
(FPCore (x y z t) :precision binary64 (+ (/ x y) (/ (+ 2.0 (* (* z 2.0) (- 1.0 t))) (* t z))))
double code(double x, double y, double z, double t) {
return (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z));
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
code = (x / y) + ((2.0d0 + ((z * 2.0d0) * (1.0d0 - t))) / (t * z))
end function
public static double code(double x, double y, double z, double t) {
return (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z));
}
def code(x, y, z, t): return (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z))
function code(x, y, z, t) return Float64(Float64(x / y) + Float64(Float64(2.0 + Float64(Float64(z * 2.0) * Float64(1.0 - t))) / Float64(t * z))) end
function tmp = code(x, y, z, t) tmp = (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z)); end
code[x_, y_, z_, t_] := N[(N[(x / y), $MachinePrecision] + N[(N[(2.0 + N[(N[(z * 2.0), $MachinePrecision] * N[(1.0 - t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}
Herbie found 11 alternatives:
| Alternative | Accuracy | Speedup |
|---|
(FPCore (x y z t) :precision binary64 (+ (/ x y) (/ (+ 2.0 (* (* z 2.0) (- 1.0 t))) (* t z))))
double code(double x, double y, double z, double t) {
return (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z));
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
code = (x / y) + ((2.0d0 + ((z * 2.0d0) * (1.0d0 - t))) / (t * z))
end function
public static double code(double x, double y, double z, double t) {
return (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z));
}
def code(x, y, z, t): return (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z))
function code(x, y, z, t) return Float64(Float64(x / y) + Float64(Float64(2.0 + Float64(Float64(z * 2.0) * Float64(1.0 - t))) / Float64(t * z))) end
function tmp = code(x, y, z, t) tmp = (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z)); end
code[x_, y_, z_, t_] := N[(N[(x / y), $MachinePrecision] + N[(N[(2.0 + N[(N[(z * 2.0), $MachinePrecision] * N[(1.0 - t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
\frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}
(FPCore (x y z t) :precision binary64 (let* ((t_1 (+ (/ x y) (/ (+ 2.0 (* (* z 2.0) (- 1.0 t))) (* t z))))) (if (<= t_1 INFINITY) t_1 (+ (/ x y) -2.0))))
double code(double x, double y, double z, double t) {
double t_1 = (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z));
double tmp;
if (t_1 <= ((double) INFINITY)) {
tmp = t_1;
} else {
tmp = (x / y) + -2.0;
}
return tmp;
}
public static double code(double x, double y, double z, double t) {
double t_1 = (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z));
double tmp;
if (t_1 <= Double.POSITIVE_INFINITY) {
tmp = t_1;
} else {
tmp = (x / y) + -2.0;
}
return tmp;
}
def code(x, y, z, t): t_1 = (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z)) tmp = 0 if t_1 <= math.inf: tmp = t_1 else: tmp = (x / y) + -2.0 return tmp
function code(x, y, z, t) t_1 = Float64(Float64(x / y) + Float64(Float64(2.0 + Float64(Float64(z * 2.0) * Float64(1.0 - t))) / Float64(t * z))) tmp = 0.0 if (t_1 <= Inf) tmp = t_1; else tmp = Float64(Float64(x / y) + -2.0); end return tmp end
function tmp_2 = code(x, y, z, t) t_1 = (x / y) + ((2.0 + ((z * 2.0) * (1.0 - t))) / (t * z)); tmp = 0.0; if (t_1 <= Inf) tmp = t_1; else tmp = (x / y) + -2.0; end tmp_2 = tmp; end
code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(x / y), $MachinePrecision] + N[(N[(2.0 + N[(N[(z * 2.0), $MachinePrecision] * N[(1.0 - t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$1, Infinity], t$95$1, N[(N[(x / y), $MachinePrecision] + -2.0), $MachinePrecision]]]
\begin{array}{l}
t_1 := \frac{x}{y} + \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}\\
\mathbf{if}\;t\_1 \leq \infty:\\
\;\;\;\;t\_1\\
\mathbf{else}:\\
\;\;\;\;\frac{x}{y} + -2\\
\end{array}
if (+.f64 (/.f64 x y) (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z))) < +inf.0Initial program 86.7%
if +inf.0 < (+.f64 (/.f64 x y) (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z))) Initial program 86.7%
Taylor expanded in t around inf
Applied rewrites54.0%
(FPCore (x y z t)
:precision binary64
(let* ((t_1 (+ (/ (- (+ z z) -2.0) (* t z)) (/ x y)))
(t_2 (/ (+ 2.0 (* (* z 2.0) (- 1.0 t))) (* t z))))
(if (<= t_2 -4000000.0)
t_1
(if (<= t_2 50.0)
(+ (/ x y) (* 2.0 (/ (- 1.0 t) t)))
(if (<= t_2 INFINITY) t_1 (+ (/ x y) -2.0))))))double code(double x, double y, double z, double t) {
double t_1 = (((z + z) - -2.0) / (t * z)) + (x / y);
double t_2 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z);
double tmp;
if (t_2 <= -4000000.0) {
tmp = t_1;
} else if (t_2 <= 50.0) {
tmp = (x / y) + (2.0 * ((1.0 - t) / t));
} else if (t_2 <= ((double) INFINITY)) {
