t \cdot z} \cdot 2 \]
                  13. lower-/.f64N/A

                    \[\leadsto \frac{\left(1 - t\right) \cdot z + t \cdot \frac{1}{t}}{t \cdot z} \cdot 2 \]
                  14. mult-flipN/A

                    \[\leadsto \frac{\left(1 - t\right) \cdot z + \frac{t}{t}}{t \cdot z} \cdot 2 \]
                  15. *-inversesN/A

                    \[\leadsto \frac{\left(1 - t\right) \cdot z + 1}{t \cdot z} \cdot 2 \]
                  16. lower-+.f64N/A

                    \[\leadsto \frac{\left(1 - t\right) \cdot z + 1}{t \cdot z} \cdot 2 \]
                  17. lower-*.f6459.9%

                    \[\leadsto \frac{\left(1 - t\right) \cdot z + 1}{t \cdot z} \cdot 2 \]
                6. Applied rewrites59.9%

                  \[\leadsto \frac{\left(1 - t\right) \cdot z + 1}{t \cdot z} \cdot \color{blue}{2} \]
                7. Taylor expanded in z around inf

                  \[\leadsto \frac{1 - t}{t} \cdot 2 \]
                8. Step-by-step derivation
                  1. lower-/.f64N/A

                    \[\leadsto \frac{1 - t}{t} \cdot 2 \]
                  2. lower--.f6437.4%

                    \[\leadsto \frac{1 - t}{t} \cdot 2 \]
                9. Applied rewrites37.4%

                  \[\leadsto \frac{1 - t}{t} \cdot 2 \]

                if -5.0000000000000004e43 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < 4.9999999999999998e89 or +inf.0 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z))

                1. Initial program 86.7%

                  \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
                2. Taylor expanded in t around inf

                  \[\leadsto \frac{x}{y} + \color{blue}{-2} \]
                3. Step-by-step derivation
                  1. Applied rewrites54.0%

                    \[\leadsto \frac{x}{y} + \color{blue}{-2} \]

                  if 4.9999999999999998e89 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < +inf.0

                  1. Initial program 86.7%

                    \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
                  2. Taylor expanded in x around 0

                    \[\leadsto \color{blue}{2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z}} \]
                  3. Step-by-step derivation
                    1. lower-+.f64N/A

                      \[\leadsto 2 \cdot \frac{1 - t}{t} + \color{blue}{2 \cdot \frac{1}{t \cdot z}} \]
                    2. lower-*.f64N/A

                      \[\leadsto 2 \cdot \frac{1 - t}{t} + \color{blue}{2} \cdot \frac{1}{t \cdot z} \]
                    3. lower-/.f64N/A

                      \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z} \]
                    4. lower--.f64N/A

                      \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z} \]
                    5. lower-*.f64N/A

                      \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \color{blue}{\frac{1}{t \cdot z}} \]
                    6. lower-/.f64N/A

                      \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{\color{blue}{t \cdot z}} \]
                    7. lower-*.f6465.8%

                      \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot \color{blue}{z}} \]
                  4. Applied rewrites65.8%

                    \[\leadsto \color{blue}{2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z}} \]
                  5. Step-by-step derivation
                    1. lift-+.f64N/A

                      \[\leadsto 2 \cdot \frac{1 - t}{t} + \color{blue}{2 \cdot \frac{1}{t \cdot z}} \]
                    2. lift-*.f64N/A

                      \[\leadsto 2 \cdot \frac{1 - t}{t} + \color{blue}{2} \cdot \frac{1}{t \cdot z} \]
                    3. lift-*.f64N/A

                      \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \color{blue}{\frac{1}{t \cdot z}} \]
                    4. distribute-lft-outN/A

                      \[\leadsto 2 \cdot \color{blue}{\left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right)} \]
                    5. *-commutativeN/A

                      \[\leadsto \left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right) \cdot \color{blue}{2} \]
                    6. lower-*.f64N/A

                      \[\leadsto \left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right) \cdot \color{blue}{2} \]
                    7. lift-/.f64N/A

                      \[\leadsto \left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right) \cdot 2 \]
                    8. lift-/.f64N/A

                      \[\leadsto \left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right) \cdot 2 \]
                    9. lift-*.f64N/A

                      \[\leadsto \left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right) \cdot 2 \]
                    10. associate-/r*N/A

                      \[\leadsto \left(\frac{1 - t}{t} + \frac{\frac{1}{t}}{z}\right) \cdot 2 \]
                    11. frac-addN/A

                      \[\leadsto \frac{\left(1 - t\right) \cdot z + t \cdot \frac{1}{t}}{t \cdot z} \cdot 2 \]
                    12. lift-*.f64N/A

                      \[\leadsto \frac{\left(1 - t\right) \cdot z + t \cdot \frac{1}{t}}{t \cdot z} \cdot 2 \]
                    13. lower-/.f64N/A

                      \[\leadsto \frac{\left(1 - t\right) \cdot z + t \cdot \frac{1}{t}}{t \cdot z} \cdot 2 \]
                    14. mult-flipN/A

                      \[\leadsto \frac{\left(1 - t\right) \cdot z + \frac{t}{t}}{t \cdot z} \cdot 2 \]
                    15. *-inversesN/A

                      \[\leadsto \frac{\left(1 - t\right) \cdot z + 1}{t \cdot z} \cdot 2 \]
                    16. lower-+.f64N/A

                      \[\leadsto \frac{\left(1 - t\right) \cdot z + 1}{t \cdot z} \cdot 2 \]
                    17. lower-*.f6459.9%

                      \[\leadsto \frac{\left(1 - t\right) \cdot z + 1}{t \cdot z} \cdot 2 \]
                  6. Applied rewrites59.9%

                    \[\leadsto \frac{\left(1 - t\right) \cdot z + 1}{t \cdot z} \cdot \color{blue}{2} \]
                  7. Taylor expanded in z around 0

                    \[\leadsto \frac{1}{t \cdot z} \cdot 2 \]
                  8. Step-by-step derivation
                    1. Applied rewrites30.1%

                      \[\leadsto \frac{1}{t \cdot z} \cdot 2 \]
                  9. Recombined 4 regimes into one program.
                  10. Add Preprocessing

