Graphics.Rendering.Chart.Axis.Types:linMap from Chart-1.5.3

Percentage Accurate: 68.6% → 90.9%
Time: 6.1s
Alternatives: 21
Speedup: 1.0×

Specification

?
\[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
(FPCore (x y z t a)
  :precision binary64
  (+ x (/ (* (- y x) (- z t)) (- a t))))
double code(double x, double y, double z, double t, double a) {
	return x + (((y - x) * (z - t)) / (a - t));
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z, t, a)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8), intent (in) :: t
    real(8), intent (in) :: a
    code = x + (((y - x) * (z - t)) / (a - t))
end function
public static double code(double x, double y, double z, double t, double a) {
	return x + (((y - x) * (z - t)) / (a - t));
}
def code(x, y, z, t, a):
	return x + (((y - x) * (z - t)) / (a - t))
function code(x, y, z, t, a)
	return Float64(x + Float64(Float64(Float64(y - x) * Float64(z - t)) / Float64(a - t)))
end
function tmp = code(x, y, z, t, a)
	tmp = x + (((y - x) * (z - t)) / (a - t));
end
code[x_, y_, z_, t_, a_] := N[(x + N[(N[(N[(y - x), $MachinePrecision] * N[(z - t), $MachinePrecision]), $MachinePrecision] / N[(a - t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}

Local Percentage Accuracy vs ?

The average percentage accuracy by input value. Horizontal axis shows value of an input variable; the variable is choosen in the title. Vertical axis is accuracy; higher is better. Red represent the original program, while blue represents Herbie's suggestion. These can be toggled with buttons below the plot. The line is an average while dots represent individual samples.

Accuracy vs Speed?

Herbie found 21 alternatives:

AlternativeAccuracySpeedup
The accuracy (vertical axis) and speed (horizontal axis) of each alternatives. Up and to the right is better. The red square shows the initial program, and each blue circle shows an alternative.The line shows the best available speed-accuracy tradeoffs.

Initial Program: 68.6% accurate, 1.0× speedup?

\[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
(FPCore (x y z t a)
  :precision binary64
  (+ x (/ (* (- y x) (- z t)) (- a t))))
double code(double x, double y, double z, double t, double a) {
	return x + (((y - x) * (z - t)) / (a - t));
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z, t, a)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8), intent (in) :: t
    real(8), intent (in) :: a
    code = x + (((y - x) * (z - t)) / (a - t))
end function
public static double code(double x, double y, double z, double t, double a) {
	return x + (((y - x) * (z - t)) / (a - t));
}
def code(x, y, z, t, a):
	return x + (((y - x) * (z - t)) / (a - t))
function code(x, y, z, t, a)
	return Float64(x + Float64(Float64(Float64(y - x) * Float64(z - t)) / Float64(a - t)))
end
function tmp = code(x, y, z, t, a)
	tmp = x + (((y - x) * (z - t)) / (a - t));
end
code[x_, y_, z_, t_, a_] := N[(x + N[(N[(N[(y - x), $MachinePrecision] * N[(z - t), $MachinePrecision]), $MachinePrecision] / N[(a - t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}

Alternative 1: 90.9% accurate, 0.3× speedup?

\[\begin{array}{l} t_1 := x + \frac{t - z}{t - a} \cdot \left(y - x\right)\\ t_2 := x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}\\ \mathbf{if}\;t\_2 \leq -4 \cdot 10^{-284}:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;t\_2 \leq 0:\\ \;\;\;\;y + -1 \cdot \frac{z \cdot \left(y - x\right) - a \cdot \left(y - x\right)}{t}\\ \mathbf{else}:\\ \;\;\;\;t\_1\\ \end{array} \]
(FPCore (x y z t a)
  :precision binary64
  (let* ((t_1 (+ x (* (/ (- t z) (- t a)) (- y x))))
       (t_2 (+ x (/ (* (- y x) (- z t)) (- a t)))))
  (if (<= t_2 -4e-284)
    t_1
    (if (<= t_2 0.0)
      (+ y (* -1.0 (/ (- (* z (- y x)) (* a (- y x))) t)))
      t_1))))
double code(double x, double y, double z, double t, double a) {
	double t_1 = x + (((t - z) / (t - a)) * (y - x));
	double t_2 = x + (((y - x) * (z - t)) / (a - t));
	double tmp;
	if (t_2 <= -4e-284) {
		tmp = t_1;
	} else if (t_2 <= 0.0) {
		tmp = y + (-1.0 * (((z * (y - x)) - (a * (y - x))) / t));
	} else {
		tmp = t_1;
	}
	return tmp;
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z, t, a)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8), intent (in) :: t
    real(8), intent (in) :: a
    real(8) :: t_1
    real(8) :: t_2
    real(8) :: tmp
    t_1 = x + (((t - z) / (t - a)) * (y - x))
    t_2 = x + (((y - x) * (z - t)) / (a - t))
    if (t_2 <= (-4d-284)) then
        tmp = t_1
    else if (t_2 <= 0.0d0) then
        tmp = y + ((-1.0d0) * (((z * (y - x)) - (a * (y - x))) / t))
    else
        tmp = t_1
    end if
    code = tmp
end function
public static double code(double x, double y, double z, double t, double a) {
	double t_1 = x + (((t - z) / (t - a)) * (y - x));
	double t_2 = x + (((y - x) * (z - t)) / (a - t));
	double tmp;
	if (t_2 <= -4e-284) {
		tmp = t_1;
	} else if (t_2 <= 0.0) {
		tmp = y + (-1.0 * (((z * (y - x)) - (a * (y - x))) / t));
	} else {
		tmp = t_1;
	}
	return tmp;
}
def code(x, y, z, t, a):
	t_1 = x + (((t - z) / (t - a)) * (y - x))
	t_2 = x + (((y - x) * (z - t)) / (a - t))
	tmp = 0
	if t_2 <= -4e-284:
		tmp = t_1
	elif t_2 <= 0.0:
		tmp = y + (-1.0 * (((z * (y - x)) - (a * (y - x))) / t))
	else:
		tmp = t_1
	return tmp
function code(x, y, z, t, a)
	t_1 = Float64(x + Float64(Float64(Float64(t - z) / Float64(t - a)) * Float64(y - x)))
	t_2 = Float64(x + Float64(Float64(Float64(y - x) * Float64(z - t)) / Float64(a - t)))
	tmp = 0.0
	if (t_2 <= -4e-284)
		tmp = t_1;
	elseif (t_2 <= 0.0)
		tmp = Float64(y + Float64(-1.0 * Float64(Float64(Float64(z * Float64(y - x)) - Float64(a * Float64(y - x))) / t)));
	else
		tmp = t_1;
	end
	return tmp
end
function tmp_2 = code(x, y, z, t, a)
	t_1 = x + (((t - z) / (t - a)) * (y - x));
	t_2 = x + (((y - x) * (z - t)) / (a - t));
	tmp = 0.0;
	if (t_2 <= -4e-284)
		tmp = t_1;
	elseif (t_2 <= 0.0)
		tmp = y + (-1.0 * (((z * (y - x)) - (a * (y - x))) / t));
	else
		tmp = t_1;
	end
	tmp_2 = tmp;
end
code[x_, y_, z_, t_, a_] := Block[{t$95$1 = N[(x + N[(N[(N[(t - z), $MachinePrecision] / N[(t - a), $MachinePrecision]), $MachinePrecision] * N[(y - x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$2 = N[(x + N[(N[(N[(y - x), $MachinePrecision] * N[(z - t), $MachinePrecision]), $MachinePrecision] / N[(a - t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$2, -4e-284], t$95$1, If[LessEqual[t$95$2, 0.0], N[(y + N[(-1.0 * N[(N[(N[(z * N[(y - x), $MachinePrecision]), $MachinePrecision] - N[(a * N[(y - x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], t$95$1]]]]
\begin{array}{l}
t_1 := x + \frac{t - z}{t - a} \cdot \left(y - x\right)\\
t_2 := x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}\\
\mathbf{if}\;t\_2 \leq -4 \cdot 10^{-284}:\\
\;\;\;\;t\_1\\

\mathbf{elif}\;t\_2 \leq 0:\\
\;\;\;\;y + -1 \cdot \frac{z \cdot \left(y - x\right) - a \cdot \left(y - x\right)}{t}\\

\mathbf{else}:\\
\;\;\;\;t\_1\\


\end{array}
Derivation
  1. Split input into 2 regimes
  2. if (+.f64 x (/.f64 (*.f64 (-.f64 y x) (-.f64 z t)) (-.f64 a t))) < -4.0000000000000001e-284 or 0.0 < (+.f64 x (/.f64 (*.f64 (-.f64 y x) (-.f64 z t)) (-.f64 a t)))

    1. Initial program 68.6%

      \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
    2. Step-by-step derivation
      1. lift-/.f64N/A

        \[\leadsto x + \color{blue}{\frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
      2. lift-*.f64N/A

        \[\leadsto x + \frac{\color{blue}{\left(y - x\right) \cdot \left(z - t\right)}}{a - t} \]
      3. associate-/l*N/A

        \[\leadsto x + \color{blue}{\left(y - x\right) \cdot \frac{z - t}{a - t}} \]
      4. *-commutativeN/A

        \[\leadsto x + \color{blue}{\frac{z - t}{a - t} \cdot \left(y - x\right)} \]
      5. lower-*.f64N/A

        \[\leadsto x + \color{blue}{\frac{z - t}{a - t} \cdot \left(y - x\right)} \]
      6. frac-2negN/A

        \[\leadsto x + \color{blue}{\frac{\mathsf{neg}\left(\left(z - t\right)\right)}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(y - x\right) \]
      7. lift--.f64N/A

        \[\leadsto x + \frac{\mathsf{neg}\left(\color{blue}{\left(z - t\right)}\right)}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(y - x\right) \]
      8. sub-negate-revN/A

        \[\leadsto x + \frac{\color{blue}{t - z}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(y - x\right) \]
      9. lower-/.f64N/A

        \[\leadsto x + \color{blue}{\frac{t - z}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(y - x\right) \]
      10. lower--.f64N/A

        \[\leadsto x + \frac{\color{blue}{t - z}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(y - x\right) \]
      11. lift--.f64N/A

        \[\leadsto x + \frac{t - z}{\mathsf{neg}\left(\color{blue}{\left(a - t\right)}\right)} \cdot \left(y - x\right) \]
      12. sub-negate-revN/A

        \[\leadsto x + \frac{t - z}{\color{blue}{t - a}} \cdot \left(y - x\right) \]
      13. lower--.f6484.9%

        \[\leadsto x + \frac{t - z}{\color{blue}{t - a}} \cdot \left(y - x\right) \]
    3. Applied rewrites84.9%

      \[\leadsto x + \color{blue}{\frac{t - z}{t - a} \cdot \left(y - x\right)} \]

    if -4.0000000000000001e-284 < (+.f64 x (/.f64 (*.f64 (-.f64 y x) (-.f64 z t)) (-.f64 a t))) < 0.0

    1. Initial program 68.6%

      \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
    2. Taylor expanded in t around -inf

      \[\leadsto \color{blue}{y + -1 \cdot \frac{z \cdot \left(y - x\right) - a \cdot \left(y - x\right)}{t}} \]
    3. Step-by-step derivation
      1. lower-+.f64N/A

        \[\leadsto y + \color{blue}{-1 \cdot \frac{z \cdot \left(y - x\right) - a \cdot \left(y - x\right)}{t}} \]
      2. lower-*.f64N/A

        \[\leadsto y + -1 \cdot \color{blue}{\frac{z \cdot \left(y - x\right) - a \cdot \left(y - x\right)}{t}} \]
      3. lower-/.f64N/A

        \[\leadsto y + -1 \cdot \frac{z \cdot \left(y - x\right) - a \cdot \left(y - x\right)}{\color{blue}{t}} \]
      4. lower--.f64N/A

        \[\leadsto y + -1 \cdot \frac{z \cdot \left(y - x\right) - a \cdot \left(y - x\right)}{t} \]
      5. lower-*.f64N/A

        \[\leadsto y + -1 \cdot \frac{z \cdot \left(y - x\right) - a \cdot \left(y - x\right)}{t} \]
      6. lower--.f64N/A

        \[\leadsto y + -1 \cdot \frac{z \cdot \left(y - x\right) - a \cdot \left(y - x\right)}{t} \]
      7. lower-*.f64N/A

        \[\leadsto y + -1 \cdot \frac{z \cdot \left(y - x\right) - a \cdot \left(y - x\right)}{t} \]
      8. lower--.f6445.8%

        \[\leadsto y + -1 \cdot \frac{z \cdot \left(y - x\right) - a \cdot \left(y - x\right)}{t} \]
    4. Applied rewrites45.8%

      \[\leadsto \color{blue}{y + -1 \cdot \frac{z \cdot \left(y - x\right) - a \cdot \left(y - x\right)}{t}} \]
  3. Recombined 2 regimes into one program.
  4. Add Preprocessing

Alternative 2: 85.8% accurate, 0.7× speedup?

\[\begin{array}{l} \mathbf{if}\;t \leq 1.08 \cdot 10^{+201}:\\ \;\;\;\;x + \frac{t - z}{t - a} \cdot \left(y - x\right)\\ \mathbf{else}:\\ \;\;\;\;y \cdot \left(\frac{z}{a - t} - \frac{t}{a - t}\right)\\ \end{array} \]
(FPCore (x y z t a)
  :precision binary64
  (if (<= t 1.08e+201)
  (+ x (* (/ (- t z) (- t a)) (- y x)))
  (* y (- (/ z (- a t)) (/ t (- a t))))))
double code(double x, double y, double z, double t, double a) {
	double tmp;
	if (t <= 1.08e+201) {
		tmp = x + (((t - z) / (t - a)) * (y - x));
	} else {
		tmp = y * ((z / (a - t)) - (t / (a - t)));
	}
	return tmp;
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z, t, a)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8), intent (in) :: t
    real(8), intent (in) :: a
    real(8) :: tmp
    if (t <= 1.08d+201) then
        tmp = x + (((t - z) / (t - a)) * (y - x))
    else
        tmp = y * ((z / (a - t)) - (t / (a - t)))
    end if
    code = tmp
end function
public static double code(double x, double y, double z, double t, double a) {
	double tmp;
	if (t <= 1.08e+201) {
		tmp = x + (((t - z) / (t - a)) * (y - x));
	} else {
		tmp = y * ((z / (a - t)) - (t / (a - t)));
	}
	return tmp;
}
def code(x, y, z, t, a):
	tmp = 0
	if t <= 1.08e+201:
		tmp = x + (((t - z) / (t - a)) * (y - x))
	else:
		tmp = y * ((z / (a - t)) - (t / (a - t)))
	return tmp
function code(x, y, z, t, a)
	tmp = 0.0
	if (t <= 1.08e+201)
		tmp = Float64(x + Float64(Float64(Float64(t - z) / Float64(t - a)) * Float64(y - x)));
	else
		tmp = Float64(y * Float64(Float64(z / Float64(a - t)) - Float64(t / Float64(a - t))));
	end
	return tmp
end
function tmp_2 = code(x, y, z, t, a)
	tmp = 0.0;
	if (t <= 1.08e+201)
		tmp = x + (((t - z) / (t - a)) * (y - x));
	else
		tmp = y * ((z / (a - t)) - (t / (a - t)));
	end
	tmp_2 = tmp;
end
code[x_, y_, z_, t_, a_] := If[LessEqual[t, 1.08e+201], N[(x + N[(N[(N[(t - z), $MachinePrecision] / N[(t - a), $MachinePrecision]), $MachinePrecision] * N[(y - x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[(y * N[(N[(z / N[(a - t), $MachinePrecision]), $MachinePrecision] - N[(t / N[(a - t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]
\begin{array}{l}
\mathbf{if}\;t \leq 1.08 \cdot 10^{+201}:\\
\;\;\;\;x + \frac{t - z}{t - a} \cdot \left(y - x\right)\\

\mathbf{else}:\\
\;\;\;\;y \cdot \left(\frac{z}{a - t} - \frac{t}{a - t}\right)\\


\end{array}
Derivation
  1. Split input into 2 regimes
  2. if t < 1.0800000000000001e201

    1. Initial program 68.6%

      \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
    2. Step-by-step derivation
      1. lift-/.f64N/A

        \[\leadsto x + \color{blue}{\frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
      2. lift-*.f64N/A

        \[\leadsto x + \frac{\color{blue}{\left(y - x\right) \cdot \left(z - t\right)}}{a - t} \]
      3. associate-/l*N/A

        \[\leadsto x + \color{blue}{\left(y - x\right) \cdot \frac{z - t}{a - t}} \]
      4. *-commutativeN/A

        \[\leadsto x + \color{blue}{\frac{z - t}{a - t} \cdot \left(y - x\right)} \]
      5. lower-*.f64N/A

        \[\leadsto x + \color{blue}{\frac{z - t}{a - t} \cdot \left(y - x\right)} \]
      6. frac-2negN/A

        \[\leadsto x + \color{blue}{\frac{\mathsf{neg}\left(\left(z - t\right)\right)}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(y - x\right) \]
      7. lift--.f64N/A

        \[\leadsto x + \frac{\mathsf{neg}\left(\color{blue}{\left(z - t\right)}\right)}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(y - x\right) \]
      8. sub-negate-revN/A

        \[\leadsto x + \frac{\color{blue}{t - z}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(y - x\right) \]
      9. lower-/.f64N/A

        \[\leadsto x + \color{blue}{\frac{t - z}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(y - x\right) \]
      10. lower--.f64N/A

        \[\leadsto x + \frac{\color{blue}{t - z}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(y - x\right) \]
      11. lift--.f64N/A

        \[\leadsto x + \frac{t - z}{\mathsf{neg}\left(\color{blue}{\left(a - t\right)}\right)} \cdot \left(y - x\right) \]
      12. sub-negate-revN/A

        \[\leadsto x + \frac{t - z}{\color{blue}{t - a}} \cdot \left(y - x\right) \]
      13. lower--.f6484.9%

        \[\leadsto x + \frac{t - z}{\color{blue}{t - a}} \cdot \left(y - x\right) \]
    3. Applied rewrites84.9%

      \[\leadsto x + \color{blue}{\frac{t - z}{t - a} \cdot \left(y - x\right)} \]

    if 1.0800000000000001e201 < t

    1. Initial program 68.6%

      \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
    2. Taylor expanded in y around inf

      \[\leadsto \color{blue}{y \cdot \left(\frac{z}{a - t} - \frac{t}{a - t}\right)} \]
    3. Step-by-step derivation
      1. lower-*.f64N/A

        \[\leadsto y \cdot \color{blue}{\left(\frac{z}{a - t} - \frac{t}{a - t}\right)} \]
      2. lower--.f64N/A

        \[\leadsto y \cdot \left(\frac{z}{a - t} - \color{blue}{\frac{t}{a - t}}\right) \]
      3. lower-/.f64N/A

        \[\leadsto y \cdot \left(\frac{z}{a - t} - \frac{\color{blue}{t}}{a - t}\right) \]
      4. lower--.f64N/A

        \[\leadsto y \cdot \left(\frac{z}{a - t} - \frac{t}{a - t}\right) \]
      5. lower-/.f64N/A

        \[\leadsto y \cdot \left(\frac{z}{a - t} - \frac{t}{\color{blue}{a - t}}\right) \]
      6. lower--.f6451.5%

        \[\leadsto y \cdot \left(\frac{z}{a - t} - \frac{t}{a - \color{blue}{t}}\right) \]
    4. Applied rewrites51.5%

      \[\leadsto \color{blue}{y \cdot \left(\frac{z}{a - t} - \frac{t}{a - t}\right)} \]
  3. Recombined 2 regimes into one program.
  4. Add Preprocessing

Alternative 3: 84.9% accurate, 1.0× speedup?

\[x + \frac{t - z}{t - a} \cdot \left(y - x\right) \]
(FPCore (x y z t a)
  :precision binary64
  (+ x (* (/ (- t z) (- t a)) (- y x))))
double code(double x, double y, double z, double t, double a) {
	return x + (((t - z) / (t - a)) * (y - x));
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z, t, a)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8), intent (in) :: t
    real(8), intent (in) :: a
    code = x + (((t - z) / (t - a)) * (y - x))
end function
public static double code(double x, double y, double z, double t, double a) {
	return x + (((t - z) / (t - a)) * (y - x));
}
def code(x, y, z, t, a):
	return x + (((t - z) / (t - a)) * (y - x))
function code(x, y, z, t, a)
	return Float64(x + Float64(Float64(Float64(t - z) / Float64(t - a)) * Float64(y - x)))
end
function tmp = code(x, y, z, t, a)
	tmp = x + (((t - z) / (t - a)) * (y - x));
end
code[x_, y_, z_, t_, a_] := N[(x + N[(N[(N[(t - z), $MachinePrecision] / N[(t - a), $MachinePrecision]), $MachinePrecision] * N[(y - x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
x + \frac{t - z}{t - a} \cdot \left(y - x\right)
Derivation
  1. Initial program 68.6%

    \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
  2. Step-by-step derivation
    1. lift-/.f64N/A

      \[\leadsto x + \color{blue}{\frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
    2. lift-*.f64N/A

      \[\leadsto x + \frac{\color{blue}{\left(y - x\right) \cdot \left(z - t\right)}}{a - t} \]
    3. associate-/l*N/A

      \[\leadsto x + \color{blue}{\left(y - x\right) \cdot \frac{z - t}{a - t}} \]
    4. *-commutativeN/A

      \[\leadsto x + \color{blue}{\frac{z - t}{a - t} \cdot \left(y - x\right)} \]
    5. lower-*.f64N/A

      \[\leadsto x + \color{blue}{\frac{z - t}{a - t} \cdot \left(y - x\right)} \]
    6. frac-2negN/A

      \[\leadsto x + \color{blue}{\frac{\mathsf{neg}\left(\left(z - t\right)\right)}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(y - x\right) \]
    7. lift--.f64N/A

      \[\leadsto x + \frac{\mathsf{neg}\left(\color{blue}{\left(z - t\right)}\right)}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(y - x\right) \]
    8. sub-negate-revN/A

      \[\leadsto x + \frac{\color{blue}{t - z}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(y - x\right) \]
    9. lower-/.f64N/A

      \[\leadsto x + \color{blue}{\frac{t - z}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(y - x\right) \]
    10. lower--.f64N/A

      \[\leadsto x + \frac{\color{blue}{t - z}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(y - x\right) \]
    11. lift--.f64N/A

      \[\leadsto x + \frac{t - z}{\mathsf{neg}\left(\color{blue}{\left(a - t\right)}\right)} \cdot \left(y - x\right) \]
    12. sub-negate-revN/A

      \[\leadsto x + \frac{t - z}{\color{blue}{t - a}} \cdot \left(y - x\right) \]
    13. lower--.f6484.9%

      \[\leadsto x + \frac{t - z}{\color{blue}{t - a}} \cdot \left(y - x\right) \]
  3. Applied rewrites84.9%

    \[\leadsto x + \color{blue}{\frac{t - z}{t - a} \cdot \left(y - x\right)} \]
  4. Add Preprocessing

Alternative 4: 74.1% accurate, 0.8× speedup?

\[\begin{array}{l} t_1 := \left(x - y\right) \cdot \frac{z}{t - a}\\ \mathbf{if}\;z \leq -3.5 \cdot 10^{+90}:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;z \leq 1.4 \cdot 10^{+169}:\\ \;\;\;\;x + \frac{t - z}{t - a} \cdot y\\ \mathbf{else}:\\ \;\;\;\;t\_1\\ \end{array} \]
(FPCore (x y z t a)
  :precision binary64
  (let* ((t_1 (* (- x y) (/ z (- t a)))))
  (if (<= z -3.5e+90)
    t_1
    (if (<= z 1.4e+169) (+ x (* (/ (- t z) (- t a)) y)) t_1))))
double code(double x, double y, double z, double t, double a) {
	double t_1 = (x - y) * (z / (t - a));
	double tmp;
	if (z <= -3.5e+90) {
		tmp = t_1;
	} else if (z <= 1.4e+169) {
		tmp = x + (((t - z) / (t - a)) * y);
	} else {
		tmp = t_1;
	}
	return tmp;
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z, t, a)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8), intent (in) :: t
    real(8), intent (in) :: a
    real(8) :: t_1
    real(8) :: tmp
    t_1 = (x - y) * (z / (t - a))
    if (z <= (-3.5d+90)) then
        tmp = t_1
    else if (z <= 1.4d+169) then
        tmp = x + (((t - z) / (t - a)) * y)
    else
        tmp = t_1
    end if
    code = tmp
end function
public static double code(double x, double y, double z, double t, double a) {
	double t_1 = (x - y) * (z / (t - a));
	double tmp;
	if (z <= -3.5e+90) {
		tmp = t_1;
	} else if (z <= 1.4e+169) {
		tmp = x + (((t - z) / (t - a)) * y);
	} else {
		tmp = t_1;
	}
	return tmp;
}
def code(x, y, z, t, a):
	t_1 = (x - y) * (z / (t - a))
	tmp = 0
	if z <= -3.5e+90:
		tmp = t_1
	elif z <= 1.4e+169:
		tmp = x + (((t - z) / (t - a)) * y)
	else:
		tmp = t_1
	return tmp
function code(x, y, z, t, a)
	t_1 = Float64(Float64(x - y) * Float64(z / Float64(t - a)))
	tmp = 0.0
	if (z <= -3.5e+90)
		tmp = t_1;
	elseif (z <= 1.4e+169)
		tmp = Float64(x + Float64(Float64(Float64(t - z) / Float64(t - a)) * y));
	else
		tmp = t_1;
	end
	return tmp
end
function tmp_2 = code(x, y, z, t, a)
	t_1 = (x - y) * (z / (t - a));
	tmp = 0.0;
	if (z <= -3.5e+90)
		tmp = t_1;
	elseif (z <= 1.4e+169)
		tmp = x + (((t - z) / (t - a)) * y);
	else
		tmp = t_1;
	end
	tmp_2 = tmp;
end
code[x_, y_, z_, t_, a_] := Block[{t$95$1 = N[(N[(x - y), $MachinePrecision] * N[(z / N[(t - a), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[z, -3.5e+90], t$95$1, If[LessEqual[z, 1.4e+169], N[(x + N[(N[(N[(t - z), $MachinePrecision] / N[(t - a), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision], t$95$1]]]
\begin{array}{l}
t_1 := \left(x - y\right) \cdot \frac{z}{t - a}\\
\mathbf{if}\;z \leq -3.5 \cdot 10^{+90}:\\
\;\;\;\;t\_1\\

\mathbf{elif}\;z \leq 1.4 \cdot 10^{+169}:\\
\;\;\;\;x + \frac{t - z}{t - a} \cdot y\\

\mathbf{else}:\\
\;\;\;\;t\_1\\


\end{array}
Derivation
  1. Split input into 2 regimes
  2. if z < -3.4999999999999998e90 or 1.4000000000000001e169 < z

    1. Initial program 68.6%

      \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
    2. Taylor expanded in z around inf

      \[\leadsto \color{blue}{z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
    3. Step-by-step derivation
      1. lower-*.f64N/A

        \[\leadsto z \cdot \color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
      2. lower--.f64N/A

        \[\leadsto z \cdot \left(\frac{y}{a - t} - \color{blue}{\frac{x}{a - t}}\right) \]
      3. lower-/.f64N/A

        \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{\color{blue}{x}}{a - t}\right) \]
      4. lower--.f64N/A

        \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \]
      5. lower-/.f64N/A

        \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{\color{blue}{a - t}}\right) \]
      6. lower--.f6442.6%

        \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{a - \color{blue}{t}}\right) \]
    4. Applied rewrites42.6%

      \[\leadsto \color{blue}{z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
    5. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto z \cdot \color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
      2. *-commutativeN/A

        \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot \color{blue}{z} \]
      3. lower-*.f6442.6%

        \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot \color{blue}{z} \]
      4. lift--.f64N/A

        \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot z \]
      5. lift-/.f64N/A

        \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot z \]
      6. lift-/.f64N/A

        \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot z \]
      7. sub-divN/A

        \[\leadsto \frac{y - x}{a - t} \cdot z \]
      8. sub-negate-revN/A

        \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{a - t} \cdot z \]
      9. lift--.f64N/A

        \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{a - t} \cdot z \]
      10. lift--.f64N/A

        \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{a - t} \cdot z \]
      11. sub-negate-revN/A

        \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(t - a\right)\right)} \cdot z \]
      12. lift--.f64N/A

        \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(t - a\right)\right)} \cdot z \]
      13. frac-2neg-revN/A

        \[\leadsto \frac{x - y}{t - a} \cdot z \]
      14. lower-/.f6442.9%

        \[\leadsto \frac{x - y}{t - a} \cdot z \]
    6. Applied rewrites42.9%

      \[\leadsto \frac{x - y}{t - a} \cdot \color{blue}{z} \]
    7. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto \frac{x - y}{t - a} \cdot \color{blue}{z} \]
      2. lift-/.f64N/A

        \[\leadsto \frac{x - y}{t - a} \cdot z \]
      3. associate-*l/N/A

        \[\leadsto \frac{\left(x - y\right) \cdot z}{\color{blue}{t - a}} \]
      4. associate-/l*N/A

        \[\leadsto \left(x - y\right) \cdot \color{blue}{\frac{z}{t - a}} \]
      5. lower-*.f64N/A

        \[\leadsto \left(x - y\right) \cdot \color{blue}{\frac{z}{t - a}} \]
      6. lower-/.f6444.2%

        \[\leadsto \left(x - y\right) \cdot \frac{z}{\color{blue}{t - a}} \]
    8. Applied rewrites44.2%

      \[\leadsto \left(x - y\right) \cdot \color{blue}{\frac{z}{t - a}} \]

    if -3.4999999999999998e90 < z < 1.4000000000000001e169

    1. Initial program 68.6%

      \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
    2. Step-by-step derivation
      1. lift-/.f64N/A

        \[\leadsto x + \color{blue}{\frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
      2. lift-*.f64N/A

        \[\leadsto x + \frac{\color{blue}{\left(y - x\right) \cdot \left(z - t\right)}}{a - t} \]
      3. associate-/l*N/A

        \[\leadsto x + \color{blue}{\left(y - x\right) \cdot \frac{z - t}{a - t}} \]
      4. *-commutativeN/A

        \[\leadsto x + \color{blue}{\frac{z - t}{a - t} \cdot \left(y - x\right)} \]
      5. lower-*.f64N/A

        \[\leadsto x + \color{blue}{\frac{z - t}{a - t} \cdot \left(y - x\right)} \]
      6. frac-2negN/A

        \[\leadsto x + \color{blue}{\frac{\mathsf{neg}\left(\left(z - t\right)\right)}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(y - x\right) \]
      7. lift--.f64N/A

        \[\leadsto x + \frac{\mathsf{neg}\left(\color{blue}{\left(z - t\right)}\right)}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(y - x\right) \]
      8. sub-negate-revN/A

        \[\leadsto x + \frac{\color{blue}{t - z}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(y - x\right) \]
      9. lower-/.f64N/A

        \[\leadsto x + \color{blue}{\frac{t - z}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(y - x\right) \]
      10. lower--.f64N/A

        \[\leadsto x + \frac{\color{blue}{t - z}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(y - x\right) \]
      11. lift--.f64N/A

        \[\leadsto x + \frac{t - z}{\mathsf{neg}\left(\color{blue}{\left(a - t\right)}\right)} \cdot \left(y - x\right) \]
      12. sub-negate-revN/A

        \[\leadsto x + \frac{t - z}{\color{blue}{t - a}} \cdot \left(y - x\right) \]
      13. lower--.f6484.9%

        \[\leadsto x + \frac{t - z}{\color{blue}{t - a}} \cdot \left(y - x\right) \]
    3. Applied rewrites84.9%

      \[\leadsto x + \color{blue}{\frac{t - z}{t - a} \cdot \left(y - x\right)} \]
    4. Taylor expanded in x around 0

      \[\leadsto x + \frac{t - z}{t - a} \cdot \color{blue}{y} \]
    5. Step-by-step derivation
      1. Applied rewrites67.6%

        \[\leadsto x + \frac{t - z}{t - a} \cdot \color{blue}{y} \]
    6. Recombined 2 regimes into one program.
    7. Add Preprocessing

    Alternative 5: 66.4% accurate, 0.8× speedup?