tmp = t_1;
} else {
tmp = (x / y) + -2.0;
}
return tmp;
}
public static double code(double x, double y, double z, double t) {
double t_1 = (((z + z) - -2.0) / (t * z)) + (x / y);
double t_2 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z);
double tmp;
if (t_2 <= -4000000.0) {
tmp = t_1;
} else if (t_2 <= 50.0) {
tmp = (x / y) + (2.0 * ((1.0 - t) / t));
} else if (t_2 <= Double.POSITIVE_INFINITY) {
tmp = t_1;
} else {
tmp = (x / y) + -2.0;
}
return tmp;
}
def code(x, y, z, t): t_1 = (((z + z) - -2.0) / (t * z)) + (x / y) t_2 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z) tmp = 0 if t_2 <= -4000000.0: tmp = t_1 elif t_2 <= 50.0: tmp = (x / y) + (2.0 * ((1.0 - t) / t)) elif t_2 <= math.inf: tmp = t_1 else: tmp = (x / y) + -2.0 return tmp
function code(x, y, z, t) t_1 = Float64(Float64(Float64(Float64(z + z) - -2.0) / Float64(t * z)) + Float64(x / y)) t_2 = Float64(Float64(2.0 + Float64(Float64(z * 2.0) * Float64(1.0 - t))) / Float64(t * z)) tmp = 0.0 if (t_2 <= -4000000.0) tmp = t_1; elseif (t_2 <= 50.0) tmp = Float64(Float64(x / y) + Float64(2.0 * Float64(Float64(1.0 - t) / t))); elseif (t_2 <= Inf) tmp = t_1; else tmp = Float64(Float64(x / y) + -2.0); end return tmp end
function tmp_2 = code(x, y, z, t) t_1 = (((z + z) - -2.0) / (t * z)) + (x / y); t_2 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z); tmp = 0.0; if (t_2 <= -4000000.0) tmp = t_1; elseif (t_2 <= 50.0) tmp = (x / y) + (2.0 * ((1.0 - t) / t)); elseif (t_2 <= Inf) tmp = t_1; else tmp = (x / y) + -2.0; end tmp_2 = tmp; end
code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(N[(N[(z + z), $MachinePrecision] - -2.0), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision] + N[(x / y), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$2 = N[(N[(2.0 + N[(N[(z * 2.0), $MachinePrecision] * N[(1.0 - t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$2, -4000000.0], t$95$1, If[LessEqual[t$95$2, 50.0], N[(N[(x / y), $MachinePrecision] + N[(2.0 * N[(N[(1.0 - t), $MachinePrecision] / t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$2, Infinity], t$95$1, N[(N[(x / y), $MachinePrecision] + -2.0), $MachinePrecision]]]]]]
\begin{array}{l}
t_1 := \frac{\left(z + z\right) - -2}{t \cdot z} + \frac{x}{y}\\
t_2 := \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}\\
\mathbf{if}\;t\_2 \leq -4000000:\\
\;\;\;\;t\_1\\
\mathbf{elif}\;t\_2 \leq 50:\\
\;\;\;\;\frac{x}{y} + 2 \cdot \frac{1 - t}{t}\\
\mathbf{elif}\;t\_2 \leq \infty:\\
\;\;\;\;t\_1\\
\mathbf{else}:\\
\;\;\;\;\frac{x}{y} + -2\\
\end{array}
if (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < -4e6 or 50 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < +inf.0Initial program 86.7%
Taylor expanded in t around 0
lower-+.f64N/A
lower-*.f6480.5%
Applied rewrites80.5%
lift-+.f64N/A
+-commutativeN/A
lower-+.f6480.5%
lift-+.f64N/A
+-commutativeN/A
add-flipN/A
metadata-evalN/A
lower--.f6480.5%
lift-*.f64N/A
count-2-revN/A
lower-+.f6480.5%
Applied rewrites80.5%
if -4e6 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < 50Initial program 86.7%
Taylor expanded in z around inf
lower-*.f64N/A
lower-/.f64N/A
lower--.f6471.9%
Applied rewrites71.9%
if +inf.0 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) Initial program 86.7%
Taylor expanded in t around inf
Applied rewrites54.0%
(FPCore (x y z t)
:precision binary64
(let* ((t_1 (+ (/ (- (+ z z) -2.0) (* t z)) (/ x y))))
(if (<= (/ x y) -5000.0)
t_1
(if (<= (/ x y) 1e-24)
(+ (* 2.0 (/ (- 1.0 t) t)) (* 2.0 (/ 1.0 (* t z))))
t_1))))double code(double x, double y, double z, double t) {
double t_1 = (((z + z) - -2.0) / (t * z)) + (x / y);
double tmp;
if ((x / y) <= -5000.0) {
tmp = t_1;
} else if ((x / y) <= 1e-24) {
tmp = (2.0 * ((1.0 - t) / t)) + (2.0 * (1.0 / (t * z)));
} else {
tmp = t_1;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
real(8) :: t_1
real(8) :: tmp
t_1 = (((z + z) - (-2.0d0)) / (t * z)) + (x / y)
if ((x / y) <= (-5000.0d0)) then
tmp = t_1
else if ((x / y) <= 1d-24) then
tmp = (2.0d0 * ((1.0d0 - t) / t)) + (2.0d0 * (1.0d0 / (t * z)))
else
tmp = t_1
end if
code = tmp
end function
public static double code(double x, double y, double z, double t) {
double t_1 = (((z + z) - -2.0) / (t * z)) + (x / y);
double tmp;
if ((x / y) <= -5000.0) {
tmp = t_1;
} else if ((x / y) <= 1e-24) {
tmp = (2.0 * ((1.0 - t) / t)) + (2.0 * (1.0 / (t * z)));
} else {
tmp = t_1;
}
return tmp;
}
def code(x, y, z, t): t_1 = (((z + z) - -2.0) / (t * z)) + (x / y) tmp = 0 if (x / y) <= -5000.0: tmp = t_1 elif (x / y) <= 1e-24: tmp = (2.0 * ((1.0 - t) / t)) + (2.0 * (1.0 / (t * z))) else: tmp = t_1 return tmp