                  Alternative 8: 69.1% accurate, 0.3× speedup?

                  \[\begin{array}{l} t_1 := \frac{1}{t \cdot z} \cdot 2\\ t_2 := \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}\\ t_3 := \frac{x}{y} + -2\\ \mathbf{if}\;t\_2 \leq -1 \cdot 10^{+234}:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;t\_2 \leq -5 \cdot 10^{+43}:\\ \;\;\;\;\frac{1 - t}{t} \cdot 2\\ \mathbf{elif}\;t\_2 \leq 5 \cdot 10^{+89}:\\ \;\;\;\;t\_3\\ \mathbf{elif}\;t\_2 \leq \infty:\\ \;\;\;\;t\_1\\ \mathbf{else}:\\ \;\;\;\;t\_3\\ \end{array} \]
                  (FPCore (x y z t)
                    :precision binary64
                    (let* ((t_1 (* (/ 1.0 (* t z)) 2.0))
                         (t_2 (/ (+ 2.0 (* (* z 2.0) (- 1.0 t))) (* t z)))
                         (t_3 (+ (/ x y) -2.0)))
                    (if (<= t_2 -1e+234)
                      t_1
                      (if (<= t_2 -5e+43)
                        (* (/ (- 1.0 t) t) 2.0)
                        (if (<= t_2 5e+89) t_3 (if (<= t_2 INFINITY) t_1 t_3))))))
                  double code(double x, double y, double z, double t) {
                  	double t_1 = (1.0 / (t * z)) * 2.0;
                  	double t_2 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z);
                  	double t_3 = (x / y) + -2.0;
                  	double tmp;
                  	if (t_2 <= -1e+234) {
                  		tmp = t_1;
                  	} else if (t_2 <= -5e+43) {
                  		tmp = ((1.0 - t) / t) * 2.0;
                  	} else if (t_2 <= 5e+89) {
                  		tmp = t_3;
                  	} else if (t_2 <= ((double) INFINITY)) {
                  		tmp = t_1;
                  	} else {
                  		tmp = t_3;
                  	}
                  	return tmp;
                  }
                  
                  public static double code(double x, double y, double z, double t) {
                  	double t_1 = (1.0 / (t * z)) * 2.0;
                  	double t_2 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z);
                  	double t_3 = (x / y) + -2.0;
                  	double tmp;
                  	if (t_2 <= -1e+234) {
                  		tmp = t_1;
                  	} else if (t_2 <= -5e+43) {
                  		tmp = ((1.0 - t) / t) * 2.0;
                  	} else if (t_2 <= 5e+89) {
                  		tmp = t_3;
                  	} else if (t_2 <= Double.POSITIVE_INFINITY) {
                  		tmp = t_1;
                  	} else {
                  		tmp = t_3;
                  	}
                  	return tmp;
                  }
                  
                  def code(x, y, z, t):
                  	t_1 = (1.0 / (t * z)) * 2.0
                  	t_2 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z)
                  	t_3 = (x / y) + -2.0
                  	tmp = 0
                  	if t_2 <= -1e+234:
                  		tmp = t_1
                  	elif t_2 <= -5e+43:
                  		tmp = ((1.0 - t) / t) * 2.0
                  	elif t_2 <= 5e+89:
                  		tmp = t_3
                  	elif t_2 <= math.inf:
                  		tmp = t_1
                  	else:
                  		tmp = t_3
                  	return tmp
                  
                  function code(x, y, z, t)
                  	t_1 = Float64(Float64(1.0 / Float64(t * z)) * 2.0)
                  	t_2 = Float64(Float64(2.0 + Float64(Float64(z * 2.0) * Float64(1.0 - t))) / Float64(t * z))
                  	t_3 = Float64(Float64(x / y) + -2.0)
                  	tmp = 0.0
                  	if (t_2 <= -1e+234)
                  		tmp = t_1;
                  	elseif (t_2 <= -5e+43)
                  		tmp = Float64(Float64(Float64(1.0 - t) / t) * 2.0);
                  	elseif (t_2 <= 5e+89)
                  		tmp = t_3;
                  	elseif (t_2 <= Inf)
                  		tmp = t_1;
                  	else
                  		tmp = t_3;
                  	end
                  	return tmp
                  end
                  
                  function tmp_2 = code(x, y, z, t)
                  	t_1 = (1.0 / (t * z)) * 2.0;
                  	t_2 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z);
                  	t_3 = (x / y) + -2.0;
                  	tmp = 0.0;
                  	if (t_2 <= -1e+234)
                  		tmp = t_1;
                  	elseif (t_2 <= -5e+43)
                  		tmp = ((1.0 - t) / t) * 2.0;
                  	elseif (t_2 <= 5e+89)
                  		tmp = t_3;
                  	elseif (t_2 <= Inf)
                  		tmp = t_1;
                  	else
                  		tmp = t_3;
                  	end
                  	tmp_2 = tmp;
                  end
                  
                  code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(1.0 / N[(t * z), $MachinePrecision]), $MachinePrecision] * 2.0), $MachinePrecision]}, Block[{t$95$2 = N[(N[(2.0 + N[(N[(z * 2.0), $MachinePrecision] * N[(1.0 - t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$3 = N[(N[(x / y), $MachinePrecision] + -2.0), $MachinePrecision]}, If[LessEqual[t$95$2, -1e+234], t$95$1, If[LessEqual[t$95$2, -5e+43], N[(N[(N[(1.0 - t), $MachinePrecision] / t), $MachinePrecision] * 2.0), $MachinePrecision], If[LessEqual[t$95$2, 5e+89], t$95$3, If[LessEqual[t$95$2, Infinity], t$95$1, t$95$3]]]]]]]
                  
