
(FPCore (x y z) :precision binary64 (/ (- (+ (* x x) (* y y)) (* z z)) (* y 2.0)))
double code(double x, double y, double z) {
return (((x * x) + (y * y)) - (z * z)) / (y * 2.0);
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
code = (((x * x) + (y * y)) - (z * z)) / (y * 2.0d0)
end function
public static double code(double x, double y, double z) {
return (((x * x) + (y * y)) - (z * z)) / (y * 2.0);
}
def code(x, y, z): return (((x * x) + (y * y)) - (z * z)) / (y * 2.0)
function code(x, y, z) return Float64(Float64(Float64(Float64(x * x) + Float64(y * y)) - Float64(z * z)) / Float64(y * 2.0)) end
function tmp = code(x, y, z) tmp = (((x * x) + (y * y)) - (z * z)) / (y * 2.0); end
code[x_, y_, z_] := N[(N[(N[(N[(x * x), $MachinePrecision] + N[(y * y), $MachinePrecision]), $MachinePrecision] - N[(z * z), $MachinePrecision]), $MachinePrecision] / N[(y * 2.0), $MachinePrecision]), $MachinePrecision]
\frac{\left(x \cdot x + y \cdot y\right) - z \cdot z}{y \cdot 2}
Herbie found 9 alternatives:
| Alternative | Accuracy | Speedup |
|---|
(FPCore (x y z) :precision binary64 (/ (- (+ (* x x) (* y y)) (* z z)) (* y 2.0)))
double code(double x, double y, double z) {
return (((x * x) + (y * y)) - (z * z)) / (y * 2.0);
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
code = (((x * x) + (y * y)) - (z * z)) / (y * 2.0d0)
end function
public static double code(double x, double y, double z) {
return (((x * x) + (y * y)) - (z * z)) / (y * 2.0);
}
def code(x, y, z): return (((x * x) + (y * y)) - (z * z)) / (y * 2.0)
function code(x, y, z) return Float64(Float64(Float64(Float64(x * x) + Float64(y * y)) - Float64(z * z)) / Float64(y * 2.0)) end
function tmp = code(x, y, z) tmp = (((x * x) + (y * y)) - (z * z)) / (y * 2.0); end
code[x_, y_, z_] := N[(N[(N[(N[(x * x), $MachinePrecision] + N[(y * y), $MachinePrecision]), $MachinePrecision] - N[(z * z), $MachinePrecision]), $MachinePrecision] / N[(y * 2.0), $MachinePrecision]), $MachinePrecision]
\frac{\left(x \cdot x + y \cdot y\right) - z \cdot z}{y \cdot 2}
(FPCore (x y z) :precision binary64 (+ (* y 0.5) (* (/ (- x z) y) (/ (+ z x) 2.0))))
double code(double x, double y, double z) {
return (y * 0.5) + (((x - z) / y) * ((z + x) / 2.0));
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
code = (y * 0.5d0) + (((x - z) / y) * ((z + x) / 2.0d0))
end function
public static double code(double x, double y, double z) {
return (y * 0.5) + (((x - z) / y) * ((z + x) / 2.0));
}
def code(x, y, z): return (y * 0.5) + (((x - z) / y) * ((z + x) / 2.0))
function code(x, y, z) return Float64(Float64(y * 0.5) + Float64(Float64(Float64(x - z) / y) * Float64(Float64(z + x) / 2.0))) end
function tmp = code(x, y, z) tmp = (y * 0.5) + (((x - z) / y) * ((z + x) / 2.0)); end
code[x_, y_, z_] := N[(N[(y * 0.5), $MachinePrecision] + N[(N[(N[(x - z), $MachinePrecision] / y), $MachinePrecision] * N[(N[(z + x), $MachinePrecision] / 2.0), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
y \cdot 0.5 + \frac{x - z}{y} \cdot \frac{z + x}{2}
Initial program 68.5%
lift-/.f64N/A
lift--.f64N/A
div-subN/A
lift-+.f64N/A
+-commutativeN/A
div-addN/A
associate--l+N/A
lower-+.f64N/A
lift-*.f64N/A
associate-/l*N/A
lower-*.f64N/A
lower-/.f64N/A
lift-*.f64N/A
*-commutativeN/A
count-2-revN/A
lower-+.f64N/A
lower--.f64N/A
Applied rewrites90.9%
lift--.f64N/A
lift-*.f64N/A
lift-/.f64N/A
associate-*r/N/A
lift-*.f64N/A
lift-*.f64N/A
lift-/.f64N/A
associate-*l/N/A
lift-*.f64N/A
sub-divN/A
sub-negateN/A
lift-*.f64N/A
lift-*.f64N/A
difference-of-squares-revN/A
lift-+.f64N/A
lift--.f64N/A
*-commutativeN/A
distribute-lft-neg-inN/A
lift--.f64N/A
sub-negate-revN/A
lift-+.f64N/A
count-2N/A
*-commutativeN/A
Applied rewrites99.9%
Taylor expanded in y around 0
Applied rewrites99.9%
(FPCore (x y z)
:precision binary64
(*
(copysign 1.0 y)
(if (<=
(/
(-
(+ (* (fabs x) (fabs x)) (* (fabs y) (fabs y)))
(* (fabs z) (fabs z)))
(* (fabs y) 2.0))
0.0)
(*
(+ (fabs z) (fabs x))
(* (/ (- (fabs z) (fabs x)) (fabs y)) -0.5))
(+
(* (fabs y) 0.5)