function code(x, y, z, t) t_1 = Float64(Float64(Float64(Float64(z + z) - -2.0) / Float64(t * z)) + Float64(x / y)) tmp = 0.0 if (Float64(x / y) <= -5000.0) tmp = t_1; elseif (Float64(x / y) <= 1e-24) tmp = Float64(Float64(2.0 * Float64(Float64(1.0 - t) / t)) + Float64(2.0 * Float64(1.0 / Float64(t * z)))); else tmp = t_1; end return tmp end
function tmp_2 = code(x, y, z, t) t_1 = (((z + z) - -2.0) / (t * z)) + (x / y); tmp = 0.0; if ((x / y) <= -5000.0) tmp = t_1; elseif ((x / y) <= 1e-24) tmp = (2.0 * ((1.0 - t) / t)) + (2.0 * (1.0 / (t * z))); else tmp = t_1; end tmp_2 = tmp; end
code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(N[(N[(z + z), $MachinePrecision] - -2.0), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision] + N[(x / y), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[N[(x / y), $MachinePrecision], -5000.0], t$95$1, If[LessEqual[N[(x / y), $MachinePrecision], 1e-24], N[(N[(2.0 * N[(N[(1.0 - t), $MachinePrecision] / t), $MachinePrecision]), $MachinePrecision] + N[(2.0 * N[(1.0 / N[(t * z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], t$95$1]]]
\begin{array}{l}
t_1 := \frac{\left(z + z\right) - -2}{t \cdot z} + \frac{x}{y}\\
\mathbf{if}\;\frac{x}{y} \leq -5000:\\
\;\;\;\;t\_1\\
\mathbf{elif}\;\frac{x}{y} \leq 10^{-24}:\\
\;\;\;\;2 \cdot \frac{1 - t}{t} + 2 \cdot \frac{1}{t \cdot z}\\
\mathbf{else}:\\
\;\;\;\;t\_1\\
\end{array}
if (/.f64 x y) < -5e3 or 9.9999999999999992e-25 < (/.f64 x y) Initial program 86.7%
Taylor expanded in t around 0
lower-+.f64N/A
lower-*.f6480.5%
Applied rewrites80.5%
lift-+.f64N/A
+-commutativeN/A
lower-+.f6480.5%
lift-+.f64N/A
+-commutativeN/A
add-flipN/A
metadata-evalN/A
lower--.f6480.5%
lift-*.f64N/A
count-2-revN/A
lower-+.f6480.5%
Applied rewrites80.5%
if -5e3 < (/.f64 x y) < 9.9999999999999992e-25Initial program 86.7%
Taylor expanded in x around 0
lower-+.f64N/A
lower-*.f64N/A
lower-/.f64N/A
lower--.f64N/A
lower-*.f64N/A
lower-/.f64N/A
lower-*.f6465.8%
Applied rewrites65.8%
(FPCore (x y z t)
:precision binary64
(let* ((t_1 (+ (/ x y) (* 2.0 (/ (- 1.0 t) t)))))
(if (<= z -1.65e-23)
t_1
(if (<= z 8.8e-119) (+ (/ x y) (/ 2.0 (* t z))) t_1))))double code(double x, double y, double z, double t) {
double t_1 = (x / y) + (2.0 * ((1.0 - t) / t));
double tmp;
if (z <= -1.65e-23) {
tmp = t_1;
} else if (z <= 8.8e-119) {
tmp = (x / y) + (2.0 / (t * z));
} else {
tmp = t_1;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
real(8) :: t_1
real(8) :: tmp
t_1 = (x / y) + (2.0d0 * ((1.0d0 - t) / t))
if (z <= (-1.65d-23)) then
tmp = t_1
else if (z <= 8.8d-119) then
tmp = (x / y) + (2.0d0 / (t * z))
else
tmp = t_1
end if
code = tmp
end function
public static double code(double x, double y, double z, double t) {
double t_1 = (x / y) + (2.0 * ((1.0 - t) / t));
double tmp;
if (z <= -1.65e-23) {
tmp = t_1;
} else if (z <= 8.8e-119) {
tmp = (x / y) + (2.0 / (t * z));
} else {
tmp = t_1;
}
return tmp;
}
def code(x, y, z, t): t_1 = (x / y) + (2.0 * ((1.0 - t) / t)) tmp = 0 if z <= -1.65e-23: tmp = t_1 elif z <= 8.8e-119: tmp = (x / y) + (2.0 / (t * z)) else: tmp = t_1 return tmp
function code(x, y, z, t) t_1 = Float64(Float64(x / y) + Float64(2.0 * Float64(Float64(1.0 - t) / t))) tmp = 0.0 if (z <= -1.65e-23) tmp = t_1; elseif (z <= 8.8e-119) tmp = Float64(Float64(x / y) + Float64(2.0 / Float64(t * z))); else tmp = t_1; end return tmp end
function tmp_2 = code(x, y, z, t) t_1 = (x / y) + (2.0 * ((1.0 - t) / t)); tmp = 0.0; if (z <= -1.65e-23) tmp = t_1; elseif (z <= 8.8e-119) tmp = (x / y) + (2.0 / (t * z)); else tmp = t_1; end tmp_2 = tmp; end
code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(x / y), $MachinePrecision] + N[(2.0 * N[(N[(1.0 - t), $MachinePrecision] / t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[z, -1.65e-23], t$95$1, If[LessEqual[z, 8.8e-119], N[(N[(x / y), $MachinePrecision] + N[(2.0 / N[(t * z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], t$95$1]]]
\begin{array}{l}
t_1 := \frac{x}{y} + 2 \cdot \frac{1 - t}{t}\\
\mathbf{if}\;z \leq -1.65 \cdot 10^{-23}:\\
\;\;\;\;t\_1\\
\mathbf{elif}\;z \leq 8.8 \cdot 10^{-119}:\\
\;\;\;\;\frac{x}{y} + \frac{2}{t \cdot z}\\
\mathbf{else}:\\
\;\;\;\;t\_1\\
\end{array}
if z < -1.6500000000000001e-23 or 8.8000000000000002e-119 < z Initial program 86.7%
Taylor expanded in z around inf
lower-*.f64N/A
lower-/.f64N/A
lower--.f6471.9%
Applied rewrites71.9%
if -1.6500000000000001e-23 < z < 8.8000000000000002e-119Initial program 86.7%
Taylor expanded in z around 0
Applied rewrites62.6%
(FPCore (x y z t)
:precision binary64
(let* ((t_1 (/ (+ 2.0 (* (* z 2.0) (- 1.0 t))) (* t z)))
(t_2 (+ (/ x y) -2.0)))
(if (<= t_1 -5e+43)
(/ (- (/ 2.0 z) -2.0) t)
(if (<= t_1 1e+51)
t_2
(if (<= t_1 INFINITY) (* (/ (+ 1.0 z) (* t z)) 2.0) t_2)))))double code(double x, double y, double z, double t) {