                  \begin{array}{l}
                  t_1 := \frac{1}{t \cdot z} \cdot 2\\
                  t_2 := \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}\\
                  t_3 := \frac{x}{y} + -2\\
                  \mathbf{if}\;t\_2 \leq -1 \cdot 10^{+234}:\\
                  \;\;\;\;t\_1\\
                  
                  \mathbf{elif}\;t\_2 \leq -5 \cdot 10^{+43}:\\
                  \;\;\;\;\frac{1 - t}{t} \cdot 2\\
                  
                  \mathbf{elif}\;t\_2 \leq 5 \cdot 10^{+89}:\\
                  \;\;\;\;t\_3\\
                  
                  \mathbf{elif}\;t\_2 \leq \infty:\\
                  \;\;\;\;t\_1\\
                  
                  \mathbf{else}:\\
                  \;\;\;\;t\_3\\
                  
                  
                  \end{array}
                  
                  Derivation
                  1. Split input into 3 regimes
                  2. if (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < -1e234 or 4.9999999999999998e89 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < +inf.0

                    1. Initial program 86.7%

                      \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
                    2. Taylor expanded in x around 0

                      \[\leadsto \color{blue}{2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z}} \]
                    3. Step-by-step derivation
                      1. lower-+.f64N/A

                        \[\leadsto 2 \cdot \frac{1 - t}{t} + \color{blue}{2 \cdot \frac{1}{t \cdot z}} \]
                      2. lower-*.f64N/A

                        \[\leadsto 2 \cdot \frac{1 - t}{t} + \color{blue}{2} \cdot \frac{1}{t \cdot z} \]
                      3. lower-/.f64N/A

                        \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z} \]
                      4. lower--.f64N/A

                        \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z} \]
                      5. lower-*.f64N/A

                        \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \color{blue}{\frac{1}{t \cdot z}} \]
                      6. lower-/.f64N/A

                        \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{\color{blue}{t \cdot z}} \]
                      7. lower-*.f6465.8%

                        \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot \color{blue}{z}} \]
                    4. Applied rewrites65.8%

                      \[\leadsto \color{blue}{2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z}} \]
                    5. Step-by-step derivation
                      1. lift-+.f64N/A

                        \[\leadsto 2 \cdot \frac{1 - t}{t} + \color{blue}{2 \cdot \frac{1}{t \cdot z}} \]
                      2. lift-*.f64N/A

                        \[\leadsto 2 \cdot \frac{1 - t}{t} + \color{blue}{2} \cdot \frac{1}{t \cdot z} \]
                      3. lift-*.f64N/A

                        \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \color{blue}{\frac{1}{t \cdot z}} \]
                      4. distribute-lft-outN/A

                        \[\leadsto 2 \cdot \color{blue}{\left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right)} \]
                      5. *-commutativeN/A

                        \[\leadsto \left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right) \cdot \color{blue}{2} \]
                      6. lower-*.f64N/A

                        \[\leadsto \left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right) \cdot \color{blue}{2} \]
                      7. lift-/.f64N/A

                        \[\leadsto \left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right) \cdot 2 \]
                      8. lift-/.f64N/A

                        \[\leadsto \left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right) \cdot 2 \]
                      9. lift-*.f64N/A

                        \[\leadsto \left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right) \cdot 2 \]
                      10. associate-/r*N/A

                        \[\leadsto \left(\frac{1 - t}{t} + \frac{\frac{1}{t}}{z}\right) \cdot 2 \]
                      11. frac-addN/A

                        \[\leadsto \frac{\left(1 - t\right) \cdot z + t \cdot \frac{1}{t}}{t \cdot z} \cdot 2 \]
                      12. lift-*.f64N/A

                        \[\leadsto \frac{\left(1 - t\right) \cdot z + t \cdot \frac{1}{t}}{t \cdot z} \cdot 2 \]
                      13. lower-/.f64N/A

                        \[\leadsto \frac{\left(1 - t\right) \cdot z + t \cdot \frac{1}{t}}{t \cdot z} \cdot 2 \]
                      14. mult-flipN/A

                        \[\leadsto \frac{\left(1 - t\right) \cdot z + \frac{t}{t}}{t \cdot z} \cdot 2 \]
                      15. *-inversesN/A

                        \[\leadsto \frac{\left(1 - t\right) \cdot z + 1}{t \cdot z} \cdot 2 \]
                      16. lower-+.f64N/A

                        \[\leadsto \frac{\left(1 - t\right) \cdot z + 1}{t \cdot z} \cdot 2 \]
                      17. lower-*.f6459.9%

                        \[\leadsto \frac{\left(1 - t\right) \cdot z + 1}{t \cdot z} \cdot 2 \]
                    6. Applied rewrites59.9%

                      \[\leadsto \frac{\left(1 - t\right) \cdot z + 1}{t \cdot z} \cdot \color{blue}{2} \]
                    7. Taylor expanded in z around 0

                      \[\leadsto \frac{1}{t \cdot z} \cdot 2 \]
                    8. Step-by-step derivation
                      1. Applied rewrites30.1%