    \[\begin{array}{l} t_1 := \left(x - y\right) \cdot \frac{z}{t - a}\\ \mathbf{if}\;z \leq -1 \cdot 10^{-88}:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;z \leq 2.25 \cdot 10^{+108}:\\ \;\;\;\;x + \frac{t}{t - a} \cdot \left(y - x\right)\\ \mathbf{else}:\\ \;\;\;\;t\_1\\ \end{array} \]
    (FPCore (x y z t a)
      :precision binary64
      (let* ((t_1 (* (- x y) (/ z (- t a)))))
      (if (<= z -1e-88)
        t_1
        (if (<= z 2.25e+108) (+ x (* (/ t (- t a)) (- y x))) t_1))))
    double code(double x, double y, double z, double t, double a) {
    	double t_1 = (x - y) * (z / (t - a));
    	double tmp;
    	if (z <= -1e-88) {
    		tmp = t_1;
    	} else if (z <= 2.25e+108) {
    		tmp = x + ((t / (t - a)) * (y - x));
    	} else {
    		tmp = t_1;
    	}
    	return tmp;
    }
    
    module fmin_fmax_functions
        implicit none
        private
        public fmax
        public fmin
    
        interface fmax
            module procedure fmax88
            module procedure fmax44
            module procedure fmax84
            module procedure fmax48
        end interface
        interface fmin
            module procedure fmin88
            module procedure fmin44
            module procedure fmin84
            module procedure fmin48
        end interface
    contains
        real(8) function fmax88(x, y) result (res)
            real(8), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(x, max(x, y), y /= y), x /= x)
        end function
        real(4) function fmax44(x, y) result (res)
            real(4), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(y, merge(x, max(x, y), y /= y), x /= x)
        end function
        real(8) function fmax84(x, y) result(res)
            real(8), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
        end function
        real(8) function fmax48(x, y) result(res)
            real(4), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
        end function
        real(8) function fmin88(x, y) result (res)
            real(8), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(x, min(x, y), y /= y), x /= x)
        end function
        real(4) function fmin44(x, y) result (res)
            real(4), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(y, merge(x, min(x, y), y /= y), x /= x)
        end function
        real(8) function fmin84(x, y) result(res)
            real(8), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
        end function
        real(8) function fmin48(x, y) result(res)
            real(4), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
        end function
    end module
    
    real(8) function code(x, y, z, t, a)
    use fmin_fmax_functions
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        real(8), intent (in) :: z
        real(8), intent (in) :: t
        real(8), intent (in) :: a
        real(8) :: t_1
        real(8) :: tmp
        t_1 = (x - y) * (z / (t - a))
        if (z <= (-1d-88)) then
            tmp = t_1
        else if (z <= 2.25d+108) then
            tmp = x + ((t / (t - a)) * (y - x))
        else
            tmp = t_1
        end if
        code = tmp
    end function
    
    public static double code(double x, double y, double z, double t, double a) {
    	double t_1 = (x - y) * (z / (t - a));
    	double tmp;
    	if (z <= -1e-88) {
    		tmp = t_1;
    	} else if (z <= 2.25e+108) {
    		tmp = x + ((t / (t - a)) * (y - x));
    	} else {
    		tmp = t_1;
    	}
    	return tmp;
    }
    
    def code(x, y, z, t, a):
    	t_1 = (x - y) * (z / (t - a))
    	tmp = 0
    	if z <= -1e-88:
    		tmp = t_1
    	elif z <= 2.25e+108:
    		tmp = x + ((t / (t - a)) * (y - x))
    	else:
    		tmp = t_1
    	return tmp
    
    function code(x, y, z, t, a)
    	t_1 = Float64(Float64(x - y) * Float64(z / Float64(t - a)))
    	tmp = 0.0
    	if (z <= -1e-88)
    		tmp = t_1;
    	elseif (z <= 2.25e+108)
    		tmp = Float64(x + Float64(Float64(t / Float64(t - a)) * Float64(y - x)));
    	else
    		tmp = t_1;
    	end
    	return tmp
    end
    
    function tmp_2 = code(x, y, z, t, a)
    	t_1 = (x - y) * (z / (t - a));
    	tmp = 0.0;
    	if (z <= -1e-88)
    		tmp = t_1;
    	elseif (z <= 2.25e+108)
    		tmp = x + ((t / (t - a)) * (y - x));
    	else
    		tmp = t_1;
    	end
    	tmp_2 = tmp;
    end
    
    code[x_, y_, z_, t_, a_] := Block[{t$95$1 = N[(N[(x - y), $MachinePrecision] * N[(z / N[(t - a), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[z, -1e-88], t$95$1, If[LessEqual[z, 2.25e+108], N[(x + N[(N[(t / N[(t - a), $MachinePrecision]), $MachinePrecision] * N[(y - x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], t$95$1]]]
    
    \begin{array}{l}
    t_1 := \left(x - y\right) \cdot \frac{z}{t - a}\\
    \mathbf{if}\;z \leq -1 \cdot 10^{-88}:\\
    \;\;\;\;t\_1\\
    
    \mathbf{elif}\;z \leq 2.25 \cdot 10^{+108}:\\
    \;\;\;\;x + \frac{t}{t - a} \cdot \left(y - x\right)\\
    
    \mathbf{else}:\\
    \;\;\;\;t\_1\\
    
    
    \end{array}
    
    Derivation
    1. Split input into 2 regimes
    2. if z < -9.9999999999999993e-89 or 2.25e108 < z

      1. Initial program 68.6%

        \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
      2. Taylor expanded in z around inf

        \[\leadsto \color{blue}{z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
      3. Step-by-step derivation
        1. lower-*.f64N/A

          \[\leadsto z \cdot \color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
        2. lower--.f64N/A

          \[\leadsto z \cdot \left(\frac{y}{a - t} - \color{blue}{\frac{x}{a - t}}\right) \]
        3. lower-/.f64N/A

          \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{\color{blue}{x}}{a - t}\right) \]
        4. lower--.f64N/A

          \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \]
        5. lower-/.f64N/A

          \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{\color{blue}{a - t}}\right) \]
        6. lower--.f6442.6%

          \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{a - \color{blue}{t}}\right) \]
      4. Applied rewrites42.6%

        \[\leadsto \color{blue}{z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
      5. Step-by-step derivation
        1. lift-*.f64N/A

          \[\leadsto z \cdot \color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
        2. *-commutativeN/A

          \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot \color{blue}{z} \]
        3. lower-*.f6442.6%

          \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot \color{blue}{z} \]
        4. lift--.f64N/A

          \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot z \]
        5. lift-/.f64N/A

          \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot z \]
        6. lift-/.f64N/A

          \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot z \]
        7. sub-divN/A

          \[\leadsto \frac{y - x}{a - t} \cdot z \]
        8. sub-negate-revN/A

          \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{a - t} \cdot z \]
        9. lift--.f64N/A

          \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{a - t} \cdot z \]
        10. lift--.f64N/A

          \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{a - t} \cdot z \]
        11. sub-negate-revN/A

          \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(t - a\right)\right)} \cdot z \]
        12. lift--.f64N/A

          \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(t - a\right)\right)} \cdot z \]
        13. frac-2neg-revN/A

          \[\leadsto \frac{x - y}{t - a} \cdot z \]
        14. lower-/.f6442.9%

          \[\leadsto \frac{x - y}{t - a} \cdot z \]
      6. Applied rewrites42.9%

        \[\leadsto \frac{x - y}{t - a} \cdot \color{blue}{z} \]
      7. Step-by-step derivation
        1. lift-*.f64N/A

          \[\leadsto \frac{x - y}{t - a} \cdot \color{blue}{z} \]
        2. lift-/.f64N/A

          \[\leadsto \frac{x - y}{t - a} \cdot z \]
        3. associate-*l/N/A

          \[\leadsto \frac{\left(x - y\right) \cdot z}{\color{blue}{t - a}} \]
        4. associate-/l*N/A

          \[\leadsto \left(x - y\right) \cdot \color{blue}{\frac{z}{t - a}} \]
        5. lower-*.f64N/A

          \[\leadsto \left(x - y\right) \cdot \color{blue}{\frac{z}{t - a}} \]
        6. lower-/.f6444.2%

          \[\leadsto \left(x - y\right) \cdot \frac{z}{\color{blue}{t - a}} \]
      8. Applied rewrites44.2%

        \[\leadsto \left(x - y\right) \cdot \color{blue}{\frac{z}{t - a}} \]

      if -9.9999999999999993e-89 < z < 2.25e108

      1. Initial program 68.6%

        \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
      2. Step-by-step derivation
        1. lift-/.f64N/A

          \[\leadsto x + \color{blue}{\frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
        2. lift-*.f64N/A

          \[\leadsto x + \frac{\color{blue}{\left(y - x\right) \cdot \left(z - t\right)}}{a - t} \]
        3. associate-/l*N/A

          \[\leadsto x + \color{blue}{\left(y - x\right) \cdot \frac{z - t}{a - t}} \]
        4. *-commutativeN/A

          \[\leadsto x + \color{blue}{\frac{z - t}{a - t} \cdot \left(y - x\right)} \]
        5. lower-*.f64N/A

          \[\leadsto x + \color{blue}{\frac{z - t}{a - t} \cdot \left(y - x\right)} \]
        6. frac-2negN/A

          \[\leadsto x + \color{blue}{\frac{\mathsf{neg}\left(\left(z - t\right)\right)}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(y - x\right) \]
        7. lift--.f64N/A

          \[\leadsto x + \frac{\mathsf{neg}\left(\color{blue}{\left(z - t\right)}\right)}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(y - x\right) \]
        8. sub-negate-revN/A

          \[\leadsto x + \frac{\color{blue}{t - z}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(y - x\right) \]
        9. lower-/.f64N/A

          \[\leadsto x + \color{blue}{\frac{t - z}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(y - x\right) \]
        10. lower--.f64N/A

          \[\leadsto x + \frac{\color{blue}{t - z}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(y - x\right) \]
        11. lift--.f64N/A

          \[\leadsto x + \frac{t - z}{\mathsf{neg}\left(\color{blue}{\left(a - t\right)}\right)} \cdot \left(y - x\right) \]
        12. sub-negate-revN/A

          \[\leadsto x + \frac{t - z}{\color{blue}{t - a}} \cdot \left(y - x\right) \]
        13. lower--.f6484.9%

          \[\leadsto x + \frac{t - z}{\color{blue}{t - a}} \cdot \left(y - x\right) \]
      3. Applied rewrites84.9%

        \[\leadsto x + \color{blue}{\frac{t - z}{t - a} \cdot \left(y - x\right)} \]
      4. Taylor expanded in z around 0

        \[\leadsto x + \frac{\color{blue}{t}}{t - a} \cdot \left(y - x\right) \]
      5. Step-by-step derivation
        1. Applied rewrites46.4%

          \[\leadsto x + \frac{\color{blue}{t}}{t - a} \cdot \left(y - x\right) \]
      6. Recombined 2 regimes into one program.
      7. Add Preprocessing

      Alternative 6: 65.5% accurate, 0.8× speedup?

      \[\begin{array}{l} t_1 := \left(x - y\right) \cdot \frac{z}{t - a}\\ \mathbf{if}\;z \leq -1 \cdot 10^{-88}:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;z \leq 2.25 \cdot 10^{+108}:\\ \;\;\;\;x + \frac{t}{t - a} \cdot y\\ \mathbf{else}:\\ \;\;\;\;t\_1\\ \end{array} \]
      (FPCore (x y z t a)
        :precision binary64
        (let* ((t_1 (* (- x y) (/ z (- t a)))))
        (if (<= z -1e-88)
          t_1
          (if (<= z 2.25e+108) (+ x (* (/ t (- t a)) y)) t_1))))
      double code(double x, double y, double z, double t, double a) {
      	double t_1 = (x - y) * (z / (t - a));
      	double tmp;
      	if (z <= -1e-88) {
      		tmp = t_1;
      	} else if (z <= 2.25e+108) {
      		tmp = x + ((t / (t - a)) * y);
      	} else {
      		tmp = t_1;
      	}
      	return tmp;
      }
      
      module fmin_fmax_functions
          implicit none
          private
          public fmax
          public fmin
      
          interface fmax
              module procedure fmax88
              module procedure fmax44
              module procedure fmax84
              module procedure fmax48
          end interface
          interface fmin
              module procedure fmin88
              module procedure fmin44
              module procedure fmin84
              module procedure fmin48
          end interface
      contains
          real(8) function fmax88(x, y) result (res)
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
          end function
          real(4) function fmax44(x, y) result (res)
              real(4), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
          end function
          real(8) function fmax84(x, y) result(res)
              real(8), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
          end function
          real(8) function fmax48(x, y) result(res)
              real(4), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
          end function
          real(8) function fmin88(x, y) result (res)
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
          end function
          real(4) function fmin44(x, y) result (res)
              real(4), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
          end function
          real(8) function fmin84(x, y) result(res)
              real(8), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
          end function
          real(8) function fmin48(x, y) result(res)
              real(4), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
          end function
      end module
      
      real(8) function code(x, y, z, t, a)
      use fmin_fmax_functions
          real(8), intent (in) :: x
          real(8), intent (in) :: y
          real(8), intent (in) :: z
          real(8), intent (in) :: t
          real(8), intent (in) :: a
          real(8) :: t_1
          real(8) :: tmp
          t_1 = (x - y) * (z / (t - a))
          if (z <= (-1d-88)) then
              tmp = t_1
          else if (z <= 2.25d+108) then
              tmp = x + ((t / (t - a)) * y)
          else
              tmp = t_1
          end if
          code = tmp
      end function
      
      public static double code(double x, double y, double z, double t, double a) {
      	double t_1 = (x - y) * (z / (t - a));
      	double tmp;
      	if (z <= -1e-88) {
      		tmp = t_1;
      	} else if (z <= 2.25e+108) {
      		tmp = x + ((t / (t - a)) * y);
      	} else {
      		tmp = t_1;
      	}
      	return tmp;
      }
      
      def code(x, y, z, t, a):
      	t_1 = (x - y) * (z / (t - a))
      	tmp = 0
      	if z <= -1e-88:
      		tmp = t_1
      	elif z <= 2.25e+108:
      		tmp = x + ((t / (t - a)) * y)
      	else:
      		tmp = t_1
      	return tmp
      
      function code(x, y, z, t, a)
      	t_1 = Float64(Float64(x - y) * Float64(z / Float64(t - a)))
      	tmp = 0.0
      	if (z <= -1e-88)
      		tmp = t_1;
      	elseif (z <= 2.25e+108)
      		tmp = Float64(x + Float64(Float64(t / Float64(t - a)) * y));
      	else
      		tmp = t_1;
      	end
      	return tmp
      end
      
      function tmp_2 = code(x, y, z, t, a)
      	t_1 = (x - y) * (z / (t - a));
      	tmp = 0.0;
      	if (z <= -1e-88)
      		tmp = t_1;
      	elseif (z <= 2.25e+108)
      		tmp = x + ((t / (t - a)) * y);
      	else
      		tmp = t_1;
      	end
      	tmp_2 = tmp;
      end
      
      code[x_, y_, z_, t_, a_] := Block[{t$95$1 = N[(N[(x - y), $MachinePrecision] * N[(z / N[(t - a), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[z, -1e-88], t$95$1, If[LessEqual[z, 2.25e+108], N[(x + N[(N[(t / N[(t - a), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision], t$95$1]]]
      
      \begin{array}{l}
      t_1 := \left(x - y\right) \cdot \frac{z}{t - a}\\
      \mathbf{if}\;z \leq -1 \cdot 10^{-88}:\\
      \;\;\;\;t\_1\\
      
      \mathbf{elif}\;z \leq 2.25 \cdot 10^{+108}:\\
      \;\;\;\;x + \frac{t}{t - a} \cdot y\\
      
      \mathbf{else}:\\
      \;\;\;\;t\_1\\
      
      
      \end{array}
      
      Derivation
      1. Split input into 2 regimes
      2. if z < -9.9999999999999993e-89 or 2.25e108 < z

        1. Initial program 68.6%

          \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
        2. Taylor expanded in z around inf

          \[\leadsto \color{blue}{z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
        3. Step-by-step derivation
          1. lower-*.f64N/A

            \[\leadsto z \cdot \color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
          2. lower--.f64N/A

            \[\leadsto z \cdot \left(\frac{y}{a - t} - \color{blue}{\frac{x}{a - t}}\right) \]
          3. lower-/.f64N/A

            \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{\color{blue}{x}}{a - t}\right) \]
          4. lower--.f64N/A

            \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \]
          5. lower-/.f64N/A

            \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{\color{blue}{a - t}}\right) \]
          6. lower--.f6442.6%

            \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{a - \color{blue}{t}}\right) \]
        4. Applied rewrites42.6%

          \[\leadsto \color{blue}{z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
        5. Step-by-step derivation
          1. lift-*.f64N/A

            \[\leadsto z \cdot \color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
          2. *-commutativeN/A

            \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot \color{blue}{z} \]
          3. lower-*.f6442.6%

            \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot \color{blue}{z} \]
          4. lift--.f64N/A

            \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot z \]
          5. lift-/.f64N/A

            \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot z \]
          6. lift-/.f64N/A

            \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot z \]
          7. sub-divN/A

            \[\leadsto \frac{y - x}{a - t} \cdot z \]
          8. sub-negate-revN/A

            \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{a - t} \cdot z \]
          9. lift--.f64N/A

            \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{a - t} \cdot z \]
          10. lift--.f64N/A

            \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{a - t} \cdot z \]
          11. sub-negate-revN/A

            \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(t - a\right)\right)} \cdot z \]
          12. lift--.f64N/A

            \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(t - a\right)\right)} \cdot z \]
          13. frac-2neg-revN/A

            \[\leadsto \frac{x - y}{t - a} \cdot z \]
          14. lower-/.f6442.9%

            \[\leadsto \frac{x - y}{t - a} \cdot z \]
        6. Applied rewrites42.9%

          \[\leadsto \frac{x - y}{t - a} \cdot \color{blue}{z} \]
        7. Step-by-step derivation
          1. lift-*.f64N/A

            \[\leadsto \frac{x - y}{t - a} \cdot \color{blue}{z} \]
          2. lift-/.f64N/A

            \[\leadsto \frac{x - y}{t - a} \cdot z \]
          3. associate-*l/N/A

            \[\leadsto \frac{\left(x - y\right) \cdot z}{\color{blue}{t - a}} \]
          4. associate-/l*N/A

            \[\leadsto \left(x - y\right) \cdot \color{blue}{\frac{z}{t - a}} \]
          5. lower-*.f64N/A

            \[\leadsto \left(x - y\right) \cdot \color{blue}{\frac{z}{t - a}} \]
          6. lower-/.f6444.2%

            \[\leadsto \left(x - y\right) \cdot \frac{z}{\color{blue}{t - a}} \]
        8. Applied rewrites44.2%

          \[\leadsto \left(x - y\right) \cdot \color{blue}{\frac{z}{t - a}} \]

        if -9.9999999999999993e-89 < z < 2.25e108

        1. Initial program 68.6%

          \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
        2. Step-by-step derivation
          1. lift-/.f64N/A

            \[\leadsto x + \color{blue}{\frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
          2. lift-*.f64N/A

            \[\leadsto x + \frac{\color{blue}{\left(y - x\right) \cdot \left(z - t\right)}}{a - t} \]
          3. associate-/l*N/A

            \[\leadsto x + \color{blue}{\left(y - x\right) \cdot \frac{z - t}{a - t}} \]
          4. *-commutativeN/A

            \[\leadsto x + \color{blue}{\frac{z - t}{a - t} \cdot \left(y - x\right)} \]
          5. lower-*.f64N/A

            \[\leadsto x + \color{blue}{\frac{z - t}{a - t} \cdot \left(y - x\right)} \]
          6. frac-2negN/A

            \[\leadsto x + \color{blue}{\frac{\mathsf{neg}\left(\left(z - t\right)\right)}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(y - x\right) \]
          7. lift--.f64N/A

            \[\leadsto x + \frac{\mathsf{neg}\left(\color{blue}{\left(z - t\right)}\right)}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(y - x\right) \]
          8. sub-negate-revN/A

            \[\leadsto x + \frac{\color{blue}{t - z}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(y - x\right) \]
          9. lower-/.f64N/A

            \[\leadsto x + \color{blue}{\frac{t - z}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(y - x\right) \]
          10. lower--.f64N/A

            \[\leadsto x + \frac{\color{blue}{t - z}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(y - x\right) \]
          11. lift--.f64N/A

            \[\leadsto x + \frac{t - z}{\mathsf{neg}\left(\color{blue}{\left(a - t\right)}\right)} \cdot \left(y - x\right) \]
          12. sub-negate-revN/A

            \[\leadsto x + \frac{t - z}{\color{blue}{t - a}} \cdot \left(y - x\right) \]
          13. lower--.f6484.9%

            \[\leadsto x + \frac{t - z}{\color{blue}{t - a}} \cdot \left(y - x\right) \]
        3. Applied rewrites84.9%

          \[\leadsto x + \color{blue}{\frac{t - z}{t - a} \cdot \left(y - x\right)} \]
        4. Taylor expanded in x around 0

          \[\leadsto x + \frac{t - z}{t - a} \cdot \color{blue}{y} \]
        5. Step-by-step derivation
          1. Applied rewrites67.6%

            \[\leadsto x + \frac{t - z}{t - a} \cdot \color{blue}{y} \]
          2. Taylor expanded in z around 0

            \[\leadsto x + \frac{\color{blue}{t}}{t - a} \cdot y \]
          3. Step-by-step derivation
            1. Applied rewrites45.3%

              \[\leadsto x + \frac{\color{blue}{t}}{t - a} \cdot y \]
          4. Recombined 2 regimes into one program.
          5. Add Preprocessing

          Alternative 7: 62.4% accurate, 0.7× speedup?

          \[\begin{array}{l} t_1 := x + \frac{t - z}{t} \cdot y\\ \mathbf{if}\;t \leq -3.4 \cdot 10^{+21}:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;t \leq 1.55 \cdot 10^{-12}:\\ \;\;\;\;x + \frac{z}{a} \cdot \left(y - x\right)\\ \mathbf{elif}\;t \leq 7 \cdot 10^{+118}:\\ \;\;\;\;\left(x - y\right) \cdot \frac{z}{t - a}\\ \mathbf{else}:\\ \;\;\;\;t\_1\\ \end{array} \]
          (FPCore (x y z t a)
            :precision binary64
            (let* ((t_1 (+ x (* (/ (- t z) t) y))))
            (if (<= t -3.4e+21)
              t_1
              (if (<= t 1.55e-12)
                (+ x (* (/ z a) (- y x)))
                (if (<= t 7e+118) (* (- x y) (/ z (- t a))) t_1)))))
          double code(double x, double y, double z, double t, double a) {
          	double t_1 = x + (((t - z) / t) * y);
          	double tmp;
          	if (t <= -3.4e+21) {
          		tmp = t_1;
          	} else if (t <= 1.55e-12) {
          		tmp = x + ((z / a) * (y - x));
          	} else if (t <= 7e+118) {
          		tmp = (x - y) * (z / (t - a));
          	} else {
          		tmp = t_1;
          	}
          	return tmp;
          }
          
          module fmin_fmax_functions
              implicit none
              private
              public fmax
              public fmin
          
              interface fmax
                  module procedure fmax88
                  module procedure fmax44
                  module procedure fmax84
                  module procedure fmax48
              end interface
              interface fmin
                  module procedure fmin88
                  module procedure fmin44
                  module procedure fmin84
                  module procedure fmin48
              end interface
          contains
              real(8) function fmax88(x, y) result (res)
                  real(8), intent (in) :: x
                  real(8), intent (in) :: y
                  res = merge(y, merge(x, max(x, y), y /= y), x /= x)
              end function
              real(4) function fmax44(x, y) result (res)
                  real(4), intent (in) :: x
                  real(4), intent (in) :: y
                  res = merge(y, merge(x, max(x, y), y /= y), x /= x)
              end function
              real(8) function fmax84(x, y) result(res)
                  real(8), intent (in) :: x
                  real(4), intent (in) :: y
                  res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
              end function
              real(8) function fmax48(x, y) result(res)
                  real(4), intent (in) :: x
                  real(8), intent (in) :: y
                  res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
              end function
              real(8) function fmin88(x, y) result (res)
                  real(8), intent (in) :: x
                  real(8), intent (in) :: y
                  res = merge(y, merge(x, min(x, y), y /= y), x /= x)
              end function
              real(4) function fmin44(x, y) result (res)
                  real(4), intent (in) :: x
                  real(4), intent (in) :: y
                  res = merge(y, merge(x, min(x, y), y /= y), x /= x)
              end function
              real(8) function fmin84(x, y) result(res)
                  real(8), intent (in) :: x
                  real(4), intent (in) :: y
                  res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
              end function
              real(8) function fmin48(x, y) result(res)
                  real(4), intent (in) :: x
                  real(8), intent (in) :: y
                  res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
              end function
          end module
          
          real(8) function code(x, y, z, t, a)
          use fmin_fmax_functions
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              real(8), intent (in) :: z
              real(8), intent (in) :: t
              real(8), intent (in) :: a
              real(8) :: t_1
              real(8) :: tmp
              t_1 = x + (((t - z) / t) * y)
              if (t <= (-3.4d+21)) then
                  tmp = t_1
              else if (t <= 1.55d-12) then
                  tmp = x + ((z / a) * (y - x))
              else if (t <= 7d+118) then
                  tmp = (x - y) * (z / (t - a))
              else
                  tmp = t_1
              end if
              code = tmp
          end function
          
          public static double code(double x, double y, double z, double t, double a) {
          	double t_1 = x + (((t - z) / t) * y);
          	double tmp;
          	if (t <= -3.4e+21) {
          		tmp = t_1;
          	} else if (t <= 1.55e-12) {
          		tmp = x + ((z / a) * (y - x));
          	} else if (t <= 7e+118) {
          		tmp = (x - y) * (z / (t - a));
          	} else {
          		tmp = t_1;
          	}
          	return tmp;
          }
          
          def code(x, y, z, t, a):
          	t_1 = x + (((t - z) / t) * y)
          	tmp = 0
          	if t <= -3.4e+21:
          		tmp = t_1
          	elif t <= 1.55e-12:
          		tmp = x + ((z / a) * (y - x))
          	elif t <= 7e+118:
          		tmp = (x - y) * (z / (t - a))
          	else:
          		tmp = t_1
          	return tmp
          
          function code(x, y, z, t, a)
          	t_1 = Float64(x + Float64(Float64(Float64(t - z) / t) * y))
          	tmp = 0.0
          	if (t <= -3.4e+21)
          		tmp = t_1;
          	elseif (t <= 1.55e-12)
          		tmp = Float64(x + Float64(Float64(z / a) * Float64(y - x)));
          	elseif (t <= 7e+118)
          		tmp = Float64(Float64(x - y) * Float64(z / Float64(t - a)));
          	else
          		tmp = t_1;
          	end
          	return tmp
          end
          
          function tmp_2 = code(x, y, z, t, a)
          	t_1 = x + (((t - z) / t) * y);
          	tmp = 0.0;
          	if (t <= -3.4e+21)
          		tmp = t_1;
          	elseif (t <= 1.55e-12)
          		tmp = x + ((z / a) * (y - x));
          	elseif (t <= 7e+118)
          		tmp = (x - y) * (z / (t - a));
          	else
          		tmp = t_1;
          	end
          	tmp_2 = tmp;
          end
          
          code[x_, y_, z_, t_, a_] := Block[{t$95$1 = N[(x + N[(N[(N[(t - z), $MachinePrecision] / t), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t, -3.4e+21], t$95$1, If[LessEqual[t, 1.55e-12], N[(x + N[(N[(z / a), $MachinePrecision] * N[(y - x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], If[LessEqual[t, 7e+118], N[(N[(x - y), $MachinePrecision] * N[(z / N[(t - a), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], t$95$1]]]]
          
          \begin{array}{l}
          t_1 := x + \frac{t - z}{t} \cdot y\\
          \mathbf{if}\;t \leq -3.4 \cdot 10^{+21}:\\
          \;\;\;\;t\_1\\
          
          \mathbf{elif}\;t \leq 1.55 \cdot 10^{-12}:\\
          \;\;\;\;x + \frac{z}{a} \cdot \left(y - x\right)\\
          
          \mathbf{elif}\;t \leq 7 \cdot 10^{+118}:\\
          \;\;\;\;\left(x - y\right) \cdot \frac{z}{t - a}\\
          
          \mathbf{else}:\\
          \;\;\;\;t\_1\\
          
          
          \end{array}
          
          Derivation
          1. Split input into 3 regimes
          2. if t < -3.4e21 or 7.0000000000000003e118 < t

            1. Initial program 68.6%

              \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
            2. Step-by-step derivation
              1. lift-/.f64N/A

                \[\leadsto x + \color{blue}{\frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
              2. lift-*.f64N/A

                \[\leadsto x + \frac{\color{blue}{\left(y - x\right) \cdot \left(z - t\right)}}{a - t} \]
              3. associate-/l*N/A

                \[\leadsto x + \color{blue}{\left(y - x\right) \cdot \frac{z - t}{a - t}} \]
              4. *-commutativeN/A

                \[\leadsto x + \color{blue}{\frac{z - t}{a - t} \cdot \left(y - x\right)} \]
              5. lower-*.f64N/A

                \[\leadsto x + \color{blue}{\frac{z - t}{a - t} \cdot \left(y - x\right)} \]
              6. frac-2negN/A

                \[\leadsto x + \color{blue}{\frac{\mathsf{neg}\left(\left(z - t\right)\right)}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(y - x\right) \]
              7. lift--.f64N/A

                \[\leadsto x + \frac{\mathsf{neg}\left(\color{blue}{\left(z - t\right)}\right)}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(y - x\right) \]
              8. sub-negate-revN/A

                \[\leadsto x + \frac{\color{blue}{t - z}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(y - x\right) \]
              9. lower-/.f64N/A

                \[\leadsto x + \color{blue}{\frac{t - z}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(y - x\right) \]
              10. lower--.f64N/A

                \[\leadsto x + \frac{\color{blue}{t - z}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(y - x\right) \]
              11. lift--.f64N/A

                \[\leadsto x + \frac{t - z}{\mathsf{neg}\left(\color{blue}{\left(a - t\right)}\right)} \cdot \left(y - x\right) \]
              12. sub-negate-revN/A

                \[\leadsto x + \frac{t - z}{\color{blue}{t - a}} \cdot \left(y - x\right) \]
              13. lower--.f6484.9%

                \[\leadsto x + \frac{t - z}{\color{blue}{t - a}} \cdot \left(y - x\right) \]
            3. Applied rewrites84.9%

              \[\leadsto x + \color{blue}{\frac{t - z}{t - a} \cdot \left(y - x\right)} \]
            4. Taylor expanded in x around 0

              \[\leadsto x + \frac{t - z}{t - a} \cdot \color{blue}{y} \]
            5. Step-by-step derivation
              1. Applied rewrites67.6%

                \[\leadsto x + \frac{t - z}{t - a} \cdot \color{blue}{y} \]
              2. Taylor expanded in a around 0

                \[\leadsto x + \color{blue}{\frac{t - z}{t}} \cdot y \]
              3. Step-by-step derivation
                1. lower-/.f64N/A

                  \[\leadsto x + \frac{t - z}{\color{blue}{t}} \cdot y \]
                2. lower--.f6441.5%

                  \[\leadsto x + \frac{t - z}{t} \cdot y \]
              4. Applied rewrites41.5%

                \[\leadsto x + \color{blue}{\frac{t - z}{t}} \cdot y \]

              if -3.4e21 < t < 1.5500000000000001e-12

              1. Initial program 68.6%

                \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
              2. Step-by-step derivation
                1. lift-/.f64N/A

                  \[\leadsto x + \color{blue}{\frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
                2. lift-*.f64N/A

                  \[\leadsto x + \frac{\color{blue}{\left(y - x\right) \cdot \left(z - t\right)}}{a - t} \]
                3. associate-/l*N/A

                  \[\leadsto x + \color{blue}{\left(y - x\right) \cdot \frac{z - t}{a - t}} \]
                4. *-commutativeN/A

                  \[\leadsto x + \color{blue}{\frac{z - t}{a - t} \cdot \left(y - x\right)} \]
                5. lower-*.f64N/A

                  \[\leadsto x + \color{blue}{\frac{z - t}{a - t} \cdot \left(y - x\right)} \]
                6. frac-2negN/A

                  \[\leadsto x + \color{blue}{\frac{\mathsf{neg}\left(\left(z - t\right)\right)}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(y - x\right) \]
                7. lift--.f64N/A

                  \[\leadsto x + \frac{\mathsf{neg}\left(\color{blue}{\left(z - t\right)}\right)}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(y - x\right) \]
                8. sub-negate-revN/A

                  \[\leadsto x + \frac{\color{blue}{t - z}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(y - x\right) \]
                9. lower-/.f64N/A

                  \[\leadsto x + \color{blue}{\frac{t - z}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(y - x\right) \]
                10. lower--.f64N/A

                  \[\leadsto x + \frac{\color{blue}{t - z}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(y - x\right) \]
                11. lift--.f64N/A

                  \[\leadsto x + \frac{t - z}{\mathsf{neg}\left(\color{blue}{\left(a - t\right)}\right)} \cdot \left(y - x\right) \]
                12. sub-negate-revN/A

                  \[\leadsto x + \frac{t - z}{\color{blue}{t - a}} \cdot \left(y - x\right) \]
                13. lower--.f6484.9%

                  \[\leadsto x + \frac{t - z}{\color{blue}{t - a}} \cdot \left(y - x\right) \]
              3. Applied rewrites84.9%

                \[\leadsto x + \color{blue}{\frac{t - z}{t - a} \cdot \left(y - x\right)} \]
              4. Taylor expanded in t around 0

                \[\leadsto x + \color{blue}{\frac{z}{a}} \cdot \left(y - x\right) \]
              5. Step-by-step derivation
                1. lower-/.f6449.5%

                  \[\leadsto x + \frac{z}{\color{blue}{a}} \cdot \left(y - x\right) \]
              6. Applied rewrites49.5%

                \[\leadsto x + \color{blue}{\frac{z}{a}} \cdot \left(y - x\right) \]

              if 1.5500000000000001e-12 < t < 7.0000000000000003e118

              1. Initial program 68.6%

                \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
              2. Taylor expanded in z around inf

                \[\leadsto \color{blue}{z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
              3. Step-by-step derivation
                1. lower-*.f64N/A

                  \[\leadsto z \cdot \color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                2. lower--.f64N/A

                  \[\leadsto z \cdot \left(\frac{y}{a - t} - \color{blue}{\frac{x}{a - t}}\right) \]
                3. lower-/.f64N/A