double t_1 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z);
double t_2 = (x / y) + -2.0;
double tmp;
if (t_1 <= -5e+43) {
tmp = ((2.0 / z) - -2.0) / t;
} else if (t_1 <= 1e+51) {
tmp = t_2;
} else if (t_1 <= ((double) INFINITY)) {
tmp = ((1.0 + z) / (t * z)) * 2.0;
} else {
tmp = t_2;
}
return tmp;
}
public static double code(double x, double y, double z, double t) {
double t_1 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z);
double t_2 = (x / y) + -2.0;
double tmp;
if (t_1 <= -5e+43) {
tmp = ((2.0 / z) - -2.0) / t;
} else if (t_1 <= 1e+51) {
tmp = t_2;
} else if (t_1 <= Double.POSITIVE_INFINITY) {
tmp = ((1.0 + z) / (t * z)) * 2.0;
} else {
tmp = t_2;
}
return tmp;
}
def code(x, y, z, t): t_1 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z) t_2 = (x / y) + -2.0 tmp = 0 if t_1 <= -5e+43: tmp = ((2.0 / z) - -2.0) / t elif t_1 <= 1e+51: tmp = t_2 elif t_1 <= math.inf: tmp = ((1.0 + z) / (t * z)) * 2.0 else: tmp = t_2 return tmp
function code(x, y, z, t) t_1 = Float64(Float64(2.0 + Float64(Float64(z * 2.0) * Float64(1.0 - t))) / Float64(t * z)) t_2 = Float64(Float64(x / y) + -2.0) tmp = 0.0 if (t_1 <= -5e+43) tmp = Float64(Float64(Float64(2.0 / z) - -2.0) / t); elseif (t_1 <= 1e+51) tmp = t_2; elseif (t_1 <= Inf) tmp = Float64(Float64(Float64(1.0 + z) / Float64(t * z)) * 2.0); else tmp = t_2; end return tmp end
function tmp_2 = code(x, y, z, t) t_1 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z); t_2 = (x / y) + -2.0; tmp = 0.0; if (t_1 <= -5e+43) tmp = ((2.0 / z) - -2.0) / t; elseif (t_1 <= 1e+51) tmp = t_2; elseif (t_1 <= Inf) tmp = ((1.0 + z) / (t * z)) * 2.0; else tmp = t_2; end tmp_2 = tmp; end
code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(2.0 + N[(N[(z * 2.0), $MachinePrecision] * N[(1.0 - t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$2 = N[(N[(x / y), $MachinePrecision] + -2.0), $MachinePrecision]}, If[LessEqual[t$95$1, -5e+43], N[(N[(N[(2.0 / z), $MachinePrecision] - -2.0), $MachinePrecision] / t), $MachinePrecision], If[LessEqual[t$95$1, 1e+51], t$95$2, If[LessEqual[t$95$1, Infinity], N[(N[(N[(1.0 + z), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision] * 2.0), $MachinePrecision], t$95$2]]]]]
\begin{array}{l}
t_1 := \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}\\
t_2 := \frac{x}{y} + -2\\
\mathbf{if}\;t\_1 \leq -5 \cdot 10^{+43}:\\
\;\;\;\;\frac{\frac{2}{z} - -2}{t}\\
\mathbf{elif}\;t\_1 \leq 10^{+51}:\\
\;\;\;\;t\_2\\
\mathbf{elif}\;t\_1 \leq \infty:\\
\;\;\;\;\frac{1 + z}{t \cdot z} \cdot 2\\
\mathbf{else}:\\
\;\;\;\;t\_2\\
\end{array}
if (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < -5.0000000000000004e43Initial program 86.7%
Taylor expanded in t around 0
lower-/.f64N/A
lower-+.f64N/A
lower-*.f64N/A
lower-/.f6447.9%
Applied rewrites47.9%
lift-+.f64N/A
+-commutativeN/A
add-flipN/A
metadata-evalN/A
lower--.f6447.9%
lift-*.f64N/A
lift-/.f64N/A
mult-flip-revN/A
lower-/.f6447.9%
Applied rewrites47.9%
if -5.0000000000000004e43 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < 9.9999999999999999e50 or +inf.0 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) Initial program 86.7%
Taylor expanded in t around inf
Applied rewrites54.0%
if 9.9999999999999999e50 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < +inf.0Initial program 86.7%
Taylor expanded in x around 0
lower-+.f64N/A
lower-*.f64N/A
lower-/.f64N/A
lower--.f64N/A
lower-*.f64N/A
lower-/.f64N/A
lower-*.f6465.8%
Applied rewrites65.8%
lift-+.f64N/A
lift-*.f64N/A
lift-*.f64N/A
distribute-lft-outN/A
*-commutativeN/A
lower-*.f64N/A
lift-/.f64N/A
lift-/.f64N/A
lift-*.f64N/A
associate-/r*N/A
frac-addN/A
lift-*.f64N/A
lower-/.f64N/A
mult-flipN/A
*-inversesN/A
lower-+.f64N/A
lower-*.f6459.9%
Applied rewrites59.9%
Taylor expanded in t around 0
lower-+.f6447.9%
Applied rewrites47.9%
(FPCore (x y z t)
:precision binary64
(let* ((t_1 (* (/ (+ 1.0 z) (* t z)) 2.0))
(t_2 (/ (+ 2.0 (* (* z 2.0) (- 1.0 t))) (* t z)))
(t_3 (+ (/ x y) -2.0)))
(if (<= t_2 -5e+43)
t_1
(if (<= t_2 1e+51) t_3 (if (<= t_2 INFINITY) t_1 t_3)))))double code(double x, double y, double z, double t) {
double t_1 = ((1.0 + z) / (t * z)) * 2.0;
double t_2 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z);
double t_3 = (x / y) + -2.0;
double tmp;
if (t_2 <= -5e+43) {
tmp = t_1;
} else if (t_2 <= 1e+51) {
tmp = t_3;
} else if (t_2 <= ((double) INFINITY)) {
tmp = t_1;
} else {
tmp = t_3;
}
return tmp;
}
public static double code(double x, double y, double z, double t) {
double t_1 = ((1.0 + z) / (t * z)) * 2.0;
double t_2 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z);
double t_3 = (x / y) + -2.0;
double tmp;
if (t_2 <= -5e+43) {
tmp = t_1;
} else if (t_2 <= 1e+51) {
tmp = t_3;
} else if (t_2 <= Double.POSITIVE_INFINITY) {