(* (/ (- (fabs x) (fabs z)) (fabs y)) (* 0.5 (fabs x)))))))double code(double x, double y, double z) {
double tmp;
if (((((fabs(x) * fabs(x)) + (fabs(y) * fabs(y))) - (fabs(z) * fabs(z))) / (fabs(y) * 2.0)) <= 0.0) {
tmp = (fabs(z) + fabs(x)) * (((fabs(z) - fabs(x)) / fabs(y)) * -0.5);
} else {
tmp = (fabs(y) * 0.5) + (((fabs(x) - fabs(z)) / fabs(y)) * (0.5 * fabs(x)));
}
return copysign(1.0, y) * tmp;
}
public static double code(double x, double y, double z) {
double tmp;
if (((((Math.abs(x) * Math.abs(x)) + (Math.abs(y) * Math.abs(y))) - (Math.abs(z) * Math.abs(z))) / (Math.abs(y) * 2.0)) <= 0.0) {
tmp = (Math.abs(z) + Math.abs(x)) * (((Math.abs(z) - Math.abs(x)) / Math.abs(y)) * -0.5);
} else {
tmp = (Math.abs(y) * 0.5) + (((Math.abs(x) - Math.abs(z)) / Math.abs(y)) * (0.5 * Math.abs(x)));
}
return Math.copySign(1.0, y) * tmp;
}
def code(x, y, z): tmp = 0 if ((((math.fabs(x) * math.fabs(x)) + (math.fabs(y) * math.fabs(y))) - (math.fabs(z) * math.fabs(z))) / (math.fabs(y) * 2.0)) <= 0.0: tmp = (math.fabs(z) + math.fabs(x)) * (((math.fabs(z) - math.fabs(x)) / math.fabs(y)) * -0.5) else: tmp = (math.fabs(y) * 0.5) + (((math.fabs(x) - math.fabs(z)) / math.fabs(y)) * (0.5 * math.fabs(x))) return math.copysign(1.0, y) * tmp
function code(x, y, z) tmp = 0.0 if (Float64(Float64(Float64(Float64(abs(x) * abs(x)) + Float64(abs(y) * abs(y))) - Float64(abs(z) * abs(z))) / Float64(abs(y) * 2.0)) <= 0.0) tmp = Float64(Float64(abs(z) + abs(x)) * Float64(Float64(Float64(abs(z) - abs(x)) / abs(y)) * -0.5)); else tmp = Float64(Float64(abs(y) * 0.5) + Float64(Float64(Float64(abs(x) - abs(z)) / abs(y)) * Float64(0.5 * abs(x)))); end return Float64(copysign(1.0, y) * tmp) end
function tmp_2 = code(x, y, z) tmp = 0.0; if (((((abs(x) * abs(x)) + (abs(y) * abs(y))) - (abs(z) * abs(z))) / (abs(y) * 2.0)) <= 0.0) tmp = (abs(z) + abs(x)) * (((abs(z) - abs(x)) / abs(y)) * -0.5); else tmp = (abs(y) * 0.5) + (((abs(x) - abs(z)) / abs(y)) * (0.5 * abs(x))); end tmp_2 = (sign(y) * abs(1.0)) * tmp; end
code[x_, y_, z_] := N[(N[With[{TMP1 = Abs[1.0], TMP2 = Sign[y]}, TMP1 * If[TMP2 == 0, 1, TMP2]], $MachinePrecision] * If[LessEqual[N[(N[(N[(N[(N[Abs[x], $MachinePrecision] * N[Abs[x], $MachinePrecision]), $MachinePrecision] + N[(N[Abs[y], $MachinePrecision] * N[Abs[y], $MachinePrecision]), $MachinePrecision]), $MachinePrecision] - N[(N[Abs[z], $MachinePrecision] * N[Abs[z], $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(N[Abs[y], $MachinePrecision] * 2.0), $MachinePrecision]), $MachinePrecision], 0.0], N[(N[(N[Abs[z], $MachinePrecision] + N[Abs[x], $MachinePrecision]), $MachinePrecision] * N[(N[(N[(N[Abs[z], $MachinePrecision] - N[Abs[x], $MachinePrecision]), $MachinePrecision] / N[Abs[y], $MachinePrecision]), $MachinePrecision] * -0.5), $MachinePrecision]), $MachinePrecision], N[(N[(N[Abs[y], $MachinePrecision] * 0.5), $MachinePrecision] + N[(N[(N[(N[Abs[x], $MachinePrecision] - N[Abs[z], $MachinePrecision]), $MachinePrecision] / N[Abs[y], $MachinePrecision]), $MachinePrecision] * N[(0.5 * N[Abs[x], $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]), $MachinePrecision]
\mathsf{copysign}\left(1, y\right) \cdot \begin{array}{l}
\mathbf{if}\;\frac{\left(\left|x\right| \cdot \left|x\right| + \left|y\right| \cdot \left|y\right|\right) - \left|z\right| \cdot \left|z\right|}{\left|y\right| \cdot 2} \leq 0:\\
\;\;\;\;\left(\left|z\right| + \left|x\right|\right) \cdot \left(\frac{\left|z\right| - \left|x\right|}{\left|y\right|} \cdot -0.5\right)\\
\mathbf{else}:\\
\;\;\;\;\left|y\right| \cdot 0.5 + \frac{\left|x\right| - \left|z\right|}{\left|y\right|} \cdot \left(0.5 \cdot \left|x\right|\right)\\
\end{array}
if (/.f64 (-.f64 (+.f64 (*.f64 x x) (*.f64 y y)) (*.f64 z z)) (*.f64 y #s(literal 2 binary64))) < 0.0Initial program 68.5%
lift--.f64N/A
sub-negate-revN/A
lift-+.f64N/A
associate--r+N/A
sub-negateN/A
lower--.f64N/A
lift-*.f64N/A
lift-*.f64N/A
difference-of-squaresN/A
lower-*.f64N/A
lower-+.f64N/A
lower--.f6473.7%
lift-*.f64N/A
*-commutativeN/A
