Numeric.SpecFunctions:$slogFactorial from math-functions-0.1.5.2, B

Percentage Accurate: 94.2% → 98.8%
Time: 11.3s
Alternatives: 21
Speedup: 0.9×

Specification

?
\[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
(FPCore (x y z)
  :precision binary64
  (+
 (+ (- (* (- x 0.5) (log x)) x) 0.91893853320467)
 (/
  (+
   (* (- (* (+ y 0.0007936500793651) z) 0.0027777777777778) z)
   0.083333333333333)
  x)))
double code(double x, double y, double z) {
	return ((((x - 0.5) * log(x)) - x) + 0.91893853320467) + ((((((y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x);
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    code = ((((x - 0.5d0) * log(x)) - x) + 0.91893853320467d0) + ((((((y + 0.0007936500793651d0) * z) - 0.0027777777777778d0) * z) + 0.083333333333333d0) / x)
end function
public static double code(double x, double y, double z) {
	return ((((x - 0.5) * Math.log(x)) - x) + 0.91893853320467) + ((((((y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x);
}
def code(x, y, z):
	return ((((x - 0.5) * math.log(x)) - x) + 0.91893853320467) + ((((((y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x)
function code(x, y, z)
	return Float64(Float64(Float64(Float64(Float64(x - 0.5) * log(x)) - x) + 0.91893853320467) + Float64(Float64(Float64(Float64(Float64(Float64(y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x))
end
function tmp = code(x, y, z)
	tmp = ((((x - 0.5) * log(x)) - x) + 0.91893853320467) + ((((((y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x);
end
code[x_, y_, z_] := N[(N[(N[(N[(N[(x - 0.5), $MachinePrecision] * N[Log[x], $MachinePrecision]), $MachinePrecision] - x), $MachinePrecision] + 0.91893853320467), $MachinePrecision] + N[(N[(N[(N[(N[(N[(y + 0.0007936500793651), $MachinePrecision] * z), $MachinePrecision] - 0.0027777777777778), $MachinePrecision] * z), $MachinePrecision] + 0.083333333333333), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision]
\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x}

Local Percentage Accuracy vs ?

The average percentage accuracy by input value. Horizontal axis shows value of an input variable; the variable is choosen in the title. Vertical axis is accuracy; higher is better. Red represent the original program, while blue represents Herbie's suggestion. These can be toggled with buttons below the plot. The line is an average while dots represent individual samples.

Accuracy vs Speed?

Herbie found 21 alternatives:

AlternativeAccuracySpeedup
The accuracy (vertical axis) and speed (horizontal axis) of each alternatives. Up and to the right is better. The red square shows the initial program, and each blue circle shows an alternative.The line shows the best available speed-accuracy tradeoffs.

Initial Program: 94.2% accurate, 1.0× speedup?

\[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
(FPCore (x y z)
  :precision binary64
  (+
 (+ (- (* (- x 0.5) (log x)) x) 0.91893853320467)
 (/
  (+
   (* (- (* (+ y 0.0007936500793651) z) 0.0027777777777778) z)
   0.083333333333333)
  x)))
double code(double x, double y, double z) {
	return ((((x - 0.5) * log(x)) - x) + 0.91893853320467) + ((((((y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x);
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    code = ((((x - 0.5d0) * log(x)) - x) + 0.91893853320467d0) + ((((((y + 0.0007936500793651d0) * z) - 0.0027777777777778d0) * z) + 0.083333333333333d0) / x)
end function
public static double code(double x, double y, double z) {
	return ((((x - 0.5) * Math.log(x)) - x) + 0.91893853320467) + ((((((y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x);
}
def code(x, y, z):
	return ((((x - 0.5) * math.log(x)) - x) + 0.91893853320467) + ((((((y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x)
function code(x, y, z)
	return Float64(Float64(Float64(Float64(Float64(x - 0.5) * log(x)) - x) + 0.91893853320467) + Float64(Float64(Float64(Float64(Float64(Float64(y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x))
end
function tmp = code(x, y, z)
	tmp = ((((x - 0.5) * log(x)) - x) + 0.91893853320467) + ((((((y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x);
end
code[x_, y_, z_] := N[(N[(N[(N[(N[(x - 0.5), $MachinePrecision] * N[Log[x], $MachinePrecision]), $MachinePrecision] - x), $MachinePrecision] + 0.91893853320467), $MachinePrecision] + N[(N[(N[(N[(N[(N[(y + 0.0007936500793651), $MachinePrecision] * z), $MachinePrecision] - 0.0027777777777778), $MachinePrecision] * z), $MachinePrecision] + 0.083333333333333), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision]
\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x}

Alternative 1: 98.8% accurate, 0.9× speedup?

\[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \left(\left(\left(z \cdot y + z \cdot 0.0007936500793651\right) - 0.0027777777777778\right) \cdot \frac{z}{x} + 0.083333333333333 \cdot \frac{1}{x}\right) \]
(FPCore (x y z)
  :precision binary64
  (+
 (+ (- (* (- x 0.5) (log x)) x) 0.91893853320467)
 (+
  (*
   (- (+ (* z y) (* z 0.0007936500793651)) 0.0027777777777778)
   (/ z x))
  (* 0.083333333333333 (/ 1.0 x)))))
double code(double x, double y, double z) {
	return ((((x - 0.5) * log(x)) - x) + 0.91893853320467) + (((((z * y) + (z * 0.0007936500793651)) - 0.0027777777777778) * (z / x)) + (0.083333333333333 * (1.0 / x)));
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    code = ((((x - 0.5d0) * log(x)) - x) + 0.91893853320467d0) + (((((z * y) + (z * 0.0007936500793651d0)) - 0.0027777777777778d0) * (z / x)) + (0.083333333333333d0 * (1.0d0 / x)))
end function
public static double code(double x, double y, double z) {
	return ((((x - 0.5) * Math.log(x)) - x) + 0.91893853320467) + (((((z * y) + (z * 0.0007936500793651)) - 0.0027777777777778) * (z / x)) + (0.083333333333333 * (1.0 / x)));
}
def code(x, y, z):
	return ((((x - 0.5) * math.log(x)) - x) + 0.91893853320467) + (((((z * y) + (z * 0.0007936500793651)) - 0.0027777777777778) * (z / x)) + (0.083333333333333 * (1.0 / x)))
function code(x, y, z)
	return Float64(Float64(Float64(Float64(Float64(x - 0.5) * log(x)) - x) + 0.91893853320467) + Float64(Float64(Float64(Float64(Float64(z * y) + Float64(z * 0.0007936500793651)) - 0.0027777777777778) * Float64(z / x)) + Float64(0.083333333333333 * Float64(1.0 / x))))
end
function tmp = code(x, y, z)
	tmp = ((((x - 0.5) * log(x)) - x) + 0.91893853320467) + (((((z * y) + (z * 0.0007936500793651)) - 0.0027777777777778) * (z / x)) + (0.083333333333333 * (1.0 / x)));
end
code[x_, y_, z_] := N[(N[(N[(N[(N[(x - 0.5), $MachinePrecision] * N[Log[x], $MachinePrecision]), $MachinePrecision] - x), $MachinePrecision] + 0.91893853320467), $MachinePrecision] + N[(N[(N[(N[(N[(z * y), $MachinePrecision] + N[(z * 0.0007936500793651), $MachinePrecision]), $MachinePrecision] - 0.0027777777777778), $MachinePrecision] * N[(z / x), $MachinePrecision]), $MachinePrecision] + N[(0.083333333333333 * N[(1.0 / x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \left(\left(\left(z \cdot y + z \cdot 0.0007936500793651\right) - 0.0027777777777778\right) \cdot \frac{z}{x} + 0.083333333333333 \cdot \frac{1}{x}\right)
Derivation
  1. Initial program 94.2%

    \[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
  2. Taylor expanded in z around 0

    \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \color{blue}{\left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right)} \]
  3. Step-by-step derivation
    1. lower-+.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \color{blue}{\frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}}\right) \]
    2. lower-*.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \color{blue}{\frac{83333333333333}{1000000000000000}} \cdot \frac{1}{x}\right) \]
    3. lower--.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
    4. lower-*.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
    5. lower-+.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
    6. lower-*.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
    7. lower-/.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
    8. lower-/.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
    9. lower-*.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
    10. lower-/.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
    11. lower-*.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \color{blue}{\frac{1}{x}}\right) \]
    12. lower-/.f6494.5%

      \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \left(z \cdot \left(z \cdot \left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{x}\right) - 0.0027777777777778 \cdot \frac{1}{x}\right) + 0.083333333333333 \cdot \frac{1}{\color{blue}{x}}\right) \]
  4. Applied rewrites94.5%

    \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \color{blue}{\left(z \cdot \left(z \cdot \left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{x}\right) - 0.0027777777777778 \cdot \frac{1}{x}\right) + 0.083333333333333 \cdot \frac{1}{x}\right)} \]
  5. Step-by-step derivation
    1. lift-*.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \color{blue}{\frac{83333333333333}{1000000000000000}} \cdot \frac{1}{x}\right) \]
    2. lift--.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
    3. lift-*.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
    4. lift-/.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
    5. mult-flip-revN/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{\frac{13888888888889}{5000000000000000}}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
  6. Applied rewrites98.8%

    \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \left(\left(\left(y - -0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot \frac{z}{x} + \color{blue}{0.083333333333333} \cdot \frac{1}{x}\right) \]
  7. Step-by-step derivation
    1. lift-*.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(\left(\left(y - \frac{-7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot \frac{z}{x} + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
    2. *-commutativeN/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(\left(z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right) - \frac{13888888888889}{5000000000000000}\right) \cdot \frac{z}{x} + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
    3. lift--.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(\left(z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right) - \frac{13888888888889}{5000000000000000}\right) \cdot \frac{z}{x} + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
    4. metadata-evalN/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(\left(z \cdot \left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right) - \frac{13888888888889}{5000000000000000}\right) \cdot \frac{z}{x} + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
    5. add-flipN/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(\left(z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right) - \frac{13888888888889}{5000000000000000}\right) \cdot \frac{z}{x} + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
    6. distribute-lft-inN/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(\left(\left(z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}\right) - \frac{13888888888889}{5000000000000000}\right) \cdot \frac{z}{x} + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
    7. *-commutativeN/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(\left(\left(y \cdot z + z \cdot \frac{7936500793651}{10000000000000000}\right) - \frac{13888888888889}{5000000000000000}\right) \cdot \frac{z}{x} + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
    8. lift-*.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(\left(\left(y \cdot z + z \cdot \frac{7936500793651}{10000000000000000}\right) - \frac{13888888888889}{5000000000000000}\right) \cdot \frac{z}{x} + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
    9. lower-+.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(\left(\left(y \cdot z + z \cdot \frac{7936500793651}{10000000000000000}\right) - \frac{13888888888889}{5000000000000000}\right) \cdot \frac{z}{x} + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
    10. lift-*.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(\left(\left(y \cdot z + z \cdot \frac{7936500793651}{10000000000000000}\right) - \frac{13888888888889}{5000000000000000}\right) \cdot \frac{z}{x} + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
    11. *-commutativeN/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(\left(\left(z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}\right) - \frac{13888888888889}{5000000000000000}\right) \cdot \frac{z}{x} + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
    12. lower-*.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(\left(\left(z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}\right) - \frac{13888888888889}{5000000000000000}\right) \cdot \frac{z}{x} + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
    13. lower-*.f6498.8%

      \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \left(\left(\left(z \cdot y + z \cdot 0.0007936500793651\right) - 0.0027777777777778\right) \cdot \frac{z}{x} + 0.083333333333333 \cdot \frac{1}{x}\right) \]
  8. Applied rewrites98.8%

    \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \left(\left(\left(z \cdot y + z \cdot 0.0007936500793651\right) - 0.0027777777777778\right) \cdot \frac{z}{x} + 0.083333333333333 \cdot \frac{1}{x}\right) \]
  9. Add Preprocessing

Alternative 2: 98.8% accurate, 0.9× speedup?

\[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \left(\left(\left(y - -0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot \frac{z}{x} + 0.083333333333333 \cdot \frac{1}{x}\right) \]
(FPCore (x y z)
  :precision binary64
  (+
 (+ (- (* (- x 0.5) (log x)) x) 0.91893853320467)
 (+
  (* (- (* (- y -0.0007936500793651) z) 0.0027777777777778) (/ z x))
  (* 0.083333333333333 (/ 1.0 x)))))
double code(double x, double y, double z) {
	return ((((x - 0.5) * log(x)) - x) + 0.91893853320467) + (((((y - -0.0007936500793651) * z) - 0.0027777777777778) * (z / x)) + (0.083333333333333 * (1.0 / x)));
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    code = ((((x - 0.5d0) * log(x)) - x) + 0.91893853320467d0) + (((((y - (-0.0007936500793651d0)) * z) - 0.0027777777777778d0) * (z / x)) + (0.083333333333333d0 * (1.0d0 / x)))
end function
public static double code(double x, double y, double z) {
	return ((((x - 0.5) * Math.log(x)) - x) + 0.91893853320467) + (((((y - -0.0007936500793651) * z) - 0.0027777777777778) * (z / x)) + (0.083333333333333 * (1.0 / x)));
}
def code(x, y, z):
	return ((((x - 0.5) * math.log(x)) - x) + 0.91893853320467) + (((((y - -0.0007936500793651) * z) - 0.0027777777777778) * (z / x)) + (0.083333333333333 * (1.0 / x)))
function code(x, y, z)
	return Float64(Float64(Float64(Float64(Float64(x - 0.5) * log(x)) - x) + 0.91893853320467) + Float64(Float64(Float64(Float64(Float64(y - -0.0007936500793651) * z) - 0.0027777777777778) * Float64(z / x)) + Float64(0.083333333333333 * Float64(1.0 / x))))
end
function tmp = code(x, y, z)
	tmp = ((((x - 0.5) * log(x)) - x) + 0.91893853320467) + (((((y - -0.0007936500793651) * z) - 0.0027777777777778) * (z / x)) + (0.083333333333333 * (1.0 / x)));
end
code[x_, y_, z_] := N[(N[(N[(N[(N[(x - 0.5), $MachinePrecision] * N[Log[x], $MachinePrecision]), $MachinePrecision] - x), $MachinePrecision] + 0.91893853320467), $MachinePrecision] + N[(N[(N[(N[(N[(y - -0.0007936500793651), $MachinePrecision] * z), $MachinePrecision] - 0.0027777777777778), $MachinePrecision] * N[(z / x), $MachinePrecision]), $MachinePrecision] + N[(0.083333333333333 * N[(1.0 / x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \left(\left(\left(y - -0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot \frac{z}{x} + 0.083333333333333 \cdot \frac{1}{x}\right)
Derivation
  1. Initial program 94.2%

    \[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
  2. Taylor expanded in z around 0

    \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \color{blue}{\left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right)} \]
  3. Step-by-step derivation
    1. lower-+.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \color{blue}{\frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}}\right) \]
    2. lower-*.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \color{blue}{\frac{83333333333333}{1000000000000000}} \cdot \frac{1}{x}\right) \]
    3. lower--.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
    4. lower-*.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
    5. lower-+.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
    6. lower-*.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
    7. lower-/.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
    8. lower-/.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
    9. lower-*.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
    10. lower-/.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
    11. lower-*.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \color{blue}{\frac{1}{x}}\right) \]
    12. lower-/.f6494.5%

      \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \left(z \cdot \left(z \cdot \left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{x}\right) - 0.0027777777777778 \cdot \frac{1}{x}\right) + 0.083333333333333 \cdot \frac{1}{\color{blue}{x}}\right) \]
  4. Applied rewrites94.5%

    \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \color{blue}{\left(z \cdot \left(z \cdot \left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{x}\right) - 0.0027777777777778 \cdot \frac{1}{x}\right) + 0.083333333333333 \cdot \frac{1}{x}\right)} \]
  5. Step-by-step derivation
    1. lift-*.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \color{blue}{\frac{83333333333333}{1000000000000000}} \cdot \frac{1}{x}\right) \]
    2. lift--.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
    3. lift-*.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
    4. lift-/.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
    5. mult-flip-revN/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{\frac{13888888888889}{5000000000000000}}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
  6. Applied rewrites98.8%

    \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \left(\left(\left(y - -0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot \frac{z}{x} + \color{blue}{0.083333333333333} \cdot \frac{1}{x}\right) \]
  7. Add Preprocessing

Alternative 3: 97.8% accurate, 0.9× speedup?

\[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \left(\frac{0.083333333333333}{x} - \frac{0.0027777777777778 - \left(y - -0.0007936500793651\right) \cdot z}{x} \cdot z\right) \]
(FPCore (x y z)
  :precision binary64
  (+
 (+ (- (* (- x 0.5) (log x)) x) 0.91893853320467)
 (-
  (/ 0.083333333333333 x)
  (* (/ (- 0.0027777777777778 (* (- y -0.0007936500793651) z)) x) z))))
double code(double x, double y, double z) {
	return ((((x - 0.5) * log(x)) - x) + 0.91893853320467) + ((0.083333333333333 / x) - (((0.0027777777777778 - ((y - -0.0007936500793651) * z)) / x) * z));
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    code = ((((x - 0.5d0) * log(x)) - x) + 0.91893853320467d0) + ((0.083333333333333d0 / x) - (((0.0027777777777778d0 - ((y - (-0.0007936500793651d0)) * z)) / x) * z))
end function
public static double code(double x, double y, double z) {
	return ((((x - 0.5) * Math.log(x)) - x) + 0.91893853320467) + ((0.083333333333333 / x) - (((0.0027777777777778 - ((y - -0.0007936500793651) * z)) / x) * z));
}
def code(x, y, z):
	return ((((x - 0.5) * math.log(x)) - x) + 0.91893853320467) + ((0.083333333333333 / x) - (((0.0027777777777778 - ((y - -0.0007936500793651) * z)) / x) * z))
function code(x, y, z)
	return Float64(Float64(Float64(Float64(Float64(x - 0.5) * log(x)) - x) + 0.91893853320467) + Float64(Float64(0.083333333333333 / x) - Float64(Float64(Float64(0.0027777777777778 - Float64(Float64(y - -0.0007936500793651) * z)) / x) * z)))
end
function tmp = code(x, y, z)
	tmp = ((((x - 0.5) * log(x)) - x) + 0.91893853320467) + ((0.083333333333333 / x) - (((0.0027777777777778 - ((y - -0.0007936500793651) * z)) / x) * z));
end
code[x_, y_, z_] := N[(N[(N[(N[(N[(x - 0.5), $MachinePrecision] * N[Log[x], $MachinePrecision]), $MachinePrecision] - x), $MachinePrecision] + 0.91893853320467), $MachinePrecision] + N[(N[(0.083333333333333 / x), $MachinePrecision] - N[(N[(N[(0.0027777777777778 - N[(N[(y - -0.0007936500793651), $MachinePrecision] * z), $MachinePrecision]), $MachinePrecision] / x), $MachinePrecision] * z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \left(\frac{0.083333333333333}{x} - \frac{0.0027777777777778 - \left(y - -0.0007936500793651\right) \cdot z}{x} \cdot z\right)
Derivation
  1. Initial program 94.2%

    \[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
  2. Step-by-step derivation
    1. lift-*.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot z} + \frac{83333333333333}{1000000000000000}}{x} \]
    2. *-commutativeN/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{z \cdot \left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
    3. lift--.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{z \cdot \color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
    4. sub-flipN/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{z \cdot \color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z + \left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
    5. distribute-rgt-inN/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z + \left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
    6. fp-cancel-sign-sub-invN/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
    7. lower--.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
    8. lower-*.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z} - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
    9. lift-*.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
    10. *-commutativeN/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
    11. lower-*.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
    12. lift-+.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y + \frac{7936500793651}{10000000000000000}\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
    13. add-flipN/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
    14. lower--.f64N/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
    15. metadata-evalN/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \left(y - \color{blue}{\frac{-7936500793651}{10000000000000000}}\right)\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
    16. remove-double-negN/A

      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)\right) \cdot z - \color{blue}{\frac{13888888888889}{5000000000000000}} \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
    17. lower-*.f6494.2%

      \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - \color{blue}{0.0027777777777778 \cdot z}\right) + 0.083333333333333}{x} \]
  3. Applied rewrites94.2%

    \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\color{blue}{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - 0.0027777777777778 \cdot z\right)} + 0.083333333333333}{x} \]
  4. Applied rewrites97.8%

    \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \color{blue}{\left(\frac{0.083333333333333}{x} - \frac{0.0027777777777778 - \left(y - -0.0007936500793651\right) \cdot z}{x} \cdot z\right)} \]
  5. Add Preprocessing

Alternative 4: 95.4% accurate, 0.5× speedup?

\[\begin{array}{l} t_0 := \left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\\ \mathbf{if}\;t\_0 + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \leq 2 \cdot 10^{+307}:\\ \;\;\;\;t\_0 + \frac{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - 0.0027777777777778 \cdot z\right) + 0.083333333333333}{x}\\ \mathbf{else}:\\ \;\;\;\;\left(0.91893853320467 + -0.5 \cdot \log x\right) + \left(\left(\left(y - -0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot \frac{z}{x} + 0.083333333333333 \cdot \frac{1}{x}\right)\\ \end{array} \]
(FPCore (x y z)
  :precision binary64
  (let* ((t_0 (+ (- (* (- x 0.5) (log x)) x) 0.91893853320467)))
  (if (<=
       (+
        t_0
        (/
         (+
          (* (- (* (+ y 0.0007936500793651) z) 0.0027777777777778) z)
          0.083333333333333)
         x))
       2e+307)
    (+
     t_0
     (/
      (+
       (-
        (* (* z (- y -0.0007936500793651)) z)
        (* 0.0027777777777778 z))
       0.083333333333333)
      x))
    (+
     (+ 0.91893853320467 (* -0.5 (log x)))
     (+
      (*
       (- (* (- y -0.0007936500793651) z) 0.0027777777777778)
       (/ z x))
      (* 0.083333333333333 (/ 1.0 x)))))))
double code(double x, double y, double z) {
	double t_0 = (((x - 0.5) * log(x)) - x) + 0.91893853320467;
	double tmp;
	if ((t_0 + ((((((y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x)) <= 2e+307) {
		tmp = t_0 + (((((z * (y - -0.0007936500793651)) * z) - (0.0027777777777778 * z)) + 0.083333333333333) / x);
	} else {
		tmp = (0.91893853320467 + (-0.5 * log(x))) + (((((y - -0.0007936500793651) * z) - 0.0027777777777778) * (z / x)) + (0.083333333333333 * (1.0 / x)));
	}
	return tmp;
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8) :: t_0
    real(8) :: tmp
    t_0 = (((x - 0.5d0) * log(x)) - x) + 0.91893853320467d0
    if ((t_0 + ((((((y + 0.0007936500793651d0) * z) - 0.0027777777777778d0) * z) + 0.083333333333333d0) / x)) <= 2d+307) then
        tmp = t_0 + (((((z * (y - (-0.0007936500793651d0))) * z) - (0.0027777777777778d0 * z)) + 0.083333333333333d0) / x)
    else
        tmp = (0.91893853320467d0 + ((-0.5d0) * log(x))) + (((((y - (-0.0007936500793651d0)) * z) - 0.0027777777777778d0) * (z / x)) + (0.083333333333333d0 * (1.0d0 / x)))
    end if
    code = tmp
end function
public static double code(double x, double y, double z) {
	double t_0 = (((x - 0.5) * Math.log(x)) - x) + 0.91893853320467;
	double tmp;
	if ((t_0 + ((((((y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x)) <= 2e+307) {
		tmp = t_0 + (((((z * (y - -0.0007936500793651)) * z) - (0.0027777777777778 * z)) + 0.083333333333333) / x);
	} else {
		tmp = (0.91893853320467 + (-0.5 * Math.log(x))) + (((((y - -0.0007936500793651) * z) - 0.0027777777777778) * (z / x)) + (0.083333333333333 * (1.0 / x)));
	}
	return tmp;
}
def code(x, y, z):
	t_0 = (((x - 0.5) * math.log(x)) - x) + 0.91893853320467
	tmp = 0
	if (t_0 + ((((((y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x)) <= 2e+307:
		tmp = t_0 + (((((z * (y - -0.0007936500793651)) * z) - (0.0027777777777778 * z)) + 0.083333333333333) / x)
	else:
		tmp = (0.91893853320467 + (-0.5 * math.log(x))) + (((((y - -0.0007936500793651) * z) - 0.0027777777777778) * (z / x)) + (0.083333333333333 * (1.0 / x)))
	return tmp
function code(x, y, z)
	t_0 = Float64(Float64(Float64(Float64(x - 0.5) * log(x)) - x) + 0.91893853320467)
	tmp = 0.0
	if (Float64(t_0 + Float64(Float64(Float64(Float64(Float64(Float64(y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x)) <= 2e+307)
		tmp = Float64(t_0 + Float64(Float64(Float64(Float64(Float64(z * Float64(y - -0.0007936500793651)) * z) - Float64(0.0027777777777778 * z)) + 0.083333333333333) / x));
	else
		tmp = Float64(Float64(0.91893853320467 + Float64(-0.5 * log(x))) + Float64(Float64(Float64(Float64(Float64(y - -0.0007936500793651) * z) - 0.0027777777777778) * Float64(z / x)) + Float64(0.083333333333333 * Float64(1.0 / x))));
	end
	return tmp
end
function tmp_2 = code(x, y, z)
	t_0 = (((x - 0.5) * log(x)) - x) + 0.91893853320467;
	tmp = 0.0;
	if ((t_0 + ((((((y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x)) <= 2e+307)
		tmp = t_0 + (((((z * (y - -0.0007936500793651)) * z) - (0.0027777777777778 * z)) + 0.083333333333333) / x);
	else
		tmp = (0.91893853320467 + (-0.5 * log(x))) + (((((y - -0.0007936500793651) * z) - 0.0027777777777778) * (z / x)) + (0.083333333333333 * (1.0 / x)));
	end
	tmp_2 = tmp;
end
code[x_, y_, z_] := Block[{t$95$0 = N[(N[(N[(N[(x - 0.5), $MachinePrecision] * N[Log[x], $MachinePrecision]), $MachinePrecision] - x), $MachinePrecision] + 0.91893853320467), $MachinePrecision]}, If[LessEqual[N[(t$95$0 + N[(N[(N[(N[(N[(N[(y + 0.0007936500793651), $MachinePrecision] * z), $MachinePrecision] - 0.0027777777777778), $MachinePrecision] * z), $MachinePrecision] + 0.083333333333333), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision], 2e+307], N[(t$95$0 + N[(N[(N[(N[(N[(z * N[(y - -0.0007936500793651), $MachinePrecision]), $MachinePrecision] * z), $MachinePrecision] - N[(0.0027777777777778 * z), $MachinePrecision]), $MachinePrecision] + 0.083333333333333), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision], N[(N[(0.91893853320467 + N[(-0.5 * N[Log[x], $MachinePrecision]), $MachinePrecision]), $MachinePrecision] + N[(N[(N[(N[(N[(y - -0.0007936500793651), $MachinePrecision] * z), $MachinePrecision] - 0.0027777777777778), $MachinePrecision] * N[(z / x), $MachinePrecision]), $MachinePrecision] + N[(0.083333333333333 * N[(1.0 / x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]]
\begin{array}{l}
t_0 := \left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\\
\mathbf{if}\;t\_0 + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \leq 2 \cdot 10^{+307}:\\
\;\;\;\;t\_0 + \frac{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - 0.0027777777777778 \cdot z\right) + 0.083333333333333}{x}\\

\mathbf{else}:\\
\;\;\;\;\left(0.91893853320467 + -0.5 \cdot \log x\right) + \left(\left(\left(y - -0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot \frac{z}{x} + 0.083333333333333 \cdot \frac{1}{x}\right)\\


\end{array}
Derivation
  1. Split input into 2 regimes
  2. if (+.f64 (+.f64 (-.f64 (*.f64 (-.f64 x #s(literal 1/2 binary64)) (log.f64 x)) x) #s(literal 91893853320467/100000000000000 binary64)) (/.f64 (+.f64 (*.f64 (-.f64 (*.f64 (+.f64 y #s(literal 7936500793651/10000000000000000 binary64)) z) #s(literal 13888888888889/5000000000000000 binary64)) z) #s(literal 83333333333333/1000000000000000 binary64)) x)) < 2e307

    1. Initial program 94.2%

      \[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
    2. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot z} + \frac{83333333333333}{1000000000000000}}{x} \]
      2. *-commutativeN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{z \cdot \left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      3. lift--.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{z \cdot \color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      4. sub-flipN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{z \cdot \color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z + \left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      5. distribute-rgt-inN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z + \left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      6. fp-cancel-sign-sub-invN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      7. lower--.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      8. lower-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z} - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      9. lift-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      10. *-commutativeN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      11. lower-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      12. lift-+.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y + \frac{7936500793651}{10000000000000000}\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      13. add-flipN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      14. lower--.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      15. metadata-evalN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \left(y - \color{blue}{\frac{-7936500793651}{10000000000000000}}\right)\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      16. remove-double-negN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)\right) \cdot z - \color{blue}{\frac{13888888888889}{5000000000000000}} \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      17. lower-*.f6494.2%