tmp = t_1;
} else {
tmp = t_3;
}
return tmp;
}
def code(x, y, z, t): t_1 = ((1.0 + z) / (t * z)) * 2.0 t_2 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z) t_3 = (x / y) + -2.0 tmp = 0 if t_2 <= -5e+43: tmp = t_1 elif t_2 <= 1e+51: tmp = t_3 elif t_2 <= math.inf: tmp = t_1 else: tmp = t_3 return tmp
function code(x, y, z, t) t_1 = Float64(Float64(Float64(1.0 + z) / Float64(t * z)) * 2.0) t_2 = Float64(Float64(2.0 + Float64(Float64(z * 2.0) * Float64(1.0 - t))) / Float64(t * z)) t_3 = Float64(Float64(x / y) + -2.0) tmp = 0.0 if (t_2 <= -5e+43) tmp = t_1; elseif (t_2 <= 1e+51) tmp = t_3; elseif (t_2 <= Inf) tmp = t_1; else tmp = t_3; end return tmp end
function tmp_2 = code(x, y, z, t) t_1 = ((1.0 + z) / (t * z)) * 2.0; t_2 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z); t_3 = (x / y) + -2.0; tmp = 0.0; if (t_2 <= -5e+43) tmp = t_1; elseif (t_2 <= 1e+51) tmp = t_3; elseif (t_2 <= Inf) tmp = t_1; else tmp = t_3; end tmp_2 = tmp; end
code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(N[(1.0 + z), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision] * 2.0), $MachinePrecision]}, Block[{t$95$2 = N[(N[(2.0 + N[(N[(z * 2.0), $MachinePrecision] * N[(1.0 - t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$3 = N[(N[(x / y), $MachinePrecision] + -2.0), $MachinePrecision]}, If[LessEqual[t$95$2, -5e+43], t$95$1, If[LessEqual[t$95$2, 1e+51], t$95$3, If[LessEqual[t$95$2, Infinity], t$95$1, t$95$3]]]]]]
\begin{array}{l}
t_1 := \frac{1 + z}{t \cdot z} \cdot 2\\
t_2 := \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}\\
t_3 := \frac{x}{y} + -2\\
\mathbf{if}\;t\_2 \leq -5 \cdot 10^{+43}:\\
\;\;\;\;t\_1\\
\mathbf{elif}\;t\_2 \leq 10^{+51}:\\
\;\;\;\;t\_3\\
\mathbf{elif}\;t\_2 \leq \infty:\\
\;\;\;\;t\_1\\
\mathbf{else}:\\
\;\;\;\;t\_3\\
\end{array}
if (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < -5.0000000000000004e43 or 9.9999999999999999e50 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < +inf.0Initial program 86.7%
Taylor expanded in x around 0
lower-+.f64N/A
lower-*.f64N/A
lower-/.f64N/A
lower--.f64N/A
lower-*.f64N/A
lower-/.f64N/A
lower-*.f6465.8%
Applied rewrites65.8%
lift-+.f64N/A
lift-*.f64N/A
lift-*.f64N/A
distribute-lft-outN/A
*-commutativeN/A
lower-*.f64N/A
lift-/.f64N/A
lift-/.f64N/A
lift-*.f64N/A
associate-/r*N/A
frac-addN/A
lift-*.f64N/A
lower-/.f64N/A
mult-flipN/A
*-inversesN/A
lower-+.f64N/A
lower-*.f6459.9%
Applied rewrites59.9%
Taylor expanded in t around 0
lower-+.f6447.9%
Applied rewrites47.9%
if -5.0000000000000004e43 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < 9.9999999999999999e50 or +inf.0 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) Initial program 86.7%
Taylor expanded in t around inf
Applied rewrites54.0%
(FPCore (x y z t)
:precision binary64
(let* ((t_1 (/ (+ 2.0 (* (* z 2.0) (- 1.0 t))) (* t z)))
(t_2 (+ (/ x y) -2.0)))
(if (<= t_1 -1e+234)
(- (+ -1.0 -1.0) (/ -2.0 (* t z)))
(if (<= t_1 -5e+43)
(* (/ (- 1.0 t) t) 2.0)
(if (<= t_1 5e+89)
t_2
(if (<= t_1 INFINITY) (* (/ 1.0 (* t z)) 2.0) t_2))))))double code(double x, double y, double z, double t) {
double t_1 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z);
double t_2 = (x / y) + -2.0;
double tmp;
if (t_1 <= -1e+234) {
tmp = (-1.0 + -1.0) - (-2.0 / (t * z));
} else if (t_1 <= -5e+43) {
tmp = ((1.0 - t) / t) * 2.0;
} else if (t_1 <= 5e+89) {
tmp = t_2;
} else if (t_1 <= ((double) INFINITY)) {
tmp = (1.0 / (t * z)) * 2.0;
} else {
tmp = t_2;
}
return tmp;
}
public static double code(double x, double y, double z, double t) {
double t_1 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z);
double t_2 = (x / y) + -2.0;
double tmp;
if (t_1 <= -1e+234) {
tmp = (-1.0 + -1.0) - (-2.0 / (t * z));
} else if (t_1 <= -5e+43) {
tmp = ((1.0 - t) / t) * 2.0;
} else if (t_1 <= 5e+89) {
tmp = t_2;
} else if (t_1 <= Double.POSITIVE_INFINITY) {
tmp = (1.0 / (t * z)) * 2.0;
} else {
tmp = t_2;
}
return tmp;
}
def code(x, y, z, t): t_1 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z) t_2 = (x / y) + -2.0 tmp = 0 if t_1 <= -1e+234: tmp = (-1.0 + -1.0) - (-2.0 / (t * z)) elif t_1 <= -5e+43: tmp = ((1.0 - t) / t) * 2.0 elif t_1 <= 5e+89: tmp = t_2 elif t_1 <= math.inf: tmp = (1.0 / (t * z)) * 2.0 else: tmp = t_2 return tmp
function code(x, y, z, t) t_1 = Float64(Float64(2.0 + Float64(Float64(z * 2.0) * Float64(1.0 - t))) / Float64(t * z)) t_2 = Float64(Float64(x / y) + -2.0) tmp = 0.0 if (t_1 <= -1e+234) tmp = Float64(Float64(-1.0 + -1.0) - Float64(-2.0 / Float64(t * z))); elseif (t_1 <= -5e+43) tmp = Float64(Float64(Float64(1.0 - t) / t) * 2.0); elseif (t_1 <= 5e+89) tmp = t_2; elseif (t_1 <= Inf) tmp = Float64(Float64(1.0 / Float64(t * z)) * 2.0); else tmp = t_2; end return tmp end