count-2-revN/A
lower-+.f6473.7%
Applied rewrites73.7%
Taylor expanded in y around 0
lower-*.f64N/A
lower-/.f64N/A
lower-*.f64N/A
lower-+.f64N/A
lower--.f6461.6%
Applied rewrites61.6%
lift-*.f64N/A
*-commutativeN/A
lift-/.f64N/A
lift-*.f64N/A
associate-/l*N/A
lift-+.f64N/A
+-commutativeN/A
lift-+.f64N/A
associate-*l*N/A
lower-*.f64N/A
lower-*.f64N/A
lower-/.f6467.0%
Applied rewrites67.0%
if 0.0 < (/.f64 (-.f64 (+.f64 (*.f64 x x) (*.f64 y y)) (*.f64 z z)) (*.f64 y #s(literal 2 binary64))) Initial program 68.5%
lift-/.f64N/A
lift--.f64N/A
div-subN/A
lift-+.f64N/A
+-commutativeN/A
div-addN/A
associate--l+N/A
lower-+.f64N/A
lift-*.f64N/A
associate-/l*N/A
lower-*.f64N/A
lower-/.f64N/A
lift-*.f64N/A
*-commutativeN/A
count-2-revN/A
lower-+.f64N/A
lower--.f64N/A
Applied rewrites90.9%
lift--.f64N/A
lift-*.f64N/A
lift-/.f64N/A
associate-*r/N/A
lift-*.f64N/A
lift-*.f64N/A
lift-/.f64N/A
associate-*l/N/A
lift-*.f64N/A
sub-divN/A
sub-negateN/A
lift-*.f64N/A
lift-*.f64N/A
difference-of-squares-revN/A
lift-+.f64N/A
lift--.f64N/A
*-commutativeN/A
distribute-lft-neg-inN/A
lift--.f64N/A
sub-negate-revN/A
lift-+.f64N/A
count-2N/A
*-commutativeN/A
Applied rewrites99.9%
Taylor expanded in y around 0
Applied rewrites99.9%
Taylor expanded in x around inf
lower-*.f6473.9%
Applied rewrites73.9%
(FPCore (x y z)
:precision binary64
(if (<= (fabs x) 2.1e-137)
(- (* y 0.5) (* (/ z (+ y y)) z))
(if (<= (fabs x) 1.05e+151)
(* (+ y (/ (* (+ (fabs x) z) (- (fabs x) z)) y)) 0.5)
(* (+ z (fabs x)) (* (/ (- z (fabs x)) y) -0.5)))))double code(double x, double y, double z) {
double tmp;
if (fabs(x) <= 2.1e-137) {
tmp = (y * 0.5) - ((z / (y + y)) * z);
} else if (fabs(x) <= 1.05e+151) {
tmp = (y + (((fabs(x) + z) * (fabs(x) - z)) / y)) * 0.5;
} else {
tmp = (z + fabs(x)) * (((z - fabs(x)) / y) * -0.5);
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8) :: tmp
if (abs(x) <= 2.1d-137) then
tmp = (y * 0.5d0) - ((z / (y + y)) * z)
else if (abs(x) <= 1.05d+151) then
tmp = (y + (((abs(x) + z) * (abs(x) - z)) / y)) * 0.5d0
else
tmp = (z + abs(x)) * (((z - abs(x)) / y) * (-0.5d0))
end if
code = tmp
end function
public static double code(double x, double y, double z) {
double tmp;
if (Math.abs(x) <= 2.1e-137) {
tmp = (y * 0.5) - ((z / (y + y)) * z);
} else if (Math.abs(x) <= 1.05e+151) {
tmp = (y + (((Math.abs(x) + z) * (Math.abs(x) - z)) / y)) * 0.5;
} else {
tmp = (z + Math.abs(x)) * (((z - Math.abs(x)) / y) * -0.5);
}
return tmp;
}
def code(x, y, z): tmp = 0 if math.fabs(x) <= 2.1e-137: tmp = (y * 0.5) - ((z / (y + y)) * z) elif math.fabs(x) <= 1.05e+151: tmp = (y + (((math.fabs(x) + z) * (math.fabs(x) - z)) / y)) * 0.5 else: tmp = (z + math.fabs(x)) * (((z - math.fabs(x)) / y) * -0.5) return tmp
function code(x, y, z) tmp = 0.0 if (abs(x) <= 2.1e-137) tmp = Float64(Float64(y * 0.5) - Float64(Float64(z / Float64(y + y)) * z)); elseif (abs(x) <= 1.05e+151) tmp = Float64(Float64(y + Float64(Float64(Float64(abs(x) + z) * Float64(abs(x) - z)) / y)) * 0.5); else tmp = Float64(Float64(z + abs(x)) * Float64(Float64(Float64(z - abs(x)) / y) * -0.5)); end return tmp end
function tmp_2 = code(x, y, z) tmp = 0.0; if (abs(x) <= 2.1e-137) tmp = (y * 0.5) - ((z / (y + y)) * z); elseif (abs(x) <= 1.05e+151) tmp = (y + (((abs(x) + z) * (abs(x) - z)) / y)) * 0.5; else tmp = (z + abs(x)) * (((z - abs(x)) / y) * -0.5); end tmp_2 = tmp; end
code[x_, y_, z_] := If[LessEqual[N[Abs[x], $MachinePrecision], 2.1e-137], N[(N[(y * 0.5), $MachinePrecision] - N[(N[(z / N[(y + y), $MachinePrecision]), $MachinePrecision] * z), $MachinePrecision]), $MachinePrecision], If[LessEqual[N[Abs[x], $MachinePrecision], 1.05e+151], N[(N[(y + N[(N[(N[(N[Abs[x], $MachinePrecision] + z), $MachinePrecision] * N[(N[Abs[x], $MachinePrecision] - z), $MachinePrecision]), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision] * 0.5), $MachinePrecision], N[(N[(z + N[Abs[x], $MachinePrecision]), $MachinePrecision] * N[(N[(N[(z - N[Abs[x], $MachinePrecision]), $MachinePrecision] / y), $MachinePrecision] * -0.5), $MachinePrecision]), $MachinePrecision]]]