        \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - \color{blue}{0.0027777777777778 \cdot z}\right) + 0.083333333333333}{x} \]
    3. Applied rewrites94.2%

      \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\color{blue}{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - 0.0027777777777778 \cdot z\right)} + 0.083333333333333}{x} \]

    if 2e307 < (+.f64 (+.f64 (-.f64 (*.f64 (-.f64 x #s(literal 1/2 binary64)) (log.f64 x)) x) #s(literal 91893853320467/100000000000000 binary64)) (/.f64 (+.f64 (*.f64 (-.f64 (*.f64 (+.f64 y #s(literal 7936500793651/10000000000000000 binary64)) z) #s(literal 13888888888889/5000000000000000 binary64)) z) #s(literal 83333333333333/1000000000000000 binary64)) x))

    1. Initial program 94.2%

      \[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
    2. Taylor expanded in z around 0

      \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \color{blue}{\left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right)} \]
    3. Step-by-step derivation
      1. lower-+.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \color{blue}{\frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}}\right) \]
      2. lower-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \color{blue}{\frac{83333333333333}{1000000000000000}} \cdot \frac{1}{x}\right) \]
      3. lower--.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
      4. lower-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
      5. lower-+.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
      6. lower-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
      7. lower-/.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
      8. lower-/.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
      9. lower-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
      10. lower-/.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
      11. lower-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \color{blue}{\frac{1}{x}}\right) \]
      12. lower-/.f6494.5%

        \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \left(z \cdot \left(z \cdot \left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{x}\right) - 0.0027777777777778 \cdot \frac{1}{x}\right) + 0.083333333333333 \cdot \frac{1}{\color{blue}{x}}\right) \]
    4. Applied rewrites94.5%

      \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \color{blue}{\left(z \cdot \left(z \cdot \left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{x}\right) - 0.0027777777777778 \cdot \frac{1}{x}\right) + 0.083333333333333 \cdot \frac{1}{x}\right)} \]
    5. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \color{blue}{\frac{83333333333333}{1000000000000000}} \cdot \frac{1}{x}\right) \]
      2. lift--.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
      3. lift-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
      4. lift-/.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{13888888888889}{5000000000000000} \cdot \frac{1}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
      5. mult-flip-revN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \left(z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) - \frac{\frac{13888888888889}{5000000000000000}}{x}\right) + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
    6. Applied rewrites98.8%

      \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \left(\left(\left(y - -0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot \frac{z}{x} + \color{blue}{0.083333333333333} \cdot \frac{1}{x}\right) \]
    7. Taylor expanded in x around 0

      \[\leadsto \color{blue}{\left(\frac{91893853320467}{100000000000000} + \frac{-1}{2} \cdot \log x\right)} + \left(\left(\left(y - -0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot \frac{z}{x} + 0.083333333333333 \cdot \frac{1}{x}\right) \]
    8. Step-by-step derivation
      1. lower-+.f64N/A

        \[\leadsto \left(\frac{91893853320467}{100000000000000} + \color{blue}{\frac{-1}{2} \cdot \log x}\right) + \left(\left(\left(y - \frac{-7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot \frac{z}{x} + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
      2. lower-*.f64N/A

        \[\leadsto \left(\frac{91893853320467}{100000000000000} + \frac{-1}{2} \cdot \color{blue}{\log x}\right) + \left(\left(\left(y - \frac{-7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot \frac{z}{x} + \frac{83333333333333}{1000000000000000} \cdot \frac{1}{x}\right) \]
      3. lower-log.f6465.4%

        \[\leadsto \left(0.91893853320467 + -0.5 \cdot \log x\right) + \left(\left(\left(y - -0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot \frac{z}{x} + 0.083333333333333 \cdot \frac{1}{x}\right) \]
    9. Applied rewrites65.4%

      \[\leadsto \color{blue}{\left(0.91893853320467 + -0.5 \cdot \log x\right)} + \left(\left(\left(y - -0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot \frac{z}{x} + 0.083333333333333 \cdot \frac{1}{x}\right) \]
  3. Recombined 2 regimes into one program.
  4. Add Preprocessing

Alternative 5: 95.4% accurate, 0.5× speedup?

\[\begin{array}{l} t_0 := \left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\\ \mathbf{if}\;t\_0 + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \leq 2 \cdot 10^{+307}:\\ \;\;\;\;t\_0 + \frac{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - 0.0027777777777778 \cdot z\right) + 0.083333333333333}{x}\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\frac{x}{\left(y - -0.0007936500793651\right) \cdot z}} \cdot z\\ \end{array} \]
(FPCore (x y z)
  :precision binary64
  (let* ((t_0 (+ (- (* (- x 0.5) (log x)) x) 0.91893853320467)))
  (if (<=
       (+
        t_0
        (/
         (+
          (* (- (* (+ y 0.0007936500793651) z) 0.0027777777777778) z)
          0.083333333333333)
         x))
       2e+307)
    (+
     t_0
     (/
      (+
       (-
        (* (* z (- y -0.0007936500793651)) z)
        (* 0.0027777777777778 z))
       0.083333333333333)
      x))
    (* (/ 1.0 (/ x (* (- y -0.0007936500793651) z))) z))))
double code(double x, double y, double z) {
	double t_0 = (((x - 0.5) * log(x)) - x) + 0.91893853320467;
	double tmp;
	if ((t_0 + ((((((y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x)) <= 2e+307) {
		tmp = t_0 + (((((z * (y - -0.0007936500793651)) * z) - (0.0027777777777778 * z)) + 0.083333333333333) / x);
	} else {
		tmp = (1.0 / (x / ((y - -0.0007936500793651) * z))) * z;
	}
	return tmp;
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8) :: t_0
    real(8) :: tmp
    t_0 = (((x - 0.5d0) * log(x)) - x) + 0.91893853320467d0
    if ((t_0 + ((((((y + 0.0007936500793651d0) * z) - 0.0027777777777778d0) * z) + 0.083333333333333d0) / x)) <= 2d+307) then
        tmp = t_0 + (((((z * (y - (-0.0007936500793651d0))) * z) - (0.0027777777777778d0 * z)) + 0.083333333333333d0) / x)
    else
        tmp = (1.0d0 / (x / ((y - (-0.0007936500793651d0)) * z))) * z
    end if
    code = tmp
end function
public static double code(double x, double y, double z) {
	double t_0 = (((x - 0.5) * Math.log(x)) - x) + 0.91893853320467;
	double tmp;
	if ((t_0 + ((((((y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x)) <= 2e+307) {
		tmp = t_0 + (((((z * (y - -0.0007936500793651)) * z) - (0.0027777777777778 * z)) + 0.083333333333333) / x);
	} else {
		tmp = (1.0 / (x / ((y - -0.0007936500793651) * z))) * z;
	}
	return tmp;
}
def code(x, y, z):
	t_0 = (((x - 0.5) * math.log(x)) - x) + 0.91893853320467
	tmp = 0
	if (t_0 + ((((((y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x)) <= 2e+307:
		tmp = t_0 + (((((z * (y - -0.0007936500793651)) * z) - (0.0027777777777778 * z)) + 0.083333333333333) / x)
	else:
		tmp = (1.0 / (x / ((y - -0.0007936500793651) * z))) * z
	return tmp
function code(x, y, z)
	t_0 = Float64(Float64(Float64(Float64(x - 0.5) * log(x)) - x) + 0.91893853320467)
	tmp = 0.0
	if (Float64(t_0 + Float64(Float64(Float64(Float64(Float64(Float64(y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x)) <= 2e+307)
		tmp = Float64(t_0 + Float64(Float64(Float64(Float64(Float64(z * Float64(y - -0.0007936500793651)) * z) - Float64(0.0027777777777778 * z)) + 0.083333333333333) / x));
	else
		tmp = Float64(Float64(1.0 / Float64(x / Float64(Float64(y - -0.0007936500793651) * z))) * z);
	end
	return tmp
end
function tmp_2 = code(x, y, z)
	t_0 = (((x - 0.5) * log(x)) - x) + 0.91893853320467;
	tmp = 0.0;
	if ((t_0 + ((((((y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x)) <= 2e+307)
		tmp = t_0 + (((((z * (y - -0.0007936500793651)) * z) - (0.0027777777777778 * z)) + 0.083333333333333) / x);
	else
		tmp = (1.0 / (x / ((y - -0.0007936500793651) * z))) * z;
	end
	tmp_2 = tmp;
end
code[x_, y_, z_] := Block[{t$95$0 = N[(N[(N[(N[(x - 0.5), $MachinePrecision] * N[Log[x], $MachinePrecision]), $MachinePrecision] - x), $MachinePrecision] + 0.91893853320467), $MachinePrecision]}, If[LessEqual[N[(t$95$0 + N[(N[(N[(N[(N[(N[(y + 0.0007936500793651), $MachinePrecision] * z), $MachinePrecision] - 0.0027777777777778), $MachinePrecision] * z), $MachinePrecision] + 0.083333333333333), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision], 2e+307], N[(t$95$0 + N[(N[(N[(N[(N[(z * N[(y - -0.0007936500793651), $MachinePrecision]), $MachinePrecision] * z), $MachinePrecision] - N[(0.0027777777777778 * z), $MachinePrecision]), $MachinePrecision] + 0.083333333333333), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision], N[(N[(1.0 / N[(x / N[(N[(y - -0.0007936500793651), $MachinePrecision] * z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] * z), $MachinePrecision]]]
\begin{array}{l}
t_0 := \left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\\
\mathbf{if}\;t\_0 + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \leq 2 \cdot 10^{+307}:\\
\;\;\;\;t\_0 + \frac{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - 0.0027777777777778 \cdot z\right) + 0.083333333333333}{x}\\

\mathbf{else}:\\
\;\;\;\;\frac{1}{\frac{x}{\left(y - -0.0007936500793651\right) \cdot z}} \cdot z\\


\end{array}
Derivation
  1. Split input into 2 regimes
  2. if (+.f64 (+.f64 (-.f64 (*.f64 (-.f64 x #s(literal 1/2 binary64)) (log.f64 x)) x) #s(literal 91893853320467/100000000000000 binary64)) (/.f64 (+.f64 (*.f64 (-.f64 (*.f64 (+.f64 y #s(literal 7936500793651/10000000000000000 binary64)) z) #s(literal 13888888888889/5000000000000000 binary64)) z) #s(literal 83333333333333/1000000000000000 binary64)) x)) < 2e307

    1. Initial program 94.2%

      \[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
    2. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot z} + \frac{83333333333333}{1000000000000000}}{x} \]
      2. *-commutativeN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{z \cdot \left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      3. lift--.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{z \cdot \color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      4. sub-flipN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{z \cdot \color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z + \left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      5. distribute-rgt-inN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z + \left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      6. fp-cancel-sign-sub-invN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      7. lower--.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      8. lower-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z} - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      9. lift-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      10. *-commutativeN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      11. lower-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      12. lift-+.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y + \frac{7936500793651}{10000000000000000}\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      13. add-flipN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      14. lower--.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      15. metadata-evalN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \left(y - \color{blue}{\frac{-7936500793651}{10000000000000000}}\right)\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      16. remove-double-negN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)\right) \cdot z - \color{blue}{\frac{13888888888889}{5000000000000000}} \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      17. lower-*.f6494.2%

        \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - \color{blue}{0.0027777777777778 \cdot z}\right) + 0.083333333333333}{x} \]
    3. Applied rewrites94.2%

      \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\color{blue}{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - 0.0027777777777778 \cdot z\right)} + 0.083333333333333}{x} \]

    if 2e307 < (+.f64 (+.f64 (-.f64 (*.f64 (-.f64 x #s(literal 1/2 binary64)) (log.f64 x)) x) #s(literal 91893853320467/100000000000000 binary64)) (/.f64 (+.f64 (*.f64 (-.f64 (*.f64 (+.f64 y #s(literal 7936500793651/10000000000000000 binary64)) z) #s(literal 13888888888889/5000000000000000 binary64)) z) #s(literal 83333333333333/1000000000000000 binary64)) x))

    1. Initial program 94.2%

      \[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
    2. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot z} + \frac{83333333333333}{1000000000000000}}{x} \]
      2. *-commutativeN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{z \cdot \left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      3. lift--.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{z \cdot \color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      4. sub-flipN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{z \cdot \color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z + \left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      5. distribute-rgt-inN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z + \left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      6. fp-cancel-sign-sub-invN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      7. lower--.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      8. lower-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z} - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      9. lift-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      10. *-commutativeN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      11. lower-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      12. lift-+.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y + \frac{7936500793651}{10000000000000000}\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      13. add-flipN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      14. lower--.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      15. metadata-evalN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \left(y - \color{blue}{\frac{-7936500793651}{10000000000000000}}\right)\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      16. remove-double-negN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)\right) \cdot z - \color{blue}{\frac{13888888888889}{5000000000000000}} \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      17. lower-*.f6494.2%

        \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - \color{blue}{0.0027777777777778 \cdot z}\right) + 0.083333333333333}{x} \]
    3. Applied rewrites94.2%

      \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\color{blue}{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - 0.0027777777777778 \cdot z\right)} + 0.083333333333333}{x} \]
    4. Taylor expanded in z around inf

      \[\leadsto \color{blue}{{z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
    5. Step-by-step derivation
      1. lower-*.f64N/A

        \[\leadsto {z}^{2} \cdot \color{blue}{\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
      2. lower-pow.f64N/A

        \[\leadsto {z}^{2} \cdot \left(\color{blue}{\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x}} + \frac{y}{x}\right) \]
      3. lower-+.f64N/A

        \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \color{blue}{\frac{y}{x}}\right) \]
      4. lower-*.f64N/A

        \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{\color{blue}{y}}{x}\right) \]
      5. lower-/.f64N/A

        \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \]
      6. lower-/.f6441.7%

        \[\leadsto {z}^{2} \cdot \left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{\color{blue}{x}}\right) \]
    6. Applied rewrites41.7%

      \[\leadsto \color{blue}{{z}^{2} \cdot \left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
    7. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto {z}^{2} \cdot \color{blue}{\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
      2. *-commutativeN/A

        \[\leadsto \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot \color{blue}{{z}^{2}} \]
      3. lift-pow.f64N/A

        \[\leadsto \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot {z}^{\color{blue}{2}} \]
      4. unpow2N/A

        \[\leadsto \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot \left(z \cdot \color{blue}{z}\right) \]
      5. associate-*r*N/A

        \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot \color{blue}{z} \]
      6. lower-*.f64N/A

        \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot \color{blue}{z} \]
      7. lower-*.f6443.5%

        \[\leadsto \left(\left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
      8. lift-+.f64N/A

        \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
      9. lift-*.f64N/A

        \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
      10. lift-/.f64N/A

        \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
      11. mult-flip-revN/A

        \[\leadsto \left(\left(\frac{\frac{7936500793651}{10000000000000000}}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
      12. lift-/.f64N/A

        \[\leadsto \left(\left(\frac{\frac{7936500793651}{10000000000000000}}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
      13. div-add-revN/A

        \[\leadsto \left(\frac{\frac{7936500793651}{10000000000000000} + y}{x} \cdot z\right) \cdot z \]
      14. +-commutativeN/A

        \[\leadsto \left(\frac{y + \frac{7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
      15. add-flipN/A

        \[\leadsto \left(\frac{y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)}{x} \cdot z\right) \cdot z \]
      16. metadata-evalN/A

        \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
      17. lift--.f64N/A

        \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
      18. lower-/.f6443.5%

        \[\leadsto \left(\frac{y - -0.0007936500793651}{x} \cdot z\right) \cdot z \]
    8. Applied rewrites43.5%

      \[\leadsto \left(\frac{y - -0.0007936500793651}{x} \cdot z\right) \cdot \color{blue}{z} \]
    9. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
      2. lift-/.f64N/A

        \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
      3. associate-*l/N/A

        \[\leadsto \frac{\left(y - \frac{-7936500793651}{10000000000000000}\right) \cdot z}{x} \cdot z \]
      4. *-commutativeN/A

        \[\leadsto \frac{z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)}{x} \cdot z \]
      5. lift--.f64N/A

        \[\leadsto \frac{z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)}{x} \cdot z \]
      6. metadata-evalN/A

        \[\leadsto \frac{z \cdot \left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}{x} \cdot z \]
      7. add-flipN/A

        \[\leadsto \frac{z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)}{x} \cdot z \]
      8. distribute-lft-outN/A

        \[\leadsto \frac{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}{x} \cdot z \]
      9. lift-*.f64N/A

        \[\leadsto \frac{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}{x} \cdot z \]
      10. lift-*.f64N/A

        \[\leadsto \frac{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}{x} \cdot z \]
      11. lift-+.f64N/A

        \[\leadsto \frac{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}{x} \cdot z \]
      12. div-flipN/A

        \[\leadsto \frac{1}{\frac{x}{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}} \cdot z \]
      13. lower-unsound-/.f64N/A

        \[\leadsto \frac{1}{\frac{x}{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}} \cdot z \]
      14. lower-unsound-/.f6443.6%

        \[\leadsto \frac{1}{\frac{x}{z \cdot y + z \cdot 0.0007936500793651}} \cdot z \]
      15. lift-+.f64N/A

        \[\leadsto \frac{1}{\frac{x}{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}} \cdot z \]
      16. lift-*.f64N/A

        \[\leadsto \frac{1}{\frac{x}{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}} \cdot z \]
      17. lift-*.f64N/A

        \[\leadsto \frac{1}{\frac{x}{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}} \cdot z \]
      18. distribute-lft-outN/A

        \[\leadsto \frac{1}{\frac{x}{z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)}} \cdot z \]
      19. add-flipN/A

        \[\leadsto \frac{1}{\frac{x}{z \cdot \left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}} \cdot z \]
      20. metadata-evalN/A

        \[\leadsto \frac{1}{\frac{x}{z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)}} \cdot z \]
      21. lift--.f64N/A

        \[\leadsto \frac{1}{\frac{x}{z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)}} \cdot z \]
      22. *-commutativeN/A

        \[\leadsto \frac{1}{\frac{x}{\left(y - \frac{-7936500793651}{10000000000000000}\right) \cdot z}} \cdot z \]
      23. lift-*.f6443.6%

        \[\leadsto \frac{1}{\frac{x}{\left(y - -0.0007936500793651\right) \cdot z}} \cdot z \]
    10. Applied rewrites43.6%

      \[\leadsto \frac{1}{\frac{x}{\left(y - -0.0007936500793651\right) \cdot z}} \cdot z \]
  3. Recombined 2 regimes into one program.
  4. Add Preprocessing

Alternative 6: 95.4% accurate, 0.5× speedup?

\[\begin{array}{l} t_0 := \left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\\ \mathbf{if}\;t\_0 + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \leq 2 \cdot 10^{+307}:\\ \;\;\;\;t\_0 + \frac{1}{x} \cdot \left(\left(z \cdot \left(y - -0.0007936500793651\right) - 0.0027777777777778\right) \cdot z - -0.083333333333333\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\frac{x}{\left(y - -0.0007936500793651\right) \cdot z}} \cdot z\\ \end{array} \]
(FPCore (x y z)
  :precision binary64
  (let* ((t_0 (+ (- (* (- x 0.5) (log x)) x) 0.91893853320467)))
  (if (<=
       (+
        t_0
        (/
         (+
          (* (- (* (+ y 0.0007936500793651) z) 0.0027777777777778) z)
          0.083333333333333)
         x))
       2e+307)
    (+
     t_0
     (*
      (/ 1.0 x)
      (-
       (* (- (* z (- y -0.0007936500793651)) 0.0027777777777778) z)
       -0.083333333333333)))
    (* (/ 1.0 (/ x (* (- y -0.0007936500793651) z))) z))))
double code(double x, double y, double z) {
	double t_0 = (((x - 0.5) * log(x)) - x) + 0.91893853320467;
	double tmp;
	if ((t_0 + ((((((y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x)) <= 2e+307) {
		tmp = t_0 + ((1.0 / x) * ((((z * (y - -0.0007936500793651)) - 0.0027777777777778) * z) - -0.083333333333333));
	} else {
		tmp = (1.0 / (x / ((y - -0.0007936500793651) * z))) * z;
	}
	return tmp;
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8) :: t_0
    real(8) :: tmp
    t_0 = (((x - 0.5d0) * log(x)) - x) + 0.91893853320467d0
    if ((t_0 + ((((((y + 0.0007936500793651d0) * z) - 0.0027777777777778d0) * z) + 0.083333333333333d0) / x)) <= 2d+307) then
        tmp = t_0 + ((1.0d0 / x) * ((((z * (y - (-0.0007936500793651d0))) - 0.0027777777777778d0) * z) - (-0.083333333333333d0)))
    else
        tmp = (1.0d0 / (x / ((y - (-0.0007936500793651d0)) * z))) * z
    end if
    code = tmp
end function
public static double code(double x, double y, double z) {
	double t_0 = (((x - 0.5) * Math.log(x)) - x) + 0.91893853320467;
	double tmp;
	if ((t_0 + ((((((y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x)) <= 2e+307) {
		tmp = t_0 + ((1.0 / x) * ((((z * (y - -0.0007936500793651)) - 0.0027777777777778) * z) - -0.083333333333333));
	} else {
		tmp = (1.0 / (x / ((y - -0.0007936500793651) * z))) * z;
	}
	return tmp;
}
def code(x, y, z):
	t_0 = (((x - 0.5) * math.log(x)) - x) + 0.91893853320467
	tmp = 0
	if (t_0 + ((((((y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x)) <= 2e+307:
		tmp = t_0 + ((1.0 / x) * ((((z * (y - -0.0007936500793651)) - 0.0027777777777778) * z) - -0.083333333333333))
	else:
		tmp = (1.0 / (x / ((y - -0.0007936500793651) * z))) * z
	return tmp
function code(x, y, z)
	t_0 = Float64(Float64(Float64(Float64(x - 0.5) * log(x)) - x) + 0.91893853320467)
	tmp = 0.0
	if (Float64(t_0 + Float64(Float64(Float64(Float64(Float64(Float64(y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x)) <= 2e+307)
		tmp = Float64(t_0 + Float64(Float64(1.0 / x) * Float64(Float64(Float64(Float64(z * Float64(y - -0.0007936500793651)) - 0.0027777777777778) * z) - -0.083333333333333)));
	else
		tmp = Float64(Float64(1.0 / Float64(x / Float64(Float64(y - -0.0007936500793651) * z))) * z);
	end
	return tmp
end
function tmp_2 = code(x, y, z)
	t_0 = (((x - 0.5) * log(x)) - x) + 0.91893853320467;
	tmp = 0.0;
	if ((t_0 + ((((((y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x)) <= 2e+307)
		tmp = t_0 + ((1.0 / x) * ((((z * (y - -0.0007936500793651)) - 0.0027777777777778) * z) - -0.083333333333333));
	else
		tmp = (1.0 / (x / ((y - -0.0007936500793651) * z))) * z;
	end
	tmp_2 = tmp;
end
code[x_, y_, z_] := Block[{t$95$0 = N[(N[(N[(N[(x - 0.5), $MachinePrecision] * N[Log[x], $MachinePrecision]), $MachinePrecision] - x), $MachinePrecision] + 0.91893853320467), $MachinePrecision]}, If[LessEqual[N[(t$95$0 + N[(N[(N[(N[(N[(N[(y + 0.0007936500793651), $MachinePrecision] * z), $MachinePrecision] - 0.0027777777777778), $MachinePrecision] * z), $MachinePrecision] + 0.083333333333333), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision], 2e+307], N[(t$95$0 + N[(N[(1.0 / x), $MachinePrecision] * N[(N[(N[(N[(z * N[(y - -0.0007936500793651), $MachinePrecision]), $MachinePrecision] - 0.0027777777777778), $MachinePrecision] * z), $MachinePrecision] - -0.083333333333333), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[(N[(1.0 / N[(x / N[(N[(y - -0.0007936500793651), $MachinePrecision] * z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] * z), $MachinePrecision]]]
\begin{array}{l}
t_0 := \left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\\
\mathbf{if}\;t\_0 + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \leq 2 \cdot 10^{+307}:\\
\;\;\;\;t\_0 + \frac{1}{x} \cdot \left(\left(z \cdot \left(y - -0.0007936500793651\right) - 0.0027777777777778\right) \cdot z - -0.083333333333333\right)\\

\mathbf{else}:\\
\;\;\;\;\frac{1}{\frac{x}{\left(y - -0.0007936500793651\right) \cdot z}} \cdot z\\


\end{array}
Derivation
  1. Split input into 2 regimes
  2. if (+.f64 (+.f64 (-.f64 (*.f64 (-.f64 x #s(literal 1/2 binary64)) (log.f64 x)) x) #s(literal 91893853320467/100000000000000 binary64)) (/.f64 (+.f64 (*.f64 (-.f64 (*.f64 (+.f64 y #s(literal 7936500793651/10000000000000000 binary64)) z) #s(literal 13888888888889/5000000000000000 binary64)) z) #s(literal 83333333333333/1000000000000000 binary64)) x)) < 2e307

    1. Initial program 94.2%

      \[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
    2. Step-by-step derivation
      1. lift-/.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \color{blue}{\frac{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot z + \frac{83333333333333}{1000000000000000}}{x}} \]
      2. mult-flipN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot z + \frac{83333333333333}{1000000000000000}\right) \cdot \frac{1}{x}} \]
      3. *-commutativeN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \color{blue}{\frac{1}{x} \cdot \left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot z + \frac{83333333333333}{1000000000000000}\right)} \]
      4. lower-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \color{blue}{\frac{1}{x} \cdot \left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot z + \frac{83333333333333}{1000000000000000}\right)} \]
      5. lower-/.f6494.1%

        \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \color{blue}{\frac{1}{x}} \cdot \left(\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333\right) \]
      6. lift-+.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{1}{x} \cdot \color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot z + \frac{83333333333333}{1000000000000000}\right)} \]
      7. add-flipN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{1}{x} \cdot \color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot z - \left(\mathsf{neg}\left(\frac{83333333333333}{1000000000000000}\right)\right)\right)} \]
      8. lower--.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{1}{x} \cdot \color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot z - \left(\mathsf{neg}\left(\frac{83333333333333}{1000000000000000}\right)\right)\right)} \]
      9. lift-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{1}{x} \cdot \left(\left(\color{blue}{\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z} - \frac{13888888888889}{5000000000000000}\right) \cdot z - \left(\mathsf{neg}\left(\frac{83333333333333}{1000000000000000}\right)\right)\right) \]
      10. *-commutativeN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{1}{x} \cdot \left(\left(\color{blue}{z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)} - \frac{13888888888889}{5000000000000000}\right) \cdot z - \left(\mathsf{neg}\left(\frac{83333333333333}{1000000000000000}\right)\right)\right) \]
      11. lower-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{1}{x} \cdot \left(\left(\color{blue}{z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)} - \frac{13888888888889}{5000000000000000}\right) \cdot z - \left(\mathsf{neg}\left(\frac{83333333333333}{1000000000000000}\right)\right)\right) \]
      12. lift-+.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{1}{x} \cdot \left(\left(z \cdot \color{blue}{\left(y + \frac{7936500793651}{10000000000000000}\right)} - \frac{13888888888889}{5000000000000000}\right) \cdot z - \left(\mathsf{neg}\left(\frac{83333333333333}{1000000000000000}\right)\right)\right) \]
      13. add-flipN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{1}{x} \cdot \left(\left(z \cdot \color{blue}{\left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)} - \frac{13888888888889}{5000000000000000}\right) \cdot z - \left(\mathsf{neg}\left(\frac{83333333333333}{1000000000000000}\right)\right)\right) \]
      14. lower--.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{1}{x} \cdot \left(\left(z \cdot \color{blue}{\left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)} - \frac{13888888888889}{5000000000000000}\right) \cdot z - \left(\mathsf{neg}\left(\frac{83333333333333}{1000000000000000}\right)\right)\right) \]
      15. metadata-evalN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{1}{x} \cdot \left(\left(z \cdot \left(y - \color{blue}{\frac{-7936500793651}{10000000000000000}}\right) - \frac{13888888888889}{5000000000000000}\right) \cdot z - \left(\mathsf{neg}\left(\frac{83333333333333}{1000000000000000}\right)\right)\right) \]
      16. metadata-eval94.1%

        \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{1}{x} \cdot \left(\left(z \cdot \left(y - -0.0007936500793651\right) - 0.0027777777777778\right) \cdot z - \color{blue}{-0.083333333333333}\right) \]
    3. Applied rewrites94.1%