function tmp_2 = code(x, y, z, t) t_1 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z); t_2 = (x / y) + -2.0; tmp = 0.0; if (t_1 <= -1e+234) tmp = (-1.0 + -1.0) - (-2.0 / (t * z)); elseif (t_1 <= -5e+43) tmp = ((1.0 - t) / t) * 2.0; elseif (t_1 <= 5e+89) tmp = t_2; elseif (t_1 <= Inf) tmp = (1.0 / (t * z)) * 2.0; else tmp = t_2; end tmp_2 = tmp; end
code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(2.0 + N[(N[(z * 2.0), $MachinePrecision] * N[(1.0 - t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$2 = N[(N[(x / y), $MachinePrecision] + -2.0), $MachinePrecision]}, If[LessEqual[t$95$1, -1e+234], N[(N[(-1.0 + -1.0), $MachinePrecision] - N[(-2.0 / N[(t * z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$1, -5e+43], N[(N[(N[(1.0 - t), $MachinePrecision] / t), $MachinePrecision] * 2.0), $MachinePrecision], If[LessEqual[t$95$1, 5e+89], t$95$2, If[LessEqual[t$95$1, Infinity], N[(N[(1.0 / N[(t * z), $MachinePrecision]), $MachinePrecision] * 2.0), $MachinePrecision], t$95$2]]]]]]
\begin{array}{l}
t_1 := \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}\\
t_2 := \frac{x}{y} + -2\\
\mathbf{if}\;t\_1 \leq -1 \cdot 10^{+234}:\\
\;\;\;\;\left(-1 + -1\right) - \frac{-2}{t \cdot z}\\
\mathbf{elif}\;t\_1 \leq -5 \cdot 10^{+43}:\\
\;\;\;\;\frac{1 - t}{t} \cdot 2\\
\mathbf{elif}\;t\_1 \leq 5 \cdot 10^{+89}:\\
\;\;\;\;t\_2\\
\mathbf{elif}\;t\_1 \leq \infty:\\
\;\;\;\;\frac{1}{t \cdot z} \cdot 2\\
\mathbf{else}:\\
\;\;\;\;t\_2\\
\end{array}
if (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < -1e234Initial program 86.7%
Taylor expanded in x around 0
lower-+.f64N/A
lower-*.f64N/A
lower-/.f64N/A
lower--.f64N/A
lower-*.f64N/A
lower-/.f64N/A
lower-*.f6465.8%
Applied rewrites65.8%
Taylor expanded in t around inf
Applied rewrites47.7%
lift-+.f64N/A
add-flipN/A
lower--.f64N/A
lift-*.f64N/A
count-2-revN/A
lower-+.f64N/A
lift-*.f64N/A
lift-/.f64N/A
mult-flip-revN/A
distribute-neg-fracN/A
metadata-evalN/A
lower-/.f6447.7%
Applied rewrites47.7%
if -1e234 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < -5.0000000000000004e43Initial program 86.7%
Taylor expanded in x around 0
lower-+.f64N/A
lower-*.f64N/A
lower-/.f64N/A
lower--.f64N/A
lower-*.f64N/A
lower-/.f64N/A
lower-*.f6465.8%
Applied rewrites65.8%
lift-+.f64N/A
lift-*.f64N/A
lift-*.f64N/A
distribute-lft-outN/A
*-commutativeN/A
lower-*.f64N/A
lift-/.f64N/A
lift-/.f64N/A
lift-*.f64N/A
associate-/r*N/A
frac-addN/A
lift-*.f64N/A
lower-/.f64N/A
mult-flipN/A
*-inversesN/A
lower-+.f64N/A
lower-*.f6459.9%
Applied rewrites59.9%
Taylor expanded in z around inf
lower-/.f64N/A
lower--.f6437.4%
Applied rewrites37.4%
if -5.0000000000000004e43 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < 4.9999999999999998e89 or +inf.0 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) Initial program 86.7%
Taylor expanded in t around inf
Applied rewrites54.0%
if 4.9999999999999998e89 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < +inf.0Initial program 86.7%
Taylor expanded in x around 0
lower-+.f64N/A
lower-*.f64N/A
lower-/.f64N/A
lower--.f64N/A
lower-*.f64N/A
lower-/.f64N/A
lower-*.f6465.8%
Applied rewrites65.8%
lift-+.f64N/A
lift-*.f64N/A
lift-*.f64N/A
distribute-lft-outN/A
*-commutativeN/A
lower-*.f64N/A
lift-/.f64N/A
lift-/.f64N/A
lift-*.f64N/A
associate-/r*N/A
frac-addN/A
lift-*.f64N/A
lower-/.f64N/A
mult-flipN/A
*-inversesN/A
lower-+.f64N/A
lower-*.f6459.9%
Applied rewrites59.9%
Taylor expanded in z around 0
Applied rewrites30.1%
(FPCore (x y z t)
:precision binary64
(let* ((t_1 (* (/ 1.0 (* t z)) 2.0))
(t_2 (/ (+ 2.0 (* (* z 2.0) (- 1.0 t))) (* t z)))
(t_3 (+ (/ x y) -2.0)))
(if (<= t_2 -1e+234)
t_1
(if (<= t_2 -5e+43)
(* (/ (- 1.0 t) t) 2.0)
(if (<= t_2 5e+89) t_3 (if (<= t_2 INFINITY) t_1 t_3))))))double code(double x, double y, double z, double t) {
double t_1 = (1.0 / (t * z)) * 2.0;
double t_2 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z);
double t_3 = (x / y) + -2.0;
double tmp;
if (t_2 <= -1e+234) {
tmp = t_1;
} else if (t_2 <= -5e+43) {
tmp = ((1.0 - t) / t) * 2.0;
} else if (t_2 <= 5e+89) {
tmp = t_3;
} else if (t_2 <= ((double) INFINITY)) {
tmp = t_1;
} else {
tmp = t_3;
}
return tmp;
}
public static double code(double x, double y, double z, double t) {
double t_1 = (1.0 / (t * z)) * 2.0;
double t_2 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z);
double t_3 = (x / y) + -2.0;
double tmp;
if (t_2 <= -1e+234) {
tmp = t_1;
} else if (t_2 <= -5e+43) {
tmp = ((1.0 - t) / t) * 2.0;
} else if (t_2 <= 5e+89) {
tmp = t_3;
} else if (t_2 <= Double.POSITIVE_INFINITY) {
tmp = t_1;
} else {
tmp = t_3;
}
return tmp;
}
