
(FPCore (x y z t a b c i) :precision binary64 (/ (+ (* (+ (* (+ (* (+ (* x y) z) y) 27464.7644705) y) 230661.510616) y) t) (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i)))
double code(double x, double y, double z, double t, double a, double b, double c, double i) {
return ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i);
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t, a, b, c, i)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
real(8), intent (in) :: a
real(8), intent (in) :: b
real(8), intent (in) :: c
real(8), intent (in) :: i
code = ((((((((x * y) + z) * y) + 27464.7644705d0) * y) + 230661.510616d0) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)
end function
public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
return ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i);
}
def code(x, y, z, t, a, b, c, i): return ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)
function code(x, y, z, t, a, b, c, i) return Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i)) end
function tmp = code(x, y, z, t, a, b, c, i) tmp = ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i); end
code[x_, y_, z_, t_, a_, b_, c_, i_] := N[(N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]), $MachinePrecision]
\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i}
Herbie found 18 alternatives:
| Alternative | Accuracy | Speedup |
|---|
(FPCore (x y z t a b c i) :precision binary64 (/ (+ (* (+ (* (+ (* (+ (* x y) z) y) 27464.7644705) y) 230661.510616) y) t) (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i)))
double code(double x, double y, double z, double t, double a, double b, double c, double i) {
return ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i);
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t, a, b, c, i)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
real(8), intent (in) :: a
real(8), intent (in) :: b
real(8), intent (in) :: c
real(8), intent (in) :: i
code = ((((((((x * y) + z) * y) + 27464.7644705d0) * y) + 230661.510616d0) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)
end function
public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
return ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i);
}
def code(x, y, z, t, a, b, c, i): return ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)
function code(x, y, z, t, a, b, c, i) return Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i)) end
function tmp = code(x, y, z, t, a, b, c, i) tmp = ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i); end
code[x_, y_, z_, t_, a_, b_, c_, i_] := N[(N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]), $MachinePrecision]
\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i}
(FPCore (x y z t a b c i)
:precision binary64
(let* ((t_1 (+ i (* (+ c (* (+ b (* (+ a y) y)) y)) y))))
(if (<=
(/
(+
(*
(+
(* (+ (* (+ (* x y) z) y) 27464.7644705) y)
230661.510616)
y)
t)
(+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i))
INFINITY)
(-
(/ t t_1)
(*
(- y)
(/
(- (* (- (* (+ z (* y x)) y) -27464.7644705) y) -230661.510616)
t_1)))
(- (+ x (/ z y)) (/ (* a x) y)))))double code(double x, double y, double z, double t, double a, double b, double c, double i) {
double t_1 = i + ((c + ((b + ((a + y) * y)) * y)) * y);
double tmp;
if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= ((double) INFINITY)) {
tmp = (t / t_1) - (-y * ((((((z + (y * x)) * y) - -27464.7644705) * y) - -230661.510616) / t_1));
} else {
tmp = (x + (z / y)) - ((a * x) / y);
}
return tmp;
}
public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
double t_1 = i + ((c + ((b + ((a + y) * y)) * y)) * y);
double tmp;
if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Double.POSITIVE_INFINITY) {
tmp = (t / t_1) - (-y * ((((((z + (y * x)) * y) - -27464.7644705) * y) - -230661.510616) / t_1));
} else {
tmp = (x + (z / y)) - ((a * x) / y);
}
return tmp;
}
def code(x, y, z, t, a, b, c, i): t_1 = i + ((c + ((b + ((a + y) * y)) * y)) * y) tmp = 0 if (((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= math.inf: tmp = (t / t_1) - (-y * ((((((z + (y * x)) * y) - -27464.7644705) * y) - -230661.510616) / t_1)) else: tmp = (x + (z / y)) - ((a * x) / y) return tmp
function code(x, y, z, t, a, b, c, i) t_1 = Float64(i + Float64(Float64(c + Float64(Float64(b + Float64(Float64(a + y) * y)) * y)) * y)) tmp = 0.0 if (Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i)) <= Inf) tmp = Float64(Float64(t / t_1) - Float64(Float64(-y) * Float64(Float64(Float64(Float64(Float64(Float64(z + Float64(y * x)) * y) - -27464.7644705) * y) - -230661.510616) / t_1))); else tmp = Float64(Float64(x + Float64(z / y)) - Float64(Float64(a * x) / y)); end return tmp end
function tmp_2 = code(x, y, z, t, a, b, c, i) t_1 = i + ((c + ((b + ((a + y) * y)) * y)) * y); tmp = 0.0; if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Inf) tmp = (t / t_1) - (-y * ((((((z + (y * x)) * y) - -27464.7644705) * y) - -230661.510616) / t_1)); else tmp = (x + (z / y)) - ((a * x) / y); end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_, c_, i_] := Block[{t$95$1 = N[(i + N[(N[(c + N[(N[(b + N[(N[(a + y), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[N[(N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]), $MachinePrecision], Infinity], N[(N[(t / t$95$1), $MachinePrecision] - N[((-y) * N[(N[(N[(N[(N[(N[(z + N[(y * x), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision] - -27464.7644705), $MachinePrecision] * y), $MachinePrecision] - -230661.510616), $MachinePrecision] / t$95$1), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[(N[(x + N[(z / y), $MachinePrecision]), $MachinePrecision] - N[(N[(a * x), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]]]