      \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \color{blue}{\frac{1}{x} \cdot \left(\left(z \cdot \left(y - -0.0007936500793651\right) - 0.0027777777777778\right) \cdot z - -0.083333333333333\right)} \]

    if 2e307 < (+.f64 (+.f64 (-.f64 (*.f64 (-.f64 x #s(literal 1/2 binary64)) (log.f64 x)) x) #s(literal 91893853320467/100000000000000 binary64)) (/.f64 (+.f64 (*.f64 (-.f64 (*.f64 (+.f64 y #s(literal 7936500793651/10000000000000000 binary64)) z) #s(literal 13888888888889/5000000000000000 binary64)) z) #s(literal 83333333333333/1000000000000000 binary64)) x))

    1. Initial program 94.2%

      \[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
    2. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot z} + \frac{83333333333333}{1000000000000000}}{x} \]
      2. *-commutativeN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{z \cdot \left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      3. lift--.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{z \cdot \color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      4. sub-flipN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{z \cdot \color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z + \left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      5. distribute-rgt-inN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z + \left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      6. fp-cancel-sign-sub-invN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      7. lower--.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      8. lower-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z} - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      9. lift-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      10. *-commutativeN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      11. lower-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      12. lift-+.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y + \frac{7936500793651}{10000000000000000}\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      13. add-flipN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      14. lower--.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      15. metadata-evalN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \left(y - \color{blue}{\frac{-7936500793651}{10000000000000000}}\right)\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      16. remove-double-negN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)\right) \cdot z - \color{blue}{\frac{13888888888889}{5000000000000000}} \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      17. lower-*.f6494.2%

        \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - \color{blue}{0.0027777777777778 \cdot z}\right) + 0.083333333333333}{x} \]
    3. Applied rewrites94.2%

      \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\color{blue}{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - 0.0027777777777778 \cdot z\right)} + 0.083333333333333}{x} \]
    4. Taylor expanded in z around inf

      \[\leadsto \color{blue}{{z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
    5. Step-by-step derivation
      1. lower-*.f64N/A

        \[\leadsto {z}^{2} \cdot \color{blue}{\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
      2. lower-pow.f64N/A

        \[\leadsto {z}^{2} \cdot \left(\color{blue}{\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x}} + \frac{y}{x}\right) \]
      3. lower-+.f64N/A

        \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \color{blue}{\frac{y}{x}}\right) \]
      4. lower-*.f64N/A

        \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{\color{blue}{y}}{x}\right) \]
      5. lower-/.f64N/A

        \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \]
      6. lower-/.f6441.7%

        \[\leadsto {z}^{2} \cdot \left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{\color{blue}{x}}\right) \]
    6. Applied rewrites41.7%

      \[\leadsto \color{blue}{{z}^{2} \cdot \left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
    7. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto {z}^{2} \cdot \color{blue}{\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
      2. *-commutativeN/A

        \[\leadsto \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot \color{blue}{{z}^{2}} \]
      3. lift-pow.f64N/A

        \[\leadsto \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot {z}^{\color{blue}{2}} \]
      4. unpow2N/A

        \[\leadsto \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot \left(z \cdot \color{blue}{z}\right) \]
      5. associate-*r*N/A

        \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot \color{blue}{z} \]
      6. lower-*.f64N/A

        \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot \color{blue}{z} \]
      7. lower-*.f6443.5%

        \[\leadsto \left(\left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
      8. lift-+.f64N/A

        \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
      9. lift-*.f64N/A

        \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
      10. lift-/.f64N/A

        \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
      11. mult-flip-revN/A

        \[\leadsto \left(\left(\frac{\frac{7936500793651}{10000000000000000}}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
      12. lift-/.f64N/A

        \[\leadsto \left(\left(\frac{\frac{7936500793651}{10000000000000000}}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
      13. div-add-revN/A

        \[\leadsto \left(\frac{\frac{7936500793651}{10000000000000000} + y}{x} \cdot z\right) \cdot z \]
      14. +-commutativeN/A

        \[\leadsto \left(\frac{y + \frac{7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
      15. add-flipN/A

        \[\leadsto \left(\frac{y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)}{x} \cdot z\right) \cdot z \]
      16. metadata-evalN/A

        \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
      17. lift--.f64N/A

        \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
      18. lower-/.f6443.5%

        \[\leadsto \left(\frac{y - -0.0007936500793651}{x} \cdot z\right) \cdot z \]
    8. Applied rewrites43.5%

      \[\leadsto \left(\frac{y - -0.0007936500793651}{x} \cdot z\right) \cdot \color{blue}{z} \]
    9. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
      2. lift-/.f64N/A

        \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
      3. associate-*l/N/A

        \[\leadsto \frac{\left(y - \frac{-7936500793651}{10000000000000000}\right) \cdot z}{x} \cdot z \]
      4. *-commutativeN/A

        \[\leadsto \frac{z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)}{x} \cdot z \]
      5. lift--.f64N/A

        \[\leadsto \frac{z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)}{x} \cdot z \]
      6. metadata-evalN/A

        \[\leadsto \frac{z \cdot \left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}{x} \cdot z \]
      7. add-flipN/A

        \[\leadsto \frac{z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)}{x} \cdot z \]
      8. distribute-lft-outN/A

        \[\leadsto \frac{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}{x} \cdot z \]
      9. lift-*.f64N/A

        \[\leadsto \frac{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}{x} \cdot z \]
      10. lift-*.f64N/A

        \[\leadsto \frac{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}{x} \cdot z \]
      11. lift-+.f64N/A

        \[\leadsto \frac{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}{x} \cdot z \]
      12. div-flipN/A

        \[\leadsto \frac{1}{\frac{x}{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}} \cdot z \]
      13. lower-unsound-/.f64N/A

        \[\leadsto \frac{1}{\frac{x}{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}} \cdot z \]
      14. lower-unsound-/.f6443.6%

        \[\leadsto \frac{1}{\frac{x}{z \cdot y + z \cdot 0.0007936500793651}} \cdot z \]
      15. lift-+.f64N/A

        \[\leadsto \frac{1}{\frac{x}{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}} \cdot z \]
      16. lift-*.f64N/A

        \[\leadsto \frac{1}{\frac{x}{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}} \cdot z \]
      17. lift-*.f64N/A

        \[\leadsto \frac{1}{\frac{x}{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}} \cdot z \]
      18. distribute-lft-outN/A

        \[\leadsto \frac{1}{\frac{x}{z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)}} \cdot z \]
      19. add-flipN/A

        \[\leadsto \frac{1}{\frac{x}{z \cdot \left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}} \cdot z \]
      20. metadata-evalN/A

        \[\leadsto \frac{1}{\frac{x}{z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)}} \cdot z \]
      21. lift--.f64N/A

        \[\leadsto \frac{1}{\frac{x}{z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)}} \cdot z \]
      22. *-commutativeN/A

        \[\leadsto \frac{1}{\frac{x}{\left(y - \frac{-7936500793651}{10000000000000000}\right) \cdot z}} \cdot z \]
      23. lift-*.f6443.6%

        \[\leadsto \frac{1}{\frac{x}{\left(y - -0.0007936500793651\right) \cdot z}} \cdot z \]
    10. Applied rewrites43.6%

      \[\leadsto \frac{1}{\frac{x}{\left(y - -0.0007936500793651\right) \cdot z}} \cdot z \]
  3. Recombined 2 regimes into one program.
  4. Add Preprocessing

Alternative 7: 95.4% accurate, 0.5× speedup?

\[\begin{array}{l} \mathbf{if}\;\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \leq 2 \cdot 10^{+307}:\\ \;\;\;\;\left(\frac{\left(z \cdot \left(y - -0.0007936500793651\right) - 0.0027777777777778\right) \cdot z - -0.083333333333333}{x} - -0.91893853320467\right) - \left(x - \log x \cdot \left(x - 0.5\right)\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\frac{x}{\left(y - -0.0007936500793651\right) \cdot z}} \cdot z\\ \end{array} \]
(FPCore (x y z)
  :precision binary64
  (if (<=
     (+
      (+ (- (* (- x 0.5) (log x)) x) 0.91893853320467)
      (/
       (+
        (* (- (* (+ y 0.0007936500793651) z) 0.0027777777777778) z)
        0.083333333333333)
       x))
     2e+307)
  (-
   (-
    (/
     (-
      (* (- (* z (- y -0.0007936500793651)) 0.0027777777777778) z)
      -0.083333333333333)
     x)
    -0.91893853320467)
   (- x (* (log x) (- x 0.5))))
  (* (/ 1.0 (/ x (* (- y -0.0007936500793651) z))) z)))
double code(double x, double y, double z) {
	double tmp;
	if ((((((x - 0.5) * log(x)) - x) + 0.91893853320467) + ((((((y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x)) <= 2e+307) {
		tmp = ((((((z * (y - -0.0007936500793651)) - 0.0027777777777778) * z) - -0.083333333333333) / x) - -0.91893853320467) - (x - (log(x) * (x - 0.5)));
	} else {
		tmp = (1.0 / (x / ((y - -0.0007936500793651) * z))) * z;
	}
	return tmp;
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8) :: tmp
    if ((((((x - 0.5d0) * log(x)) - x) + 0.91893853320467d0) + ((((((y + 0.0007936500793651d0) * z) - 0.0027777777777778d0) * z) + 0.083333333333333d0) / x)) <= 2d+307) then
        tmp = ((((((z * (y - (-0.0007936500793651d0))) - 0.0027777777777778d0) * z) - (-0.083333333333333d0)) / x) - (-0.91893853320467d0)) - (x - (log(x) * (x - 0.5d0)))
    else
        tmp = (1.0d0 / (x / ((y - (-0.0007936500793651d0)) * z))) * z
    end if
    code = tmp
end function
public static double code(double x, double y, double z) {
	double tmp;
	if ((((((x - 0.5) * Math.log(x)) - x) + 0.91893853320467) + ((((((y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x)) <= 2e+307) {
		tmp = ((((((z * (y - -0.0007936500793651)) - 0.0027777777777778) * z) - -0.083333333333333) / x) - -0.91893853320467) - (x - (Math.log(x) * (x - 0.5)));
	} else {
		tmp = (1.0 / (x / ((y - -0.0007936500793651) * z))) * z;
	}
	return tmp;
}
def code(x, y, z):
	tmp = 0
	if (((((x - 0.5) * math.log(x)) - x) + 0.91893853320467) + ((((((y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x)) <= 2e+307:
		tmp = ((((((z * (y - -0.0007936500793651)) - 0.0027777777777778) * z) - -0.083333333333333) / x) - -0.91893853320467) - (x - (math.log(x) * (x - 0.5)))
	else:
		tmp = (1.0 / (x / ((y - -0.0007936500793651) * z))) * z
	return tmp
function code(x, y, z)
	tmp = 0.0
	if (Float64(Float64(Float64(Float64(Float64(x - 0.5) * log(x)) - x) + 0.91893853320467) + Float64(Float64(Float64(Float64(Float64(Float64(y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x)) <= 2e+307)
		tmp = Float64(Float64(Float64(Float64(Float64(Float64(Float64(z * Float64(y - -0.0007936500793651)) - 0.0027777777777778) * z) - -0.083333333333333) / x) - -0.91893853320467) - Float64(x - Float64(log(x) * Float64(x - 0.5))));
	else
		tmp = Float64(Float64(1.0 / Float64(x / Float64(Float64(y - -0.0007936500793651) * z))) * z);
	end
	return tmp
end
function tmp_2 = code(x, y, z)
	tmp = 0.0;
	if ((((((x - 0.5) * log(x)) - x) + 0.91893853320467) + ((((((y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x)) <= 2e+307)
		tmp = ((((((z * (y - -0.0007936500793651)) - 0.0027777777777778) * z) - -0.083333333333333) / x) - -0.91893853320467) - (x - (log(x) * (x - 0.5)));
	else
		tmp = (1.0 / (x / ((y - -0.0007936500793651) * z))) * z;
	end
	tmp_2 = tmp;
end
code[x_, y_, z_] := If[LessEqual[N[(N[(N[(N[(N[(x - 0.5), $MachinePrecision] * N[Log[x], $MachinePrecision]), $MachinePrecision] - x), $MachinePrecision] + 0.91893853320467), $MachinePrecision] + N[(N[(N[(N[(N[(N[(y + 0.0007936500793651), $MachinePrecision] * z), $MachinePrecision] - 0.0027777777777778), $MachinePrecision] * z), $MachinePrecision] + 0.083333333333333), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision], 2e+307], N[(N[(N[(N[(N[(N[(N[(z * N[(y - -0.0007936500793651), $MachinePrecision]), $MachinePrecision] - 0.0027777777777778), $MachinePrecision] * z), $MachinePrecision] - -0.083333333333333), $MachinePrecision] / x), $MachinePrecision] - -0.91893853320467), $MachinePrecision] - N[(x - N[(N[Log[x], $MachinePrecision] * N[(x - 0.5), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[(N[(1.0 / N[(x / N[(N[(y - -0.0007936500793651), $MachinePrecision] * z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] * z), $MachinePrecision]]
\begin{array}{l}
\mathbf{if}\;\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \leq 2 \cdot 10^{+307}:\\
\;\;\;\;\left(\frac{\left(z \cdot \left(y - -0.0007936500793651\right) - 0.0027777777777778\right) \cdot z - -0.083333333333333}{x} - -0.91893853320467\right) - \left(x - \log x \cdot \left(x - 0.5\right)\right)\\

\mathbf{else}:\\
\;\;\;\;\frac{1}{\frac{x}{\left(y - -0.0007936500793651\right) \cdot z}} \cdot z\\


\end{array}
Derivation
  1. Split input into 2 regimes
  2. if (+.f64 (+.f64 (-.f64 (*.f64 (-.f64 x #s(literal 1/2 binary64)) (log.f64 x)) x) #s(literal 91893853320467/100000000000000 binary64)) (/.f64 (+.f64 (*.f64 (-.f64 (*.f64 (+.f64 y #s(literal 7936500793651/10000000000000000 binary64)) z) #s(literal 13888888888889/5000000000000000 binary64)) z) #s(literal 83333333333333/1000000000000000 binary64)) x)) < 2e307

    1. Initial program 94.2%

      \[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
    2. Step-by-step derivation
      1. lift-+.f64N/A

        \[\leadsto \color{blue}{\left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot z + \frac{83333333333333}{1000000000000000}}{x}} \]
      2. lift-+.f64N/A

        \[\leadsto \color{blue}{\left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right)} + \frac{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot z + \frac{83333333333333}{1000000000000000}}{x} \]
      3. associate-+l+N/A

        \[\leadsto \color{blue}{\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \left(\frac{91893853320467}{100000000000000} + \frac{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot z + \frac{83333333333333}{1000000000000000}}{x}\right)} \]
      4. +-commutativeN/A

        \[\leadsto \color{blue}{\left(\frac{91893853320467}{100000000000000} + \frac{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot z + \frac{83333333333333}{1000000000000000}}{x}\right) + \left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right)} \]
      5. add-flipN/A

        \[\leadsto \color{blue}{\left(\frac{91893853320467}{100000000000000} + \frac{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot z + \frac{83333333333333}{1000000000000000}}{x}\right) - \left(\mathsf{neg}\left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right)\right)\right)} \]
      6. lift--.f64N/A

        \[\leadsto \left(\frac{91893853320467}{100000000000000} + \frac{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot z + \frac{83333333333333}{1000000000000000}}{x}\right) - \left(\mathsf{neg}\left(\color{blue}{\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right)}\right)\right) \]
      7. sub-negate-revN/A

        \[\leadsto \left(\frac{91893853320467}{100000000000000} + \frac{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot z + \frac{83333333333333}{1000000000000000}}{x}\right) - \color{blue}{\left(x - \left(x - \frac{1}{2}\right) \cdot \log x\right)} \]
      8. lower--.f64N/A

        \[\leadsto \color{blue}{\left(\frac{91893853320467}{100000000000000} + \frac{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot z + \frac{83333333333333}{1000000000000000}}{x}\right) - \left(x - \left(x - \frac{1}{2}\right) \cdot \log x\right)} \]
    3. Applied rewrites94.2%

      \[\leadsto \color{blue}{\left(\frac{\left(z \cdot \left(y - -0.0007936500793651\right) - 0.0027777777777778\right) \cdot z - -0.083333333333333}{x} - -0.91893853320467\right) - \left(x - \log x \cdot \left(x - 0.5\right)\right)} \]

    if 2e307 < (+.f64 (+.f64 (-.f64 (*.f64 (-.f64 x #s(literal 1/2 binary64)) (log.f64 x)) x) #s(literal 91893853320467/100000000000000 binary64)) (/.f64 (+.f64 (*.f64 (-.f64 (*.f64 (+.f64 y #s(literal 7936500793651/10000000000000000 binary64)) z) #s(literal 13888888888889/5000000000000000 binary64)) z) #s(literal 83333333333333/1000000000000000 binary64)) x))

    1. Initial program 94.2%

      \[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
    2. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot z} + \frac{83333333333333}{1000000000000000}}{x} \]
      2. *-commutativeN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{z \cdot \left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      3. lift--.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{z \cdot \color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      4. sub-flipN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{z \cdot \color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z + \left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      5. distribute-rgt-inN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z + \left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      6. fp-cancel-sign-sub-invN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      7. lower--.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      8. lower-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z} - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      9. lift-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      10. *-commutativeN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      11. lower-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      12. lift-+.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y + \frac{7936500793651}{10000000000000000}\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      13. add-flipN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      14. lower--.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      15. metadata-evalN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \left(y - \color{blue}{\frac{-7936500793651}{10000000000000000}}\right)\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      16. remove-double-negN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)\right) \cdot z - \color{blue}{\frac{13888888888889}{5000000000000000}} \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      17. lower-*.f6494.2%

        \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - \color{blue}{0.0027777777777778 \cdot z}\right) + 0.083333333333333}{x} \]
    3. Applied rewrites94.2%

      \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\color{blue}{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - 0.0027777777777778 \cdot z\right)} + 0.083333333333333}{x} \]
    4. Taylor expanded in z around inf

      \[\leadsto \color{blue}{{z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
    5. Step-by-step derivation
      1. lower-*.f64N/A

        \[\leadsto {z}^{2} \cdot \color{blue}{\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
      2. lower-pow.f64N/A

        \[\leadsto {z}^{2} \cdot \left(\color{blue}{\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x}} + \frac{y}{x}\right) \]
      3. lower-+.f64N/A

        \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \color{blue}{\frac{y}{x}}\right) \]
      4. lower-*.f64N/A

        \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{\color{blue}{y}}{x}\right) \]
      5. lower-/.f64N/A

        \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \]
      6. lower-/.f6441.7%

        \[\leadsto {z}^{2} \cdot \left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{\color{blue}{x}}\right) \]
    6. Applied rewrites41.7%

      \[\leadsto \color{blue}{{z}^{2} \cdot \left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
    7. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto {z}^{2} \cdot \color{blue}{\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
      2. *-commutativeN/A

        \[\leadsto \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot \color{blue}{{z}^{2}} \]
      3. lift-pow.f64N/A

        \[\leadsto \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot {z}^{\color{blue}{2}} \]
      4. unpow2N/A

        \[\leadsto \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot \left(z \cdot \color{blue}{z}\right) \]
      5. associate-*r*N/A

        \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot \color{blue}{z} \]
      6. lower-*.f64N/A

        \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot \color{blue}{z} \]
      7. lower-*.f6443.5%

        \[\leadsto \left(\left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
      8. lift-+.f64N/A

        \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
      9. lift-*.f64N/A

        \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
      10. lift-/.f64N/A

        \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
      11. mult-flip-revN/A

        \[\leadsto \left(\left(\frac{\frac{7936500793651}{10000000000000000}}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
      12. lift-/.f64N/A

        \[\leadsto \left(\left(\frac{\frac{7936500793651}{10000000000000000}}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
      13. div-add-revN/A

        \[\leadsto \left(\frac{\frac{7936500793651}{10000000000000000} + y}{x} \cdot z\right) \cdot z \]
      14. +-commutativeN/A

        \[\leadsto \left(\frac{y + \frac{7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
      15. add-flipN/A

        \[\leadsto \left(\frac{y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)}{x} \cdot z\right) \cdot z \]
      16. metadata-evalN/A

        \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
      17. lift--.f64N/A

        \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
      18. lower-/.f6443.5%

        \[\leadsto \left(\frac{y - -0.0007936500793651}{x} \cdot z\right) \cdot z \]
    8. Applied rewrites43.5%

      \[\leadsto \left(\frac{y - -0.0007936500793651}{x} \cdot z\right) \cdot \color{blue}{z} \]
    9. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
      2. lift-/.f64N/A

        \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
      3. associate-*l/N/A

        \[\leadsto \frac{\left(y - \frac{-7936500793651}{10000000000000000}\right) \cdot z}{x} \cdot z \]
      4. *-commutativeN/A

        \[\leadsto \frac{z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)}{x} \cdot z \]
      5. lift--.f64N/A

        \[\leadsto \frac{z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)}{x} \cdot z \]
      6. metadata-evalN/A

        \[\leadsto \frac{z \cdot \left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}{x} \cdot z \]
      7. add-flipN/A

        \[\leadsto \frac{z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)}{x} \cdot z \]
      8. distribute-lft-outN/A

        \[\leadsto \frac{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}{x} \cdot z \]
      9. lift-*.f64N/A

        \[\leadsto \frac{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}{x} \cdot z \]
      10. lift-*.f64N/A

        \[\leadsto \frac{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}{x} \cdot z \]
      11. lift-+.f64N/A

        \[\leadsto \frac{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}{x} \cdot z \]
      12. div-flipN/A

        \[\leadsto \frac{1}{\frac{x}{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}} \cdot z \]
      13. lower-unsound-/.f64N/A

        \[\leadsto \frac{1}{\frac{x}{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}} \cdot z \]
      14. lower-unsound-/.f6443.6%

        \[\leadsto \frac{1}{\frac{x}{z \cdot y + z \cdot 0.0007936500793651}} \cdot z \]
      15. lift-+.f64N/A

        \[\leadsto \frac{1}{\frac{x}{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}} \cdot z \]
      16. lift-*.f64N/A

        \[\leadsto \frac{1}{\frac{x}{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}} \cdot z \]
      17. lift-*.f64N/A

        \[\leadsto \frac{1}{\frac{x}{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}} \cdot z \]
      18. distribute-lft-outN/A

        \[\leadsto \frac{1}{\frac{x}{z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)}} \cdot z \]
      19. add-flipN/A

        \[\leadsto \frac{1}{\frac{x}{z \cdot \left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}} \cdot z \]
      20. metadata-evalN/A

        \[\leadsto \frac{1}{\frac{x}{z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)}} \cdot z \]
      21. lift--.f64N/A

        \[\leadsto \frac{1}{\frac{x}{z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)}} \cdot z \]
      22. *-commutativeN/A

        \[\leadsto \frac{1}{\frac{x}{\left(y - \frac{-7936500793651}{10000000000000000}\right) \cdot z}} \cdot z \]
      23. lift-*.f6443.6%

        \[\leadsto \frac{1}{\frac{x}{\left(y - -0.0007936500793651\right) \cdot z}} \cdot z \]
    10. Applied rewrites43.6%

      \[\leadsto \frac{1}{\frac{x}{\left(y - -0.0007936500793651\right) \cdot z}} \cdot z \]
  3. Recombined 2 regimes into one program.
  4. Add Preprocessing

Alternative 8: 95.4% accurate, 0.5× speedup?

\[\begin{array}{l} t_0 := \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x}\\ \mathbf{if}\;t\_0 \leq 2 \cdot 10^{+307}:\\ \;\;\;\;t\_0\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\frac{x}{\left(y - -0.0007936500793651\right) \cdot z}} \cdot z\\ \end{array} \]
(FPCore (x y z)
  :precision binary64
  (let* ((t_0
        (+
         (+ (- (* (- x 0.5) (log x)) x) 0.91893853320467)
         (/
          (+
           (* (- (* (+ y 0.0007936500793651) z) 0.0027777777777778) z)
           0.083333333333333)
          x))))
  (if (<= t_0 2e+307)
    t_0
    (* (/ 1.0 (/ x (* (- y -0.0007936500793651) z))) z))))
double code(double x, double y, double z) {
	double t_0 = ((((x - 0.5) * log(x)) - x) + 0.91893853320467) + ((((((y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x);
	double tmp;
	if (t_0 <= 2e+307) {
		tmp = t_0;
	} else {
		tmp = (1.0 / (x / ((y - -0.0007936500793651) * z))) * z;
	}
	return tmp;
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8) :: t_0
    real(8) :: tmp
    t_0 = ((((x - 0.5d0) * log(x)) - x) + 0.91893853320467d0) + ((((((y + 0.0007936500793651d0) * z) - 0.0027777777777778d0) * z) + 0.083333333333333d0) / x)
    if (t_0 <= 2d+307) then
        tmp = t_0
    else
        tmp = (1.0d0 / (x / ((y - (-0.0007936500793651d0)) * z))) * z
    end if
    code = tmp
end function
public static double code(double x, double y, double z) {
	double t_0 = ((((x - 0.5) * Math.log(x)) - x) + 0.91893853320467) + ((((((y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x);
	double tmp;
	if (t_0 <= 2e+307) {
		tmp = t_0;
	} else {
		tmp = (1.0 / (x / ((y - -0.0007936500793651) * z))) * z;
	}
	return tmp;
}
def code(x, y, z):
	t_0 = ((((x - 0.5) * math.log(x)) - x) + 0.91893853320467) + ((((((y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x)
	tmp = 0
	if t_0 <= 2e+307:
		tmp = t_0
	else:
		tmp = (1.0 / (x / ((y - -0.0007936500793651) * z))) * z
	return tmp
function code(x, y, z)
	t_0 = Float64(Float64(Float64(Float64(Float64(x - 0.5) * log(x)) - x) + 0.91893853320467) + Float64(Float64(Float64(Float64(Float64(Float64(y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x))
	tmp = 0.0
	if (t_0 <= 2e+307)
		tmp = t_0;
	else
		tmp = Float64(Float64(1.0 / Float64(x / Float64(Float64(y - -0.0007936500793651) * z))) * z);
	end
	return tmp
end
function tmp_2 = code(x, y, z)
	t_0 = ((((x - 0.5) * log(x)) - x) + 0.91893853320467) + ((((((y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x);
	tmp = 0.0;
	if (t_0 <= 2e+307)
		tmp = t_0;
	else
		tmp = (1.0 / (x / ((y - -0.0007936500793651) * z))) * z;
	end
	tmp_2 = tmp;
end
code[x_, y_, z_] := Block[{t$95$0 = N[(N[(N[(N[(N[(x - 0.5), $MachinePrecision] * N[Log[x], $MachinePrecision]), $MachinePrecision] - x), $MachinePrecision] + 0.91893853320467), $MachinePrecision] + N[(N[(N[(N[(N[(N[(y + 0.0007936500793651), $MachinePrecision] * z), $MachinePrecision] - 0.0027777777777778), $MachinePrecision] * z), $MachinePrecision] + 0.083333333333333), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$0, 2e+307], t$95$0, N[(N[(1.0 / N[(x / N[(N[(y - -0.0007936500793651), $MachinePrecision] * z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] * z), $MachinePrecision]]]
\begin{array}{l}
t_0 := \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x}\\
\mathbf{if}\;t\_0 \leq 2 \cdot 10^{+307}:\\
\;\;\;\;t\_0\\

\mathbf{else}:\\
\;\;\;\;\frac{1}{\frac{x}{\left(y - -0.0007936500793651\right) \cdot z}} \cdot z\\


\end{array}
Derivation
  1. Split input into 2 regimes
  2. if (+.f64 (+.f64 (-.f64 (*.f64 (-.f64 x #s(literal 1/2 binary64)) (log.f64 x)) x) #s(literal 91893853320467/100000000000000 binary64)) (/.f64 (+.f64 (*.f64 (-.f64 (*.f64 (+.f64 y #s(literal 7936500793651/10000000000000000 binary64)) z) #s(literal 13888888888889/5000000000000000 binary64)) z) #s(literal 83333333333333/1000000000000000 binary64)) x)) < 2e307

    1. Initial program 94.2%

      \[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]

    if 2e307 < (+.f64 (+.f64 (-.f64 (*.f64 (-.f64 x #s(literal 1/2 binary64)) (log.f64 x)) x) #s(literal 91893853320467/100000000000000 binary64)) (/.f64 (+.f64 (*.f64 (-.f64 (*.f64 (+.f64 y #s(literal 7936500793651/10000000000000000 binary64)) z) #s(literal 13888888888889/5000000000000000 binary64)) z) #s(literal 83333333333333/1000000000000000 binary64)) x))

    1. Initial program 94.2%

      \[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
    2. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot z} + \frac{83333333333333}{1000000000000000}}{x} \]
      2. *-commutativeN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{z \cdot \left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      3. lift--.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{z \cdot \color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      4. sub-flipN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{z \cdot \color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z + \left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      5. distribute-rgt-inN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z + \left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      6. fp-cancel-sign-sub-invN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      7. lower--.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      8. lower-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z} - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      9. lift-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      10. *-commutativeN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      11. lower-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      12. lift-+.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y + \frac{7936500793651}{10000000000000000}\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      13. add-flipN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      14. lower--.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      15. metadata-evalN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \left(y - \color{blue}{\frac{-7936500793651}{10000000000000000}}\right)\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      16. remove-double-negN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)\right) \cdot z - \color{blue}{\frac{13888888888889}{5000000000000000}} \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      17. lower-*.f6494.2%