                  \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{\color{blue}{x}}{a - t}\right) \]
                4. lower--.f64N/A

                  \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \]
                5. lower-/.f64N/A

                  \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{\color{blue}{a - t}}\right) \]
                6. lower--.f6442.6%

                  \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{a - \color{blue}{t}}\right) \]
              4. Applied rewrites42.6%

                \[\leadsto \color{blue}{z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
              5. Step-by-step derivation
                1. lift-*.f64N/A

                  \[\leadsto z \cdot \color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                2. *-commutativeN/A

                  \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot \color{blue}{z} \]
                3. lower-*.f6442.6%

                  \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot \color{blue}{z} \]
                4. lift--.f64N/A

                  \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot z \]
                5. lift-/.f64N/A

                  \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot z \]
                6. lift-/.f64N/A

                  \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot z \]
                7. sub-divN/A

                  \[\leadsto \frac{y - x}{a - t} \cdot z \]
                8. sub-negate-revN/A

                  \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{a - t} \cdot z \]
                9. lift--.f64N/A

                  \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{a - t} \cdot z \]
                10. lift--.f64N/A

                  \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{a - t} \cdot z \]
                11. sub-negate-revN/A

                  \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(t - a\right)\right)} \cdot z \]
                12. lift--.f64N/A

                  \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(t - a\right)\right)} \cdot z \]
                13. frac-2neg-revN/A

                  \[\leadsto \frac{x - y}{t - a} \cdot z \]
                14. lower-/.f6442.9%

                  \[\leadsto \frac{x - y}{t - a} \cdot z \]
              6. Applied rewrites42.9%

                \[\leadsto \frac{x - y}{t - a} \cdot \color{blue}{z} \]
              7. Step-by-step derivation
                1. lift-*.f64N/A

                  \[\leadsto \frac{x - y}{t - a} \cdot \color{blue}{z} \]
                2. lift-/.f64N/A

                  \[\leadsto \frac{x - y}{t - a} \cdot z \]
                3. associate-*l/N/A

                  \[\leadsto \frac{\left(x - y\right) \cdot z}{\color{blue}{t - a}} \]
                4. associate-/l*N/A

                  \[\leadsto \left(x - y\right) \cdot \color{blue}{\frac{z}{t - a}} \]
                5. lower-*.f64N/A

                  \[\leadsto \left(x - y\right) \cdot \color{blue}{\frac{z}{t - a}} \]
                6. lower-/.f6444.2%

                  \[\leadsto \left(x - y\right) \cdot \frac{z}{\color{blue}{t - a}} \]
              8. Applied rewrites44.2%

                \[\leadsto \left(x - y\right) \cdot \color{blue}{\frac{z}{t - a}} \]
            6. Recombined 3 regimes into one program.
            7. Add Preprocessing

            Alternative 8: 61.5% accurate, 0.7× speedup?

            \[\begin{array}{l} t_1 := \left(x - y\right) \cdot \frac{z}{t - a}\\ \mathbf{if}\;z \leq -1 \cdot 10^{-88}:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;z \leq 3.5 \cdot 10^{-61}:\\ \;\;\;\;x + \frac{t \cdot y}{t - a}\\ \mathbf{elif}\;z \leq 1.3 \cdot 10^{+163}:\\ \;\;\;\;x + \frac{z}{a} \cdot \left(y - x\right)\\ \mathbf{else}:\\ \;\;\;\;t\_1\\ \end{array} \]
            (FPCore (x y z t a)
              :precision binary64
              (let* ((t_1 (* (- x y) (/ z (- t a)))))
              (if (<= z -1e-88)
                t_1
                (if (<= z 3.5e-61)
                  (+ x (/ (* t y) (- t a)))
                  (if (<= z 1.3e+163) (+ x (* (/ z a) (- y x))) t_1)))))
            double code(double x, double y, double z, double t, double a) {
            	double t_1 = (x - y) * (z / (t - a));
            	double tmp;
            	if (z <= -1e-88) {
            		tmp = t_1;
            	} else if (z <= 3.5e-61) {
            		tmp = x + ((t * y) / (t - a));
            	} else if (z <= 1.3e+163) {
            		tmp = x + ((z / a) * (y - x));
            	} else {
            		tmp = t_1;
            	}
            	return tmp;
            }
            
            module fmin_fmax_functions
                implicit none
                private
                public fmax
                public fmin
            
                interface fmax
                    module procedure fmax88
                    module procedure fmax44
                    module procedure fmax84
                    module procedure fmax48
                end interface
                interface fmin
                    module procedure fmin88
                    module procedure fmin44
                    module procedure fmin84
                    module procedure fmin48
                end interface
            contains
                real(8) function fmax88(x, y) result (res)
                    real(8), intent (in) :: x
                    real(8), intent (in) :: y
                    res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                end function
                real(4) function fmax44(x, y) result (res)
                    real(4), intent (in) :: x
                    real(4), intent (in) :: y
                    res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                end function
                real(8) function fmax84(x, y) result(res)
                    real(8), intent (in) :: x
                    real(4), intent (in) :: y
                    res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                end function
                real(8) function fmax48(x, y) result(res)
                    real(4), intent (in) :: x
                    real(8), intent (in) :: y
                    res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                end function
                real(8) function fmin88(x, y) result (res)
                    real(8), intent (in) :: x
                    real(8), intent (in) :: y
                    res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                end function
                real(4) function fmin44(x, y) result (res)
                    real(4), intent (in) :: x
                    real(4), intent (in) :: y
                    res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                end function
                real(8) function fmin84(x, y) result(res)
                    real(8), intent (in) :: x
                    real(4), intent (in) :: y
                    res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                end function
                real(8) function fmin48(x, y) result(res)
                    real(4), intent (in) :: x
                    real(8), intent (in) :: y
                    res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                end function
            end module
            
            real(8) function code(x, y, z, t, a)
            use fmin_fmax_functions
                real(8), intent (in) :: x
                real(8), intent (in) :: y
                real(8), intent (in) :: z
                real(8), intent (in) :: t
                real(8), intent (in) :: a
                real(8) :: t_1
                real(8) :: tmp
                t_1 = (x - y) * (z / (t - a))
                if (z <= (-1d-88)) then
                    tmp = t_1
                else if (z <= 3.5d-61) then
                    tmp = x + ((t * y) / (t - a))
                else if (z <= 1.3d+163) then
                    tmp = x + ((z / a) * (y - x))
                else
                    tmp = t_1
                end if
                code = tmp
            end function
            
            public static double code(double x, double y, double z, double t, double a) {
            	double t_1 = (x - y) * (z / (t - a));
            	double tmp;
            	if (z <= -1e-88) {
            		tmp = t_1;
            	} else if (z <= 3.5e-61) {
            		tmp = x + ((t * y) / (t - a));
            	} else if (z <= 1.3e+163) {
            		tmp = x + ((z / a) * (y - x));
            	} else {
            		tmp = t_1;
            	}
            	return tmp;
            }
            
            def code(x, y, z, t, a):
            	t_1 = (x - y) * (z / (t - a))
            	tmp = 0
            	if z <= -1e-88:
            		tmp = t_1
            	elif z <= 3.5e-61:
            		tmp = x + ((t * y) / (t - a))
            	elif z <= 1.3e+163:
            		tmp = x + ((z / a) * (y - x))
            	else:
            		tmp = t_1
            	return tmp
            
            function code(x, y, z, t, a)
            	t_1 = Float64(Float64(x - y) * Float64(z / Float64(t - a)))
            	tmp = 0.0
            	if (z <= -1e-88)
            		tmp = t_1;
            	elseif (z <= 3.5e-61)
            		tmp = Float64(x + Float64(Float64(t * y) / Float64(t - a)));
            	elseif (z <= 1.3e+163)
            		tmp = Float64(x + Float64(Float64(z / a) * Float64(y - x)));
            	else
            		tmp = t_1;
            	end
            	return tmp
            end
            
            function tmp_2 = code(x, y, z, t, a)
            	t_1 = (x - y) * (z / (t - a));
            	tmp = 0.0;
            	if (z <= -1e-88)
            		tmp = t_1;
            	elseif (z <= 3.5e-61)
            		tmp = x + ((t * y) / (t - a));
            	elseif (z <= 1.3e+163)
            		tmp = x + ((z / a) * (y - x));
            	else
            		tmp = t_1;
            	end
            	tmp_2 = tmp;
            end
            
            code[x_, y_, z_, t_, a_] := Block[{t$95$1 = N[(N[(x - y), $MachinePrecision] * N[(z / N[(t - a), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[z, -1e-88], t$95$1, If[LessEqual[z, 3.5e-61], N[(x + N[(N[(t * y), $MachinePrecision] / N[(t - a), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], If[LessEqual[z, 1.3e+163], N[(x + N[(N[(z / a), $MachinePrecision] * N[(y - x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], t$95$1]]]]
            
            \begin{array}{l}
            t_1 := \left(x - y\right) \cdot \frac{z}{t - a}\\
            \mathbf{if}\;z \leq -1 \cdot 10^{-88}:\\
            \;\;\;\;t\_1\\
            
            \mathbf{elif}\;z \leq 3.5 \cdot 10^{-61}:\\
            \;\;\;\;x + \frac{t \cdot y}{t - a}\\
            
            \mathbf{elif}\;z \leq 1.3 \cdot 10^{+163}:\\
            \;\;\;\;x + \frac{z}{a} \cdot \left(y - x\right)\\
            
            \mathbf{else}:\\
            \;\;\;\;t\_1\\
            
            
            \end{array}
            
            Derivation
            1. Split input into 3 regimes
            2. if z < -9.9999999999999993e-89 or 1.3000000000000001e163 < z

              1. Initial program 68.6%

                \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
              2. Taylor expanded in z around inf

                \[\leadsto \color{blue}{z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
              3. Step-by-step derivation
                1. lower-*.f64N/A

                  \[\leadsto z \cdot \color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                2. lower--.f64N/A

                  \[\leadsto z \cdot \left(\frac{y}{a - t} - \color{blue}{\frac{x}{a - t}}\right) \]
                3. lower-/.f64N/A

                  \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{\color{blue}{x}}{a - t}\right) \]
                4. lower--.f64N/A

                  \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \]
                5. lower-/.f64N/A

                  \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{\color{blue}{a - t}}\right) \]
                6. lower--.f6442.6%

                  \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{a - \color{blue}{t}}\right) \]
              4. Applied rewrites42.6%

                \[\leadsto \color{blue}{z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
              5. Step-by-step derivation
                1. lift-*.f64N/A

                  \[\leadsto z \cdot \color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                2. *-commutativeN/A

                  \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot \color{blue}{z} \]
                3. lower-*.f6442.6%

                  \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot \color{blue}{z} \]
                4. lift--.f64N/A

                  \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot z \]
                5. lift-/.f64N/A

                  \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot z \]
                6. lift-/.f64N/A

                  \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot z \]
                7. sub-divN/A

                  \[\leadsto \frac{y - x}{a - t} \cdot z \]
                8. sub-negate-revN/A

                  \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{a - t} \cdot z \]
                9. lift--.f64N/A

                  \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{a - t} \cdot z \]
                10. lift--.f64N/A

                  \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{a - t} \cdot z \]
                11. sub-negate-revN/A

                  \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(t - a\right)\right)} \cdot z \]
                12. lift--.f64N/A

                  \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(t - a\right)\right)} \cdot z \]
                13. frac-2neg-revN/A

                  \[\leadsto \frac{x - y}{t - a} \cdot z \]
                14. lower-/.f6442.9%

                  \[\leadsto \frac{x - y}{t - a} \cdot z \]
              6. Applied rewrites42.9%

                \[\leadsto \frac{x - y}{t - a} \cdot \color{blue}{z} \]
              7. Step-by-step derivation
                1. lift-*.f64N/A

                  \[\leadsto \frac{x - y}{t - a} \cdot \color{blue}{z} \]
                2. lift-/.f64N/A

                  \[\leadsto \frac{x - y}{t - a} \cdot z \]
                3. associate-*l/N/A

                  \[\leadsto \frac{\left(x - y\right) \cdot z}{\color{blue}{t - a}} \]
                4. associate-/l*N/A

                  \[\leadsto \left(x - y\right) \cdot \color{blue}{\frac{z}{t - a}} \]
                5. lower-*.f64N/A

                  \[\leadsto \left(x - y\right) \cdot \color{blue}{\frac{z}{t - a}} \]
                6. lower-/.f6444.2%

                  \[\leadsto \left(x - y\right) \cdot \frac{z}{\color{blue}{t - a}} \]
              8. Applied rewrites44.2%

                \[\leadsto \left(x - y\right) \cdot \color{blue}{\frac{z}{t - a}} \]

              if -9.9999999999999993e-89 < z < 3.5000000000000003e-61

              1. Initial program 68.6%

                \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
              2. Step-by-step derivation
                1. lift-/.f64N/A

                  \[\leadsto x + \color{blue}{\frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
                2. lift-*.f64N/A

                  \[\leadsto x + \frac{\color{blue}{\left(y - x\right) \cdot \left(z - t\right)}}{a - t} \]
                3. associate-/l*N/A

                  \[\leadsto x + \color{blue}{\left(y - x\right) \cdot \frac{z - t}{a - t}} \]
                4. *-commutativeN/A

                  \[\leadsto x + \color{blue}{\frac{z - t}{a - t} \cdot \left(y - x\right)} \]
                5. lower-*.f64N/A

                  \[\leadsto x + \color{blue}{\frac{z - t}{a - t} \cdot \left(y - x\right)} \]
                6. frac-2negN/A

                  \[\leadsto x + \color{blue}{\frac{\mathsf{neg}\left(\left(z - t\right)\right)}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(y - x\right) \]
                7. lift--.f64N/A

                  \[\leadsto x + \frac{\mathsf{neg}\left(\color{blue}{\left(z - t\right)}\right)}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(y - x\right) \]
                8. sub-negate-revN/A

                  \[\leadsto x + \frac{\color{blue}{t - z}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(y - x\right) \]
                9. lower-/.f64N/A

                  \[\leadsto x + \color{blue}{\frac{t - z}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(y - x\right) \]
                10. lower--.f64N/A

                  \[\leadsto x + \frac{\color{blue}{t - z}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(y - x\right) \]
                11. lift--.f64N/A

                  \[\leadsto x + \frac{t - z}{\mathsf{neg}\left(\color{blue}{\left(a - t\right)}\right)} \cdot \left(y - x\right) \]
                12. sub-negate-revN/A

                  \[\leadsto x + \frac{t - z}{\color{blue}{t - a}} \cdot \left(y - x\right) \]
                13. lower--.f6484.9%

                  \[\leadsto x + \frac{t - z}{\color{blue}{t - a}} \cdot \left(y - x\right) \]
              3. Applied rewrites84.9%

                \[\leadsto x + \color{blue}{\frac{t - z}{t - a} \cdot \left(y - x\right)} \]
              4. Taylor expanded in z around 0

                \[\leadsto x + \color{blue}{\frac{t \cdot \left(y - x\right)}{t - a}} \]
              5. Step-by-step derivation
                1. lower-/.f64N/A

                  \[\leadsto x + \frac{t \cdot \left(y - x\right)}{\color{blue}{t - a}} \]
                2. lower-*.f64N/A

                  \[\leadsto x + \frac{t \cdot \left(y - x\right)}{\color{blue}{t} - a} \]
                3. lower--.f64N/A

                  \[\leadsto x + \frac{t \cdot \left(y - x\right)}{t - a} \]
                4. lower--.f6437.3%

                  \[\leadsto x + \frac{t \cdot \left(y - x\right)}{t - \color{blue}{a}} \]
              6. Applied rewrites37.3%

                \[\leadsto x + \color{blue}{\frac{t \cdot \left(y - x\right)}{t - a}} \]
              7. Taylor expanded in x around 0

                \[\leadsto x + \frac{t \cdot y}{t - a} \]
              8. Step-by-step derivation
                1. Applied rewrites37.3%

                  \[\leadsto x + \frac{t \cdot y}{t - a} \]

                if 3.5000000000000003e-61 < z < 1.3000000000000001e163

                1. Initial program 68.6%

                  \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
                2. Step-by-step derivation
                  1. lift-/.f64N/A

                    \[\leadsto x + \color{blue}{\frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
                  2. lift-*.f64N/A

                    \[\leadsto x + \frac{\color{blue}{\left(y - x\right) \cdot \left(z - t\right)}}{a - t} \]
                  3. associate-/l*N/A

                    \[\leadsto x + \color{blue}{\left(y - x\right) \cdot \frac{z - t}{a - t}} \]
                  4. *-commutativeN/A

                    \[\leadsto x + \color{blue}{\frac{z - t}{a - t} \cdot \left(y - x\right)} \]
                  5. lower-*.f64N/A

                    \[\leadsto x + \color{blue}{\frac{z - t}{a - t} \cdot \left(y - x\right)} \]
                  6. frac-2negN/A

                    \[\leadsto x + \color{blue}{\frac{\mathsf{neg}\left(\left(z - t\right)\right)}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(y - x\right) \]
                  7. lift--.f64N/A

                    \[\leadsto x + \frac{\mathsf{neg}\left(\color{blue}{\left(z - t\right)}\right)}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(y - x\right) \]
                  8. sub-negate-revN/A

                    \[\leadsto x + \frac{\color{blue}{t - z}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(y - x\right) \]
                  9. lower-/.f64N/A

                    \[\leadsto x + \color{blue}{\frac{t - z}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(y - x\right) \]
                  10. lower--.f64N/A

                    \[\leadsto x + \frac{\color{blue}{t - z}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(y - x\right) \]
                  11. lift--.f64N/A

                    \[\leadsto x + \frac{t - z}{\mathsf{neg}\left(\color{blue}{\left(a - t\right)}\right)} \cdot \left(y - x\right) \]
                  12. sub-negate-revN/A

                    \[\leadsto x + \frac{t - z}{\color{blue}{t - a}} \cdot \left(y - x\right) \]
                  13. lower--.f6484.9%

                    \[\leadsto x + \frac{t - z}{\color{blue}{t - a}} \cdot \left(y - x\right) \]
                3. Applied rewrites84.9%

                  \[\leadsto x + \color{blue}{\frac{t - z}{t - a} \cdot \left(y - x\right)} \]
                4. Taylor expanded in t around 0

                  \[\leadsto x + \color{blue}{\frac{z}{a}} \cdot \left(y - x\right) \]
                5. Step-by-step derivation
                  1. lower-/.f6449.5%

                    \[\leadsto x + \frac{z}{\color{blue}{a}} \cdot \left(y - x\right) \]
                6. Applied rewrites49.5%

                  \[\leadsto x + \color{blue}{\frac{z}{a}} \cdot \left(y - x\right) \]
              9. Recombined 3 regimes into one program.
              10. Add Preprocessing

              Alternative 9: 60.9% accurate, 0.8× speedup?

              \[\begin{array}{l} t_1 := \left(x - y\right) \cdot \frac{z}{t - a}\\ \mathbf{if}\;z \leq -1 \cdot 10^{-88}:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;z \leq 4.9 \cdot 10^{+70}:\\ \;\;\;\;x + \frac{t \cdot y}{t - a}\\ \mathbf{else}:\\ \;\;\;\;t\_1\\ \end{array} \]
              (FPCore (x y z t a)
                :precision binary64
                (let* ((t_1 (* (- x y) (/ z (- t a)))))
                (if (<= z -1e-88)
                  t_1
                  (if (<= z 4.9e+70) (+ x (/ (* t y) (- t a))) t_1))))
              double code(double x, double y, double z, double t, double a) {
              	double t_1 = (x - y) * (z / (t - a));
              	double tmp;
              	if (z <= -1e-88) {
              		tmp = t_1;
              	} else if (z <= 4.9e+70) {
              		tmp = x + ((t * y) / (t - a));
              	} else {
              		tmp = t_1;
              	}
              	return tmp;
              }
              
              module fmin_fmax_functions
                  implicit none
                  private
                  public fmax
                  public fmin
              
                  interface fmax
                      module procedure fmax88
                      module procedure fmax44
                      module procedure fmax84
                      module procedure fmax48
                  end interface
                  interface fmin
                      module procedure fmin88
                      module procedure fmin44
                      module procedure fmin84
                      module procedure fmin48
                  end interface
              contains
                  real(8) function fmax88(x, y) result (res)
                      real(8), intent (in) :: x
                      real(8), intent (in) :: y
                      res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                  end function
                  real(4) function fmax44(x, y) result (res)
                      real(4), intent (in) :: x
                      real(4), intent (in) :: y
                      res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                  end function
                  real(8) function fmax84(x, y) result(res)
                      real(8), intent (in) :: x
                      real(4), intent (in) :: y
                      res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                  end function
                  real(8) function fmax48(x, y) result(res)
                      real(4), intent (in) :: x
                      real(8), intent (in) :: y
                      res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                  end function
                  real(8) function fmin88(x, y) result (res)
                      real(8), intent (in) :: x
                      real(8), intent (in) :: y
                      res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                  end function
                  real(4) function fmin44(x, y) result (res)
                      real(4), intent (in) :: x
                      real(4), intent (in) :: y
                      res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                  end function
                  real(8) function fmin84(x, y) result(res)
                      real(8), intent (in) :: x
                      real(4), intent (in) :: y
                      res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                  end function
                  real(8) function fmin48(x, y) result(res)
                      real(4), intent (in) :: x
                      real(8), intent (in) :: y
                      res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                  end function
              end module
              
              real(8) function code(x, y, z, t, a)
              use fmin_fmax_functions
                  real(8), intent (in) :: x
                  real(8), intent (in) :: y
                  real(8), intent (in) :: z
                  real(8), intent (in) :: t
                  real(8), intent (in) :: a
                  real(8) :: t_1
                  real(8) :: tmp
                  t_1 = (x - y) * (z / (t - a))
                  if (z <= (-1d-88)) then
                      tmp = t_1
                  else if (z <= 4.9d+70) then
                      tmp = x + ((t * y) / (t - a))
                  else
                      tmp = t_1
                  end if
                  code = tmp
              end function
              
              public static double code(double x, double y, double z, double t, double a) {
              	double t_1 = (x - y) * (z / (t - a));
              	double tmp;
              	if (z <= -1e-88) {
              		tmp = t_1;
              	} else if (z <= 4.9e+70) {
              		tmp = x + ((t * y) / (t - a));
              	} else {
              		tmp = t_1;
              	}
              	return tmp;
              }
              
              def code(x, y, z, t, a):
              	t_1 = (x - y) * (z / (t - a))
              	tmp = 0
              	if z <= -1e-88:
              		tmp = t_1
              	elif z <= 4.9e+70:
              		tmp = x + ((t * y) / (t - a))
              	else:
              		tmp = t_1
              	return tmp
              
              function code(x, y, z, t, a)
              	t_1 = Float64(Float64(x - y) * Float64(z / Float64(t - a)))
              	tmp = 0.0
              	if (z <= -1e-88)
              		tmp = t_1;
              	elseif (z <= 4.9e+70)
              		tmp = Float64(x + Float64(Float64(t * y) / Float64(t - a)));
              	else
              		tmp = t_1;
              	end
              	return tmp
              end
              
              function tmp_2 = code(x, y, z, t, a)
              	t_1 = (x - y) * (z / (t - a));
              	tmp = 0.0;
              	if (z <= -1e-88)
              		tmp = t_1;
              	elseif (z <= 4.9e+70)
              		tmp = x + ((t * y) / (t - a));
              	else
              		tmp = t_1;
              	end
              	tmp_2 = tmp;
              end
              
              code[x_, y_, z_, t_, a_] := Block[{t$95$1 = N[(N[(x - y), $MachinePrecision] * N[(z / N[(t - a), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[z, -1e-88], t$95$1, If[LessEqual[z, 4.9e+70], N[(x + N[(N[(t * y), $MachinePrecision] / N[(t - a), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], t$95$1]]]
              
              \begin{array}{l}
              t_1 := \left(x - y\right) \cdot \frac{z}{t - a}\\
              \mathbf{if}\;z \leq -1 \cdot 10^{-88}:\\
              \;\;\;\;t\_1\\
              
              \mathbf{elif}\;z \leq 4.9 \cdot 10^{+70}:\\
              \;\;\;\;x + \frac{t \cdot y}{t - a}\\
              
              \mathbf{else}:\\
              \;\;\;\;t\_1\\
              
              
              \end{array}
              
              Derivation
              1. Split input into 2 regimes
              2. if z < -9.9999999999999993e-89 or 4.9000000000000003e70 < z

                1. Initial program 68.6%

                  \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
                2. Taylor expanded in z around inf

                  \[\leadsto \color{blue}{z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                3. Step-by-step derivation
                  1. lower-*.f64N/A

                    \[\leadsto z \cdot \color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                  2. lower--.f64N/A

                    \[\leadsto z \cdot \left(\frac{y}{a - t} - \color{blue}{\frac{x}{a - t}}\right) \]
                  3. lower-/.f64N/A

                    \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{\color{blue}{x}}{a - t}\right) \]
                  4. lower--.f64N/A

                    \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \]
                  5. lower-/.f64N/A

                    \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{\color{blue}{a - t}}\right) \]
                  6. lower--.f6442.6%

                    \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{a - \color{blue}{t}}\right) \]
                4. Applied rewrites42.6%

                  \[\leadsto \color{blue}{z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                5. Step-by-step derivation
                  1. lift-*.f64N/A

                    \[\leadsto z \cdot \color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                  2. *-commutativeN/A

                    \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot \color{blue}{z} \]
                  3. lower-*.f6442.6%

                    \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot \color{blue}{z} \]
                  4. lift--.f64N/A

                    \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot z \]
                  5. lift-/.f64N/A

                    \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot z \]
                  6. lift-/.f64N/A

                    \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot z \]
                  7. sub-divN/A

                    \[\leadsto \frac{y - x}{a - t} \cdot z \]
                  8. sub-negate-revN/A

                    \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{a - t} \cdot z \]
                  9. lift--.f64N/A

                    \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{a - t} \cdot z \]
                  10. lift--.f64N/A

                    \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{a - t} \cdot z \]
                  11. sub-negate-revN/A

                    \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(t - a\right)\right)} \cdot z \]
                  12. lift--.f64N/A

                    \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(t - a\right)\right)} \cdot z \]
                  13. frac-2neg-revN/A

                    \[\leadsto \frac{x - y}{t - a} \cdot z \]
                  14. lower-/.f6442.9%

                    \[\leadsto \frac{x - y}{t - a} \cdot z \]
                6. Applied rewrites42.9%

                  \[\leadsto \frac{x - y}{t - a} \cdot \color{blue}{z} \]
                7. Step-by-step derivation
                  1. lift-*.f64N/A

                    \[\leadsto \frac{x - y}{t - a} \cdot \color{blue}{z} \]
                  2. lift-/.f64N/A

                    \[\leadsto \frac{x - y}{t - a} \cdot z \]
                  3. associate-*l/N/A

                    \[\leadsto \frac{\left(x - y\right) \cdot z}{\color{blue}{t - a}} \]
                  4. associate-/l*N/A

                    \[\leadsto \left(x - y\right) \cdot \color{blue}{\frac{z}{t - a}} \]
                  5. lower-*.f64N/A

                    \[\leadsto \left(x - y\right) \cdot \color{blue}{\frac{z}{t - a}} \]
                  6. lower-/.f6444.2%

                    \[\leadsto \left(x - y\right) \cdot \frac{z}{\color{blue}{t - a}} \]
                8. Applied rewrites44.2%

                  \[\leadsto \left(x - y\right) \cdot \color{blue}{\frac{z}{t - a}} \]

                if -9.9999999999999993e-89 < z < 4.9000000000000003e70

                1. Initial program 68.6%

                  \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
                2. Step-by-step derivation
                  1. lift-/.f64N/A

                    \[\leadsto x + \color{blue}{\frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
                  2. lift-*.f64N/A

                    \[\leadsto x + \frac{\color{blue}{\left(y - x\right) \cdot \left(z - t\right)}}{a - t} \]
                  3. associate-/l*N/A

                    \[\leadsto x + \color{blue}{\left(y - x\right) \cdot \frac{z - t}{a - t}} \]
                  4. *-commutativeN/A

                    \[\leadsto x + \color{blue}{\frac{z - t}{a - t} \cdot \left(y - x\right)} \]
                  5. lower-*.f64N/A

                    \[\leadsto x + \color{blue}{\frac{z - t}{a - t} \cdot \left(y - x\right)} \]
                  6. frac-2negN/A

                    \[\leadsto x + \color{blue}{\frac{\mathsf{neg}\left(\left(z - t\right)\right)}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(y - x\right) \]
                  7. lift--.f64N/A

                    \[\leadsto x + \frac{\mathsf{neg}\left(\color{blue}{\left(z - t\right)}\right)}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(y - x\right) \]
                  8. sub-negate-revN/A

                    \[\leadsto x + \frac{\color{blue}{t - z}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(y - x\right) \]
                  9. lower-/.f64N/A

                    \[\leadsto x + \color{blue}{\frac{t - z}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(y - x\right) \]
                  10. lower--.f64N/A

                    \[\leadsto x + \frac{\color{blue}{t - z}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(y - x\right) \]
                  11. lift--.f64N/A

                    \[\leadsto x + \frac{t - z}{\mathsf{neg}\left(\color{blue}{\left(a - t\right)}\right)} \cdot \left(y - x\right) \]
                  12. sub-negate-revN/A

                    \[\leadsto x + \frac{t - z}{\color{blue}{t - a}} \cdot \left(y - x\right) \]
                  13. lower--.f6484.9%

                    \[\leadsto x + \frac{t - z}{\color{blue}{t - a}} \cdot \left(y - x\right) \]
                3. Applied rewrites84.9%

                  \[\leadsto x + \color{blue}{\frac{t - z}{t - a} \cdot \left(y - x\right)} \]
                4. Taylor expanded in z around 0

                  \[\leadsto x + \color{blue}{\frac{t \cdot \left(y - x\right)}{t - a}} \]
                5. Step-by-step derivation
                  1. lower-/.f64N/A

                    \[\leadsto x + \frac{t \cdot \left(y - x\right)}{\color{blue}{t - a}} \]
                  2. lower-*.f64N/A

                    \[\leadsto x + \frac{t \cdot \left(y - x\right)}{\color{blue}{t} - a} \]
                  3. lower--.f64N/A

                    \[\leadsto x + \frac{t \cdot \left(y - x\right)}{t - a} \]
                  4. lower--.f6437.3%

                    \[\leadsto x + \frac{t \cdot \left(y - x\right)}{t - \color{blue}{a}} \]
                6. Applied rewrites37.3%

                  \[\leadsto x + \color{blue}{\frac{t \cdot \left(y - x\right)}{t - a}} \]
                7. Taylor expanded in x around 0

                  \[\leadsto x + \frac{t \cdot y}{t - a} \]
                8. Step-by-step derivation
                  1. Applied rewrites37.3%

                    \[\leadsto x + \frac{t \cdot y}{t - a} \]
                9. Recombined 2 regimes into one program.
                10. Add Preprocessing

                Alternative 10: 56.8% accurate, 0.8× speedup?