                        \[\leadsto \frac{1}{t \cdot z} \cdot 2 \]

                      if -1e234 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < -5.0000000000000004e43

                      1. Initial program 86.7%

                        \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
                      2. Taylor expanded in x around 0

                        \[\leadsto \color{blue}{2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z}} \]
                      3. Step-by-step derivation
                        1. lower-+.f64N/A

                          \[\leadsto 2 \cdot \frac{1 - t}{t} + \color{blue}{2 \cdot \frac{1}{t \cdot z}} \]
                        2. lower-*.f64N/A

                          \[\leadsto 2 \cdot \frac{1 - t}{t} + \color{blue}{2} \cdot \frac{1}{t \cdot z} \]
                        3. lower-/.f64N/A

                          \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z} \]
                        4. lower--.f64N/A

                          \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z} \]
                        5. lower-*.f64N/A

                          \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \color{blue}{\frac{1}{t \cdot z}} \]
                        6. lower-/.f64N/A

                          \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{\color{blue}{t \cdot z}} \]
                        7. lower-*.f6465.8%

                          \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot \color{blue}{z}} \]
                      4. Applied rewrites65.8%

                        \[\leadsto \color{blue}{2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z}} \]
                      5. Step-by-step derivation
                        1. lift-+.f64N/A

                          \[\leadsto 2 \cdot \frac{1 - t}{t} + \color{blue}{2 \cdot \frac{1}{t \cdot z}} \]
                        2. lift-*.f64N/A

                          \[\leadsto 2 \cdot \frac{1 - t}{t} + \color{blue}{2} \cdot \frac{1}{t \cdot z} \]
                        3. lift-*.f64N/A

                          \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \color{blue}{\frac{1}{t \cdot z}} \]
                        4. distribute-lft-outN/A

                          \[\leadsto 2 \cdot \color{blue}{\left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right)} \]
                        5. *-commutativeN/A

                          \[\leadsto \left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right) \cdot \color{blue}{2} \]
                        6. lower-*.f64N/A

                          \[\leadsto \left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right) \cdot \color{blue}{2} \]
                        7. lift-/.f64N/A

                          \[\leadsto \left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right) \cdot 2 \]
                        8. lift-/.f64N/A

                          \[\leadsto \left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right) \cdot 2 \]
                        9. lift-*.f64N/A

                          \[\leadsto \left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right) \cdot 2 \]
                        10. associate-/r*N/A

                          \[\leadsto \left(\frac{1 - t}{t} + \frac{\frac{1}{t}}{z}\right) \cdot 2 \]
                        11. frac-addN/A

                          \[\leadsto \frac{\left(1 - t\right) \cdot z + t \cdot \frac{1}{t}}{t \cdot z} \cdot 2 \]
                        12. lift-*.f64N/A

                          \[\leadsto \frac{\left(1 - t\right) \cdot z + t \cdot \frac{1}{t}}{t \cdot z} \cdot 2 \]
                        13. lower-/.f64N/A

                          \[\leadsto \frac{\left(1 - t\right) \cdot z + t \cdot \frac{1}{t}}{t \cdot z} \cdot 2 \]
                        14. mult-flipN/A

                          \[\leadsto \frac{\left(1 - t\right) \cdot z + \frac{t}{t}}{t \cdot z} \cdot 2 \]
                        15. *-inversesN/A

                          \[\leadsto \frac{\left(1 - t\right) \cdot z + 1}{t \cdot z} \cdot 2 \]
                        16. lower-+.f64N/A

                          \[\leadsto \frac{\left(1 - t\right) \cdot z + 1}{t \cdot z} \cdot 2 \]
                        17. lower-*.f6459.9%

                          \[\leadsto \frac{\left(1 - t\right) \cdot z + 1}{t \cdot z} \cdot 2 \]
                      6. Applied rewrites59.9%

                        \[\leadsto \frac{\left(1 - t\right) \cdot z + 1}{t \cdot z} \cdot \color{blue}{2} \]
                      7. Taylor expanded in z around inf

                        \[\leadsto \frac{1 - t}{t} \cdot 2 \]
                      8. Step-by-step derivation
                        1. lower-/.f64N/A

                          \[\leadsto \frac{1 - t}{t} \cdot 2 \]
                        2. lower--.f6437.4%

                          \[\leadsto \frac{1 - t}{t} \cdot 2 \]
                      9. Applied rewrites37.4%

                        \[\leadsto \frac{1 - t}{t} \cdot 2 \]

                      if -5.0000000000000004e43 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < 4.9999999999999998e89 or +inf.0 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z))

                      1. Initial program 86.7%

                        \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
                      2. Taylor expanded in t around inf

                        \[\leadsto \frac{x}{y} + \color{blue}{-2} \]
                      3. Step-by-step derivation
                        1. Applied rewrites54.0%

                          \[\leadsto \frac{x}{y} + \color{blue}{-2} \]
                      4. Recombined 3 regimes into one program.
                      5. Add Preprocessing

                      Alternative 9: 65.4% accurate, 0.9× speedup?

                      \[\begin{array}{l} t_1 := \frac{x}{y} + -2\\ \mathbf{if}\;\frac{x}{y} \leq -4.4 \cdot 10^{+15}:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;\frac{x}{y} \leq 5 \cdot 10^{-25}:\\ \;\;\;\;\frac{1 - t}{t} \cdot 2\\ \mathbf{else}:\\ \;\;\;\;t\_1\\ \end{array} \]
                      (FPCore (x y z t)
                        :precision binary64
                        (let* ((t_1 (+ (/ x y) -2.0)))
                        (if (<= (/ x y) -4.4e+15)
                          t_1
                          (if (<= (/ x y) 5e-25) (* (/ (- 1.0 t) t) 2.0) t_1))))
                      double code(double x, double y, double z, double t) {
                      	double t_1 = (x / y) + -2.0;
                      	double tmp;
                      	if ((x / y) <= -4.4e+15) {
                      		tmp = t_1;
                      	} else if ((x / y) <= 5e-25) {
                      		tmp = ((1.0 - t) / t) * 2.0;
                      	} else {
                      		tmp = t_1;
                      	}
                      	return tmp;
                      }
                      
                      module fmin_fmax_functions
                          implicit none
                          private
                          public fmax
                          public fmin
                      