        \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - \color{blue}{0.0027777777777778 \cdot z}\right) + 0.083333333333333}{x} \]
    3. Applied rewrites94.2%

      \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\color{blue}{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - 0.0027777777777778 \cdot z\right)} + 0.083333333333333}{x} \]
    4. Taylor expanded in z around inf

      \[\leadsto \color{blue}{{z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
    5. Step-by-step derivation
      1. lower-*.f64N/A

        \[\leadsto {z}^{2} \cdot \color{blue}{\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
      2. lower-pow.f64N/A

        \[\leadsto {z}^{2} \cdot \left(\color{blue}{\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x}} + \frac{y}{x}\right) \]
      3. lower-+.f64N/A

        \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \color{blue}{\frac{y}{x}}\right) \]
      4. lower-*.f64N/A

        \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{\color{blue}{y}}{x}\right) \]
      5. lower-/.f64N/A

        \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \]
      6. lower-/.f6441.7%

        \[\leadsto {z}^{2} \cdot \left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{\color{blue}{x}}\right) \]
    6. Applied rewrites41.7%

      \[\leadsto \color{blue}{{z}^{2} \cdot \left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
    7. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto {z}^{2} \cdot \color{blue}{\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
      2. *-commutativeN/A

        \[\leadsto \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot \color{blue}{{z}^{2}} \]
      3. lift-pow.f64N/A

        \[\leadsto \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot {z}^{\color{blue}{2}} \]
      4. unpow2N/A

        \[\leadsto \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot \left(z \cdot \color{blue}{z}\right) \]
      5. associate-*r*N/A

        \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot \color{blue}{z} \]
      6. lower-*.f64N/A

        \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot \color{blue}{z} \]
      7. lower-*.f6443.5%

        \[\leadsto \left(\left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
      8. lift-+.f64N/A

        \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
      9. lift-*.f64N/A

        \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
      10. lift-/.f64N/A

        \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
      11. mult-flip-revN/A

        \[\leadsto \left(\left(\frac{\frac{7936500793651}{10000000000000000}}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
      12. lift-/.f64N/A

        \[\leadsto \left(\left(\frac{\frac{7936500793651}{10000000000000000}}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
      13. div-add-revN/A

        \[\leadsto \left(\frac{\frac{7936500793651}{10000000000000000} + y}{x} \cdot z\right) \cdot z \]
      14. +-commutativeN/A

        \[\leadsto \left(\frac{y + \frac{7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
      15. add-flipN/A

        \[\leadsto \left(\frac{y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)}{x} \cdot z\right) \cdot z \]
      16. metadata-evalN/A

        \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
      17. lift--.f64N/A

        \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
      18. lower-/.f6443.5%

        \[\leadsto \left(\frac{y - -0.0007936500793651}{x} \cdot z\right) \cdot z \]
    8. Applied rewrites43.5%

      \[\leadsto \left(\frac{y - -0.0007936500793651}{x} \cdot z\right) \cdot \color{blue}{z} \]
    9. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
      2. lift-/.f64N/A

        \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
      3. associate-*l/N/A

        \[\leadsto \frac{\left(y - \frac{-7936500793651}{10000000000000000}\right) \cdot z}{x} \cdot z \]
      4. *-commutativeN/A

        \[\leadsto \frac{z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)}{x} \cdot z \]
      5. lift--.f64N/A

        \[\leadsto \frac{z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)}{x} \cdot z \]
      6. metadata-evalN/A

        \[\leadsto \frac{z \cdot \left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}{x} \cdot z \]
      7. add-flipN/A

        \[\leadsto \frac{z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)}{x} \cdot z \]
      8. distribute-lft-outN/A

        \[\leadsto \frac{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}{x} \cdot z \]
      9. lift-*.f64N/A

        \[\leadsto \frac{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}{x} \cdot z \]
      10. lift-*.f64N/A

        \[\leadsto \frac{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}{x} \cdot z \]
      11. lift-+.f64N/A

        \[\leadsto \frac{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}{x} \cdot z \]
      12. div-flipN/A

        \[\leadsto \frac{1}{\frac{x}{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}} \cdot z \]
      13. lower-unsound-/.f64N/A

        \[\leadsto \frac{1}{\frac{x}{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}} \cdot z \]
      14. lower-unsound-/.f6443.6%

        \[\leadsto \frac{1}{\frac{x}{z \cdot y + z \cdot 0.0007936500793651}} \cdot z \]
      15. lift-+.f64N/A

        \[\leadsto \frac{1}{\frac{x}{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}} \cdot z \]
      16. lift-*.f64N/A

        \[\leadsto \frac{1}{\frac{x}{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}} \cdot z \]
      17. lift-*.f64N/A

        \[\leadsto \frac{1}{\frac{x}{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}} \cdot z \]
      18. distribute-lft-outN/A

        \[\leadsto \frac{1}{\frac{x}{z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)}} \cdot z \]
      19. add-flipN/A

        \[\leadsto \frac{1}{\frac{x}{z \cdot \left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}} \cdot z \]
      20. metadata-evalN/A

        \[\leadsto \frac{1}{\frac{x}{z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)}} \cdot z \]
      21. lift--.f64N/A

        \[\leadsto \frac{1}{\frac{x}{z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)}} \cdot z \]
      22. *-commutativeN/A

        \[\leadsto \frac{1}{\frac{x}{\left(y - \frac{-7936500793651}{10000000000000000}\right) \cdot z}} \cdot z \]
      23. lift-*.f6443.6%

        \[\leadsto \frac{1}{\frac{x}{\left(y - -0.0007936500793651\right) \cdot z}} \cdot z \]
    10. Applied rewrites43.6%

      \[\leadsto \frac{1}{\frac{x}{\left(y - -0.0007936500793651\right) \cdot z}} \cdot z \]
  3. Recombined 2 regimes into one program.
  4. Add Preprocessing

Alternative 9: 91.7% accurate, 1.0× speedup?

\[\begin{array}{l} \mathbf{if}\;x \leq 86:\\ \;\;\;\;\left(0.91893853320467 + -0.5 \cdot \log x\right) + \frac{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - 0.0027777777777778 \cdot z\right) + 0.083333333333333}{x}\\ \mathbf{else}:\\ \;\;\;\;\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(y \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x}\\ \end{array} \]
(FPCore (x y z)
  :precision binary64
  (if (<= x 86.0)
  (+
   (+ 0.91893853320467 (* -0.5 (log x)))
   (/
    (+
     (-
      (* (* z (- y -0.0007936500793651)) z)
      (* 0.0027777777777778 z))
     0.083333333333333)
    x))
  (+
   (+ (- (* (- x 0.5) (log x)) x) 0.91893853320467)
   (/ (+ (* (- (* y z) 0.0027777777777778) z) 0.083333333333333) x))))
double code(double x, double y, double z) {
	double tmp;
	if (x <= 86.0) {
		tmp = (0.91893853320467 + (-0.5 * log(x))) + (((((z * (y - -0.0007936500793651)) * z) - (0.0027777777777778 * z)) + 0.083333333333333) / x);
	} else {
		tmp = ((((x - 0.5) * log(x)) - x) + 0.91893853320467) + (((((y * z) - 0.0027777777777778) * z) + 0.083333333333333) / x);
	}
	return tmp;
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8) :: tmp
    if (x <= 86.0d0) then
        tmp = (0.91893853320467d0 + ((-0.5d0) * log(x))) + (((((z * (y - (-0.0007936500793651d0))) * z) - (0.0027777777777778d0 * z)) + 0.083333333333333d0) / x)
    else
        tmp = ((((x - 0.5d0) * log(x)) - x) + 0.91893853320467d0) + (((((y * z) - 0.0027777777777778d0) * z) + 0.083333333333333d0) / x)
    end if
    code = tmp
end function
public static double code(double x, double y, double z) {
	double tmp;
	if (x <= 86.0) {
		tmp = (0.91893853320467 + (-0.5 * Math.log(x))) + (((((z * (y - -0.0007936500793651)) * z) - (0.0027777777777778 * z)) + 0.083333333333333) / x);
	} else {
		tmp = ((((x - 0.5) * Math.log(x)) - x) + 0.91893853320467) + (((((y * z) - 0.0027777777777778) * z) + 0.083333333333333) / x);
	}
	return tmp;
}
def code(x, y, z):
	tmp = 0
	if x <= 86.0:
		tmp = (0.91893853320467 + (-0.5 * math.log(x))) + (((((z * (y - -0.0007936500793651)) * z) - (0.0027777777777778 * z)) + 0.083333333333333) / x)
	else:
		tmp = ((((x - 0.5) * math.log(x)) - x) + 0.91893853320467) + (((((y * z) - 0.0027777777777778) * z) + 0.083333333333333) / x)
	return tmp
function code(x, y, z)
	tmp = 0.0
	if (x <= 86.0)
		tmp = Float64(Float64(0.91893853320467 + Float64(-0.5 * log(x))) + Float64(Float64(Float64(Float64(Float64(z * Float64(y - -0.0007936500793651)) * z) - Float64(0.0027777777777778 * z)) + 0.083333333333333) / x));
	else
		tmp = Float64(Float64(Float64(Float64(Float64(x - 0.5) * log(x)) - x) + 0.91893853320467) + Float64(Float64(Float64(Float64(Float64(y * z) - 0.0027777777777778) * z) + 0.083333333333333) / x));
	end
	return tmp
end
function tmp_2 = code(x, y, z)
	tmp = 0.0;
	if (x <= 86.0)
		tmp = (0.91893853320467 + (-0.5 * log(x))) + (((((z * (y - -0.0007936500793651)) * z) - (0.0027777777777778 * z)) + 0.083333333333333) / x);
	else
		tmp = ((((x - 0.5) * log(x)) - x) + 0.91893853320467) + (((((y * z) - 0.0027777777777778) * z) + 0.083333333333333) / x);
	end
	tmp_2 = tmp;
end
code[x_, y_, z_] := If[LessEqual[x, 86.0], N[(N[(0.91893853320467 + N[(-0.5 * N[Log[x], $MachinePrecision]), $MachinePrecision]), $MachinePrecision] + N[(N[(N[(N[(N[(z * N[(y - -0.0007936500793651), $MachinePrecision]), $MachinePrecision] * z), $MachinePrecision] - N[(0.0027777777777778 * z), $MachinePrecision]), $MachinePrecision] + 0.083333333333333), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision], N[(N[(N[(N[(N[(x - 0.5), $MachinePrecision] * N[Log[x], $MachinePrecision]), $MachinePrecision] - x), $MachinePrecision] + 0.91893853320467), $MachinePrecision] + N[(N[(N[(N[(N[(y * z), $MachinePrecision] - 0.0027777777777778), $MachinePrecision] * z), $MachinePrecision] + 0.083333333333333), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision]]
\begin{array}{l}
\mathbf{if}\;x \leq 86:\\
\;\;\;\;\left(0.91893853320467 + -0.5 \cdot \log x\right) + \frac{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - 0.0027777777777778 \cdot z\right) + 0.083333333333333}{x}\\

\mathbf{else}:\\
\;\;\;\;\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(y \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x}\\


\end{array}
Derivation
  1. Split input into 2 regimes
  2. if x < 86

    1. Initial program 94.2%

      \[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
    2. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot z} + \frac{83333333333333}{1000000000000000}}{x} \]
      2. *-commutativeN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{z \cdot \left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      3. lift--.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{z \cdot \color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      4. sub-flipN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{z \cdot \color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z + \left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      5. distribute-rgt-inN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z + \left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      6. fp-cancel-sign-sub-invN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      7. lower--.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
      8. lower-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z} - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      9. lift-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      10. *-commutativeN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      11. lower-*.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      12. lift-+.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y + \frac{7936500793651}{10000000000000000}\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      13. add-flipN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      14. lower--.f64N/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      15. metadata-evalN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \left(y - \color{blue}{\frac{-7936500793651}{10000000000000000}}\right)\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      16. remove-double-negN/A

        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)\right) \cdot z - \color{blue}{\frac{13888888888889}{5000000000000000}} \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      17. lower-*.f6494.2%

        \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - \color{blue}{0.0027777777777778 \cdot z}\right) + 0.083333333333333}{x} \]
    3. Applied rewrites94.2%

      \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\color{blue}{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - 0.0027777777777778 \cdot z\right)} + 0.083333333333333}{x} \]
    4. Taylor expanded in x around 0

      \[\leadsto \color{blue}{\left(\frac{91893853320467}{100000000000000} + \frac{-1}{2} \cdot \log x\right)} + \frac{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - 0.0027777777777778 \cdot z\right) + 0.083333333333333}{x} \]
    5. Step-by-step derivation
      1. lower-+.f64N/A

        \[\leadsto \left(\frac{91893853320467}{100000000000000} + \color{blue}{\frac{-1}{2} \cdot \log x}\right) + \frac{\left(\left(z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)\right) \cdot z - \frac{13888888888889}{5000000000000000} \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      2. lower-*.f64N/A

        \[\leadsto \left(\frac{91893853320467}{100000000000000} + \frac{-1}{2} \cdot \color{blue}{\log x}\right) + \frac{\left(\left(z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)\right) \cdot z - \frac{13888888888889}{5000000000000000} \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
      3. lower-log.f6463.3%

        \[\leadsto \left(0.91893853320467 + -0.5 \cdot \log x\right) + \frac{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - 0.0027777777777778 \cdot z\right) + 0.083333333333333}{x} \]
    6. Applied rewrites63.3%

      \[\leadsto \color{blue}{\left(0.91893853320467 + -0.5 \cdot \log x\right)} + \frac{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - 0.0027777777777778 \cdot z\right) + 0.083333333333333}{x} \]

    if 86 < x

    1. Initial program 94.2%

      \[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
    2. Taylor expanded in y around inf

      \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\color{blue}{y \cdot z} - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
    3. Step-by-step derivation
      1. lower-*.f6483.7%

        \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(y \cdot \color{blue}{z} - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
    4. Applied rewrites83.7%

      \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\color{blue}{y \cdot z} - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
  3. Recombined 2 regimes into one program.
  4. Add Preprocessing

Alternative 10: 91.7% accurate, 1.0× speedup?

\[\begin{array}{l} \mathbf{if}\;x \leq 86:\\ \;\;\;\;\left(0.91893853320467 + -0.5 \cdot \log x\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x}\\ \mathbf{else}:\\ \;\;\;\;\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(y \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x}\\ \end{array} \]
(FPCore (x y z)
  :precision binary64
  (if (<= x 86.0)
  (+
   (+ 0.91893853320467 (* -0.5 (log x)))
   (/
    (+
     (* (- (* (+ y 0.0007936500793651) z) 0.0027777777777778) z)
     0.083333333333333)
    x))
  (+
   (+ (- (* (- x 0.5) (log x)) x) 0.91893853320467)
   (/ (+ (* (- (* y z) 0.0027777777777778) z) 0.083333333333333) x))))
double code(double x, double y, double z) {
	double tmp;
	if (x <= 86.0) {
		tmp = (0.91893853320467 + (-0.5 * log(x))) + ((((((y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x);
	} else {
		tmp = ((((x - 0.5) * log(x)) - x) + 0.91893853320467) + (((((y * z) - 0.0027777777777778) * z) + 0.083333333333333) / x);
	}
	return tmp;
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8) :: tmp
    if (x <= 86.0d0) then
        tmp = (0.91893853320467d0 + ((-0.5d0) * log(x))) + ((((((y + 0.0007936500793651d0) * z) - 0.0027777777777778d0) * z) + 0.083333333333333d0) / x)
    else
        tmp = ((((x - 0.5d0) * log(x)) - x) + 0.91893853320467d0) + (((((y * z) - 0.0027777777777778d0) * z) + 0.083333333333333d0) / x)
    end if
    code = tmp
end function
public static double code(double x, double y, double z) {
	double tmp;
	if (x <= 86.0) {
		tmp = (0.91893853320467 + (-0.5 * Math.log(x))) + ((((((y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x);
	} else {
		tmp = ((((x - 0.5) * Math.log(x)) - x) + 0.91893853320467) + (((((y * z) - 0.0027777777777778) * z) + 0.083333333333333) / x);
	}
	return tmp;
}
def code(x, y, z):
	tmp = 0
	if x <= 86.0:
		tmp = (0.91893853320467 + (-0.5 * math.log(x))) + ((((((y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x)
	else:
		tmp = ((((x - 0.5) * math.log(x)) - x) + 0.91893853320467) + (((((y * z) - 0.0027777777777778) * z) + 0.083333333333333) / x)
	return tmp
function code(x, y, z)
	tmp = 0.0
	if (x <= 86.0)
		tmp = Float64(Float64(0.91893853320467 + Float64(-0.5 * log(x))) + Float64(Float64(Float64(Float64(Float64(Float64(y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x));
	else
		tmp = Float64(Float64(Float64(Float64(Float64(x - 0.5) * log(x)) - x) + 0.91893853320467) + Float64(Float64(Float64(Float64(Float64(y * z) - 0.0027777777777778) * z) + 0.083333333333333) / x));
	end
	return tmp
end
function tmp_2 = code(x, y, z)
	tmp = 0.0;
	if (x <= 86.0)
		tmp = (0.91893853320467 + (-0.5 * log(x))) + ((((((y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x);
	else
		tmp = ((((x - 0.5) * log(x)) - x) + 0.91893853320467) + (((((y * z) - 0.0027777777777778) * z) + 0.083333333333333) / x);
	end
	tmp_2 = tmp;
end
code[x_, y_, z_] := If[LessEqual[x, 86.0], N[(N[(0.91893853320467 + N[(-0.5 * N[Log[x], $MachinePrecision]), $MachinePrecision]), $MachinePrecision] + N[(N[(N[(N[(N[(N[(y + 0.0007936500793651), $MachinePrecision] * z), $MachinePrecision] - 0.0027777777777778), $MachinePrecision] * z), $MachinePrecision] + 0.083333333333333), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision], N[(N[(N[(N[(N[(x - 0.5), $MachinePrecision] * N[Log[x], $MachinePrecision]), $MachinePrecision] - x), $MachinePrecision] + 0.91893853320467), $MachinePrecision] + N[(N[(N[(N[(N[(y * z), $MachinePrecision] - 0.0027777777777778), $MachinePrecision] * z), $MachinePrecision] + 0.083333333333333), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision]]
\begin{array}{l}
\mathbf{if}\;x \leq 86:\\
\;\;\;\;\left(0.91893853320467 + -0.5 \cdot \log x\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x}\\

\mathbf{else}:\\
\;\;\;\;\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(y \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x}\\


\end{array}
Derivation
  1. Split input into 2 regimes
  2. if x < 86

    1. Initial program 94.2%

      \[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
    2. Taylor expanded in x around 0

      \[\leadsto \color{blue}{\left(\frac{91893853320467}{100000000000000} + \frac{-1}{2} \cdot \log x\right)} + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
    3. Step-by-step derivation
      1. lower-+.f64N/A

        \[\leadsto \left(\frac{91893853320467}{100000000000000} + \color{blue}{\frac{-1}{2} \cdot \log x}\right) + \frac{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot z + \frac{83333333333333}{1000000000000000}}{x} \]
      2. lower-*.f64N/A

        \[\leadsto \left(\frac{91893853320467}{100000000000000} + \frac{-1}{2} \cdot \color{blue}{\log x}\right) + \frac{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot z + \frac{83333333333333}{1000000000000000}}{x} \]
      3. lower-log.f6463.3%

        \[\leadsto \left(0.91893853320467 + -0.5 \cdot \log x\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
    4. Applied rewrites63.3%

      \[\leadsto \color{blue}{\left(0.91893853320467 + -0.5 \cdot \log x\right)} + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]

    if 86 < x

    1. Initial program 94.2%

      \[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
    2. Taylor expanded in y around inf

      \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\color{blue}{y \cdot z} - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
    3. Step-by-step derivation
      1. lower-*.f6483.7%

        \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(y \cdot \color{blue}{z} - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
    4. Applied rewrites83.7%

      \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\color{blue}{y \cdot z} - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
  3. Recombined 2 regimes into one program.
  4. Add Preprocessing

Alternative 11: 84.7% accurate, 1.0× speedup?

\[\begin{array}{l} \mathbf{if}\;x \leq 98:\\ \;\;\;\;\left(0.91893853320467 + -0.5 \cdot \log x\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x}\\ \mathbf{else}:\\ \;\;\;\;\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{0.083333333333333}{x}\\ \end{array} \]
(FPCore (x y z)
  :precision binary64
  (if (<= x 98.0)
  (+
   (+ 0.91893853320467 (* -0.5 (log x)))
   (/
    (+
     (* (- (* (+ y 0.0007936500793651) z) 0.0027777777777778) z)
     0.083333333333333)
    x))
  (+
   (+ (- (* (- x 0.5) (log x)) x) 0.91893853320467)
   (/ 0.083333333333333 x))))
double code(double x, double y, double z) {
	double tmp;
	if (x <= 98.0) {
		tmp = (0.91893853320467 + (-0.5 * log(x))) + ((((((y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x);
	} else {
		tmp = ((((x - 0.5) * log(x)) - x) + 0.91893853320467) + (0.083333333333333 / x);
	}
	return tmp;
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8) :: tmp
    if (x <= 98.0d0) then
        tmp = (0.91893853320467d0 + ((-0.5d0) * log(x))) + ((((((y + 0.0007936500793651d0) * z) - 0.0027777777777778d0) * z) + 0.083333333333333d0) / x)
    else
        tmp = ((((x - 0.5d0) * log(x)) - x) + 0.91893853320467d0) + (0.083333333333333d0 / x)
    end if
    code = tmp
end function
public static double code(double x, double y, double z) {
	double tmp;
	if (x <= 98.0) {
		tmp = (0.91893853320467 + (-0.5 * Math.log(x))) + ((((((y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x);
	} else {
		tmp = ((((x - 0.5) * Math.log(x)) - x) + 0.91893853320467) + (0.083333333333333 / x);
	}
	return tmp;
}
def code(x, y, z):
	tmp = 0
	if x <= 98.0:
		tmp = (0.91893853320467 + (-0.5 * math.log(x))) + ((((((y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x)
	else:
		tmp = ((((x - 0.5) * math.log(x)) - x) + 0.91893853320467) + (0.083333333333333 / x)
	return tmp
function code(x, y, z)
	tmp = 0.0
	if (x <= 98.0)
		tmp = Float64(Float64(0.91893853320467 + Float64(-0.5 * log(x))) + Float64(Float64(Float64(Float64(Float64(Float64(y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x));
	else
		tmp = Float64(Float64(Float64(Float64(Float64(x - 0.5) * log(x)) - x) + 0.91893853320467) + Float64(0.083333333333333 / x));
	end
	return tmp
end
function tmp_2 = code(x, y, z)
	tmp = 0.0;
	if (x <= 98.0)
		tmp = (0.91893853320467 + (-0.5 * log(x))) + ((((((y + 0.0007936500793651) * z) - 0.0027777777777778) * z) + 0.083333333333333) / x);
	else
		tmp = ((((x - 0.5) * log(x)) - x) + 0.91893853320467) + (0.083333333333333 / x);
	end
	tmp_2 = tmp;
end
code[x_, y_, z_] := If[LessEqual[x, 98.0], N[(N[(0.91893853320467 + N[(-0.5 * N[Log[x], $MachinePrecision]), $MachinePrecision]), $MachinePrecision] + N[(N[(N[(N[(N[(N[(y + 0.0007936500793651), $MachinePrecision] * z), $MachinePrecision] - 0.0027777777777778), $MachinePrecision] * z), $MachinePrecision] + 0.083333333333333), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision], N[(N[(N[(N[(N[(x - 0.5), $MachinePrecision] * N[Log[x], $MachinePrecision]), $MachinePrecision] - x), $MachinePrecision] + 0.91893853320467), $MachinePrecision] + N[(0.083333333333333 / x), $MachinePrecision]), $MachinePrecision]]
\begin{array}{l}
\mathbf{if}\;x \leq 98:\\
\;\;\;\;\left(0.91893853320467 + -0.5 \cdot \log x\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x}\\

\mathbf{else}:\\
\;\;\;\;\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{0.083333333333333}{x}\\


\end{array}
Derivation
  1. Split input into 2 regimes
  2. if x < 98

    1. Initial program 94.2%

      \[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
    2. Taylor expanded in x around 0

      \[\leadsto \color{blue}{\left(\frac{91893853320467}{100000000000000} + \frac{-1}{2} \cdot \log x\right)} + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
    3. Step-by-step derivation
      1. lower-+.f64N/A

        \[\leadsto \left(\frac{91893853320467}{100000000000000} + \color{blue}{\frac{-1}{2} \cdot \log x}\right) + \frac{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot z + \frac{83333333333333}{1000000000000000}}{x} \]
      2. lower-*.f64N/A

        \[\leadsto \left(\frac{91893853320467}{100000000000000} + \frac{-1}{2} \cdot \color{blue}{\log x}\right) + \frac{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot z + \frac{83333333333333}{1000000000000000}}{x} \]
      3. lower-log.f6463.3%

        \[\leadsto \left(0.91893853320467 + -0.5 \cdot \log x\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
    4. Applied rewrites63.3%

      \[\leadsto \color{blue}{\left(0.91893853320467 + -0.5 \cdot \log x\right)} + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]

    if 98 < x

    1. Initial program 94.2%

      \[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
    2. Taylor expanded in z around 0

      \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\color{blue}{\frac{83333333333333}{1000000000000000}}}{x} \]
    3. Step-by-step derivation
      1. Applied rewrites57.5%

        \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\color{blue}{0.083333333333333}}{x} \]
    4. Recombined 2 regimes into one program.
    5. Add Preprocessing

    Alternative 12: 84.7% accurate, 1.1× speedup?

    \[\begin{array}{l} \mathbf{if}\;x \leq 98:\\ \;\;\;\;\frac{\left(0.083333333333333 + {z}^{2} \cdot \left(0.0007936500793651 + y\right)\right) - 0.0027777777777778 \cdot z}{x}\\ \mathbf{else}:\\ \;\;\;\;\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{0.083333333333333}{x}\\ \end{array} \]
    (FPCore (x y z)
      :precision binary64
      (if (<= x 98.0)
      (/
       (-
        (+ 0.083333333333333 (* (pow z 2.0) (+ 0.0007936500793651 y)))
        (* 0.0027777777777778 z))
       x)
      (+
       (+ (- (* (- x 0.5) (log x)) x) 0.91893853320467)
       (/ 0.083333333333333 x))))
    double code(double x, double y, double z) {
    	double tmp;
    	if (x <= 98.0) {
    		tmp = ((0.083333333333333 + (pow(z, 2.0) * (0.0007936500793651 + y))) - (0.0027777777777778 * z)) / x;
    	} else {
    		tmp = ((((x - 0.5) * log(x)) - x) + 0.91893853320467) + (0.083333333333333 / x);
    	}
    	return tmp;
    }
    
    module fmin_fmax_functions
        implicit none
        private
        public fmax
        public fmin
    
        interface fmax
            module procedure fmax88
            module procedure fmax44
            module procedure fmax84
            module procedure fmax48
        end interface
        interface fmin
            module procedure fmin88
            module procedure fmin44
            module procedure fmin84
            module procedure fmin48
        end interface
    contains
        real(8) function fmax88(x, y) result (res)
            real(8), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(x, max(x, y), y /= y), x /= x)
        end function
        real(4) function fmax44(x, y) result (res)
            real(4), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(y, merge(x, max(x, y), y /= y), x /= x)
        end function
        real(8) function fmax84(x, y) result(res)
            real(8), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
        end function
        real(8) function fmax48(x, y) result(res)
            real(4), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
        end function
        real(8) function fmin88(x, y) result (res)
            real(8), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(x, min(x, y), y /= y), x /= x)
        end function
        real(4) function fmin44(x, y) result (res)
            real(4), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(y, merge(x, min(x, y), y /= y), x /= x)
        end function
        real(8) function fmin84(x, y) result(res)
            real(8), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
        end function
        real(8) function fmin48(x, y) result(res)
            real(4), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
        end function
    end module
    
    real(8) function code(x, y, z)
    use fmin_fmax_functions
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        real(8), intent (in) :: z
        real(8) :: tmp
        if (x <= 98.0d0) then
            tmp = ((0.083333333333333d0 + ((z ** 2.0d0) * (0.0007936500793651d0 + y))) - (0.0027777777777778d0 * z)) / x
        else
            tmp = ((((x - 0.5d0) * log(x)) - x) + 0.91893853320467d0) + (0.083333333333333d0 / x)
        end if
        code = tmp
    end function
    
    public static double code(double x, double y, double z) {
    	double tmp;
    	if (x <= 98.0) {
    		tmp = ((0.083333333333333 + (Math.pow(z, 2.0) * (0.0007936500793651 + y))) - (0.0027777777777778 * z)) / x;
    	} else {
    		tmp = ((((x - 0.5) * Math.log(x)) - x) + 0.91893853320467) + (0.083333333333333 / x);
    	}
    	return tmp;
    }
    
    def code(x, y, z):
    	tmp = 0
    	if x <= 98.0:
    		tmp = ((0.083333333333333 + (math.pow(z, 2.0) * (0.0007936500793651 + y))) - (0.0027777777777778 * z)) / x
    	else:
    		tmp = ((((x - 0.5) * math.log(x)) - x) + 0.91893853320467) + (0.083333333333333 / x)
    	return tmp
    
    function code(x, y, z)
    	tmp = 0.0
    	if (x <= 98.0)
    		tmp = Float64(Float64(Float64(0.083333333333333 + Float64((z ^ 2.0) * Float64(0.0007936500793651 + y))) - Float64(0.0027777777777778 * z)) / x);
    	else
    		tmp = Float64(Float64(Float64(Float64(Float64(x - 0.5) * log(x)) - x) + 0.91893853320467) + Float64(0.083333333333333 / x));
    	end
    	return tmp
    end
    
    function tmp_2 = code(x, y, z)
    	tmp = 0.0;
    	if (x <= 98.0)
    		tmp = ((0.083333333333333 + ((z ^ 2.0) * (0.0007936500793651 + y))) - (0.0027777777777778 * z)) / x;
    	else
    		tmp = ((((x - 0.5) * log(x)) - x) + 0.91893853320467) + (0.083333333333333 / x);
    	end
    	tmp_2 = tmp;
    end
    
    code[x_, y_, z_] := If[LessEqual[x, 98.0], N[(N[(N[(0.083333333333333 + N[(N[Power[z, 2.0], $MachinePrecision] * N[(0.0007936500793651 + y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] - N[(0.0027777777777778 * z), $MachinePrecision]), $MachinePrecision] / x), $MachinePrecision], N[(N[(N[(N[(N[(x - 0.5), $MachinePrecision] * N[Log[x], $MachinePrecision]), $MachinePrecision] - x), $MachinePrecision] + 0.91893853320467), $MachinePrecision] + N[(0.083333333333333 / x), $MachinePrecision]), $MachinePrecision]]
    
    \begin{array}{l}
    \mathbf{if}\;x \leq 98:\\
    \;\;\;\;\frac{\left(0.083333333333333 + {z}^{2} \cdot \left(0.0007936500793651 + y\right)\right) - 0.0027777777777778 \cdot z}{x}\\
    