                \[\begin{array}{l} t_1 := \left(x - y\right) \cdot \frac{z}{t - a}\\ \mathbf{if}\;z \leq -1 \cdot 10^{-88}:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;z \leq 1.35 \cdot 10^{+76}:\\ \;\;\;\;x - \left(-1 \cdot y\right) \cdot 1\\ \mathbf{else}:\\ \;\;\;\;t\_1\\ \end{array} \]
                (FPCore (x y z t a)
                  :precision binary64
                  (let* ((t_1 (* (- x y) (/ z (- t a)))))
                  (if (<= z -1e-88)
                    t_1
                    (if (<= z 1.35e+76) (- x (* (* -1.0 y) 1.0)) t_1))))
                double code(double x, double y, double z, double t, double a) {
                	double t_1 = (x - y) * (z / (t - a));
                	double tmp;
                	if (z <= -1e-88) {
                		tmp = t_1;
                	} else if (z <= 1.35e+76) {
                		tmp = x - ((-1.0 * y) * 1.0);
                	} else {
                		tmp = t_1;
                	}
                	return tmp;
                }
                
                module fmin_fmax_functions
                    implicit none
                    private
                    public fmax
                    public fmin
                
                    interface fmax
                        module procedure fmax88
                        module procedure fmax44
                        module procedure fmax84
                        module procedure fmax48
                    end interface
                    interface fmin
                        module procedure fmin88
                        module procedure fmin44
                        module procedure fmin84
                        module procedure fmin48
                    end interface
                contains
                    real(8) function fmax88(x, y) result (res)
                        real(8), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                    end function
                    real(4) function fmax44(x, y) result (res)
                        real(4), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                    end function
                    real(8) function fmax84(x, y) result(res)
                        real(8), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                    end function
                    real(8) function fmax48(x, y) result(res)
                        real(4), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                    end function
                    real(8) function fmin88(x, y) result (res)
                        real(8), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                    end function
                    real(4) function fmin44(x, y) result (res)
                        real(4), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                    end function
                    real(8) function fmin84(x, y) result(res)
                        real(8), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                    end function
                    real(8) function fmin48(x, y) result(res)
                        real(4), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                    end function
                end module
                
                real(8) function code(x, y, z, t, a)
                use fmin_fmax_functions
                    real(8), intent (in) :: x
                    real(8), intent (in) :: y
                    real(8), intent (in) :: z
                    real(8), intent (in) :: t
                    real(8), intent (in) :: a
                    real(8) :: t_1
                    real(8) :: tmp
                    t_1 = (x - y) * (z / (t - a))
                    if (z <= (-1d-88)) then
                        tmp = t_1
                    else if (z <= 1.35d+76) then
                        tmp = x - (((-1.0d0) * y) * 1.0d0)
                    else
                        tmp = t_1
                    end if
                    code = tmp
                end function
                
                public static double code(double x, double y, double z, double t, double a) {
                	double t_1 = (x - y) * (z / (t - a));
                	double tmp;
                	if (z <= -1e-88) {
                		tmp = t_1;
                	} else if (z <= 1.35e+76) {
                		tmp = x - ((-1.0 * y) * 1.0);
                	} else {
                		tmp = t_1;
                	}
                	return tmp;
                }
                
                def code(x, y, z, t, a):
                	t_1 = (x - y) * (z / (t - a))
                	tmp = 0
                	if z <= -1e-88:
                		tmp = t_1
                	elif z <= 1.35e+76:
                		tmp = x - ((-1.0 * y) * 1.0)
                	else:
                		tmp = t_1
                	return tmp
                
                function code(x, y, z, t, a)
                	t_1 = Float64(Float64(x - y) * Float64(z / Float64(t - a)))
                	tmp = 0.0
                	if (z <= -1e-88)
                		tmp = t_1;
                	elseif (z <= 1.35e+76)
                		tmp = Float64(x - Float64(Float64(-1.0 * y) * 1.0));
                	else
                		tmp = t_1;
                	end
                	return tmp
                end
                
                function tmp_2 = code(x, y, z, t, a)
                	t_1 = (x - y) * (z / (t - a));
                	tmp = 0.0;
                	if (z <= -1e-88)
                		tmp = t_1;
                	elseif (z <= 1.35e+76)
                		tmp = x - ((-1.0 * y) * 1.0);
                	else
                		tmp = t_1;
                	end
                	tmp_2 = tmp;
                end
                
                code[x_, y_, z_, t_, a_] := Block[{t$95$1 = N[(N[(x - y), $MachinePrecision] * N[(z / N[(t - a), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[z, -1e-88], t$95$1, If[LessEqual[z, 1.35e+76], N[(x - N[(N[(-1.0 * y), $MachinePrecision] * 1.0), $MachinePrecision]), $MachinePrecision], t$95$1]]]
                
                \begin{array}{l}
                t_1 := \left(x - y\right) \cdot \frac{z}{t - a}\\
                \mathbf{if}\;z \leq -1 \cdot 10^{-88}:\\
                \;\;\;\;t\_1\\
                
                \mathbf{elif}\;z \leq 1.35 \cdot 10^{+76}:\\
                \;\;\;\;x - \left(-1 \cdot y\right) \cdot 1\\
                
                \mathbf{else}:\\
                \;\;\;\;t\_1\\
                
                
                \end{array}
                
                Derivation
                1. Split input into 2 regimes
                2. if z < -9.9999999999999993e-89 or 1.35e76 < z

                  1. Initial program 68.6%

                    \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
                  2. Taylor expanded in z around inf

                    \[\leadsto \color{blue}{z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                  3. Step-by-step derivation
                    1. lower-*.f64N/A

                      \[\leadsto z \cdot \color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                    2. lower--.f64N/A

                      \[\leadsto z \cdot \left(\frac{y}{a - t} - \color{blue}{\frac{x}{a - t}}\right) \]
                    3. lower-/.f64N/A

                      \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{\color{blue}{x}}{a - t}\right) \]
                    4. lower--.f64N/A

                      \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \]
                    5. lower-/.f64N/A

                      \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{\color{blue}{a - t}}\right) \]
                    6. lower--.f6442.6%

                      \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{a - \color{blue}{t}}\right) \]
                  4. Applied rewrites42.6%

                    \[\leadsto \color{blue}{z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                  5. Step-by-step derivation
                    1. lift-*.f64N/A

                      \[\leadsto z \cdot \color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                    2. *-commutativeN/A

                      \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot \color{blue}{z} \]
                    3. lower-*.f6442.6%

                      \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot \color{blue}{z} \]
                    4. lift--.f64N/A

                      \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot z \]
                    5. lift-/.f64N/A

                      \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot z \]
                    6. lift-/.f64N/A

                      \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot z \]
                    7. sub-divN/A

                      \[\leadsto \frac{y - x}{a - t} \cdot z \]
                    8. sub-negate-revN/A

                      \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{a - t} \cdot z \]
                    9. lift--.f64N/A

                      \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{a - t} \cdot z \]
                    10. lift--.f64N/A

                      \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{a - t} \cdot z \]
                    11. sub-negate-revN/A

                      \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(t - a\right)\right)} \cdot z \]
                    12. lift--.f64N/A

                      \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(t - a\right)\right)} \cdot z \]
                    13. frac-2neg-revN/A

                      \[\leadsto \frac{x - y}{t - a} \cdot z \]
                    14. lower-/.f6442.9%

                      \[\leadsto \frac{x - y}{t - a} \cdot z \]
                  6. Applied rewrites42.9%

                    \[\leadsto \frac{x - y}{t - a} \cdot \color{blue}{z} \]
                  7. Step-by-step derivation
                    1. lift-*.f64N/A

                      \[\leadsto \frac{x - y}{t - a} \cdot \color{blue}{z} \]
                    2. lift-/.f64N/A

                      \[\leadsto \frac{x - y}{t - a} \cdot z \]
                    3. associate-*l/N/A

                      \[\leadsto \frac{\left(x - y\right) \cdot z}{\color{blue}{t - a}} \]
                    4. associate-/l*N/A

                      \[\leadsto \left(x - y\right) \cdot \color{blue}{\frac{z}{t - a}} \]
                    5. lower-*.f64N/A

                      \[\leadsto \left(x - y\right) \cdot \color{blue}{\frac{z}{t - a}} \]
                    6. lower-/.f6444.2%

                      \[\leadsto \left(x - y\right) \cdot \frac{z}{\color{blue}{t - a}} \]
                  8. Applied rewrites44.2%

                    \[\leadsto \left(x - y\right) \cdot \color{blue}{\frac{z}{t - a}} \]

                  if -9.9999999999999993e-89 < z < 1.35e76

                  1. Initial program 68.6%

                    \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
                  2. Step-by-step derivation
                    1. lift-+.f64N/A

                      \[\leadsto \color{blue}{x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
                    2. lift-/.f64N/A

                      \[\leadsto x + \color{blue}{\frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
                    3. mult-flipN/A

                      \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \left(z - t\right)\right) \cdot \frac{1}{a - t}} \]
                    4. lift-*.f64N/A

                      \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \left(z - t\right)\right)} \cdot \frac{1}{a - t} \]
                    5. *-commutativeN/A

                      \[\leadsto x + \color{blue}{\left(\left(z - t\right) \cdot \left(y - x\right)\right)} \cdot \frac{1}{a - t} \]
                    6. associate-*l*N/A

                      \[\leadsto x + \color{blue}{\left(z - t\right) \cdot \left(\left(y - x\right) \cdot \frac{1}{a - t}\right)} \]
                    7. *-commutativeN/A

                      \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \frac{1}{a - t}\right) \cdot \left(z - t\right)} \]
                    8. fp-cancel-sign-sub-invN/A

                      \[\leadsto \color{blue}{x - \left(\mathsf{neg}\left(\left(y - x\right) \cdot \frac{1}{a - t}\right)\right) \cdot \left(z - t\right)} \]
                    9. lower--.f64N/A

                      \[\leadsto \color{blue}{x - \left(\mathsf{neg}\left(\left(y - x\right) \cdot \frac{1}{a - t}\right)\right) \cdot \left(z - t\right)} \]
                    10. mult-flip-revN/A

                      \[\leadsto x - \left(\mathsf{neg}\left(\color{blue}{\frac{y - x}{a - t}}\right)\right) \cdot \left(z - t\right) \]
                    11. lift--.f64N/A

                      \[\leadsto x - \left(\mathsf{neg}\left(\frac{\color{blue}{y - x}}{a - t}\right)\right) \cdot \left(z - t\right) \]
                    12. div-subN/A

                      \[\leadsto x - \left(\mathsf{neg}\left(\color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)}\right)\right) \cdot \left(z - t\right) \]
                    13. sub-negateN/A

                      \[\leadsto x - \color{blue}{\left(\frac{x}{a - t} - \frac{y}{a - t}\right)} \cdot \left(z - t\right) \]
                    14. div-subN/A

                      \[\leadsto x - \color{blue}{\frac{x - y}{a - t}} \cdot \left(z - t\right) \]
                    15. frac-2neg-revN/A

                      \[\leadsto x - \color{blue}{\frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(z - t\right) \]
                    16. sub-negate-revN/A

                      \[\leadsto x - \frac{\color{blue}{y - x}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right) \]
                    17. lift--.f64N/A

                      \[\leadsto x - \frac{\color{blue}{y - x}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right) \]
                    18. lower-*.f64N/A

                      \[\leadsto x - \color{blue}{\frac{y - x}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right)} \]
                  3. Applied rewrites81.1%

                    \[\leadsto \color{blue}{x - \frac{x - y}{a - t} \cdot \left(z - t\right)} \]
                  4. Step-by-step derivation
                    1. lift-*.f64N/A

                      \[\leadsto x - \color{blue}{\frac{x - y}{a - t} \cdot \left(z - t\right)} \]
                    2. lift-/.f64N/A

                      \[\leadsto x - \color{blue}{\frac{x - y}{a - t}} \cdot \left(z - t\right) \]
                    3. mult-flipN/A

                      \[\leadsto x - \color{blue}{\left(\left(x - y\right) \cdot \frac{1}{a - t}\right)} \cdot \left(z - t\right) \]
                    4. associate-*l*N/A

                      \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                    5. lower-*.f64N/A

                      \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                    6. lower-*.f64N/A

                      \[\leadsto x - \left(x - y\right) \cdot \color{blue}{\left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                    7. lower-/.f6484.9%

                      \[\leadsto x - \left(x - y\right) \cdot \left(\color{blue}{\frac{1}{a - t}} \cdot \left(z - t\right)\right) \]
                  5. Applied rewrites84.9%

                    \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                  6. Taylor expanded in t around inf

                    \[\leadsto x - \left(x - y\right) \cdot \color{blue}{1} \]
                  7. Step-by-step derivation
                    1. Applied rewrites19.0%

                      \[\leadsto x - \left(x - y\right) \cdot \color{blue}{1} \]
                    2. Taylor expanded in x around 0

                      \[\leadsto x - \color{blue}{\left(-1 \cdot y\right)} \cdot 1 \]
                    3. Step-by-step derivation
                      1. lower-*.f6433.7%

                        \[\leadsto x - \left(-1 \cdot \color{blue}{y}\right) \cdot 1 \]
                    4. Applied rewrites33.7%

                      \[\leadsto x - \color{blue}{\left(-1 \cdot y\right)} \cdot 1 \]
                  8. Recombined 2 regimes into one program.
                  9. Add Preprocessing

                  Alternative 11: 50.9% accurate, 0.8× speedup?

                  \[\begin{array}{l} \mathbf{if}\;t \leq -1.22 \cdot 10^{+103}:\\ \;\;\;\;x - \left(-1 \cdot y\right) \cdot 1\\ \mathbf{elif}\;t \leq -24000000000:\\ \;\;\;\;\frac{x - y}{t} \cdot z\\ \mathbf{elif}\;t \leq 1.75 \cdot 10^{+140}:\\ \;\;\;\;x + \frac{z}{a} \cdot y\\ \mathbf{else}:\\ \;\;\;\;x - \left(x - y\right) \cdot 1\\ \end{array} \]
                  (FPCore (x y z t a)
                    :precision binary64
                    (if (<= t -1.22e+103)
                    (- x (* (* -1.0 y) 1.0))
                    (if (<= t -24000000000.0)
                      (* (/ (- x y) t) z)
                      (if (<= t 1.75e+140) (+ x (* (/ z a) y)) (- x (* (- x y) 1.0))))))
                  double code(double x, double y, double z, double t, double a) {
                  	double tmp;
                  	if (t <= -1.22e+103) {
                  		tmp = x - ((-1.0 * y) * 1.0);
                  	} else if (t <= -24000000000.0) {
                  		tmp = ((x - y) / t) * z;
                  	} else if (t <= 1.75e+140) {
                  		tmp = x + ((z / a) * y);
                  	} else {
                  		tmp = x - ((x - y) * 1.0);
                  	}
                  	return tmp;
                  }
                  
                  module fmin_fmax_functions
                      implicit none
                      private
                      public fmax
                      public fmin
                  
                      interface fmax
                          module procedure fmax88
                          module procedure fmax44
                          module procedure fmax84
                          module procedure fmax48
                      end interface
                      interface fmin
                          module procedure fmin88
                          module procedure fmin44
                          module procedure fmin84
                          module procedure fmin48
                      end interface
                  contains
                      real(8) function fmax88(x, y) result (res)
                          real(8), intent (in) :: x
                          real(8), intent (in) :: y
                          res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                      end function
                      real(4) function fmax44(x, y) result (res)
                          real(4), intent (in) :: x
                          real(4), intent (in) :: y
                          res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                      end function
                      real(8) function fmax84(x, y) result(res)
                          real(8), intent (in) :: x
                          real(4), intent (in) :: y
                          res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                      end function
                      real(8) function fmax48(x, y) result(res)
                          real(4), intent (in) :: x
                          real(8), intent (in) :: y
                          res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                      end function
                      real(8) function fmin88(x, y) result (res)
                          real(8), intent (in) :: x
                          real(8), intent (in) :: y
                          res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                      end function
                      real(4) function fmin44(x, y) result (res)
                          real(4), intent (in) :: x
                          real(4), intent (in) :: y
                          res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                      end function
                      real(8) function fmin84(x, y) result(res)
                          real(8), intent (in) :: x
                          real(4), intent (in) :: y
                          res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                      end function
                      real(8) function fmin48(x, y) result(res)
                          real(4), intent (in) :: x
                          real(8), intent (in) :: y
                          res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                      end function
                  end module
                  
                  real(8) function code(x, y, z, t, a)
                  use fmin_fmax_functions
                      real(8), intent (in) :: x
                      real(8), intent (in) :: y
                      real(8), intent (in) :: z
                      real(8), intent (in) :: t
                      real(8), intent (in) :: a
                      real(8) :: tmp
                      if (t <= (-1.22d+103)) then
                          tmp = x - (((-1.0d0) * y) * 1.0d0)
                      else if (t <= (-24000000000.0d0)) then
                          tmp = ((x - y) / t) * z
                      else if (t <= 1.75d+140) then
                          tmp = x + ((z / a) * y)
                      else
                          tmp = x - ((x - y) * 1.0d0)
                      end if
                      code = tmp
                  end function
                  
                  public static double code(double x, double y, double z, double t, double a) {
                  	double tmp;
                  	if (t <= -1.22e+103) {
                  		tmp = x - ((-1.0 * y) * 1.0);
                  	} else if (t <= -24000000000.0) {
                  		tmp = ((x - y) / t) * z;
                  	} else if (t <= 1.75e+140) {
                  		tmp = x + ((z / a) * y);
                  	} else {
                  		tmp = x - ((x - y) * 1.0);
                  	}
                  	return tmp;
                  }
                  
                  def code(x, y, z, t, a):
                  	tmp = 0
                  	if t <= -1.22e+103:
                  		tmp = x - ((-1.0 * y) * 1.0)
                  	elif t <= -24000000000.0:
                  		tmp = ((x - y) / t) * z
                  	elif t <= 1.75e+140:
                  		tmp = x + ((z / a) * y)
                  	else:
                  		tmp = x - ((x - y) * 1.0)
                  	return tmp
                  
                  function code(x, y, z, t, a)
                  	tmp = 0.0
                  	if (t <= -1.22e+103)
                  		tmp = Float64(x - Float64(Float64(-1.0 * y) * 1.0));
                  	elseif (t <= -24000000000.0)
                  		tmp = Float64(Float64(Float64(x - y) / t) * z);
                  	elseif (t <= 1.75e+140)
                  		tmp = Float64(x + Float64(Float64(z / a) * y));
                  	else
                  		tmp = Float64(x - Float64(Float64(x - y) * 1.0));
                  	end
                  	return tmp
                  end
                  
                  function tmp_2 = code(x, y, z, t, a)
                  	tmp = 0.0;
                  	if (t <= -1.22e+103)
                  		tmp = x - ((-1.0 * y) * 1.0);
                  	elseif (t <= -24000000000.0)
                  		tmp = ((x - y) / t) * z;
                  	elseif (t <= 1.75e+140)
                  		tmp = x + ((z / a) * y);
                  	else
                  		tmp = x - ((x - y) * 1.0);
                  	end
                  	tmp_2 = tmp;
                  end
                  
                  code[x_, y_, z_, t_, a_] := If[LessEqual[t, -1.22e+103], N[(x - N[(N[(-1.0 * y), $MachinePrecision] * 1.0), $MachinePrecision]), $MachinePrecision], If[LessEqual[t, -24000000000.0], N[(N[(N[(x - y), $MachinePrecision] / t), $MachinePrecision] * z), $MachinePrecision], If[LessEqual[t, 1.75e+140], N[(x + N[(N[(z / a), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision], N[(x - N[(N[(x - y), $MachinePrecision] * 1.0), $MachinePrecision]), $MachinePrecision]]]]
                  
                  \begin{array}{l}
                  \mathbf{if}\;t \leq -1.22 \cdot 10^{+103}:\\
                  \;\;\;\;x - \left(-1 \cdot y\right) \cdot 1\\
                  
                  \mathbf{elif}\;t \leq -24000000000:\\
                  \;\;\;\;\frac{x - y}{t} \cdot z\\
                  
                  \mathbf{elif}\;t \leq 1.75 \cdot 10^{+140}:\\
                  \;\;\;\;x + \frac{z}{a} \cdot y\\
                  
                  \mathbf{else}:\\
                  \;\;\;\;x - \left(x - y\right) \cdot 1\\
                  
                  
                  \end{array}
                  
                  Derivation
                  1. Split input into 4 regimes
                  2. if t < -1.22e103

                    1. Initial program 68.6%

                      \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
                    2. Step-by-step derivation
                      1. lift-+.f64N/A

                        \[\leadsto \color{blue}{x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
                      2. lift-/.f64N/A

                        \[\leadsto x + \color{blue}{\frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
                      3. mult-flipN/A

                        \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \left(z - t\right)\right) \cdot \frac{1}{a - t}} \]
                      4. lift-*.f64N/A

                        \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \left(z - t\right)\right)} \cdot \frac{1}{a - t} \]
                      5. *-commutativeN/A

                        \[\leadsto x + \color{blue}{\left(\left(z - t\right) \cdot \left(y - x\right)\right)} \cdot \frac{1}{a - t} \]
                      6. associate-*l*N/A

                        \[\leadsto x + \color{blue}{\left(z - t\right) \cdot \left(\left(y - x\right) \cdot \frac{1}{a - t}\right)} \]
                      7. *-commutativeN/A

                        \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \frac{1}{a - t}\right) \cdot \left(z - t\right)} \]
                      8. fp-cancel-sign-sub-invN/A

                        \[\leadsto \color{blue}{x - \left(\mathsf{neg}\left(\left(y - x\right) \cdot \frac{1}{a - t}\right)\right) \cdot \left(z - t\right)} \]
                      9. lower--.f64N/A

                        \[\leadsto \color{blue}{x - \left(\mathsf{neg}\left(\left(y - x\right) \cdot \frac{1}{a - t}\right)\right) \cdot \left(z - t\right)} \]
                      10. mult-flip-revN/A

                        \[\leadsto x - \left(\mathsf{neg}\left(\color{blue}{\frac{y - x}{a - t}}\right)\right) \cdot \left(z - t\right) \]
                      11. lift--.f64N/A

                        \[\leadsto x - \left(\mathsf{neg}\left(\frac{\color{blue}{y - x}}{a - t}\right)\right) \cdot \left(z - t\right) \]
                      12. div-subN/A

                        \[\leadsto x - \left(\mathsf{neg}\left(\color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)}\right)\right) \cdot \left(z - t\right) \]
                      13. sub-negateN/A

                        \[\leadsto x - \color{blue}{\left(\frac{x}{a - t} - \frac{y}{a - t}\right)} \cdot \left(z - t\right) \]
                      14. div-subN/A

                        \[\leadsto x - \color{blue}{\frac{x - y}{a - t}} \cdot \left(z - t\right) \]
                      15. frac-2neg-revN/A

                        \[\leadsto x - \color{blue}{\frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(z - t\right) \]
                      16. sub-negate-revN/A

                        \[\leadsto x - \frac{\color{blue}{y - x}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right) \]
                      17. lift--.f64N/A

                        \[\leadsto x - \frac{\color{blue}{y - x}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right) \]
                      18. lower-*.f64N/A

                        \[\leadsto x - \color{blue}{\frac{y - x}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right)} \]
                    3. Applied rewrites81.1%

                      \[\leadsto \color{blue}{x - \frac{x - y}{a - t} \cdot \left(z - t\right)} \]
                    4. Step-by-step derivation
                      1. lift-*.f64N/A

                        \[\leadsto x - \color{blue}{\frac{x - y}{a - t} \cdot \left(z - t\right)} \]
                      2. lift-/.f64N/A

                        \[\leadsto x - \color{blue}{\frac{x - y}{a - t}} \cdot \left(z - t\right) \]
                      3. mult-flipN/A

                        \[\leadsto x - \color{blue}{\left(\left(x - y\right) \cdot \frac{1}{a - t}\right)} \cdot \left(z - t\right) \]
                      4. associate-*l*N/A

                        \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                      5. lower-*.f64N/A

                        \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                      6. lower-*.f64N/A

                        \[\leadsto x - \left(x - y\right) \cdot \color{blue}{\left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                      7. lower-/.f6484.9%

                        \[\leadsto x - \left(x - y\right) \cdot \left(\color{blue}{\frac{1}{a - t}} \cdot \left(z - t\right)\right) \]
                    5. Applied rewrites84.9%

                      \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                    6. Taylor expanded in t around inf

                      \[\leadsto x - \left(x - y\right) \cdot \color{blue}{1} \]
                    7. Step-by-step derivation
                      1. Applied rewrites19.0%

                        \[\leadsto x - \left(x - y\right) \cdot \color{blue}{1} \]
                      2. Taylor expanded in x around 0

                        \[\leadsto x - \color{blue}{\left(-1 \cdot y\right)} \cdot 1 \]
                      3. Step-by-step derivation
                        1. lower-*.f6433.7%

                          \[\leadsto x - \left(-1 \cdot \color{blue}{y}\right) \cdot 1 \]
                      4. Applied rewrites33.7%

                        \[\leadsto x - \color{blue}{\left(-1 \cdot y\right)} \cdot 1 \]

                      if -1.22e103 < t < -2.4e10

                      1. Initial program 68.6%

                        \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
                      2. Taylor expanded in z around inf

                        \[\leadsto \color{blue}{z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                      3. Step-by-step derivation
                        1. lower-*.f64N/A

                          \[\leadsto z \cdot \color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                        2. lower--.f64N/A

                          \[\leadsto z \cdot \left(\frac{y}{a - t} - \color{blue}{\frac{x}{a - t}}\right) \]
                        3. lower-/.f64N/A

                          \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{\color{blue}{x}}{a - t}\right) \]
                        4. lower--.f64N/A

                          \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \]
                        5. lower-/.f64N/A

                          \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{\color{blue}{a - t}}\right) \]
                        6. lower--.f6442.6%

                          \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{a - \color{blue}{t}}\right) \]
                      4. Applied rewrites42.6%

                        \[\leadsto \color{blue}{z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                      5. Step-by-step derivation
                        1. lift-*.f64N/A

                          \[\leadsto z \cdot \color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                        2. *-commutativeN/A

                          \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot \color{blue}{z} \]
                        3. lower-*.f6442.6%

                          \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot \color{blue}{z} \]
                        4. lift--.f64N/A

                          \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot z \]
                        5. lift-/.f64N/A

                          \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot z \]
                        6. lift-/.f64N/A

                          \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot z \]
                        7. sub-divN/A

                          \[\leadsto \frac{y - x}{a - t} \cdot z \]
                        8. sub-negate-revN/A

                          \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{a - t} \cdot z \]
                        9. lift--.f64N/A

                          \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{a - t} \cdot z \]
                        10. lift--.f64N/A

                          \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{a - t} \cdot z \]
                        11. sub-negate-revN/A

                          \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(t - a\right)\right)} \cdot z \]
                        12. lift--.f64N/A

                          \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(t - a\right)\right)} \cdot z \]
                        13. frac-2neg-revN/A

                          \[\leadsto \frac{x - y}{t - a} \cdot z \]
                        14. lower-/.f6442.9%

                          \[\leadsto \frac{x - y}{t - a} \cdot z \]
                      6. Applied rewrites42.9%

                        \[\leadsto \frac{x - y}{t - a} \cdot \color{blue}{z} \]
                      7. Taylor expanded in t around inf

                        \[\leadsto \frac{x - y}{t} \cdot z \]
                      8. Step-by-step derivation
                        1. lower-/.f64N/A

                          \[\leadsto \frac{x - y}{t} \cdot z \]
                        2. lower--.f6426.0%

                          \[\leadsto \frac{x - y}{t} \cdot z \]
                      9. Applied rewrites26.0%

                        \[\leadsto \frac{x - y}{t} \cdot z \]

                      if -2.4e10 < t < 1.7499999999999999e140

                      1. Initial program 68.6%

                        \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
                      2. Step-by-step derivation
                        1. lift-/.f64N/A

                          \[\leadsto x + \color{blue}{\frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
                        2. lift-*.f64N/A

                          \[\leadsto x + \frac{\color{blue}{\left(y - x\right) \cdot \left(z - t\right)}}{a - t} \]
                        3. associate-/l*N/A

                          \[\leadsto x + \color{blue}{\left(y - x\right) \cdot \frac{z - t}{a - t}} \]
                        4. *-commutativeN/A

                          \[\leadsto x + \color{blue}{\frac{z - t}{a - t} \cdot \left(y - x\right)} \]
                        5. lower-*.f64N/A

                          \[\leadsto x + \color{blue}{\frac{z - t}{a - t} \cdot \left(y - x\right)} \]
                        6. frac-2negN/A

                          \[\leadsto x + \color{blue}{\frac{\mathsf{neg}\left(\left(z - t\right)\right)}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(y - x\right) \]
                        7. lift--.f64N/A

                          \[\leadsto x + \frac{\mathsf{neg}\left(\color{blue}{\left(z - t\right)}\right)}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(y - x\right) \]
                        8. sub-negate-revN/A

                          \[\leadsto x + \frac{\color{blue}{t - z}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(y - x\right) \]
                        9. lower-/.f64N/A

                          \[\leadsto x + \color{blue}{\frac{t - z}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(y - x\right) \]
                        10. lower--.f64N/A

                          \[\leadsto x + \frac{\color{blue}{t - z}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(y - x\right) \]
                        11. lift--.f64N/A

                          \[\leadsto x + \frac{t - z}{\mathsf{neg}\left(\color{blue}{\left(a - t\right)}\right)} \cdot \left(y - x\right) \]
                        12. sub-negate-revN/A

                          \[\leadsto x + \frac{t - z}{\color{blue}{t - a}} \cdot \left(y - x\right) \]
                        13. lower--.f6484.9%

                          \[\leadsto x + \frac{t - z}{\color{blue}{t - a}} \cdot \left(y - x\right) \]
                      3. Applied rewrites84.9%

                        \[\leadsto x + \color{blue}{\frac{t - z}{t - a} \cdot \left(y - x\right)} \]
                      4. Taylor expanded in x around 0

                        \[\leadsto x + \frac{t - z}{t - a} \cdot \color{blue}{y} \]
                      5. Step-by-step derivation
                        1. Applied rewrites67.6%

                          \[\leadsto x + \frac{t - z}{t - a} \cdot \color{blue}{y} \]
                        2. Taylor expanded in t around 0

                          \[\leadsto x + \color{blue}{\frac{z}{a}} \cdot y \]
                        3. Step-by-step derivation
                          1. lower-/.f6441.6%

                            \[\leadsto x + \frac{z}{\color{blue}{a}} \cdot y \]
                        4. Applied rewrites41.6%

                          \[\leadsto x + \color{blue}{\frac{z}{a}} \cdot y \]

                        if 1.7499999999999999e140 < t

                        1. Initial program 68.6%

                          \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
                        2. Step-by-step derivation
                          1. lift-+.f64N/A

                            \[\leadsto \color{blue}{x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
                          2. lift-/.f64N/A

                            \[\leadsto x + \color{blue}{\frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
                          3. mult-flipN/A

                            \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \left(z - t\right)\right) \cdot \frac{1}{a - t}} \]
                          4. lift-*.f64N/A

                            \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \left(z - t\right)\right)} \cdot \frac{1}{a - t} \]
                          5. *-commutativeN/A

                            \[\leadsto x + \color{blue}{\left(\left(z - t\right) \cdot \left(y - x\right)\right)} \cdot \frac{1}{a - t} \]
                          6. associate-*l*N/A

                            \[\leadsto x + \color{blue}{\left(z - t\right) \cdot \left(\left(y - x\right) \cdot \frac{1}{a - t}\right)} \]
                          7. *-commutativeN/A

                            \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \frac{1}{a - t}\right) \cdot \left(z - t\right)} \]
                          8. fp-cancel-sign-sub-invN/A

                            \[\leadsto \color{blue}{x - \left(\mathsf{neg}\left(\left(y - x\right) \cdot \frac{1}{a - t}\right)\right) \cdot \left(z - t\right)} \]
                          9. lower--.f64N/A

                            \[\leadsto \color{blue}{x - \left(\mathsf{neg}\left(\left(y - x\right) \cdot \frac{1}{a - t}\right)\right) \cdot \left(z - t\right)} \]
                          10. mult-flip-revN/A

                            \[\leadsto x - \left(\mathsf{neg}\left(\color{blue}{\frac{y - x}{a - t}}\right)\right) \cdot \left(z - t\right) \]
                          11. lift--.f64N/A

                            \[\leadsto x - \left(\mathsf{neg}\left(\frac{\color{blue}{y - x}}{a - t}\right)\right) \cdot \left(z - t\right) \]
                          12. div-subN/A

                            \[\leadsto x - \left(\mathsf{neg}\left(\color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)}\right)\right) \cdot \left(z - t\right) \]
                          13. sub-negateN/A

                            \[\leadsto x - \color{blue}{\left(\frac{x}{a - t} - \frac{y}{a - t}\right)} \cdot \left(z - t\right) \]
                          14. div-subN/A

                            \[\leadsto x - \color{blue}{\frac{x - y}{a - t}} \cdot \left(z - t\right) \]
                          15. frac-2neg-revN/A

                            \[\leadsto x - \color{blue}{\frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(z - t\right) \]
                          16. sub-negate-revN/A

                            \[\leadsto x - \frac{\color{blue}{y - x}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right) \]
                          17. lift--.f64N/A

                            \[\leadsto x - \frac{\color{blue}{y - x}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right) \]
                          18. lower-*.f64N/A

                            \[\leadsto x - \color{blue}{\frac{y - x}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right)} \]
                        3. Applied rewrites81.1%

                          \[\leadsto \color{blue}{x - \frac{x - y}{a - t} \cdot \left(z - t\right)} \]
                        4. Step-by-step derivation
                          1. lift-*.f64N/A

                            \[\leadsto x - \color{blue}{\frac{x - y}{a - t} \cdot \left(z - t\right)} \]
                          2. lift-/.f64N/A

                            \[\leadsto x - \color{blue}{\frac{x - y}{a - t}} \cdot \left(z - t\right) \]
                          3. mult-flipN/A

                            \[\leadsto x - \color{blue}{\left(\left(x - y\right) \cdot \frac{1}{a - t}\right)} \cdot \left(z - t\right) \]
                          4. associate-*l*N/A

                            \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                          5. lower-*.f64N/A

                            \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                          6. lower-*.f64N/A

                            \[\leadsto x - \left(x - y\right) \cdot \color{blue}{\left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                          7. lower-/.f6484.9%

                            \[\leadsto x - \left(x - y\right) \cdot \left(\color{blue}{\frac{1}{a - t}} \cdot \left(z - t\right)\right) \]
                        5. Applied rewrites84.9%

                          \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                        6. Taylor expanded in t around inf

                          \[\leadsto x - \left(x - y\right) \cdot \color{blue}{1} \]
                        7. Step-by-step derivation
                          1. Applied rewrites19.0%

                            \[\leadsto x - \left(x - y\right) \cdot \color{blue}{1} \]
                        8. Recombined 4 regimes into one program.
                        9. Add Preprocessing

                        Alternative 12: 48.4% accurate, 0.8× speedup?

