Numeric.SpecFunctions:logGamma from math-functions-0.1.5.2

Percentage Accurate: 56.6% → 82.8%
Time: 12.1s
Alternatives: 18
Speedup: 1.1×

Specification

?
\[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
(FPCore (x y z t a b c i)
  :precision binary64
  (/
 (+
  (* (+ (* (+ (* (+ (* x y) z) y) 27464.7644705) y) 230661.510616) y)
  t)
 (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i)))
double code(double x, double y, double z, double t, double a, double b, double c, double i) {
	return ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i);
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z, t, a, b, c, i)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8), intent (in) :: t
    real(8), intent (in) :: a
    real(8), intent (in) :: b
    real(8), intent (in) :: c
    real(8), intent (in) :: i
    code = ((((((((x * y) + z) * y) + 27464.7644705d0) * y) + 230661.510616d0) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)
end function
public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
	return ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i);
}
def code(x, y, z, t, a, b, c, i):
	return ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)
function code(x, y, z, t, a, b, c, i)
	return Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i))
end
function tmp = code(x, y, z, t, a, b, c, i)
	tmp = ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i);
end
code[x_, y_, z_, t_, a_, b_, c_, i_] := N[(N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]), $MachinePrecision]
\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i}

Local Percentage Accuracy vs ?

The average percentage accuracy by input value. Horizontal axis shows value of an input variable; the variable is choosen in the title. Vertical axis is accuracy; higher is better. Red represent the original program, while blue represents Herbie's suggestion. These can be toggled with buttons below the plot. The line is an average while dots represent individual samples.

Accuracy vs Speed?

Herbie found 18 alternatives:

AlternativeAccuracySpeedup
The accuracy (vertical axis) and speed (horizontal axis) of each alternatives. Up and to the right is better. The red square shows the initial program, and each blue circle shows an alternative.The line shows the best available speed-accuracy tradeoffs.

Initial Program: 56.6% accurate, 1.0× speedup?

\[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
(FPCore (x y z t a b c i)
  :precision binary64
  (/
 (+
  (* (+ (* (+ (* (+ (* x y) z) y) 27464.7644705) y) 230661.510616) y)
  t)
 (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i)))
double code(double x, double y, double z, double t, double a, double b, double c, double i) {
	return ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i);
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z, t, a, b, c, i)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8), intent (in) :: t
    real(8), intent (in) :: a
    real(8), intent (in) :: b
    real(8), intent (in) :: c
    real(8), intent (in) :: i
    code = ((((((((x * y) + z) * y) + 27464.7644705d0) * y) + 230661.510616d0) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)
end function
public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
	return ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i);
}
def code(x, y, z, t, a, b, c, i):
	return ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)
function code(x, y, z, t, a, b, c, i)
	return Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i))
end
function tmp = code(x, y, z, t, a, b, c, i)
	tmp = ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i);
end
code[x_, y_, z_, t_, a_, b_, c_, i_] := N[(N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]), $MachinePrecision]
\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i}

Alternative 1: 82.8% accurate, 0.4× speedup?

\[\begin{array}{l} t_1 := i + \left(c + \left(b + \left(a + y\right) \cdot y\right) \cdot y\right) \cdot y\\ \mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \leq \infty:\\ \;\;\;\;\frac{t}{t\_1} - \left(-y\right) \cdot \frac{\left(\left(z + y \cdot x\right) \cdot y - -27464.7644705\right) \cdot y - -230661.510616}{t\_1}\\ \mathbf{else}:\\ \;\;\;\;\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\ \end{array} \]
(FPCore (x y z t a b c i)
  :precision binary64
  (let* ((t_1 (+ i (* (+ c (* (+ b (* (+ a y) y)) y)) y))))
  (if (<=
       (/
        (+
         (*
          (+
           (* (+ (* (+ (* x y) z) y) 27464.7644705) y)
           230661.510616)
          y)
         t)
        (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i))
       INFINITY)
    (-
     (/ t t_1)
     (*
      (- y)
      (/
       (- (* (- (* (+ z (* y x)) y) -27464.7644705) y) -230661.510616)
       t_1)))
    (- (+ x (/ z y)) (/ (* a x) y)))))
double code(double x, double y, double z, double t, double a, double b, double c, double i) {
	double t_1 = i + ((c + ((b + ((a + y) * y)) * y)) * y);
	double tmp;
	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= ((double) INFINITY)) {
		tmp = (t / t_1) - (-y * ((((((z + (y * x)) * y) - -27464.7644705) * y) - -230661.510616) / t_1));
	} else {
		tmp = (x + (z / y)) - ((a * x) / y);
	}
	return tmp;
}
public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
	double t_1 = i + ((c + ((b + ((a + y) * y)) * y)) * y);
	double tmp;
	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Double.POSITIVE_INFINITY) {
		tmp = (t / t_1) - (-y * ((((((z + (y * x)) * y) - -27464.7644705) * y) - -230661.510616) / t_1));
	} else {
		tmp = (x + (z / y)) - ((a * x) / y);
	}
	return tmp;
}
def code(x, y, z, t, a, b, c, i):
	t_1 = i + ((c + ((b + ((a + y) * y)) * y)) * y)
	tmp = 0
	if (((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= math.inf:
		tmp = (t / t_1) - (-y * ((((((z + (y * x)) * y) - -27464.7644705) * y) - -230661.510616) / t_1))
	else:
		tmp = (x + (z / y)) - ((a * x) / y)
	return tmp
function code(x, y, z, t, a, b, c, i)
	t_1 = Float64(i + Float64(Float64(c + Float64(Float64(b + Float64(Float64(a + y) * y)) * y)) * y))
	tmp = 0.0
	if (Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i)) <= Inf)
		tmp = Float64(Float64(t / t_1) - Float64(Float64(-y) * Float64(Float64(Float64(Float64(Float64(Float64(z + Float64(y * x)) * y) - -27464.7644705) * y) - -230661.510616) / t_1)));
	else
		tmp = Float64(Float64(x + Float64(z / y)) - Float64(Float64(a * x) / y));
	end
	return tmp
end
function tmp_2 = code(x, y, z, t, a, b, c, i)
	t_1 = i + ((c + ((b + ((a + y) * y)) * y)) * y);
	tmp = 0.0;
	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Inf)
		tmp = (t / t_1) - (-y * ((((((z + (y * x)) * y) - -27464.7644705) * y) - -230661.510616) / t_1));
	else
		tmp = (x + (z / y)) - ((a * x) / y);
	end
	tmp_2 = tmp;
end
code[x_, y_, z_, t_, a_, b_, c_, i_] := Block[{t$95$1 = N[(i + N[(N[(c + N[(N[(b + N[(N[(a + y), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[N[(N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]), $MachinePrecision], Infinity], N[(N[(t / t$95$1), $MachinePrecision] - N[((-y) * N[(N[(N[(N[(N[(N[(z + N[(y * x), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision] - -27464.7644705), $MachinePrecision] * y), $MachinePrecision] - -230661.510616), $MachinePrecision] / t$95$1), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[(N[(x + N[(z / y), $MachinePrecision]), $MachinePrecision] - N[(N[(a * x), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]]]
\begin{array}{l}
t_1 := i + \left(c + \left(b + \left(a + y\right) \cdot y\right) \cdot y\right) \cdot y\\
\mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \leq \infty:\\
\;\;\;\;\frac{t}{t\_1} - \left(-y\right) \cdot \frac{\left(\left(z + y \cdot x\right) \cdot y - -27464.7644705\right) \cdot y - -230661.510616}{t\_1}\\

\mathbf{else}:\\
\;\;\;\;\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\


\end{array}
Derivation
  1. Split input into 2 regimes
  2. if (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < +inf.0

    1. Initial program 56.6%

      \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
    2. Applied rewrites57.4%

      \[\leadsto \color{blue}{\frac{t}{i + \left(c + \left(b + \left(a + y\right) \cdot y\right) \cdot y\right) \cdot y} - \left(-y\right) \cdot \frac{\left(\left(z + y \cdot x\right) \cdot y - -27464.7644705\right) \cdot y - -230661.510616}{i + \left(c + \left(b + \left(a + y\right) \cdot y\right) \cdot y\right) \cdot y}} \]

    if +inf.0 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i))

    1. Initial program 56.6%

      \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
    2. Taylor expanded in y around inf

      \[\leadsto \color{blue}{\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}} \]
    3. Step-by-step derivation
      1. lower--.f64N/A

        \[\leadsto \left(x + \frac{z}{y}\right) - \color{blue}{\frac{a \cdot x}{y}} \]
      2. lower-+.f64N/A

        \[\leadsto \left(x + \frac{z}{y}\right) - \frac{\color{blue}{a \cdot x}}{y} \]
      3. lower-/.f64N/A

        \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot \color{blue}{x}}{y} \]
      4. lower-/.f64N/A

        \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot x}{\color{blue}{y}} \]
      5. lower-*.f6430.1%

        \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y} \]
    4. Applied rewrites30.1%

      \[\leadsto \color{blue}{\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}} \]
  3. Recombined 2 regimes into one program.
  4. Add Preprocessing

Alternative 2: 82.6% accurate, 0.4× speedup?

\[\begin{array}{l} t_1 := i + \left(c + \left(b + \left(a + y\right) \cdot y\right) \cdot y\right) \cdot y\\ \mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \leq \infty:\\ \;\;\;\;\frac{t}{t\_1} - \left(-230661.510616 - \left(\left(z + y \cdot x\right) \cdot y - -27464.7644705\right) \cdot y\right) \cdot \frac{y}{t\_1}\\ \mathbf{else}:\\ \;\;\;\;\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\ \end{array} \]
(FPCore (x y z t a b c i)
  :precision binary64
  (let* ((t_1 (+ i (* (+ c (* (+ b (* (+ a y) y)) y)) y))))
  (if (<=
       (/
        (+
         (*
          (+
           (* (+ (* (+ (* x y) z) y) 27464.7644705) y)
           230661.510616)
          y)
         t)
        (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i))
       INFINITY)
    (-
     (/ t t_1)
     (*
      (- -230661.510616 (* (- (* (+ z (* y x)) y) -27464.7644705) y))
      (/ y t_1)))
    (- (+ x (/ z y)) (/ (* a x) y)))))
double code(double x, double y, double z, double t, double a, double b, double c, double i) {
	double t_1 = i + ((c + ((b + ((a + y) * y)) * y)) * y);
	double tmp;
	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= ((double) INFINITY)) {
		tmp = (t / t_1) - ((-230661.510616 - ((((z + (y * x)) * y) - -27464.7644705) * y)) * (y / t_1));
	} else {
		tmp = (x + (z / y)) - ((a * x) / y);
	}
	return tmp;
}
public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
	double t_1 = i + ((c + ((b + ((a + y) * y)) * y)) * y);
	double tmp;
	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Double.POSITIVE_INFINITY) {
		tmp = (t / t_1) - ((-230661.510616 - ((((z + (y * x)) * y) - -27464.7644705) * y)) * (y / t_1));
	} else {
		tmp = (x + (z / y)) - ((a * x) / y);
	}
	return tmp;
}
def code(x, y, z, t, a, b, c, i):
	t_1 = i + ((c + ((b + ((a + y) * y)) * y)) * y)
	tmp = 0
	if (((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= math.inf:
		tmp = (t / t_1) - ((-230661.510616 - ((((z + (y * x)) * y) - -27464.7644705) * y)) * (y / t_1))
	else:
		tmp = (x + (z / y)) - ((a * x) / y)
	return tmp
function code(x, y, z, t, a, b, c, i)
	t_1 = Float64(i + Float64(Float64(c + Float64(Float64(b + Float64(Float64(a + y) * y)) * y)) * y))
	tmp = 0.0
	if (Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i)) <= Inf)
		tmp = Float64(Float64(t / t_1) - Float64(Float64(-230661.510616 - Float64(Float64(Float64(Float64(z + Float64(y * x)) * y) - -27464.7644705) * y)) * Float64(y / t_1)));
	else
		tmp = Float64(Float64(x + Float64(z / y)) - Float64(Float64(a * x) / y));
	end
	return tmp
end
function tmp_2 = code(x, y, z, t, a, b, c, i)
	t_1 = i + ((c + ((b + ((a + y) * y)) * y)) * y);
	tmp = 0.0;
	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Inf)
		tmp = (t / t_1) - ((-230661.510616 - ((((z + (y * x)) * y) - -27464.7644705) * y)) * (y / t_1));
	else
		tmp = (x + (z / y)) - ((a * x) / y);
	end
	tmp_2 = tmp;
end
code[x_, y_, z_, t_, a_, b_, c_, i_] := Block[{t$95$1 = N[(i + N[(N[(c + N[(N[(b + N[(N[(a + y), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[N[(N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]), $MachinePrecision], Infinity], N[(N[(t / t$95$1), $MachinePrecision] - N[(N[(-230661.510616 - N[(N[(N[(N[(z + N[(y * x), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision] - -27464.7644705), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision] * N[(y / t$95$1), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[(N[(x + N[(z / y), $MachinePrecision]), $MachinePrecision] - N[(N[(a * x), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]]]
\begin{array}{l}
t_1 := i + \left(c + \left(b + \left(a + y\right) \cdot y\right) \cdot y\right) \cdot y\\
\mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \leq \infty:\\
\;\;\;\;\frac{t}{t\_1} - \left(-230661.510616 - \left(\left(z + y \cdot x\right) \cdot y - -27464.7644705\right) \cdot y\right) \cdot \frac{y}{t\_1}\\

\mathbf{else}:\\
\;\;\;\;\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\


\end{array}
Derivation
  1. Split input into 2 regimes
  2. if (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < +inf.0

    1. Initial program 56.6%

      \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
    2. Applied rewrites57.3%

      \[\leadsto \color{blue}{\frac{t}{i + \left(c + \left(b + \left(a + y\right) \cdot y\right) \cdot y\right) \cdot y} - \left(-230661.510616 - \left(\left(z + y \cdot x\right) \cdot y - -27464.7644705\right) \cdot y\right) \cdot \frac{y}{i + \left(c + \left(b + \left(a + y\right) \cdot y\right) \cdot y\right) \cdot y}} \]

    if +inf.0 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i))