    \mathbf{else}:\\
    \;\;\;\;\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{0.083333333333333}{x}\\
    
    
    \end{array}
    
    Derivation
    1. Split input into 2 regimes
    2. if x < 98

      1. Initial program 94.2%

        \[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
      2. Step-by-step derivation
        1. lift-*.f64N/A

          \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot z} + \frac{83333333333333}{1000000000000000}}{x} \]
        2. *-commutativeN/A

          \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{z \cdot \left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
        3. lift--.f64N/A

          \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{z \cdot \color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
        4. sub-flipN/A

          \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{z \cdot \color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z + \left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
        5. distribute-rgt-inN/A

          \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z + \left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
        6. fp-cancel-sign-sub-invN/A

          \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
        7. lower--.f64N/A

          \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
        8. lower-*.f64N/A

          \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z} - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
        9. lift-*.f64N/A

          \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
        10. *-commutativeN/A

          \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
        11. lower-*.f64N/A

          \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
        12. lift-+.f64N/A

          \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y + \frac{7936500793651}{10000000000000000}\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
        13. add-flipN/A

          \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
        14. lower--.f64N/A

          \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
        15. metadata-evalN/A

          \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \left(y - \color{blue}{\frac{-7936500793651}{10000000000000000}}\right)\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
        16. remove-double-negN/A

          \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)\right) \cdot z - \color{blue}{\frac{13888888888889}{5000000000000000}} \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
        17. lower-*.f6494.2%

          \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - \color{blue}{0.0027777777777778 \cdot z}\right) + 0.083333333333333}{x} \]
      3. Applied rewrites94.2%

        \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\color{blue}{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - 0.0027777777777778 \cdot z\right)} + 0.083333333333333}{x} \]
      4. Taylor expanded in z around inf

        \[\leadsto \color{blue}{{z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
      5. Step-by-step derivation
        1. lower-*.f64N/A

          \[\leadsto {z}^{2} \cdot \color{blue}{\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
        2. lower-pow.f64N/A

          \[\leadsto {z}^{2} \cdot \left(\color{blue}{\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x}} + \frac{y}{x}\right) \]
        3. lower-+.f64N/A

          \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \color{blue}{\frac{y}{x}}\right) \]
        4. lower-*.f64N/A

          \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{\color{blue}{y}}{x}\right) \]
        5. lower-/.f64N/A

          \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \]
        6. lower-/.f6441.7%

          \[\leadsto {z}^{2} \cdot \left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{\color{blue}{x}}\right) \]
      6. Applied rewrites41.7%

        \[\leadsto \color{blue}{{z}^{2} \cdot \left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
      7. Step-by-step derivation
        1. lift-*.f64N/A

          \[\leadsto {z}^{2} \cdot \color{blue}{\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
        2. *-commutativeN/A

          \[\leadsto \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot \color{blue}{{z}^{2}} \]
        3. lift-pow.f64N/A

          \[\leadsto \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot {z}^{\color{blue}{2}} \]
        4. unpow2N/A

          \[\leadsto \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot \left(z \cdot \color{blue}{z}\right) \]
        5. associate-*r*N/A

          \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot \color{blue}{z} \]
        6. lower-*.f64N/A

          \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot \color{blue}{z} \]
        7. lower-*.f6443.5%

          \[\leadsto \left(\left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
        8. lift-+.f64N/A

          \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
        9. lift-*.f64N/A

          \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
        10. lift-/.f64N/A

          \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
        11. mult-flip-revN/A

          \[\leadsto \left(\left(\frac{\frac{7936500793651}{10000000000000000}}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
        12. lift-/.f64N/A

          \[\leadsto \left(\left(\frac{\frac{7936500793651}{10000000000000000}}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
        13. div-add-revN/A

          \[\leadsto \left(\frac{\frac{7936500793651}{10000000000000000} + y}{x} \cdot z\right) \cdot z \]
        14. +-commutativeN/A

          \[\leadsto \left(\frac{y + \frac{7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
        15. add-flipN/A

          \[\leadsto \left(\frac{y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)}{x} \cdot z\right) \cdot z \]
        16. metadata-evalN/A

          \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
        17. lift--.f64N/A

          \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
        18. lower-/.f6443.5%

          \[\leadsto \left(\frac{y - -0.0007936500793651}{x} \cdot z\right) \cdot z \]
      8. Applied rewrites43.5%

        \[\leadsto \left(\frac{y - -0.0007936500793651}{x} \cdot z\right) \cdot \color{blue}{z} \]
      9. Taylor expanded in x around 0

        \[\leadsto \color{blue}{\frac{\left(\frac{83333333333333}{1000000000000000} + {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} + y\right)\right) - \frac{13888888888889}{5000000000000000} \cdot z}{x}} \]
      10. Step-by-step derivation
        1. lower-/.f64N/A

          \[\leadsto \frac{\left(\frac{83333333333333}{1000000000000000} + {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} + y\right)\right) - \frac{13888888888889}{5000000000000000} \cdot z}{\color{blue}{x}} \]
        2. lower--.f64N/A

          \[\leadsto \frac{\left(\frac{83333333333333}{1000000000000000} + {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} + y\right)\right) - \frac{13888888888889}{5000000000000000} \cdot z}{x} \]
        3. lower-+.f64N/A

          \[\leadsto \frac{\left(\frac{83333333333333}{1000000000000000} + {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} + y\right)\right) - \frac{13888888888889}{5000000000000000} \cdot z}{x} \]
        4. lower-*.f64N/A

          \[\leadsto \frac{\left(\frac{83333333333333}{1000000000000000} + {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} + y\right)\right) - \frac{13888888888889}{5000000000000000} \cdot z}{x} \]
        5. lower-pow.f64N/A

          \[\leadsto \frac{\left(\frac{83333333333333}{1000000000000000} + {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} + y\right)\right) - \frac{13888888888889}{5000000000000000} \cdot z}{x} \]
        6. lower-+.f64N/A

          \[\leadsto \frac{\left(\frac{83333333333333}{1000000000000000} + {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} + y\right)\right) - \frac{13888888888889}{5000000000000000} \cdot z}{x} \]
        7. lower-*.f6463.6%

          \[\leadsto \frac{\left(0.083333333333333 + {z}^{2} \cdot \left(0.0007936500793651 + y\right)\right) - 0.0027777777777778 \cdot z}{x} \]
      11. Applied rewrites63.6%

        \[\leadsto \color{blue}{\frac{\left(0.083333333333333 + {z}^{2} \cdot \left(0.0007936500793651 + y\right)\right) - 0.0027777777777778 \cdot z}{x}} \]

      if 98 < x

      1. Initial program 94.2%

        \[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
      2. Taylor expanded in z around 0

        \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\color{blue}{\frac{83333333333333}{1000000000000000}}}{x} \]
      3. Step-by-step derivation
        1. Applied rewrites57.5%

          \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\color{blue}{0.083333333333333}}{x} \]
      4. Recombined 2 regimes into one program.
      5. Add Preprocessing

      Alternative 13: 84.3% accurate, 1.1× speedup?

      \[\begin{array}{l} \mathbf{if}\;x \leq 98:\\ \;\;\;\;\frac{0.083333333333333 + z \cdot \left(z \cdot \left(0.0007936500793651 + y\right) - 0.0027777777777778\right)}{x}\\ \mathbf{else}:\\ \;\;\;\;\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{0.083333333333333}{x}\\ \end{array} \]
      (FPCore (x y z)
        :precision binary64
        (if (<= x 98.0)
        (/
         (+
          0.083333333333333
          (* z (- (* z (+ 0.0007936500793651 y)) 0.0027777777777778)))
         x)
        (+
         (+ (- (* (- x 0.5) (log x)) x) 0.91893853320467)
         (/ 0.083333333333333 x))))
      double code(double x, double y, double z) {
      	double tmp;
      	if (x <= 98.0) {
      		tmp = (0.083333333333333 + (z * ((z * (0.0007936500793651 + y)) - 0.0027777777777778))) / x;
      	} else {
      		tmp = ((((x - 0.5) * log(x)) - x) + 0.91893853320467) + (0.083333333333333 / x);
      	}
      	return tmp;
      }
      
      module fmin_fmax_functions
          implicit none
          private
          public fmax
          public fmin
      
          interface fmax
              module procedure fmax88
              module procedure fmax44
              module procedure fmax84
              module procedure fmax48
          end interface
          interface fmin
              module procedure fmin88
              module procedure fmin44
              module procedure fmin84
              module procedure fmin48
          end interface
      contains
          real(8) function fmax88(x, y) result (res)
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
          end function
          real(4) function fmax44(x, y) result (res)
              real(4), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
          end function
          real(8) function fmax84(x, y) result(res)
              real(8), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
          end function
          real(8) function fmax48(x, y) result(res)
              real(4), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
          end function
          real(8) function fmin88(x, y) result (res)
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
          end function
          real(4) function fmin44(x, y) result (res)
              real(4), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
          end function
          real(8) function fmin84(x, y) result(res)
              real(8), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
          end function
          real(8) function fmin48(x, y) result(res)
              real(4), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
          end function
      end module
      
      real(8) function code(x, y, z)
      use fmin_fmax_functions
          real(8), intent (in) :: x
          real(8), intent (in) :: y
          real(8), intent (in) :: z
          real(8) :: tmp
          if (x <= 98.0d0) then
              tmp = (0.083333333333333d0 + (z * ((z * (0.0007936500793651d0 + y)) - 0.0027777777777778d0))) / x
          else
              tmp = ((((x - 0.5d0) * log(x)) - x) + 0.91893853320467d0) + (0.083333333333333d0 / x)
          end if
          code = tmp
      end function
      
      public static double code(double x, double y, double z) {
      	double tmp;
      	if (x <= 98.0) {
      		tmp = (0.083333333333333 + (z * ((z * (0.0007936500793651 + y)) - 0.0027777777777778))) / x;
      	} else {
      		tmp = ((((x - 0.5) * Math.log(x)) - x) + 0.91893853320467) + (0.083333333333333 / x);
      	}
      	return tmp;
      }
      
      def code(x, y, z):
      	tmp = 0
      	if x <= 98.0:
      		tmp = (0.083333333333333 + (z * ((z * (0.0007936500793651 + y)) - 0.0027777777777778))) / x
      	else:
      		tmp = ((((x - 0.5) * math.log(x)) - x) + 0.91893853320467) + (0.083333333333333 / x)
      	return tmp
      
      function code(x, y, z)
      	tmp = 0.0
      	if (x <= 98.0)
      		tmp = Float64(Float64(0.083333333333333 + Float64(z * Float64(Float64(z * Float64(0.0007936500793651 + y)) - 0.0027777777777778))) / x);
      	else
      		tmp = Float64(Float64(Float64(Float64(Float64(x - 0.5) * log(x)) - x) + 0.91893853320467) + Float64(0.083333333333333 / x));
      	end
      	return tmp
      end
      
      function tmp_2 = code(x, y, z)
      	tmp = 0.0;
      	if (x <= 98.0)
      		tmp = (0.083333333333333 + (z * ((z * (0.0007936500793651 + y)) - 0.0027777777777778))) / x;
      	else
      		tmp = ((((x - 0.5) * log(x)) - x) + 0.91893853320467) + (0.083333333333333 / x);
      	end
      	tmp_2 = tmp;
      end
      
      code[x_, y_, z_] := If[LessEqual[x, 98.0], N[(N[(0.083333333333333 + N[(z * N[(N[(z * N[(0.0007936500793651 + y), $MachinePrecision]), $MachinePrecision] - 0.0027777777777778), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / x), $MachinePrecision], N[(N[(N[(N[(N[(x - 0.5), $MachinePrecision] * N[Log[x], $MachinePrecision]), $MachinePrecision] - x), $MachinePrecision] + 0.91893853320467), $MachinePrecision] + N[(0.083333333333333 / x), $MachinePrecision]), $MachinePrecision]]
      
      \begin{array}{l}
      \mathbf{if}\;x \leq 98:\\
      \;\;\;\;\frac{0.083333333333333 + z \cdot \left(z \cdot \left(0.0007936500793651 + y\right) - 0.0027777777777778\right)}{x}\\
      
      \mathbf{else}:\\
      \;\;\;\;\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{0.083333333333333}{x}\\
      
      
      \end{array}
      
      Derivation
      1. Split input into 2 regimes
      2. if x < 98

        1. Initial program 94.2%

          \[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
        2. Taylor expanded in z around 0

          \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\color{blue}{\frac{83333333333333}{1000000000000000}}}{x} \]
        3. Step-by-step derivation
          1. Applied rewrites57.5%

            \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\color{blue}{0.083333333333333}}{x} \]
          2. Step-by-step derivation
            1. lift-+.f64N/A

              \[\leadsto \color{blue}{\left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\frac{83333333333333}{1000000000000000}}{x}} \]
            2. lift-/.f64N/A

              \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \color{blue}{\frac{\frac{83333333333333}{1000000000000000}}{x}} \]
            3. add-to-fractionN/A

              \[\leadsto \color{blue}{\frac{\left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) \cdot x + \frac{83333333333333}{1000000000000000}}{x}} \]
            4. lower-/.f64N/A

              \[\leadsto \color{blue}{\frac{\left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) \cdot x + \frac{83333333333333}{1000000000000000}}{x}} \]
          3. Applied rewrites40.6%

            \[\leadsto \color{blue}{\frac{\left(\log x \cdot \left(x - 0.5\right) - \left(x - 0.91893853320467\right)\right) \cdot x + 0.083333333333333}{x}} \]
          4. Taylor expanded in x around 0

            \[\leadsto \frac{\color{blue}{\frac{83333333333333}{1000000000000000} + z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} + y\right) - \frac{13888888888889}{5000000000000000}\right)}}{x} \]
          5. Step-by-step derivation
            1. lower-+.f64N/A

              \[\leadsto \frac{\frac{83333333333333}{1000000000000000} + \color{blue}{z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} + y\right) - \frac{13888888888889}{5000000000000000}\right)}}{x} \]
            2. lower-*.f64N/A

              \[\leadsto \frac{\frac{83333333333333}{1000000000000000} + z \cdot \color{blue}{\left(z \cdot \left(\frac{7936500793651}{10000000000000000} + y\right) - \frac{13888888888889}{5000000000000000}\right)}}{x} \]
            3. lower--.f64N/A

              \[\leadsto \frac{\frac{83333333333333}{1000000000000000} + z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} + y\right) - \color{blue}{\frac{13888888888889}{5000000000000000}}\right)}{x} \]
            4. lower-*.f64N/A

              \[\leadsto \frac{\frac{83333333333333}{1000000000000000} + z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} + y\right) - \frac{13888888888889}{5000000000000000}\right)}{x} \]
            5. lower-+.f6463.7%

              \[\leadsto \frac{0.083333333333333 + z \cdot \left(z \cdot \left(0.0007936500793651 + y\right) - 0.0027777777777778\right)}{x} \]
          6. Applied rewrites63.7%

            \[\leadsto \frac{\color{blue}{0.083333333333333 + z \cdot \left(z \cdot \left(0.0007936500793651 + y\right) - 0.0027777777777778\right)}}{x} \]

          if 98 < x

          1. Initial program 94.2%

            \[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
          2. Taylor expanded in z around 0

            \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\color{blue}{\frac{83333333333333}{1000000000000000}}}{x} \]
          3. Step-by-step derivation
            1. Applied rewrites57.5%

              \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\color{blue}{0.083333333333333}}{x} \]
          4. Recombined 2 regimes into one program.
          5. Add Preprocessing

          Alternative 14: 84.3% accurate, 1.1× speedup?

          \[\begin{array}{l} \mathbf{if}\;x \leq 3.8 \cdot 10^{+19}:\\ \;\;\;\;\frac{0.083333333333333 + z \cdot \left(z \cdot \left(0.0007936500793651 + y\right) - 0.0027777777777778\right)}{x}\\ \mathbf{else}:\\ \;\;\;\;\left(\frac{0.083333333333333}{x} + \left(\log x - 1\right) \cdot x\right) - -0.91893853320467\\ \end{array} \]
          (FPCore (x y z)
            :precision binary64
            (if (<= x 3.8e+19)
            (/
             (+
              0.083333333333333
              (* z (- (* z (+ 0.0007936500793651 y)) 0.0027777777777778)))
             x)
            (-
             (+ (/ 0.083333333333333 x) (* (- (log x) 1.0) x))
             -0.91893853320467)))
          double code(double x, double y, double z) {
          	double tmp;
          	if (x <= 3.8e+19) {
          		tmp = (0.083333333333333 + (z * ((z * (0.0007936500793651 + y)) - 0.0027777777777778))) / x;
          	} else {
          		tmp = ((0.083333333333333 / x) + ((log(x) - 1.0) * x)) - -0.91893853320467;
          	}
          	return tmp;
          }
          
          module fmin_fmax_functions
              implicit none
              private
              public fmax
              public fmin
          
              interface fmax
                  module procedure fmax88
                  module procedure fmax44
                  module procedure fmax84
                  module procedure fmax48
              end interface
              interface fmin
                  module procedure fmin88
                  module procedure fmin44
                  module procedure fmin84
                  module procedure fmin48
              end interface
          contains
              real(8) function fmax88(x, y) result (res)
                  real(8), intent (in) :: x
                  real(8), intent (in) :: y
                  res = merge(y, merge(x, max(x, y), y /= y), x /= x)
              end function
              real(4) function fmax44(x, y) result (res)
                  real(4), intent (in) :: x
                  real(4), intent (in) :: y
                  res = merge(y, merge(x, max(x, y), y /= y), x /= x)
              end function
              real(8) function fmax84(x, y) result(res)
                  real(8), intent (in) :: x
                  real(4), intent (in) :: y
                  res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
              end function
              real(8) function fmax48(x, y) result(res)
                  real(4), intent (in) :: x
                  real(8), intent (in) :: y
                  res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
              end function
              real(8) function fmin88(x, y) result (res)
                  real(8), intent (in) :: x
                  real(8), intent (in) :: y
                  res = merge(y, merge(x, min(x, y), y /= y), x /= x)
              end function
              real(4) function fmin44(x, y) result (res)
                  real(4), intent (in) :: x
                  real(4), intent (in) :: y
                  res = merge(y, merge(x, min(x, y), y /= y), x /= x)
              end function
              real(8) function fmin84(x, y) result(res)
                  real(8), intent (in) :: x
                  real(4), intent (in) :: y
                  res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
              end function
              real(8) function fmin48(x, y) result(res)
                  real(4), intent (in) :: x
                  real(8), intent (in) :: y
                  res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
              end function
          end module
          
          real(8) function code(x, y, z)
          use fmin_fmax_functions
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              real(8), intent (in) :: z
              real(8) :: tmp
              if (x <= 3.8d+19) then
                  tmp = (0.083333333333333d0 + (z * ((z * (0.0007936500793651d0 + y)) - 0.0027777777777778d0))) / x
              else
                  tmp = ((0.083333333333333d0 / x) + ((log(x) - 1.0d0) * x)) - (-0.91893853320467d0)
              end if
              code = tmp
          end function
          
          public static double code(double x, double y, double z) {
          	double tmp;
          	if (x <= 3.8e+19) {
          		tmp = (0.083333333333333 + (z * ((z * (0.0007936500793651 + y)) - 0.0027777777777778))) / x;
          	} else {
          		tmp = ((0.083333333333333 / x) + ((Math.log(x) - 1.0) * x)) - -0.91893853320467;
          	}
          	return tmp;
          }
          
          def code(x, y, z):
          	tmp = 0
          	if x <= 3.8e+19:
          		tmp = (0.083333333333333 + (z * ((z * (0.0007936500793651 + y)) - 0.0027777777777778))) / x
          	else:
          		tmp = ((0.083333333333333 / x) + ((math.log(x) - 1.0) * x)) - -0.91893853320467
          	return tmp
          
          function code(x, y, z)
          	tmp = 0.0
          	if (x <= 3.8e+19)
          		tmp = Float64(Float64(0.083333333333333 + Float64(z * Float64(Float64(z * Float64(0.0007936500793651 + y)) - 0.0027777777777778))) / x);
          	else
          		tmp = Float64(Float64(Float64(0.083333333333333 / x) + Float64(Float64(log(x) - 1.0) * x)) - -0.91893853320467);
          	end
          	return tmp
          end
          
          function tmp_2 = code(x, y, z)
          	tmp = 0.0;
          	if (x <= 3.8e+19)
          		tmp = (0.083333333333333 + (z * ((z * (0.0007936500793651 + y)) - 0.0027777777777778))) / x;
          	else
          		tmp = ((0.083333333333333 / x) + ((log(x) - 1.0) * x)) - -0.91893853320467;
          	end
          	tmp_2 = tmp;
          end
          
          code[x_, y_, z_] := If[LessEqual[x, 3.8e+19], N[(N[(0.083333333333333 + N[(z * N[(N[(z * N[(0.0007936500793651 + y), $MachinePrecision]), $MachinePrecision] - 0.0027777777777778), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / x), $MachinePrecision], N[(N[(N[(0.083333333333333 / x), $MachinePrecision] + N[(N[(N[Log[x], $MachinePrecision] - 1.0), $MachinePrecision] * x), $MachinePrecision]), $MachinePrecision] - -0.91893853320467), $MachinePrecision]]
          
          \begin{array}{l}
          \mathbf{if}\;x \leq 3.8 \cdot 10^{+19}:\\
          \;\;\;\;\frac{0.083333333333333 + z \cdot \left(z \cdot \left(0.0007936500793651 + y\right) - 0.0027777777777778\right)}{x}\\
          
          \mathbf{else}:\\
          \;\;\;\;\left(\frac{0.083333333333333}{x} + \left(\log x - 1\right) \cdot x\right) - -0.91893853320467\\
          
          
          \end{array}
          
          Derivation
          1. Split input into 2 regimes
          2. if x < 3.8e19

            1. Initial program 94.2%

              \[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
            2. Taylor expanded in z around 0

              \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\color{blue}{\frac{83333333333333}{1000000000000000}}}{x} \]
            3. Step-by-step derivation
              1. Applied rewrites57.5%

                \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\color{blue}{0.083333333333333}}{x} \]
              2. Step-by-step derivation
                1. lift-+.f64N/A

                  \[\leadsto \color{blue}{\left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\frac{83333333333333}{1000000000000000}}{x}} \]
                2. lift-/.f64N/A

                  \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \color{blue}{\frac{\frac{83333333333333}{1000000000000000}}{x}} \]
                3. add-to-fractionN/A

                  \[\leadsto \color{blue}{\frac{\left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) \cdot x + \frac{83333333333333}{1000000000000000}}{x}} \]
                4. lower-/.f64N/A

                  \[\leadsto \color{blue}{\frac{\left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) \cdot x + \frac{83333333333333}{1000000000000000}}{x}} \]
              3. Applied rewrites40.6%

                \[\leadsto \color{blue}{\frac{\left(\log x \cdot \left(x - 0.5\right) - \left(x - 0.91893853320467\right)\right) \cdot x + 0.083333333333333}{x}} \]
              4. Taylor expanded in x around 0

                \[\leadsto \frac{\color{blue}{\frac{83333333333333}{1000000000000000} + z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} + y\right) - \frac{13888888888889}{5000000000000000}\right)}}{x} \]
              5. Step-by-step derivation
                1. lower-+.f64N/A

                  \[\leadsto \frac{\frac{83333333333333}{1000000000000000} + \color{blue}{z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} + y\right) - \frac{13888888888889}{5000000000000000}\right)}}{x} \]
                2. lower-*.f64N/A

                  \[\leadsto \frac{\frac{83333333333333}{1000000000000000} + z \cdot \color{blue}{\left(z \cdot \left(\frac{7936500793651}{10000000000000000} + y\right) - \frac{13888888888889}{5000000000000000}\right)}}{x} \]
                3. lower--.f64N/A

                  \[\leadsto \frac{\frac{83333333333333}{1000000000000000} + z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} + y\right) - \color{blue}{\frac{13888888888889}{5000000000000000}}\right)}{x} \]
                4. lower-*.f64N/A

                  \[\leadsto \frac{\frac{83333333333333}{1000000000000000} + z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} + y\right) - \frac{13888888888889}{5000000000000000}\right)}{x} \]
                5. lower-+.f6463.7%

                  \[\leadsto \frac{0.083333333333333 + z \cdot \left(z \cdot \left(0.0007936500793651 + y\right) - 0.0027777777777778\right)}{x} \]
              6. Applied rewrites63.7%

                \[\leadsto \frac{\color{blue}{0.083333333333333 + z \cdot \left(z \cdot \left(0.0007936500793651 + y\right) - 0.0027777777777778\right)}}{x} \]

              if 3.8e19 < x

              1. Initial program 94.2%

                \[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
              2. Taylor expanded in z around 0

                \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\color{blue}{\frac{83333333333333}{1000000000000000}}}{x} \]
              3. Step-by-step derivation
                1. Applied rewrites57.5%