def code(x, y, z, t): t_1 = (1.0 / (t * z)) * 2.0 t_2 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z) t_3 = (x / y) + -2.0 tmp = 0 if t_2 <= -1e+234: tmp = t_1 elif t_2 <= -5e+43: tmp = ((1.0 - t) / t) * 2.0 elif t_2 <= 5e+89: tmp = t_3 elif t_2 <= math.inf: tmp = t_1 else: tmp = t_3 return tmp
function code(x, y, z, t) t_1 = Float64(Float64(1.0 / Float64(t * z)) * 2.0) t_2 = Float64(Float64(2.0 + Float64(Float64(z * 2.0) * Float64(1.0 - t))) / Float64(t * z)) t_3 = Float64(Float64(x / y) + -2.0) tmp = 0.0 if (t_2 <= -1e+234) tmp = t_1; elseif (t_2 <= -5e+43) tmp = Float64(Float64(Float64(1.0 - t) / t) * 2.0); elseif (t_2 <= 5e+89) tmp = t_3; elseif (t_2 <= Inf) tmp = t_1; else tmp = t_3; end return tmp end
function tmp_2 = code(x, y, z, t) t_1 = (1.0 / (t * z)) * 2.0; t_2 = (2.0 + ((z * 2.0) * (1.0 - t))) / (t * z); t_3 = (x / y) + -2.0; tmp = 0.0; if (t_2 <= -1e+234) tmp = t_1; elseif (t_2 <= -5e+43) tmp = ((1.0 - t) / t) * 2.0; elseif (t_2 <= 5e+89) tmp = t_3; elseif (t_2 <= Inf) tmp = t_1; else tmp = t_3; end tmp_2 = tmp; end
code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(1.0 / N[(t * z), $MachinePrecision]), $MachinePrecision] * 2.0), $MachinePrecision]}, Block[{t$95$2 = N[(N[(2.0 + N[(N[(z * 2.0), $MachinePrecision] * N[(1.0 - t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(t * z), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$3 = N[(N[(x / y), $MachinePrecision] + -2.0), $MachinePrecision]}, If[LessEqual[t$95$2, -1e+234], t$95$1, If[LessEqual[t$95$2, -5e+43], N[(N[(N[(1.0 - t), $MachinePrecision] / t), $MachinePrecision] * 2.0), $MachinePrecision], If[LessEqual[t$95$2, 5e+89], t$95$3, If[LessEqual[t$95$2, Infinity], t$95$1, t$95$3]]]]]]]
\begin{array}{l}
t_1 := \frac{1}{t \cdot z} \cdot 2\\
t_2 := \frac{2 + \left(z \cdot 2\right) \cdot \left(1 - t\right)}{t \cdot z}\\
t_3 := \frac{x}{y} + -2\\
\mathbf{if}\;t\_2 \leq -1 \cdot 10^{+234}:\\
\;\;\;\;t\_1\\
\mathbf{elif}\;t\_2 \leq -5 \cdot 10^{+43}:\\
\;\;\;\;\frac{1 - t}{t} \cdot 2\\
\mathbf{elif}\;t\_2 \leq 5 \cdot 10^{+89}:\\
\;\;\;\;t\_3\\
\mathbf{elif}\;t\_2 \leq \infty:\\
\;\;\;\;t\_1\\
\mathbf{else}:\\
\;\;\;\;t\_3\\
\end{array}
if (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < -1e234 or 4.9999999999999998e89 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < +inf.0Initial program 86.7%
Taylor expanded in x around 0
lower-+.f64N/A
lower-*.f64N/A
lower-/.f64N/A
lower--.f64N/A
lower-*.f64N/A
lower-/.f64N/A
lower-*.f6465.8%
Applied rewrites65.8%
lift-+.f64N/A
lift-*.f64N/A
lift-*.f64N/A
distribute-lft-outN/A
*-commutativeN/A
lower-*.f64N/A
lift-/.f64N/A
lift-/.f64N/A
lift-*.f64N/A
associate-/r*N/A
frac-addN/A
lift-*.f64N/A
lower-/.f64N/A
mult-flipN/A
*-inversesN/A
lower-+.f64N/A
lower-*.f6459.9%
Applied rewrites59.9%
Taylor expanded in z around 0
Applied rewrites30.1%
if -1e234 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < -5.0000000000000004e43Initial program 86.7%
Taylor expanded in x around 0
lower-+.f64N/A
lower-*.f64N/A
lower-/.f64N/A
lower--.f64N/A
lower-*.f64N/A
lower-/.f64N/A
lower-*.f6465.8%
Applied rewrites65.8%
lift-+.f64N/A
lift-*.f64N/A
lift-*.f64N/A
distribute-lft-outN/A
*-commutativeN/A
lower-*.f64N/A
lift-/.f64N/A
lift-/.f64N/A
lift-*.f64N/A
associate-/r*N/A
frac-addN/A
lift-*.f64N/A
lower-/.f64N/A
mult-flipN/A
*-inversesN/A
lower-+.f64N/A
lower-*.f6459.9%
Applied rewrites59.9%
Taylor expanded in z around inf
lower-/.f64N/A
lower--.f6437.4%
Applied rewrites37.4%
if -5.0000000000000004e43 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) < 4.9999999999999998e89 or +inf.0 < (/.f64 (+.f64 #s(literal 2 binary64) (*.f64 (*.f64 z #s(literal 2 binary64)) (-.f64 #s(literal 1 binary64) t))) (*.f64 t z)) Initial program 86.7%
Taylor expanded in t around inf
Applied rewrites54.0%
(FPCore (x y z t)
:precision binary64
(let* ((t_1 (+ (/ x y) -2.0)))
(if (<= (/ x y) -4.4e+15)
t_1
(if (<= (/ x y) 5e-25) (* (/ (- 1.0 t) t) 2.0) t_1))))double code(double x, double y, double z, double t) {
double t_1 = (x / y) + -2.0;
double tmp;
if ((x / y) <= -4.4e+15) {
tmp = t_1;
} else if ((x / y) <= 5e-25) {
tmp = ((1.0 - t) / t) * 2.0;
} else {
tmp = t_1;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
real(8) :: t_1
real(8) :: tmp
t_1 = (x / y) + (-2.0d0)
if ((x / y) <= (-4.4d+15)) then
tmp = t_1
else if ((x / y) <= 5d-25) then
tmp = ((1.0d0 - t) / t) * 2.0d0
else
tmp = t_1
end if
code = tmp
end function
public static double code(double x, double y, double z, double t) {
double t_1 = (x / y) + -2.0;
double tmp;
if ((x / y) <= -4.4e+15) {
tmp = t_1;
} else if ((x / y) <= 5e-25) {
tmp = ((1.0 - t) / t) * 2.0;
} else {
tmp = t_1;
}
return tmp;
}
def code(x, y, z, t): t_1 = (x / y) + -2.0 tmp = 0 if (x / y) <= -4.4e+15: tmp = t_1 elif (x / y) <= 5e-25: tmp = ((1.0 - t) / t) * 2.0 else: tmp = t_1 return tmp