\begin{array}{l}
t_1 := i + \left(c + \left(b + \left(a + y\right) \cdot y\right) \cdot y\right) \cdot y\\
\mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \leq \infty:\\
\;\;\;\;\frac{t}{t\_1} - \left(-y\right) \cdot \frac{\left(\left(z + y \cdot x\right) \cdot y - -27464.7644705\right) \cdot y - -230661.510616}{t\_1}\\
\mathbf{else}:\\
\;\;\;\;\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\
\end{array}
if (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < +inf.0Initial program 56.6%
Applied rewrites57.4%
if +inf.0 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) Initial program 56.6%
Taylor expanded in y around inf
lower--.f64N/A
lower-+.f64N/A
lower-/.f64N/A
lower-/.f64N/A
lower-*.f6430.1%
Applied rewrites30.1%
(FPCore (x y z t a b c i)
:precision binary64
(let* ((t_1 (+ i (* (+ c (* (+ b (* (+ a y) y)) y)) y))))
(if (<=
(/
(+
(*
(+
(* (+ (* (+ (* x y) z) y) 27464.7644705) y)
230661.510616)
y)
t)
(+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i))
INFINITY)
(-
(/ t t_1)
(*
(- -230661.510616 (* (- (* (+ z (* y x)) y) -27464.7644705) y))
(/ y t_1)))
(- (+ x (/ z y)) (/ (* a x) y)))))double code(double x, double y, double z, double t, double a, double b, double c, double i) {
double t_1 = i + ((c + ((b + ((a + y) * y)) * y)) * y);
double tmp;
if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= ((double) INFINITY)) {
tmp = (t / t_1) - ((-230661.510616 - ((((z + (y * x)) * y) - -27464.7644705) * y)) * (y / t_1));
} else {
tmp = (x + (z / y)) - ((a * x) / y);
}
return tmp;
}
public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
double t_1 = i + ((c + ((b + ((a + y) * y)) * y)) * y);
double tmp;
if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Double.POSITIVE_INFINITY) {
tmp = (t / t_1) - ((-230661.510616 - ((((z + (y * x)) * y) - -27464.7644705) * y)) * (y / t_1));
} else {
tmp = (x + (z / y)) - ((a * x) / y);
}
return tmp;
}
def code(x, y, z, t, a, b, c, i): t_1 = i + ((c + ((b + ((a + y) * y)) * y)) * y) tmp = 0 if (((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= math.inf: tmp = (t / t_1) - ((-230661.510616 - ((((z + (y * x)) * y) - -27464.7644705) * y)) * (y / t_1)) else: tmp = (x + (z / y)) - ((a * x) / y) return tmp
function code(x, y, z, t, a, b, c, i) t_1 = Float64(i + Float64(Float64(c + Float64(Float64(b + Float64(Float64(a + y) * y)) * y)) * y)) tmp = 0.0 if (Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i)) <= Inf) tmp = Float64(Float64(t / t_1) - Float64(Float64(-230661.510616 - Float64(Float64(Float64(Float64(z + Float64(y * x)) * y) - -27464.7644705) * y)) * Float64(y / t_1))); else tmp = Float64(Float64(x + Float64(z / y)) - Float64(Float64(a * x) / y)); end return tmp end
function tmp_2 = code(x, y, z, t, a, b, c, i) t_1 = i + ((c + ((b + ((a + y) * y)) * y)) * y); tmp = 0.0; if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Inf) tmp = (t / t_1) - ((-230661.510616 - ((((z + (y * x)) * y) - -27464.7644705) * y)) * (y / t_1)); else tmp = (x + (z / y)) - ((a * x) / y); end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_, c_, i_] := Block[{t$95$1 = N[(i + N[(N[(c + N[(N[(b + N[(N[(a + y), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[N[(N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]), $MachinePrecision], Infinity], N[(N[(t / t$95$1), $MachinePrecision] - N[(N[(-230661.510616 - N[(N[(N[(N[(z + N[(y * x), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision] - -27464.7644705), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision] * N[(y / t$95$1), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[(N[(x + N[(z / y), $MachinePrecision]), $MachinePrecision] - N[(N[(a * x), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]]]
\begin{array}{l}
t_1 := i + \left(c + \left(b + \left(a + y\right) \cdot y\right) \cdot y\right) \cdot y\\
\mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \leq \infty:\\
\;\;\;\;\frac{t}{t\_1} - \left(-230661.510616 - \left(\left(z + y \cdot x\right) \cdot y - -27464.7644705\right) \cdot y\right) \cdot \frac{y}{t\_1}\\
\mathbf{else}:\\
\;\;\;\;\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\
\end{array}
if (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < +inf.0Initial program 56.6%
Applied rewrites57.3%
if +inf.0 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) Initial program 56.6%
Taylor expanded in y around inf
lower--.f64N/A
lower-+.f64N/A
lower-/.f64N/A
lower-/.f64N/A
lower-*.f6430.1%
Applied rewrites30.1%
(FPCore (x y z t a b c i)
:precision binary64
(let* ((t_1 (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i)))
(if (<=
(/
(+
(*
(+
(* (+ (* (+ (* x y) z) y) 27464.7644705) y)
230661.510616)
y)
t)
t_1)
INFINITY)
(/
(+
(*
(*
(-
1.0
(/
(* (- -27464.7644705 (* (+ z (* y x)) y)) y)
230661.510616))
230661.510616)
y)
t)
t_1)
(- (+ x (/ z y)) (/ (* a x) y)))))double code(double x, double y, double z, double t, double a, double b, double c, double i) {
double t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i;
double tmp;
if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= ((double) INFINITY)) {
tmp = ((((1.0 - (((-27464.7644705 - ((z + (y * x)) * y)) * y) / 230661.510616)) * 230661.510616) * y) + t) / t_1;