                  \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\color{blue}{0.083333333333333}}{x} \]
                2. Taylor expanded in x around inf

                  \[\leadsto \left(\color{blue}{x \cdot \left(-1 \cdot \log \left(\frac{1}{x}\right) - 1\right)} + 0.91893853320467\right) + \frac{0.083333333333333}{x} \]
                3. Step-by-step derivation
                  1. lower-*.f64N/A

                    \[\leadsto \left(x \cdot \color{blue}{\left(-1 \cdot \log \left(\frac{1}{x}\right) - 1\right)} + \frac{91893853320467}{100000000000000}\right) + \frac{\frac{83333333333333}{1000000000000000}}{x} \]
                  2. lower--.f64N/A

                    \[\leadsto \left(x \cdot \left(-1 \cdot \log \left(\frac{1}{x}\right) - \color{blue}{1}\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\frac{83333333333333}{1000000000000000}}{x} \]
                  3. lower-*.f64N/A

                    \[\leadsto \left(x \cdot \left(-1 \cdot \log \left(\frac{1}{x}\right) - 1\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\frac{83333333333333}{1000000000000000}}{x} \]
                  4. lower-log.f64N/A

                    \[\leadsto \left(x \cdot \left(-1 \cdot \log \left(\frac{1}{x}\right) - 1\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\frac{83333333333333}{1000000000000000}}{x} \]
                  5. lower-/.f6456.5%

                    \[\leadsto \left(x \cdot \left(-1 \cdot \log \left(\frac{1}{x}\right) - 1\right) + 0.91893853320467\right) + \frac{0.083333333333333}{x} \]
                4. Applied rewrites56.5%

                  \[\leadsto \left(\color{blue}{x \cdot \left(-1 \cdot \log \left(\frac{1}{x}\right) - 1\right)} + 0.91893853320467\right) + \frac{0.083333333333333}{x} \]
                5. Step-by-step derivation
                  1. lift-+.f64N/A

                    \[\leadsto \color{blue}{\left(x \cdot \left(-1 \cdot \log \left(\frac{1}{x}\right) - 1\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\frac{83333333333333}{1000000000000000}}{x}} \]
                  2. +-commutativeN/A

                    \[\leadsto \color{blue}{\frac{\frac{83333333333333}{1000000000000000}}{x} + \left(x \cdot \left(-1 \cdot \log \left(\frac{1}{x}\right) - 1\right) + \frac{91893853320467}{100000000000000}\right)} \]
                  3. lift-+.f64N/A

                    \[\leadsto \frac{\frac{83333333333333}{1000000000000000}}{x} + \color{blue}{\left(x \cdot \left(-1 \cdot \log \left(\frac{1}{x}\right) - 1\right) + \frac{91893853320467}{100000000000000}\right)} \]
                  4. add-flipN/A

                    \[\leadsto \frac{\frac{83333333333333}{1000000000000000}}{x} + \color{blue}{\left(x \cdot \left(-1 \cdot \log \left(\frac{1}{x}\right) - 1\right) - \left(\mathsf{neg}\left(\frac{91893853320467}{100000000000000}\right)\right)\right)} \]
                  5. associate-+r-N/A

                    \[\leadsto \color{blue}{\left(\frac{\frac{83333333333333}{1000000000000000}}{x} + x \cdot \left(-1 \cdot \log \left(\frac{1}{x}\right) - 1\right)\right) - \left(\mathsf{neg}\left(\frac{91893853320467}{100000000000000}\right)\right)} \]
                  6. lower--.f64N/A

                    \[\leadsto \color{blue}{\left(\frac{\frac{83333333333333}{1000000000000000}}{x} + x \cdot \left(-1 \cdot \log \left(\frac{1}{x}\right) - 1\right)\right) - \left(\mathsf{neg}\left(\frac{91893853320467}{100000000000000}\right)\right)} \]
                6. Applied rewrites56.5%

                  \[\leadsto \color{blue}{\left(\frac{0.083333333333333}{x} + \left(\log x - 1\right) \cdot x\right) - -0.91893853320467} \]
              4. Recombined 2 regimes into one program.
              5. Add Preprocessing

              Alternative 15: 65.5% accurate, 4.0× speedup?

              \[\begin{array}{l} \mathbf{if}\;x \leq 61000000000:\\ \;\;\;\;\frac{0.083333333333333 + z \cdot \left(z \cdot \left(0.0007936500793651 + y\right) - 0.0027777777777778\right)}{x}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left(y - -0.0007936500793651\right) \cdot z}{x} \cdot z\\ \end{array} \]
              (FPCore (x y z)
                :precision binary64
                (if (<= x 61000000000.0)
                (/
                 (+
                  0.083333333333333
                  (* z (- (* z (+ 0.0007936500793651 y)) 0.0027777777777778)))
                 x)
                (* (/ (* (- y -0.0007936500793651) z) x) z)))
              double code(double x, double y, double z) {
              	double tmp;
              	if (x <= 61000000000.0) {
              		tmp = (0.083333333333333 + (z * ((z * (0.0007936500793651 + y)) - 0.0027777777777778))) / x;
              	} else {
              		tmp = (((y - -0.0007936500793651) * z) / x) * z;
              	}
              	return tmp;
              }
              
              module fmin_fmax_functions
                  implicit none
                  private
                  public fmax
                  public fmin
              
                  interface fmax
                      module procedure fmax88
                      module procedure fmax44
                      module procedure fmax84
                      module procedure fmax48
                  end interface
                  interface fmin
                      module procedure fmin88
                      module procedure fmin44
                      module procedure fmin84
                      module procedure fmin48
                  end interface
              contains
                  real(8) function fmax88(x, y) result (res)
                      real(8), intent (in) :: x
                      real(8), intent (in) :: y
                      res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                  end function
                  real(4) function fmax44(x, y) result (res)
                      real(4), intent (in) :: x
                      real(4), intent (in) :: y
                      res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                  end function
                  real(8) function fmax84(x, y) result(res)
                      real(8), intent (in) :: x
                      real(4), intent (in) :: y
                      res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                  end function
                  real(8) function fmax48(x, y) result(res)
                      real(4), intent (in) :: x
                      real(8), intent (in) :: y
                      res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                  end function
                  real(8) function fmin88(x, y) result (res)
                      real(8), intent (in) :: x
                      real(8), intent (in) :: y
                      res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                  end function
                  real(4) function fmin44(x, y) result (res)
                      real(4), intent (in) :: x
                      real(4), intent (in) :: y
                      res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                  end function
                  real(8) function fmin84(x, y) result(res)
                      real(8), intent (in) :: x
                      real(4), intent (in) :: y
                      res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                  end function
                  real(8) function fmin48(x, y) result(res)
                      real(4), intent (in) :: x
                      real(8), intent (in) :: y
                      res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                  end function
              end module
              
              real(8) function code(x, y, z)
              use fmin_fmax_functions
                  real(8), intent (in) :: x
                  real(8), intent (in) :: y
                  real(8), intent (in) :: z
                  real(8) :: tmp
                  if (x <= 61000000000.0d0) then
                      tmp = (0.083333333333333d0 + (z * ((z * (0.0007936500793651d0 + y)) - 0.0027777777777778d0))) / x
                  else
                      tmp = (((y - (-0.0007936500793651d0)) * z) / x) * z
                  end if
                  code = tmp
              end function
              
              public static double code(double x, double y, double z) {
              	double tmp;
              	if (x <= 61000000000.0) {
              		tmp = (0.083333333333333 + (z * ((z * (0.0007936500793651 + y)) - 0.0027777777777778))) / x;
              	} else {
              		tmp = (((y - -0.0007936500793651) * z) / x) * z;
              	}
              	return tmp;
              }
              
              def code(x, y, z):
              	tmp = 0
              	if x <= 61000000000.0:
              		tmp = (0.083333333333333 + (z * ((z * (0.0007936500793651 + y)) - 0.0027777777777778))) / x
              	else:
              		tmp = (((y - -0.0007936500793651) * z) / x) * z
              	return tmp
              
              function code(x, y, z)
              	tmp = 0.0
              	if (x <= 61000000000.0)
              		tmp = Float64(Float64(0.083333333333333 + Float64(z * Float64(Float64(z * Float64(0.0007936500793651 + y)) - 0.0027777777777778))) / x);
              	else
              		tmp = Float64(Float64(Float64(Float64(y - -0.0007936500793651) * z) / x) * z);
              	end
              	return tmp
              end
              
              function tmp_2 = code(x, y, z)
              	tmp = 0.0;
              	if (x <= 61000000000.0)
              		tmp = (0.083333333333333 + (z * ((z * (0.0007936500793651 + y)) - 0.0027777777777778))) / x;
              	else
              		tmp = (((y - -0.0007936500793651) * z) / x) * z;
              	end
              	tmp_2 = tmp;
              end
              
              code[x_, y_, z_] := If[LessEqual[x, 61000000000.0], N[(N[(0.083333333333333 + N[(z * N[(N[(z * N[(0.0007936500793651 + y), $MachinePrecision]), $MachinePrecision] - 0.0027777777777778), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / x), $MachinePrecision], N[(N[(N[(N[(y - -0.0007936500793651), $MachinePrecision] * z), $MachinePrecision] / x), $MachinePrecision] * z), $MachinePrecision]]
              
              \begin{array}{l}
              \mathbf{if}\;x \leq 61000000000:\\
              \;\;\;\;\frac{0.083333333333333 + z \cdot \left(z \cdot \left(0.0007936500793651 + y\right) - 0.0027777777777778\right)}{x}\\
              
              \mathbf{else}:\\
              \;\;\;\;\frac{\left(y - -0.0007936500793651\right) \cdot z}{x} \cdot z\\
              
              
              \end{array}
              
              Derivation
              1. Split input into 2 regimes
              2. if x < 6.1e10

                1. Initial program 94.2%

                  \[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
                2. Taylor expanded in z around 0

                  \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\color{blue}{\frac{83333333333333}{1000000000000000}}}{x} \]
                3. Step-by-step derivation
                  1. Applied rewrites57.5%

                    \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\color{blue}{0.083333333333333}}{x} \]
                  2. Step-by-step derivation
                    1. lift-+.f64N/A

                      \[\leadsto \color{blue}{\left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\frac{83333333333333}{1000000000000000}}{x}} \]
                    2. lift-/.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \color{blue}{\frac{\frac{83333333333333}{1000000000000000}}{x}} \]
                    3. add-to-fractionN/A

                      \[\leadsto \color{blue}{\frac{\left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) \cdot x + \frac{83333333333333}{1000000000000000}}{x}} \]
                    4. lower-/.f64N/A

                      \[\leadsto \color{blue}{\frac{\left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) \cdot x + \frac{83333333333333}{1000000000000000}}{x}} \]
                  3. Applied rewrites40.6%

                    \[\leadsto \color{blue}{\frac{\left(\log x \cdot \left(x - 0.5\right) - \left(x - 0.91893853320467\right)\right) \cdot x + 0.083333333333333}{x}} \]
                  4. Taylor expanded in x around 0

                    \[\leadsto \frac{\color{blue}{\frac{83333333333333}{1000000000000000} + z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} + y\right) - \frac{13888888888889}{5000000000000000}\right)}}{x} \]
                  5. Step-by-step derivation
                    1. lower-+.f64N/A

                      \[\leadsto \frac{\frac{83333333333333}{1000000000000000} + \color{blue}{z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} + y\right) - \frac{13888888888889}{5000000000000000}\right)}}{x} \]
                    2. lower-*.f64N/A

                      \[\leadsto \frac{\frac{83333333333333}{1000000000000000} + z \cdot \color{blue}{\left(z \cdot \left(\frac{7936500793651}{10000000000000000} + y\right) - \frac{13888888888889}{5000000000000000}\right)}}{x} \]
                    3. lower--.f64N/A

                      \[\leadsto \frac{\frac{83333333333333}{1000000000000000} + z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} + y\right) - \color{blue}{\frac{13888888888889}{5000000000000000}}\right)}{x} \]
                    4. lower-*.f64N/A

                      \[\leadsto \frac{\frac{83333333333333}{1000000000000000} + z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} + y\right) - \frac{13888888888889}{5000000000000000}\right)}{x} \]
                    5. lower-+.f6463.7%

                      \[\leadsto \frac{0.083333333333333 + z \cdot \left(z \cdot \left(0.0007936500793651 + y\right) - 0.0027777777777778\right)}{x} \]
                  6. Applied rewrites63.7%

                    \[\leadsto \frac{\color{blue}{0.083333333333333 + z \cdot \left(z \cdot \left(0.0007936500793651 + y\right) - 0.0027777777777778\right)}}{x} \]

                  if 6.1e10 < x

                  1. Initial program 94.2%

                    \[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
                  2. Step-by-step derivation
                    1. lift-*.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot z} + \frac{83333333333333}{1000000000000000}}{x} \]
                    2. *-commutativeN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{z \cdot \left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                    3. lift--.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{z \cdot \color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                    4. sub-flipN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{z \cdot \color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z + \left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                    5. distribute-rgt-inN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z + \left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                    6. fp-cancel-sign-sub-invN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                    7. lower--.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                    8. lower-*.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z} - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    9. lift-*.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    10. *-commutativeN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    11. lower-*.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    12. lift-+.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y + \frac{7936500793651}{10000000000000000}\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    13. add-flipN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    14. lower--.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    15. metadata-evalN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \left(y - \color{blue}{\frac{-7936500793651}{10000000000000000}}\right)\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    16. remove-double-negN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)\right) \cdot z - \color{blue}{\frac{13888888888889}{5000000000000000}} \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    17. lower-*.f6494.2%

                      \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - \color{blue}{0.0027777777777778 \cdot z}\right) + 0.083333333333333}{x} \]
                  3. Applied rewrites94.2%

                    \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\color{blue}{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - 0.0027777777777778 \cdot z\right)} + 0.083333333333333}{x} \]
                  4. Taylor expanded in z around inf

                    \[\leadsto \color{blue}{{z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
                  5. Step-by-step derivation
                    1. lower-*.f64N/A

                      \[\leadsto {z}^{2} \cdot \color{blue}{\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
                    2. lower-pow.f64N/A

                      \[\leadsto {z}^{2} \cdot \left(\color{blue}{\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x}} + \frac{y}{x}\right) \]
                    3. lower-+.f64N/A

                      \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \color{blue}{\frac{y}{x}}\right) \]
                    4. lower-*.f64N/A

                      \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{\color{blue}{y}}{x}\right) \]
                    5. lower-/.f64N/A

                      \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \]
                    6. lower-/.f6441.7%

                      \[\leadsto {z}^{2} \cdot \left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{\color{blue}{x}}\right) \]
                  6. Applied rewrites41.7%

                    \[\leadsto \color{blue}{{z}^{2} \cdot \left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
                  7. Step-by-step derivation
                    1. lift-*.f64N/A

                      \[\leadsto {z}^{2} \cdot \color{blue}{\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
                    2. *-commutativeN/A

                      \[\leadsto \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot \color{blue}{{z}^{2}} \]
                    3. lift-pow.f64N/A

                      \[\leadsto \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot {z}^{\color{blue}{2}} \]
                    4. unpow2N/A

                      \[\leadsto \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot \left(z \cdot \color{blue}{z}\right) \]
                    5. associate-*r*N/A

                      \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot \color{blue}{z} \]
                    6. lower-*.f64N/A

                      \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot \color{blue}{z} \]
                    7. lower-*.f6443.5%

                      \[\leadsto \left(\left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
                    8. lift-+.f64N/A

                      \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
                    9. lift-*.f64N/A

                      \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
                    10. lift-/.f64N/A

                      \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
                    11. mult-flip-revN/A

                      \[\leadsto \left(\left(\frac{\frac{7936500793651}{10000000000000000}}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
                    12. lift-/.f64N/A

                      \[\leadsto \left(\left(\frac{\frac{7936500793651}{10000000000000000}}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
                    13. div-add-revN/A

                      \[\leadsto \left(\frac{\frac{7936500793651}{10000000000000000} + y}{x} \cdot z\right) \cdot z \]
                    14. +-commutativeN/A

                      \[\leadsto \left(\frac{y + \frac{7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
                    15. add-flipN/A

                      \[\leadsto \left(\frac{y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)}{x} \cdot z\right) \cdot z \]
                    16. metadata-evalN/A

                      \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
                    17. lift--.f64N/A

                      \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
                    18. lower-/.f6443.5%

                      \[\leadsto \left(\frac{y - -0.0007936500793651}{x} \cdot z\right) \cdot z \]
                  8. Applied rewrites43.5%

                    \[\leadsto \left(\frac{y - -0.0007936500793651}{x} \cdot z\right) \cdot \color{blue}{z} \]
                  9. Step-by-step derivation
                    1. lift-*.f64N/A

                      \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
                    2. lift-/.f64N/A

                      \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
                    3. associate-*l/N/A

                      \[\leadsto \frac{\left(y - \frac{-7936500793651}{10000000000000000}\right) \cdot z}{x} \cdot z \]
                    4. *-commutativeN/A

                      \[\leadsto \frac{z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)}{x} \cdot z \]
                    5. lift--.f64N/A

                      \[\leadsto \frac{z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)}{x} \cdot z \]
                    6. metadata-evalN/A

                      \[\leadsto \frac{z \cdot \left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}{x} \cdot z \]
                    7. add-flipN/A

                      \[\leadsto \frac{z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)}{x} \cdot z \]
                    8. distribute-lft-outN/A

                      \[\leadsto \frac{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}{x} \cdot z \]
                    9. lift-*.f64N/A

                      \[\leadsto \frac{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}{x} \cdot z \]
                    10. lift-*.f64N/A

                      \[\leadsto \frac{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}{x} \cdot z \]
                    11. lift-+.f64N/A

                      \[\leadsto \frac{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}{x} \cdot z \]
                    12. lower-/.f6443.6%

                      \[\leadsto \frac{z \cdot y + z \cdot 0.0007936500793651}{x} \cdot z \]
                    13. lift-+.f64N/A

                      \[\leadsto \frac{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}{x} \cdot z \]
                    14. lift-*.f64N/A

                      \[\leadsto \frac{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}{x} \cdot z \]
                    15. lift-*.f64N/A

                      \[\leadsto \frac{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}{x} \cdot z \]
                    16. distribute-lft-outN/A

                      \[\leadsto \frac{z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)}{x} \cdot z \]
                    17. add-flipN/A

                      \[\leadsto \frac{z \cdot \left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}{x} \cdot z \]
                    18. metadata-evalN/A

                      \[\leadsto \frac{z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)}{x} \cdot z \]
                    19. lift--.f64N/A

                      \[\leadsto \frac{z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)}{x} \cdot z \]
                    20. *-commutativeN/A

                      \[\leadsto \frac{\left(y - \frac{-7936500793651}{10000000000000000}\right) \cdot z}{x} \cdot z \]
                    21. lift-*.f6443.6%

                      \[\leadsto \frac{\left(y - -0.0007936500793651\right) \cdot z}{x} \cdot z \]
                  10. Applied rewrites43.6%

                    \[\leadsto \frac{\left(y - -0.0007936500793651\right) \cdot z}{x} \cdot z \]
                4. Recombined 2 regimes into one program.
                5. Add Preprocessing

                Alternative 16: 65.5% accurate, 3.5× speedup?

                \[\begin{array}{l} \mathbf{if}\;x \leq 61000000000:\\ \;\;\;\;\frac{0.083333333333333 + z \cdot \left(z \cdot \left(0.0007936500793651 + y\right) - 0.0027777777777778\right)}{x}\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\frac{x}{\left(y - -0.0007936500793651\right) \cdot z}} \cdot z\\ \end{array} \]
                (FPCore (x y z)
                  :precision binary64
                  (if (<= x 61000000000.0)
                  (/
                   (+
                    0.083333333333333
                    (* z (- (* z (+ 0.0007936500793651 y)) 0.0027777777777778)))
                   x)
                  (* (/ 1.0 (/ x (* (- y -0.0007936500793651) z))) z)))
                double code(double x, double y, double z) {
                	double tmp;
                	if (x <= 61000000000.0) {
                		tmp = (0.083333333333333 + (z * ((z * (0.0007936500793651 + y)) - 0.0027777777777778))) / x;
                	} else {
                		tmp = (1.0 / (x / ((y - -0.0007936500793651) * z))) * z;
                	}
                	return tmp;
                }
                
                module fmin_fmax_functions
                    implicit none
                    private
                    public fmax
                    public fmin
                
                    interface fmax
                        module procedure fmax88
                        module procedure fmax44
                        module procedure fmax84
                        module procedure fmax48
                    end interface
                    interface fmin
                        module procedure fmin88
                        module procedure fmin44
                        module procedure fmin84
                        module procedure fmin48
                    end interface
                contains
                    real(8) function fmax88(x, y) result (res)
                        real(8), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                    end function
                    real(4) function fmax44(x, y) result (res)
                        real(4), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                    end function
                    real(8) function fmax84(x, y) result(res)
                        real(8), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                    end function
                    real(8) function fmax48(x, y) result(res)
                        real(4), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                    end function
                    real(8) function fmin88(x, y) result (res)
                        real(8), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                    end function
                    real(4) function fmin44(x, y) result (res)
                        real(4), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                    end function
                    real(8) function fmin84(x, y) result(res)
                        real(8), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                    end function
                    real(8) function fmin48(x, y) result(res)
                        real(4), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                    end function
                end module
                
                real(8) function code(x, y, z)
                use fmin_fmax_functions
                    real(8), intent (in) :: x
                    real(8), intent (in) :: y
                    real(8), intent (in) :: z
                    real(8) :: tmp
                    if (x <= 61000000000.0d0) then
                        tmp = (0.083333333333333d0 + (z * ((z * (0.0007936500793651d0 + y)) - 0.0027777777777778d0))) / x
                    else
                        tmp = (1.0d0 / (x / ((y - (-0.0007936500793651d0)) * z))) * z
                    end if
                    code = tmp
                end function
                
                public static double code(double x, double y, double z) {
                	double tmp;
                	if (x <= 61000000000.0) {
                		tmp = (0.083333333333333 + (z * ((z * (0.0007936500793651 + y)) - 0.0027777777777778))) / x;
                	} else {
                		tmp = (1.0 / (x / ((y - -0.0007936500793651) * z))) * z;
                	}
                	return tmp;
                }
                
                def code(x, y, z):
                	tmp = 0
                	if x <= 61000000000.0:
                		tmp = (0.083333333333333 + (z * ((z * (0.0007936500793651 + y)) - 0.0027777777777778))) / x
                	else:
                		tmp = (1.0 / (x / ((y - -0.0007936500793651) * z))) * z
                	return tmp
                
                function code(x, y, z)
                	tmp = 0.0
                	if (x <= 61000000000.0)
                		tmp = Float64(Float64(0.083333333333333 + Float64(z * Float64(Float64(z * Float64(0.0007936500793651 + y)) - 0.0027777777777778))) / x);
                	else
                		tmp = Float64(Float64(1.0 / Float64(x / Float64(Float64(y - -0.0007936500793651) * z))) * z);
                	end
                	return tmp
                end
                
                function tmp_2 = code(x, y, z)
                	tmp = 0.0;
                	if (x <= 61000000000.0)
                		tmp = (0.083333333333333 + (z * ((z * (0.0007936500793651 + y)) - 0.0027777777777778))) / x;
                	else
                		tmp = (1.0 / (x / ((y - -0.0007936500793651) * z))) * z;
                	end
                	tmp_2 = tmp;
                end
                
                code[x_, y_, z_] := If[LessEqual[x, 61000000000.0], N[(N[(0.083333333333333 + N[(z * N[(N[(z * N[(0.0007936500793651 + y), $MachinePrecision]), $MachinePrecision] - 0.0027777777777778), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / x), $MachinePrecision], N[(N[(1.0 / N[(x / N[(N[(y - -0.0007936500793651), $MachinePrecision] * z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] * z), $MachinePrecision]]
                
                \begin{array}{l}
                \mathbf{if}\;x \leq 61000000000:\\
                \;\;\;\;\frac{0.083333333333333 + z \cdot \left(z \cdot \left(0.0007936500793651 + y\right) - 0.0027777777777778\right)}{x}\\
                
                \mathbf{else}:\\
                \;\;\;\;\frac{1}{\frac{x}{\left(y - -0.0007936500793651\right) \cdot z}} \cdot z\\
                
                
                \end{array}
                
                Derivation
                1. Split input into 2 regimes
                2. if x < 6.1e10

                  1. Initial program 94.2%

                    \[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
                  2. Taylor expanded in z around 0

                    \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\color{blue}{\frac{83333333333333}{1000000000000000}}}{x} \]
                  3. Step-by-step derivation
                    1. Applied rewrites57.5%

                      \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\color{blue}{0.083333333333333}}{x} \]
                    2. Step-by-step derivation
                      1. lift-+.f64N/A

                        \[\leadsto \color{blue}{\left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\frac{83333333333333}{1000000000000000}}{x}} \]
                      2. lift-/.f64N/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \color{blue}{\frac{\frac{83333333333333}{1000000000000000}}{x}} \]
                      3. add-to-fractionN/A

                        \[\leadsto \color{blue}{\frac{\left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) \cdot x + \frac{83333333333333}{1000000000000000}}{x}} \]
                      4. lower-/.f64N/A

                        \[\leadsto \color{blue}{\frac{\left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) \cdot x + \frac{83333333333333}{1000000000000000}}{x}} \]
                    3. Applied rewrites40.6%

                      \[\leadsto \color{blue}{\frac{\left(\log x \cdot \left(x - 0.5\right) - \left(x - 0.91893853320467\right)\right) \cdot x + 0.083333333333333}{x}} \]
                    4. Taylor expanded in x around 0

                      \[\leadsto \frac{\color{blue}{\frac{83333333333333}{1000000000000000} + z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} + y\right) - \frac{13888888888889}{5000000000000000}\right)}}{x} \]
                    5. Step-by-step derivation
                      1. lower-+.f64N/A

                        \[\leadsto \frac{\frac{83333333333333}{1000000000000000} + \color{blue}{z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} + y\right) - \frac{13888888888889}{5000000000000000}\right)}}{x} \]
                      2. lower-*.f64N/A

                        \[\leadsto \frac{\frac{83333333333333}{1000000000000000} + z \cdot \color{blue}{\left(z \cdot \left(\frac{7936500793651}{10000000000000000} + y\right) - \frac{13888888888889}{5000000000000000}\right)}}{x} \]
                      3. lower--.f64N/A

                        \[\leadsto \frac{\frac{83333333333333}{1000000000000000} + z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} + y\right) - \color{blue}{\frac{13888888888889}{5000000000000000}}\right)}{x} \]
                      4. lower-*.f64N/A

                        \[\leadsto \frac{\frac{83333333333333}{1000000000000000} + z \cdot \left(z \cdot \left(\frac{7936500793651}{10000000000000000} + y\right) - \frac{13888888888889}{5000000000000000}\right)}{x} \]
                      5. lower-+.f6463.7%

                        \[\leadsto \frac{0.083333333333333 + z \cdot \left(z \cdot \left(0.0007936500793651 + y\right) - 0.0027777777777778\right)}{x} \]
                    6. Applied rewrites63.7%

                      \[\leadsto \frac{\color{blue}{0.083333333333333 + z \cdot \left(z \cdot \left(0.0007936500793651 + y\right) - 0.0027777777777778\right)}}{x} \]

                    if 6.1e10 < x

                    1. Initial program 94.2%

                      \[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
                    2. Step-by-step derivation
                      1. lift-*.f64N/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot z} + \frac{83333333333333}{1000000000000000}}{x} \]
                      2. *-commutativeN/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{z \cdot \left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                      3. lift--.f64N/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{z \cdot \color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                      4. sub-flipN/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{z \cdot \color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z + \left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                      5. distribute-rgt-inN/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z + \left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                      6. fp-cancel-sign-sub-invN/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                      7. lower--.f64N/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                      8. lower-*.f64N/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z} - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                      9. lift-*.f64N/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                      10. *-commutativeN/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                      11. lower-*.f64N/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                      12. lift-+.f64N/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y + \frac{7936500793651}{10000000000000000}\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                      13. add-flipN/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                      14. lower--.f64N/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                      15. metadata-evalN/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \left(y - \color{blue}{\frac{-7936500793651}{10000000000000000}}\right)\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                      16. remove-double-negN/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)\right) \cdot z - \color{blue}{\frac{13888888888889}{5000000000000000}} \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                      17. lower-*.f6494.2%

                        \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - \color{blue}{0.0027777777777778 \cdot z}\right) + 0.083333333333333}{x} \]
                    3. Applied rewrites94.2%

                      \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\color{blue}{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - 0.0027777777777778 \cdot z\right)} + 0.083333333333333}{x} \]
                    4. Taylor expanded in z around inf

                      \[\leadsto \color{blue}{{z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
                    5. Step-by-step derivation
                      1. lower-*.f64N/A

                        \[\leadsto {z}^{2} \cdot \color{blue}{\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
                      2. lower-pow.f64N/A

                        \[\leadsto {z}^{2} \cdot \left(\color{blue}{\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x}} + \frac{y}{x}\right) \]
                      3. lower-+.f64N/A

                        \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \color{blue}{\frac{y}{x}}\right) \]
                      4. lower-*.f64N/A

                        \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{\color{blue}{y}}{x}\right) \]
                      5. lower-/.f64N/A

                        \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \]
                      6. lower-/.f6441.7%

                        \[\leadsto {z}^{2} \cdot \left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{\color{blue}{x}}\right) \]
                    6. Applied rewrites41.7%

                      \[\leadsto \color{blue}{{z}^{2} \cdot \left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
                    7. Step-by-step derivation
                      1. lift-*.f64N/A

                        \[\leadsto {z}^{2} \cdot \color{blue}{\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
                      2. *-commutativeN/A

                        \[\leadsto \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot \color{blue}{{z}^{2}} \]
                      3. lift-pow.f64N/A

                        \[\leadsto \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot {z}^{\color{blue}{2}} \]
                      4. unpow2N/A

                        \[\leadsto \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot \left(z \cdot \color{blue}{z}\right) \]
                      5. associate-*r*N/A

                        \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot \color{blue}{z} \]
                      6. lower-*.f64N/A

                        \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot \color{blue}{z} \]
                      7. lower-*.f6443.5%

                        \[\leadsto \left(\left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
                      8. lift-+.f64N/A

                        \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
                      9. lift-*.f64N/A

                        \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
                      10. lift-/.f64N/A

                        \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
                      11. mult-flip-revN/A

                        \[\leadsto \left(\left(\frac{\frac{7936500793651}{10000000000000000}}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
                      12. lift-/.f64N/A