                          interface fmax
                              module procedure fmax88
                              module procedure fmax44
                              module procedure fmax84
                              module procedure fmax48
                          end interface
                          interface fmin
                              module procedure fmin88
                              module procedure fmin44
                              module procedure fmin84
                              module procedure fmin48
                          end interface
                      contains
                          real(8) function fmax88(x, y) result (res)
                              real(8), intent (in) :: x
                              real(8), intent (in) :: y
                              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                          end function
                          real(4) function fmax44(x, y) result (res)
                              real(4), intent (in) :: x
                              real(4), intent (in) :: y
                              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                          end function
                          real(8) function fmax84(x, y) result(res)
                              real(8), intent (in) :: x
                              real(4), intent (in) :: y
                              res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                          end function
                          real(8) function fmax48(x, y) result(res)
                              real(4), intent (in) :: x
                              real(8), intent (in) :: y
                              res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                          end function
                          real(8) function fmin88(x, y) result (res)
                              real(8), intent (in) :: x
                              real(8), intent (in) :: y
                              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                          end function
                          real(4) function fmin44(x, y) result (res)
                              real(4), intent (in) :: x
                              real(4), intent (in) :: y
                              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                          end function
                          real(8) function fmin84(x, y) result(res)
                              real(8), intent (in) :: x
                              real(4), intent (in) :: y
                              res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                          end function
                          real(8) function fmin48(x, y) result(res)
                              real(4), intent (in) :: x
                              real(8), intent (in) :: y
                              res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                          end function
                      end module
                      
                      real(8) function code(x, y, z, t)
                      use fmin_fmax_functions
                          real(8), intent (in) :: x
                          real(8), intent (in) :: y
                          real(8), intent (in) :: z
                          real(8), intent (in) :: t
                          real(8) :: t_1
                          real(8) :: tmp
                          t_1 = (x / y) + (-2.0d0)
                          if ((x / y) <= (-4.4d+15)) then
                              tmp = t_1
                          else if ((x / y) <= 5d-25) then
                              tmp = ((1.0d0 - t) / t) * 2.0d0
                          else
                              tmp = t_1
                          end if
                          code = tmp
                      end function
                      
                      public static double code(double x, double y, double z, double t) {
                      	double t_1 = (x / y) + -2.0;
                      	double tmp;
                      	if ((x / y) <= -4.4e+15) {
                      		tmp = t_1;
                      	} else if ((x / y) <= 5e-25) {
                      		tmp = ((1.0 - t) / t) * 2.0;
                      	} else {
                      		tmp = t_1;
                      	}
                      	return tmp;
                      }
                      
                      def code(x, y, z, t):
                      	t_1 = (x / y) + -2.0
                      	tmp = 0
                      	if (x / y) <= -4.4e+15:
                      		tmp = t_1
                      	elif (x / y) <= 5e-25:
                      		tmp = ((1.0 - t) / t) * 2.0
                      	else:
                      		tmp = t_1
                      	return tmp
                      
                      function code(x, y, z, t)
                      	t_1 = Float64(Float64(x / y) + -2.0)
                      	tmp = 0.0
                      	if (Float64(x / y) <= -4.4e+15)
                      		tmp = t_1;
                      	elseif (Float64(x / y) <= 5e-25)
                      		tmp = Float64(Float64(Float64(1.0 - t) / t) * 2.0);
                      	else
                      		tmp = t_1;
                      	end
                      	return tmp
                      end
                      
                      function tmp_2 = code(x, y, z, t)
                      	t_1 = (x / y) + -2.0;
                      	tmp = 0.0;
                      	if ((x / y) <= -4.4e+15)
                      		tmp = t_1;
                      	elseif ((x / y) <= 5e-25)
                      		tmp = ((1.0 - t) / t) * 2.0;
                      	else
                      		tmp = t_1;
                      	end
                      	tmp_2 = tmp;
                      end
                      
                      code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(x / y), $MachinePrecision] + -2.0), $MachinePrecision]}, If[LessEqual[N[(x / y), $MachinePrecision], -4.4e+15], t$95$1, If[LessEqual[N[(x / y), $MachinePrecision], 5e-25], N[(N[(N[(1.0 - t), $MachinePrecision] / t), $MachinePrecision] * 2.0), $MachinePrecision], t$95$1]]]
                      
                      \begin{array}{l}
                      t_1 := \frac{x}{y} + -2\\
                      \mathbf{if}\;\frac{x}{y} \leq -4.4 \cdot 10^{+15}:\\
                      \;\;\;\;t\_1\\
                      
                      \mathbf{elif}\;\frac{x}{y} \leq 5 \cdot 10^{-25}:\\
                      \;\;\;\;\frac{1 - t}{t} \cdot 2\\
                      
                      \mathbf{else}:\\
                      \;\;\;\;t\_1\\
                      
                      
                      \end{array}
                      
                      Derivation
                      1. Split input into 2 regimes
                      2. if (/.f64 x y) < -4.4e15 or 4.9999999999999996e-25 < (/.f64 x y)