} else {
tmp = (x + (z / y)) - ((a * x) / y);
}
return tmp;
}
public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
double t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i;
double tmp;
if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= Double.POSITIVE_INFINITY) {
tmp = ((((1.0 - (((-27464.7644705 - ((z + (y * x)) * y)) * y) / 230661.510616)) * 230661.510616) * y) + t) / t_1;
} else {
tmp = (x + (z / y)) - ((a * x) / y);
}
return tmp;
}
def code(x, y, z, t, a, b, c, i): t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i tmp = 0 if (((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= math.inf: tmp = ((((1.0 - (((-27464.7644705 - ((z + (y * x)) * y)) * y) / 230661.510616)) * 230661.510616) * y) + t) / t_1 else: tmp = (x + (z / y)) - ((a * x) / y) return tmp
function code(x, y, z, t, a, b, c, i) t_1 = Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i) tmp = 0.0 if (Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= Inf) tmp = Float64(Float64(Float64(Float64(Float64(1.0 - Float64(Float64(Float64(-27464.7644705 - Float64(Float64(z + Float64(y * x)) * y)) * y) / 230661.510616)) * 230661.510616) * y) + t) / t_1); else tmp = Float64(Float64(x + Float64(z / y)) - Float64(Float64(a * x) / y)); end return tmp end
function tmp_2 = code(x, y, z, t, a, b, c, i) t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i; tmp = 0.0; if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= Inf) tmp = ((((1.0 - (((-27464.7644705 - ((z + (y * x)) * y)) * y) / 230661.510616)) * 230661.510616) * y) + t) / t_1; else tmp = (x + (z / y)) - ((a * x) / y); end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_, c_, i_] := Block[{t$95$1 = N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]}, If[LessEqual[N[(N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / t$95$1), $MachinePrecision], Infinity], N[(N[(N[(N[(N[(1.0 - N[(N[(N[(-27464.7644705 - N[(N[(z + N[(y * x), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision] / 230661.510616), $MachinePrecision]), $MachinePrecision] * 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / t$95$1), $MachinePrecision], N[(N[(x + N[(z / y), $MachinePrecision]), $MachinePrecision] - N[(N[(a * x), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]]]
\begin{array}{l}
t_1 := \left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i\\
\mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{t\_1} \leq \infty:\\
\;\;\;\;\frac{\left(\left(1 - \frac{\left(-27464.7644705 - \left(z + y \cdot x\right) \cdot y\right) \cdot y}{230661.510616}\right) \cdot 230661.510616\right) \cdot y + t}{t\_1}\\
\mathbf{else}:\\
\;\;\;\;\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\
\end{array}
if (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < +inf.0Initial program 56.6%
lift-+.f64N/A
+-commutativeN/A
add-flipN/A
sub-to-multN/A
lower-unsound-*.f64N/A
Applied rewrites56.6%
if +inf.0 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) Initial program 56.6%
Taylor expanded in y around inf
lower--.f64N/A
lower-+.f64N/A
lower-/.f64N/A
lower-/.f64N/A
lower-*.f6430.1%
Applied rewrites30.1%
(FPCore (x y z t a b c i)
:precision binary64
(let* ((t_1
(+
(*
(+
(* (+ (* (+ (* x y) z) y) 27464.7644705) y)
230661.510616)
y)
t)))
(if (<=
(/ t_1 (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i))
INFINITY)
(/ t_1 (+ (+ i (* c y)) (* (* (+ b (* (+ a y) y)) y) y)))
(- (+ x (/ z y)) (/ (* a x) y)))))double code(double x, double y, double z, double t, double a, double b, double c, double i) {
double t_1 = (((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t;
double tmp;
if ((t_1 / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= ((double) INFINITY)) {
tmp = t_1 / ((i + (c * y)) + (((b + ((a + y) * y)) * y) * y));
} else {
tmp = (x + (z / y)) - ((a * x) / y);
}
return tmp;
}
public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
double t_1 = (((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t;
double tmp;
if ((t_1 / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Double.POSITIVE_INFINITY) {
tmp = t_1 / ((i + (c * y)) + (((b + ((a + y) * y)) * y) * y));
} else {
tmp = (x + (z / y)) - ((a * x) / y);
}
return tmp;
}
def code(x, y, z, t, a, b, c, i): t_1 = (((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t tmp = 0 if (t_1 / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= math.inf: tmp = t_1 / ((i + (c * y)) + (((b + ((a + y) * y)) * y) * y)) else: tmp = (x + (z / y)) - ((a * x) / y) return tmp
function code(x, y, z, t, a, b, c, i) t_1 = Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) tmp = 0.0 if (Float64(t_1 / Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i)) <= Inf) tmp = Float64(t_1 / Float64(Float64(i + Float64(c * y)) + Float64(Float64(Float64(b + Float64(Float64(a + y) * y)) * y) * y))); else tmp = Float64(Float64(x + Float64(z / y)) - Float64(Float64(a * x) / y)); end return tmp end
function tmp_2 = code(x, y, z, t, a, b, c, i) t_1 = (((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t; tmp = 0.0; if ((t_1 / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Inf) tmp = t_1 / ((i + (c * y)) + (((b + ((a + y) * y)) * y) * y)); else tmp = (x + (z / y)) - ((a * x) / y); end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_, c_, i_] := Block[{t$95$1 = N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision]}, If[LessEqual[N[(t$95$1 / N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]), $MachinePrecision], Infinity], N[(t$95$1 / N[(N[(i + N[(c * y), $MachinePrecision]), $MachinePrecision] + N[(N[(N[(b + N[(N[(a + y), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[(N[(x + N[(z / y), $MachinePrecision]), $MachinePrecision] - N[(N[(a * x), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]]]