                        \[\begin{array}{l} \mathbf{if}\;t \leq -1.22 \cdot 10^{+103}:\\ \;\;\;\;x - \left(-1 \cdot y\right) \cdot 1\\ \mathbf{elif}\;t \leq -24000000000:\\ \;\;\;\;\frac{x - y}{t} \cdot z\\ \mathbf{elif}\;t \leq 1.75 \cdot 10^{+140}:\\ \;\;\;\;x + \frac{z \cdot y}{a}\\ \mathbf{else}:\\ \;\;\;\;x - \left(x - y\right) \cdot 1\\ \end{array} \]
                        (FPCore (x y z t a)
                          :precision binary64
                          (if (<= t -1.22e+103)
                          (- x (* (* -1.0 y) 1.0))
                          (if (<= t -24000000000.0)
                            (* (/ (- x y) t) z)
                            (if (<= t 1.75e+140) (+ x (/ (* z y) a)) (- x (* (- x y) 1.0))))))
                        double code(double x, double y, double z, double t, double a) {
                        	double tmp;
                        	if (t <= -1.22e+103) {
                        		tmp = x - ((-1.0 * y) * 1.0);
                        	} else if (t <= -24000000000.0) {
                        		tmp = ((x - y) / t) * z;
                        	} else if (t <= 1.75e+140) {
                        		tmp = x + ((z * y) / a);
                        	} else {
                        		tmp = x - ((x - y) * 1.0);
                        	}
                        	return tmp;
                        }
                        
                        module fmin_fmax_functions
                            implicit none
                            private
                            public fmax
                            public fmin
                        
                            interface fmax
                                module procedure fmax88
                                module procedure fmax44
                                module procedure fmax84
                                module procedure fmax48
                            end interface
                            interface fmin
                                module procedure fmin88
                                module procedure fmin44
                                module procedure fmin84
                                module procedure fmin48
                            end interface
                        contains
                            real(8) function fmax88(x, y) result (res)
                                real(8), intent (in) :: x
                                real(8), intent (in) :: y
                                res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                            end function
                            real(4) function fmax44(x, y) result (res)
                                real(4), intent (in) :: x
                                real(4), intent (in) :: y
                                res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                            end function
                            real(8) function fmax84(x, y) result(res)
                                real(8), intent (in) :: x
                                real(4), intent (in) :: y
                                res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                            end function
                            real(8) function fmax48(x, y) result(res)
                                real(4), intent (in) :: x
                                real(8), intent (in) :: y
                                res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                            end function
                            real(8) function fmin88(x, y) result (res)
                                real(8), intent (in) :: x
                                real(8), intent (in) :: y
                                res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                            end function
                            real(4) function fmin44(x, y) result (res)
                                real(4), intent (in) :: x
                                real(4), intent (in) :: y
                                res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                            end function
                            real(8) function fmin84(x, y) result(res)
                                real(8), intent (in) :: x
                                real(4), intent (in) :: y
                                res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                            end function
                            real(8) function fmin48(x, y) result(res)
                                real(4), intent (in) :: x
                                real(8), intent (in) :: y
                                res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                            end function
                        end module
                        
                        real(8) function code(x, y, z, t, a)
                        use fmin_fmax_functions
                            real(8), intent (in) :: x
                            real(8), intent (in) :: y
                            real(8), intent (in) :: z
                            real(8), intent (in) :: t
                            real(8), intent (in) :: a
                            real(8) :: tmp
                            if (t <= (-1.22d+103)) then
                                tmp = x - (((-1.0d0) * y) * 1.0d0)
                            else if (t <= (-24000000000.0d0)) then
                                tmp = ((x - y) / t) * z
                            else if (t <= 1.75d+140) then
                                tmp = x + ((z * y) / a)
                            else
                                tmp = x - ((x - y) * 1.0d0)
                            end if
                            code = tmp
                        end function
                        
                        public static double code(double x, double y, double z, double t, double a) {
                        	double tmp;
                        	if (t <= -1.22e+103) {
                        		tmp = x - ((-1.0 * y) * 1.0);
                        	} else if (t <= -24000000000.0) {
                        		tmp = ((x - y) / t) * z;
                        	} else if (t <= 1.75e+140) {
                        		tmp = x + ((z * y) / a);
                        	} else {
                        		tmp = x - ((x - y) * 1.0);
                        	}
                        	return tmp;
                        }
                        
                        def code(x, y, z, t, a):
                        	tmp = 0
                        	if t <= -1.22e+103:
                        		tmp = x - ((-1.0 * y) * 1.0)
                        	elif t <= -24000000000.0:
                        		tmp = ((x - y) / t) * z
                        	elif t <= 1.75e+140:
                        		tmp = x + ((z * y) / a)
                        	else:
                        		tmp = x - ((x - y) * 1.0)
                        	return tmp
                        
                        function code(x, y, z, t, a)
                        	tmp = 0.0
                        	if (t <= -1.22e+103)
                        		tmp = Float64(x - Float64(Float64(-1.0 * y) * 1.0));
                        	elseif (t <= -24000000000.0)
                        		tmp = Float64(Float64(Float64(x - y) / t) * z);
                        	elseif (t <= 1.75e+140)
                        		tmp = Float64(x + Float64(Float64(z * y) / a));
                        	else
                        		tmp = Float64(x - Float64(Float64(x - y) * 1.0));
                        	end
                        	return tmp
                        end
                        
                        function tmp_2 = code(x, y, z, t, a)
                        	tmp = 0.0;
                        	if (t <= -1.22e+103)
                        		tmp = x - ((-1.0 * y) * 1.0);
                        	elseif (t <= -24000000000.0)
                        		tmp = ((x - y) / t) * z;
                        	elseif (t <= 1.75e+140)
                        		tmp = x + ((z * y) / a);
                        	else
                        		tmp = x - ((x - y) * 1.0);
                        	end
                        	tmp_2 = tmp;
                        end
                        
                        code[x_, y_, z_, t_, a_] := If[LessEqual[t, -1.22e+103], N[(x - N[(N[(-1.0 * y), $MachinePrecision] * 1.0), $MachinePrecision]), $MachinePrecision], If[LessEqual[t, -24000000000.0], N[(N[(N[(x - y), $MachinePrecision] / t), $MachinePrecision] * z), $MachinePrecision], If[LessEqual[t, 1.75e+140], N[(x + N[(N[(z * y), $MachinePrecision] / a), $MachinePrecision]), $MachinePrecision], N[(x - N[(N[(x - y), $MachinePrecision] * 1.0), $MachinePrecision]), $MachinePrecision]]]]
                        
                        \begin{array}{l}
                        \mathbf{if}\;t \leq -1.22 \cdot 10^{+103}:\\
                        \;\;\;\;x - \left(-1 \cdot y\right) \cdot 1\\
                        
                        \mathbf{elif}\;t \leq -24000000000:\\
                        \;\;\;\;\frac{x - y}{t} \cdot z\\
                        
                        \mathbf{elif}\;t \leq 1.75 \cdot 10^{+140}:\\
                        \;\;\;\;x + \frac{z \cdot y}{a}\\
                        
                        \mathbf{else}:\\
                        \;\;\;\;x - \left(x - y\right) \cdot 1\\
                        
                        
                        \end{array}
                        
                        Derivation
                        1. Split input into 4 regimes
                        2. if t < -1.22e103

                          1. Initial program 68.6%

                            \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
                          2. Step-by-step derivation
                            1. lift-+.f64N/A

                              \[\leadsto \color{blue}{x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
                            2. lift-/.f64N/A

                              \[\leadsto x + \color{blue}{\frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
                            3. mult-flipN/A

                              \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \left(z - t\right)\right) \cdot \frac{1}{a - t}} \]
                            4. lift-*.f64N/A

                              \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \left(z - t\right)\right)} \cdot \frac{1}{a - t} \]
                            5. *-commutativeN/A

                              \[\leadsto x + \color{blue}{\left(\left(z - t\right) \cdot \left(y - x\right)\right)} \cdot \frac{1}{a - t} \]
                            6. associate-*l*N/A

                              \[\leadsto x + \color{blue}{\left(z - t\right) \cdot \left(\left(y - x\right) \cdot \frac{1}{a - t}\right)} \]
                            7. *-commutativeN/A

                              \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \frac{1}{a - t}\right) \cdot \left(z - t\right)} \]
                            8. fp-cancel-sign-sub-invN/A

                              \[\leadsto \color{blue}{x - \left(\mathsf{neg}\left(\left(y - x\right) \cdot \frac{1}{a - t}\right)\right) \cdot \left(z - t\right)} \]
                            9. lower--.f64N/A

                              \[\leadsto \color{blue}{x - \left(\mathsf{neg}\left(\left(y - x\right) \cdot \frac{1}{a - t}\right)\right) \cdot \left(z - t\right)} \]
                            10. mult-flip-revN/A

                              \[\leadsto x - \left(\mathsf{neg}\left(\color{blue}{\frac{y - x}{a - t}}\right)\right) \cdot \left(z - t\right) \]
                            11. lift--.f64N/A

                              \[\leadsto x - \left(\mathsf{neg}\left(\frac{\color{blue}{y - x}}{a - t}\right)\right) \cdot \left(z - t\right) \]
                            12. div-subN/A

                              \[\leadsto x - \left(\mathsf{neg}\left(\color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)}\right)\right) \cdot \left(z - t\right) \]
                            13. sub-negateN/A

                              \[\leadsto x - \color{blue}{\left(\frac{x}{a - t} - \frac{y}{a - t}\right)} \cdot \left(z - t\right) \]
                            14. div-subN/A

                              \[\leadsto x - \color{blue}{\frac{x - y}{a - t}} \cdot \left(z - t\right) \]
                            15. frac-2neg-revN/A

                              \[\leadsto x - \color{blue}{\frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(z - t\right) \]
                            16. sub-negate-revN/A

                              \[\leadsto x - \frac{\color{blue}{y - x}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right) \]
                            17. lift--.f64N/A

                              \[\leadsto x - \frac{\color{blue}{y - x}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right) \]
                            18. lower-*.f64N/A

                              \[\leadsto x - \color{blue}{\frac{y - x}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right)} \]
                          3. Applied rewrites81.1%

                            \[\leadsto \color{blue}{x - \frac{x - y}{a - t} \cdot \left(z - t\right)} \]
                          4. Step-by-step derivation
                            1. lift-*.f64N/A

                              \[\leadsto x - \color{blue}{\frac{x - y}{a - t} \cdot \left(z - t\right)} \]
                            2. lift-/.f64N/A

                              \[\leadsto x - \color{blue}{\frac{x - y}{a - t}} \cdot \left(z - t\right) \]
                            3. mult-flipN/A

                              \[\leadsto x - \color{blue}{\left(\left(x - y\right) \cdot \frac{1}{a - t}\right)} \cdot \left(z - t\right) \]
                            4. associate-*l*N/A

                              \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                            5. lower-*.f64N/A

                              \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                            6. lower-*.f64N/A

                              \[\leadsto x - \left(x - y\right) \cdot \color{blue}{\left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                            7. lower-/.f6484.9%

                              \[\leadsto x - \left(x - y\right) \cdot \left(\color{blue}{\frac{1}{a - t}} \cdot \left(z - t\right)\right) \]
                          5. Applied rewrites84.9%

                            \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                          6. Taylor expanded in t around inf

                            \[\leadsto x - \left(x - y\right) \cdot \color{blue}{1} \]
                          7. Step-by-step derivation
                            1. Applied rewrites19.0%

                              \[\leadsto x - \left(x - y\right) \cdot \color{blue}{1} \]
                            2. Taylor expanded in x around 0

                              \[\leadsto x - \color{blue}{\left(-1 \cdot y\right)} \cdot 1 \]
                            3. Step-by-step derivation
                              1. lower-*.f6433.7%

                                \[\leadsto x - \left(-1 \cdot \color{blue}{y}\right) \cdot 1 \]
                            4. Applied rewrites33.7%

                              \[\leadsto x - \color{blue}{\left(-1 \cdot y\right)} \cdot 1 \]

                            if -1.22e103 < t < -2.4e10

                            1. Initial program 68.6%

                              \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
                            2. Taylor expanded in z around inf

                              \[\leadsto \color{blue}{z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                            3. Step-by-step derivation
                              1. lower-*.f64N/A

                                \[\leadsto z \cdot \color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                              2. lower--.f64N/A

                                \[\leadsto z \cdot \left(\frac{y}{a - t} - \color{blue}{\frac{x}{a - t}}\right) \]
                              3. lower-/.f64N/A

                                \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{\color{blue}{x}}{a - t}\right) \]
                              4. lower--.f64N/A

                                \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \]
                              5. lower-/.f64N/A

                                \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{\color{blue}{a - t}}\right) \]
                              6. lower--.f6442.6%

                                \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{a - \color{blue}{t}}\right) \]
                            4. Applied rewrites42.6%

                              \[\leadsto \color{blue}{z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                            5. Step-by-step derivation
                              1. lift-*.f64N/A

                                \[\leadsto z \cdot \color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                              2. *-commutativeN/A

                                \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot \color{blue}{z} \]
                              3. lower-*.f6442.6%

                                \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot \color{blue}{z} \]
                              4. lift--.f64N/A

                                \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot z \]
                              5. lift-/.f64N/A

                                \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot z \]
                              6. lift-/.f64N/A

                                \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot z \]
                              7. sub-divN/A

                                \[\leadsto \frac{y - x}{a - t} \cdot z \]
                              8. sub-negate-revN/A

                                \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{a - t} \cdot z \]
                              9. lift--.f64N/A

                                \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{a - t} \cdot z \]
                              10. lift--.f64N/A

                                \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{a - t} \cdot z \]
                              11. sub-negate-revN/A

                                \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(t - a\right)\right)} \cdot z \]
                              12. lift--.f64N/A

                                \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(t - a\right)\right)} \cdot z \]
                              13. frac-2neg-revN/A

                                \[\leadsto \frac{x - y}{t - a} \cdot z \]
                              14. lower-/.f6442.9%

                                \[\leadsto \frac{x - y}{t - a} \cdot z \]
                            6. Applied rewrites42.9%

                              \[\leadsto \frac{x - y}{t - a} \cdot \color{blue}{z} \]
                            7. Taylor expanded in t around inf

                              \[\leadsto \frac{x - y}{t} \cdot z \]
                            8. Step-by-step derivation
                              1. lower-/.f64N/A

                                \[\leadsto \frac{x - y}{t} \cdot z \]
                              2. lower--.f6426.0%

                                \[\leadsto \frac{x - y}{t} \cdot z \]
                            9. Applied rewrites26.0%

                              \[\leadsto \frac{x - y}{t} \cdot z \]

                            if -2.4e10 < t < 1.7499999999999999e140

                            1. Initial program 68.6%

                              \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
                            2. Taylor expanded in t around 0

                              \[\leadsto x + \color{blue}{\frac{z \cdot \left(y - x\right)}{a}} \]
                            3. Step-by-step derivation
                              1. lower-/.f64N/A

                                \[\leadsto x + \frac{z \cdot \left(y - x\right)}{\color{blue}{a}} \]
                              2. lower-*.f64N/A

                                \[\leadsto x + \frac{z \cdot \left(y - x\right)}{a} \]
                              3. lower--.f6444.9%

                                \[\leadsto x + \frac{z \cdot \left(y - x\right)}{a} \]
                            4. Applied rewrites44.9%

                              \[\leadsto x + \color{blue}{\frac{z \cdot \left(y - x\right)}{a}} \]
                            5. Taylor expanded in x around 0

                              \[\leadsto x + \frac{z \cdot y}{a} \]
                            6. Step-by-step derivation
                              1. Applied rewrites38.7%

                                \[\leadsto x + \frac{z \cdot y}{a} \]

                              if 1.7499999999999999e140 < t

                              1. Initial program 68.6%

                                \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
                              2. Step-by-step derivation
                                1. lift-+.f64N/A

                                  \[\leadsto \color{blue}{x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
                                2. lift-/.f64N/A

                                  \[\leadsto x + \color{blue}{\frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
                                3. mult-flipN/A

                                  \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \left(z - t\right)\right) \cdot \frac{1}{a - t}} \]
                                4. lift-*.f64N/A

                                  \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \left(z - t\right)\right)} \cdot \frac{1}{a - t} \]
                                5. *-commutativeN/A

                                  \[\leadsto x + \color{blue}{\left(\left(z - t\right) \cdot \left(y - x\right)\right)} \cdot \frac{1}{a - t} \]
                                6. associate-*l*N/A

                                  \[\leadsto x + \color{blue}{\left(z - t\right) \cdot \left(\left(y - x\right) \cdot \frac{1}{a - t}\right)} \]
                                7. *-commutativeN/A

                                  \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \frac{1}{a - t}\right) \cdot \left(z - t\right)} \]
                                8. fp-cancel-sign-sub-invN/A

                                  \[\leadsto \color{blue}{x - \left(\mathsf{neg}\left(\left(y - x\right) \cdot \frac{1}{a - t}\right)\right) \cdot \left(z - t\right)} \]
                                9. lower--.f64N/A

                                  \[\leadsto \color{blue}{x - \left(\mathsf{neg}\left(\left(y - x\right) \cdot \frac{1}{a - t}\right)\right) \cdot \left(z - t\right)} \]
                                10. mult-flip-revN/A

                                  \[\leadsto x - \left(\mathsf{neg}\left(\color{blue}{\frac{y - x}{a - t}}\right)\right) \cdot \left(z - t\right) \]
                                11. lift--.f64N/A

                                  \[\leadsto x - \left(\mathsf{neg}\left(\frac{\color{blue}{y - x}}{a - t}\right)\right) \cdot \left(z - t\right) \]
                                12. div-subN/A

                                  \[\leadsto x - \left(\mathsf{neg}\left(\color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)}\right)\right) \cdot \left(z - t\right) \]
                                13. sub-negateN/A

                                  \[\leadsto x - \color{blue}{\left(\frac{x}{a - t} - \frac{y}{a - t}\right)} \cdot \left(z - t\right) \]
                                14. div-subN/A

                                  \[\leadsto x - \color{blue}{\frac{x - y}{a - t}} \cdot \left(z - t\right) \]
                                15. frac-2neg-revN/A

                                  \[\leadsto x - \color{blue}{\frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(z - t\right) \]
                                16. sub-negate-revN/A

                                  \[\leadsto x - \frac{\color{blue}{y - x}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right) \]
                                17. lift--.f64N/A

                                  \[\leadsto x - \frac{\color{blue}{y - x}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right) \]
                                18. lower-*.f64N/A

                                  \[\leadsto x - \color{blue}{\frac{y - x}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right)} \]
                              3. Applied rewrites81.1%

                                \[\leadsto \color{blue}{x - \frac{x - y}{a - t} \cdot \left(z - t\right)} \]
                              4. Step-by-step derivation
                                1. lift-*.f64N/A

                                  \[\leadsto x - \color{blue}{\frac{x - y}{a - t} \cdot \left(z - t\right)} \]
                                2. lift-/.f64N/A

                                  \[\leadsto x - \color{blue}{\frac{x - y}{a - t}} \cdot \left(z - t\right) \]
                                3. mult-flipN/A

                                  \[\leadsto x - \color{blue}{\left(\left(x - y\right) \cdot \frac{1}{a - t}\right)} \cdot \left(z - t\right) \]
                                4. associate-*l*N/A

                                  \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                                5. lower-*.f64N/A

                                  \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                                6. lower-*.f64N/A

                                  \[\leadsto x - \left(x - y\right) \cdot \color{blue}{\left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                                7. lower-/.f6484.9%

                                  \[\leadsto x - \left(x - y\right) \cdot \left(\color{blue}{\frac{1}{a - t}} \cdot \left(z - t\right)\right) \]
                              5. Applied rewrites84.9%

                                \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                              6. Taylor expanded in t around inf

                                \[\leadsto x - \left(x - y\right) \cdot \color{blue}{1} \]
                              7. Step-by-step derivation
                                1. Applied rewrites19.0%

                                  \[\leadsto x - \left(x - y\right) \cdot \color{blue}{1} \]
                              8. Recombined 4 regimes into one program.
                              9. Add Preprocessing

                              Alternative 13: 44.9% accurate, 0.9× speedup?

                              \[\begin{array}{l} \mathbf{if}\;z \leq -3.5 \cdot 10^{+90}:\\ \;\;\;\;\frac{x - y}{t} \cdot z\\ \mathbf{elif}\;z \leq 2.25 \cdot 10^{+108}:\\ \;\;\;\;x - \left(-1 \cdot y\right) \cdot 1\\ \mathbf{else}:\\ \;\;\;\;z \cdot \frac{y - x}{a}\\ \end{array} \]
                              (FPCore (x y z t a)
                                :precision binary64
                                (if (<= z -3.5e+90)
                                (* (/ (- x y) t) z)
                                (if (<= z 2.25e+108) (- x (* (* -1.0 y) 1.0)) (* z (/ (- y x) a)))))
                              double code(double x, double y, double z, double t, double a) {
                              	double tmp;
                              	if (z <= -3.5e+90) {
                              		tmp = ((x - y) / t) * z;
                              	} else if (z <= 2.25e+108) {
                              		tmp = x - ((-1.0 * y) * 1.0);
                              	} else {
                              		tmp = z * ((y - x) / a);
                              	}
                              	return tmp;
                              }
                              
                              module fmin_fmax_functions
                                  implicit none
                                  private
                                  public fmax
                                  public fmin
                              
                                  interface fmax
                                      module procedure fmax88
                                      module procedure fmax44
                                      module procedure fmax84
                                      module procedure fmax48
                                  end interface
                                  interface fmin
                                      module procedure fmin88
                                      module procedure fmin44
                                      module procedure fmin84
                                      module procedure fmin48
                                  end interface
                              contains
                                  real(8) function fmax88(x, y) result (res)
                                      real(8), intent (in) :: x
                                      real(8), intent (in) :: y
                                      res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                  end function
                                  real(4) function fmax44(x, y) result (res)
                                      real(4), intent (in) :: x
                                      real(4), intent (in) :: y
                                      res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                  end function
                                  real(8) function fmax84(x, y) result(res)
                                      real(8), intent (in) :: x
                                      real(4), intent (in) :: y
                                      res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                                  end function
                                  real(8) function fmax48(x, y) result(res)
                                      real(4), intent (in) :: x
                                      real(8), intent (in) :: y
                                      res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                                  end function
                                  real(8) function fmin88(x, y) result (res)
                                      real(8), intent (in) :: x
                                      real(8), intent (in) :: y
                                      res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                  end function
                                  real(4) function fmin44(x, y) result (res)
                                      real(4), intent (in) :: x
                                      real(4), intent (in) :: y
                                      res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                  end function
                                  real(8) function fmin84(x, y) result(res)
                                      real(8), intent (in) :: x
                                      real(4), intent (in) :: y
                                      res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                                  end function
                                  real(8) function fmin48(x, y) result(res)
                                      real(4), intent (in) :: x
                                      real(8), intent (in) :: y
                                      res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                                  end function
                              end module
                              
                              real(8) function code(x, y, z, t, a)
                              use fmin_fmax_functions
                                  real(8), intent (in) :: x
                                  real(8), intent (in) :: y
                                  real(8), intent (in) :: z
                                  real(8), intent (in) :: t
                                  real(8), intent (in) :: a
                                  real(8) :: tmp
                                  if (z <= (-3.5d+90)) then
                                      tmp = ((x - y) / t) * z
                                  else if (z <= 2.25d+108) then
                                      tmp = x - (((-1.0d0) * y) * 1.0d0)
                                  else
                                      tmp = z * ((y - x) / a)
                                  end if
                                  code = tmp
                              end function
                              
                              public static double code(double x, double y, double z, double t, double a) {
                              	double tmp;
                              	if (z <= -3.5e+90) {
                              		tmp = ((x - y) / t) * z;
                              	} else if (z <= 2.25e+108) {
                              		tmp = x - ((-1.0 * y) * 1.0);
                              	} else {
                              		tmp = z * ((y - x) / a);
                              	}
                              	return tmp;
                              }
                              
                              def code(x, y, z, t, a):
                              	tmp = 0
                              	if z <= -3.5e+90:
                              		tmp = ((x - y) / t) * z
                              	elif z <= 2.25e+108:
                              		tmp = x - ((-1.0 * y) * 1.0)
                              	else:
                              		tmp = z * ((y - x) / a)
                              	return tmp
                              
                              function code(x, y, z, t, a)
                              	tmp = 0.0
                              	if (z <= -3.5e+90)
                              		tmp = Float64(Float64(Float64(x - y) / t) * z);
                              	elseif (z <= 2.25e+108)
                              		tmp = Float64(x - Float64(Float64(-1.0 * y) * 1.0));
                              	else
                              		tmp = Float64(z * Float64(Float64(y - x) / a));
                              	end
                              	return tmp
                              end
                              
                              function tmp_2 = code(x, y, z, t, a)
                              	tmp = 0.0;
                              	if (z <= -3.5e+90)
                              		tmp = ((x - y) / t) * z;
                              	elseif (z <= 2.25e+108)
                              		tmp = x - ((-1.0 * y) * 1.0);
                              	else
                              		tmp = z * ((y - x) / a);
                              	end
                              	tmp_2 = tmp;
                              end
                              
                              code[x_, y_, z_, t_, a_] := If[LessEqual[z, -3.5e+90], N[(N[(N[(x - y), $MachinePrecision] / t), $MachinePrecision] * z), $MachinePrecision], If[LessEqual[z, 2.25e+108], N[(x - N[(N[(-1.0 * y), $MachinePrecision] * 1.0), $MachinePrecision]), $MachinePrecision], N[(z * N[(N[(y - x), $MachinePrecision] / a), $MachinePrecision]), $MachinePrecision]]]
                              
                              \begin{array}{l}
                              \mathbf{if}\;z \leq -3.5 \cdot 10^{+90}:\\
                              \;\;\;\;\frac{x - y}{t} \cdot z\\
                              
                              \mathbf{elif}\;z \leq 2.25 \cdot 10^{+108}:\\
                              \;\;\;\;x - \left(-1 \cdot y\right) \cdot 1\\
                              
                              \mathbf{else}:\\
                              \;\;\;\;z \cdot \frac{y - x}{a}\\
                              
                              
                              \end{array}
                              
                              Derivation
                              1. Split input into 3 regimes
                              2. if z < -3.4999999999999998e90

                                1. Initial program 68.6%

                                  \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
                                2. Taylor expanded in z around inf

                                  \[\leadsto \color{blue}{z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                                3. Step-by-step derivation
                                  1. lower-*.f64N/A

                                    \[\leadsto z \cdot \color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                                  2. lower--.f64N/A

                                    \[\leadsto z \cdot \left(\frac{y}{a - t} - \color{blue}{\frac{x}{a - t}}\right) \]
                                  3. lower-/.f64N/A

                                    \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{\color{blue}{x}}{a - t}\right) \]
                                  4. lower--.f64N/A

                                    \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \]
                                  5. lower-/.f64N/A

                                    \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{\color{blue}{a - t}}\right) \]
                                  6. lower--.f6442.6%

                                    \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{a - \color{blue}{t}}\right) \]
                                4. Applied rewrites42.6%

                                  \[\leadsto \color{blue}{z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                                5. Step-by-step derivation
                                  1. lift-*.f64N/A

                                    \[\leadsto z \cdot \color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                                  2. *-commutativeN/A

                                    \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot \color{blue}{z} \]
                                  3. lower-*.f6442.6%

                                    \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot \color{blue}{z} \]
                                  4. lift--.f64N/A

                                    \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot z \]
                                  5. lift-/.f64N/A

                                    \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot z \]
                                  6. lift-/.f64N/A

                                    \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot z \]
                                  7. sub-divN/A

                                    \[\leadsto \frac{y - x}{a - t} \cdot z \]
                                  8. sub-negate-revN/A

                                    \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{a - t} \cdot z \]
                                  9. lift--.f64N/A

                                    \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{a - t} \cdot z \]
                                  10. lift--.f64N/A

                                    \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{a - t} \cdot z \]
                                  11. sub-negate-revN/A

                                    \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(t - a\right)\right)} \cdot z \]
                                  12. lift--.f64N/A

                                    \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(t - a\right)\right)} \cdot z \]
                                  13. frac-2neg-revN/A

                                    \[\leadsto \frac{x - y}{t - a} \cdot z \]
                                  14. lower-/.f6442.9%

                                    \[\leadsto \frac{x - y}{t - a} \cdot z \]
                                6. Applied rewrites42.9%

                                  \[\leadsto \frac{x - y}{t - a} \cdot \color{blue}{z} \]
                                7. Taylor expanded in t around inf

                                  \[\leadsto \frac{x - y}{t} \cdot z \]
                                8. Step-by-step derivation
                                  1. lower-/.f64N/A

                                    \[\leadsto \frac{x - y}{t} \cdot z \]
                                  2. lower--.f6426.0%

                                    \[\leadsto \frac{x - y}{t} \cdot z \]
                                9. Applied rewrites26.0%

                                  \[\leadsto \frac{x - y}{t} \cdot z \]

                                if -3.4999999999999998e90 < z < 2.25e108

                                1. Initial program 68.6%

                                  \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
                                2. Step-by-step derivation
                                  1. lift-+.f64N/A

                                    \[\leadsto \color{blue}{x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
                                  2. lift-/.f64N/A

                                    \[\leadsto x + \color{blue}{\frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
                                  3. mult-flipN/A

                                    \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \left(z - t\right)\right) \cdot \frac{1}{a - t}} \]
                                  4. lift-*.f64N/A

                                    \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \left(z - t\right)\right)} \cdot \frac{1}{a - t} \]
                                  5. *-commutativeN/A

                                    \[\leadsto x + \color{blue}{\left(\left(z - t\right) \cdot \left(y - x\right)\right)} \cdot \frac{1}{a - t} \]
                                  6. associate-*l*N/A

                                    \[\leadsto x + \color{blue}{\left(z - t\right) \cdot \left(\left(y - x\right) \cdot \frac{1}{a - t}\right)} \]
                                  7. *-commutativeN/A

                                    \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \frac{1}{a - t}\right) \cdot \left(z - t\right)} \]
                                  8. fp-cancel-sign-sub-invN/A

                                    \[\leadsto \color{blue}{x - \left(\mathsf{neg}\left(\left(y - x\right) \cdot \frac{1}{a - t}\right)\right) \cdot \left(z - t\right)} \]
                                  9. lower--.f64N/A

                                    \[\leadsto \color{blue}{x - \left(\mathsf{neg}\left(\left(y - x\right) \cdot \frac{1}{a - t}\right)\right) \cdot \left(z - t\right)} \]
                                  10. mult-flip-revN/A

                                    \[\leadsto x - \left(\mathsf{neg}\left(\color{blue}{\frac{y - x}{a - t}}\right)\right) \cdot \left(z - t\right) \]
                                  11. lift--.f64N/A

                                    \[\leadsto x - \left(\mathsf{neg}\left(\frac{\color{blue}{y - x}}{a - t}\right)\right) \cdot \left(z - t\right) \]
                                  12. div-subN/A

                                    \[\leadsto x - \left(\mathsf{neg}\left(\color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)}\right)\right) \cdot \left(z - t\right) \]
                                  13. sub-negateN/A

                                    \[\leadsto x - \color{blue}{\left(\frac{x}{a - t} - \frac{y}{a - t}\right)} \cdot \left(z - t\right) \]
                                  14. div-subN/A

                                    \[\leadsto x - \color{blue}{\frac{x - y}{a - t}} \cdot \left(z - t\right) \]
                                  15. frac-2neg-revN/A

                                    \[\leadsto x - \color{blue}{\frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(z - t\right) \]
                                  16. sub-negate-revN/A

                                    \[\leadsto x - \frac{\color{blue}{y - x}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right) \]
                                  17. lift--.f64N/A

                                    \[\leadsto x - \frac{\color{blue}{y - x}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right) \]
                                  18. lower-*.f64N/A

                                    \[\leadsto x - \color{blue}{\frac{y - x}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right)} \]
                                3. Applied rewrites81.1%

                                  \[\leadsto \color{blue}{x - \frac{x - y}{a - t} \cdot \left(z - t\right)} \]
                                4. Step-by-step derivation
                                  1. lift-*.f64N/A

                                    \[\leadsto x - \color{blue}{\frac{x - y}{a - t} \cdot \left(z - t\right)} \]
                                  2. lift-/.f64N/A

                                    \[\leadsto x - \color{blue}{\frac{x - y}{a - t}} \cdot \left(z - t\right) \]
                                  3. mult-flipN/A

                                    \[\leadsto x - \color{blue}{\left(\left(x - y\right) \cdot \frac{1}{a - t}\right)} \cdot \left(z - t\right) \]
                                  4. associate-*l*N/A

                                    \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                                  5. lower-*.f64N/A

                                    \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                                  6. lower-*.f64N/A

                                    \[\leadsto x - \left(x - y\right) \cdot \color{blue}{\left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                                  7. lower-/.f6484.9%

                                    \[\leadsto x - \left(x - y\right) \cdot \left(\color{blue}{\frac{1}{a - t}} \cdot \left(z - t\right)\right) \]
                                5. Applied rewrites84.9%

                                  \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                                6. Taylor expanded in t around inf

                                  \[\leadsto x - \left(x - y\right) \cdot \color{blue}{1} \]
                                7. Step-by-step derivation
                                  1. Applied rewrites19.0%

                                    \[\leadsto x - \left(x - y\right) \cdot \color{blue}{1} \]
                                  2. Taylor expanded in x around 0

                                    \[\leadsto x - \color{blue}{\left(-1 \cdot y\right)} \cdot 1 \]
                                  3. Step-by-step derivation
                                    1. lower-*.f6433.7%

                                      \[\leadsto x - \left(-1 \cdot \color{blue}{y}\right) \cdot 1 \]
                                  4. Applied rewrites33.7%

                                    \[\leadsto x - \color{blue}{\left(-1 \cdot y\right)} \cdot 1 \]

                                  if 2.25e108 < z

                                  1. Initial program 68.6%

                                    \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
                                  2. Taylor expanded in z around inf

                                    \[\leadsto \color{blue}{z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                                  3. Step-by-step derivation
                                    1. lower-*.f64N/A

                                      \[\leadsto z \cdot \color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                                    2. lower--.f64N/A

                                      \[\leadsto z \cdot \left(\frac{y}{a - t} - \color{blue}{\frac{x}{a - t}}\right) \]
                                    3. lower-/.f64N/A

                                      \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{\color{blue}{x}}{a - t}\right) \]
                                    4. lower--.f64N/A

                                      \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \]
                                    5. lower-/.f64N/A

                                      \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{\color{blue}{a - t}}\right) \]
                                    6. lower--.f6442.6%

                                      \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{a - \color{blue}{t}}\right) \]
                                  4. Applied rewrites42.6%

                                    \[\leadsto \color{blue}{z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                                  5. Taylor expanded in a around inf

                                    \[\leadsto z \cdot \frac{y - x}{\color{blue}{a}} \]
                                  6. Step-by-step derivation
                                    1. lower-/.f64N/A

                                      \[\leadsto z \cdot \frac{y - x}{a} \]
                                    2. lower--.f6426.3%

                                      \[\leadsto z \cdot \frac{y - x}{a} \]
                                  7. Applied rewrites26.3%

                                    \[\leadsto z \cdot \frac{y - x}{\color{blue}{a}} \]
                                8. Recombined 3 regimes into one program.
                                9. Add Preprocessing

                                Alternative 14: 44.4% accurate, 0.9× speedup?