                        1. Initial program 86.7%

                          \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
                        2. Taylor expanded in t around inf

                          \[\leadsto \frac{x}{y} + \color{blue}{-2} \]
                        3. Step-by-step derivation
                          1. Applied rewrites54.0%

                            \[\leadsto \frac{x}{y} + \color{blue}{-2} \]

                          if -4.4e15 < (/.f64 x y) < 4.9999999999999996e-25

                          1. Initial program 86.7%

                            \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
                          2. Taylor expanded in x around 0

                            \[\leadsto \color{blue}{2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z}} \]
                          3. Step-by-step derivation
                            1. lower-+.f64N/A

                              \[\leadsto 2 \cdot \frac{1 - t}{t} + \color{blue}{2 \cdot \frac{1}{t \cdot z}} \]
                            2. lower-*.f64N/A

                              \[\leadsto 2 \cdot \frac{1 - t}{t} + \color{blue}{2} \cdot \frac{1}{t \cdot z} \]
                            3. lower-/.f64N/A

                              \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z} \]
                            4. lower--.f64N/A

                              \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z} \]
                            5. lower-*.f64N/A

                              \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \color{blue}{\frac{1}{t \cdot z}} \]
                            6. lower-/.f64N/A

                              \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{\color{blue}{t \cdot z}} \]
                            7. lower-*.f6465.8%

                              \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot \color{blue}{z}} \]
                          4. Applied rewrites65.8%

                            \[\leadsto \color{blue}{2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z}} \]
                          5. Step-by-step derivation
                            1. lift-+.f64N/A

                              \[\leadsto 2 \cdot \frac{1 - t}{t} + \color{blue}{2 \cdot \frac{1}{t \cdot z}} \]
                            2. lift-*.f64N/A

                              \[\leadsto 2 \cdot \frac{1 - t}{t} + \color{blue}{2} \cdot \frac{1}{t \cdot z} \]
                            3. lift-*.f64N/A

                              \[\leadsto 2 \cdot \frac{1 - t}{t} + 2 \cdot \color{blue}{\frac{1}{t \cdot z}} \]
                            4. distribute-lft-outN/A

                              \[\leadsto 2 \cdot \color{blue}{\left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right)} \]
                            5. *-commutativeN/A

                              \[\leadsto \left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right) \cdot \color{blue}{2} \]
                            6. lower-*.f64N/A

                              \[\leadsto \left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right) \cdot \color{blue}{2} \]
                            7. lift-/.f64N/A

                              \[\leadsto \left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right) \cdot 2 \]
                            8. lift-/.f64N/A

                              \[\leadsto \left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right) \cdot 2 \]
                            9. lift-*.f64N/A

                              \[\leadsto \left(\frac{1 - t}{t} + \frac{1}{t \cdot z}\right) \cdot 2 \]
                            10. associate-/r*N/A

                              \[\leadsto \left(\frac{1 - t}{t} + \frac{\frac{1}{t}}{z}\right) \cdot 2 \]
                            11. frac-addN/A

                              \[\leadsto \frac{\left(1 - t\right) \cdot z + t \cdot \frac{1}{t}}{t \cdot z} \cdot 2 \]
                            12. lift-*.f64N/A

                              \[\leadsto \frac{\left(1 - t\right) \cdot z + t \cdot \frac{1}{t}}{t \cdot z} \cdot 2 \]
                            13. lower-/.f64N/A

                              \[\leadsto \frac{\left(1 - t\right) \cdot z + t \cdot \frac{1}{t}}{t \cdot z} \cdot 2 \]
                            14. mult-flipN/A

                              \[\leadsto \frac{\left(1 - t\right) \cdot z + \frac{t}{t}}{t \cdot z} \cdot 2 \]
                            15. *-inversesN/A

                              \[\leadsto \frac{\left(1 - t\right) \cdot z + 1}{t \cdot z} \cdot 2 \]
                            16. lower-+.f64N/A

                              \[\leadsto \frac{\left(1 - t\right) \cdot z + 1}{t \cdot z} \cdot 2 \]
                            17. lower-*.f6459.9%

                              \[\leadsto \frac{\left(1 - t\right) \cdot z + 1}{t \cdot z} \cdot 2 \]
                          6. Applied rewrites59.9%

                            \[\leadsto \frac{\left(1 - t\right) \cdot z + 1}{t \cdot z} \cdot \color{blue}{2} \]
                          7. Taylor expanded in z around inf

                            \[\leadsto \frac{1 - t}{t} \cdot 2 \]
                          8. Step-by-step derivation
                            1. lower-/.f64N/A

                              \[\leadsto \frac{1 - t}{t} \cdot 2 \]
                            2. lower--.f6437.4%

                              \[\leadsto \frac{1 - t}{t} \cdot 2 \]
                          9. Applied rewrites37.4%

                            \[\leadsto \frac{1 - t}{t} \cdot 2 \]
                        4. Recombined 2 regimes into one program.
                        5. Add Preprocessing

                        Alternative 10: 61.7% accurate, 1.7× speedup?