\begin{array}{l}
t_1 := \left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t\\
\mathbf{if}\;\frac{t\_1}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \leq \infty:\\
\;\;\;\;\frac{t\_1}{\left(i + c \cdot y\right) + \left(\left(b + \left(a + y\right) \cdot y\right) \cdot y\right) \cdot y}\\
\mathbf{else}:\\
\;\;\;\;\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\
\end{array}
if (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < +inf.0Initial program 56.6%
lift-+.f64N/A
+-commutativeN/A
lift-*.f64N/A
*-commutativeN/A
lift-+.f64N/A
+-commutativeN/A
distribute-rgt-inN/A
associate-+r+N/A
*-commutativeN/A
lower-+.f64N/A
lower-+.f64N/A
*-commutativeN/A
lower-*.f64N/A
lower-*.f6456.6%
Applied rewrites56.6%
if +inf.0 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) Initial program 56.6%
Taylor expanded in y around inf
lower--.f64N/A
lower-+.f64N/A
lower-/.f64N/A
lower-/.f64N/A
lower-*.f6430.1%
Applied rewrites30.1%
(FPCore (x y z t a b c i)
:precision binary64
(let* ((t_1
(/
(+
(*
(+
(* (+ (* (+ (* x y) z) y) 27464.7644705) y)
230661.510616)
y)
t)
(+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i))))
(if (<= t_1 INFINITY) t_1 (- (+ x (/ z y)) (/ (* a x) y)))))double code(double x, double y, double z, double t, double a, double b, double c, double i) {
double t_1 = ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i);
double tmp;
if (t_1 <= ((double) INFINITY)) {
tmp = t_1;
} else {
tmp = (x + (z / y)) - ((a * x) / y);
}
return tmp;
}
public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
double t_1 = ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i);
double tmp;
if (t_1 <= Double.POSITIVE_INFINITY) {
tmp = t_1;
} else {
tmp = (x + (z / y)) - ((a * x) / y);
}
return tmp;
}
def code(x, y, z, t, a, b, c, i): t_1 = ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i) tmp = 0 if t_1 <= math.inf: tmp = t_1 else: tmp = (x + (z / y)) - ((a * x) / y) return tmp
function code(x, y, z, t, a, b, c, i) t_1 = Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i)) tmp = 0.0 if (t_1 <= Inf) tmp = t_1; else tmp = Float64(Float64(x + Float64(z / y)) - Float64(Float64(a * x) / y)); end return tmp end
function tmp_2 = code(x, y, z, t, a, b, c, i) t_1 = ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i); tmp = 0.0; if (t_1 <= Inf) tmp = t_1; else tmp = (x + (z / y)) - ((a * x) / y); end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_, c_, i_] := Block[{t$95$1 = N[(N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$1, Infinity], t$95$1, N[(N[(x + N[(z / y), $MachinePrecision]), $MachinePrecision] - N[(N[(a * x), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]]]
\begin{array}{l}
t_1 := \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i}\\
\mathbf{if}\;t\_1 \leq \infty:\\
\;\;\;\;t\_1\\
\mathbf{else}:\\
\;\;\;\;\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\
\end{array}
if (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < +inf.0Initial program 56.6%
if +inf.0 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) Initial program 56.6%
Taylor expanded in y around inf
lower--.f64N/A
lower-+.f64N/A
lower-/.f64N/A
lower-/.f64N/A
lower-*.f6430.1%
Applied rewrites30.1%
(FPCore (x y z t a b c i)
:precision binary64
(let* ((t_1 (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i)))
(if (<=
(/
(+
(*
(+
(* (+ (* (+ (* x y) z) y) 27464.7644705) y)
230661.510616)
y)
t)
t_1)
INFINITY)
(/
(+ (* (+ (* (+ (* z y) 27464.7644705) y) 230661.510616) y) t)
t_1)
(- (+ x (/ z y)) (/ (* a x) y)))))double code(double x, double y, double z, double t, double a, double b, double c, double i) {
double t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i;
double tmp;
if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= ((double) INFINITY)) {
tmp = ((((((z * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1;
} else {
tmp = (x + (z / y)) - ((a * x) / y);
}
return tmp;
}
public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
double t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i;
double tmp;
if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= Double.POSITIVE_INFINITY) {
tmp = ((((((z * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1;
} else {
tmp = (x + (z / y)) - ((a * x) / y);
}
return tmp;
}
def code(x, y, z, t, a, b, c, i): t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i tmp = 0 if (((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= math.inf: tmp = ((((((z * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1 else: tmp = (x + (z / y)) - ((a * x) / y) return tmp
function code(x, y, z, t, a, b, c, i) t_1 = Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i) tmp = 0.0 if (Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= Inf) tmp = Float64(Float64(Float64(Float64(Float64(Float64(Float64(z * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1); else tmp = Float64(Float64(x + Float64(z / y)) - Float64(Float64(a * x) / y)); end return tmp end