    1. Initial program 56.6%

      \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
    2. Taylor expanded in y around inf

      \[\leadsto \color{blue}{\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}} \]
    3. Step-by-step derivation
      1. lower--.f64N/A

        \[\leadsto \left(x + \frac{z}{y}\right) - \color{blue}{\frac{a \cdot x}{y}} \]
      2. lower-+.f64N/A

        \[\leadsto \left(x + \frac{z}{y}\right) - \frac{\color{blue}{a \cdot x}}{y} \]
      3. lower-/.f64N/A

        \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot \color{blue}{x}}{y} \]
      4. lower-/.f64N/A

        \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot x}{\color{blue}{y}} \]
      5. lower-*.f6430.1%

        \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y} \]
    4. Applied rewrites30.1%

      \[\leadsto \color{blue}{\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}} \]
  3. Recombined 2 regimes into one program.
  4. Add Preprocessing

Alternative 3: 82.2% accurate, 0.4× speedup?

\[\begin{array}{l} t_1 := \left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i\\ \mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{t\_1} \leq \infty:\\ \;\;\;\;\frac{\left(\left(1 - \frac{\left(-27464.7644705 - \left(z + y \cdot x\right) \cdot y\right) \cdot y}{230661.510616}\right) \cdot 230661.510616\right) \cdot y + t}{t\_1}\\ \mathbf{else}:\\ \;\;\;\;\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\ \end{array} \]
(FPCore (x y z t a b c i)
  :precision binary64
  (let* ((t_1 (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i)))
  (if (<=
       (/
        (+
         (*
          (+
           (* (+ (* (+ (* x y) z) y) 27464.7644705) y)
           230661.510616)
          y)
         t)
        t_1)
       INFINITY)
    (/
     (+
      (*
       (*
        (-
         1.0
         (/
          (* (- -27464.7644705 (* (+ z (* y x)) y)) y)
          230661.510616))
        230661.510616)
       y)
      t)
     t_1)
    (- (+ x (/ z y)) (/ (* a x) y)))))
double code(double x, double y, double z, double t, double a, double b, double c, double i) {
	double t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i;
	double tmp;
	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= ((double) INFINITY)) {
		tmp = ((((1.0 - (((-27464.7644705 - ((z + (y * x)) * y)) * y) / 230661.510616)) * 230661.510616) * y) + t) / t_1;
	} else {
		tmp = (x + (z / y)) - ((a * x) / y);
	}
	return tmp;
}
public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
	double t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i;
	double tmp;
	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= Double.POSITIVE_INFINITY) {
		tmp = ((((1.0 - (((-27464.7644705 - ((z + (y * x)) * y)) * y) / 230661.510616)) * 230661.510616) * y) + t) / t_1;
	} else {
		tmp = (x + (z / y)) - ((a * x) / y);
	}
	return tmp;
}
def code(x, y, z, t, a, b, c, i):
	t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i
	tmp = 0
	if (((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= math.inf:
		tmp = ((((1.0 - (((-27464.7644705 - ((z + (y * x)) * y)) * y) / 230661.510616)) * 230661.510616) * y) + t) / t_1
	else:
		tmp = (x + (z / y)) - ((a * x) / y)
	return tmp
function code(x, y, z, t, a, b, c, i)
	t_1 = Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i)
	tmp = 0.0
	if (Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= Inf)
		tmp = Float64(Float64(Float64(Float64(Float64(1.0 - Float64(Float64(Float64(-27464.7644705 - Float64(Float64(z + Float64(y * x)) * y)) * y) / 230661.510616)) * 230661.510616) * y) + t) / t_1);
	else
		tmp = Float64(Float64(x + Float64(z / y)) - Float64(Float64(a * x) / y));
	end
	return tmp
end
function tmp_2 = code(x, y, z, t, a, b, c, i)
	t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i;
	tmp = 0.0;
	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= Inf)
		tmp = ((((1.0 - (((-27464.7644705 - ((z + (y * x)) * y)) * y) / 230661.510616)) * 230661.510616) * y) + t) / t_1;
	else
		tmp = (x + (z / y)) - ((a * x) / y);
	end
	tmp_2 = tmp;
end
code[x_, y_, z_, t_, a_, b_, c_, i_] := Block[{t$95$1 = N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]}, If[LessEqual[N[(N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / t$95$1), $MachinePrecision], Infinity], N[(N[(N[(N[(N[(1.0 - N[(N[(N[(-27464.7644705 - N[(N[(z + N[(y * x), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision] / 230661.510616), $MachinePrecision]), $MachinePrecision] * 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / t$95$1), $MachinePrecision], N[(N[(x + N[(z / y), $MachinePrecision]), $MachinePrecision] - N[(N[(a * x), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]]]
\begin{array}{l}
t_1 := \left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i\\
\mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{t\_1} \leq \infty:\\
\;\;\;\;\frac{\left(\left(1 - \frac{\left(-27464.7644705 - \left(z + y \cdot x\right) \cdot y\right) \cdot y}{230661.510616}\right) \cdot 230661.510616\right) \cdot y + t}{t\_1}\\

\mathbf{else}:\\
\;\;\;\;\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\


\end{array}
Derivation
  1. Split input into 2 regimes
  2. if (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < +inf.0

    1. Initial program 56.6%

      \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
    2. Step-by-step derivation
      1. lift-+.f64N/A

        \[\leadsto \frac{\color{blue}{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right)} \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
      2. +-commutativeN/A

        \[\leadsto \frac{\color{blue}{\left(\frac{28832688827}{125000} + \left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y\right)} \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
      3. add-flipN/A

        \[\leadsto \frac{\color{blue}{\left(\frac{28832688827}{125000} - \left(\mathsf{neg}\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y\right)\right)\right)} \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
      4. sub-to-multN/A

        \[\leadsto \frac{\color{blue}{\left(\left(1 - \frac{\mathsf{neg}\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y\right)}{\frac{28832688827}{125000}}\right) \cdot \frac{28832688827}{125000}\right)} \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
      5. lower-unsound-*.f64N/A

        \[\leadsto \frac{\color{blue}{\left(\left(1 - \frac{\mathsf{neg}\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y\right)}{\frac{28832688827}{125000}}\right) \cdot \frac{28832688827}{125000}\right)} \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
    3. Applied rewrites56.6%

      \[\leadsto \frac{\color{blue}{\left(\left(1 - \frac{\left(-27464.7644705 - \left(z + y \cdot x\right) \cdot y\right) \cdot y}{230661.510616}\right) \cdot 230661.510616\right)} \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]

    if +inf.0 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i))

    1. Initial program 56.6%

      \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
    2. Taylor expanded in y around inf

      \[\leadsto \color{blue}{\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}} \]
    3. Step-by-step derivation
      1. lower--.f64N/A

        \[\leadsto \left(x + \frac{z}{y}\right) - \color{blue}{\frac{a \cdot x}{y}} \]
      2. lower-+.f64N/A

        \[\leadsto \left(x + \frac{z}{y}\right) - \frac{\color{blue}{a \cdot x}}{y} \]
      3. lower-/.f64N/A

        \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot \color{blue}{x}}{y} \]
      4. lower-/.f64N/A

        \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot x}{\color{blue}{y}} \]
      5. lower-*.f6430.1%

        \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y} \]
    4. Applied rewrites30.1%

      \[\leadsto \color{blue}{\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}} \]
  3. Recombined 2 regimes into one program.
  4. Add Preprocessing

Alternative 4: 82.2% accurate, 0.5× speedup?

\[\begin{array}{l} t_1 := \left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t\\ \mathbf{if}\;\frac{t\_1}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \leq \infty:\\ \;\;\;\;\frac{t\_1}{\left(i + c \cdot y\right) + \left(\left(b + \left(a + y\right) \cdot y\right) \cdot y\right) \cdot y}\\ \mathbf{else}:\\ \;\;\;\;\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\ \end{array} \]
(FPCore (x y z t a b c i)
  :precision binary64
  (let* ((t_1
        (+
         (*
          (+
           (* (+ (* (+ (* x y) z) y) 27464.7644705) y)
           230661.510616)
          y)
         t)))
  (if (<=
       (/ t_1 (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i))
       INFINITY)
    (/ t_1 (+ (+ i (* c y)) (* (* (+ b (* (+ a y) y)) y) y)))
    (- (+ x (/ z y)) (/ (* a x) y)))))
double code(double x, double y, double z, double t, double a, double b, double c, double i) {
	double t_1 = (((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t;
	double tmp;
	if ((t_1 / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= ((double) INFINITY)) {
		tmp = t_1 / ((i + (c * y)) + (((b + ((a + y) * y)) * y) * y));
	} else {
		tmp = (x + (z / y)) - ((a * x) / y);
	}
	return tmp;
}
public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
	double t_1 = (((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t;
	double tmp;
	if ((t_1 / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Double.POSITIVE_INFINITY) {
		tmp = t_1 / ((i + (c * y)) + (((b + ((a + y) * y)) * y) * y));
	} else {
		tmp = (x + (z / y)) - ((a * x) / y);
	}
	return tmp;
}
def code(x, y, z, t, a, b, c, i):
	t_1 = (((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t
	tmp = 0
	if (t_1 / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= math.inf:
		tmp = t_1 / ((i + (c * y)) + (((b + ((a + y) * y)) * y) * y))
	else:
		tmp = (x + (z / y)) - ((a * x) / y)
	return tmp
function code(x, y, z, t, a, b, c, i)
	t_1 = Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t)
	tmp = 0.0
	if (Float64(t_1 / Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i)) <= Inf)
		tmp = Float64(t_1 / Float64(Float64(i + Float64(c * y)) + Float64(Float64(Float64(b + Float64(Float64(a + y) * y)) * y) * y)));
	else
		tmp = Float64(Float64(x + Float64(z / y)) - Float64(Float64(a * x) / y));
	end
	return tmp
end
function tmp_2 = code(x, y, z, t, a, b, c, i)
	t_1 = (((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t;
	tmp = 0.0;
	if ((t_1 / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Inf)
		tmp = t_1 / ((i + (c * y)) + (((b + ((a + y) * y)) * y) * y));
	else
		tmp = (x + (z / y)) - ((a * x) / y);
	end
	tmp_2 = tmp;
end
code[x_, y_, z_, t_, a_, b_, c_, i_] := Block[{t$95$1 = N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision]}, If[LessEqual[N[(t$95$1 / N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]), $MachinePrecision], Infinity], N[(t$95$1 / N[(N[(i + N[(c * y), $MachinePrecision]), $MachinePrecision] + N[(N[(N[(b + N[(N[(a + y), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[(N[(x + N[(z / y), $MachinePrecision]), $MachinePrecision] - N[(N[(a * x), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]]]
\begin{array}{l}
t_1 := \left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t\\
\mathbf{if}\;\frac{t\_1}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \leq \infty:\\
\;\;\;\;\frac{t\_1}{\left(i + c \cdot y\right) + \left(\left(b + \left(a + y\right) \cdot y\right) \cdot y\right) \cdot y}\\

\mathbf{else}:\\
\;\;\;\;\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\


\end{array}
Derivation
  1. Split input into 2 regimes
  2. if (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < +inf.0

    1. Initial program 56.6%

      \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
    2. Step-by-step derivation
      1. lift-+.f64N/A

        \[\leadsto \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\color{blue}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i}} \]
      2. +-commutativeN/A

        \[\leadsto \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\color{blue}{i + \left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y}} \]
      3. lift-*.f64N/A

        \[\leadsto \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{i + \color{blue}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y}} \]
      4. *-commutativeN/A

        \[\leadsto \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{i + \color{blue}{y \cdot \left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right)}} \]
      5. lift-+.f64N/A

        \[\leadsto \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{i + y \cdot \color{blue}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right)}} \]
      6. +-commutativeN/A

        \[\leadsto \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{i + y \cdot \color{blue}{\left(c + \left(\left(y + a\right) \cdot y + b\right) \cdot y\right)}} \]
      7. distribute-rgt-inN/A

        \[\leadsto \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{i + \color{blue}{\left(c \cdot y + \left(\left(\left(y + a\right) \cdot y + b\right) \cdot y\right) \cdot y\right)}} \]
      8. associate-+r+N/A

        \[\leadsto \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\color{blue}{\left(i + c \cdot y\right) + \left(\left(\left(y + a\right) \cdot y + b\right) \cdot y\right) \cdot y}} \]
      9. *-commutativeN/A

        \[\leadsto \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(i + \color{blue}{y \cdot c}\right) + \left(\left(\left(y + a\right) \cdot y + b\right) \cdot y\right) \cdot y} \]
      10. lower-+.f64N/A

        \[\leadsto \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\color{blue}{\left(i + y \cdot c\right) + \left(\left(\left(y + a\right) \cdot y + b\right) \cdot y\right) \cdot y}} \]
      11. lower-+.f64N/A

        \[\leadsto \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\color{blue}{\left(i + y \cdot c\right)} + \left(\left(\left(y + a\right) \cdot y + b\right) \cdot y\right) \cdot y} \]
      12. *-commutativeN/A

        \[\leadsto \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(i + \color{blue}{c \cdot y}\right) + \left(\left(\left(y + a\right) \cdot y + b\right) \cdot y\right) \cdot y} \]
      13. lower-*.f64N/A

        \[\leadsto \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + \frac{54929528941}{2000000}\right) \cdot y + \frac{28832688827}{125000}\right) \cdot y + t}{\left(i + \color{blue}{c \cdot y}\right) + \left(\left(\left(y + a\right) \cdot y + b\right) \cdot y\right) \cdot y} \]
      14. lower-*.f6456.6%

        \[\leadsto \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(i + c \cdot y\right) + \color{blue}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y\right) \cdot y}} \]
    3. Applied rewrites56.6%

      \[\leadsto \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\color{blue}{\left(i + c \cdot y\right) + \left(\left(b + \left(a + y\right) \cdot y\right) \cdot y\right) \cdot y}} \]

    if +inf.0 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i))