                        \[\begin{array}{l} t_1 := \frac{x}{y} + -2\\ \mathbf{if}\;t \leq -4.4 \cdot 10^{-72}:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;t \leq 5.4 \cdot 10^{-74}:\\ \;\;\;\;\frac{2}{t}\\ \mathbf{else}:\\ \;\;\;\;t\_1\\ \end{array} \]
                        (FPCore (x y z t)
                          :precision binary64
                          (let* ((t_1 (+ (/ x y) -2.0)))
                          (if (<= t -4.4e-72) t_1 (if (<= t 5.4e-74) (/ 2.0 t) t_1))))
                        double code(double x, double y, double z, double t) {
                        	double t_1 = (x / y) + -2.0;
                        	double tmp;
                        	if (t <= -4.4e-72) {
                        		tmp = t_1;
                        	} else if (t <= 5.4e-74) {
                        		tmp = 2.0 / t;
                        	} else {
                        		tmp = t_1;
                        	}
                        	return tmp;
                        }
                        
                        module fmin_fmax_functions
                            implicit none
                            private
                            public fmax
                            public fmin
                        
                            interface fmax
                                module procedure fmax88
                                module procedure fmax44
                                module procedure fmax84
                                module procedure fmax48
                            end interface
                            interface fmin
                                module procedure fmin88
                                module procedure fmin44
                                module procedure fmin84
                                module procedure fmin48
                            end interface
                        contains
                            real(8) function fmax88(x, y) result (res)
                                real(8), intent (in) :: x
                                real(8), intent (in) :: y
                                res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                            end function
                            real(4) function fmax44(x, y) result (res)
                                real(4), intent (in) :: x
                                real(4), intent (in) :: y
                                res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                            end function
                            real(8) function fmax84(x, y) result(res)
                                real(8), intent (in) :: x
                                real(4), intent (in) :: y
                                res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                            end function
                            real(8) function fmax48(x, y) result(res)
                                real(4), intent (in) :: x
                                real(8), intent (in) :: y
                                res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                            end function
                            real(8) function fmin88(x, y) result (res)
                                real(8), intent (in) :: x
                                real(8), intent (in) :: y
                                res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                            end function
                            real(4) function fmin44(x, y) result (res)
                                real(4), intent (in) :: x
                                real(4), intent (in) :: y
                                res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                            end function
                            real(8) function fmin84(x, y) result(res)
                                real(8), intent (in) :: x
                                real(4), intent (in) :: y
                                res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                            end function
                            real(8) function fmin48(x, y) result(res)
                                real(4), intent (in) :: x
                                real(8), intent (in) :: y
                                res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                            end function
                        end module
                        
                        real(8) function code(x, y, z, t)
                        use fmin_fmax_functions
                            real(8), intent (in) :: x
                            real(8), intent (in) :: y
                            real(8), intent (in) :: z
                            real(8), intent (in) :: t
                            real(8) :: t_1
                            real(8) :: tmp
                            t_1 = (x / y) + (-2.0d0)
                            if (t <= (-4.4d-72)) then
                                tmp = t_1
                            else if (t <= 5.4d-74) then
                                tmp = 2.0d0 / t
                            else
                                tmp = t_1
                            end if
                            code = tmp
                        end function
                        
                        public static double code(double x, double y, double z, double t) {
                        	double t_1 = (x / y) + -2.0;
                        	double tmp;
                        	if (t <= -4.4e-72) {
                        		tmp = t_1;
                        	} else if (t <= 5.4e-74) {
                        		tmp = 2.0 / t;
                        	} else {
                        		tmp = t_1;
                        	}
                        	return tmp;
                        }
                        
                        def code(x, y, z, t):
                        	t_1 = (x / y) + -2.0
                        	tmp = 0
                        	if t <= -4.4e-72:
                        		tmp = t_1
                        	elif t <= 5.4e-74:
                        		tmp = 2.0 / t
                        	else:
                        		tmp = t_1
                        	return tmp
                        
                        function code(x, y, z, t)
                        	t_1 = Float64(Float64(x / y) + -2.0)
                        	tmp = 0.0
                        	if (t <= -4.4e-72)
                        		tmp = t_1;
                        	elseif (t <= 5.4e-74)
                        		tmp = Float64(2.0 / t);
                        	else
                        		tmp = t_1;
                        	end
                        	return tmp
                        end
                        
                        function tmp_2 = code(x, y, z, t)
                        	t_1 = (x / y) + -2.0;
                        	tmp = 0.0;
                        	if (t <= -4.4e-72)
                        		tmp = t_1;
                        	elseif (t <= 5.4e-74)
                        		tmp = 2.0 / t;
                        	else
                        		tmp = t_1;
                        	end
                        	tmp_2 = tmp;
                        end
                        
                        code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(x / y), $MachinePrecision] + -2.0), $MachinePrecision]}, If[LessEqual[t, -4.4e-72], t$95$1, If[LessEqual[t, 5.4e-74], N[(2.0 / t), $MachinePrecision], t$95$1]]]
                        
                        \begin{array}{l}
                        t_1 := \frac{x}{y} + -2\\
                        \mathbf{if}\;t \leq -4.4 \cdot 10^{-72}:\\
                        \;\;\;\;t\_1\\
                        
                        \mathbf{elif}\;t \leq 5.4 \cdot 10^{-74}:\\
                        \;\;\;\;\frac{2}{t}\\
                        
                        \mathbf{else}:\\
                        \;\;\;\;t\_1\\
                        
                        
                        \end{array}
                        
                        Derivation
                        1. Split input into 2 regimes
                        2. if t < -4.4e-72 or 5.4000000000000004e-74 < t

                          1. Initial program 86.7%

                            \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
                          2. Taylor expanded in t around inf

                            \[\leadsto \frac{x}{y} + \color{blue}{-2} \]
                          3. Step-by-step derivation
                            1. Applied rewrites54.0%

                              \[\leadsto \frac{x}{y} + \color{blue}{-2} \]

                            if -4.4e-72 < t < 5.4000000000000004e-74

                            1. Initial program 86.7%

                              \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
                            2. Taylor expanded in t around 0

                              \[\leadsto \color{blue}{\frac{2 + 2 \cdot \frac{1}{z}}{t}} \]
                            3. Step-by-step derivation
                              1. lower-/.f64N/A