function tmp_2 = code(x, y, z, t, a, b, c, i) t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i; tmp = 0.0; if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= Inf) tmp = ((((((z * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1; else tmp = (x + (z / y)) - ((a * x) / y); end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_, c_, i_] := Block[{t$95$1 = N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]}, If[LessEqual[N[(N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / t$95$1), $MachinePrecision], Infinity], N[(N[(N[(N[(N[(N[(N[(z * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / t$95$1), $MachinePrecision], N[(N[(x + N[(z / y), $MachinePrecision]), $MachinePrecision] - N[(N[(a * x), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]]]
\begin{array}{l}
t_1 := \left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i\\
\mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{t\_1} \leq \infty:\\
\;\;\;\;\frac{\left(\left(z \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{t\_1}\\
\mathbf{else}:\\
\;\;\;\;\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\
\end{array}
if (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < +inf.0Initial program 56.6%
Taylor expanded in x around 0
Applied rewrites52.8%
if +inf.0 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) Initial program 56.6%
Taylor expanded in y around inf
lower--.f64N/A
lower-+.f64N/A
lower-/.f64N/A
lower-/.f64N/A
lower-*.f6430.1%
Applied rewrites30.1%
(FPCore (x y z t a b c i)
:precision binary64
(let* ((t_1
(+
(*
(+
(* (+ (* (+ (* x y) z) y) 27464.7644705) y)
230661.510616)
y)
t)))
(if (<=
(/ t_1 (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i))
INFINITY)
(/ t_1 (+ (* (+ (* b y) c) y) i))
(- (+ x (/ z y)) (/ (* a x) y)))))double code(double x, double y, double z, double t, double a, double b, double c, double i) {
double t_1 = (((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t;
double tmp;
if ((t_1 / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= ((double) INFINITY)) {
tmp = t_1 / ((((b * y) + c) * y) + i);
} else {
tmp = (x + (z / y)) - ((a * x) / y);
}
return tmp;
}
public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
double t_1 = (((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t;
double tmp;
if ((t_1 / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Double.POSITIVE_INFINITY) {
tmp = t_1 / ((((b * y) + c) * y) + i);
} else {
tmp = (x + (z / y)) - ((a * x) / y);
}
return tmp;
}
def code(x, y, z, t, a, b, c, i): t_1 = (((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t tmp = 0 if (t_1 / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= math.inf: tmp = t_1 / ((((b * y) + c) * y) + i) else: tmp = (x + (z / y)) - ((a * x) / y) return tmp
function code(x, y, z, t, a, b, c, i) t_1 = Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) tmp = 0.0 if (Float64(t_1 / Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i)) <= Inf) tmp = Float64(t_1 / Float64(Float64(Float64(Float64(b * y) + c) * y) + i)); else tmp = Float64(Float64(x + Float64(z / y)) - Float64(Float64(a * x) / y)); end return tmp end
function tmp_2 = code(x, y, z, t, a, b, c, i) t_1 = (((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t; tmp = 0.0; if ((t_1 / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Inf) tmp = t_1 / ((((b * y) + c) * y) + i); else tmp = (x + (z / y)) - ((a * x) / y); end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_, c_, i_] := Block[{t$95$1 = N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision]}, If[LessEqual[N[(t$95$1 / N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]), $MachinePrecision], Infinity], N[(t$95$1 / N[(N[(N[(N[(b * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]), $MachinePrecision], N[(N[(x + N[(z / y), $MachinePrecision]), $MachinePrecision] - N[(N[(a * x), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]]]
\begin{array}{l}
t_1 := \left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t\\
\mathbf{if}\;\frac{t\_1}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \leq \infty:\\
\;\;\;\;\frac{t\_1}{\left(b \cdot y + c\right) \cdot y + i}\\
\mathbf{else}:\\
\;\;\;\;\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\
\end{array}
if (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < +inf.0Initial program 56.6%
Taylor expanded in y around 0
Applied rewrites51.5%
if +inf.0 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) Initial program 56.6%
Taylor expanded in y around inf
lower--.f64N/A
lower-+.f64N/A
lower-/.f64N/A
lower-/.f64N/A
lower-*.f6430.1%
Applied rewrites30.1%
(FPCore (x y z t a b c i)
:precision binary64
(let* ((t_1 (- (+ x (/ z y)) (/ (* a x) y))))
(if (<= y -1.5e+77)
t_1
(if (<= y -7.2e-29)
(/
(+ 230661.510616 (* y (+ 27464.7644705 (* y (+ z (* x y))))))
(+ c (* y (+ b (* y (+ a y))))))
(if (<= y 3.6e+34)
(/
(+ (* 230661.510616 y) t)
(+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i))
t_1)))))double code(double x, double y, double z, double t, double a, double b, double c, double i) {
double t_1 = (x + (z / y)) - ((a * x) / y);
double tmp;
if (y <= -1.5e+77) {
tmp = t_1;
} else if (y <= -7.2e-29) {
tmp = (230661.510616 + (y * (27464.7644705 + (y * (z + (x * y)))))) / (c + (y * (b + (y * (a + y)))));
} else if (y <= 3.6e+34) {
tmp = ((230661.510616 * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i);
} else {
tmp = t_1;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t, a, b, c, i)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
real(8), intent (in) :: a
real(8), intent (in) :: b
real(8), intent (in) :: c
real(8), intent (in) :: i