    1. Initial program 56.6%

      \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
    2. Taylor expanded in y around inf

      \[\leadsto \color{blue}{\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}} \]
    3. Step-by-step derivation
      1. lower--.f64N/A

        \[\leadsto \left(x + \frac{z}{y}\right) - \color{blue}{\frac{a \cdot x}{y}} \]
      2. lower-+.f64N/A

        \[\leadsto \left(x + \frac{z}{y}\right) - \frac{\color{blue}{a \cdot x}}{y} \]
      3. lower-/.f64N/A

        \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot \color{blue}{x}}{y} \]
      4. lower-/.f64N/A

        \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot x}{\color{blue}{y}} \]
      5. lower-*.f6430.1%

        \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y} \]
    4. Applied rewrites30.1%

      \[\leadsto \color{blue}{\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}} \]
  3. Recombined 2 regimes into one program.
  4. Add Preprocessing

Alternative 5: 82.2% accurate, 0.5× speedup?

\[\begin{array}{l} t_1 := \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i}\\ \mathbf{if}\;t\_1 \leq \infty:\\ \;\;\;\;t\_1\\ \mathbf{else}:\\ \;\;\;\;\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\ \end{array} \]
(FPCore (x y z t a b c i)
  :precision binary64
  (let* ((t_1
        (/
         (+
          (*
           (+
            (* (+ (* (+ (* x y) z) y) 27464.7644705) y)
            230661.510616)
           y)
          t)
         (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i))))
  (if (<= t_1 INFINITY) t_1 (- (+ x (/ z y)) (/ (* a x) y)))))
double code(double x, double y, double z, double t, double a, double b, double c, double i) {
	double t_1 = ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i);
	double tmp;
	if (t_1 <= ((double) INFINITY)) {
		tmp = t_1;
	} else {
		tmp = (x + (z / y)) - ((a * x) / y);
	}
	return tmp;
}
public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
	double t_1 = ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i);
	double tmp;
	if (t_1 <= Double.POSITIVE_INFINITY) {
		tmp = t_1;
	} else {
		tmp = (x + (z / y)) - ((a * x) / y);
	}
	return tmp;
}
def code(x, y, z, t, a, b, c, i):
	t_1 = ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)
	tmp = 0
	if t_1 <= math.inf:
		tmp = t_1
	else:
		tmp = (x + (z / y)) - ((a * x) / y)
	return tmp
function code(x, y, z, t, a, b, c, i)
	t_1 = Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i))
	tmp = 0.0
	if (t_1 <= Inf)
		tmp = t_1;
	else
		tmp = Float64(Float64(x + Float64(z / y)) - Float64(Float64(a * x) / y));
	end
	return tmp
end
function tmp_2 = code(x, y, z, t, a, b, c, i)
	t_1 = ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i);
	tmp = 0.0;
	if (t_1 <= Inf)
		tmp = t_1;
	else
		tmp = (x + (z / y)) - ((a * x) / y);
	end
	tmp_2 = tmp;
end
code[x_, y_, z_, t_, a_, b_, c_, i_] := Block[{t$95$1 = N[(N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$1, Infinity], t$95$1, N[(N[(x + N[(z / y), $MachinePrecision]), $MachinePrecision] - N[(N[(a * x), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]]]
\begin{array}{l}
t_1 := \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i}\\
\mathbf{if}\;t\_1 \leq \infty:\\
\;\;\;\;t\_1\\

\mathbf{else}:\\
\;\;\;\;\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\


\end{array}
Derivation
  1. Split input into 2 regimes
  2. if (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < +inf.0

    1. Initial program 56.6%

      \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]

    if +inf.0 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i))

    1. Initial program 56.6%

      \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
    2. Taylor expanded in y around inf

      \[\leadsto \color{blue}{\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}} \]
    3. Step-by-step derivation
      1. lower--.f64N/A

        \[\leadsto \left(x + \frac{z}{y}\right) - \color{blue}{\frac{a \cdot x}{y}} \]
      2. lower-+.f64N/A

        \[\leadsto \left(x + \frac{z}{y}\right) - \frac{\color{blue}{a \cdot x}}{y} \]
      3. lower-/.f64N/A

        \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot \color{blue}{x}}{y} \]
      4. lower-/.f64N/A

        \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot x}{\color{blue}{y}} \]
      5. lower-*.f6430.1%

        \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y} \]
    4. Applied rewrites30.1%

      \[\leadsto \color{blue}{\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}} \]
  3. Recombined 2 regimes into one program.
  4. Add Preprocessing

Alternative 6: 78.2% accurate, 0.5× speedup?

\[\begin{array}{l} t_1 := \left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i\\ \mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{t\_1} \leq \infty:\\ \;\;\;\;\frac{\left(\left(z \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{t\_1}\\ \mathbf{else}:\\ \;\;\;\;\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\ \end{array} \]
(FPCore (x y z t a b c i)
  :precision binary64
  (let* ((t_1 (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i)))
  (if (<=
       (/
        (+
         (*
          (+
           (* (+ (* (+ (* x y) z) y) 27464.7644705) y)
           230661.510616)
          y)
         t)
        t_1)
       INFINITY)
    (/
     (+ (* (+ (* (+ (* z y) 27464.7644705) y) 230661.510616) y) t)
     t_1)
    (- (+ x (/ z y)) (/ (* a x) y)))))
double code(double x, double y, double z, double t, double a, double b, double c, double i) {
	double t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i;
	double tmp;
	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= ((double) INFINITY)) {
		tmp = ((((((z * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1;
	} else {
		tmp = (x + (z / y)) - ((a * x) / y);
	}
	return tmp;
}
public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
	double t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i;
	double tmp;
	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= Double.POSITIVE_INFINITY) {
		tmp = ((((((z * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1;
	} else {
		tmp = (x + (z / y)) - ((a * x) / y);
	}
	return tmp;
}
def code(x, y, z, t, a, b, c, i):
	t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i
	tmp = 0
	if (((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= math.inf:
		tmp = ((((((z * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1
	else:
		tmp = (x + (z / y)) - ((a * x) / y)
	return tmp
function code(x, y, z, t, a, b, c, i)
	t_1 = Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i)
	tmp = 0.0
	if (Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= Inf)
		tmp = Float64(Float64(Float64(Float64(Float64(Float64(Float64(z * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1);
	else
		tmp = Float64(Float64(x + Float64(z / y)) - Float64(Float64(a * x) / y));
	end
	return tmp
end
function tmp_2 = code(x, y, z, t, a, b, c, i)
	t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i;
	tmp = 0.0;
	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= Inf)
		tmp = ((((((z * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1;
	else
		tmp = (x + (z / y)) - ((a * x) / y);
	end
	tmp_2 = tmp;
end
code[x_, y_, z_, t_, a_, b_, c_, i_] := Block[{t$95$1 = N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]}, If[LessEqual[N[(N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / t$95$1), $MachinePrecision], Infinity], N[(N[(N[(N[(N[(N[(N[(z * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / t$95$1), $MachinePrecision], N[(N[(x + N[(z / y), $MachinePrecision]), $MachinePrecision] - N[(N[(a * x), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]]]
\begin{array}{l}
t_1 := \left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i\\
\mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{t\_1} \leq \infty:\\
\;\;\;\;\frac{\left(\left(z \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{t\_1}\\

\mathbf{else}:\\
\;\;\;\;\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\


\end{array}
Derivation
  1. Split input into 2 regimes
  2. if (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < +inf.0

    1. Initial program 56.6%

      \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
    2. Taylor expanded in x around 0

      \[\leadsto \frac{\left(\left(\color{blue}{z} \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
    3. Step-by-step derivation
      1. Applied rewrites52.8%

        \[\leadsto \frac{\left(\left(\color{blue}{z} \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]

      if +inf.0 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i))

      1. Initial program 56.6%

        \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
      2. Taylor expanded in y around inf

        \[\leadsto \color{blue}{\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}} \]
      3. Step-by-step derivation
        1. lower--.f64N/A

          \[\leadsto \left(x + \frac{z}{y}\right) - \color{blue}{\frac{a \cdot x}{y}} \]
        2. lower-+.f64N/A

          \[\leadsto \left(x + \frac{z}{y}\right) - \frac{\color{blue}{a \cdot x}}{y} \]
        3. lower-/.f64N/A

          \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot \color{blue}{x}}{y} \]
        4. lower-/.f64N/A

          \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot x}{\color{blue}{y}} \]
        5. lower-*.f6430.1%

          \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y} \]
      4. Applied rewrites30.1%

        \[\leadsto \color{blue}{\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}} \]
    4. Recombined 2 regimes into one program.
    5. Add Preprocessing

    Alternative 7: 76.8% accurate, 0.5× speedup?

    \[\begin{array}{l} t_1 := \left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t\\ \mathbf{if}\;\frac{t\_1}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \leq \infty:\\ \;\;\;\;\frac{t\_1}{\left(b \cdot y + c\right) \cdot y + i}\\ \mathbf{else}:\\ \;\;\;\;\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\ \end{array} \]
    (FPCore (x y z t a b c i)
      :precision binary64
      (let* ((t_1
            (+
             (*
              (+
               (* (+ (* (+ (* x y) z) y) 27464.7644705) y)
               230661.510616)
              y)
             t)))
      (if (<=
           (/ t_1 (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i))
           INFINITY)
        (/ t_1 (+ (* (+ (* b y) c) y) i))
        (- (+ x (/ z y)) (/ (* a x) y)))))
    double code(double x, double y, double z, double t, double a, double b, double c, double i) {
    	double t_1 = (((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t;
    	double tmp;
    	if ((t_1 / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= ((double) INFINITY)) {
    		tmp = t_1 / ((((b * y) + c) * y) + i);
    	} else {
    		tmp = (x + (z / y)) - ((a * x) / y);
    	}
    	return tmp;
    }
    
    public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
    	double t_1 = (((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t;
    	double tmp;
    	if ((t_1 / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Double.POSITIVE_INFINITY) {
    		tmp = t_1 / ((((b * y) + c) * y) + i);
    	} else {
    		tmp = (x + (z / y)) - ((a * x) / y);
    	}
    	return tmp;
    }
    
    def code(x, y, z, t, a, b, c, i):
    	t_1 = (((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t
    	tmp = 0
    	if (t_1 / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= math.inf:
    		tmp = t_1 / ((((b * y) + c) * y) + i)
    	else:
    		tmp = (x + (z / y)) - ((a * x) / y)
    	return tmp
    
    function code(x, y, z, t, a, b, c, i)
    	t_1 = Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t)
    	tmp = 0.0
    	if (Float64(t_1 / Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i)) <= Inf)
    		tmp = Float64(t_1 / Float64(Float64(Float64(Float64(b * y) + c) * y) + i));
    	else
    		tmp = Float64(Float64(x + Float64(z / y)) - Float64(Float64(a * x) / y));
    	end
    	return tmp
    end
    
    function tmp_2 = code(x, y, z, t, a, b, c, i)
    	t_1 = (((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t;
    	tmp = 0.0;
    	if ((t_1 / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Inf)
    		tmp = t_1 / ((((b * y) + c) * y) + i);
    	else
    		tmp = (x + (z / y)) - ((a * x) / y);
    	end
    	tmp_2 = tmp;
    end
    
    code[x_, y_, z_, t_, a_, b_, c_, i_] := Block[{t$95$1 = N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision]}, If[LessEqual[N[(t$95$1 / N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]), $MachinePrecision], Infinity], N[(t$95$1 / N[(N[(N[(N[(b * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]), $MachinePrecision], N[(N[(x + N[(z / y), $MachinePrecision]), $MachinePrecision] - N[(N[(a * x), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]]]
    
    \begin{array}{l}
    t_1 := \left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t\\
    \mathbf{if}\;\frac{t\_1}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \leq \infty:\\
    \;\;\;\;\frac{t\_1}{\left(b \cdot y + c\right) \cdot y + i}\\
    
    \mathbf{else}:\\
    \;\;\;\;\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\
    
    
    \end{array}
    
    Derivation
    1. Split input into 2 regimes
    2. if (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < +inf.0

      1. Initial program 56.6%

        \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
      2. Taylor expanded in y around 0

        \[\leadsto \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\color{blue}{b} \cdot y + c\right) \cdot y + i} \]
      3. Step-by-step derivation
        1. Applied rewrites51.5%

          \[\leadsto \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\color{blue}{b} \cdot y + c\right) \cdot y + i} \]

        if +inf.0 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i))

        1. Initial program 56.6%

          \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
        2. Taylor expanded in y around inf

          \[\leadsto \color{blue}{\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}} \]
        3. Step-by-step derivation
          1. lower--.f64N/A

            \[\leadsto \left(x + \frac{z}{y}\right) - \color{blue}{\frac{a \cdot x}{y}} \]
          2. lower-+.f64N/A

            \[\leadsto \left(x + \frac{z}{y}\right) - \frac{\color{blue}{a \cdot x}}{y} \]
          3. lower-/.f64N/A

            \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot \color{blue}{x}}{y} \]
          4. lower-/.f64N/A

            \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot x}{\color{blue}{y}} \]
          5. lower-*.f6430.1%

            \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y} \]
        4. Applied rewrites30.1%

          \[\leadsto \color{blue}{\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}} \]
      4. Recombined 2 regimes into one program.
      5. Add Preprocessing

      Alternative 8: 74.7% accurate, 1.1× speedup?