                                \[\begin{array}{l} \mathbf{if}\;z \leq -3.5 \cdot 10^{+90}:\\ \;\;\;\;\frac{x}{t - a} \cdot z\\ \mathbf{elif}\;z \leq 2.25 \cdot 10^{+108}:\\ \;\;\;\;x - \left(-1 \cdot y\right) \cdot 1\\ \mathbf{else}:\\ \;\;\;\;z \cdot \frac{y - x}{a}\\ \end{array} \]
                                (FPCore (x y z t a)
                                  :precision binary64
                                  (if (<= z -3.5e+90)
                                  (* (/ x (- t a)) z)
                                  (if (<= z 2.25e+108) (- x (* (* -1.0 y) 1.0)) (* z (/ (- y x) a)))))
                                double code(double x, double y, double z, double t, double a) {
                                	double tmp;
                                	if (z <= -3.5e+90) {
                                		tmp = (x / (t - a)) * z;
                                	} else if (z <= 2.25e+108) {
                                		tmp = x - ((-1.0 * y) * 1.0);
                                	} else {
                                		tmp = z * ((y - x) / a);
                                	}
                                	return tmp;
                                }
                                
                                module fmin_fmax_functions
                                    implicit none
                                    private
                                    public fmax
                                    public fmin
                                
                                    interface fmax
                                        module procedure fmax88
                                        module procedure fmax44
                                        module procedure fmax84
                                        module procedure fmax48
                                    end interface
                                    interface fmin
                                        module procedure fmin88
                                        module procedure fmin44
                                        module procedure fmin84
                                        module procedure fmin48
                                    end interface
                                contains
                                    real(8) function fmax88(x, y) result (res)
                                        real(8), intent (in) :: x
                                        real(8), intent (in) :: y
                                        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                    end function
                                    real(4) function fmax44(x, y) result (res)
                                        real(4), intent (in) :: x
                                        real(4), intent (in) :: y
                                        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                    end function
                                    real(8) function fmax84(x, y) result(res)
                                        real(8), intent (in) :: x
                                        real(4), intent (in) :: y
                                        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                                    end function
                                    real(8) function fmax48(x, y) result(res)
                                        real(4), intent (in) :: x
                                        real(8), intent (in) :: y
                                        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                                    end function
                                    real(8) function fmin88(x, y) result (res)
                                        real(8), intent (in) :: x
                                        real(8), intent (in) :: y
                                        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                    end function
                                    real(4) function fmin44(x, y) result (res)
                                        real(4), intent (in) :: x
                                        real(4), intent (in) :: y
                                        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                    end function
                                    real(8) function fmin84(x, y) result(res)
                                        real(8), intent (in) :: x
                                        real(4), intent (in) :: y
                                        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                                    end function
                                    real(8) function fmin48(x, y) result(res)
                                        real(4), intent (in) :: x
                                        real(8), intent (in) :: y
                                        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                                    end function
                                end module
                                
                                real(8) function code(x, y, z, t, a)
                                use fmin_fmax_functions
                                    real(8), intent (in) :: x
                                    real(8), intent (in) :: y
                                    real(8), intent (in) :: z
                                    real(8), intent (in) :: t
                                    real(8), intent (in) :: a
                                    real(8) :: tmp
                                    if (z <= (-3.5d+90)) then
                                        tmp = (x / (t - a)) * z
                                    else if (z <= 2.25d+108) then
                                        tmp = x - (((-1.0d0) * y) * 1.0d0)
                                    else
                                        tmp = z * ((y - x) / a)
                                    end if
                                    code = tmp
                                end function
                                
                                public static double code(double x, double y, double z, double t, double a) {
                                	double tmp;
                                	if (z <= -3.5e+90) {
                                		tmp = (x / (t - a)) * z;
                                	} else if (z <= 2.25e+108) {
                                		tmp = x - ((-1.0 * y) * 1.0);
                                	} else {
                                		tmp = z * ((y - x) / a);
                                	}
                                	return tmp;
                                }
                                
                                def code(x, y, z, t, a):
                                	tmp = 0
                                	if z <= -3.5e+90:
                                		tmp = (x / (t - a)) * z
                                	elif z <= 2.25e+108:
                                		tmp = x - ((-1.0 * y) * 1.0)
                                	else:
                                		tmp = z * ((y - x) / a)
                                	return tmp
                                
                                function code(x, y, z, t, a)
                                	tmp = 0.0
                                	if (z <= -3.5e+90)
                                		tmp = Float64(Float64(x / Float64(t - a)) * z);
                                	elseif (z <= 2.25e+108)
                                		tmp = Float64(x - Float64(Float64(-1.0 * y) * 1.0));
                                	else
                                		tmp = Float64(z * Float64(Float64(y - x) / a));
                                	end
                                	return tmp
                                end
                                
                                function tmp_2 = code(x, y, z, t, a)
                                	tmp = 0.0;
                                	if (z <= -3.5e+90)
                                		tmp = (x / (t - a)) * z;
                                	elseif (z <= 2.25e+108)
                                		tmp = x - ((-1.0 * y) * 1.0);
                                	else
                                		tmp = z * ((y - x) / a);
                                	end
                                	tmp_2 = tmp;
                                end
                                
                                code[x_, y_, z_, t_, a_] := If[LessEqual[z, -3.5e+90], N[(N[(x / N[(t - a), $MachinePrecision]), $MachinePrecision] * z), $MachinePrecision], If[LessEqual[z, 2.25e+108], N[(x - N[(N[(-1.0 * y), $MachinePrecision] * 1.0), $MachinePrecision]), $MachinePrecision], N[(z * N[(N[(y - x), $MachinePrecision] / a), $MachinePrecision]), $MachinePrecision]]]
                                
                                \begin{array}{l}
                                \mathbf{if}\;z \leq -3.5 \cdot 10^{+90}:\\
                                \;\;\;\;\frac{x}{t - a} \cdot z\\
                                
                                \mathbf{elif}\;z \leq 2.25 \cdot 10^{+108}:\\
                                \;\;\;\;x - \left(-1 \cdot y\right) \cdot 1\\
                                
                                \mathbf{else}:\\
                                \;\;\;\;z \cdot \frac{y - x}{a}\\
                                
                                
                                \end{array}
                                
                                Derivation
                                1. Split input into 3 regimes
                                2. if z < -3.4999999999999998e90

                                  1. Initial program 68.6%

                                    \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
                                  2. Taylor expanded in z around inf

                                    \[\leadsto \color{blue}{z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                                  3. Step-by-step derivation
                                    1. lower-*.f64N/A

                                      \[\leadsto z \cdot \color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                                    2. lower--.f64N/A

                                      \[\leadsto z \cdot \left(\frac{y}{a - t} - \color{blue}{\frac{x}{a - t}}\right) \]
                                    3. lower-/.f64N/A

                                      \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{\color{blue}{x}}{a - t}\right) \]
                                    4. lower--.f64N/A

                                      \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \]
                                    5. lower-/.f64N/A

                                      \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{\color{blue}{a - t}}\right) \]
                                    6. lower--.f6442.6%

                                      \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{a - \color{blue}{t}}\right) \]
                                  4. Applied rewrites42.6%

                                    \[\leadsto \color{blue}{z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                                  5. Step-by-step derivation
                                    1. lift-*.f64N/A

                                      \[\leadsto z \cdot \color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                                    2. *-commutativeN/A

                                      \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot \color{blue}{z} \]
                                    3. lower-*.f6442.6%

                                      \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot \color{blue}{z} \]
                                    4. lift--.f64N/A

                                      \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot z \]
                                    5. lift-/.f64N/A

                                      \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot z \]
                                    6. lift-/.f64N/A

                                      \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot z \]
                                    7. sub-divN/A

                                      \[\leadsto \frac{y - x}{a - t} \cdot z \]
                                    8. sub-negate-revN/A

                                      \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{a - t} \cdot z \]
                                    9. lift--.f64N/A

                                      \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{a - t} \cdot z \]
                                    10. lift--.f64N/A

                                      \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{a - t} \cdot z \]
                                    11. sub-negate-revN/A

                                      \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(t - a\right)\right)} \cdot z \]
                                    12. lift--.f64N/A

                                      \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(t - a\right)\right)} \cdot z \]
                                    13. frac-2neg-revN/A

                                      \[\leadsto \frac{x - y}{t - a} \cdot z \]
                                    14. lower-/.f6442.9%

                                      \[\leadsto \frac{x - y}{t - a} \cdot z \]
                                  6. Applied rewrites42.9%

                                    \[\leadsto \frac{x - y}{t - a} \cdot \color{blue}{z} \]
                                  7. Taylor expanded in x around inf

                                    \[\leadsto \frac{x}{t - a} \cdot z \]
                                  8. Step-by-step derivation
                                    1. lower-/.f64N/A

                                      \[\leadsto \frac{x}{t - a} \cdot z \]
                                    2. lower--.f6423.6%

                                      \[\leadsto \frac{x}{t - a} \cdot z \]
                                  9. Applied rewrites23.6%

                                    \[\leadsto \frac{x}{t - a} \cdot z \]

                                  if -3.4999999999999998e90 < z < 2.25e108

                                  1. Initial program 68.6%

                                    \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
                                  2. Step-by-step derivation
                                    1. lift-+.f64N/A

                                      \[\leadsto \color{blue}{x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
                                    2. lift-/.f64N/A

                                      \[\leadsto x + \color{blue}{\frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
                                    3. mult-flipN/A

                                      \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \left(z - t\right)\right) \cdot \frac{1}{a - t}} \]
                                    4. lift-*.f64N/A

                                      \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \left(z - t\right)\right)} \cdot \frac{1}{a - t} \]
                                    5. *-commutativeN/A

                                      \[\leadsto x + \color{blue}{\left(\left(z - t\right) \cdot \left(y - x\right)\right)} \cdot \frac{1}{a - t} \]
                                    6. associate-*l*N/A

                                      \[\leadsto x + \color{blue}{\left(z - t\right) \cdot \left(\left(y - x\right) \cdot \frac{1}{a - t}\right)} \]
                                    7. *-commutativeN/A

                                      \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \frac{1}{a - t}\right) \cdot \left(z - t\right)} \]
                                    8. fp-cancel-sign-sub-invN/A

                                      \[\leadsto \color{blue}{x - \left(\mathsf{neg}\left(\left(y - x\right) \cdot \frac{1}{a - t}\right)\right) \cdot \left(z - t\right)} \]
                                    9. lower--.f64N/A

                                      \[\leadsto \color{blue}{x - \left(\mathsf{neg}\left(\left(y - x\right) \cdot \frac{1}{a - t}\right)\right) \cdot \left(z - t\right)} \]
                                    10. mult-flip-revN/A

                                      \[\leadsto x - \left(\mathsf{neg}\left(\color{blue}{\frac{y - x}{a - t}}\right)\right) \cdot \left(z - t\right) \]
                                    11. lift--.f64N/A

                                      \[\leadsto x - \left(\mathsf{neg}\left(\frac{\color{blue}{y - x}}{a - t}\right)\right) \cdot \left(z - t\right) \]
                                    12. div-subN/A

                                      \[\leadsto x - \left(\mathsf{neg}\left(\color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)}\right)\right) \cdot \left(z - t\right) \]
                                    13. sub-negateN/A

                                      \[\leadsto x - \color{blue}{\left(\frac{x}{a - t} - \frac{y}{a - t}\right)} \cdot \left(z - t\right) \]
                                    14. div-subN/A

                                      \[\leadsto x - \color{blue}{\frac{x - y}{a - t}} \cdot \left(z - t\right) \]
                                    15. frac-2neg-revN/A

                                      \[\leadsto x - \color{blue}{\frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(z - t\right) \]
                                    16. sub-negate-revN/A

                                      \[\leadsto x - \frac{\color{blue}{y - x}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right) \]
                                    17. lift--.f64N/A

                                      \[\leadsto x - \frac{\color{blue}{y - x}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right) \]
                                    18. lower-*.f64N/A

                                      \[\leadsto x - \color{blue}{\frac{y - x}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right)} \]
                                  3. Applied rewrites81.1%

                                    \[\leadsto \color{blue}{x - \frac{x - y}{a - t} \cdot \left(z - t\right)} \]
                                  4. Step-by-step derivation
                                    1. lift-*.f64N/A

                                      \[\leadsto x - \color{blue}{\frac{x - y}{a - t} \cdot \left(z - t\right)} \]
                                    2. lift-/.f64N/A

                                      \[\leadsto x - \color{blue}{\frac{x - y}{a - t}} \cdot \left(z - t\right) \]
                                    3. mult-flipN/A

                                      \[\leadsto x - \color{blue}{\left(\left(x - y\right) \cdot \frac{1}{a - t}\right)} \cdot \left(z - t\right) \]
                                    4. associate-*l*N/A

                                      \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                                    5. lower-*.f64N/A

                                      \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                                    6. lower-*.f64N/A

                                      \[\leadsto x - \left(x - y\right) \cdot \color{blue}{\left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                                    7. lower-/.f6484.9%

                                      \[\leadsto x - \left(x - y\right) \cdot \left(\color{blue}{\frac{1}{a - t}} \cdot \left(z - t\right)\right) \]
                                  5. Applied rewrites84.9%

                                    \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                                  6. Taylor expanded in t around inf

                                    \[\leadsto x - \left(x - y\right) \cdot \color{blue}{1} \]
                                  7. Step-by-step derivation
                                    1. Applied rewrites19.0%

                                      \[\leadsto x - \left(x - y\right) \cdot \color{blue}{1} \]
                                    2. Taylor expanded in x around 0

                                      \[\leadsto x - \color{blue}{\left(-1 \cdot y\right)} \cdot 1 \]
                                    3. Step-by-step derivation
                                      1. lower-*.f6433.7%

                                        \[\leadsto x - \left(-1 \cdot \color{blue}{y}\right) \cdot 1 \]
                                    4. Applied rewrites33.7%

                                      \[\leadsto x - \color{blue}{\left(-1 \cdot y\right)} \cdot 1 \]

                                    if 2.25e108 < z

                                    1. Initial program 68.6%

                                      \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
                                    2. Taylor expanded in z around inf

                                      \[\leadsto \color{blue}{z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                                    3. Step-by-step derivation
                                      1. lower-*.f64N/A

                                        \[\leadsto z \cdot \color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                                      2. lower--.f64N/A

                                        \[\leadsto z \cdot \left(\frac{y}{a - t} - \color{blue}{\frac{x}{a - t}}\right) \]
                                      3. lower-/.f64N/A

                                        \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{\color{blue}{x}}{a - t}\right) \]
                                      4. lower--.f64N/A

                                        \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \]
                                      5. lower-/.f64N/A

                                        \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{\color{blue}{a - t}}\right) \]
                                      6. lower--.f6442.6%

                                        \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{a - \color{blue}{t}}\right) \]
                                    4. Applied rewrites42.6%

                                      \[\leadsto \color{blue}{z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                                    5. Taylor expanded in a around inf

                                      \[\leadsto z \cdot \frac{y - x}{\color{blue}{a}} \]
                                    6. Step-by-step derivation
                                      1. lower-/.f64N/A

                                        \[\leadsto z \cdot \frac{y - x}{a} \]
                                      2. lower--.f6426.3%

                                        \[\leadsto z \cdot \frac{y - x}{a} \]
                                    7. Applied rewrites26.3%

                                      \[\leadsto z \cdot \frac{y - x}{\color{blue}{a}} \]
                                  8. Recombined 3 regimes into one program.
                                  9. Add Preprocessing

                                  Alternative 15: 43.8% accurate, 0.9× speedup?

                                  \[\begin{array}{l} t_1 := z \cdot \frac{y - x}{a}\\ \mathbf{if}\;z \leq -3.5 \cdot 10^{+90}:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;z \leq 2.25 \cdot 10^{+108}:\\ \;\;\;\;x - \left(-1 \cdot y\right) \cdot 1\\ \mathbf{else}:\\ \;\;\;\;t\_1\\ \end{array} \]
                                  (FPCore (x y z t a)
                                    :precision binary64
                                    (let* ((t_1 (* z (/ (- y x) a))))
                                    (if (<= z -3.5e+90)
                                      t_1
                                      (if (<= z 2.25e+108) (- x (* (* -1.0 y) 1.0)) t_1))))
                                  double code(double x, double y, double z, double t, double a) {
                                  	double t_1 = z * ((y - x) / a);
                                  	double tmp;
                                  	if (z <= -3.5e+90) {
                                  		tmp = t_1;
                                  	} else if (z <= 2.25e+108) {
                                  		tmp = x - ((-1.0 * y) * 1.0);
                                  	} else {
                                  		tmp = t_1;
                                  	}
                                  	return tmp;
                                  }
                                  
                                  module fmin_fmax_functions
                                      implicit none
                                      private
                                      public fmax
                                      public fmin
                                  
                                      interface fmax
                                          module procedure fmax88
                                          module procedure fmax44
                                          module procedure fmax84
                                          module procedure fmax48
                                      end interface
                                      interface fmin
                                          module procedure fmin88
                                          module procedure fmin44
                                          module procedure fmin84
                                          module procedure fmin48
                                      end interface
                                  contains
                                      real(8) function fmax88(x, y) result (res)
                                          real(8), intent (in) :: x
                                          real(8), intent (in) :: y
                                          res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                      end function
                                      real(4) function fmax44(x, y) result (res)
                                          real(4), intent (in) :: x
                                          real(4), intent (in) :: y
                                          res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                      end function
                                      real(8) function fmax84(x, y) result(res)
                                          real(8), intent (in) :: x
                                          real(4), intent (in) :: y
                                          res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                                      end function
                                      real(8) function fmax48(x, y) result(res)
                                          real(4), intent (in) :: x
                                          real(8), intent (in) :: y
                                          res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                                      end function
                                      real(8) function fmin88(x, y) result (res)
                                          real(8), intent (in) :: x
                                          real(8), intent (in) :: y
                                          res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                      end function
                                      real(4) function fmin44(x, y) result (res)
                                          real(4), intent (in) :: x
                                          real(4), intent (in) :: y
                                          res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                      end function
                                      real(8) function fmin84(x, y) result(res)
                                          real(8), intent (in) :: x
                                          real(4), intent (in) :: y
                                          res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                                      end function
                                      real(8) function fmin48(x, y) result(res)
                                          real(4), intent (in) :: x
                                          real(8), intent (in) :: y
                                          res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                                      end function
                                  end module
                                  
                                  real(8) function code(x, y, z, t, a)
                                  use fmin_fmax_functions
                                      real(8), intent (in) :: x
                                      real(8), intent (in) :: y
                                      real(8), intent (in) :: z
                                      real(8), intent (in) :: t
                                      real(8), intent (in) :: a
                                      real(8) :: t_1
                                      real(8) :: tmp
                                      t_1 = z * ((y - x) / a)
                                      if (z <= (-3.5d+90)) then
                                          tmp = t_1
                                      else if (z <= 2.25d+108) then
                                          tmp = x - (((-1.0d0) * y) * 1.0d0)
                                      else
                                          tmp = t_1
                                      end if
                                      code = tmp
                                  end function
                                  
                                  public static double code(double x, double y, double z, double t, double a) {
                                  	double t_1 = z * ((y - x) / a);
                                  	double tmp;
                                  	if (z <= -3.5e+90) {
                                  		tmp = t_1;
                                  	} else if (z <= 2.25e+108) {
                                  		tmp = x - ((-1.0 * y) * 1.0);
                                  	} else {
                                  		tmp = t_1;
                                  	}
                                  	return tmp;
                                  }
                                  
                                  def code(x, y, z, t, a):
                                  	t_1 = z * ((y - x) / a)
                                  	tmp = 0
                                  	if z <= -3.5e+90:
                                  		tmp = t_1
                                  	elif z <= 2.25e+108:
                                  		tmp = x - ((-1.0 * y) * 1.0)
                                  	else:
                                  		tmp = t_1
                                  	return tmp
                                  
                                  function code(x, y, z, t, a)
                                  	t_1 = Float64(z * Float64(Float64(y - x) / a))
                                  	tmp = 0.0
                                  	if (z <= -3.5e+90)
                                  		tmp = t_1;
                                  	elseif (z <= 2.25e+108)
                                  		tmp = Float64(x - Float64(Float64(-1.0 * y) * 1.0));
                                  	else
                                  		tmp = t_1;
                                  	end
                                  	return tmp
                                  end
                                  
                                  function tmp_2 = code(x, y, z, t, a)
                                  	t_1 = z * ((y - x) / a);
                                  	tmp = 0.0;
                                  	if (z <= -3.5e+90)
                                  		tmp = t_1;
                                  	elseif (z <= 2.25e+108)
                                  		tmp = x - ((-1.0 * y) * 1.0);
                                  	else
                                  		tmp = t_1;
                                  	end
                                  	tmp_2 = tmp;
                                  end
                                  
                                  code[x_, y_, z_, t_, a_] := Block[{t$95$1 = N[(z * N[(N[(y - x), $MachinePrecision] / a), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[z, -3.5e+90], t$95$1, If[LessEqual[z, 2.25e+108], N[(x - N[(N[(-1.0 * y), $MachinePrecision] * 1.0), $MachinePrecision]), $MachinePrecision], t$95$1]]]
                                  
                                  \begin{array}{l}
                                  t_1 := z \cdot \frac{y - x}{a}\\
                                  \mathbf{if}\;z \leq -3.5 \cdot 10^{+90}:\\
                                  \;\;\;\;t\_1\\
                                  
                                  \mathbf{elif}\;z \leq 2.25 \cdot 10^{+108}:\\
                                  \;\;\;\;x - \left(-1 \cdot y\right) \cdot 1\\
                                  
                                  \mathbf{else}:\\
                                  \;\;\;\;t\_1\\
                                  
                                  
                                  \end{array}
                                  
                                  Derivation
                                  1. Split input into 2 regimes
                                  2. if z < -3.4999999999999998e90 or 2.25e108 < z

                                    1. Initial program 68.6%

                                      \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
                                    2. Taylor expanded in z around inf

                                      \[\leadsto \color{blue}{z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                                    3. Step-by-step derivation
                                      1. lower-*.f64N/A

                                        \[\leadsto z \cdot \color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                                      2. lower--.f64N/A

                                        \[\leadsto z \cdot \left(\frac{y}{a - t} - \color{blue}{\frac{x}{a - t}}\right) \]
                                      3. lower-/.f64N/A

                                        \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{\color{blue}{x}}{a - t}\right) \]
                                      4. lower--.f64N/A

                                        \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \]
                                      5. lower-/.f64N/A

                                        \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{\color{blue}{a - t}}\right) \]
                                      6. lower--.f6442.6%

                                        \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{a - \color{blue}{t}}\right) \]
                                    4. Applied rewrites42.6%

                                      \[\leadsto \color{blue}{z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                                    5. Taylor expanded in a around inf

                                      \[\leadsto z \cdot \frac{y - x}{\color{blue}{a}} \]
                                    6. Step-by-step derivation
                                      1. lower-/.f64N/A

                                        \[\leadsto z \cdot \frac{y - x}{a} \]
                                      2. lower--.f6426.3%

                                        \[\leadsto z \cdot \frac{y - x}{a} \]
                                    7. Applied rewrites26.3%

                                      \[\leadsto z \cdot \frac{y - x}{\color{blue}{a}} \]

                                    if -3.4999999999999998e90 < z < 2.25e108

                                    1. Initial program 68.6%

                                      \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
                                    2. Step-by-step derivation
                                      1. lift-+.f64N/A

                                        \[\leadsto \color{blue}{x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
                                      2. lift-/.f64N/A

                                        \[\leadsto x + \color{blue}{\frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
                                      3. mult-flipN/A

                                        \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \left(z - t\right)\right) \cdot \frac{1}{a - t}} \]
                                      4. lift-*.f64N/A

                                        \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \left(z - t\right)\right)} \cdot \frac{1}{a - t} \]
                                      5. *-commutativeN/A

                                        \[\leadsto x + \color{blue}{\left(\left(z - t\right) \cdot \left(y - x\right)\right)} \cdot \frac{1}{a - t} \]
                                      6. associate-*l*N/A

                                        \[\leadsto x + \color{blue}{\left(z - t\right) \cdot \left(\left(y - x\right) \cdot \frac{1}{a - t}\right)} \]
                                      7. *-commutativeN/A

                                        \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \frac{1}{a - t}\right) \cdot \left(z - t\right)} \]
                                      8. fp-cancel-sign-sub-invN/A

                                        \[\leadsto \color{blue}{x - \left(\mathsf{neg}\left(\left(y - x\right) \cdot \frac{1}{a - t}\right)\right) \cdot \left(z - t\right)} \]
                                      9. lower--.f64N/A

                                        \[\leadsto \color{blue}{x - \left(\mathsf{neg}\left(\left(y - x\right) \cdot \frac{1}{a - t}\right)\right) \cdot \left(z - t\right)} \]
                                      10. mult-flip-revN/A

                                        \[\leadsto x - \left(\mathsf{neg}\left(\color{blue}{\frac{y - x}{a - t}}\right)\right) \cdot \left(z - t\right) \]
                                      11. lift--.f64N/A

                                        \[\leadsto x - \left(\mathsf{neg}\left(\frac{\color{blue}{y - x}}{a - t}\right)\right) \cdot \left(z - t\right) \]
                                      12. div-subN/A

                                        \[\leadsto x - \left(\mathsf{neg}\left(\color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)}\right)\right) \cdot \left(z - t\right) \]
                                      13. sub-negateN/A

                                        \[\leadsto x - \color{blue}{\left(\frac{x}{a - t} - \frac{y}{a - t}\right)} \cdot \left(z - t\right) \]
                                      14. div-subN/A

                                        \[\leadsto x - \color{blue}{\frac{x - y}{a - t}} \cdot \left(z - t\right) \]
                                      15. frac-2neg-revN/A

                                        \[\leadsto x - \color{blue}{\frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(z - t\right) \]
                                      16. sub-negate-revN/A

                                        \[\leadsto x - \frac{\color{blue}{y - x}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right) \]
                                      17. lift--.f64N/A

                                        \[\leadsto x - \frac{\color{blue}{y - x}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right) \]
                                      18. lower-*.f64N/A

                                        \[\leadsto x - \color{blue}{\frac{y - x}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right)} \]
                                    3. Applied rewrites81.1%

                                      \[\leadsto \color{blue}{x - \frac{x - y}{a - t} \cdot \left(z - t\right)} \]
                                    4. Step-by-step derivation
                                      1. lift-*.f64N/A

                                        \[\leadsto x - \color{blue}{\frac{x - y}{a - t} \cdot \left(z - t\right)} \]
                                      2. lift-/.f64N/A

                                        \[\leadsto x - \color{blue}{\frac{x - y}{a - t}} \cdot \left(z - t\right) \]
                                      3. mult-flipN/A

                                        \[\leadsto x - \color{blue}{\left(\left(x - y\right) \cdot \frac{1}{a - t}\right)} \cdot \left(z - t\right) \]
                                      4. associate-*l*N/A

                                        \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                                      5. lower-*.f64N/A

                                        \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                                      6. lower-*.f64N/A

                                        \[\leadsto x - \left(x - y\right) \cdot \color{blue}{\left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                                      7. lower-/.f6484.9%

                                        \[\leadsto x - \left(x - y\right) \cdot \left(\color{blue}{\frac{1}{a - t}} \cdot \left(z - t\right)\right) \]
                                    5. Applied rewrites84.9%

                                      \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                                    6. Taylor expanded in t around inf

                                      \[\leadsto x - \left(x - y\right) \cdot \color{blue}{1} \]
                                    7. Step-by-step derivation
                                      1. Applied rewrites19.0%

                                        \[\leadsto x - \left(x - y\right) \cdot \color{blue}{1} \]
                                      2. Taylor expanded in x around 0

                                        \[\leadsto x - \color{blue}{\left(-1 \cdot y\right)} \cdot 1 \]
                                      3. Step-by-step derivation
                                        1. lower-*.f6433.7%

                                          \[\leadsto x - \left(-1 \cdot \color{blue}{y}\right) \cdot 1 \]
                                      4. Applied rewrites33.7%

                                        \[\leadsto x - \color{blue}{\left(-1 \cdot y\right)} \cdot 1 \]
                                    8. Recombined 2 regimes into one program.
                                    9. Add Preprocessing

                                    Alternative 16: 39.6% accurate, 0.9× speedup?