real(8) :: t_1
real(8) :: tmp
t_1 = (x + (z / y)) - ((a * x) / y)
if (y <= (-1.5d+77)) then
tmp = t_1
else if (y <= (-7.2d-29)) then
tmp = (230661.510616d0 + (y * (27464.7644705d0 + (y * (z + (x * y)))))) / (c + (y * (b + (y * (a + y)))))
else if (y <= 3.6d+34) then
tmp = ((230661.510616d0 * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)
else
tmp = t_1
end if
code = tmp
end function
public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
double t_1 = (x + (z / y)) - ((a * x) / y);
double tmp;
if (y <= -1.5e+77) {
tmp = t_1;
} else if (y <= -7.2e-29) {
tmp = (230661.510616 + (y * (27464.7644705 + (y * (z + (x * y)))))) / (c + (y * (b + (y * (a + y)))));
} else if (y <= 3.6e+34) {
tmp = ((230661.510616 * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i);
} else {
tmp = t_1;
}
return tmp;
}
def code(x, y, z, t, a, b, c, i): t_1 = (x + (z / y)) - ((a * x) / y) tmp = 0 if y <= -1.5e+77: tmp = t_1 elif y <= -7.2e-29: tmp = (230661.510616 + (y * (27464.7644705 + (y * (z + (x * y)))))) / (c + (y * (b + (y * (a + y))))) elif y <= 3.6e+34: tmp = ((230661.510616 * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i) else: tmp = t_1 return tmp
function code(x, y, z, t, a, b, c, i) t_1 = Float64(Float64(x + Float64(z / y)) - Float64(Float64(a * x) / y)) tmp = 0.0 if (y <= -1.5e+77) tmp = t_1; elseif (y <= -7.2e-29) tmp = Float64(Float64(230661.510616 + Float64(y * Float64(27464.7644705 + Float64(y * Float64(z + Float64(x * y)))))) / Float64(c + Float64(y * Float64(b + Float64(y * Float64(a + y)))))); elseif (y <= 3.6e+34) tmp = Float64(Float64(Float64(230661.510616 * y) + t) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i)); else tmp = t_1; end return tmp end
function tmp_2 = code(x, y, z, t, a, b, c, i) t_1 = (x + (z / y)) - ((a * x) / y); tmp = 0.0; if (y <= -1.5e+77) tmp = t_1; elseif (y <= -7.2e-29) tmp = (230661.510616 + (y * (27464.7644705 + (y * (z + (x * y)))))) / (c + (y * (b + (y * (a + y))))); elseif (y <= 3.6e+34) tmp = ((230661.510616 * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i); else tmp = t_1; end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_, c_, i_] := Block[{t$95$1 = N[(N[(x + N[(z / y), $MachinePrecision]), $MachinePrecision] - N[(N[(a * x), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[y, -1.5e+77], t$95$1, If[LessEqual[y, -7.2e-29], N[(N[(230661.510616 + N[(y * N[(27464.7644705 + N[(y * N[(z + N[(x * y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(c + N[(y * N[(b + N[(y * N[(a + y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], If[LessEqual[y, 3.6e+34], N[(N[(N[(230661.510616 * y), $MachinePrecision] + t), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]), $MachinePrecision], t$95$1]]]]
\begin{array}{l}
t_1 := \left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\
\mathbf{if}\;y \leq -1.5 \cdot 10^{+77}:\\
\;\;\;\;t\_1\\
\mathbf{elif}\;y \leq -7.2 \cdot 10^{-29}:\\
\;\;\;\;\frac{230661.510616 + y \cdot \left(27464.7644705 + y \cdot \left(z + x \cdot y\right)\right)}{c + y \cdot \left(b + y \cdot \left(a + y\right)\right)}\\
\mathbf{elif}\;y \leq 3.6 \cdot 10^{+34}:\\
\;\;\;\;\frac{230661.510616 \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i}\\
\mathbf{else}:\\
\;\;\;\;t\_1\\
\end{array}
if y < -1.4999999999999999e77 or 3.6e34 < y Initial program 56.6%
Taylor expanded in y around inf
lower--.f64N/A
lower-+.f64N/A
lower-/.f64N/A
lower-/.f64N/A
lower-*.f6430.1%
Applied rewrites30.1%
if -1.4999999999999999e77 < y < -7.1999999999999995e-29Initial program 56.6%
Applied rewrites57.4%
Taylor expanded in i around 0
lower--.f64N/A
Applied rewrites28.1%
Taylor expanded in t around 0
lower-/.f64N/A
lower-+.f64N/A
lower-*.f64N/A
lower-+.f64N/A
lower-*.f64N/A
lower-+.f64N/A
lower-*.f64N/A
lower-+.f64N/A
lower-*.f64N/A
lower-+.f64N/A
lower-*.f64N/A
lower-+.f6415.3%
Applied rewrites15.3%
if -7.1999999999999995e-29 < y < 3.6e34Initial program 56.6%
Taylor expanded in y around 0
Applied rewrites48.1%
(FPCore (x y z t a b c i)
:precision binary64
(let* ((t_1 (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i)))
(if (<=
(/
(+
(*
(+
(* (+ (* (+ (* x y) z) y) 27464.7644705) y)
230661.510616)
y)
t)
t_1)
INFINITY)
(/ (+ (* 230661.510616 y) t) t_1)
(- (+ x (/ z y)) (/ (* a x) y)))))double code(double x, double y, double z, double t, double a, double b, double c, double i) {
double t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i;
double tmp;
if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= ((double) INFINITY)) {
tmp = ((230661.510616 * y) + t) / t_1;
} else {
tmp = (x + (z / y)) - ((a * x) / y);
}
return tmp;
}
public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
double t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i;
double tmp;
if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= Double.POSITIVE_INFINITY) {
tmp = ((230661.510616 * y) + t) / t_1;
} else {
tmp = (x + (z / y)) - ((a * x) / y);
}
return tmp;
}
def code(x, y, z, t, a, b, c, i): t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i tmp = 0 if (((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= math.inf: tmp = ((230661.510616 * y) + t) / t_1 else: tmp = (x + (z / y)) - ((a * x) / y) return tmp
function code(x, y, z, t, a, b, c, i) t_1 = Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i) tmp = 0.0 if (Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= Inf) tmp = Float64(Float64(Float64(230661.510616 * y) + t) / t_1); else tmp = Float64(Float64(x + Float64(z / y)) - Float64(Float64(a * x) / y)); end return tmp end