                        \[\leadsto \left(\left(\frac{\frac{7936500793651}{10000000000000000}}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
                      13. div-add-revN/A

                        \[\leadsto \left(\frac{\frac{7936500793651}{10000000000000000} + y}{x} \cdot z\right) \cdot z \]
                      14. +-commutativeN/A

                        \[\leadsto \left(\frac{y + \frac{7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
                      15. add-flipN/A

                        \[\leadsto \left(\frac{y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)}{x} \cdot z\right) \cdot z \]
                      16. metadata-evalN/A

                        \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
                      17. lift--.f64N/A

                        \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
                      18. lower-/.f6443.5%

                        \[\leadsto \left(\frac{y - -0.0007936500793651}{x} \cdot z\right) \cdot z \]
                    8. Applied rewrites43.5%

                      \[\leadsto \left(\frac{y - -0.0007936500793651}{x} \cdot z\right) \cdot \color{blue}{z} \]
                    9. Step-by-step derivation
                      1. lift-*.f64N/A

                        \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
                      2. lift-/.f64N/A

                        \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
                      3. associate-*l/N/A

                        \[\leadsto \frac{\left(y - \frac{-7936500793651}{10000000000000000}\right) \cdot z}{x} \cdot z \]
                      4. *-commutativeN/A

                        \[\leadsto \frac{z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)}{x} \cdot z \]
                      5. lift--.f64N/A

                        \[\leadsto \frac{z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)}{x} \cdot z \]
                      6. metadata-evalN/A

                        \[\leadsto \frac{z \cdot \left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}{x} \cdot z \]
                      7. add-flipN/A

                        \[\leadsto \frac{z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)}{x} \cdot z \]
                      8. distribute-lft-outN/A

                        \[\leadsto \frac{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}{x} \cdot z \]
                      9. lift-*.f64N/A

                        \[\leadsto \frac{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}{x} \cdot z \]
                      10. lift-*.f64N/A

                        \[\leadsto \frac{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}{x} \cdot z \]
                      11. lift-+.f64N/A

                        \[\leadsto \frac{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}{x} \cdot z \]
                      12. div-flipN/A

                        \[\leadsto \frac{1}{\frac{x}{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}} \cdot z \]
                      13. lower-unsound-/.f64N/A

                        \[\leadsto \frac{1}{\frac{x}{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}} \cdot z \]
                      14. lower-unsound-/.f6443.6%

                        \[\leadsto \frac{1}{\frac{x}{z \cdot y + z \cdot 0.0007936500793651}} \cdot z \]
                      15. lift-+.f64N/A

                        \[\leadsto \frac{1}{\frac{x}{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}} \cdot z \]
                      16. lift-*.f64N/A

                        \[\leadsto \frac{1}{\frac{x}{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}} \cdot z \]
                      17. lift-*.f64N/A

                        \[\leadsto \frac{1}{\frac{x}{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}} \cdot z \]
                      18. distribute-lft-outN/A

                        \[\leadsto \frac{1}{\frac{x}{z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)}} \cdot z \]
                      19. add-flipN/A

                        \[\leadsto \frac{1}{\frac{x}{z \cdot \left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}} \cdot z \]
                      20. metadata-evalN/A

                        \[\leadsto \frac{1}{\frac{x}{z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)}} \cdot z \]
                      21. lift--.f64N/A

                        \[\leadsto \frac{1}{\frac{x}{z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)}} \cdot z \]
                      22. *-commutativeN/A

                        \[\leadsto \frac{1}{\frac{x}{\left(y - \frac{-7936500793651}{10000000000000000}\right) \cdot z}} \cdot z \]
                      23. lift-*.f6443.6%

                        \[\leadsto \frac{1}{\frac{x}{\left(y - -0.0007936500793651\right) \cdot z}} \cdot z \]
                    10. Applied rewrites43.6%

                      \[\leadsto \frac{1}{\frac{x}{\left(y - -0.0007936500793651\right) \cdot z}} \cdot z \]
                  4. Recombined 2 regimes into one program.
                  5. Add Preprocessing

                  Alternative 17: 44.4% accurate, 5.9× speedup?

                  \[\frac{\left(y - -0.0007936500793651\right) \cdot z}{x} \cdot z \]
                  (FPCore (x y z)
                    :precision binary64
                    (* (/ (* (- y -0.0007936500793651) z) x) z))
                  double code(double x, double y, double z) {
                  	return (((y - -0.0007936500793651) * z) / x) * z;
                  }
                  
                  module fmin_fmax_functions
                      implicit none
                      private
                      public fmax
                      public fmin
                  
                      interface fmax
                          module procedure fmax88
                          module procedure fmax44
                          module procedure fmax84
                          module procedure fmax48
                      end interface
                      interface fmin
                          module procedure fmin88
                          module procedure fmin44
                          module procedure fmin84
                          module procedure fmin48
                      end interface
                  contains
                      real(8) function fmax88(x, y) result (res)
                          real(8), intent (in) :: x
                          real(8), intent (in) :: y
                          res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                      end function
                      real(4) function fmax44(x, y) result (res)
                          real(4), intent (in) :: x
                          real(4), intent (in) :: y
                          res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                      end function
                      real(8) function fmax84(x, y) result(res)
                          real(8), intent (in) :: x
                          real(4), intent (in) :: y
                          res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                      end function
                      real(8) function fmax48(x, y) result(res)
                          real(4), intent (in) :: x
                          real(8), intent (in) :: y
                          res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                      end function
                      real(8) function fmin88(x, y) result (res)
                          real(8), intent (in) :: x
                          real(8), intent (in) :: y
                          res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                      end function
                      real(4) function fmin44(x, y) result (res)
                          real(4), intent (in) :: x
                          real(4), intent (in) :: y
                          res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                      end function
                      real(8) function fmin84(x, y) result(res)
                          real(8), intent (in) :: x
                          real(4), intent (in) :: y
                          res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                      end function
                      real(8) function fmin48(x, y) result(res)
                          real(4), intent (in) :: x
                          real(8), intent (in) :: y
                          res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                      end function
                  end module
                  
                  real(8) function code(x, y, z)
                  use fmin_fmax_functions
                      real(8), intent (in) :: x
                      real(8), intent (in) :: y
                      real(8), intent (in) :: z
                      code = (((y - (-0.0007936500793651d0)) * z) / x) * z
                  end function
                  
                  public static double code(double x, double y, double z) {
                  	return (((y - -0.0007936500793651) * z) / x) * z;
                  }
                  
                  def code(x, y, z):
                  	return (((y - -0.0007936500793651) * z) / x) * z
                  
                  function code(x, y, z)
                  	return Float64(Float64(Float64(Float64(y - -0.0007936500793651) * z) / x) * z)
                  end
                  
                  function tmp = code(x, y, z)
                  	tmp = (((y - -0.0007936500793651) * z) / x) * z;
                  end
                  
                  code[x_, y_, z_] := N[(N[(N[(N[(y - -0.0007936500793651), $MachinePrecision] * z), $MachinePrecision] / x), $MachinePrecision] * z), $MachinePrecision]
                  
                  \frac{\left(y - -0.0007936500793651\right) \cdot z}{x} \cdot z
                  
                  Derivation
                  1. Initial program 94.2%

                    \[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
                  2. Step-by-step derivation
                    1. lift-*.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot z} + \frac{83333333333333}{1000000000000000}}{x} \]
                    2. *-commutativeN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{z \cdot \left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                    3. lift--.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{z \cdot \color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                    4. sub-flipN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{z \cdot \color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z + \left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                    5. distribute-rgt-inN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z + \left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                    6. fp-cancel-sign-sub-invN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                    7. lower--.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                    8. lower-*.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z} - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    9. lift-*.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    10. *-commutativeN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    11. lower-*.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    12. lift-+.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y + \frac{7936500793651}{10000000000000000}\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    13. add-flipN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    14. lower--.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    15. metadata-evalN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \left(y - \color{blue}{\frac{-7936500793651}{10000000000000000}}\right)\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    16. remove-double-negN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)\right) \cdot z - \color{blue}{\frac{13888888888889}{5000000000000000}} \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    17. lower-*.f6494.2%

                      \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - \color{blue}{0.0027777777777778 \cdot z}\right) + 0.083333333333333}{x} \]
                  3. Applied rewrites94.2%

                    \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\color{blue}{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - 0.0027777777777778 \cdot z\right)} + 0.083333333333333}{x} \]
                  4. Taylor expanded in z around inf

                    \[\leadsto \color{blue}{{z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
                  5. Step-by-step derivation
                    1. lower-*.f64N/A

                      \[\leadsto {z}^{2} \cdot \color{blue}{\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
                    2. lower-pow.f64N/A

                      \[\leadsto {z}^{2} \cdot \left(\color{blue}{\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x}} + \frac{y}{x}\right) \]
                    3. lower-+.f64N/A

                      \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \color{blue}{\frac{y}{x}}\right) \]
                    4. lower-*.f64N/A

                      \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{\color{blue}{y}}{x}\right) \]
                    5. lower-/.f64N/A

                      \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \]
                    6. lower-/.f6441.7%

                      \[\leadsto {z}^{2} \cdot \left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{\color{blue}{x}}\right) \]
                  6. Applied rewrites41.7%

                    \[\leadsto \color{blue}{{z}^{2} \cdot \left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
                  7. Step-by-step derivation
                    1. lift-*.f64N/A

                      \[\leadsto {z}^{2} \cdot \color{blue}{\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
                    2. *-commutativeN/A

                      \[\leadsto \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot \color{blue}{{z}^{2}} \]
                    3. lift-pow.f64N/A

                      \[\leadsto \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot {z}^{\color{blue}{2}} \]
                    4. unpow2N/A

                      \[\leadsto \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot \left(z \cdot \color{blue}{z}\right) \]
                    5. associate-*r*N/A

                      \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot \color{blue}{z} \]
                    6. lower-*.f64N/A

                      \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot \color{blue}{z} \]
                    7. lower-*.f6443.5%

                      \[\leadsto \left(\left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
                    8. lift-+.f64N/A

                      \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
                    9. lift-*.f64N/A

                      \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
                    10. lift-/.f64N/A

                      \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
                    11. mult-flip-revN/A

                      \[\leadsto \left(\left(\frac{\frac{7936500793651}{10000000000000000}}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
                    12. lift-/.f64N/A

                      \[\leadsto \left(\left(\frac{\frac{7936500793651}{10000000000000000}}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
                    13. div-add-revN/A

                      \[\leadsto \left(\frac{\frac{7936500793651}{10000000000000000} + y}{x} \cdot z\right) \cdot z \]
                    14. +-commutativeN/A

                      \[\leadsto \left(\frac{y + \frac{7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
                    15. add-flipN/A

                      \[\leadsto \left(\frac{y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)}{x} \cdot z\right) \cdot z \]
                    16. metadata-evalN/A

                      \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
                    17. lift--.f64N/A

                      \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
                    18. lower-/.f6443.5%

                      \[\leadsto \left(\frac{y - -0.0007936500793651}{x} \cdot z\right) \cdot z \]
                  8. Applied rewrites43.5%

                    \[\leadsto \left(\frac{y - -0.0007936500793651}{x} \cdot z\right) \cdot \color{blue}{z} \]
                  9. Step-by-step derivation
                    1. lift-*.f64N/A

                      \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
                    2. lift-/.f64N/A

                      \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
                    3. associate-*l/N/A

                      \[\leadsto \frac{\left(y - \frac{-7936500793651}{10000000000000000}\right) \cdot z}{x} \cdot z \]
                    4. *-commutativeN/A

                      \[\leadsto \frac{z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)}{x} \cdot z \]
                    5. lift--.f64N/A

                      \[\leadsto \frac{z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)}{x} \cdot z \]
                    6. metadata-evalN/A

                      \[\leadsto \frac{z \cdot \left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}{x} \cdot z \]
                    7. add-flipN/A

                      \[\leadsto \frac{z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)}{x} \cdot z \]
                    8. distribute-lft-outN/A

                      \[\leadsto \frac{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}{x} \cdot z \]
                    9. lift-*.f64N/A

                      \[\leadsto \frac{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}{x} \cdot z \]
                    10. lift-*.f64N/A

                      \[\leadsto \frac{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}{x} \cdot z \]
                    11. lift-+.f64N/A

                      \[\leadsto \frac{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}{x} \cdot z \]
                    12. lower-/.f6443.6%

                      \[\leadsto \frac{z \cdot y + z \cdot 0.0007936500793651}{x} \cdot z \]
                    13. lift-+.f64N/A

                      \[\leadsto \frac{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}{x} \cdot z \]
                    14. lift-*.f64N/A

                      \[\leadsto \frac{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}{x} \cdot z \]
                    15. lift-*.f64N/A

                      \[\leadsto \frac{z \cdot y + z \cdot \frac{7936500793651}{10000000000000000}}{x} \cdot z \]
                    16. distribute-lft-outN/A

                      \[\leadsto \frac{z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)}{x} \cdot z \]
                    17. add-flipN/A

                      \[\leadsto \frac{z \cdot \left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}{x} \cdot z \]
                    18. metadata-evalN/A

                      \[\leadsto \frac{z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)}{x} \cdot z \]
                    19. lift--.f64N/A

                      \[\leadsto \frac{z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)}{x} \cdot z \]
                    20. *-commutativeN/A

                      \[\leadsto \frac{\left(y - \frac{-7936500793651}{10000000000000000}\right) \cdot z}{x} \cdot z \]
                    21. lift-*.f6443.6%

                      \[\leadsto \frac{\left(y - -0.0007936500793651\right) \cdot z}{x} \cdot z \]
                  10. Applied rewrites43.6%

                    \[\leadsto \frac{\left(y - -0.0007936500793651\right) \cdot z}{x} \cdot z \]
                  11. Add Preprocessing

                  Alternative 18: 43.6% accurate, 5.9× speedup?

                  \[\left(y - -0.0007936500793651\right) \cdot \left(z \cdot \frac{z}{x}\right) \]
                  (FPCore (x y z)
                    :precision binary64
                    (* (- y -0.0007936500793651) (* z (/ z x))))
                  double code(double x, double y, double z) {
                  	return (y - -0.0007936500793651) * (z * (z / x));
                  }
                  
                  module fmin_fmax_functions
                      implicit none
                      private
                      public fmax
                      public fmin
                  
                      interface fmax
                          module procedure fmax88
                          module procedure fmax44
                          module procedure fmax84
                          module procedure fmax48
                      end interface
                      interface fmin
                          module procedure fmin88
                          module procedure fmin44
                          module procedure fmin84
                          module procedure fmin48
                      end interface
                  contains
                      real(8) function fmax88(x, y) result (res)
                          real(8), intent (in) :: x
                          real(8), intent (in) :: y
                          res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                      end function
                      real(4) function fmax44(x, y) result (res)
                          real(4), intent (in) :: x
                          real(4), intent (in) :: y
                          res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                      end function
                      real(8) function fmax84(x, y) result(res)
                          real(8), intent (in) :: x
                          real(4), intent (in) :: y
                          res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                      end function
                      real(8) function fmax48(x, y) result(res)
                          real(4), intent (in) :: x
                          real(8), intent (in) :: y
                          res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                      end function
                      real(8) function fmin88(x, y) result (res)
                          real(8), intent (in) :: x
                          real(8), intent (in) :: y
                          res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                      end function
                      real(4) function fmin44(x, y) result (res)
                          real(4), intent (in) :: x
                          real(4), intent (in) :: y
                          res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                      end function
                      real(8) function fmin84(x, y) result(res)
                          real(8), intent (in) :: x
                          real(4), intent (in) :: y
                          res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                      end function
                      real(8) function fmin48(x, y) result(res)
                          real(4), intent (in) :: x
                          real(8), intent (in) :: y
                          res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                      end function
                  end module
                  
                  real(8) function code(x, y, z)
                  use fmin_fmax_functions
                      real(8), intent (in) :: x
                      real(8), intent (in) :: y
                      real(8), intent (in) :: z
                      code = (y - (-0.0007936500793651d0)) * (z * (z / x))
                  end function
                  
                  public static double code(double x, double y, double z) {
                  	return (y - -0.0007936500793651) * (z * (z / x));
                  }
                  
                  def code(x, y, z):
                  	return (y - -0.0007936500793651) * (z * (z / x))
                  
                  function code(x, y, z)
                  	return Float64(Float64(y - -0.0007936500793651) * Float64(z * Float64(z / x)))
                  end
                  
                  function tmp = code(x, y, z)
                  	tmp = (y - -0.0007936500793651) * (z * (z / x));
                  end
                  
                  code[x_, y_, z_] := N[(N[(y - -0.0007936500793651), $MachinePrecision] * N[(z * N[(z / x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
                  
                  \left(y - -0.0007936500793651\right) \cdot \left(z \cdot \frac{z}{x}\right)
                  
                  Derivation
                  1. Initial program 94.2%

                    \[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
                  2. Step-by-step derivation
                    1. lift-*.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot z} + \frac{83333333333333}{1000000000000000}}{x} \]
                    2. *-commutativeN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{z \cdot \left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                    3. lift--.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{z \cdot \color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                    4. sub-flipN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{z \cdot \color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z + \left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                    5. distribute-rgt-inN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z + \left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                    6. fp-cancel-sign-sub-invN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                    7. lower--.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                    8. lower-*.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z} - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    9. lift-*.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    10. *-commutativeN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    11. lower-*.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    12. lift-+.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y + \frac{7936500793651}{10000000000000000}\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    13. add-flipN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    14. lower--.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    15. metadata-evalN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \left(y - \color{blue}{\frac{-7936500793651}{10000000000000000}}\right)\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    16. remove-double-negN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)\right) \cdot z - \color{blue}{\frac{13888888888889}{5000000000000000}} \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    17. lower-*.f6494.2%

                      \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - \color{blue}{0.0027777777777778 \cdot z}\right) + 0.083333333333333}{x} \]
                  3. Applied rewrites94.2%

                    \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\color{blue}{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - 0.0027777777777778 \cdot z\right)} + 0.083333333333333}{x} \]
                  4. Taylor expanded in z around inf

                    \[\leadsto \color{blue}{{z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
                  5. Step-by-step derivation
                    1. lower-*.f64N/A

                      \[\leadsto {z}^{2} \cdot \color{blue}{\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
                    2. lower-pow.f64N/A

                      \[\leadsto {z}^{2} \cdot \left(\color{blue}{\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x}} + \frac{y}{x}\right) \]
                    3. lower-+.f64N/A

                      \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \color{blue}{\frac{y}{x}}\right) \]
                    4. lower-*.f64N/A

                      \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{\color{blue}{y}}{x}\right) \]
                    5. lower-/.f64N/A

                      \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \]
                    6. lower-/.f6441.7%

                      \[\leadsto {z}^{2} \cdot \left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{\color{blue}{x}}\right) \]
                  6. Applied rewrites41.7%

                    \[\leadsto \color{blue}{{z}^{2} \cdot \left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
                  7. Step-by-step derivation
                    1. lift-*.f64N/A

                      \[\leadsto {z}^{2} \cdot \color{blue}{\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
                    2. *-commutativeN/A

                      \[\leadsto \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot \color{blue}{{z}^{2}} \]
                    3. lift-pow.f64N/A

                      \[\leadsto \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot {z}^{\color{blue}{2}} \]
                    4. unpow2N/A

                      \[\leadsto \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot \left(z \cdot \color{blue}{z}\right) \]
                    5. associate-*r*N/A

                      \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot \color{blue}{z} \]
                    6. lower-*.f64N/A

                      \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot \color{blue}{z} \]
                    7. lower-*.f6443.5%

                      \[\leadsto \left(\left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
                    8. lift-+.f64N/A

                      \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
                    9. lift-*.f64N/A

                      \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
                    10. lift-/.f64N/A

                      \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
                    11. mult-flip-revN/A

                      \[\leadsto \left(\left(\frac{\frac{7936500793651}{10000000000000000}}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
                    12. lift-/.f64N/A

                      \[\leadsto \left(\left(\frac{\frac{7936500793651}{10000000000000000}}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
                    13. div-add-revN/A

                      \[\leadsto \left(\frac{\frac{7936500793651}{10000000000000000} + y}{x} \cdot z\right) \cdot z \]
                    14. +-commutativeN/A

                      \[\leadsto \left(\frac{y + \frac{7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
                    15. add-flipN/A

                      \[\leadsto \left(\frac{y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)}{x} \cdot z\right) \cdot z \]
                    16. metadata-evalN/A

                      \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
                    17. lift--.f64N/A

                      \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
                    18. lower-/.f6443.5%

                      \[\leadsto \left(\frac{y - -0.0007936500793651}{x} \cdot z\right) \cdot z \]
                  8. Applied rewrites43.5%

                    \[\leadsto \left(\frac{y - -0.0007936500793651}{x} \cdot z\right) \cdot \color{blue}{z} \]
                  9. Step-by-step derivation
                    1. lift-*.f64N/A

                      \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot \color{blue}{z} \]
                    2. lift-*.f64N/A

                      \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
                    3. associate-*l*N/A

                      \[\leadsto \frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot \color{blue}{\left(z \cdot z\right)} \]
                    4. lift-/.f64N/A

                      \[\leadsto \frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot \left(\color{blue}{z} \cdot z\right) \]
                    5. mult-flipN/A

                      \[\leadsto \left(\left(y - \frac{-7936500793651}{10000000000000000}\right) \cdot \frac{1}{x}\right) \cdot \left(\color{blue}{z} \cdot z\right) \]
                    6. lift-/.f64N/A

                      \[\leadsto \left(\left(y - \frac{-7936500793651}{10000000000000000}\right) \cdot \frac{1}{x}\right) \cdot \left(z \cdot z\right) \]
                    7. unpow2N/A

                      \[\leadsto \left(\left(y - \frac{-7936500793651}{10000000000000000}\right) \cdot \frac{1}{x}\right) \cdot {z}^{\color{blue}{2}} \]
                    8. lift-pow.f64N/A

                      \[\leadsto \left(\left(y - \frac{-7936500793651}{10000000000000000}\right) \cdot \frac{1}{x}\right) \cdot {z}^{\color{blue}{2}} \]
                    9. associate-*l*N/A

                      \[\leadsto \left(y - \frac{-7936500793651}{10000000000000000}\right) \cdot \color{blue}{\left(\frac{1}{x} \cdot {z}^{2}\right)} \]
                    10. *-commutativeN/A

                      \[\leadsto \left(y - \frac{-7936500793651}{10000000000000000}\right) \cdot \left({z}^{2} \cdot \color{blue}{\frac{1}{x}}\right) \]
                    11. lift-/.f64N/A

                      \[\leadsto \left(y - \frac{-7936500793651}{10000000000000000}\right) \cdot \left({z}^{2} \cdot \frac{1}{\color{blue}{x}}\right) \]
                    12. mult-flipN/A

                      \[\leadsto \left(y - \frac{-7936500793651}{10000000000000000}\right) \cdot \frac{{z}^{2}}{\color{blue}{x}} \]
                    13. lift-/.f64N/A

                      \[\leadsto \left(y - \frac{-7936500793651}{10000000000000000}\right) \cdot \frac{{z}^{2}}{\color{blue}{x}} \]
                    14. lower-*.f6442.8%

                      \[\leadsto \left(y - -0.0007936500793651\right) \cdot \color{blue}{\frac{{z}^{2}}{x}} \]
                    15. lift-/.f64N/A

                      \[\leadsto \left(y - \frac{-7936500793651}{10000000000000000}\right) \cdot \frac{{z}^{2}}{\color{blue}{x}} \]
                    16. lift-pow.f64N/A

                      \[\leadsto \left(y - \frac{-7936500793651}{10000000000000000}\right) \cdot \frac{{z}^{2}}{x} \]
                    17. unpow2N/A

                      \[\leadsto \left(y - \frac{-7936500793651}{10000000000000000}\right) \cdot \frac{z \cdot z}{x} \]
                    18. associate-/l*N/A

                      \[\leadsto \left(y - \frac{-7936500793651}{10000000000000000}\right) \cdot \left(z \cdot \color{blue}{\frac{z}{x}}\right) \]
                    19. lift-/.f64N/A

                      \[\leadsto \left(y - \frac{-7936500793651}{10000000000000000}\right) \cdot \left(z \cdot \frac{z}{\color{blue}{x}}\right) \]
                    20. lower-*.f6444.4%

                      \[\leadsto \left(y - -0.0007936500793651\right) \cdot \left(z \cdot \color{blue}{\frac{z}{x}}\right) \]
                  10. Applied rewrites44.4%

                    \[\leadsto \left(y - -0.0007936500793651\right) \cdot \color{blue}{\left(z \cdot \frac{z}{x}\right)} \]
                  11. Add Preprocessing

                  Alternative 19: 43.5% accurate, 3.7× speedup?

                  \[\begin{array}{l} t_0 := \frac{y \cdot z}{x} \cdot z\\ \mathbf{if}\;y + 0.0007936500793651 \leq -2:\\ \;\;\;\;t\_0\\ \mathbf{elif}\;y + 0.0007936500793651 \leq 0.000794:\\ \;\;\;\;\left(z \cdot \frac{z}{x}\right) \cdot 0.0007936500793651\\ \mathbf{else}:\\ \;\;\;\;t\_0\\ \end{array} \]
                  (FPCore (x y z)
                    :precision binary64
                    (let* ((t_0 (* (/ (* y z) x) z)))
                    (if (<= (+ y 0.0007936500793651) -2.0)
                      t_0
                      (if (<= (+ y 0.0007936500793651) 0.000794)
                        (* (* z (/ z x)) 0.0007936500793651)
                        t_0))))
                  double code(double x, double y, double z) {
                  	double t_0 = ((y * z) / x) * z;
                  	double tmp;
                  	if ((y + 0.0007936500793651) <= -2.0) {
                  		tmp = t_0;
                  	} else if ((y + 0.0007936500793651) <= 0.000794) {
                  		tmp = (z * (z / x)) * 0.0007936500793651;
                  	} else {
                  		tmp = t_0;
                  	}
                  	return tmp;
                  }
                  
                  module fmin_fmax_functions
                      implicit none
                      private
                      public fmax
                      public fmin
                  
                      interface fmax
                          module procedure fmax88
                          module procedure fmax44
                          module procedure fmax84
                          module procedure fmax48
                      end interface
                      interface fmin
                          module procedure fmin88
                          module procedure fmin44
                          module procedure fmin84
                          module procedure fmin48
                      end interface
                  contains
                      real(8) function fmax88(x, y) result (res)
                          real(8), intent (in) :: x
                          real(8), intent (in) :: y
                          res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                      end function
                      real(4) function fmax44(x, y) result (res)
                          real(4), intent (in) :: x
                          real(4), intent (in) :: y
                          res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                      end function
                      real(8) function fmax84(x, y) result(res)
                          real(8), intent (in) :: x
                          real(4), intent (in) :: y
                          res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                      end function
                      real(8) function fmax48(x, y) result(res)
                          real(4), intent (in) :: x
                          real(8), intent (in) :: y
                          res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                      end function
                      real(8) function fmin88(x, y) result (res)
                          real(8), intent (in) :: x
                          real(8), intent (in) :: y
                          res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                      end function
                      real(4) function fmin44(x, y) result (res)
                          real(4), intent (in) :: x
                          real(4), intent (in) :: y
                          res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                      end function
                      real(8) function fmin84(x, y) result(res)
                          real(8), intent (in) :: x
                          real(4), intent (in) :: y
                          res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                      end function
                      real(8) function fmin48(x, y) result(res)
                          real(4), intent (in) :: x
                          real(8), intent (in) :: y
                          res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                      end function
                  end module
                  
                  real(8) function code(x, y, z)
                  use fmin_fmax_functions
                      real(8), intent (in) :: x
                      real(8), intent (in) :: y
                      real(8), intent (in) :: z
                      real(8) :: t_0
                      real(8) :: tmp
                      t_0 = ((y * z) / x) * z
                      if ((y + 0.0007936500793651d0) <= (-2.0d0)) then
                          tmp = t_0
                      else if ((y + 0.0007936500793651d0) <= 0.000794d0) then
                          tmp = (z * (z / x)) * 0.0007936500793651d0
                      else
                          tmp = t_0
                      end if
                      code = tmp
                  end function
                  
                  public static double code(double x, double y, double z) {
                  	double t_0 = ((y * z) / x) * z;
                  	double tmp;
                  	if ((y + 0.0007936500793651) <= -2.0) {
                  		tmp = t_0;
                  	} else if ((y + 0.0007936500793651) <= 0.000794) {
                  		tmp = (z * (z / x)) * 0.0007936500793651;
                  	} else {
                  		tmp = t_0;
                  	}
                  	return tmp;
                  }
                  
                  def code(x, y, z):
                  	t_0 = ((y * z) / x) * z
                  	tmp = 0
                  	if (y + 0.0007936500793651) <= -2.0:
                  		tmp = t_0
                  	elif (y + 0.0007936500793651) <= 0.000794:
                  		tmp = (z * (z / x)) * 0.0007936500793651
                  	else:
                  		tmp = t_0
                  	return tmp
                  
                  function code(x, y, z)
                  	t_0 = Float64(Float64(Float64(y * z) / x) * z)
                  	tmp = 0.0
                  	if (Float64(y + 0.0007936500793651) <= -2.0)
                  		tmp = t_0;
                  	elseif (Float64(y + 0.0007936500793651) <= 0.000794)
                  		tmp = Float64(Float64(z * Float64(z / x)) * 0.0007936500793651);
                  	else
                  		tmp = t_0;
                  	end
                  	return tmp
                  end
                  
                  function tmp_2 = code(x, y, z)
                  	t_0 = ((y * z) / x) * z;
                  	tmp = 0.0;
                  	if ((y + 0.0007936500793651) <= -2.0)
                  		tmp = t_0;
                  	elseif ((y + 0.0007936500793651) <= 0.000794)
                  		tmp = (z * (z / x)) * 0.0007936500793651;
                  	else
                  		tmp = t_0;
                  	end
                  	tmp_2 = tmp;
                  end
                  
                  code[x_, y_, z_] := Block[{t$95$0 = N[(N[(N[(y * z), $MachinePrecision] / x), $MachinePrecision] * z), $MachinePrecision]}, If[LessEqual[N[(y + 0.0007936500793651), $MachinePrecision], -2.0], t$95$0, If[LessEqual[N[(y + 0.0007936500793651), $MachinePrecision], 0.000794], N[(N[(z * N[(z / x), $MachinePrecision]), $MachinePrecision] * 0.0007936500793651), $MachinePrecision], t$95$0]]]
                  