      \[\begin{array}{l} t_1 := \left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\ \mathbf{if}\;y \leq -1.5 \cdot 10^{+77}:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;y \leq -7.2 \cdot 10^{-29}:\\ \;\;\;\;\frac{230661.510616 + y \cdot \left(27464.7644705 + y \cdot \left(z + x \cdot y\right)\right)}{c + y \cdot \left(b + y \cdot \left(a + y\right)\right)}\\ \mathbf{elif}\;y \leq 3.6 \cdot 10^{+34}:\\ \;\;\;\;\frac{230661.510616 \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i}\\ \mathbf{else}:\\ \;\;\;\;t\_1\\ \end{array} \]
      (FPCore (x y z t a b c i)
        :precision binary64
        (let* ((t_1 (- (+ x (/ z y)) (/ (* a x) y))))
        (if (<= y -1.5e+77)
          t_1
          (if (<= y -7.2e-29)
            (/
             (+ 230661.510616 (* y (+ 27464.7644705 (* y (+ z (* x y))))))
             (+ c (* y (+ b (* y (+ a y))))))
            (if (<= y 3.6e+34)
              (/
               (+ (* 230661.510616 y) t)
               (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i))
              t_1)))))
      double code(double x, double y, double z, double t, double a, double b, double c, double i) {
      	double t_1 = (x + (z / y)) - ((a * x) / y);
      	double tmp;
      	if (y <= -1.5e+77) {
      		tmp = t_1;
      	} else if (y <= -7.2e-29) {
      		tmp = (230661.510616 + (y * (27464.7644705 + (y * (z + (x * y)))))) / (c + (y * (b + (y * (a + y)))));
      	} else if (y <= 3.6e+34) {
      		tmp = ((230661.510616 * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i);
      	} else {
      		tmp = t_1;
      	}
      	return tmp;
      }
      
      module fmin_fmax_functions
          implicit none
          private
          public fmax
          public fmin
      
          interface fmax
              module procedure fmax88
              module procedure fmax44
              module procedure fmax84
              module procedure fmax48
          end interface
          interface fmin
              module procedure fmin88
              module procedure fmin44
              module procedure fmin84
              module procedure fmin48
          end interface
      contains
          real(8) function fmax88(x, y) result (res)
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
          end function
          real(4) function fmax44(x, y) result (res)
              real(4), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
          end function
          real(8) function fmax84(x, y) result(res)
              real(8), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
          end function
          real(8) function fmax48(x, y) result(res)
              real(4), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
          end function
          real(8) function fmin88(x, y) result (res)
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
          end function
          real(4) function fmin44(x, y) result (res)
              real(4), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
          end function
          real(8) function fmin84(x, y) result(res)
              real(8), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
          end function
          real(8) function fmin48(x, y) result(res)
              real(4), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
          end function
      end module
      
      real(8) function code(x, y, z, t, a, b, c, i)
      use fmin_fmax_functions
          real(8), intent (in) :: x
          real(8), intent (in) :: y
          real(8), intent (in) :: z
          real(8), intent (in) :: t
          real(8), intent (in) :: a
          real(8), intent (in) :: b
          real(8), intent (in) :: c
          real(8), intent (in) :: i
          real(8) :: t_1
          real(8) :: tmp
          t_1 = (x + (z / y)) - ((a * x) / y)
          if (y <= (-1.5d+77)) then
              tmp = t_1
          else if (y <= (-7.2d-29)) then
              tmp = (230661.510616d0 + (y * (27464.7644705d0 + (y * (z + (x * y)))))) / (c + (y * (b + (y * (a + y)))))
          else if (y <= 3.6d+34) then
              tmp = ((230661.510616d0 * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)
          else
              tmp = t_1
          end if
          code = tmp
      end function
      
      public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
      	double t_1 = (x + (z / y)) - ((a * x) / y);
      	double tmp;
      	if (y <= -1.5e+77) {
      		tmp = t_1;
      	} else if (y <= -7.2e-29) {
      		tmp = (230661.510616 + (y * (27464.7644705 + (y * (z + (x * y)))))) / (c + (y * (b + (y * (a + y)))));
      	} else if (y <= 3.6e+34) {
      		tmp = ((230661.510616 * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i);
      	} else {
      		tmp = t_1;
      	}
      	return tmp;
      }
      
      def code(x, y, z, t, a, b, c, i):
      	t_1 = (x + (z / y)) - ((a * x) / y)
      	tmp = 0
      	if y <= -1.5e+77:
      		tmp = t_1
      	elif y <= -7.2e-29:
      		tmp = (230661.510616 + (y * (27464.7644705 + (y * (z + (x * y)))))) / (c + (y * (b + (y * (a + y)))))
      	elif y <= 3.6e+34:
      		tmp = ((230661.510616 * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)
      	else:
      		tmp = t_1
      	return tmp
      
      function code(x, y, z, t, a, b, c, i)
      	t_1 = Float64(Float64(x + Float64(z / y)) - Float64(Float64(a * x) / y))
      	tmp = 0.0
      	if (y <= -1.5e+77)
      		tmp = t_1;
      	elseif (y <= -7.2e-29)
      		tmp = Float64(Float64(230661.510616 + Float64(y * Float64(27464.7644705 + Float64(y * Float64(z + Float64(x * y)))))) / Float64(c + Float64(y * Float64(b + Float64(y * Float64(a + y))))));
      	elseif (y <= 3.6e+34)
      		tmp = Float64(Float64(Float64(230661.510616 * y) + t) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i));
      	else
      		tmp = t_1;
      	end
      	return tmp
      end
      
      function tmp_2 = code(x, y, z, t, a, b, c, i)
      	t_1 = (x + (z / y)) - ((a * x) / y);
      	tmp = 0.0;
      	if (y <= -1.5e+77)
      		tmp = t_1;
      	elseif (y <= -7.2e-29)
      		tmp = (230661.510616 + (y * (27464.7644705 + (y * (z + (x * y)))))) / (c + (y * (b + (y * (a + y)))));
      	elseif (y <= 3.6e+34)
      		tmp = ((230661.510616 * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i);
      	else
      		tmp = t_1;
      	end
      	tmp_2 = tmp;
      end
      
      code[x_, y_, z_, t_, a_, b_, c_, i_] := Block[{t$95$1 = N[(N[(x + N[(z / y), $MachinePrecision]), $MachinePrecision] - N[(N[(a * x), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[y, -1.5e+77], t$95$1, If[LessEqual[y, -7.2e-29], N[(N[(230661.510616 + N[(y * N[(27464.7644705 + N[(y * N[(z + N[(x * y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(c + N[(y * N[(b + N[(y * N[(a + y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], If[LessEqual[y, 3.6e+34], N[(N[(N[(230661.510616 * y), $MachinePrecision] + t), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]), $MachinePrecision], t$95$1]]]]
      
      \begin{array}{l}
      t_1 := \left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\
      \mathbf{if}\;y \leq -1.5 \cdot 10^{+77}:\\
      \;\;\;\;t\_1\\
      
      \mathbf{elif}\;y \leq -7.2 \cdot 10^{-29}:\\
      \;\;\;\;\frac{230661.510616 + y \cdot \left(27464.7644705 + y \cdot \left(z + x \cdot y\right)\right)}{c + y \cdot \left(b + y \cdot \left(a + y\right)\right)}\\
      
      \mathbf{elif}\;y \leq 3.6 \cdot 10^{+34}:\\
      \;\;\;\;\frac{230661.510616 \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i}\\
      
      \mathbf{else}:\\
      \;\;\;\;t\_1\\
      
      
      \end{array}
      
      Derivation
      1. Split input into 3 regimes
      2. if y < -1.4999999999999999e77 or 3.6e34 < y

        1. Initial program 56.6%

          \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
        2. Taylor expanded in y around inf

          \[\leadsto \color{blue}{\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}} \]
        3. Step-by-step derivation
          1. lower--.f64N/A

            \[\leadsto \left(x + \frac{z}{y}\right) - \color{blue}{\frac{a \cdot x}{y}} \]
          2. lower-+.f64N/A

            \[\leadsto \left(x + \frac{z}{y}\right) - \frac{\color{blue}{a \cdot x}}{y} \]
          3. lower-/.f64N/A

            \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot \color{blue}{x}}{y} \]
          4. lower-/.f64N/A

            \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot x}{\color{blue}{y}} \]
          5. lower-*.f6430.1%

            \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y} \]
        4. Applied rewrites30.1%

          \[\leadsto \color{blue}{\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}} \]

        if -1.4999999999999999e77 < y < -7.1999999999999995e-29

        1. Initial program 56.6%

          \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
        2. Applied rewrites57.4%

          \[\leadsto \color{blue}{\frac{t}{i + \left(c + \left(b + \left(a + y\right) \cdot y\right) \cdot y\right) \cdot y} - \left(-y\right) \cdot \frac{\left(\left(z + y \cdot x\right) \cdot y - -27464.7644705\right) \cdot y - -230661.510616}{i + \left(c + \left(b + \left(a + y\right) \cdot y\right) \cdot y\right) \cdot y}} \]
        3. Taylor expanded in i around 0

          \[\leadsto \color{blue}{\frac{t}{y \cdot \left(c + y \cdot \left(b + y \cdot \left(a + y\right)\right)\right)} - -1 \cdot \frac{\frac{28832688827}{125000} + y \cdot \left(\frac{54929528941}{2000000} + y \cdot \left(z + x \cdot y\right)\right)}{c + y \cdot \left(b + y \cdot \left(a + y\right)\right)}} \]
        4. Step-by-step derivation
          1. lower--.f64N/A

            \[\leadsto \frac{t}{y \cdot \left(c + y \cdot \left(b + y \cdot \left(a + y\right)\right)\right)} - \color{blue}{-1 \cdot \frac{\frac{28832688827}{125000} + y \cdot \left(\frac{54929528941}{2000000} + y \cdot \left(z + x \cdot y\right)\right)}{c + y \cdot \left(b + y \cdot \left(a + y\right)\right)}} \]
        5. Applied rewrites28.1%

          \[\leadsto \color{blue}{\frac{t}{y \cdot \left(c + y \cdot \left(b + y \cdot \left(a + y\right)\right)\right)} - -1 \cdot \frac{230661.510616 + y \cdot \left(27464.7644705 + y \cdot \left(z + x \cdot y\right)\right)}{c + y \cdot \left(b + y \cdot \left(a + y\right)\right)}} \]
        6. Taylor expanded in t around 0

          \[\leadsto \frac{\frac{28832688827}{125000} + y \cdot \left(\frac{54929528941}{2000000} + y \cdot \left(z + x \cdot y\right)\right)}{\color{blue}{c + y \cdot \left(b + y \cdot \left(a + y\right)\right)}} \]
        7. Step-by-step derivation
          1. lower-/.f64N/A

            \[\leadsto \frac{\frac{28832688827}{125000} + y \cdot \left(\frac{54929528941}{2000000} + y \cdot \left(z + x \cdot y\right)\right)}{c + \color{blue}{y \cdot \left(b + y \cdot \left(a + y\right)\right)}} \]
          2. lower-+.f64N/A

            \[\leadsto \frac{\frac{28832688827}{125000} + y \cdot \left(\frac{54929528941}{2000000} + y \cdot \left(z + x \cdot y\right)\right)}{c + \color{blue}{y} \cdot \left(b + y \cdot \left(a + y\right)\right)} \]
          3. lower-*.f64N/A

            \[\leadsto \frac{\frac{28832688827}{125000} + y \cdot \left(\frac{54929528941}{2000000} + y \cdot \left(z + x \cdot y\right)\right)}{c + y \cdot \left(b + y \cdot \left(a + y\right)\right)} \]
          4. lower-+.f64N/A

            \[\leadsto \frac{\frac{28832688827}{125000} + y \cdot \left(\frac{54929528941}{2000000} + y \cdot \left(z + x \cdot y\right)\right)}{c + y \cdot \left(b + y \cdot \left(a + y\right)\right)} \]
          5. lower-*.f64N/A

            \[\leadsto \frac{\frac{28832688827}{125000} + y \cdot \left(\frac{54929528941}{2000000} + y \cdot \left(z + x \cdot y\right)\right)}{c + y \cdot \left(b + y \cdot \left(a + y\right)\right)} \]
          6. lower-+.f64N/A

            \[\leadsto \frac{\frac{28832688827}{125000} + y \cdot \left(\frac{54929528941}{2000000} + y \cdot \left(z + x \cdot y\right)\right)}{c + y \cdot \left(b + y \cdot \left(a + y\right)\right)} \]
          7. lower-*.f64N/A

            \[\leadsto \frac{\frac{28832688827}{125000} + y \cdot \left(\frac{54929528941}{2000000} + y \cdot \left(z + x \cdot y\right)\right)}{c + y \cdot \left(b + y \cdot \left(a + y\right)\right)} \]
          8. lower-+.f64N/A

            \[\leadsto \frac{\frac{28832688827}{125000} + y \cdot \left(\frac{54929528941}{2000000} + y \cdot \left(z + x \cdot y\right)\right)}{c + y \cdot \color{blue}{\left(b + y \cdot \left(a + y\right)\right)}} \]
          9. lower-*.f64N/A

            \[\leadsto \frac{\frac{28832688827}{125000} + y \cdot \left(\frac{54929528941}{2000000} + y \cdot \left(z + x \cdot y\right)\right)}{c + y \cdot \left(b + \color{blue}{y \cdot \left(a + y\right)}\right)} \]
          10. lower-+.f64N/A

            \[\leadsto \frac{\frac{28832688827}{125000} + y \cdot \left(\frac{54929528941}{2000000} + y \cdot \left(z + x \cdot y\right)\right)}{c + y \cdot \left(b + y \cdot \color{blue}{\left(a + y\right)}\right)} \]
          11. lower-*.f64N/A

            \[\leadsto \frac{\frac{28832688827}{125000} + y \cdot \left(\frac{54929528941}{2000000} + y \cdot \left(z + x \cdot y\right)\right)}{c + y \cdot \left(b + y \cdot \left(a + \color{blue}{y}\right)\right)} \]
          12. lower-+.f6415.3%

            \[\leadsto \frac{230661.510616 + y \cdot \left(27464.7644705 + y \cdot \left(z + x \cdot y\right)\right)}{c + y \cdot \left(b + y \cdot \left(a + y\right)\right)} \]
        8. Applied rewrites15.3%

          \[\leadsto \frac{230661.510616 + y \cdot \left(27464.7644705 + y \cdot \left(z + x \cdot y\right)\right)}{\color{blue}{c + y \cdot \left(b + y \cdot \left(a + y\right)\right)}} \]

        if -7.1999999999999995e-29 < y < 3.6e34

        1. Initial program 56.6%

          \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
        2. Taylor expanded in y around 0

          \[\leadsto \frac{\color{blue}{\frac{28832688827}{125000}} \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
        3. Step-by-step derivation
          1. Applied rewrites48.1%

            \[\leadsto \frac{\color{blue}{230661.510616} \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
        4. Recombined 3 regimes into one program.
        5. Add Preprocessing