\begin{array}{l}
\mathbf{if}\;\left|x\right| \leq 2.1 \cdot 10^{-137}:\\
\;\;\;\;y \cdot 0.5 - \frac{z}{y + y} \cdot z\\
\mathbf{elif}\;\left|x\right| \leq 1.05 \cdot 10^{+151}:\\
\;\;\;\;\left(y + \frac{\left(\left|x\right| + z\right) \cdot \left(\left|x\right| - z\right)}{y}\right) \cdot 0.5\\
\mathbf{else}:\\
\;\;\;\;\left(z + \left|x\right|\right) \cdot \left(\frac{z - \left|x\right|}{y} \cdot -0.5\right)\\
\end{array}
if x < 2.0999999999999999e-137Initial program 68.5%
lift-/.f64N/A
lift--.f64N/A
div-subN/A
lower--.f64N/A
lift-*.f64N/A
associate-/r*N/A
mult-flipN/A
lower-*.f64N/A
lift-+.f64N/A
+-commutativeN/A
lift-*.f64N/A
add-to-fraction-revN/A
lower-+.f64N/A
lower-/.f64N/A
metadata-evalN/A
lift-*.f64N/A
associate-/l*N/A
*-commutativeN/A
lower-*.f64N/A
Applied rewrites84.2%
Taylor expanded in x around 0
Applied rewrites66.2%
if 2.0999999999999999e-137 < x < 1.05e151Initial program 68.5%
lift-/.f64N/A
lift-*.f64N/A
associate-/r*N/A
mult-flipN/A
lower-*.f64N/A
Applied rewrites88.6%
if 1.05e151 < x Initial program 68.5%
lift--.f64N/A
sub-negate-revN/A
lift-+.f64N/A
associate--r+N/A
sub-negateN/A
lower--.f64N/A
lift-*.f64N/A
lift-*.f64N/A
difference-of-squaresN/A
lower-*.f64N/A
lower-+.f64N/A
lower--.f6473.7%
lift-*.f64N/A
*-commutativeN/A
count-2-revN/A
lower-+.f6473.7%
Applied rewrites73.7%
Taylor expanded in y around 0
lower-*.f64N/A
lower-/.f64N/A
lower-*.f64N/A
lower-+.f64N/A
lower--.f6461.6%
Applied rewrites61.6%
lift-*.f64N/A
*-commutativeN/A
lift-/.f64N/A
lift-*.f64N/A
associate-/l*N/A
lift-+.f64N/A
+-commutativeN/A
lift-+.f64N/A
associate-*l*N/A
lower-*.f64N/A
lower-*.f64N/A
lower-/.f6467.0%
Applied rewrites67.0%
(FPCore (x y z) :precision binary64 (if (<= (fabs x) 3.65e+61) (- (* y 0.5) (* (/ z (+ y y)) z)) (* (+ z (fabs x)) (* (/ (- z (fabs x)) y) -0.5))))
double code(double x, double y, double z) {
double tmp;
if (fabs(x) <= 3.65e+61) {
tmp = (y * 0.5) - ((z / (y + y)) * z);
} else {
tmp = (z + fabs(x)) * (((z - fabs(x)) / y) * -0.5);
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8) :: tmp
if (abs(x) <= 3.65d+61) then
tmp = (y * 0.5d0) - ((z / (y + y)) * z)
else
tmp = (z + abs(x)) * (((z - abs(x)) / y) * (-0.5d0))
end if
code = tmp
end function
public static double code(double x, double y, double z) {
double tmp;
if (Math.abs(x) <= 3.65e+61) {
tmp = (y * 0.5) - ((z / (y + y)) * z);
} else {
tmp = (z + Math.abs(x)) * (((z - Math.abs(x)) / y) * -0.5);
}
return tmp;
}
def code(x, y, z): tmp = 0 if math.fabs(x) <= 3.65e+61: tmp = (y * 0.5) - ((z / (y + y)) * z) else: tmp = (z + math.fabs(x)) * (((z - math.fabs(x)) / y) * -0.5) return tmp
function code(x, y, z) tmp = 0.0 if (abs(x) <= 3.65e+61) tmp = Float64(Float64(y * 0.5) - Float64(Float64(z / Float64(y + y)) * z)); else tmp = Float64(Float64(z + abs(x)) * Float64(Float64(Float64(z - abs(x)) / y) * -0.5)); end return tmp end
function tmp_2 = code(x, y, z) tmp = 0.0; if (abs(x) <= 3.65e+61) tmp = (y * 0.5) - ((z / (y + y)) * z); else tmp = (z + abs(x)) * (((z - abs(x)) / y) * -0.5); end tmp_2 = tmp; end
code[x_, y_, z_] := If[LessEqual[N[Abs[x], $MachinePrecision], 3.65e+61], N[(N[(y * 0.5), $MachinePrecision] - N[(N[(z / N[(y + y), $MachinePrecision]), $MachinePrecision] * z), $MachinePrecision]), $MachinePrecision], N[(N[(z + N[Abs[x], $MachinePrecision]), $MachinePrecision] * N[(N[(N[(z - N[Abs[x], $MachinePrecision]), $MachinePrecision] / y), $MachinePrecision] * -0.5), $MachinePrecision]), $MachinePrecision]]
\begin{array}{l}
\mathbf{if}\;\left|x\right| \leq 3.65 \cdot 10^{+61}:\\
\;\;\;\;y \cdot 0.5 - \frac{z}{y + y} \cdot z\\
\mathbf{else}:\\
\;\;\;\;\left(z + \left|x\right|\right) \cdot \left(\frac{z - \left|x\right|}{y} \cdot -0.5\right)\\
\end{array}
if x < 3.6500000000000001e61Initial program 68.5%
lift-/.f64N/A
lift--.f64N/A
div-subN/A
lower--.f64N/A
lift-*.f64N/A
associate-/r*N/A
mult-flipN/A
lower-*.f64N/A
lift-+.f64N/A
+-commutativeN/A
lift-*.f64N/A
add-to-fraction-revN/A
lower-+.f64N/A
lower-/.f64N/A