                  \begin{array}{l}
                  t_0 := \frac{y \cdot z}{x} \cdot z\\
                  \mathbf{if}\;y + 0.0007936500793651 \leq -2:\\
                  \;\;\;\;t\_0\\
                  
                  \mathbf{elif}\;y + 0.0007936500793651 \leq 0.000794:\\
                  \;\;\;\;\left(z \cdot \frac{z}{x}\right) \cdot 0.0007936500793651\\
                  
                  \mathbf{else}:\\
                  \;\;\;\;t\_0\\
                  
                  
                  \end{array}
                  
                  Derivation
                  1. Split input into 2 regimes
                  2. if (+.f64 y #s(literal 7936500793651/10000000000000000 binary64)) < -2 or 7.94e-4 < (+.f64 y #s(literal 7936500793651/10000000000000000 binary64))

                    1. Initial program 94.2%

                      \[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
                    2. Step-by-step derivation
                      1. lift-*.f64N/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot z} + \frac{83333333333333}{1000000000000000}}{x} \]
                      2. *-commutativeN/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{z \cdot \left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                      3. lift--.f64N/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{z \cdot \color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                      4. sub-flipN/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{z \cdot \color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z + \left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                      5. distribute-rgt-inN/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z + \left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                      6. fp-cancel-sign-sub-invN/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                      7. lower--.f64N/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                      8. lower-*.f64N/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z} - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                      9. lift-*.f64N/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                      10. *-commutativeN/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                      11. lower-*.f64N/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                      12. lift-+.f64N/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y + \frac{7936500793651}{10000000000000000}\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                      13. add-flipN/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                      14. lower--.f64N/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                      15. metadata-evalN/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \left(y - \color{blue}{\frac{-7936500793651}{10000000000000000}}\right)\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                      16. remove-double-negN/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)\right) \cdot z - \color{blue}{\frac{13888888888889}{5000000000000000}} \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                      17. lower-*.f6494.2%

                        \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - \color{blue}{0.0027777777777778 \cdot z}\right) + 0.083333333333333}{x} \]
                    3. Applied rewrites94.2%

                      \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\color{blue}{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - 0.0027777777777778 \cdot z\right)} + 0.083333333333333}{x} \]
                    4. Taylor expanded in z around inf

                      \[\leadsto \color{blue}{{z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
                    5. Step-by-step derivation
                      1. lower-*.f64N/A

                        \[\leadsto {z}^{2} \cdot \color{blue}{\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
                      2. lower-pow.f64N/A

                        \[\leadsto {z}^{2} \cdot \left(\color{blue}{\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x}} + \frac{y}{x}\right) \]
                      3. lower-+.f64N/A

                        \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \color{blue}{\frac{y}{x}}\right) \]
                      4. lower-*.f64N/A

                        \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{\color{blue}{y}}{x}\right) \]
                      5. lower-/.f64N/A

                        \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \]
                      6. lower-/.f6441.7%

                        \[\leadsto {z}^{2} \cdot \left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{\color{blue}{x}}\right) \]
                    6. Applied rewrites41.7%

                      \[\leadsto \color{blue}{{z}^{2} \cdot \left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
                    7. Step-by-step derivation
                      1. lift-*.f64N/A

                        \[\leadsto {z}^{2} \cdot \color{blue}{\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
                      2. *-commutativeN/A

                        \[\leadsto \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot \color{blue}{{z}^{2}} \]
                      3. lift-pow.f64N/A

                        \[\leadsto \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot {z}^{\color{blue}{2}} \]
                      4. unpow2N/A

                        \[\leadsto \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot \left(z \cdot \color{blue}{z}\right) \]
                      5. associate-*r*N/A

                        \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot \color{blue}{z} \]
                      6. lower-*.f64N/A

                        \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot \color{blue}{z} \]
                      7. lower-*.f6443.5%

                        \[\leadsto \left(\left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
                      8. lift-+.f64N/A

                        \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
                      9. lift-*.f64N/A

                        \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
                      10. lift-/.f64N/A

                        \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
                      11. mult-flip-revN/A

                        \[\leadsto \left(\left(\frac{\frac{7936500793651}{10000000000000000}}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
                      12. lift-/.f64N/A

                        \[\leadsto \left(\left(\frac{\frac{7936500793651}{10000000000000000}}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
                      13. div-add-revN/A

                        \[\leadsto \left(\frac{\frac{7936500793651}{10000000000000000} + y}{x} \cdot z\right) \cdot z \]
                      14. +-commutativeN/A

                        \[\leadsto \left(\frac{y + \frac{7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
                      15. add-flipN/A

                        \[\leadsto \left(\frac{y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)}{x} \cdot z\right) \cdot z \]
                      16. metadata-evalN/A

                        \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
                      17. lift--.f64N/A

                        \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
                      18. lower-/.f6443.5%

                        \[\leadsto \left(\frac{y - -0.0007936500793651}{x} \cdot z\right) \cdot z \]
                    8. Applied rewrites43.5%

                      \[\leadsto \left(\frac{y - -0.0007936500793651}{x} \cdot z\right) \cdot \color{blue}{z} \]
                    9. Taylor expanded in y around inf

                      \[\leadsto \frac{y \cdot z}{x} \cdot z \]
                    10. Step-by-step derivation
                      1. lower-/.f64N/A

                        \[\leadsto \frac{y \cdot z}{x} \cdot z \]
                      2. lower-*.f6429.7%

                        \[\leadsto \frac{y \cdot z}{x} \cdot z \]
                    11. Applied rewrites29.7%

                      \[\leadsto \frac{y \cdot z}{x} \cdot z \]

                    if -2 < (+.f64 y #s(literal 7936500793651/10000000000000000 binary64)) < 7.94e-4

                    1. Initial program 94.2%

                      \[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
                    2. Step-by-step derivation
                      1. lift-*.f64N/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot z} + \frac{83333333333333}{1000000000000000}}{x} \]
                      2. *-commutativeN/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{z \cdot \left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                      3. lift--.f64N/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{z \cdot \color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                      4. sub-flipN/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{z \cdot \color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z + \left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                      5. distribute-rgt-inN/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z + \left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                      6. fp-cancel-sign-sub-invN/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                      7. lower--.f64N/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                      8. lower-*.f64N/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z} - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                      9. lift-*.f64N/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                      10. *-commutativeN/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                      11. lower-*.f64N/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                      12. lift-+.f64N/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y + \frac{7936500793651}{10000000000000000}\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                      13. add-flipN/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                      14. lower--.f64N/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                      15. metadata-evalN/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \left(y - \color{blue}{\frac{-7936500793651}{10000000000000000}}\right)\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                      16. remove-double-negN/A

                        \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)\right) \cdot z - \color{blue}{\frac{13888888888889}{5000000000000000}} \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                      17. lower-*.f6494.2%

                        \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - \color{blue}{0.0027777777777778 \cdot z}\right) + 0.083333333333333}{x} \]
                    3. Applied rewrites94.2%

                      \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\color{blue}{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - 0.0027777777777778 \cdot z\right)} + 0.083333333333333}{x} \]
                    4. Taylor expanded in z around inf

                      \[\leadsto \color{blue}{{z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
                    5. Step-by-step derivation
                      1. lower-*.f64N/A

                        \[\leadsto {z}^{2} \cdot \color{blue}{\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
                      2. lower-pow.f64N/A

                        \[\leadsto {z}^{2} \cdot \left(\color{blue}{\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x}} + \frac{y}{x}\right) \]
                      3. lower-+.f64N/A

                        \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \color{blue}{\frac{y}{x}}\right) \]
                      4. lower-*.f64N/A

                        \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{\color{blue}{y}}{x}\right) \]
                      5. lower-/.f64N/A

                        \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \]
                      6. lower-/.f6441.7%

                        \[\leadsto {z}^{2} \cdot \left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{\color{blue}{x}}\right) \]
                    6. Applied rewrites41.7%

                      \[\leadsto \color{blue}{{z}^{2} \cdot \left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
                    7. Taylor expanded in y around 0

                      \[\leadsto \frac{7936500793651}{10000000000000000} \cdot \color{blue}{\frac{{z}^{2}}{x}} \]
                    8. Step-by-step derivation
                      1. lower-*.f64N/A

                        \[\leadsto \frac{7936500793651}{10000000000000000} \cdot \frac{{z}^{2}}{\color{blue}{x}} \]
                      2. lower-/.f64N/A

                        \[\leadsto \frac{7936500793651}{10000000000000000} \cdot \frac{{z}^{2}}{x} \]
                      3. lower-pow.f6425.8%

                        \[\leadsto 0.0007936500793651 \cdot \frac{{z}^{2}}{x} \]
                    9. Applied rewrites25.8%

                      \[\leadsto 0.0007936500793651 \cdot \color{blue}{\frac{{z}^{2}}{x}} \]
                    10. Step-by-step derivation
                      1. lift-*.f64N/A

                        \[\leadsto \frac{7936500793651}{10000000000000000} \cdot \frac{{z}^{2}}{\color{blue}{x}} \]
                      2. *-commutativeN/A

                        \[\leadsto \frac{{z}^{2}}{x} \cdot \frac{7936500793651}{10000000000000000} \]
                      3. lower-*.f6425.8%

                        \[\leadsto \frac{{z}^{2}}{x} \cdot 0.0007936500793651 \]
                      4. lift-/.f64N/A

                        \[\leadsto \frac{{z}^{2}}{x} \cdot \frac{7936500793651}{10000000000000000} \]
                      5. lift-pow.f64N/A

                        \[\leadsto \frac{{z}^{2}}{x} \cdot \frac{7936500793651}{10000000000000000} \]
                      6. unpow2N/A

                        \[\leadsto \frac{z \cdot z}{x} \cdot \frac{7936500793651}{10000000000000000} \]
                      7. associate-/l*N/A

                        \[\leadsto \left(z \cdot \frac{z}{x}\right) \cdot \frac{7936500793651}{10000000000000000} \]
                      8. lift-/.f64N/A

                        \[\leadsto \left(z \cdot \frac{z}{x}\right) \cdot \frac{7936500793651}{10000000000000000} \]
                      9. lower-*.f6426.2%

                        \[\leadsto \left(z \cdot \frac{z}{x}\right) \cdot 0.0007936500793651 \]
                    11. Applied rewrites26.2%

                      \[\leadsto \left(z \cdot \frac{z}{x}\right) \cdot 0.0007936500793651 \]
                  3. Recombined 2 regimes into one program.
                  4. Add Preprocessing

                  Alternative 20: 43.3% accurate, 5.9× speedup?

                  \[\left(\frac{y - -0.0007936500793651}{x} \cdot z\right) \cdot z \]
                  (FPCore (x y z)
                    :precision binary64
                    (* (* (/ (- y -0.0007936500793651) x) z) z))
                  double code(double x, double y, double z) {
                  	return (((y - -0.0007936500793651) / x) * z) * z;
                  }
                  
                  module fmin_fmax_functions
                      implicit none
                      private
                      public fmax
                      public fmin
                  
                      interface fmax
                          module procedure fmax88
                          module procedure fmax44
                          module procedure fmax84
                          module procedure fmax48
                      end interface
                      interface fmin
                          module procedure fmin88
                          module procedure fmin44
                          module procedure fmin84
                          module procedure fmin48
                      end interface
                  contains
                      real(8) function fmax88(x, y) result (res)
                          real(8), intent (in) :: x
                          real(8), intent (in) :: y
                          res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                      end function
                      real(4) function fmax44(x, y) result (res)
                          real(4), intent (in) :: x
                          real(4), intent (in) :: y
                          res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                      end function
                      real(8) function fmax84(x, y) result(res)
                          real(8), intent (in) :: x
                          real(4), intent (in) :: y
                          res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                      end function
                      real(8) function fmax48(x, y) result(res)
                          real(4), intent (in) :: x
                          real(8), intent (in) :: y
                          res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                      end function
                      real(8) function fmin88(x, y) result (res)
                          real(8), intent (in) :: x
                          real(8), intent (in) :: y
                          res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                      end function
                      real(4) function fmin44(x, y) result (res)
                          real(4), intent (in) :: x
                          real(4), intent (in) :: y
                          res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                      end function
                      real(8) function fmin84(x, y) result(res)
                          real(8), intent (in) :: x
                          real(4), intent (in) :: y
                          res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                      end function
                      real(8) function fmin48(x, y) result(res)
                          real(4), intent (in) :: x
                          real(8), intent (in) :: y
                          res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                      end function
                  end module
                  
                  real(8) function code(x, y, z)
                  use fmin_fmax_functions
                      real(8), intent (in) :: x
                      real(8), intent (in) :: y
                      real(8), intent (in) :: z
                      code = (((y - (-0.0007936500793651d0)) / x) * z) * z
                  end function
                  
                  public static double code(double x, double y, double z) {
                  	return (((y - -0.0007936500793651) / x) * z) * z;
                  }
                  
                  def code(x, y, z):
                  	return (((y - -0.0007936500793651) / x) * z) * z
                  
                  function code(x, y, z)
                  	return Float64(Float64(Float64(Float64(y - -0.0007936500793651) / x) * z) * z)
                  end
                  
                  function tmp = code(x, y, z)
                  	tmp = (((y - -0.0007936500793651) / x) * z) * z;
                  end
                  
                  code[x_, y_, z_] := N[(N[(N[(N[(y - -0.0007936500793651), $MachinePrecision] / x), $MachinePrecision] * z), $MachinePrecision] * z), $MachinePrecision]
                  
                  \left(\frac{y - -0.0007936500793651}{x} \cdot z\right) \cdot z
                  
                  Derivation
                  1. Initial program 94.2%

                    \[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
                  2. Step-by-step derivation
                    1. lift-*.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot z} + \frac{83333333333333}{1000000000000000}}{x} \]
                    2. *-commutativeN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{z \cdot \left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                    3. lift--.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{z \cdot \color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                    4. sub-flipN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{z \cdot \color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z + \left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                    5. distribute-rgt-inN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z + \left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                    6. fp-cancel-sign-sub-invN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                    7. lower--.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                    8. lower-*.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z} - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    9. lift-*.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    10. *-commutativeN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    11. lower-*.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    12. lift-+.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y + \frac{7936500793651}{10000000000000000}\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    13. add-flipN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    14. lower--.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    15. metadata-evalN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \left(y - \color{blue}{\frac{-7936500793651}{10000000000000000}}\right)\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    16. remove-double-negN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)\right) \cdot z - \color{blue}{\frac{13888888888889}{5000000000000000}} \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    17. lower-*.f6494.2%

                      \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - \color{blue}{0.0027777777777778 \cdot z}\right) + 0.083333333333333}{x} \]
                  3. Applied rewrites94.2%

                    \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\color{blue}{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - 0.0027777777777778 \cdot z\right)} + 0.083333333333333}{x} \]
                  4. Taylor expanded in z around inf

                    \[\leadsto \color{blue}{{z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
                  5. Step-by-step derivation
                    1. lower-*.f64N/A

                      \[\leadsto {z}^{2} \cdot \color{blue}{\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
                    2. lower-pow.f64N/A

                      \[\leadsto {z}^{2} \cdot \left(\color{blue}{\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x}} + \frac{y}{x}\right) \]
                    3. lower-+.f64N/A

                      \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \color{blue}{\frac{y}{x}}\right) \]
                    4. lower-*.f64N/A

                      \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{\color{blue}{y}}{x}\right) \]
                    5. lower-/.f64N/A

                      \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \]
                    6. lower-/.f6441.7%

                      \[\leadsto {z}^{2} \cdot \left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{\color{blue}{x}}\right) \]
                  6. Applied rewrites41.7%

                    \[\leadsto \color{blue}{{z}^{2} \cdot \left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
                  7. Step-by-step derivation
                    1. lift-*.f64N/A

                      \[\leadsto {z}^{2} \cdot \color{blue}{\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
                    2. *-commutativeN/A

                      \[\leadsto \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot \color{blue}{{z}^{2}} \]
                    3. lift-pow.f64N/A

                      \[\leadsto \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot {z}^{\color{blue}{2}} \]
                    4. unpow2N/A

                      \[\leadsto \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot \left(z \cdot \color{blue}{z}\right) \]
                    5. associate-*r*N/A

                      \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot \color{blue}{z} \]
                    6. lower-*.f64N/A

                      \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot \color{blue}{z} \]
                    7. lower-*.f6443.5%

                      \[\leadsto \left(\left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
                    8. lift-+.f64N/A

                      \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
                    9. lift-*.f64N/A

                      \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
                    10. lift-/.f64N/A

                      \[\leadsto \left(\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
                    11. mult-flip-revN/A

                      \[\leadsto \left(\left(\frac{\frac{7936500793651}{10000000000000000}}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
                    12. lift-/.f64N/A

                      \[\leadsto \left(\left(\frac{\frac{7936500793651}{10000000000000000}}{x} + \frac{y}{x}\right) \cdot z\right) \cdot z \]
                    13. div-add-revN/A

                      \[\leadsto \left(\frac{\frac{7936500793651}{10000000000000000} + y}{x} \cdot z\right) \cdot z \]
                    14. +-commutativeN/A

                      \[\leadsto \left(\frac{y + \frac{7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
                    15. add-flipN/A

                      \[\leadsto \left(\frac{y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)}{x} \cdot z\right) \cdot z \]
                    16. metadata-evalN/A

                      \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
                    17. lift--.f64N/A

                      \[\leadsto \left(\frac{y - \frac{-7936500793651}{10000000000000000}}{x} \cdot z\right) \cdot z \]
                    18. lower-/.f6443.5%

                      \[\leadsto \left(\frac{y - -0.0007936500793651}{x} \cdot z\right) \cdot z \]
                  8. Applied rewrites43.5%

                    \[\leadsto \left(\frac{y - -0.0007936500793651}{x} \cdot z\right) \cdot \color{blue}{z} \]
                  9. Add Preprocessing

                  Alternative 21: 26.2% accurate, 6.7× speedup?

                  \[\left(z \cdot \frac{z}{x}\right) \cdot 0.0007936500793651 \]
                  (FPCore (x y z)
                    :precision binary64
                    (* (* z (/ z x)) 0.0007936500793651))
                  double code(double x, double y, double z) {
                  	return (z * (z / x)) * 0.0007936500793651;
                  }
                  
                  module fmin_fmax_functions
                      implicit none
                      private
                      public fmax
                      public fmin
                  
                      interface fmax
                          module procedure fmax88
                          module procedure fmax44
                          module procedure fmax84
                          module procedure fmax48
                      end interface
                      interface fmin
                          module procedure fmin88
                          module procedure fmin44
                          module procedure fmin84
                          module procedure fmin48
                      end interface
                  contains
                      real(8) function fmax88(x, y) result (res)
                          real(8), intent (in) :: x
                          real(8), intent (in) :: y
                          res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                      end function
                      real(4) function fmax44(x, y) result (res)
                          real(4), intent (in) :: x
                          real(4), intent (in) :: y
                          res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                      end function
                      real(8) function fmax84(x, y) result(res)
                          real(8), intent (in) :: x
                          real(4), intent (in) :: y
                          res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                      end function
                      real(8) function fmax48(x, y) result(res)
                          real(4), intent (in) :: x
                          real(8), intent (in) :: y
                          res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                      end function
                      real(8) function fmin88(x, y) result (res)
                          real(8), intent (in) :: x
                          real(8), intent (in) :: y
                          res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                      end function
                      real(4) function fmin44(x, y) result (res)
                          real(4), intent (in) :: x
                          real(4), intent (in) :: y
                          res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                      end function
                      real(8) function fmin84(x, y) result(res)
                          real(8), intent (in) :: x
                          real(4), intent (in) :: y
                          res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                      end function
                      real(8) function fmin48(x, y) result(res)
                          real(4), intent (in) :: x
                          real(8), intent (in) :: y
                          res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                      end function
                  end module
                  
                  real(8) function code(x, y, z)
                  use fmin_fmax_functions
                      real(8), intent (in) :: x
                      real(8), intent (in) :: y
                      real(8), intent (in) :: z
                      code = (z * (z / x)) * 0.0007936500793651d0
                  end function
                  
                  public static double code(double x, double y, double z) {
                  	return (z * (z / x)) * 0.0007936500793651;
                  }
                  
                  def code(x, y, z):
                  	return (z * (z / x)) * 0.0007936500793651
                  
                  function code(x, y, z)
                  	return Float64(Float64(z * Float64(z / x)) * 0.0007936500793651)
                  end
                  
                  function tmp = code(x, y, z)
                  	tmp = (z * (z / x)) * 0.0007936500793651;
                  end
                  
                  code[x_, y_, z_] := N[(N[(z * N[(z / x), $MachinePrecision]), $MachinePrecision] * 0.0007936500793651), $MachinePrecision]
                  
                  \left(z \cdot \frac{z}{x}\right) \cdot 0.0007936500793651
                  
                  Derivation
                  1. Initial program 94.2%

                    \[\left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(y + 0.0007936500793651\right) \cdot z - 0.0027777777777778\right) \cdot z + 0.083333333333333}{x} \]
                  2. Step-by-step derivation
                    1. lift-*.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right) \cdot z} + \frac{83333333333333}{1000000000000000}}{x} \]
                    2. *-commutativeN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{z \cdot \left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                    3. lift--.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{z \cdot \color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z - \frac{13888888888889}{5000000000000000}\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                    4. sub-flipN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{z \cdot \color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z + \left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                    5. distribute-rgt-inN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z + \left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                    6. fp-cancel-sign-sub-invN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                    7. lower--.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\color{blue}{\left(\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right)} + \frac{83333333333333}{1000000000000000}}{x} \]
                    8. lower-*.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right) \cdot z} - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    9. lift-*.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(\left(y + \frac{7936500793651}{10000000000000000}\right) \cdot z\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    10. *-commutativeN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    11. lower-*.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\color{blue}{\left(z \cdot \left(y + \frac{7936500793651}{10000000000000000}\right)\right)} \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    12. lift-+.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y + \frac{7936500793651}{10000000000000000}\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    13. add-flipN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    14. lower--.f64N/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \color{blue}{\left(y - \left(\mathsf{neg}\left(\frac{7936500793651}{10000000000000000}\right)\right)\right)}\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    15. metadata-evalN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \left(y - \color{blue}{\frac{-7936500793651}{10000000000000000}}\right)\right) \cdot z - \left(\mathsf{neg}\left(\left(\mathsf{neg}\left(\frac{13888888888889}{5000000000000000}\right)\right)\right)\right) \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    16. remove-double-negN/A

                      \[\leadsto \left(\left(\left(x - \frac{1}{2}\right) \cdot \log x - x\right) + \frac{91893853320467}{100000000000000}\right) + \frac{\left(\left(z \cdot \left(y - \frac{-7936500793651}{10000000000000000}\right)\right) \cdot z - \color{blue}{\frac{13888888888889}{5000000000000000}} \cdot z\right) + \frac{83333333333333}{1000000000000000}}{x} \]
                    17. lower-*.f6494.2%

                      \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - \color{blue}{0.0027777777777778 \cdot z}\right) + 0.083333333333333}{x} \]
                  3. Applied rewrites94.2%

                    \[\leadsto \left(\left(\left(x - 0.5\right) \cdot \log x - x\right) + 0.91893853320467\right) + \frac{\color{blue}{\left(\left(z \cdot \left(y - -0.0007936500793651\right)\right) \cdot z - 0.0027777777777778 \cdot z\right)} + 0.083333333333333}{x} \]
                  4. Taylor expanded in z around inf

                    \[\leadsto \color{blue}{{z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
                  5. Step-by-step derivation
                    1. lower-*.f64N/A

                      \[\leadsto {z}^{2} \cdot \color{blue}{\left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
                    2. lower-pow.f64N/A

                      \[\leadsto {z}^{2} \cdot \left(\color{blue}{\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x}} + \frac{y}{x}\right) \]
                    3. lower-+.f64N/A

                      \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \color{blue}{\frac{y}{x}}\right) \]
                    4. lower-*.f64N/A

                      \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{\color{blue}{y}}{x}\right) \]
                    5. lower-/.f64N/A

                      \[\leadsto {z}^{2} \cdot \left(\frac{7936500793651}{10000000000000000} \cdot \frac{1}{x} + \frac{y}{x}\right) \]
                    6. lower-/.f6441.7%

                      \[\leadsto {z}^{2} \cdot \left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{\color{blue}{x}}\right) \]
                  6. Applied rewrites41.7%

                    \[\leadsto \color{blue}{{z}^{2} \cdot \left(0.0007936500793651 \cdot \frac{1}{x} + \frac{y}{x}\right)} \]
                  7. Taylor expanded in y around 0

                    \[\leadsto \frac{7936500793651}{10000000000000000} \cdot \color{blue}{\frac{{z}^{2}}{x}} \]
                  8. Step-by-step derivation
                    1. lower-*.f64N/A

                      \[\leadsto \frac{7936500793651}{10000000000000000} \cdot \frac{{z}^{2}}{\color{blue}{x}} \]
                    2. lower-/.f64N/A

                      \[\leadsto \frac{7936500793651}{10000000000000000} \cdot \frac{{z}^{2}}{x} \]
                    3. lower-pow.f6425.8%

                      \[\leadsto 0.0007936500793651 \cdot \frac{{z}^{2}}{x} \]
                  9. Applied rewrites25.8%

                    \[\leadsto 0.0007936500793651 \cdot \color{blue}{\frac{{z}^{2}}{x}} \]
                  10. Step-by-step derivation
                    1. lift-*.f64N/A

                      \[\leadsto \frac{7936500793651}{10000000000000000} \cdot \frac{{z}^{2}}{\color{blue}{x}} \]
                    2. *-commutativeN/A

                      \[\leadsto \frac{{z}^{2}}{x} \cdot \frac{7936500793651}{10000000000000000} \]
                    3. lower-*.f6425.8%

                      \[\leadsto \frac{{z}^{2}}{x} \cdot 0.0007936500793651 \]
                    4. lift-/.f64N/A

                      \[\leadsto \frac{{z}^{2}}{x} \cdot \frac{7936500793651}{10000000000000000} \]
                    5. lift-pow.f64N/A

                      \[\leadsto \frac{{z}^{2}}{x} \cdot \frac{7936500793651}{10000000000000000} \]
                    6. unpow2N/A

                      \[\leadsto \frac{z \cdot z}{x} \cdot \frac{7936500793651}{10000000000000000} \]
                    7. associate-/l*N/A

                      \[\leadsto \left(z \cdot \frac{z}{x}\right) \cdot \frac{7936500793651}{10000000000000000} \]
                    8. lift-/.f64N/A

                      \[\leadsto \left(z \cdot \frac{z}{x}\right) \cdot \frac{7936500793651}{10000000000000000} \]
                    9. lower-*.f6426.2%

                      \[\leadsto \left(z \cdot \frac{z}{x}\right) \cdot 0.0007936500793651 \]
                  11. Applied rewrites26.2%

                    \[\leadsto \left(z \cdot \frac{z}{x}\right) \cdot 0.0007936500793651 \]
                  12. Add Preprocessing

                  Reproduce

                  ?
                  herbie shell --seed 2025258 
                  (FPCore (x y z)
                    :name "Numeric.SpecFunctions:$slogFactorial from math-functions-0.1.5.2, B"
                    :precision binary64
                    (+ (+ (- (* (- x 0.5) (log x)) x) 0.91893853320467) (/ (+ (* (- (* (+ y 0.0007936500793651) z) 0.0027777777777778) z) 0.083333333333333) x)))