        Alternative 9: 72.3% accurate, 0.6× speedup?

        \[\begin{array}{l} t_1 := \left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i\\ \mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{t\_1} \leq \infty:\\ \;\;\;\;\frac{230661.510616 \cdot y + t}{t\_1}\\ \mathbf{else}:\\ \;\;\;\;\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\ \end{array} \]
        (FPCore (x y z t a b c i)
          :precision binary64
          (let* ((t_1 (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i)))
          (if (<=
               (/
                (+
                 (*
                  (+
                   (* (+ (* (+ (* x y) z) y) 27464.7644705) y)
                   230661.510616)
                  y)
                 t)
                t_1)
               INFINITY)
            (/ (+ (* 230661.510616 y) t) t_1)
            (- (+ x (/ z y)) (/ (* a x) y)))))
        double code(double x, double y, double z, double t, double a, double b, double c, double i) {
        	double t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i;
        	double tmp;
        	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= ((double) INFINITY)) {
        		tmp = ((230661.510616 * y) + t) / t_1;
        	} else {
        		tmp = (x + (z / y)) - ((a * x) / y);
        	}
        	return tmp;
        }
        
        public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
        	double t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i;
        	double tmp;
        	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= Double.POSITIVE_INFINITY) {
        		tmp = ((230661.510616 * y) + t) / t_1;
        	} else {
        		tmp = (x + (z / y)) - ((a * x) / y);
        	}
        	return tmp;
        }
        
        def code(x, y, z, t, a, b, c, i):
        	t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i
        	tmp = 0
        	if (((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= math.inf:
        		tmp = ((230661.510616 * y) + t) / t_1
        	else:
        		tmp = (x + (z / y)) - ((a * x) / y)
        	return tmp
        
        function code(x, y, z, t, a, b, c, i)
        	t_1 = Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i)
        	tmp = 0.0
        	if (Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= Inf)
        		tmp = Float64(Float64(Float64(230661.510616 * y) + t) / t_1);
        	else
        		tmp = Float64(Float64(x + Float64(z / y)) - Float64(Float64(a * x) / y));
        	end
        	return tmp
        end
        
        function tmp_2 = code(x, y, z, t, a, b, c, i)
        	t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i;
        	tmp = 0.0;
        	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= Inf)
        		tmp = ((230661.510616 * y) + t) / t_1;
        	else
        		tmp = (x + (z / y)) - ((a * x) / y);
        	end
        	tmp_2 = tmp;
        end
        
        code[x_, y_, z_, t_, a_, b_, c_, i_] := Block[{t$95$1 = N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]}, If[LessEqual[N[(N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / t$95$1), $MachinePrecision], Infinity], N[(N[(N[(230661.510616 * y), $MachinePrecision] + t), $MachinePrecision] / t$95$1), $MachinePrecision], N[(N[(x + N[(z / y), $MachinePrecision]), $MachinePrecision] - N[(N[(a * x), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]]]
        
        \begin{array}{l}
        t_1 := \left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i\\
        \mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{t\_1} \leq \infty:\\
        \;\;\;\;\frac{230661.510616 \cdot y + t}{t\_1}\\
        
        \mathbf{else}:\\
        \;\;\;\;\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\
        
        
        \end{array}
        
        Derivation
        1. Split input into 2 regimes
        2. if (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < +inf.0

          1. Initial program 56.6%

            \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
          2. Taylor expanded in y around 0

            \[\leadsto \frac{\color{blue}{\frac{28832688827}{125000}} \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
          3. Step-by-step derivation
            1. Applied rewrites48.1%

              \[\leadsto \frac{\color{blue}{230661.510616} \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]

            if +inf.0 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i))

            1. Initial program 56.6%

              \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
            2. Taylor expanded in y around inf

              \[\leadsto \color{blue}{\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}} \]
            3. Step-by-step derivation
              1. lower--.f64N/A

                \[\leadsto \left(x + \frac{z}{y}\right) - \color{blue}{\frac{a \cdot x}{y}} \]
              2. lower-+.f64N/A

                \[\leadsto \left(x + \frac{z}{y}\right) - \frac{\color{blue}{a \cdot x}}{y} \]
              3. lower-/.f64N/A

                \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot \color{blue}{x}}{y} \]
              4. lower-/.f64N/A

                \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot x}{\color{blue}{y}} \]
              5. lower-*.f6430.1%

                \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y} \]
            4. Applied rewrites30.1%

              \[\leadsto \color{blue}{\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}} \]
          4. Recombined 2 regimes into one program.
          5. Add Preprocessing

          Alternative 10: 66.3% accurate, 0.3× speedup?

          \[\begin{array}{l} t_1 := \left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i\\ t_2 := \frac{t}{t\_1}\\ t_3 := \left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t\\ t_4 := \frac{t\_3}{t\_1}\\ \mathbf{if}\;t\_4 \leq -2 \cdot 10^{-185}:\\ \;\;\;\;t\_2\\ \mathbf{elif}\;t\_4 \leq 4 \cdot 10^{-17}:\\ \;\;\;\;\frac{t\_3}{i}\\ \mathbf{elif}\;t\_4 \leq \infty:\\ \;\;\;\;t\_2\\ \mathbf{else}:\\ \;\;\;\;\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\ \end{array} \]
          (FPCore (x y z t a b c i)
            :precision binary64
            (let* ((t_1 (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i))
                 (t_2 (/ t t_1))
                 (t_3
                  (+
                   (*
                    (+
                     (* (+ (* (+ (* x y) z) y) 27464.7644705) y)
                     230661.510616)
                    y)
                   t))
                 (t_4 (/ t_3 t_1)))
            (if (<= t_4 -2e-185)
              t_2
              (if (<= t_4 4e-17)
                (/ t_3 i)
                (if (<= t_4 INFINITY) t_2 (- (+ x (/ z y)) (/ (* a x) y)))))))
          double code(double x, double y, double z, double t, double a, double b, double c, double i) {
          	double t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i;
          	double t_2 = t / t_1;
          	double t_3 = (((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t;
          	double t_4 = t_3 / t_1;
          	double tmp;
          	if (t_4 <= -2e-185) {
          		tmp = t_2;
          	} else if (t_4 <= 4e-17) {
          		tmp = t_3 / i;
          	} else if (t_4 <= ((double) INFINITY)) {
          		tmp = t_2;
          	} else {
          		tmp = (x + (z / y)) - ((a * x) / y);
          	}
          	return tmp;
          }
          
          public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
          	double t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i;
          	double t_2 = t / t_1;
          	double t_3 = (((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t;
          	double t_4 = t_3 / t_1;
          	double tmp;
          	if (t_4 <= -2e-185) {
          		tmp = t_2;
          	} else if (t_4 <= 4e-17) {
          		tmp = t_3 / i;
          	} else if (t_4 <= Double.POSITIVE_INFINITY) {
          		tmp = t_2;
          	} else {
          		tmp = (x + (z / y)) - ((a * x) / y);
          	}
          	return tmp;
          }
          
          def code(x, y, z, t, a, b, c, i):
          	t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i
          	t_2 = t / t_1
          	t_3 = (((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t
          	t_4 = t_3 / t_1
          	tmp = 0
          	if t_4 <= -2e-185:
          		tmp = t_2
          	elif t_4 <= 4e-17:
          		tmp = t_3 / i
          	elif t_4 <= math.inf:
          		tmp = t_2
          	else:
          		tmp = (x + (z / y)) - ((a * x) / y)
          	return tmp
          
          function code(x, y, z, t, a, b, c, i)
          	t_1 = Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i)
          	t_2 = Float64(t / t_1)
          	t_3 = Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t)
          	t_4 = Float64(t_3 / t_1)
          	tmp = 0.0
          	if (t_4 <= -2e-185)
          		tmp = t_2;
          	elseif (t_4 <= 4e-17)
          		tmp = Float64(t_3 / i);
          	elseif (t_4 <= Inf)
          		tmp = t_2;
          	else
          		tmp = Float64(Float64(x + Float64(z / y)) - Float64(Float64(a * x) / y));
          	end
          	return tmp
          end
          
          function tmp_2 = code(x, y, z, t, a, b, c, i)
          	t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i;
          	t_2 = t / t_1;
          	t_3 = (((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t;
          	t_4 = t_3 / t_1;
          	tmp = 0.0;
          	if (t_4 <= -2e-185)
          		tmp = t_2;
          	elseif (t_4 <= 4e-17)
          		tmp = t_3 / i;
          	elseif (t_4 <= Inf)
          		tmp = t_2;
          	else
          		tmp = (x + (z / y)) - ((a * x) / y);
          	end
          	tmp_2 = tmp;
          end
          
          code[x_, y_, z_, t_, a_, b_, c_, i_] := Block[{t$95$1 = N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]}, Block[{t$95$2 = N[(t / t$95$1), $MachinePrecision]}, Block[{t$95$3 = N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision]}, Block[{t$95$4 = N[(t$95$3 / t$95$1), $MachinePrecision]}, If[LessEqual[t$95$4, -2e-185], t$95$2, If[LessEqual[t$95$4, 4e-17], N[(t$95$3 / i), $MachinePrecision], If[LessEqual[t$95$4, Infinity], t$95$2, N[(N[(x + N[(z / y), $MachinePrecision]), $MachinePrecision] - N[(N[(a * x), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]]]]]]]]
          
          \begin{array}{l}
          t_1 := \left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i\\
          t_2 := \frac{t}{t\_1}\\
          t_3 := \left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t\\
          t_4 := \frac{t\_3}{t\_1}\\
          \mathbf{if}\;t\_4 \leq -2 \cdot 10^{-185}:\\
          \;\;\;\;t\_2\\
          
          \mathbf{elif}\;t\_4 \leq 4 \cdot 10^{-17}:\\
          \;\;\;\;\frac{t\_3}{i}\\
          
          \mathbf{elif}\;t\_4 \leq \infty:\\
          \;\;\;\;t\_2\\
          
          \mathbf{else}:\\
          \;\;\;\;\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\
          
          
          \end{array}
          
          Derivation
          1. Split input into 3 regimes
          2. if (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < -2e-185 or 4.0000000000000003e-17 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < +inf.0

            1. Initial program 56.6%

              \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
            2. Taylor expanded in y around 0

              \[\leadsto \frac{\color{blue}{\frac{28832688827}{125000}} \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
            3. Step-by-step derivation
              1. Applied rewrites48.1%

                \[\leadsto \frac{\color{blue}{230661.510616} \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
              2. Taylor expanded in y around 0

                \[\leadsto \frac{\color{blue}{t}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
              3. Step-by-step derivation
                1. Applied rewrites41.1%

                  \[\leadsto \frac{\color{blue}{t}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]

                if -2e-185 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < 4.0000000000000003e-17

                1. Initial program 56.6%

                  \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                2. Taylor expanded in y around 0

                  \[\leadsto \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\color{blue}{i}} \]
                3. Step-by-step derivation
                  1. Applied rewrites34.5%

                    \[\leadsto \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\color{blue}{i}} \]

                  if +inf.0 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i))

                  1. Initial program 56.6%

                    \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                  2. Taylor expanded in y around inf

                    \[\leadsto \color{blue}{\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}} \]
                  3. Step-by-step derivation
                    1. lower--.f64N/A

                      \[\leadsto \left(x + \frac{z}{y}\right) - \color{blue}{\frac{a \cdot x}{y}} \]
                    2. lower-+.f64N/A

                      \[\leadsto \left(x + \frac{z}{y}\right) - \frac{\color{blue}{a \cdot x}}{y} \]
                    3. lower-/.f64N/A

                      \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot \color{blue}{x}}{y} \]
                    4. lower-/.f64N/A

                      \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot x}{\color{blue}{y}} \]
                    5. lower-*.f6430.1%

                      \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y} \]
                  4. Applied rewrites30.1%

                    \[\leadsto \color{blue}{\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}} \]
                4. Recombined 3 regimes into one program.
                5. Add Preprocessing

                Alternative 11: 66.1% accurate, 0.3× speedup?