                                    \[\begin{array}{l} \mathbf{if}\;z \leq -3.5 \cdot 10^{+90}:\\ \;\;\;\;\frac{z}{t} \cdot x\\ \mathbf{elif}\;z \leq 1.4 \cdot 10^{+169}:\\ \;\;\;\;x - \left(-1 \cdot y\right) \cdot 1\\ \mathbf{else}:\\ \;\;\;\;\frac{x \cdot z}{t - a}\\ \end{array} \]
                                    (FPCore (x y z t a)
                                      :precision binary64
                                      (if (<= z -3.5e+90)
                                      (* (/ z t) x)
                                      (if (<= z 1.4e+169) (- x (* (* -1.0 y) 1.0)) (/ (* x z) (- t a)))))
                                    double code(double x, double y, double z, double t, double a) {
                                    	double tmp;
                                    	if (z <= -3.5e+90) {
                                    		tmp = (z / t) * x;
                                    	} else if (z <= 1.4e+169) {
                                    		tmp = x - ((-1.0 * y) * 1.0);
                                    	} else {
                                    		tmp = (x * z) / (t - a);
                                    	}
                                    	return tmp;
                                    }
                                    
                                    module fmin_fmax_functions
                                        implicit none
                                        private
                                        public fmax
                                        public fmin
                                    
                                        interface fmax
                                            module procedure fmax88
                                            module procedure fmax44
                                            module procedure fmax84
                                            module procedure fmax48
                                        end interface
                                        interface fmin
                                            module procedure fmin88
                                            module procedure fmin44
                                            module procedure fmin84
                                            module procedure fmin48
                                        end interface
                                    contains
                                        real(8) function fmax88(x, y) result (res)
                                            real(8), intent (in) :: x
                                            real(8), intent (in) :: y
                                            res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                        end function
                                        real(4) function fmax44(x, y) result (res)
                                            real(4), intent (in) :: x
                                            real(4), intent (in) :: y
                                            res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                        end function
                                        real(8) function fmax84(x, y) result(res)
                                            real(8), intent (in) :: x
                                            real(4), intent (in) :: y
                                            res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                                        end function
                                        real(8) function fmax48(x, y) result(res)
                                            real(4), intent (in) :: x
                                            real(8), intent (in) :: y
                                            res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                                        end function
                                        real(8) function fmin88(x, y) result (res)
                                            real(8), intent (in) :: x
                                            real(8), intent (in) :: y
                                            res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                        end function
                                        real(4) function fmin44(x, y) result (res)
                                            real(4), intent (in) :: x
                                            real(4), intent (in) :: y
                                            res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                        end function
                                        real(8) function fmin84(x, y) result(res)
                                            real(8), intent (in) :: x
                                            real(4), intent (in) :: y
                                            res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                                        end function
                                        real(8) function fmin48(x, y) result(res)
                                            real(4), intent (in) :: x
                                            real(8), intent (in) :: y
                                            res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                                        end function
                                    end module
                                    
                                    real(8) function code(x, y, z, t, a)
                                    use fmin_fmax_functions
                                        real(8), intent (in) :: x
                                        real(8), intent (in) :: y
                                        real(8), intent (in) :: z
                                        real(8), intent (in) :: t
                                        real(8), intent (in) :: a
                                        real(8) :: tmp
                                        if (z <= (-3.5d+90)) then
                                            tmp = (z / t) * x
                                        else if (z <= 1.4d+169) then
                                            tmp = x - (((-1.0d0) * y) * 1.0d0)
                                        else
                                            tmp = (x * z) / (t - a)
                                        end if
                                        code = tmp
                                    end function
                                    
                                    public static double code(double x, double y, double z, double t, double a) {
                                    	double tmp;
                                    	if (z <= -3.5e+90) {
                                    		tmp = (z / t) * x;
                                    	} else if (z <= 1.4e+169) {
                                    		tmp = x - ((-1.0 * y) * 1.0);
                                    	} else {
                                    		tmp = (x * z) / (t - a);
                                    	}
                                    	return tmp;
                                    }
                                    
                                    def code(x, y, z, t, a):
                                    	tmp = 0
                                    	if z <= -3.5e+90:
                                    		tmp = (z / t) * x
                                    	elif z <= 1.4e+169:
                                    		tmp = x - ((-1.0 * y) * 1.0)
                                    	else:
                                    		tmp = (x * z) / (t - a)
                                    	return tmp
                                    
                                    function code(x, y, z, t, a)
                                    	tmp = 0.0
                                    	if (z <= -3.5e+90)
                                    		tmp = Float64(Float64(z / t) * x);
                                    	elseif (z <= 1.4e+169)
                                    		tmp = Float64(x - Float64(Float64(-1.0 * y) * 1.0));
                                    	else
                                    		tmp = Float64(Float64(x * z) / Float64(t - a));
                                    	end
                                    	return tmp
                                    end
                                    
                                    function tmp_2 = code(x, y, z, t, a)
                                    	tmp = 0.0;
                                    	if (z <= -3.5e+90)
                                    		tmp = (z / t) * x;
                                    	elseif (z <= 1.4e+169)
                                    		tmp = x - ((-1.0 * y) * 1.0);
                                    	else
                                    		tmp = (x * z) / (t - a);
                                    	end
                                    	tmp_2 = tmp;
                                    end
                                    
                                    code[x_, y_, z_, t_, a_] := If[LessEqual[z, -3.5e+90], N[(N[(z / t), $MachinePrecision] * x), $MachinePrecision], If[LessEqual[z, 1.4e+169], N[(x - N[(N[(-1.0 * y), $MachinePrecision] * 1.0), $MachinePrecision]), $MachinePrecision], N[(N[(x * z), $MachinePrecision] / N[(t - a), $MachinePrecision]), $MachinePrecision]]]
                                    
                                    \begin{array}{l}
                                    \mathbf{if}\;z \leq -3.5 \cdot 10^{+90}:\\
                                    \;\;\;\;\frac{z}{t} \cdot x\\
                                    
                                    \mathbf{elif}\;z \leq 1.4 \cdot 10^{+169}:\\
                                    \;\;\;\;x - \left(-1 \cdot y\right) \cdot 1\\
                                    
                                    \mathbf{else}:\\
                                    \;\;\;\;\frac{x \cdot z}{t - a}\\
                                    
                                    
                                    \end{array}
                                    
                                    Derivation
                                    1. Split input into 3 regimes
                                    2. if z < -3.4999999999999998e90

                                      1. Initial program 68.6%

                                        \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
                                      2. Taylor expanded in x around -inf

                                        \[\leadsto \color{blue}{-1 \cdot \left(x \cdot \left(\frac{z}{a - t} - \left(1 + \frac{t}{a - t}\right)\right)\right)} \]
                                      3. Step-by-step derivation
                                        1. lower-*.f64N/A

                                          \[\leadsto -1 \cdot \color{blue}{\left(x \cdot \left(\frac{z}{a - t} - \left(1 + \frac{t}{a - t}\right)\right)\right)} \]
                                        2. lower-*.f64N/A

                                          \[\leadsto -1 \cdot \left(x \cdot \color{blue}{\left(\frac{z}{a - t} - \left(1 + \frac{t}{a - t}\right)\right)}\right) \]
                                        3. lower--.f64N/A

                                          \[\leadsto -1 \cdot \left(x \cdot \left(\frac{z}{a - t} - \color{blue}{\left(1 + \frac{t}{a - t}\right)}\right)\right) \]
                                        4. lower-/.f64N/A

                                          \[\leadsto -1 \cdot \left(x \cdot \left(\frac{z}{a - t} - \left(\color{blue}{1} + \frac{t}{a - t}\right)\right)\right) \]
                                        5. lower--.f64N/A

                                          \[\leadsto -1 \cdot \left(x \cdot \left(\frac{z}{a - t} - \left(1 + \frac{t}{a - t}\right)\right)\right) \]
                                        6. lower-+.f64N/A

                                          \[\leadsto -1 \cdot \left(x \cdot \left(\frac{z}{a - t} - \left(1 + \color{blue}{\frac{t}{a - t}}\right)\right)\right) \]
                                        7. lower-/.f64N/A

                                          \[\leadsto -1 \cdot \left(x \cdot \left(\frac{z}{a - t} - \left(1 + \frac{t}{\color{blue}{a - t}}\right)\right)\right) \]
                                        8. lower--.f6447.6%

                                          \[\leadsto -1 \cdot \left(x \cdot \left(\frac{z}{a - t} - \left(1 + \frac{t}{a - \color{blue}{t}}\right)\right)\right) \]
                                      4. Applied rewrites47.6%

                                        \[\leadsto \color{blue}{-1 \cdot \left(x \cdot \left(\frac{z}{a - t} - \left(1 + \frac{t}{a - t}\right)\right)\right)} \]
                                      5. Taylor expanded in a around 0

                                        \[\leadsto \frac{x \cdot z}{\color{blue}{t}} \]
                                      6. Step-by-step derivation
                                        1. lower-/.f64N/A

                                          \[\leadsto \frac{x \cdot z}{t} \]
                                        2. lower-*.f6417.1%

                                          \[\leadsto \frac{x \cdot z}{t} \]
                                      7. Applied rewrites17.1%

                                        \[\leadsto \frac{x \cdot z}{\color{blue}{t}} \]
                                      8. Step-by-step derivation
                                        1. lift-/.f64N/A

                                          \[\leadsto \frac{x \cdot z}{t} \]
                                        2. lift-*.f64N/A

                                          \[\leadsto \frac{x \cdot z}{t} \]
                                        3. associate-/l*N/A

                                          \[\leadsto x \cdot \frac{z}{\color{blue}{t}} \]
                                        4. *-commutativeN/A

                                          \[\leadsto \frac{z}{t} \cdot x \]
                                        5. lower-*.f64N/A

                                          \[\leadsto \frac{z}{t} \cdot x \]
                                        6. lower-/.f6419.1%

                                          \[\leadsto \frac{z}{t} \cdot x \]
                                      9. Applied rewrites19.1%

                                        \[\leadsto \frac{z}{t} \cdot x \]

                                      if -3.4999999999999998e90 < z < 1.4000000000000001e169

                                      1. Initial program 68.6%

                                        \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
                                      2. Step-by-step derivation
                                        1. lift-+.f64N/A

                                          \[\leadsto \color{blue}{x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
                                        2. lift-/.f64N/A

                                          \[\leadsto x + \color{blue}{\frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
                                        3. mult-flipN/A

                                          \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \left(z - t\right)\right) \cdot \frac{1}{a - t}} \]
                                        4. lift-*.f64N/A

                                          \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \left(z - t\right)\right)} \cdot \frac{1}{a - t} \]
                                        5. *-commutativeN/A

                                          \[\leadsto x + \color{blue}{\left(\left(z - t\right) \cdot \left(y - x\right)\right)} \cdot \frac{1}{a - t} \]
                                        6. associate-*l*N/A

                                          \[\leadsto x + \color{blue}{\left(z - t\right) \cdot \left(\left(y - x\right) \cdot \frac{1}{a - t}\right)} \]
                                        7. *-commutativeN/A

                                          \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \frac{1}{a - t}\right) \cdot \left(z - t\right)} \]
                                        8. fp-cancel-sign-sub-invN/A

                                          \[\leadsto \color{blue}{x - \left(\mathsf{neg}\left(\left(y - x\right) \cdot \frac{1}{a - t}\right)\right) \cdot \left(z - t\right)} \]
                                        9. lower--.f64N/A

                                          \[\leadsto \color{blue}{x - \left(\mathsf{neg}\left(\left(y - x\right) \cdot \frac{1}{a - t}\right)\right) \cdot \left(z - t\right)} \]
                                        10. mult-flip-revN/A

                                          \[\leadsto x - \left(\mathsf{neg}\left(\color{blue}{\frac{y - x}{a - t}}\right)\right) \cdot \left(z - t\right) \]
                                        11. lift--.f64N/A

                                          \[\leadsto x - \left(\mathsf{neg}\left(\frac{\color{blue}{y - x}}{a - t}\right)\right) \cdot \left(z - t\right) \]
                                        12. div-subN/A

                                          \[\leadsto x - \left(\mathsf{neg}\left(\color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)}\right)\right) \cdot \left(z - t\right) \]
                                        13. sub-negateN/A

                                          \[\leadsto x - \color{blue}{\left(\frac{x}{a - t} - \frac{y}{a - t}\right)} \cdot \left(z - t\right) \]
                                        14. div-subN/A

                                          \[\leadsto x - \color{blue}{\frac{x - y}{a - t}} \cdot \left(z - t\right) \]
                                        15. frac-2neg-revN/A

                                          \[\leadsto x - \color{blue}{\frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(z - t\right) \]
                                        16. sub-negate-revN/A

                                          \[\leadsto x - \frac{\color{blue}{y - x}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right) \]
                                        17. lift--.f64N/A

                                          \[\leadsto x - \frac{\color{blue}{y - x}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right) \]
                                        18. lower-*.f64N/A

                                          \[\leadsto x - \color{blue}{\frac{y - x}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right)} \]
                                      3. Applied rewrites81.1%

                                        \[\leadsto \color{blue}{x - \frac{x - y}{a - t} \cdot \left(z - t\right)} \]
                                      4. Step-by-step derivation
                                        1. lift-*.f64N/A

                                          \[\leadsto x - \color{blue}{\frac{x - y}{a - t} \cdot \left(z - t\right)} \]
                                        2. lift-/.f64N/A

                                          \[\leadsto x - \color{blue}{\frac{x - y}{a - t}} \cdot \left(z - t\right) \]
                                        3. mult-flipN/A

                                          \[\leadsto x - \color{blue}{\left(\left(x - y\right) \cdot \frac{1}{a - t}\right)} \cdot \left(z - t\right) \]
                                        4. associate-*l*N/A

                                          \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                                        5. lower-*.f64N/A

                                          \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                                        6. lower-*.f64N/A

                                          \[\leadsto x - \left(x - y\right) \cdot \color{blue}{\left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                                        7. lower-/.f6484.9%

                                          \[\leadsto x - \left(x - y\right) \cdot \left(\color{blue}{\frac{1}{a - t}} \cdot \left(z - t\right)\right) \]
                                      5. Applied rewrites84.9%

                                        \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                                      6. Taylor expanded in t around inf

                                        \[\leadsto x - \left(x - y\right) \cdot \color{blue}{1} \]
                                      7. Step-by-step derivation
                                        1. Applied rewrites19.0%

                                          \[\leadsto x - \left(x - y\right) \cdot \color{blue}{1} \]
                                        2. Taylor expanded in x around 0

                                          \[\leadsto x - \color{blue}{\left(-1 \cdot y\right)} \cdot 1 \]
                                        3. Step-by-step derivation
                                          1. lower-*.f6433.7%

                                            \[\leadsto x - \left(-1 \cdot \color{blue}{y}\right) \cdot 1 \]
                                        4. Applied rewrites33.7%

                                          \[\leadsto x - \color{blue}{\left(-1 \cdot y\right)} \cdot 1 \]

                                        if 1.4000000000000001e169 < z

                                        1. Initial program 68.6%

                                          \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
                                        2. Taylor expanded in z around inf

                                          \[\leadsto \color{blue}{z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                                        3. Step-by-step derivation
                                          1. lower-*.f64N/A

                                            \[\leadsto z \cdot \color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                                          2. lower--.f64N/A

                                            \[\leadsto z \cdot \left(\frac{y}{a - t} - \color{blue}{\frac{x}{a - t}}\right) \]
                                          3. lower-/.f64N/A

                                            \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{\color{blue}{x}}{a - t}\right) \]
                                          4. lower--.f64N/A

                                            \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \]
                                          5. lower-/.f64N/A

                                            \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{\color{blue}{a - t}}\right) \]
                                          6. lower--.f6442.6%

                                            \[\leadsto z \cdot \left(\frac{y}{a - t} - \frac{x}{a - \color{blue}{t}}\right) \]
                                        4. Applied rewrites42.6%

                                          \[\leadsto \color{blue}{z \cdot \left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                                        5. Step-by-step derivation
                                          1. lift-*.f64N/A

                                            \[\leadsto z \cdot \color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)} \]
                                          2. *-commutativeN/A

                                            \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot \color{blue}{z} \]
                                          3. lower-*.f6442.6%

                                            \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot \color{blue}{z} \]
                                          4. lift--.f64N/A

                                            \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot z \]
                                          5. lift-/.f64N/A

                                            \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot z \]
                                          6. lift-/.f64N/A

                                            \[\leadsto \left(\frac{y}{a - t} - \frac{x}{a - t}\right) \cdot z \]
                                          7. sub-divN/A

                                            \[\leadsto \frac{y - x}{a - t} \cdot z \]
                                          8. sub-negate-revN/A

                                            \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{a - t} \cdot z \]
                                          9. lift--.f64N/A

                                            \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{a - t} \cdot z \]
                                          10. lift--.f64N/A

                                            \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{a - t} \cdot z \]
                                          11. sub-negate-revN/A

                                            \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(t - a\right)\right)} \cdot z \]
                                          12. lift--.f64N/A

                                            \[\leadsto \frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(t - a\right)\right)} \cdot z \]
                                          13. frac-2neg-revN/A

                                            \[\leadsto \frac{x - y}{t - a} \cdot z \]
                                          14. lower-/.f6442.9%

                                            \[\leadsto \frac{x - y}{t - a} \cdot z \]
                                        6. Applied rewrites42.9%

                                          \[\leadsto \frac{x - y}{t - a} \cdot \color{blue}{z} \]
                                        7. Taylor expanded in x around inf

                                          \[\leadsto \frac{x \cdot z}{\color{blue}{t - a}} \]
                                        8. Step-by-step derivation
                                          1. lower-/.f64N/A

                                            \[\leadsto \frac{x \cdot z}{t - \color{blue}{a}} \]
                                          2. lower-*.f64N/A

                                            \[\leadsto \frac{x \cdot z}{t - a} \]
                                          3. lower--.f6421.9%

                                            \[\leadsto \frac{x \cdot z}{t - a} \]
                                        9. Applied rewrites21.9%

                                          \[\leadsto \frac{x \cdot z}{\color{blue}{t - a}} \]
                                      8. Recombined 3 regimes into one program.
                                      9. Add Preprocessing

                                      Alternative 17: 36.6% accurate, 1.3× speedup?

                                      \[\begin{array}{l} \mathbf{if}\;z \leq -3.5 \cdot 10^{+90}:\\ \;\;\;\;\frac{z}{t} \cdot x\\ \mathbf{else}:\\ \;\;\;\;x - \left(-1 \cdot y\right) \cdot 1\\ \end{array} \]
                                      (FPCore (x y z t a)
                                        :precision binary64
                                        (if (<= z -3.5e+90) (* (/ z t) x) (- x (* (* -1.0 y) 1.0))))
                                      double code(double x, double y, double z, double t, double a) {
                                      	double tmp;
                                      	if (z <= -3.5e+90) {
                                      		tmp = (z / t) * x;
                                      	} else {
                                      		tmp = x - ((-1.0 * y) * 1.0);
                                      	}
                                      	return tmp;
                                      }
                                      
                                      module fmin_fmax_functions
                                          implicit none
                                          private
                                          public fmax
                                          public fmin
                                      
                                          interface fmax
                                              module procedure fmax88
                                              module procedure fmax44
                                              module procedure fmax84
                                              module procedure fmax48
                                          end interface
                                          interface fmin
                                              module procedure fmin88
                                              module procedure fmin44
                                              module procedure fmin84
                                              module procedure fmin48
                                          end interface
                                      contains
                                          real(8) function fmax88(x, y) result (res)
                                              real(8), intent (in) :: x
                                              real(8), intent (in) :: y
                                              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                          end function
                                          real(4) function fmax44(x, y) result (res)
                                              real(4), intent (in) :: x
                                              real(4), intent (in) :: y
                                              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                          end function
                                          real(8) function fmax84(x, y) result(res)
                                              real(8), intent (in) :: x
                                              real(4), intent (in) :: y
                                              res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                                          end function
                                          real(8) function fmax48(x, y) result(res)
                                              real(4), intent (in) :: x
                                              real(8), intent (in) :: y
                                              res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                                          end function
                                          real(8) function fmin88(x, y) result (res)
                                              real(8), intent (in) :: x
                                              real(8), intent (in) :: y
                                              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                          end function
                                          real(4) function fmin44(x, y) result (res)
                                              real(4), intent (in) :: x
                                              real(4), intent (in) :: y
                                              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                          end function
                                          real(8) function fmin84(x, y) result(res)
                                              real(8), intent (in) :: x
                                              real(4), intent (in) :: y
                                              res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                                          end function
                                          real(8) function fmin48(x, y) result(res)
                                              real(4), intent (in) :: x
                                              real(8), intent (in) :: y
                                              res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                                          end function
                                      end module
                                      
                                      real(8) function code(x, y, z, t, a)
                                      use fmin_fmax_functions
                                          real(8), intent (in) :: x
                                          real(8), intent (in) :: y
                                          real(8), intent (in) :: z
                                          real(8), intent (in) :: t
                                          real(8), intent (in) :: a
                                          real(8) :: tmp
                                          if (z <= (-3.5d+90)) then
                                              tmp = (z / t) * x
                                          else
                                              tmp = x - (((-1.0d0) * y) * 1.0d0)
                                          end if
                                          code = tmp
                                      end function
                                      
                                      public static double code(double x, double y, double z, double t, double a) {
                                      	double tmp;
                                      	if (z <= -3.5e+90) {
                                      		tmp = (z / t) * x;
                                      	} else {
                                      		tmp = x - ((-1.0 * y) * 1.0);
                                      	}
                                      	return tmp;
                                      }
                                      
                                      def code(x, y, z, t, a):
                                      	tmp = 0
                                      	if z <= -3.5e+90:
                                      		tmp = (z / t) * x
                                      	else:
                                      		tmp = x - ((-1.0 * y) * 1.0)
                                      	return tmp
                                      
                                      function code(x, y, z, t, a)
                                      	tmp = 0.0
                                      	if (z <= -3.5e+90)
                                      		tmp = Float64(Float64(z / t) * x);
                                      	else
                                      		tmp = Float64(x - Float64(Float64(-1.0 * y) * 1.0));
                                      	end
                                      	return tmp
                                      end
                                      
                                      function tmp_2 = code(x, y, z, t, a)
                                      	tmp = 0.0;
                                      	if (z <= -3.5e+90)
                                      		tmp = (z / t) * x;
                                      	else
                                      		tmp = x - ((-1.0 * y) * 1.0);
                                      	end
                                      	tmp_2 = tmp;
                                      end
                                      
                                      code[x_, y_, z_, t_, a_] := If[LessEqual[z, -3.5e+90], N[(N[(z / t), $MachinePrecision] * x), $MachinePrecision], N[(x - N[(N[(-1.0 * y), $MachinePrecision] * 1.0), $MachinePrecision]), $MachinePrecision]]
                                      
                                      \begin{array}{l}
                                      \mathbf{if}\;z \leq -3.5 \cdot 10^{+90}:\\
                                      \;\;\;\;\frac{z}{t} \cdot x\\
                                      
                                      \mathbf{else}:\\
                                      \;\;\;\;x - \left(-1 \cdot y\right) \cdot 1\\
                                      
                                      
                                      \end{array}
                                      
                                      Derivation
                                      1. Split input into 2 regimes
                                      2. if z < -3.4999999999999998e90

                                        1. Initial program 68.6%

                                          \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
                                        2. Taylor expanded in x around -inf

                                          \[\leadsto \color{blue}{-1 \cdot \left(x \cdot \left(\frac{z}{a - t} - \left(1 + \frac{t}{a - t}\right)\right)\right)} \]
                                        3. Step-by-step derivation
                                          1. lower-*.f64N/A

                                            \[\leadsto -1 \cdot \color{blue}{\left(x \cdot \left(\frac{z}{a - t} - \left(1 + \frac{t}{a - t}\right)\right)\right)} \]
                                          2. lower-*.f64N/A

                                            \[\leadsto -1 \cdot \left(x \cdot \color{blue}{\left(\frac{z}{a - t} - \left(1 + \frac{t}{a - t}\right)\right)}\right) \]
                                          3. lower--.f64N/A

                                            \[\leadsto -1 \cdot \left(x \cdot \left(\frac{z}{a - t} - \color{blue}{\left(1 + \frac{t}{a - t}\right)}\right)\right) \]
                                          4. lower-/.f64N/A

                                            \[\leadsto -1 \cdot \left(x \cdot \left(\frac{z}{a - t} - \left(\color{blue}{1} + \frac{t}{a - t}\right)\right)\right) \]
                                          5. lower--.f64N/A

                                            \[\leadsto -1 \cdot \left(x \cdot \left(\frac{z}{a - t} - \left(1 + \frac{t}{a - t}\right)\right)\right) \]
                                          6. lower-+.f64N/A

                                            \[\leadsto -1 \cdot \left(x \cdot \left(\frac{z}{a - t} - \left(1 + \color{blue}{\frac{t}{a - t}}\right)\right)\right) \]
                                          7. lower-/.f64N/A

                                            \[\leadsto -1 \cdot \left(x \cdot \left(\frac{z}{a - t} - \left(1 + \frac{t}{\color{blue}{a - t}}\right)\right)\right) \]
                                          8. lower--.f6447.6%

                                            \[\leadsto -1 \cdot \left(x \cdot \left(\frac{z}{a - t} - \left(1 + \frac{t}{a - \color{blue}{t}}\right)\right)\right) \]
                                        4. Applied rewrites47.6%

                                          \[\leadsto \color{blue}{-1 \cdot \left(x \cdot \left(\frac{z}{a - t} - \left(1 + \frac{t}{a - t}\right)\right)\right)} \]
                                        5. Taylor expanded in a around 0

                                          \[\leadsto \frac{x \cdot z}{\color{blue}{t}} \]
                                        6. Step-by-step derivation
                                          1. lower-/.f64N/A

                                            \[\leadsto \frac{x \cdot z}{t} \]
                                          2. lower-*.f6417.1%

                                            \[\leadsto \frac{x \cdot z}{t} \]
                                        7. Applied rewrites17.1%

                                          \[\leadsto \frac{x \cdot z}{\color{blue}{t}} \]
                                        8. Step-by-step derivation
                                          1. lift-/.f64N/A

                                            \[\leadsto \frac{x \cdot z}{t} \]
                                          2. lift-*.f64N/A

                                            \[\leadsto \frac{x \cdot z}{t} \]
                                          3. associate-/l*N/A

                                            \[\leadsto x \cdot \frac{z}{\color{blue}{t}} \]
                                          4. *-commutativeN/A

                                            \[\leadsto \frac{z}{t} \cdot x \]
                                          5. lower-*.f64N/A

                                            \[\leadsto \frac{z}{t} \cdot x \]
                                          6. lower-/.f6419.1%

                                            \[\leadsto \frac{z}{t} \cdot x \]
                                        9. Applied rewrites19.1%

                                          \[\leadsto \frac{z}{t} \cdot x \]

                                        if -3.4999999999999998e90 < z

                                        1. Initial program 68.6%

                                          \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
                                        2. Step-by-step derivation
                                          1. lift-+.f64N/A

                                            \[\leadsto \color{blue}{x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
                                          2. lift-/.f64N/A

                                            \[\leadsto x + \color{blue}{\frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
                                          3. mult-flipN/A

                                            \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \left(z - t\right)\right) \cdot \frac{1}{a - t}} \]
                                          4. lift-*.f64N/A

                                            \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \left(z - t\right)\right)} \cdot \frac{1}{a - t} \]
                                          5. *-commutativeN/A

                                            \[\leadsto x + \color{blue}{\left(\left(z - t\right) \cdot \left(y - x\right)\right)} \cdot \frac{1}{a - t} \]
                                          6. associate-*l*N/A

                                            \[\leadsto x + \color{blue}{\left(z - t\right) \cdot \left(\left(y - x\right) \cdot \frac{1}{a - t}\right)} \]
                                          7. *-commutativeN/A

                                            \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \frac{1}{a - t}\right) \cdot \left(z - t\right)} \]
                                          8. fp-cancel-sign-sub-invN/A

                                            \[\leadsto \color{blue}{x - \left(\mathsf{neg}\left(\left(y - x\right) \cdot \frac{1}{a - t}\right)\right) \cdot \left(z - t\right)} \]
                                          9. lower--.f64N/A

                                            \[\leadsto \color{blue}{x - \left(\mathsf{neg}\left(\left(y - x\right) \cdot \frac{1}{a - t}\right)\right) \cdot \left(z - t\right)} \]
                                          10. mult-flip-revN/A

                                            \[\leadsto x - \left(\mathsf{neg}\left(\color{blue}{\frac{y - x}{a - t}}\right)\right) \cdot \left(z - t\right) \]
                                          11. lift--.f64N/A

                                            \[\leadsto x - \left(\mathsf{neg}\left(\frac{\color{blue}{y - x}}{a - t}\right)\right) \cdot \left(z - t\right) \]
                                          12. div-subN/A

                                            \[\leadsto x - \left(\mathsf{neg}\left(\color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)}\right)\right) \cdot \left(z - t\right) \]
                                          13. sub-negateN/A

                                            \[\leadsto x - \color{blue}{\left(\frac{x}{a - t} - \frac{y}{a - t}\right)} \cdot \left(z - t\right) \]
                                          14. div-subN/A

                                            \[\leadsto x - \color{blue}{\frac{x - y}{a - t}} \cdot \left(z - t\right) \]
                                          15. frac-2neg-revN/A

                                            \[\leadsto x - \color{blue}{\frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(z - t\right) \]
                                          16. sub-negate-revN/A

                                            \[\leadsto x - \frac{\color{blue}{y - x}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right) \]
                                          17. lift--.f64N/A

                                            \[\leadsto x - \frac{\color{blue}{y - x}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right) \]
                                          18. lower-*.f64N/A

                                            \[\leadsto x - \color{blue}{\frac{y - x}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right)} \]
                                        3. Applied rewrites81.1%

                                          \[\leadsto \color{blue}{x - \frac{x - y}{a - t} \cdot \left(z - t\right)} \]
                                        4. Step-by-step derivation
                                          1. lift-*.f64N/A

                                            \[\leadsto x - \color{blue}{\frac{x - y}{a - t} \cdot \left(z - t\right)} \]
                                          2. lift-/.f64N/A

                                            \[\leadsto x - \color{blue}{\frac{x - y}{a - t}} \cdot \left(z - t\right) \]
                                          3. mult-flipN/A

                                            \[\leadsto x - \color{blue}{\left(\left(x - y\right) \cdot \frac{1}{a - t}\right)} \cdot \left(z - t\right) \]
                                          4. associate-*l*N/A

                                            \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                                          5. lower-*.f64N/A

                                            \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                                          6. lower-*.f64N/A

                                            \[\leadsto x - \left(x - y\right) \cdot \color{blue}{\left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                                          7. lower-/.f6484.9%

                                            \[\leadsto x - \left(x - y\right) \cdot \left(\color{blue}{\frac{1}{a - t}} \cdot \left(z - t\right)\right) \]
                                        5. Applied rewrites84.9%

                                          \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                                        6. Taylor expanded in t around inf

                                          \[\leadsto x - \left(x - y\right) \cdot \color{blue}{1} \]
                                        7. Step-by-step derivation
                                          1. Applied rewrites19.0%

                                            \[\leadsto x - \left(x - y\right) \cdot \color{blue}{1} \]
                                          2. Taylor expanded in x around 0

                                            \[\leadsto x - \color{blue}{\left(-1 \cdot y\right)} \cdot 1 \]
                                          3. Step-by-step derivation
                                            1. lower-*.f6433.7%

                                              \[\leadsto x - \left(-1 \cdot \color{blue}{y}\right) \cdot 1 \]
                                          4. Applied rewrites33.7%

                                            \[\leadsto x - \color{blue}{\left(-1 \cdot y\right)} \cdot 1 \]
                                        8. Recombined 2 regimes into one program.
                                        9. Add Preprocessing

                                        Alternative 18: 36.2% accurate, 1.3× speedup?