metadata-evalN/A
lift-*.f64N/A
associate-/l*N/A
*-commutativeN/A
lower-*.f64N/A
Applied rewrites84.2%
Taylor expanded in x around 0
Applied rewrites66.2%
if 3.6500000000000001e61 < x Initial program 68.5%
lift--.f64N/A
sub-negate-revN/A
lift-+.f64N/A
associate--r+N/A
sub-negateN/A
lower--.f64N/A
lift-*.f64N/A
lift-*.f64N/A
difference-of-squaresN/A
lower-*.f64N/A
lower-+.f64N/A
lower--.f6473.7%
lift-*.f64N/A
*-commutativeN/A
count-2-revN/A
lower-+.f6473.7%
Applied rewrites73.7%
Taylor expanded in y around 0
lower-*.f64N/A
lower-/.f64N/A
lower-*.f64N/A
lower-+.f64N/A
lower--.f6461.6%
Applied rewrites61.6%
lift-*.f64N/A
*-commutativeN/A
lift-/.f64N/A
lift-*.f64N/A
associate-/l*N/A
lift-+.f64N/A
+-commutativeN/A
lift-+.f64N/A
associate-*l*N/A
lower-*.f64N/A
lower-*.f64N/A
lower-/.f6467.0%
Applied rewrites67.0%
(FPCore (x y z) :precision binary64 (* (copysign 1.0 y) (if (<= (fabs y) 1.1e+116) (* (+ z x) (* (/ (- z x) (fabs y)) -0.5)) (* 0.5 (fabs y)))))
double code(double x, double y, double z) {
double tmp;
if (fabs(y) <= 1.1e+116) {
tmp = (z + x) * (((z - x) / fabs(y)) * -0.5);
} else {
tmp = 0.5 * fabs(y);
}
return copysign(1.0, y) * tmp;
}
public static double code(double x, double y, double z) {
double tmp;
if (Math.abs(y) <= 1.1e+116) {
tmp = (z + x) * (((z - x) / Math.abs(y)) * -0.5);
} else {
tmp = 0.5 * Math.abs(y);
}
return Math.copySign(1.0, y) * tmp;
}
def code(x, y, z): tmp = 0 if math.fabs(y) <= 1.1e+116: tmp = (z + x) * (((z - x) / math.fabs(y)) * -0.5) else: tmp = 0.5 * math.fabs(y) return math.copysign(1.0, y) * tmp
function code(x, y, z) tmp = 0.0 if (abs(y) <= 1.1e+116) tmp = Float64(Float64(z + x) * Float64(Float64(Float64(z - x) / abs(y)) * -0.5)); else tmp = Float64(0.5 * abs(y)); end return Float64(copysign(1.0, y) * tmp) end
function tmp_2 = code(x, y, z) tmp = 0.0; if (abs(y) <= 1.1e+116) tmp = (z + x) * (((z - x) / abs(y)) * -0.5); else tmp = 0.5 * abs(y); end tmp_2 = (sign(y) * abs(1.0)) * tmp; end
code[x_, y_, z_] := N[(N[With[{TMP1 = Abs[1.0], TMP2 = Sign[y]}, TMP1 * If[TMP2 == 0, 1, TMP2]], $MachinePrecision] * If[LessEqual[N[Abs[y], $MachinePrecision], 1.1e+116], N[(N[(z + x), $MachinePrecision] * N[(N[(N[(z - x), $MachinePrecision] / N[Abs[y], $MachinePrecision]), $MachinePrecision] * -0.5), $MachinePrecision]), $MachinePrecision], N[(0.5 * N[Abs[y], $MachinePrecision]), $MachinePrecision]]), $MachinePrecision]
\mathsf{copysign}\left(1, y\right) \cdot \begin{array}{l}
\mathbf{if}\;\left|y\right| \leq 1.1 \cdot 10^{+116}:\\
\;\;\;\;\left(z + x\right) \cdot \left(\frac{z - x}{\left|y\right|} \cdot -0.5\right)\\
\mathbf{else}:\\
\;\;\;\;0.5 \cdot \left|y\right|\\
\end{array}
if y < 1.0999999999999999e116Initial program 68.5%
lift--.f64N/A
sub-negate-revN/A
lift-+.f64N/A
associate--r+N/A
sub-negateN/A
lower--.f64N/A
lift-*.f64N/A
lift-*.f64N/A
difference-of-squaresN/A
lower-*.f64N/A
lower-+.f64N/A
lower--.f6473.7%
lift-*.f64N/A
*-commutativeN/A
count-2-revN/A
lower-+.f6473.7%
Applied rewrites73.7%
Taylor expanded in y around 0
lower-*.f64N/A
lower-/.f64N/A
lower-*.f64N/A
lower-+.f64N/A
lower--.f6461.6%
Applied rewrites61.6%
lift-*.f64N/A
*-commutativeN/A
lift-/.f64N/A
lift-*.f64N/A
associate-/l*N/A
lift-+.f64N/A
+-commutativeN/A
lift-+.f64N/A
associate-*l*N/A
lower-*.f64N/A
lower-*.f64N/A
lower-/.f6467.0%
Applied rewrites67.0%
if 1.0999999999999999e116 < y Initial program 68.5%
Taylor expanded in y around inf
lower-*.f6434.4%
Applied rewrites34.4%
(FPCore (x y z) :precision binary64 (* (copysign 1.0 y) (if (<= (fabs y) 1.02e+104) (* -0.5 (/ (* (+ x z) (- z x)) (fabs y))) (* 0.5 (fabs y)))))
double code(double x, double y, double z) {
double tmp;
if (fabs(y) <= 1.02e+104) {
tmp = -0.5 * (((x + z) * (z - x)) / fabs(y));
} else {
tmp = 0.5 * fabs(y);
}
return copysign(1.0, y) * tmp;
}
public static double code(double x, double y, double z) {
double tmp;
if (Math.abs(y) <= 1.02e+104) {
tmp = -0.5 * (((x + z) * (z - x)) / Math.abs(y));
} else {
tmp = 0.5 * Math.abs(y);
}
return Math.copySign(1.0, y) * tmp;