function tmp_2 = code(x, y, z, t, a, b, c, i) t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i; tmp = 0.0; if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) <= Inf) tmp = ((230661.510616 * y) + t) / t_1; else tmp = (x + (z / y)) - ((a * x) / y); end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_, c_, i_] := Block[{t$95$1 = N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]}, If[LessEqual[N[(N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / t$95$1), $MachinePrecision], Infinity], N[(N[(N[(230661.510616 * y), $MachinePrecision] + t), $MachinePrecision] / t$95$1), $MachinePrecision], N[(N[(x + N[(z / y), $MachinePrecision]), $MachinePrecision] - N[(N[(a * x), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]]]
\begin{array}{l}
t_1 := \left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i\\
\mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{t\_1} \leq \infty:\\
\;\;\;\;\frac{230661.510616 \cdot y + t}{t\_1}\\
\mathbf{else}:\\
\;\;\;\;\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\
\end{array}
if (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < +inf.0Initial program 56.6%
Taylor expanded in y around 0
Applied rewrites48.1%
if +inf.0 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) Initial program 56.6%
Taylor expanded in y around inf
lower--.f64N/A
lower-+.f64N/A
lower-/.f64N/A
lower-/.f64N/A
lower-*.f6430.1%
Applied rewrites30.1%
(FPCore (x y z t a b c i)
:precision binary64
(let* ((t_1 (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i))
(t_2 (/ t t_1))
(t_3
(+
(*
(+
(* (+ (* (+ (* x y) z) y) 27464.7644705) y)
230661.510616)
y)
t))
(t_4 (/ t_3 t_1)))
(if (<= t_4 -2e-185)
t_2
(if (<= t_4 4e-17)
(/ t_3 i)
(if (<= t_4 INFINITY) t_2 (- (+ x (/ z y)) (/ (* a x) y)))))))double code(double x, double y, double z, double t, double a, double b, double c, double i) {
double t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i;
double t_2 = t / t_1;
double t_3 = (((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t;
double t_4 = t_3 / t_1;
double tmp;
if (t_4 <= -2e-185) {
tmp = t_2;
} else if (t_4 <= 4e-17) {
tmp = t_3 / i;
} else if (t_4 <= ((double) INFINITY)) {
tmp = t_2;
} else {
tmp = (x + (z / y)) - ((a * x) / y);
}
return tmp;
}
public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
double t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i;
double t_2 = t / t_1;
double t_3 = (((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t;
double t_4 = t_3 / t_1;
double tmp;
if (t_4 <= -2e-185) {
tmp = t_2;
} else if (t_4 <= 4e-17) {
tmp = t_3 / i;
} else if (t_4 <= Double.POSITIVE_INFINITY) {
tmp = t_2;
} else {
tmp = (x + (z / y)) - ((a * x) / y);
}
return tmp;
}
def code(x, y, z, t, a, b, c, i): t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i t_2 = t / t_1 t_3 = (((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t t_4 = t_3 / t_1 tmp = 0 if t_4 <= -2e-185: tmp = t_2 elif t_4 <= 4e-17: tmp = t_3 / i elif t_4 <= math.inf: tmp = t_2 else: tmp = (x + (z / y)) - ((a * x) / y) return tmp
function code(x, y, z, t, a, b, c, i) t_1 = Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i) t_2 = Float64(t / t_1) t_3 = Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) t_4 = Float64(t_3 / t_1) tmp = 0.0 if (t_4 <= -2e-185) tmp = t_2; elseif (t_4 <= 4e-17) tmp = Float64(t_3 / i); elseif (t_4 <= Inf) tmp = t_2; else tmp = Float64(Float64(x + Float64(z / y)) - Float64(Float64(a * x) / y)); end return tmp end
function tmp_2 = code(x, y, z, t, a, b, c, i) t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i; t_2 = t / t_1; t_3 = (((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t; t_4 = t_3 / t_1; tmp = 0.0; if (t_4 <= -2e-185) tmp = t_2; elseif (t_4 <= 4e-17) tmp = t_3 / i; elseif (t_4 <= Inf) tmp = t_2; else tmp = (x + (z / y)) - ((a * x) / y); end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_, c_, i_] := Block[{t$95$1 = N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]}, Block[{t$95$2 = N[(t / t$95$1), $MachinePrecision]}, Block[{t$95$3 = N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision]}, Block[{t$95$4 = N[(t$95$3 / t$95$1), $MachinePrecision]}, If[LessEqual[t$95$4, -2e-185], t$95$2, If[LessEqual[t$95$4, 4e-17], N[(t$95$3 / i), $MachinePrecision], If[LessEqual[t$95$4, Infinity], t$95$2, N[(N[(x + N[(z / y), $MachinePrecision]), $MachinePrecision] - N[(N[(a * x), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]]]]]]]]
\begin{array}{l}
t_1 := \left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i\\
t_2 := \frac{t}{t\_1}\\
t_3 := \left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t\\
t_4 := \frac{t\_3}{t\_1}\\
\mathbf{if}\;t\_4 \leq -2 \cdot 10^{-185}:\\
\;\;\;\;t\_2\\
\mathbf{elif}\;t\_4 \leq 4 \cdot 10^{-17}:\\
\;\;\;\;\frac{t\_3}{i}\\
\mathbf{elif}\;t\_4 \leq \infty:\\
\;\;\;\;t\_2\\
\mathbf{else}:\\
\;\;\;\;\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\
\end{array}
if (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < -2e-185 or 4.0000000000000003e-17 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < +inf.0Initial program 56.6%
Taylor expanded in y around 0
Applied rewrites48.1%
Taylor expanded in y around 0
Applied rewrites41.1%
if -2e-185 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < 4.0000000000000003e-17Initial program 56.6%
Taylor expanded in y around 0
Applied rewrites34.5%