                                        \[\begin{array}{l} \mathbf{if}\;z \leq -3.5 \cdot 10^{+90}:\\ \;\;\;\;z \cdot \frac{x}{t}\\ \mathbf{else}:\\ \;\;\;\;x - \left(-1 \cdot y\right) \cdot 1\\ \end{array} \]
                                        (FPCore (x y z t a)
                                          :precision binary64
                                          (if (<= z -3.5e+90) (* z (/ x t)) (- x (* (* -1.0 y) 1.0))))
                                        double code(double x, double y, double z, double t, double a) {
                                        	double tmp;
                                        	if (z <= -3.5e+90) {
                                        		tmp = z * (x / t);
                                        	} else {
                                        		tmp = x - ((-1.0 * y) * 1.0);
                                        	}
                                        	return tmp;
                                        }
                                        
                                        module fmin_fmax_functions
                                            implicit none
                                            private
                                            public fmax
                                            public fmin
                                        
                                            interface fmax
                                                module procedure fmax88
                                                module procedure fmax44
                                                module procedure fmax84
                                                module procedure fmax48
                                            end interface
                                            interface fmin
                                                module procedure fmin88
                                                module procedure fmin44
                                                module procedure fmin84
                                                module procedure fmin48
                                            end interface
                                        contains
                                            real(8) function fmax88(x, y) result (res)
                                                real(8), intent (in) :: x
                                                real(8), intent (in) :: y
                                                res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                            end function
                                            real(4) function fmax44(x, y) result (res)
                                                real(4), intent (in) :: x
                                                real(4), intent (in) :: y
                                                res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                            end function
                                            real(8) function fmax84(x, y) result(res)
                                                real(8), intent (in) :: x
                                                real(4), intent (in) :: y
                                                res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                                            end function
                                            real(8) function fmax48(x, y) result(res)
                                                real(4), intent (in) :: x
                                                real(8), intent (in) :: y
                                                res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                                            end function
                                            real(8) function fmin88(x, y) result (res)
                                                real(8), intent (in) :: x
                                                real(8), intent (in) :: y
                                                res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                            end function
                                            real(4) function fmin44(x, y) result (res)
                                                real(4), intent (in) :: x
                                                real(4), intent (in) :: y
                                                res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                            end function
                                            real(8) function fmin84(x, y) result(res)
                                                real(8), intent (in) :: x
                                                real(4), intent (in) :: y
                                                res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                                            end function
                                            real(8) function fmin48(x, y) result(res)
                                                real(4), intent (in) :: x
                                                real(8), intent (in) :: y
                                                res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                                            end function
                                        end module
                                        
                                        real(8) function code(x, y, z, t, a)
                                        use fmin_fmax_functions
                                            real(8), intent (in) :: x
                                            real(8), intent (in) :: y
                                            real(8), intent (in) :: z
                                            real(8), intent (in) :: t
                                            real(8), intent (in) :: a
                                            real(8) :: tmp
                                            if (z <= (-3.5d+90)) then
                                                tmp = z * (x / t)
                                            else
                                                tmp = x - (((-1.0d0) * y) * 1.0d0)
                                            end if
                                            code = tmp
                                        end function
                                        
                                        public static double code(double x, double y, double z, double t, double a) {
                                        	double tmp;
                                        	if (z <= -3.5e+90) {
                                        		tmp = z * (x / t);
                                        	} else {
                                        		tmp = x - ((-1.0 * y) * 1.0);
                                        	}
                                        	return tmp;
                                        }
                                        
                                        def code(x, y, z, t, a):
                                        	tmp = 0
                                        	if z <= -3.5e+90:
                                        		tmp = z * (x / t)
                                        	else:
                                        		tmp = x - ((-1.0 * y) * 1.0)
                                        	return tmp
                                        
                                        function code(x, y, z, t, a)
                                        	tmp = 0.0
                                        	if (z <= -3.5e+90)
                                        		tmp = Float64(z * Float64(x / t));
                                        	else
                                        		tmp = Float64(x - Float64(Float64(-1.0 * y) * 1.0));
                                        	end
                                        	return tmp
                                        end
                                        
                                        function tmp_2 = code(x, y, z, t, a)
                                        	tmp = 0.0;
                                        	if (z <= -3.5e+90)
                                        		tmp = z * (x / t);
                                        	else
                                        		tmp = x - ((-1.0 * y) * 1.0);
                                        	end
                                        	tmp_2 = tmp;
                                        end
                                        
                                        code[x_, y_, z_, t_, a_] := If[LessEqual[z, -3.5e+90], N[(z * N[(x / t), $MachinePrecision]), $MachinePrecision], N[(x - N[(N[(-1.0 * y), $MachinePrecision] * 1.0), $MachinePrecision]), $MachinePrecision]]
                                        
                                        \begin{array}{l}
                                        \mathbf{if}\;z \leq -3.5 \cdot 10^{+90}:\\
                                        \;\;\;\;z \cdot \frac{x}{t}\\
                                        
                                        \mathbf{else}:\\
                                        \;\;\;\;x - \left(-1 \cdot y\right) \cdot 1\\
                                        
                                        
                                        \end{array}
                                        
                                        Derivation
                                        1. Split input into 2 regimes
                                        2. if z < -3.4999999999999998e90

                                          1. Initial program 68.6%

                                            \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
                                          2. Taylor expanded in x around -inf

                                            \[\leadsto \color{blue}{-1 \cdot \left(x \cdot \left(\frac{z}{a - t} - \left(1 + \frac{t}{a - t}\right)\right)\right)} \]
                                          3. Step-by-step derivation
                                            1. lower-*.f64N/A

                                              \[\leadsto -1 \cdot \color{blue}{\left(x \cdot \left(\frac{z}{a - t} - \left(1 + \frac{t}{a - t}\right)\right)\right)} \]
                                            2. lower-*.f64N/A

                                              \[\leadsto -1 \cdot \left(x \cdot \color{blue}{\left(\frac{z}{a - t} - \left(1 + \frac{t}{a - t}\right)\right)}\right) \]
                                            3. lower--.f64N/A

                                              \[\leadsto -1 \cdot \left(x \cdot \left(\frac{z}{a - t} - \color{blue}{\left(1 + \frac{t}{a - t}\right)}\right)\right) \]
                                            4. lower-/.f64N/A

                                              \[\leadsto -1 \cdot \left(x \cdot \left(\frac{z}{a - t} - \left(\color{blue}{1} + \frac{t}{a - t}\right)\right)\right) \]
                                            5. lower--.f64N/A

                                              \[\leadsto -1 \cdot \left(x \cdot \left(\frac{z}{a - t} - \left(1 + \frac{t}{a - t}\right)\right)\right) \]
                                            6. lower-+.f64N/A

                                              \[\leadsto -1 \cdot \left(x \cdot \left(\frac{z}{a - t} - \left(1 + \color{blue}{\frac{t}{a - t}}\right)\right)\right) \]
                                            7. lower-/.f64N/A

                                              \[\leadsto -1 \cdot \left(x \cdot \left(\frac{z}{a - t} - \left(1 + \frac{t}{\color{blue}{a - t}}\right)\right)\right) \]
                                            8. lower--.f6447.6%

                                              \[\leadsto -1 \cdot \left(x \cdot \left(\frac{z}{a - t} - \left(1 + \frac{t}{a - \color{blue}{t}}\right)\right)\right) \]
                                          4. Applied rewrites47.6%

                                            \[\leadsto \color{blue}{-1 \cdot \left(x \cdot \left(\frac{z}{a - t} - \left(1 + \frac{t}{a - t}\right)\right)\right)} \]
                                          5. Taylor expanded in a around 0

                                            \[\leadsto \frac{x \cdot z}{\color{blue}{t}} \]
                                          6. Step-by-step derivation
                                            1. lower-/.f64N/A

                                              \[\leadsto \frac{x \cdot z}{t} \]
                                            2. lower-*.f6417.1%

                                              \[\leadsto \frac{x \cdot z}{t} \]
                                          7. Applied rewrites17.1%

                                            \[\leadsto \frac{x \cdot z}{\color{blue}{t}} \]
                                          8. Step-by-step derivation
                                            1. lift-/.f64N/A

                                              \[\leadsto \frac{x \cdot z}{t} \]
                                            2. lift-*.f64N/A

                                              \[\leadsto \frac{x \cdot z}{t} \]
                                            3. *-commutativeN/A

                                              \[\leadsto \frac{z \cdot x}{t} \]
                                            4. associate-/l*N/A

                                              \[\leadsto z \cdot \frac{x}{\color{blue}{t}} \]
                                            5. lower-*.f64N/A

                                              \[\leadsto z \cdot \frac{x}{\color{blue}{t}} \]
                                            6. lower-/.f6418.1%

                                              \[\leadsto z \cdot \frac{x}{t} \]
                                          9. Applied rewrites18.1%

                                            \[\leadsto z \cdot \frac{x}{\color{blue}{t}} \]

                                          if -3.4999999999999998e90 < z

                                          1. Initial program 68.6%

                                            \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
                                          2. Step-by-step derivation
                                            1. lift-+.f64N/A

                                              \[\leadsto \color{blue}{x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
                                            2. lift-/.f64N/A

                                              \[\leadsto x + \color{blue}{\frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
                                            3. mult-flipN/A

                                              \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \left(z - t\right)\right) \cdot \frac{1}{a - t}} \]
                                            4. lift-*.f64N/A

                                              \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \left(z - t\right)\right)} \cdot \frac{1}{a - t} \]
                                            5. *-commutativeN/A

                                              \[\leadsto x + \color{blue}{\left(\left(z - t\right) \cdot \left(y - x\right)\right)} \cdot \frac{1}{a - t} \]
                                            6. associate-*l*N/A

                                              \[\leadsto x + \color{blue}{\left(z - t\right) \cdot \left(\left(y - x\right) \cdot \frac{1}{a - t}\right)} \]
                                            7. *-commutativeN/A

                                              \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \frac{1}{a - t}\right) \cdot \left(z - t\right)} \]
                                            8. fp-cancel-sign-sub-invN/A

                                              \[\leadsto \color{blue}{x - \left(\mathsf{neg}\left(\left(y - x\right) \cdot \frac{1}{a - t}\right)\right) \cdot \left(z - t\right)} \]
                                            9. lower--.f64N/A

                                              \[\leadsto \color{blue}{x - \left(\mathsf{neg}\left(\left(y - x\right) \cdot \frac{1}{a - t}\right)\right) \cdot \left(z - t\right)} \]
                                            10. mult-flip-revN/A

                                              \[\leadsto x - \left(\mathsf{neg}\left(\color{blue}{\frac{y - x}{a - t}}\right)\right) \cdot \left(z - t\right) \]
                                            11. lift--.f64N/A

                                              \[\leadsto x - \left(\mathsf{neg}\left(\frac{\color{blue}{y - x}}{a - t}\right)\right) \cdot \left(z - t\right) \]
                                            12. div-subN/A

                                              \[\leadsto x - \left(\mathsf{neg}\left(\color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)}\right)\right) \cdot \left(z - t\right) \]
                                            13. sub-negateN/A

                                              \[\leadsto x - \color{blue}{\left(\frac{x}{a - t} - \frac{y}{a - t}\right)} \cdot \left(z - t\right) \]
                                            14. div-subN/A

                                              \[\leadsto x - \color{blue}{\frac{x - y}{a - t}} \cdot \left(z - t\right) \]
                                            15. frac-2neg-revN/A

                                              \[\leadsto x - \color{blue}{\frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(z - t\right) \]
                                            16. sub-negate-revN/A

                                              \[\leadsto x - \frac{\color{blue}{y - x}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right) \]
                                            17. lift--.f64N/A

                                              \[\leadsto x - \frac{\color{blue}{y - x}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right) \]
                                            18. lower-*.f64N/A

                                              \[\leadsto x - \color{blue}{\frac{y - x}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right)} \]
                                          3. Applied rewrites81.1%

                                            \[\leadsto \color{blue}{x - \frac{x - y}{a - t} \cdot \left(z - t\right)} \]
                                          4. Step-by-step derivation
                                            1. lift-*.f64N/A

                                              \[\leadsto x - \color{blue}{\frac{x - y}{a - t} \cdot \left(z - t\right)} \]
                                            2. lift-/.f64N/A

                                              \[\leadsto x - \color{blue}{\frac{x - y}{a - t}} \cdot \left(z - t\right) \]
                                            3. mult-flipN/A

                                              \[\leadsto x - \color{blue}{\left(\left(x - y\right) \cdot \frac{1}{a - t}\right)} \cdot \left(z - t\right) \]
                                            4. associate-*l*N/A

                                              \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                                            5. lower-*.f64N/A

                                              \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                                            6. lower-*.f64N/A

                                              \[\leadsto x - \left(x - y\right) \cdot \color{blue}{\left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                                            7. lower-/.f6484.9%

                                              \[\leadsto x - \left(x - y\right) \cdot \left(\color{blue}{\frac{1}{a - t}} \cdot \left(z - t\right)\right) \]
                                          5. Applied rewrites84.9%

                                            \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                                          6. Taylor expanded in t around inf

                                            \[\leadsto x - \left(x - y\right) \cdot \color{blue}{1} \]
                                          7. Step-by-step derivation
                                            1. Applied rewrites19.0%

                                              \[\leadsto x - \left(x - y\right) \cdot \color{blue}{1} \]
                                            2. Taylor expanded in x around 0

                                              \[\leadsto x - \color{blue}{\left(-1 \cdot y\right)} \cdot 1 \]
                                            3. Step-by-step derivation
                                              1. lower-*.f6433.7%

                                                \[\leadsto x - \left(-1 \cdot \color{blue}{y}\right) \cdot 1 \]
                                            4. Applied rewrites33.7%

                                              \[\leadsto x - \color{blue}{\left(-1 \cdot y\right)} \cdot 1 \]
                                          8. Recombined 2 regimes into one program.
                                          9. Add Preprocessing

                                          Alternative 19: 33.7% accurate, 2.1× speedup?

                                          \[x - \left(-1 \cdot y\right) \cdot 1 \]
                                          (FPCore (x y z t a)
                                            :precision binary64
                                            (- x (* (* -1.0 y) 1.0)))
                                          double code(double x, double y, double z, double t, double a) {
                                          	return x - ((-1.0 * y) * 1.0);
                                          }
                                          
                                          module fmin_fmax_functions
                                              implicit none
                                              private
                                              public fmax
                                              public fmin
                                          
                                              interface fmax
                                                  module procedure fmax88
                                                  module procedure fmax44
                                                  module procedure fmax84
                                                  module procedure fmax48
                                              end interface
                                              interface fmin
                                                  module procedure fmin88
                                                  module procedure fmin44
                                                  module procedure fmin84
                                                  module procedure fmin48
                                              end interface
                                          contains
                                              real(8) function fmax88(x, y) result (res)
                                                  real(8), intent (in) :: x
                                                  real(8), intent (in) :: y
                                                  res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                              end function
                                              real(4) function fmax44(x, y) result (res)
                                                  real(4), intent (in) :: x
                                                  real(4), intent (in) :: y
                                                  res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                              end function
                                              real(8) function fmax84(x, y) result(res)
                                                  real(8), intent (in) :: x
                                                  real(4), intent (in) :: y
                                                  res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                                              end function
                                              real(8) function fmax48(x, y) result(res)
                                                  real(4), intent (in) :: x
                                                  real(8), intent (in) :: y
                                                  res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                                              end function
                                              real(8) function fmin88(x, y) result (res)
                                                  real(8), intent (in) :: x
                                                  real(8), intent (in) :: y
                                                  res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                              end function
                                              real(4) function fmin44(x, y) result (res)
                                                  real(4), intent (in) :: x
                                                  real(4), intent (in) :: y
                                                  res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                              end function
                                              real(8) function fmin84(x, y) result(res)
                                                  real(8), intent (in) :: x
                                                  real(4), intent (in) :: y
                                                  res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                                              end function
                                              real(8) function fmin48(x, y) result(res)
                                                  real(4), intent (in) :: x
                                                  real(8), intent (in) :: y
                                                  res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                                              end function
                                          end module
                                          
                                          real(8) function code(x, y, z, t, a)
                                          use fmin_fmax_functions
                                              real(8), intent (in) :: x
                                              real(8), intent (in) :: y
                                              real(8), intent (in) :: z
                                              real(8), intent (in) :: t
                                              real(8), intent (in) :: a
                                              code = x - (((-1.0d0) * y) * 1.0d0)
                                          end function
                                          
                                          public static double code(double x, double y, double z, double t, double a) {
                                          	return x - ((-1.0 * y) * 1.0);
                                          }
                                          
                                          def code(x, y, z, t, a):
                                          	return x - ((-1.0 * y) * 1.0)
                                          
                                          function code(x, y, z, t, a)
                                          	return Float64(x - Float64(Float64(-1.0 * y) * 1.0))
                                          end
                                          
                                          function tmp = code(x, y, z, t, a)
                                          	tmp = x - ((-1.0 * y) * 1.0);
                                          end
                                          
                                          code[x_, y_, z_, t_, a_] := N[(x - N[(N[(-1.0 * y), $MachinePrecision] * 1.0), $MachinePrecision]), $MachinePrecision]
                                          
                                          x - \left(-1 \cdot y\right) \cdot 1
                                          
                                          Derivation
                                          1. Initial program 68.6%

                                            \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
                                          2. Step-by-step derivation
                                            1. lift-+.f64N/A

                                              \[\leadsto \color{blue}{x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
                                            2. lift-/.f64N/A

                                              \[\leadsto x + \color{blue}{\frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
                                            3. mult-flipN/A

                                              \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \left(z - t\right)\right) \cdot \frac{1}{a - t}} \]
                                            4. lift-*.f64N/A

                                              \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \left(z - t\right)\right)} \cdot \frac{1}{a - t} \]
                                            5. *-commutativeN/A

                                              \[\leadsto x + \color{blue}{\left(\left(z - t\right) \cdot \left(y - x\right)\right)} \cdot \frac{1}{a - t} \]
                                            6. associate-*l*N/A

                                              \[\leadsto x + \color{blue}{\left(z - t\right) \cdot \left(\left(y - x\right) \cdot \frac{1}{a - t}\right)} \]
                                            7. *-commutativeN/A

                                              \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \frac{1}{a - t}\right) \cdot \left(z - t\right)} \]
                                            8. fp-cancel-sign-sub-invN/A

                                              \[\leadsto \color{blue}{x - \left(\mathsf{neg}\left(\left(y - x\right) \cdot \frac{1}{a - t}\right)\right) \cdot \left(z - t\right)} \]
                                            9. lower--.f64N/A

                                              \[\leadsto \color{blue}{x - \left(\mathsf{neg}\left(\left(y - x\right) \cdot \frac{1}{a - t}\right)\right) \cdot \left(z - t\right)} \]
                                            10. mult-flip-revN/A

                                              \[\leadsto x - \left(\mathsf{neg}\left(\color{blue}{\frac{y - x}{a - t}}\right)\right) \cdot \left(z - t\right) \]
                                            11. lift--.f64N/A

                                              \[\leadsto x - \left(\mathsf{neg}\left(\frac{\color{blue}{y - x}}{a - t}\right)\right) \cdot \left(z - t\right) \]
                                            12. div-subN/A

                                              \[\leadsto x - \left(\mathsf{neg}\left(\color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)}\right)\right) \cdot \left(z - t\right) \]
                                            13. sub-negateN/A

                                              \[\leadsto x - \color{blue}{\left(\frac{x}{a - t} - \frac{y}{a - t}\right)} \cdot \left(z - t\right) \]
                                            14. div-subN/A

                                              \[\leadsto x - \color{blue}{\frac{x - y}{a - t}} \cdot \left(z - t\right) \]
                                            15. frac-2neg-revN/A

                                              \[\leadsto x - \color{blue}{\frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(z - t\right) \]
                                            16. sub-negate-revN/A

                                              \[\leadsto x - \frac{\color{blue}{y - x}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right) \]
                                            17. lift--.f64N/A

                                              \[\leadsto x - \frac{\color{blue}{y - x}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right) \]
                                            18. lower-*.f64N/A

                                              \[\leadsto x - \color{blue}{\frac{y - x}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right)} \]
                                          3. Applied rewrites81.1%

                                            \[\leadsto \color{blue}{x - \frac{x - y}{a - t} \cdot \left(z - t\right)} \]
                                          4. Step-by-step derivation
                                            1. lift-*.f64N/A

                                              \[\leadsto x - \color{blue}{\frac{x - y}{a - t} \cdot \left(z - t\right)} \]
                                            2. lift-/.f64N/A

                                              \[\leadsto x - \color{blue}{\frac{x - y}{a - t}} \cdot \left(z - t\right) \]
                                            3. mult-flipN/A

                                              \[\leadsto x - \color{blue}{\left(\left(x - y\right) \cdot \frac{1}{a - t}\right)} \cdot \left(z - t\right) \]
                                            4. associate-*l*N/A

                                              \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                                            5. lower-*.f64N/A

                                              \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                                            6. lower-*.f64N/A

                                              \[\leadsto x - \left(x - y\right) \cdot \color{blue}{\left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                                            7. lower-/.f6484.9%

                                              \[\leadsto x - \left(x - y\right) \cdot \left(\color{blue}{\frac{1}{a - t}} \cdot \left(z - t\right)\right) \]
                                          5. Applied rewrites84.9%

                                            \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                                          6. Taylor expanded in t around inf

                                            \[\leadsto x - \left(x - y\right) \cdot \color{blue}{1} \]
                                          7. Step-by-step derivation
                                            1. Applied rewrites19.0%

                                              \[\leadsto x - \left(x - y\right) \cdot \color{blue}{1} \]
                                            2. Taylor expanded in x around 0

                                              \[\leadsto x - \color{blue}{\left(-1 \cdot y\right)} \cdot 1 \]
                                            3. Step-by-step derivation
                                              1. lower-*.f6433.7%

                                                \[\leadsto x - \left(-1 \cdot \color{blue}{y}\right) \cdot 1 \]
                                            4. Applied rewrites33.7%

                                              \[\leadsto x - \color{blue}{\left(-1 \cdot y\right)} \cdot 1 \]
                                            5. Add Preprocessing

                                            Alternative 20: 19.0% accurate, 2.4× speedup?

                                            \[x - \left(x - y\right) \cdot 1 \]
                                            (FPCore (x y z t a)
                                              :precision binary64
                                              (- x (* (- x y) 1.0)))
                                            double code(double x, double y, double z, double t, double a) {
                                            	return x - ((x - y) * 1.0);
                                            }
                                            
                                            module fmin_fmax_functions
                                                implicit none
                                                private
                                                public fmax
                                                public fmin
                                            
                                                interface fmax
                                                    module procedure fmax88
                                                    module procedure fmax44
                                                    module procedure fmax84
                                                    module procedure fmax48
                                                end interface
                                                interface fmin
                                                    module procedure fmin88
                                                    module procedure fmin44
                                                    module procedure fmin84
                                                    module procedure fmin48
                                                end interface
                                            contains
                                                real(8) function fmax88(x, y) result (res)
                                                    real(8), intent (in) :: x
                                                    real(8), intent (in) :: y
                                                    res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                                end function
                                                real(4) function fmax44(x, y) result (res)
                                                    real(4), intent (in) :: x
                                                    real(4), intent (in) :: y
                                                    res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                                end function
                                                real(8) function fmax84(x, y) result(res)
                                                    real(8), intent (in) :: x
                                                    real(4), intent (in) :: y
                                                    res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                                                end function
                                                real(8) function fmax48(x, y) result(res)
                                                    real(4), intent (in) :: x
                                                    real(8), intent (in) :: y
                                                    res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                                                end function
                                                real(8) function fmin88(x, y) result (res)
                                                    real(8), intent (in) :: x
                                                    real(8), intent (in) :: y
                                                    res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                                end function
                                                real(4) function fmin44(x, y) result (res)
                                                    real(4), intent (in) :: x
                                                    real(4), intent (in) :: y
                                                    res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                                end function
                                                real(8) function fmin84(x, y) result(res)
                                                    real(8), intent (in) :: x
                                                    real(4), intent (in) :: y
                                                    res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                                                end function
                                                real(8) function fmin48(x, y) result(res)
                                                    real(4), intent (in) :: x
                                                    real(8), intent (in) :: y
                                                    res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                                                end function
                                            end module
                                            
                                            real(8) function code(x, y, z, t, a)
                                            use fmin_fmax_functions
                                                real(8), intent (in) :: x
                                                real(8), intent (in) :: y
                                                real(8), intent (in) :: z
                                                real(8), intent (in) :: t
                                                real(8), intent (in) :: a
                                                code = x - ((x - y) * 1.0d0)
                                            end function
                                            
                                            public static double code(double x, double y, double z, double t, double a) {
                                            	return x - ((x - y) * 1.0);
                                            }
                                            
                                            def code(x, y, z, t, a):
                                            	return x - ((x - y) * 1.0)
                                            
                                            function code(x, y, z, t, a)
                                            	return Float64(x - Float64(Float64(x - y) * 1.0))
                                            end
                                            
                                            function tmp = code(x, y, z, t, a)
                                            	tmp = x - ((x - y) * 1.0);
                                            end
                                            
                                            code[x_, y_, z_, t_, a_] := N[(x - N[(N[(x - y), $MachinePrecision] * 1.0), $MachinePrecision]), $MachinePrecision]
                                            
                                            x - \left(x - y\right) \cdot 1
                                            
                                            Derivation
                                            1. Initial program 68.6%

                                              \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
                                            2. Step-by-step derivation
                                              1. lift-+.f64N/A

                                                \[\leadsto \color{blue}{x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
                                              2. lift-/.f64N/A

                                                \[\leadsto x + \color{blue}{\frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t}} \]
                                              3. mult-flipN/A

                                                \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \left(z - t\right)\right) \cdot \frac{1}{a - t}} \]
                                              4. lift-*.f64N/A

                                                \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \left(z - t\right)\right)} \cdot \frac{1}{a - t} \]
                                              5. *-commutativeN/A

                                                \[\leadsto x + \color{blue}{\left(\left(z - t\right) \cdot \left(y - x\right)\right)} \cdot \frac{1}{a - t} \]
                                              6. associate-*l*N/A

                                                \[\leadsto x + \color{blue}{\left(z - t\right) \cdot \left(\left(y - x\right) \cdot \frac{1}{a - t}\right)} \]
                                              7. *-commutativeN/A

                                                \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot \frac{1}{a - t}\right) \cdot \left(z - t\right)} \]
                                              8. fp-cancel-sign-sub-invN/A

                                                \[\leadsto \color{blue}{x - \left(\mathsf{neg}\left(\left(y - x\right) \cdot \frac{1}{a - t}\right)\right) \cdot \left(z - t\right)} \]
                                              9. lower--.f64N/A

                                                \[\leadsto \color{blue}{x - \left(\mathsf{neg}\left(\left(y - x\right) \cdot \frac{1}{a - t}\right)\right) \cdot \left(z - t\right)} \]
                                              10. mult-flip-revN/A

                                                \[\leadsto x - \left(\mathsf{neg}\left(\color{blue}{\frac{y - x}{a - t}}\right)\right) \cdot \left(z - t\right) \]
                                              11. lift--.f64N/A

                                                \[\leadsto x - \left(\mathsf{neg}\left(\frac{\color{blue}{y - x}}{a - t}\right)\right) \cdot \left(z - t\right) \]
                                              12. div-subN/A

                                                \[\leadsto x - \left(\mathsf{neg}\left(\color{blue}{\left(\frac{y}{a - t} - \frac{x}{a - t}\right)}\right)\right) \cdot \left(z - t\right) \]
                                              13. sub-negateN/A

                                                \[\leadsto x - \color{blue}{\left(\frac{x}{a - t} - \frac{y}{a - t}\right)} \cdot \left(z - t\right) \]
                                              14. div-subN/A

                                                \[\leadsto x - \color{blue}{\frac{x - y}{a - t}} \cdot \left(z - t\right) \]
                                              15. frac-2neg-revN/A

                                                \[\leadsto x - \color{blue}{\frac{\mathsf{neg}\left(\left(x - y\right)\right)}{\mathsf{neg}\left(\left(a - t\right)\right)}} \cdot \left(z - t\right) \]
                                              16. sub-negate-revN/A

                                                \[\leadsto x - \frac{\color{blue}{y - x}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right) \]
                                              17. lift--.f64N/A

                                                \[\leadsto x - \frac{\color{blue}{y - x}}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right) \]
                                              18. lower-*.f64N/A

                                                \[\leadsto x - \color{blue}{\frac{y - x}{\mathsf{neg}\left(\left(a - t\right)\right)} \cdot \left(z - t\right)} \]
                                            3. Applied rewrites81.1%

                                              \[\leadsto \color{blue}{x - \frac{x - y}{a - t} \cdot \left(z - t\right)} \]
                                            4. Step-by-step derivation
                                              1. lift-*.f64N/A

                                                \[\leadsto x - \color{blue}{\frac{x - y}{a - t} \cdot \left(z - t\right)} \]
                                              2. lift-/.f64N/A

                                                \[\leadsto x - \color{blue}{\frac{x - y}{a - t}} \cdot \left(z - t\right) \]
                                              3. mult-flipN/A

                                                \[\leadsto x - \color{blue}{\left(\left(x - y\right) \cdot \frac{1}{a - t}\right)} \cdot \left(z - t\right) \]
                                              4. associate-*l*N/A

                                                \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                                              5. lower-*.f64N/A

                                                \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                                              6. lower-*.f64N/A

                                                \[\leadsto x - \left(x - y\right) \cdot \color{blue}{\left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                                              7. lower-/.f6484.9%

                                                \[\leadsto x - \left(x - y\right) \cdot \left(\color{blue}{\frac{1}{a - t}} \cdot \left(z - t\right)\right) \]
                                            5. Applied rewrites84.9%

                                              \[\leadsto x - \color{blue}{\left(x - y\right) \cdot \left(\frac{1}{a - t} \cdot \left(z - t\right)\right)} \]
                                            6. Taylor expanded in t around inf

                                              \[\leadsto x - \left(x - y\right) \cdot \color{blue}{1} \]
                                            7. Step-by-step derivation
                                              1. Applied rewrites19.0%

                                                \[\leadsto x - \left(x - y\right) \cdot \color{blue}{1} \]
                                              2. Add Preprocessing

                                              Alternative 21: 2.8% accurate, 3.2× speedup?

                                              \[x \cdot \left(1 + -1\right) \]
                                              (FPCore (x y z t a)
                                                :precision binary64
                                                (* x (+ 1.0 -1.0)))
                                              double code(double x, double y, double z, double t, double a) {
                                              	return x * (1.0 + -1.0);
                                              }
                                              
                                              module fmin_fmax_functions
                                                  implicit none
                                                  private
                                                  public fmax
                                                  public fmin
                                              
                                                  interface fmax
                                                      module procedure fmax88
                                                      module procedure fmax44
                                                      module procedure fmax84
                                                      module procedure fmax48
                                                  end interface
                                                  interface fmin
                                                      module procedure fmin88
                                                      module procedure fmin44
                                                      module procedure fmin84
                                                      module procedure fmin48
                                                  end interface
                                              contains
                                                  real(8) function fmax88(x, y) result (res)
                                                      real(8), intent (in) :: x
                                                      real(8), intent (in) :: y
                                                      res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                                  end function
                                                  real(4) function fmax44(x, y) result (res)
                                                      real(4), intent (in) :: x
                                                      real(4), intent (in) :: y
                                                      res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                                  end function
                                                  real(8) function fmax84(x, y) result(res)
                                                      real(8), intent (in) :: x
                                                      real(4), intent (in) :: y
                                                      res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                                                  end function
                                                  real(8) function fmax48(x, y) result(res)
                                                      real(4), intent (in) :: x
                                                      real(8), intent (in) :: y
                                                      res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                                                  end function
                                                  real(8) function fmin88(x, y) result (res)
                                                      real(8), intent (in) :: x
                                                      real(8), intent (in) :: y
                                                      res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                                  end function
                                                  real(4) function fmin44(x, y) result (res)
                                                      real(4), intent (in) :: x
                                                      real(4), intent (in) :: y
                                                      res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                                  end function
                                                  real(8) function fmin84(x, y) result(res)
                                                      real(8), intent (in) :: x
                                                      real(4), intent (in) :: y
                                                      res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                                                  end function
                                                  real(8) function fmin48(x, y) result(res)
                                                      real(4), intent (in) :: x
                                                      real(8), intent (in) :: y
                                                      res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                                                  end function
                                              end module
                                              
                                              real(8) function code(x, y, z, t, a)
                                              use fmin_fmax_functions
                                                  real(8), intent (in) :: x
                                                  real(8), intent (in) :: y
                                                  real(8), intent (in) :: z
                                                  real(8), intent (in) :: t
                                                  real(8), intent (in) :: a
                                                  code = x * (1.0d0 + (-1.0d0))
                                              end function
                                              
                                              public static double code(double x, double y, double z, double t, double a) {
                                              	return x * (1.0 + -1.0);
                                              }
                                              
                                              def code(x, y, z, t, a):
                                              	return x * (1.0 + -1.0)
                                              
                                              function code(x, y, z, t, a)
                                              	return Float64(x * Float64(1.0 + -1.0))
                                              end
                                              
                                              function tmp = code(x, y, z, t, a)
                                              	tmp = x * (1.0 + -1.0);
                                              end
                                              
                                              code[x_, y_, z_, t_, a_] := N[(x * N[(1.0 + -1.0), $MachinePrecision]), $MachinePrecision]
                                              
                                              x \cdot \left(1 + -1\right)
                                              
                                              Derivation
                                              1. Initial program 68.6%

                                                \[x + \frac{\left(y - x\right) \cdot \left(z - t\right)}{a - t} \]
                                              2. Taylor expanded in x around -inf

                                                \[\leadsto \color{blue}{-1 \cdot \left(x \cdot \left(\frac{z}{a - t} - \left(1 + \frac{t}{a - t}\right)\right)\right)} \]
                                              3. Step-by-step derivation
                                                1. lower-*.f64N/A

                                                  \[\leadsto -1 \cdot \color{blue}{\left(x \cdot \left(\frac{z}{a - t} - \left(1 + \frac{t}{a - t}\right)\right)\right)} \]
                                                2. lower-*.f64N/A

                                                  \[\leadsto -1 \cdot \left(x \cdot \color{blue}{\left(\frac{z}{a - t} - \left(1 + \frac{t}{a - t}\right)\right)}\right) \]
                                                3. lower--.f64N/A

                                                  \[\leadsto -1 \cdot \left(x \cdot \left(\frac{z}{a - t} - \color{blue}{\left(1 + \frac{t}{a - t}\right)}\right)\right) \]
                                                4. lower-/.f64N/A

                                                  \[\leadsto -1 \cdot \left(x \cdot \left(\frac{z}{a - t} - \left(\color{blue}{1} + \frac{t}{a - t}\right)\right)\right) \]
                                                5. lower--.f64N/A

                                                  \[\leadsto -1 \cdot \left(x \cdot \left(\frac{z}{a - t} - \left(1 + \frac{t}{a - t}\right)\right)\right) \]
                                                6. lower-+.f64N/A

                                                  \[\leadsto -1 \cdot \left(x \cdot \left(\frac{z}{a - t} - \left(1 + \color{blue}{\frac{t}{a - t}}\right)\right)\right) \]
                                                7. lower-/.f64N/A

                                                  \[\leadsto -1 \cdot \left(x \cdot \left(\frac{z}{a - t} - \left(1 + \frac{t}{\color{blue}{a - t}}\right)\right)\right) \]
                                                8. lower--.f6447.6%

                                                  \[\leadsto -1 \cdot \left(x \cdot \left(\frac{z}{a - t} - \left(1 + \frac{t}{a - \color{blue}{t}}\right)\right)\right) \]
                                              4. Applied rewrites47.6%

                                                \[\leadsto \color{blue}{-1 \cdot \left(x \cdot \left(\frac{z}{a - t} - \left(1 + \frac{t}{a - t}\right)\right)\right)} \]
                                              5. Taylor expanded in a around 0

                                                \[\leadsto \frac{x \cdot z}{\color{blue}{t}} \]
                                              6. Step-by-step derivation
                                                1. lower-/.f64N/A

                                                  \[\leadsto \frac{x \cdot z}{t} \]
                                                2. lower-*.f6417.1%

                                                  \[\leadsto \frac{x \cdot z}{t} \]
                                              7. Applied rewrites17.1%

                                                \[\leadsto \frac{x \cdot z}{\color{blue}{t}} \]
                                              8. Taylor expanded in z around 0

                                                \[\leadsto x \cdot \color{blue}{\left(1 + \frac{t}{a - t}\right)} \]
                                              9. Step-by-step derivation
                                                1. lower-*.f64N/A

                                                  \[\leadsto x \cdot \left(1 + \color{blue}{\frac{t}{a - t}}\right) \]
                                                2. lower-+.f64N/A

                                                  \[\leadsto x \cdot \left(1 + \frac{t}{\color{blue}{a - t}}\right) \]
                                                3. lower-/.f64N/A

                                                  \[\leadsto x \cdot \left(1 + \frac{t}{a - \color{blue}{t}}\right) \]
                                                4. lower--.f6425.4%

                                                  \[\leadsto x \cdot \left(1 + \frac{t}{a - t}\right) \]
                                              10. Applied rewrites25.4%

                                                \[\leadsto x \cdot \color{blue}{\left(1 + \frac{t}{a - t}\right)} \]
                                              11. Taylor expanded in t around inf

                                                \[\leadsto x \cdot \left(1 + -1\right) \]
                                              12. Step-by-step derivation
                                                1. Applied rewrites2.8%

                                                  \[\leadsto x \cdot \left(1 + -1\right) \]
                                                2. Add Preprocessing

                                                Reproduce

                                                ?
                                                herbie shell --seed 2025258 
                                                (FPCore (x y z t a)
                                                  :name "Graphics.Rendering.Chart.Axis.Types:linMap from Chart-1.5.3"
                                                  :precision binary64
                                                  (+ x (/ (* (- y x) (- z t)) (- a t))))