                \[\begin{array}{l} t_1 := \left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i\\ t_2 := \frac{t}{t\_1}\\ t_3 := \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{t\_1}\\ \mathbf{if}\;t\_3 \leq -2 \cdot 10^{-185}:\\ \;\;\;\;t\_2\\ \mathbf{elif}\;t\_3 \leq 4 \cdot 10^{-39}:\\ \;\;\;\;\frac{\left(\left(z \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{i}\\ \mathbf{elif}\;t\_3 \leq \infty:\\ \;\;\;\;t\_2\\ \mathbf{else}:\\ \;\;\;\;\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\ \end{array} \]
                (FPCore (x y z t a b c i)
                  :precision binary64
                  (let* ((t_1 (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i))
                       (t_2 (/ t t_1))
                       (t_3
                        (/
                         (+
                          (*
                           (+
                            (* (+ (* (+ (* x y) z) y) 27464.7644705) y)
                            230661.510616)
                           y)
                          t)
                         t_1)))
                  (if (<= t_3 -2e-185)
                    t_2
                    (if (<= t_3 4e-39)
                      (/
                       (+ (* (+ (* (+ (* z y) 27464.7644705) y) 230661.510616) y) t)
                       i)
                      (if (<= t_3 INFINITY) t_2 (- (+ x (/ z y)) (/ (* a x) y)))))))
                double code(double x, double y, double z, double t, double a, double b, double c, double i) {
                	double t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i;
                	double t_2 = t / t_1;
                	double t_3 = ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1;
                	double tmp;
                	if (t_3 <= -2e-185) {
                		tmp = t_2;
                	} else if (t_3 <= 4e-39) {
                		tmp = ((((((z * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / i;
                	} else if (t_3 <= ((double) INFINITY)) {
                		tmp = t_2;
                	} else {
                		tmp = (x + (z / y)) - ((a * x) / y);
                	}
                	return tmp;
                }
                
                public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
                	double t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i;
                	double t_2 = t / t_1;
                	double t_3 = ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1;
                	double tmp;
                	if (t_3 <= -2e-185) {
                		tmp = t_2;
                	} else if (t_3 <= 4e-39) {
                		tmp = ((((((z * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / i;
                	} else if (t_3 <= Double.POSITIVE_INFINITY) {
                		tmp = t_2;
                	} else {
                		tmp = (x + (z / y)) - ((a * x) / y);
                	}
                	return tmp;
                }
                
                def code(x, y, z, t, a, b, c, i):
                	t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i
                	t_2 = t / t_1
                	t_3 = ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1
                	tmp = 0
                	if t_3 <= -2e-185:
                		tmp = t_2
                	elif t_3 <= 4e-39:
                		tmp = ((((((z * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / i
                	elif t_3 <= math.inf:
                		tmp = t_2
                	else:
                		tmp = (x + (z / y)) - ((a * x) / y)
                	return tmp
                
                function code(x, y, z, t, a, b, c, i)
                	t_1 = Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i)
                	t_2 = Float64(t / t_1)
                	t_3 = Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1)
                	tmp = 0.0
                	if (t_3 <= -2e-185)
                		tmp = t_2;
                	elseif (t_3 <= 4e-39)
                		tmp = Float64(Float64(Float64(Float64(Float64(Float64(Float64(z * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / i);
                	elseif (t_3 <= Inf)
                		tmp = t_2;
                	else
                		tmp = Float64(Float64(x + Float64(z / y)) - Float64(Float64(a * x) / y));
                	end
                	return tmp
                end
                
                function tmp_2 = code(x, y, z, t, a, b, c, i)
                	t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i;
                	t_2 = t / t_1;
                	t_3 = ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1;
                	tmp = 0.0;
                	if (t_3 <= -2e-185)
                		tmp = t_2;
                	elseif (t_3 <= 4e-39)
                		tmp = ((((((z * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / i;
                	elseif (t_3 <= Inf)
                		tmp = t_2;
                	else
                		tmp = (x + (z / y)) - ((a * x) / y);
                	end
                	tmp_2 = tmp;
                end
                
                code[x_, y_, z_, t_, a_, b_, c_, i_] := Block[{t$95$1 = N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]}, Block[{t$95$2 = N[(t / t$95$1), $MachinePrecision]}, Block[{t$95$3 = N[(N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / t$95$1), $MachinePrecision]}, If[LessEqual[t$95$3, -2e-185], t$95$2, If[LessEqual[t$95$3, 4e-39], N[(N[(N[(N[(N[(N[(N[(z * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / i), $MachinePrecision], If[LessEqual[t$95$3, Infinity], t$95$2, N[(N[(x + N[(z / y), $MachinePrecision]), $MachinePrecision] - N[(N[(a * x), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]]]]]]]
                
                \begin{array}{l}
                t_1 := \left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i\\
                t_2 := \frac{t}{t\_1}\\
                t_3 := \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{t\_1}\\
                \mathbf{if}\;t\_3 \leq -2 \cdot 10^{-185}:\\
                \;\;\;\;t\_2\\
                
                \mathbf{elif}\;t\_3 \leq 4 \cdot 10^{-39}:\\
                \;\;\;\;\frac{\left(\left(z \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{i}\\
                
                \mathbf{elif}\;t\_3 \leq \infty:\\
                \;\;\;\;t\_2\\
                
                \mathbf{else}:\\
                \;\;\;\;\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\
                
                
                \end{array}
                
                Derivation
                1. Split input into 3 regimes
                2. if (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < -2e-185 or 3.9999999999999997e-39 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < +inf.0

                  1. Initial program 56.6%

                    \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                  2. Taylor expanded in y around 0

                    \[\leadsto \frac{\color{blue}{\frac{28832688827}{125000}} \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                  3. Step-by-step derivation
                    1. Applied rewrites48.1%

                      \[\leadsto \frac{\color{blue}{230661.510616} \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                    2. Taylor expanded in y around 0

                      \[\leadsto \frac{\color{blue}{t}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                    3. Step-by-step derivation
                      1. Applied rewrites41.1%

                        \[\leadsto \frac{\color{blue}{t}}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]

                      if -2e-185 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < 3.9999999999999997e-39

                      1. Initial program 56.6%

                        \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                      2. Taylor expanded in y around 0

                        \[\leadsto \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\color{blue}{i}} \]
                      3. Step-by-step derivation
                        1. Applied rewrites34.5%

                          \[\leadsto \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\color{blue}{i}} \]
                        2. Taylor expanded in x around 0

                          \[\leadsto \frac{\left(\left(\color{blue}{z} \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{i} \]
                        3. Step-by-step derivation
                          1. Applied rewrites33.5%

                            \[\leadsto \frac{\left(\left(\color{blue}{z} \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{i} \]

                          if +inf.0 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i))

                          1. Initial program 56.6%

                            \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                          2. Taylor expanded in y around inf

                            \[\leadsto \color{blue}{\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}} \]
                          3. Step-by-step derivation
                            1. lower--.f64N/A

                              \[\leadsto \left(x + \frac{z}{y}\right) - \color{blue}{\frac{a \cdot x}{y}} \]
                            2. lower-+.f64N/A

                              \[\leadsto \left(x + \frac{z}{y}\right) - \frac{\color{blue}{a \cdot x}}{y} \]
                            3. lower-/.f64N/A

                              \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot \color{blue}{x}}{y} \]
                            4. lower-/.f64N/A

                              \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot x}{\color{blue}{y}} \]
                            5. lower-*.f6430.1%

                              \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y} \]
                          4. Applied rewrites30.1%

                            \[\leadsto \color{blue}{\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}} \]
                        4. Recombined 3 regimes into one program.
                        5. Add Preprocessing

                        Alternative 12: 58.3% accurate, 0.6× speedup?

                        \[\begin{array}{l} \mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \leq \infty:\\ \;\;\;\;\frac{\left(\left(z \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{i}\\ \mathbf{else}:\\ \;\;\;\;\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\ \end{array} \]
                        (FPCore (x y z t a b c i)
                          :precision binary64
                          (if (<=
                             (/
                              (+
                               (*
                                (+ (* (+ (* (+ (* x y) z) y) 27464.7644705) y) 230661.510616)
                                y)
                               t)
                              (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i))
                             INFINITY)
                          (/ (+ (* (+ (* (+ (* z y) 27464.7644705) y) 230661.510616) y) t) i)
                          (- (+ x (/ z y)) (/ (* a x) y))))
                        double code(double x, double y, double z, double t, double a, double b, double c, double i) {
                        	double tmp;
                        	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= ((double) INFINITY)) {
                        		tmp = ((((((z * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / i;
                        	} else {
                        		tmp = (x + (z / y)) - ((a * x) / y);
                        	}
                        	return tmp;
                        }
                        
                        public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
                        	double tmp;
                        	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Double.POSITIVE_INFINITY) {
                        		tmp = ((((((z * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / i;
                        	} else {
                        		tmp = (x + (z / y)) - ((a * x) / y);
                        	}
                        	return tmp;
                        }
                        
                        def code(x, y, z, t, a, b, c, i):
                        	tmp = 0
                        	if (((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= math.inf:
                        		tmp = ((((((z * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / i
                        	else:
                        		tmp = (x + (z / y)) - ((a * x) / y)
                        	return tmp
                        
                        function code(x, y, z, t, a, b, c, i)
                        	tmp = 0.0
                        	if (Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i)) <= Inf)
                        		tmp = Float64(Float64(Float64(Float64(Float64(Float64(Float64(z * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / i);
                        	else
                        		tmp = Float64(Float64(x + Float64(z / y)) - Float64(Float64(a * x) / y));
                        	end
                        	return tmp
                        end
                        
                        function tmp_2 = code(x, y, z, t, a, b, c, i)
                        	tmp = 0.0;
                        	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Inf)
                        		tmp = ((((((z * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / i;
                        	else
                        		tmp = (x + (z / y)) - ((a * x) / y);
                        	end
                        	tmp_2 = tmp;
                        end
                        
                        code[x_, y_, z_, t_, a_, b_, c_, i_] := If[LessEqual[N[(N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]), $MachinePrecision], Infinity], N[(N[(N[(N[(N[(N[(N[(z * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / i), $MachinePrecision], N[(N[(x + N[(z / y), $MachinePrecision]), $MachinePrecision] - N[(N[(a * x), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]]
                        
                        \begin{array}{l}
                        \mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \leq \infty:\\
                        \;\;\;\;\frac{\left(\left(z \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{i}\\
                        
                        \mathbf{else}:\\
                        \;\;\;\;\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\
                        
                        
                        \end{array}
                        
                        Derivation
                        1. Split input into 2 regimes
                        2. if (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < +inf.0

                          1. Initial program 56.6%

                            \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                          2. Taylor expanded in y around 0

                            \[\leadsto \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\color{blue}{i}} \]
                          3. Step-by-step derivation
                            1. Applied rewrites34.5%

                              \[\leadsto \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\color{blue}{i}} \]
                            2. Taylor expanded in x around 0

                              \[\leadsto \frac{\left(\left(\color{blue}{z} \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{i} \]
                            3. Step-by-step derivation
                              1. Applied rewrites33.5%

                                \[\leadsto \frac{\left(\left(\color{blue}{z} \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{i} \]

                              if +inf.0 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i))

                              1. Initial program 56.6%

                                \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                              2. Taylor expanded in y around inf

                                \[\leadsto \color{blue}{\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}} \]
                              3. Step-by-step derivation
                                1. lower--.f64N/A

                                  \[\leadsto \left(x + \frac{z}{y}\right) - \color{blue}{\frac{a \cdot x}{y}} \]
                                2. lower-+.f64N/A

                                  \[\leadsto \left(x + \frac{z}{y}\right) - \frac{\color{blue}{a \cdot x}}{y} \]
                                3. lower-/.f64N/A

                                  \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot \color{blue}{x}}{y} \]
                                4. lower-/.f64N/A

                                  \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot x}{\color{blue}{y}} \]
                                5. lower-*.f6430.1%

                                  \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y} \]
                              4. Applied rewrites30.1%

                                \[\leadsto \color{blue}{\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}} \]
                            4. Recombined 2 regimes into one program.
                            5. Add Preprocessing

                            Alternative 13: 56.8% accurate, 0.6× speedup?

                            \[\begin{array}{l} \mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \leq \infty:\\ \;\;\;\;\frac{\left(230661.510616 + 27464.7644705 \cdot y\right) \cdot y + t}{i}\\ \mathbf{else}:\\ \;\;\;\;\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\ \end{array} \]
                            (FPCore (x y z t a b c i)
                              :precision binary64
                              (if (<=
                                 (/
                                  (+
                                   (*
                                    (+ (* (+ (* (+ (* x y) z) y) 27464.7644705) y) 230661.510616)
                                    y)
                                   t)
                                  (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i))
                                 INFINITY)
                              (/ (+ (* (+ 230661.510616 (* 27464.7644705 y)) y) t) i)
                              (- (+ x (/ z y)) (/ (* a x) y))))
                            double code(double x, double y, double z, double t, double a, double b, double c, double i) {
                            	double tmp;
                            	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= ((double) INFINITY)) {
                            		tmp = (((230661.510616 + (27464.7644705 * y)) * y) + t) / i;
                            	} else {
                            		tmp = (x + (z / y)) - ((a * x) / y);
                            	}
                            	return tmp;
                            }
                            
                            public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
                            	double tmp;
                            	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Double.POSITIVE_INFINITY) {
                            		tmp = (((230661.510616 + (27464.7644705 * y)) * y) + t) / i;
                            	} else {
                            		tmp = (x + (z / y)) - ((a * x) / y);
                            	}
                            	return tmp;
                            }
                            
                            def code(x, y, z, t, a, b, c, i):
                            	tmp = 0
                            	if (((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= math.inf:
                            		tmp = (((230661.510616 + (27464.7644705 * y)) * y) + t) / i
                            	else:
                            		tmp = (x + (z / y)) - ((a * x) / y)
                            	return tmp
                            
                            function code(x, y, z, t, a, b, c, i)
                            	tmp = 0.0
                            	if (Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i)) <= Inf)
                            		tmp = Float64(Float64(Float64(Float64(230661.510616 + Float64(27464.7644705 * y)) * y) + t) / i);
                            	else
                            		tmp = Float64(Float64(x + Float64(z / y)) - Float64(Float64(a * x) / y));
                            	end
                            	return tmp
                            end
                            
                            function tmp_2 = code(x, y, z, t, a, b, c, i)
                            	tmp = 0.0;
                            	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Inf)
                            		tmp = (((230661.510616 + (27464.7644705 * y)) * y) + t) / i;
                            	else
                            		tmp = (x + (z / y)) - ((a * x) / y);
                            	end
                            	tmp_2 = tmp;
                            end
                            
                            code[x_, y_, z_, t_, a_, b_, c_, i_] := If[LessEqual[N[(N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]), $MachinePrecision], Infinity], N[(N[(N[(N[(230661.510616 + N[(27464.7644705 * y), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / i), $MachinePrecision], N[(N[(x + N[(z / y), $MachinePrecision]), $MachinePrecision] - N[(N[(a * x), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]]
                            