function code(x, y, z, t) t_1 = Float64(Float64(x / y) + -2.0) tmp = 0.0 if (Float64(x / y) <= -4.4e+15) tmp = t_1; elseif (Float64(x / y) <= 5e-25) tmp = Float64(Float64(Float64(1.0 - t) / t) * 2.0); else tmp = t_1; end return tmp end
function tmp_2 = code(x, y, z, t) t_1 = (x / y) + -2.0; tmp = 0.0; if ((x / y) <= -4.4e+15) tmp = t_1; elseif ((x / y) <= 5e-25) tmp = ((1.0 - t) / t) * 2.0; else tmp = t_1; end tmp_2 = tmp; end
code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(x / y), $MachinePrecision] + -2.0), $MachinePrecision]}, If[LessEqual[N[(x / y), $MachinePrecision], -4.4e+15], t$95$1, If[LessEqual[N[(x / y), $MachinePrecision], 5e-25], N[(N[(N[(1.0 - t), $MachinePrecision] / t), $MachinePrecision] * 2.0), $MachinePrecision], t$95$1]]]
\begin{array}{l}
t_1 := \frac{x}{y} + -2\\
\mathbf{if}\;\frac{x}{y} \leq -4.4 \cdot 10^{+15}:\\
\;\;\;\;t\_1\\
\mathbf{elif}\;\frac{x}{y} \leq 5 \cdot 10^{-25}:\\
\;\;\;\;\frac{1 - t}{t} \cdot 2\\
\mathbf{else}:\\
\;\;\;\;t\_1\\
\end{array}
if (/.f64 x y) < -4.4e15 or 4.9999999999999996e-25 < (/.f64 x y) Initial program 86.7%
Taylor expanded in t around inf
Applied rewrites54.0%
if -4.4e15 < (/.f64 x y) < 4.9999999999999996e-25Initial program 86.7%
Taylor expanded in x around 0
lower-+.f64N/A
lower-*.f64N/A
lower-/.f64N/A
lower--.f64N/A
lower-*.f64N/A
lower-/.f64N/A
lower-*.f6465.8%
Applied rewrites65.8%
lift-+.f64N/A
lift-*.f64N/A
lift-*.f64N/A
distribute-lft-outN/A
*-commutativeN/A
lower-*.f64N/A
lift-/.f64N/A
lift-/.f64N/A
lift-*.f64N/A
associate-/r*N/A
frac-addN/A
lift-*.f64N/A
lower-/.f64N/A
mult-flipN/A
*-inversesN/A
lower-+.f64N/A
lower-*.f6459.9%
Applied rewrites59.9%
Taylor expanded in z around inf
lower-/.f64N/A
lower--.f6437.4%
Applied rewrites37.4%
(FPCore (x y z t) :precision binary64 (let* ((t_1 (+ (/ x y) -2.0))) (if (<= t -4.4e-72) t_1 (if (<= t 5.4e-74) (/ 2.0 t) t_1))))
double code(double x, double y, double z, double t) {
double t_1 = (x / y) + -2.0;
double tmp;
if (t <= -4.4e-72) {
tmp = t_1;
} else if (t <= 5.4e-74) {
tmp = 2.0 / t;
} else {
tmp = t_1;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
real(8) :: t_1
real(8) :: tmp
t_1 = (x / y) + (-2.0d0)
if (t <= (-4.4d-72)) then
tmp = t_1
else if (t <= 5.4d-74) then
tmp = 2.0d0 / t
else
tmp = t_1
end if
code = tmp
end function
public static double code(double x, double y, double z, double t) {
double t_1 = (x / y) + -2.0;
double tmp;
if (t <= -4.4e-72) {
tmp = t_1;
} else if (t <= 5.4e-74) {
tmp = 2.0 / t;
} else {
tmp = t_1;
}
return tmp;
}
def code(x, y, z, t): t_1 = (x / y) + -2.0 tmp = 0 if t <= -4.4e-72: tmp = t_1 elif t <= 5.4e-74: tmp = 2.0 / t else: tmp = t_1 return tmp
function code(x, y, z, t) t_1 = Float64(Float64(x / y) + -2.0) tmp = 0.0 if (t <= -4.4e-72) tmp = t_1; elseif (t <= 5.4e-74) tmp = Float64(2.0 / t); else tmp = t_1; end return tmp end
function tmp_2 = code(x, y, z, t) t_1 = (x / y) + -2.0; tmp = 0.0; if (t <= -4.4e-72) tmp = t_1; elseif (t <= 5.4e-74) tmp = 2.0 / t; else tmp = t_1; end tmp_2 = tmp; end
code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(x / y), $MachinePrecision] + -2.0), $MachinePrecision]}, If[LessEqual[t, -4.4e-72], t$95$1, If[LessEqual[t, 5.4e-74], N[(2.0 / t), $MachinePrecision], t$95$1]]]
\begin{array}{l}
t_1 := \frac{x}{y} + -2\\
\mathbf{if}\;t \leq -4.4 \cdot 10^{-72}:\\
\;\;\;\;t\_1\\
\mathbf{elif}\;t \leq 5.4 \cdot 10^{-74}:\\
\;\;\;\;\frac{2}{t}\\
\mathbf{else}:\\
\;\;\;\;t\_1\\
\end{array}
if t < -4.4e-72 or 5.4000000000000004e-74 < t Initial program 86.7%
Taylor expanded in t around inf
Applied rewrites54.0%
if -4.4e-72 < t < 5.4000000000000004e-74Initial program 86.7%
Taylor expanded in t around 0
lower-/.f64N/A
lower-+.f64N/A
lower-*.f64N/A
lower-/.f6447.9%
Applied rewrites47.9%
Taylor expanded in z around inf
lower-/.f6420.0%
Applied rewrites20.0%
(FPCore (x y z t) :precision binary64 (/ 2.0 t))
double code(double x, double y, double z, double t) {
return 2.0 / t;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
code = 2.0d0 / t
end function
public static double code(double x, double y, double z, double t) {
return 2.0 / t;
}
def code(x, y, z, t): return 2.0 / t
function code(x, y, z, t) return Float64(2.0 / t) end
function tmp = code(x, y, z, t) tmp = 2.0 / t; end
code[x_, y_, z_, t_] := N[(2.0 / t), $MachinePrecision]
\frac{2}{t}
Initial program 86.7%
Taylor expanded in t around 0
lower-/.f64N/A
lower-+.f64N/A
lower-*.f64N/A
lower-/.f6447.9%
Applied rewrites47.9%
Taylor expanded in z around inf
lower-/.f6420.0%
Applied rewrites20.0%
herbie shell --seed 2025258
(FPCore (x y z t)
:name "Data.HashTable.ST.Basic:computeOverhead from hashtables-1.2.0.2"
:precision binary64
(+ (/ x y) (/ (+ 2.0 (* (* z 2.0) (- 1.0 t))) (* t z))))