}
def code(x, y, z): tmp = 0 if math.fabs(y) <= 1.02e+104: tmp = -0.5 * (((x + z) * (z - x)) / math.fabs(y)) else: tmp = 0.5 * math.fabs(y) return math.copysign(1.0, y) * tmp
function code(x, y, z) tmp = 0.0 if (abs(y) <= 1.02e+104) tmp = Float64(-0.5 * Float64(Float64(Float64(x + z) * Float64(z - x)) / abs(y))); else tmp = Float64(0.5 * abs(y)); end return Float64(copysign(1.0, y) * tmp) end
function tmp_2 = code(x, y, z) tmp = 0.0; if (abs(y) <= 1.02e+104) tmp = -0.5 * (((x + z) * (z - x)) / abs(y)); else tmp = 0.5 * abs(y); end tmp_2 = (sign(y) * abs(1.0)) * tmp; end
code[x_, y_, z_] := N[(N[With[{TMP1 = Abs[1.0], TMP2 = Sign[y]}, TMP1 * If[TMP2 == 0, 1, TMP2]], $MachinePrecision] * If[LessEqual[N[Abs[y], $MachinePrecision], 1.02e+104], N[(-0.5 * N[(N[(N[(x + z), $MachinePrecision] * N[(z - x), $MachinePrecision]), $MachinePrecision] / N[Abs[y], $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[(0.5 * N[Abs[y], $MachinePrecision]), $MachinePrecision]]), $MachinePrecision]
\mathsf{copysign}\left(1, y\right) \cdot \begin{array}{l}
\mathbf{if}\;\left|y\right| \leq 1.02 \cdot 10^{+104}:\\
\;\;\;\;-0.5 \cdot \frac{\left(x + z\right) \cdot \left(z - x\right)}{\left|y\right|}\\
\mathbf{else}:\\
\;\;\;\;0.5 \cdot \left|y\right|\\
\end{array}
if y < 1.02e104Initial program 68.5%
lift--.f64N/A
sub-negate-revN/A
lift-+.f64N/A
associate--r+N/A
sub-negateN/A
lower--.f64N/A
lift-*.f64N/A
lift-*.f64N/A
difference-of-squaresN/A
lower-*.f64N/A
lower-+.f64N/A
lower--.f6473.7%
lift-*.f64N/A
*-commutativeN/A
count-2-revN/A
lower-+.f6473.7%
Applied rewrites73.7%
Taylor expanded in y around 0
lower-*.f64N/A
lower-/.f64N/A
lower-*.f64N/A
lower-+.f64N/A
lower--.f6461.6%
Applied rewrites61.6%
if 1.02e104 < y Initial program 68.5%
Taylor expanded in y around inf
lower-*.f6434.4%
Applied rewrites34.4%
(FPCore (x y z)
:precision binary64
(*
(copysign 1.0 y)
(if (<= (fabs y) 1.15e-77)
(* -0.5 (* (- (fabs z) (fabs x)) (/ (fabs z) (fabs y))))
(if (<= (fabs y) 1.35e+152)
(/
(* (+ (fabs y) (fabs z)) (- (fabs y) (fabs z)))
(+ (fabs y) (fabs y)))
(* 0.5 (fabs y))))))double code(double x, double y, double z) {
double tmp;
if (fabs(y) <= 1.15e-77) {
tmp = -0.5 * ((fabs(z) - fabs(x)) * (fabs(z) / fabs(y)));
} else if (fabs(y) <= 1.35e+152) {
tmp = ((fabs(y) + fabs(z)) * (fabs(y) - fabs(z))) / (fabs(y) + fabs(y));
} else {
tmp = 0.5 * fabs(y);
}
return copysign(1.0, y) * tmp;
}
public static double code(double x, double y, double z) {
double tmp;
if (Math.abs(y) <= 1.15e-77) {
tmp = -0.5 * ((Math.abs(z) - Math.abs(x)) * (Math.abs(z) / Math.abs(y)));
} else if (Math.abs(y) <= 1.35e+152) {
tmp = ((Math.abs(y) + Math.abs(z)) * (Math.abs(y) - Math.abs(z))) / (Math.abs(y) + Math.abs(y));
} else {
tmp = 0.5 * Math.abs(y);
}
return Math.copySign(1.0, y) * tmp;
}
def code(x, y, z): tmp = 0 if math.fabs(y) <= 1.15e-77: tmp = -0.5 * ((math.fabs(z) - math.fabs(x)) * (math.fabs(z) / math.fabs(y))) elif math.fabs(y) <= 1.35e+152: tmp = ((math.fabs(y) + math.fabs(z)) * (math.fabs(y) - math.fabs(z))) / (math.fabs(y) + math.fabs(y)) else: tmp = 0.5 * math.fabs(y) return math.copysign(1.0, y) * tmp
function code(x, y, z) tmp = 0.0 if (abs(y) <= 1.15e-77) tmp = Float64(-0.5 * Float64(Float64(abs(z) - abs(x)) * Float64(abs(z) / abs(y)))); elseif (abs(y) <= 1.35e+152) tmp = Float64(Float64(Float64(abs(y) + abs(z)) * Float64(abs(y) - abs(z))) / Float64(abs(y) + abs(y))); else tmp = Float64(0.5 * abs(y)); end return Float64(copysign(1.0, y) * tmp) end
function tmp_2 = code(x, y, z) tmp = 0.0; if (abs(y) <= 1.15e-77) tmp = -0.5 * ((abs(z) - abs(x)) * (abs(z) / abs(y))); elseif (abs(y) <= 1.35e+152) tmp = ((abs(y) + abs(z)) * (abs(y) - abs(z))) / (abs(y) + abs(y)); else tmp = 0.5 * abs(y); end tmp_2 = (sign(y) * abs(1.0)) * tmp; end