                            \begin{array}{l}
                            \mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \leq \infty:\\
                            \;\;\;\;\frac{\left(230661.510616 + 27464.7644705 \cdot y\right) \cdot y + t}{i}\\
                            
                            \mathbf{else}:\\
                            \;\;\;\;\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\
                            
                            
                            \end{array}
                            
                            Derivation
                            1. Split input into 2 regimes
                            2. if (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < +inf.0

                              1. Initial program 56.6%

                                \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                              2. Taylor expanded in y around 0

                                \[\leadsto \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\color{blue}{i}} \]
                              3. Step-by-step derivation
                                1. Applied rewrites34.5%

                                  \[\leadsto \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\color{blue}{i}} \]
                                2. Taylor expanded in y around 0

                                  \[\leadsto \frac{\color{blue}{\left(\frac{28832688827}{125000} + \frac{54929528941}{2000000} \cdot y\right)} \cdot y + t}{i} \]
                                3. Step-by-step derivation
                                  1. lower-+.f64N/A

                                    \[\leadsto \frac{\left(\frac{28832688827}{125000} + \color{blue}{\frac{54929528941}{2000000} \cdot y}\right) \cdot y + t}{i} \]
                                  2. lower-*.f6432.2%

                                    \[\leadsto \frac{\left(230661.510616 + 27464.7644705 \cdot \color{blue}{y}\right) \cdot y + t}{i} \]
                                4. Applied rewrites32.2%

                                  \[\leadsto \frac{\color{blue}{\left(230661.510616 + 27464.7644705 \cdot y\right)} \cdot y + t}{i} \]

                                if +inf.0 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i))

                                1. Initial program 56.6%

                                  \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                                2. Taylor expanded in y around inf

                                  \[\leadsto \color{blue}{\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}} \]
                                3. Step-by-step derivation
                                  1. lower--.f64N/A

                                    \[\leadsto \left(x + \frac{z}{y}\right) - \color{blue}{\frac{a \cdot x}{y}} \]
                                  2. lower-+.f64N/A

                                    \[\leadsto \left(x + \frac{z}{y}\right) - \frac{\color{blue}{a \cdot x}}{y} \]
                                  3. lower-/.f64N/A

                                    \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot \color{blue}{x}}{y} \]
                                  4. lower-/.f64N/A

                                    \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot x}{\color{blue}{y}} \]
                                  5. lower-*.f6430.1%

                                    \[\leadsto \left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y} \]
                                4. Applied rewrites30.1%

                                  \[\leadsto \color{blue}{\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}} \]
                              4. Recombined 2 regimes into one program.
                              5. Add Preprocessing

                              Alternative 14: 35.7% accurate, 0.7× speedup?

                              \[\begin{array}{l} \mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \leq \infty:\\ \;\;\;\;\frac{\left(230661.510616 + 27464.7644705 \cdot y\right) \cdot y + t}{i}\\ \mathbf{else}:\\ \;\;\;\;\frac{x \cdot y}{a}\\ \end{array} \]
                              (FPCore (x y z t a b c i)
                                :precision binary64
                                (if (<=
                                   (/
                                    (+
                                     (*
                                      (+ (* (+ (* (+ (* x y) z) y) 27464.7644705) y) 230661.510616)
                                      y)
                                     t)
                                    (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i))
                                   INFINITY)
                                (/ (+ (* (+ 230661.510616 (* 27464.7644705 y)) y) t) i)
                                (/ (* x y) a)))
                              double code(double x, double y, double z, double t, double a, double b, double c, double i) {
                              	double tmp;
                              	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= ((double) INFINITY)) {
                              		tmp = (((230661.510616 + (27464.7644705 * y)) * y) + t) / i;
                              	} else {
                              		tmp = (x * y) / a;
                              	}
                              	return tmp;
                              }
                              
                              public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
                              	double tmp;
                              	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Double.POSITIVE_INFINITY) {
                              		tmp = (((230661.510616 + (27464.7644705 * y)) * y) + t) / i;
                              	} else {
                              		tmp = (x * y) / a;
                              	}
                              	return tmp;
                              }
                              
                              def code(x, y, z, t, a, b, c, i):
                              	tmp = 0
                              	if (((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= math.inf:
                              		tmp = (((230661.510616 + (27464.7644705 * y)) * y) + t) / i
                              	else:
                              		tmp = (x * y) / a
                              	return tmp
                              
                              function code(x, y, z, t, a, b, c, i)
                              	tmp = 0.0
                              	if (Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i)) <= Inf)
                              		tmp = Float64(Float64(Float64(Float64(230661.510616 + Float64(27464.7644705 * y)) * y) + t) / i);
                              	else
                              		tmp = Float64(Float64(x * y) / a);
                              	end
                              	return tmp
                              end
                              
                              function tmp_2 = code(x, y, z, t, a, b, c, i)
                              	tmp = 0.0;
                              	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Inf)
                              		tmp = (((230661.510616 + (27464.7644705 * y)) * y) + t) / i;
                              	else
                              		tmp = (x * y) / a;
                              	end
                              	tmp_2 = tmp;
                              end
                              
                              code[x_, y_, z_, t_, a_, b_, c_, i_] := If[LessEqual[N[(N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]), $MachinePrecision], Infinity], N[(N[(N[(N[(230661.510616 + N[(27464.7644705 * y), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / i), $MachinePrecision], N[(N[(x * y), $MachinePrecision] / a), $MachinePrecision]]
                              
                              \begin{array}{l}
                              \mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \leq \infty:\\
                              \;\;\;\;\frac{\left(230661.510616 + 27464.7644705 \cdot y\right) \cdot y + t}{i}\\
                              
                              \mathbf{else}:\\
                              \;\;\;\;\frac{x \cdot y}{a}\\
                              
                              
                              \end{array}
                              
                              Derivation
                              1. Split input into 2 regimes
                              2. if (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < +inf.0

                                1. Initial program 56.6%

                                  \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                                2. Taylor expanded in y around 0

                                  \[\leadsto \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\color{blue}{i}} \]
                                3. Step-by-step derivation
                                  1. Applied rewrites34.5%

                                    \[\leadsto \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\color{blue}{i}} \]
                                  2. Taylor expanded in y around 0

                                    \[\leadsto \frac{\color{blue}{\left(\frac{28832688827}{125000} + \frac{54929528941}{2000000} \cdot y\right)} \cdot y + t}{i} \]
                                  3. Step-by-step derivation
                                    1. lower-+.f64N/A

                                      \[\leadsto \frac{\left(\frac{28832688827}{125000} + \color{blue}{\frac{54929528941}{2000000} \cdot y}\right) \cdot y + t}{i} \]
                                    2. lower-*.f6432.2%

                                      \[\leadsto \frac{\left(230661.510616 + 27464.7644705 \cdot \color{blue}{y}\right) \cdot y + t}{i} \]
                                  4. Applied rewrites32.2%

                                    \[\leadsto \frac{\color{blue}{\left(230661.510616 + 27464.7644705 \cdot y\right)} \cdot y + t}{i} \]

                                  if +inf.0 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i))

                                  1. Initial program 56.6%

                                    \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                                  2. Taylor expanded in a around inf

                                    \[\leadsto \color{blue}{\frac{t + y \cdot \left(\frac{28832688827}{125000} + y \cdot \left(\frac{54929528941}{2000000} + y \cdot \left(z + x \cdot y\right)\right)\right)}{a \cdot {y}^{3}}} \]
                                  3. Step-by-step derivation
                                    1. lower-/.f64N/A

                                      \[\leadsto \frac{t + y \cdot \left(\frac{28832688827}{125000} + y \cdot \left(\frac{54929528941}{2000000} + y \cdot \left(z + x \cdot y\right)\right)\right)}{\color{blue}{a \cdot {y}^{3}}} \]
                                  4. Applied rewrites6.2%

                                    \[\leadsto \color{blue}{\frac{t + y \cdot \left(230661.510616 + y \cdot \left(27464.7644705 + y \cdot \left(z + x \cdot y\right)\right)\right)}{a \cdot {y}^{3}}} \]
                                  5. Taylor expanded in x around inf

                                    \[\leadsto \frac{x \cdot y}{\color{blue}{a}} \]
                                  6. Step-by-step derivation
                                    1. lower-/.f64N/A

                                      \[\leadsto \frac{x \cdot y}{a} \]
                                    2. lower-*.f649.8%

                                      \[\leadsto \frac{x \cdot y}{a} \]
                                  7. Applied rewrites9.8%

                                    \[\leadsto \frac{x \cdot y}{\color{blue}{a}} \]
                                4. Recombined 2 regimes into one program.
                                5. Add Preprocessing

                                Alternative 15: 35.5% accurate, 0.7× speedup?

                                \[\begin{array}{l} \mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \leq \infty:\\ \;\;\;\;\frac{230661.510616 \cdot y + t}{i}\\ \mathbf{else}:\\ \;\;\;\;\frac{x \cdot y}{a}\\ \end{array} \]
                                (FPCore (x y z t a b c i)
                                  :precision binary64
                                  (if (<=
                                     (/
                                      (+
                                       (*
                                        (+ (* (+ (* (+ (* x y) z) y) 27464.7644705) y) 230661.510616)
                                        y)
                                       t)
                                      (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i))
                                     INFINITY)
                                  (/ (+ (* 230661.510616 y) t) i)
                                  (/ (* x y) a)))
                                double code(double x, double y, double z, double t, double a, double b, double c, double i) {
                                	double tmp;
                                	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= ((double) INFINITY)) {
                                		tmp = ((230661.510616 * y) + t) / i;
                                	} else {
                                		tmp = (x * y) / a;
                                	}
                                	return tmp;
                                }
                                
                                public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
                                	double tmp;
                                	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Double.POSITIVE_INFINITY) {
                                		tmp = ((230661.510616 * y) + t) / i;
                                	} else {
                                		tmp = (x * y) / a;
                                	}
                                	return tmp;
                                }
                                
                                def code(x, y, z, t, a, b, c, i):
                                	tmp = 0
                                	if (((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= math.inf:
                                		tmp = ((230661.510616 * y) + t) / i
                                	else:
                                		tmp = (x * y) / a
                                	return tmp
                                
                                function code(x, y, z, t, a, b, c, i)
                                	tmp = 0.0
                                	if (Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i)) <= Inf)
                                		tmp = Float64(Float64(Float64(230661.510616 * y) + t) / i);
                                	else
                                		tmp = Float64(Float64(x * y) / a);
                                	end
                                	return tmp
                                end
                                
                                function tmp_2 = code(x, y, z, t, a, b, c, i)
                                	tmp = 0.0;
                                	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Inf)
                                		tmp = ((230661.510616 * y) + t) / i;
                                	else
                                		tmp = (x * y) / a;
                                	end
                                	tmp_2 = tmp;
                                end
                                
                                code[x_, y_, z_, t_, a_, b_, c_, i_] := If[LessEqual[N[(N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]), $MachinePrecision], Infinity], N[(N[(N[(230661.510616 * y), $MachinePrecision] + t), $MachinePrecision] / i), $MachinePrecision], N[(N[(x * y), $MachinePrecision] / a), $MachinePrecision]]
                                
                                \begin{array}{l}
                                \mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \leq \infty:\\
                                \;\;\;\;\frac{230661.510616 \cdot y + t}{i}\\
                                
                                \mathbf{else}:\\
                                \;\;\;\;\frac{x \cdot y}{a}\\
                                
                                
                                \end{array}
                                
                                Derivation
                                1. Split input into 2 regimes
                                2. if (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < +inf.0

                                  1. Initial program 56.6%

                                    \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                                  2. Taylor expanded in y around 0

                                    \[\leadsto \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\color{blue}{i}} \]
                                  3. Step-by-step derivation
                                    1. Applied rewrites34.5%

                                      \[\leadsto \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\color{blue}{i}} \]
                                    2. Taylor expanded in y around 0

                                      \[\leadsto \frac{\color{blue}{\frac{28832688827}{125000}} \cdot y + t}{i} \]
                                    3. Step-by-step derivation
                                      1. Applied rewrites32.2%

                                        \[\leadsto \frac{\color{blue}{230661.510616} \cdot y + t}{i} \]

                                      if +inf.0 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i))

                                      1. Initial program 56.6%

                                        \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                                      2. Taylor expanded in a around inf

                                        \[\leadsto \color{blue}{\frac{t + y \cdot \left(\frac{28832688827}{125000} + y \cdot \left(\frac{54929528941}{2000000} + y \cdot \left(z + x \cdot y\right)\right)\right)}{a \cdot {y}^{3}}} \]
                                      3. Step-by-step derivation
                                        1. lower-/.f64N/A

                                          \[\leadsto \frac{t + y \cdot \left(\frac{28832688827}{125000} + y \cdot \left(\frac{54929528941}{2000000} + y \cdot \left(z + x \cdot y\right)\right)\right)}{\color{blue}{a \cdot {y}^{3}}} \]
                                      4. Applied rewrites6.2%

                                        \[\leadsto \color{blue}{\frac{t + y \cdot \left(230661.510616 + y \cdot \left(27464.7644705 + y \cdot \left(z + x \cdot y\right)\right)\right)}{a \cdot {y}^{3}}} \]
                                      5. Taylor expanded in x around inf

                                        \[\leadsto \frac{x \cdot y}{\color{blue}{a}} \]
                                      6. Step-by-step derivation
                                        1. lower-/.f64N/A

                                          \[\leadsto \frac{x \cdot y}{a} \]
                                        2. lower-*.f649.8%

                                          \[\leadsto \frac{x \cdot y}{a} \]
                                      7. Applied rewrites9.8%

                                        \[\leadsto \frac{x \cdot y}{\color{blue}{a}} \]
                                    4. Recombined 2 regimes into one program.
                                    5. Add Preprocessing

                                    Alternative 16: 32.2% accurate, 0.8× speedup?