                                \[\leadsto \frac{2 + 2 \cdot \frac{1}{z}}{\color{blue}{t}} \]
                              2. lower-+.f64N/A

                                \[\leadsto \frac{2 + 2 \cdot \frac{1}{z}}{t} \]
                              3. lower-*.f64N/A

                                \[\leadsto \frac{2 + 2 \cdot \frac{1}{z}}{t} \]
                              4. lower-/.f6447.9%

                                \[\leadsto \frac{2 + 2 \cdot \frac{1}{z}}{t} \]
                            4. Applied rewrites47.9%

                              \[\leadsto \color{blue}{\frac{2 + 2 \cdot \frac{1}{z}}{t}} \]
                            5. Taylor expanded in z around inf

                              \[\leadsto \frac{2}{\color{blue}{t}} \]
                            6. Step-by-step derivation
                              1. lower-/.f6420.0%

                                \[\leadsto \frac{2}{t} \]
                            7. Applied rewrites20.0%

                              \[\leadsto \frac{2}{\color{blue}{t}} \]
                          4. Recombined 2 regimes into one program.
                          5. Add Preprocessing

                          Alternative 11: 20.0% accurate, 3.9× speedup?

                          \[\frac{2}{t} \]
                          (FPCore (x y z t)
                            :precision binary64
                            (/ 2.0 t))
                          double code(double x, double y, double z, double t) {
                          	return 2.0 / t;
                          }
                          
                          module fmin_fmax_functions
                              implicit none
                              private
                              public fmax
                              public fmin
                          
                              interface fmax
                                  module procedure fmax88
                                  module procedure fmax44
                                  module procedure fmax84
                                  module procedure fmax48
                              end interface
                              interface fmin
                                  module procedure fmin88
                                  module procedure fmin44
                                  module procedure fmin84
                                  module procedure fmin48
                              end interface
                          contains
                              real(8) function fmax88(x, y) result (res)
                                  real(8), intent (in) :: x
                                  real(8), intent (in) :: y
                                  res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                              end function
                              real(4) function fmax44(x, y) result (res)
                                  real(4), intent (in) :: x
                                  real(4), intent (in) :: y
                                  res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                              end function
                              real(8) function fmax84(x, y) result(res)
                                  real(8), intent (in) :: x
                                  real(4), intent (in) :: y
                                  res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                              end function
                              real(8) function fmax48(x, y) result(res)
                                  real(4), intent (in) :: x
                                  real(8), intent (in) :: y
                                  res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                              end function
                              real(8) function fmin88(x, y) result (res)
                                  real(8), intent (in) :: x
                                  real(8), intent (in) :: y
                                  res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                              end function
                              real(4) function fmin44(x, y) result (res)
                                  real(4), intent (in) :: x
                                  real(4), intent (in) :: y
                                  res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                              end function
                              real(8) function fmin84(x, y) result(res)
                                  real(8), intent (in) :: x
                                  real(4), intent (in) :: y
                                  res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                              end function
                              real(8) function fmin48(x, y) result(res)
                                  real(4), intent (in) :: x
                                  real(8), intent (in) :: y
                                  res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                              end function
                          end module
                          
                          real(8) function code(x, y, z, t)
                          use fmin_fmax_functions
                              real(8), intent (in) :: x
                              real(8), intent (in) :: y
                              real(8), intent (in) :: z
                              real(8), intent (in) :: t
                              code = 2.0d0 / t
                          end function
                          
                          public static double code(double x, double y, double z, double t) {
                          	return 2.0 / t;
                          }
                          
                          def code(x, y, z, t):
                          	return 2.0 / t
                          
                          function code(x, y, z, t)
                          	return Float64(2.0 / t)
                          end
                          
                          function tmp = code(x, y, z, t)
                          	tmp = 2.0 / t;
                          end
                          
                          code[x_, y_, z_, t_] := N[(2.0 / t), $MachinePrecision]
                          
                          \frac{2}{t}
                          
                          Derivation
                          1. Initial program 86.7%

                            \[\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z} \]
                          2. Taylor expanded in t around 0

                            \[\leadsto \color{blue}{\frac{2 + 2 \cdot \frac{1}{z}}{t}} \]
                          3. Step-by-step derivation
                            1. lower-/.f64N/A

                              \[\leadsto \frac{2 + 2 \cdot \frac{1}{z}}{\color{blue}{t}} \]
                            2. lower-+.f64N/A

                              \[\leadsto \frac{2 + 2 \cdot \frac{1}{z}}{t} \]
                            3. lower-*.f64N/A

                              \[\leadsto \frac{2 + 2 \cdot \frac{1}{z}}{t} \]
                            4. lower-/.f6447.9%

                              \[\leadsto \frac{2 + 2 \cdot \frac{1}{z}}{t} \]
                          4. Applied rewrites47.9%

                            \[\leadsto \color{blue}{\frac{2 + 2 \cdot \frac{1}{z}}{t}} \]
                          5. Taylor expanded in z around inf

                            \[\leadsto \frac{2}{\color{blue}{t}} \]
                          6. Step-by-step derivation
                            1. lower-/.f6420.0%

                              \[\leadsto \frac{2}{t} \]
                          7. Applied rewrites20.0%

                            \[\leadsto \frac{2}{\color{blue}{t}} \]
                          8. Add Preprocessing

                          Reproduce

                          ?
                          herbie shell --seed 2025258 
                          (FPCore (x y z t)
                            :name "Data.HashTable.ST.Basic:computeOverhead from hashtables-1.2.0.2"
                            :precision binary64
                            (+ (/ x y) (/ (+ 2.0 (* (* z 2.0) (- 1.0 t))) (* t z))))