code[x_, y_, z_] := N[(N[With[{TMP1 = Abs[1.0], TMP2 = Sign[y]}, TMP1 * If[TMP2 == 0, 1, TMP2]], $MachinePrecision] * If[LessEqual[N[Abs[y], $MachinePrecision], 1.15e-77], N[(-0.5 * N[(N[(N[Abs[z], $MachinePrecision] - N[Abs[x], $MachinePrecision]), $MachinePrecision] * N[(N[Abs[z], $MachinePrecision] / N[Abs[y], $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], If[LessEqual[N[Abs[y], $MachinePrecision], 1.35e+152], N[(N[(N[(N[Abs[y], $MachinePrecision] + N[Abs[z], $MachinePrecision]), $MachinePrecision] * N[(N[Abs[y], $MachinePrecision] - N[Abs[z], $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(N[Abs[y], $MachinePrecision] + N[Abs[y], $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[(0.5 * N[Abs[y], $MachinePrecision]), $MachinePrecision]]]), $MachinePrecision]
\mathsf{copysign}\left(1, y\right) \cdot \begin{array}{l}
\mathbf{if}\;\left|y\right| \leq 1.15 \cdot 10^{-77}:\\
\;\;\;\;-0.5 \cdot \left(\left(\left|z\right| - \left|x\right|\right) \cdot \frac{\left|z\right|}{\left|y\right|}\right)\\
\mathbf{elif}\;\left|y\right| \leq 1.35 \cdot 10^{+152}:\\
\;\;\;\;\frac{\left(\left|y\right| + \left|z\right|\right) \cdot \left(\left|y\right| - \left|z\right|\right)}{\left|y\right| + \left|y\right|}\\
\mathbf{else}:\\
\;\;\;\;0.5 \cdot \left|y\right|\\
\end{array}
if y < 1.15e-77Initial program 68.5%
lift--.f64N/A
sub-negate-revN/A
lift-+.f64N/A
associate--r+N/A
sub-negateN/A
lower--.f64N/A
lift-*.f64N/A
lift-*.f64N/A
difference-of-squaresN/A
lower-*.f64N/A
lower-+.f64N/A
lower--.f6473.7%
lift-*.f64N/A
*-commutativeN/A
count-2-revN/A
lower-+.f6473.7%
Applied rewrites73.7%
Taylor expanded in y around 0
lower-*.f64N/A
lower-/.f64N/A
lower-*.f64N/A
lower-+.f64N/A
lower--.f6461.6%
Applied rewrites61.6%
lift-/.f64N/A
mult-flipN/A
lift-*.f64N/A
*-commutativeN/A
lift-+.f64N/A
+-commutativeN/A
lift-+.f64N/A
associate-*l*N/A
lower-*.f64N/A
lower-*.f64N/A
lower-/.f6466.9%
Applied rewrites66.9%
Taylor expanded in x around 0
lower-/.f6437.3%
Applied rewrites37.3%
if 1.15e-77 < y < 1.3500000000000001e152Initial program 68.5%
lift--.f64N/A
sub-negate-revN/A
lift-+.f64N/A
associate--r+N/A
sub-negateN/A
lower--.f64N/A
lift-*.f64N/A
lift-*.f64N/A
difference-of-squaresN/A
lower-*.f64N/A
lower-+.f64N/A
lower--.f6473.7%
lift-*.f64N/A
*-commutativeN/A
count-2-revN/A
lower-+.f6473.7%
Applied rewrites73.7%
lift--.f64N/A
lift-*.f64N/A
lift-+.f64N/A
lift--.f64N/A
difference-of-squares-revN/A
lift-*.f64N/A
lift-*.f64N/A
associate--r-N/A
lower-+.f64N/A
lift-*.f64N/A
lift-*.f64N/A
difference-of-squaresN/A
lower-*.f64N/A
lower-+.f64N/A
lower--.f6470.0%
Applied rewrites70.0%
Taylor expanded in x around 0
lower-*.f64N/A
lower-+.f64N/A
lower--.f6446.2%
Applied rewrites46.2%
if 1.3500000000000001e152 < y Initial program 68.5%
Taylor expanded in y around inf
lower-*.f6434.4%
Applied rewrites34.4%
(FPCore (x y z)
:precision binary64
(let* ((t_0 (* -0.5 (* (- (fabs z) (fabs x)) (/ (fabs z) (fabs y)))))
(t_1
(/
(-
(+ (* (fabs x) (fabs x)) (* (fabs y) (fabs y)))
(* (fabs z) (fabs z)))
(* (fabs y) 2.0))))
(*
(copysign 1.0 y)
(if (<= t_1 0.0) t_0 (if (<= t_1 INFINITY) (* 0.5 (fabs y)) t_0)))))double code(double x, double y, double z) {
double t_0 = -0.5 * ((fabs(z) - fabs(x)) * (fabs(z) / fabs(y)));
double t_1 = (((fabs(x) * fabs(x)) + (fabs(y) * fabs(y))) - (fabs(z) * fabs(z))) / (fabs(y) * 2.0);
double tmp;
if (t_1 <= 0.0) {
tmp = t_0;
} else if (t_1 <= ((double) INFINITY)) {
tmp = 0.5 * fabs(y);
} else {
tmp = t_0;
}
return copysign(1.0, y) * tmp;
}
public static double code(double x, double y, double z) {
double t_0 = -0.5 * ((Math.abs(z) - Math.abs(x)) * (Math.abs(z) / Math.abs(y)));
double t_1 = (((Math.abs(x) * Math.abs(x)) + (Math.abs(y) * Math.abs(y))) - (Math.abs(z) * Math.abs(z))) / (Math.abs(y) * 2.0);
double tmp;
if (t_1 <= 0.0) {
tmp = t_0;
} else if (t_1 <= Double.POSITIVE_INFINITY) {
tmp = 0.5 * Math.abs(y);
} else {
tmp = t_0;
}
return Math.copySign(1.0, y) * tmp;
}
def code(x, y, z): t_0 = -0.5 * ((math.fabs(z) - math.fabs(x)) * (math.fabs(z) / math.fabs(y))) t_1 = (((math.fabs(x) * math.fabs(x)) + (math.fabs(y) * math.fabs(y))) - (math.fabs(z) * math.fabs(z))) / (math.fabs(y) * 2.0) tmp = 0 if t_1 <= 0.0: tmp = t_0 elif t_1 <= math.inf: tmp = 0.5 * math.fabs(y) else: tmp = t_0 return math.copysign(1.0, y) * tmp