                                    \[\begin{array}{l} \mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \leq \infty:\\ \;\;\;\;\frac{t}{i}\\ \mathbf{else}:\\ \;\;\;\;\frac{x \cdot y}{a}\\ \end{array} \]
                                    (FPCore (x y z t a b c i)
                                      :precision binary64
                                      (if (<=
                                         (/
                                          (+
                                           (*
                                            (+ (* (+ (* (+ (* x y) z) y) 27464.7644705) y) 230661.510616)
                                            y)
                                           t)
                                          (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i))
                                         INFINITY)
                                      (/ t i)
                                      (/ (* x y) a)))
                                    double code(double x, double y, double z, double t, double a, double b, double c, double i) {
                                    	double tmp;
                                    	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= ((double) INFINITY)) {
                                    		tmp = t / i;
                                    	} else {
                                    		tmp = (x * y) / a;
                                    	}
                                    	return tmp;
                                    }
                                    
                                    public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
                                    	double tmp;
                                    	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Double.POSITIVE_INFINITY) {
                                    		tmp = t / i;
                                    	} else {
                                    		tmp = (x * y) / a;
                                    	}
                                    	return tmp;
                                    }
                                    
                                    def code(x, y, z, t, a, b, c, i):
                                    	tmp = 0
                                    	if (((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= math.inf:
                                    		tmp = t / i
                                    	else:
                                    		tmp = (x * y) / a
                                    	return tmp
                                    
                                    function code(x, y, z, t, a, b, c, i)
                                    	tmp = 0.0
                                    	if (Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i)) <= Inf)
                                    		tmp = Float64(t / i);
                                    	else
                                    		tmp = Float64(Float64(x * y) / a);
                                    	end
                                    	return tmp
                                    end
                                    
                                    function tmp_2 = code(x, y, z, t, a, b, c, i)
                                    	tmp = 0.0;
                                    	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Inf)
                                    		tmp = t / i;
                                    	else
                                    		tmp = (x * y) / a;
                                    	end
                                    	tmp_2 = tmp;
                                    end
                                    
                                    code[x_, y_, z_, t_, a_, b_, c_, i_] := If[LessEqual[N[(N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]), $MachinePrecision], Infinity], N[(t / i), $MachinePrecision], N[(N[(x * y), $MachinePrecision] / a), $MachinePrecision]]
                                    
                                    \begin{array}{l}
                                    \mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \leq \infty:\\
                                    \;\;\;\;\frac{t}{i}\\
                                    
                                    \mathbf{else}:\\
                                    \;\;\;\;\frac{x \cdot y}{a}\\
                                    
                                    
                                    \end{array}
                                    
                                    Derivation
                                    1. Split input into 2 regimes
                                    2. if (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < +inf.0

                                      1. Initial program 56.6%

                                        \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                                      2. Taylor expanded in y around 0

                                        \[\leadsto \color{blue}{\frac{t}{i}} \]
                                      3. Step-by-step derivation
                                        1. lower-/.f6429.0%

                                          \[\leadsto \frac{t}{\color{blue}{i}} \]
                                      4. Applied rewrites29.0%

                                        \[\leadsto \color{blue}{\frac{t}{i}} \]

                                      if +inf.0 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i))

                                      1. Initial program 56.6%

                                        \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                                      2. Taylor expanded in a around inf

                                        \[\leadsto \color{blue}{\frac{t + y \cdot \left(\frac{28832688827}{125000} + y \cdot \left(\frac{54929528941}{2000000} + y \cdot \left(z + x \cdot y\right)\right)\right)}{a \cdot {y}^{3}}} \]
                                      3. Step-by-step derivation
                                        1. lower-/.f64N/A

                                          \[\leadsto \frac{t + y \cdot \left(\frac{28832688827}{125000} + y \cdot \left(\frac{54929528941}{2000000} + y \cdot \left(z + x \cdot y\right)\right)\right)}{\color{blue}{a \cdot {y}^{3}}} \]
                                      4. Applied rewrites6.2%

                                        \[\leadsto \color{blue}{\frac{t + y \cdot \left(230661.510616 + y \cdot \left(27464.7644705 + y \cdot \left(z + x \cdot y\right)\right)\right)}{a \cdot {y}^{3}}} \]
                                      5. Taylor expanded in x around inf

                                        \[\leadsto \frac{x \cdot y}{\color{blue}{a}} \]
                                      6. Step-by-step derivation
                                        1. lower-/.f64N/A

                                          \[\leadsto \frac{x \cdot y}{a} \]
                                        2. lower-*.f649.8%

                                          \[\leadsto \frac{x \cdot y}{a} \]
                                      7. Applied rewrites9.8%

                                        \[\leadsto \frac{x \cdot y}{\color{blue}{a}} \]
                                    3. Recombined 2 regimes into one program.
                                    4. Add Preprocessing

                                    Alternative 17: 31.0% accurate, 0.8× speedup?

                                    \[\begin{array}{l} \mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \leq \infty:\\ \;\;\;\;\frac{t}{i}\\ \mathbf{else}:\\ \;\;\;\;\frac{z}{a}\\ \end{array} \]
                                    (FPCore (x y z t a b c i)
                                      :precision binary64
                                      (if (<=
                                         (/
                                          (+
                                           (*
                                            (+ (* (+ (* (+ (* x y) z) y) 27464.7644705) y) 230661.510616)
                                            y)
                                           t)
                                          (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i))
                                         INFINITY)
                                      (/ t i)
                                      (/ z a)))
                                    double code(double x, double y, double z, double t, double a, double b, double c, double i) {
                                    	double tmp;
                                    	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= ((double) INFINITY)) {
                                    		tmp = t / i;
                                    	} else {
                                    		tmp = z / a;
                                    	}
                                    	return tmp;
                                    }
                                    
                                    public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
                                    	double tmp;
                                    	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Double.POSITIVE_INFINITY) {
                                    		tmp = t / i;
                                    	} else {
                                    		tmp = z / a;
                                    	}
                                    	return tmp;
                                    }
                                    
                                    def code(x, y, z, t, a, b, c, i):
                                    	tmp = 0
                                    	if (((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= math.inf:
                                    		tmp = t / i
                                    	else:
                                    		tmp = z / a
                                    	return tmp
                                    
                                    function code(x, y, z, t, a, b, c, i)
                                    	tmp = 0.0
                                    	if (Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i)) <= Inf)
                                    		tmp = Float64(t / i);
                                    	else
                                    		tmp = Float64(z / a);
                                    	end
                                    	return tmp
                                    end
                                    
                                    function tmp_2 = code(x, y, z, t, a, b, c, i)
                                    	tmp = 0.0;
                                    	if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Inf)
                                    		tmp = t / i;
                                    	else
                                    		tmp = z / a;
                                    	end
                                    	tmp_2 = tmp;
                                    end
                                    
                                    code[x_, y_, z_, t_, a_, b_, c_, i_] := If[LessEqual[N[(N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]), $MachinePrecision], Infinity], N[(t / i), $MachinePrecision], N[(z / a), $MachinePrecision]]
                                    
                                    \begin{array}{l}
                                    \mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \leq \infty:\\
                                    \;\;\;\;\frac{t}{i}\\
                                    
                                    \mathbf{else}:\\
                                    \;\;\;\;\frac{z}{a}\\
                                    
                                    
                                    \end{array}
                                    
                                    Derivation
                                    1. Split input into 2 regimes
                                    2. if (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < +inf.0

                                      1. Initial program 56.6%

                                        \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                                      2. Taylor expanded in y around 0

                                        \[\leadsto \color{blue}{\frac{t}{i}} \]
                                      3. Step-by-step derivation
                                        1. lower-/.f6429.0%

                                          \[\leadsto \frac{t}{\color{blue}{i}} \]
                                      4. Applied rewrites29.0%

                                        \[\leadsto \color{blue}{\frac{t}{i}} \]

                                      if +inf.0 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i))

                                      1. Initial program 56.6%

                                        \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                                      2. Taylor expanded in a around inf

                                        \[\leadsto \color{blue}{\frac{t + y \cdot \left(\frac{28832688827}{125000} + y \cdot \left(\frac{54929528941}{2000000} + y \cdot \left(z + x \cdot y\right)\right)\right)}{a \cdot {y}^{3}}} \]
                                      3. Step-by-step derivation
                                        1. lower-/.f64N/A

                                          \[\leadsto \frac{t + y \cdot \left(\frac{28832688827}{125000} + y \cdot \left(\frac{54929528941}{2000000} + y \cdot \left(z + x \cdot y\right)\right)\right)}{\color{blue}{a \cdot {y}^{3}}} \]
                                      4. Applied rewrites6.2%

                                        \[\leadsto \color{blue}{\frac{t + y \cdot \left(230661.510616 + y \cdot \left(27464.7644705 + y \cdot \left(z + x \cdot y\right)\right)\right)}{a \cdot {y}^{3}}} \]
                                      5. Taylor expanded in z around inf

                                        \[\leadsto \frac{z}{\color{blue}{a}} \]
                                      6. Step-by-step derivation
                                        1. lower-/.f647.6%

                                          \[\leadsto \frac{z}{a} \]
                                      7. Applied rewrites7.6%

                                        \[\leadsto \frac{z}{\color{blue}{a}} \]
                                    3. Recombined 2 regimes into one program.
                                    4. Add Preprocessing

                                    Alternative 18: 7.6% accurate, 5.9× speedup?

                                    \[\frac{z}{a} \]
                                    (FPCore (x y z t a b c i)
                                      :precision binary64
                                      (/ z a))
                                    double code(double x, double y, double z, double t, double a, double b, double c, double i) {
                                    	return z / a;
                                    }
                                    
                                    module fmin_fmax_functions
                                        implicit none
                                        private
                                        public fmax
                                        public fmin
                                    
                                        interface fmax
                                            module procedure fmax88
                                            module procedure fmax44
                                            module procedure fmax84
                                            module procedure fmax48
                                        end interface
                                        interface fmin
                                            module procedure fmin88
                                            module procedure fmin44
                                            module procedure fmin84
                                            module procedure fmin48
                                        end interface
                                    contains
                                        real(8) function fmax88(x, y) result (res)
                                            real(8), intent (in) :: x
                                            real(8), intent (in) :: y
                                            res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                        end function
                                        real(4) function fmax44(x, y) result (res)
                                            real(4), intent (in) :: x
                                            real(4), intent (in) :: y
                                            res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                        end function
                                        real(8) function fmax84(x, y) result(res)
                                            real(8), intent (in) :: x
                                            real(4), intent (in) :: y
                                            res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                                        end function
                                        real(8) function fmax48(x, y) result(res)
                                            real(4), intent (in) :: x
                                            real(8), intent (in) :: y
                                            res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                                        end function
                                        real(8) function fmin88(x, y) result (res)
                                            real(8), intent (in) :: x
                                            real(8), intent (in) :: y
                                            res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                        end function
                                        real(4) function fmin44(x, y) result (res)
                                            real(4), intent (in) :: x
                                            real(4), intent (in) :: y
                                            res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                        end function
                                        real(8) function fmin84(x, y) result(res)
                                            real(8), intent (in) :: x
                                            real(4), intent (in) :: y
                                            res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                                        end function
                                        real(8) function fmin48(x, y) result(res)
                                            real(4), intent (in) :: x
                                            real(8), intent (in) :: y
                                            res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                                        end function
                                    end module
                                    
                                    real(8) function code(x, y, z, t, a, b, c, i)
                                    use fmin_fmax_functions
                                        real(8), intent (in) :: x
                                        real(8), intent (in) :: y
                                        real(8), intent (in) :: z
                                        real(8), intent (in) :: t
                                        real(8), intent (in) :: a
                                        real(8), intent (in) :: b
                                        real(8), intent (in) :: c
                                        real(8), intent (in) :: i
                                        code = z / a
                                    end function
                                    
                                    public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
                                    	return z / a;
                                    }
                                    
                                    def code(x, y, z, t, a, b, c, i):
                                    	return z / a
                                    
                                    function code(x, y, z, t, a, b, c, i)
                                    	return Float64(z / a)
                                    end
                                    
                                    function tmp = code(x, y, z, t, a, b, c, i)
                                    	tmp = z / a;
                                    end
                                    
                                    code[x_, y_, z_, t_, a_, b_, c_, i_] := N[(z / a), $MachinePrecision]
                                    
                                    \frac{z}{a}
                                    
                                    Derivation
                                    1. Initial program 56.6%

                                      \[\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \]
                                    2. Taylor expanded in a around inf

                                      \[\leadsto \color{blue}{\frac{t + y \cdot \left(\frac{28832688827}{125000} + y \cdot \left(\frac{54929528941}{2000000} + y \cdot \left(z + x \cdot y\right)\right)\right)}{a \cdot {y}^{3}}} \]
                                    3. Step-by-step derivation
                                      1. lower-/.f64N/A

                                        \[\leadsto \frac{t + y \cdot \left(\frac{28832688827}{125000} + y \cdot \left(\frac{54929528941}{2000000} + y \cdot \left(z + x \cdot y\right)\right)\right)}{\color{blue}{a \cdot {y}^{3}}} \]
                                    4. Applied rewrites6.2%

                                      \[\leadsto \color{blue}{\frac{t + y \cdot \left(230661.510616 + y \cdot \left(27464.7644705 + y \cdot \left(z + x \cdot y\right)\right)\right)}{a \cdot {y}^{3}}} \]
                                    5. Taylor expanded in z around inf

                                      \[\leadsto \frac{z}{\color{blue}{a}} \]
                                    6. Step-by-step derivation
                                      1. lower-/.f647.6%

                                        \[\leadsto \frac{z}{a} \]
                                    7. Applied rewrites7.6%

                                      \[\leadsto \frac{z}{\color{blue}{a}} \]
                                    8. Add Preprocessing

                                    Reproduce

                                    ?
                                    herbie shell --seed 2025258 
                                    (FPCore (x y z t a b c i)
                                      :name "Numeric.SpecFunctions:logGamma from math-functions-0.1.5.2"
                                      :precision binary64
                                      (/ (+ (* (+ (* (+ (* (+ (* x y) z) y) 27464.7644705) y) 230661.510616) y) t) (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i)))