function code(x, y, z) t_0 = Float64(-0.5 * Float64(Float64(abs(z) - abs(x)) * Float64(abs(z) / abs(y)))) t_1 = Float64(Float64(Float64(Float64(abs(x) * abs(x)) + Float64(abs(y) * abs(y))) - Float64(abs(z) * abs(z))) / Float64(abs(y) * 2.0)) tmp = 0.0 if (t_1 <= 0.0) tmp = t_0; elseif (t_1 <= Inf) tmp = Float64(0.5 * abs(y)); else tmp = t_0; end return Float64(copysign(1.0, y) * tmp) end
function tmp_2 = code(x, y, z) t_0 = -0.5 * ((abs(z) - abs(x)) * (abs(z) / abs(y))); t_1 = (((abs(x) * abs(x)) + (abs(y) * abs(y))) - (abs(z) * abs(z))) / (abs(y) * 2.0); tmp = 0.0; if (t_1 <= 0.0) tmp = t_0; elseif (t_1 <= Inf) tmp = 0.5 * abs(y); else tmp = t_0; end tmp_2 = (sign(y) * abs(1.0)) * tmp; end
code[x_, y_, z_] := Block[{t$95$0 = N[(-0.5 * N[(N[(N[Abs[z], $MachinePrecision] - N[Abs[x], $MachinePrecision]), $MachinePrecision] * N[(N[Abs[z], $MachinePrecision] / N[Abs[y], $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$1 = N[(N[(N[(N[(N[Abs[x], $MachinePrecision] * N[Abs[x], $MachinePrecision]), $MachinePrecision] + N[(N[Abs[y], $MachinePrecision] * N[Abs[y], $MachinePrecision]), $MachinePrecision]), $MachinePrecision] - N[(N[Abs[z], $MachinePrecision] * N[Abs[z], $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(N[Abs[y], $MachinePrecision] * 2.0), $MachinePrecision]), $MachinePrecision]}, N[(N[With[{TMP1 = Abs[1.0], TMP2 = Sign[y]}, TMP1 * If[TMP2 == 0, 1, TMP2]], $MachinePrecision] * If[LessEqual[t$95$1, 0.0], t$95$0, If[LessEqual[t$95$1, Infinity], N[(0.5 * N[Abs[y], $MachinePrecision]), $MachinePrecision], t$95$0]]), $MachinePrecision]]]
\begin{array}{l}
t_0 := -0.5 \cdot \left(\left(\left|z\right| - \left|x\right|\right) \cdot \frac{\left|z\right|}{\left|y\right|}\right)\\
t_1 := \frac{\left(\left|x\right| \cdot \left|x\right| + \left|y\right| \cdot \left|y\right|\right) - \left|z\right| \cdot \left|z\right|}{\left|y\right| \cdot 2}\\
\mathsf{copysign}\left(1, y\right) \cdot \begin{array}{l}
\mathbf{if}\;t\_1 \leq 0:\\
\;\;\;\;t\_0\\
\mathbf{elif}\;t\_1 \leq \infty:\\
\;\;\;\;0.5 \cdot \left|y\right|\\
\mathbf{else}:\\
\;\;\;\;t\_0\\
\end{array}
\end{array}
if (/.f64 (-.f64 (+.f64 (*.f64 x x) (*.f64 y y)) (*.f64 z z)) (*.f64 y #s(literal 2 binary64))) < 0.0 or +inf.0 < (/.f64 (-.f64 (+.f64 (*.f64 x x) (*.f64 y y)) (*.f64 z z)) (*.f64 y #s(literal 2 binary64))) Initial program 68.5%
lift--.f64N/A
sub-negate-revN/A
lift-+.f64N/A
associate--r+N/A
sub-negateN/A
lower--.f64N/A
lift-*.f64N/A
lift-*.f64N/A
difference-of-squaresN/A
lower-*.f64N/A
lower-+.f64N/A
lower--.f6473.7%
lift-*.f64N/A
*-commutativeN/A
count-2-revN/A
lower-+.f6473.7%
Applied rewrites73.7%
Taylor expanded in y around 0
lower-*.f64N/A
lower-/.f64N/A
lower-*.f64N/A
lower-+.f64N/A
lower--.f6461.6%
Applied rewrites61.6%
lift-/.f64N/A
mult-flipN/A
lift-*.f64N/A
*-commutativeN/A
lift-+.f64N/A
+-commutativeN/A
lift-+.f64N/A
associate-*l*N/A
lower-*.f64N/A
lower-*.f64N/A
lower-/.f6466.9%
Applied rewrites66.9%
Taylor expanded in x around 0
lower-/.f6437.3%
Applied rewrites37.3%
if 0.0 < (/.f64 (-.f64 (+.f64 (*.f64 x x) (*.f64 y y)) (*.f64 z z)) (*.f64 y #s(literal 2 binary64))) < +inf.0Initial program 68.5%
Taylor expanded in y around inf
lower-*.f6434.4%
Applied rewrites34.4%
(FPCore (x y z) :precision binary64 (* 0.5 y))
double code(double x, double y, double z) {
return 0.5 * y;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
code = 0.5d0 * y
end function
public static double code(double x, double y, double z) {
return 0.5 * y;
}
def code(x, y, z): return 0.5 * y
function code(x, y, z) return Float64(0.5 * y) end
function tmp = code(x, y, z) tmp = 0.5 * y; end
code[x_, y_, z_] := N[(0.5 * y), $MachinePrecision]
0.5 \cdot y
Initial program 68.5%
Taylor expanded in y around inf
lower-*.f6434.4%
Applied rewrites34.4%
herbie shell --seed 2025258
(FPCore (x y z)
:name "Diagrams.TwoD.Apollonian:initialConfig from diagrams-contrib-1.3.0.5, A"
:precision binary64
(/ (- (+ (* x x) (* y y)) (* z z)) (* y 2.0)))