if +inf.0 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) Initial program 56.6%
Taylor expanded in y around inf
lower--.f64N/A
lower-+.f64N/A
lower-/.f64N/A
lower-/.f64N/A
lower-*.f6430.1%
Applied rewrites30.1%
(FPCore (x y z t a b c i)
:precision binary64
(let* ((t_1 (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i))
(t_2 (/ t t_1))
(t_3
(/
(+
(*
(+
(* (+ (* (+ (* x y) z) y) 27464.7644705) y)
230661.510616)
y)
t)
t_1)))
(if (<= t_3 -2e-185)
t_2
(if (<= t_3 4e-39)
(/
(+ (* (+ (* (+ (* z y) 27464.7644705) y) 230661.510616) y) t)
i)
(if (<= t_3 INFINITY) t_2 (- (+ x (/ z y)) (/ (* a x) y)))))))double code(double x, double y, double z, double t, double a, double b, double c, double i) {
double t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i;
double t_2 = t / t_1;
double t_3 = ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1;
double tmp;
if (t_3 <= -2e-185) {
tmp = t_2;
} else if (t_3 <= 4e-39) {
tmp = ((((((z * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / i;
} else if (t_3 <= ((double) INFINITY)) {
tmp = t_2;
} else {
tmp = (x + (z / y)) - ((a * x) / y);
}
return tmp;
}
public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
double t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i;
double t_2 = t / t_1;
double t_3 = ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1;
double tmp;
if (t_3 <= -2e-185) {
tmp = t_2;
} else if (t_3 <= 4e-39) {
tmp = ((((((z * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / i;
} else if (t_3 <= Double.POSITIVE_INFINITY) {
tmp = t_2;
} else {
tmp = (x + (z / y)) - ((a * x) / y);
}
return tmp;
}
def code(x, y, z, t, a, b, c, i): t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i t_2 = t / t_1 t_3 = ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1 tmp = 0 if t_3 <= -2e-185: tmp = t_2 elif t_3 <= 4e-39: tmp = ((((((z * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / i elif t_3 <= math.inf: tmp = t_2 else: tmp = (x + (z / y)) - ((a * x) / y) return tmp
function code(x, y, z, t, a, b, c, i) t_1 = Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i) t_2 = Float64(t / t_1) t_3 = Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1) tmp = 0.0 if (t_3 <= -2e-185) tmp = t_2; elseif (t_3 <= 4e-39) tmp = Float64(Float64(Float64(Float64(Float64(Float64(Float64(z * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / i); elseif (t_3 <= Inf) tmp = t_2; else tmp = Float64(Float64(x + Float64(z / y)) - Float64(Float64(a * x) / y)); end return tmp end
function tmp_2 = code(x, y, z, t, a, b, c, i) t_1 = ((((((y + a) * y) + b) * y) + c) * y) + i; t_2 = t / t_1; t_3 = ((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / t_1; tmp = 0.0; if (t_3 <= -2e-185) tmp = t_2; elseif (t_3 <= 4e-39) tmp = ((((((z * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / i; elseif (t_3 <= Inf) tmp = t_2; else tmp = (x + (z / y)) - ((a * x) / y); end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_, c_, i_] := Block[{t$95$1 = N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]}, Block[{t$95$2 = N[(t / t$95$1), $MachinePrecision]}, Block[{t$95$3 = N[(N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / t$95$1), $MachinePrecision]}, If[LessEqual[t$95$3, -2e-185], t$95$2, If[LessEqual[t$95$3, 4e-39], N[(N[(N[(N[(N[(N[(N[(z * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / i), $MachinePrecision], If[LessEqual[t$95$3, Infinity], t$95$2, N[(N[(x + N[(z / y), $MachinePrecision]), $MachinePrecision] - N[(N[(a * x), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]]]]]]]
\begin{array}{l}
t_1 := \left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i\\
t_2 := \frac{t}{t\_1}\\
t_3 := \frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{t\_1}\\
\mathbf{if}\;t\_3 \leq -2 \cdot 10^{-185}:\\
\;\;\;\;t\_2\\
\mathbf{elif}\;t\_3 \leq 4 \cdot 10^{-39}:\\
\;\;\;\;\frac{\left(\left(z \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{i}\\
\mathbf{elif}\;t\_3 \leq \infty:\\
\;\;\;\;t\_2\\
\mathbf{else}:\\
\;\;\;\;\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\
\end{array}
if (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < -2e-185 or 3.9999999999999997e-39 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < +inf.0Initial program 56.6%
Taylor expanded in y around 0
Applied rewrites48.1%
Taylor expanded in y around 0
Applied rewrites41.1%
if -2e-185 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < 3.9999999999999997e-39Initial program 56.6%
Taylor expanded in y around 0
Applied rewrites34.5%
Taylor expanded in x around 0
Applied rewrites33.5%
if +inf.0 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) Initial program 56.6%
Taylor expanded in y around inf
lower--.f64N/A
lower-+.f64N/A
lower-/.f64N/A
lower-/.f64N/A
lower-*.f6430.1%
Applied rewrites30.1%
(FPCore (x y z t a b c i)
:precision binary64
(if (<=
(/
(+
(*
(+ (* (+ (* (+ (* x y) z) y) 27464.7644705) y) 230661.510616)
y)
t)
(+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i))
INFINITY)
(/ (+ (* (+ (* (+ (* z y) 27464.7644705) y) 230661.510616) y) t) i)
(- (+ x (/ z y)) (/ (* a x) y))))double code(double x, double y, double z, double t, double a, double b, double c, double i) {
double tmp;
if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= ((double) INFINITY)) {
tmp = ((((((z * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / i;
} else {
tmp = (x + (z / y)) - ((a * x) / y);
}
return tmp;
}
public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
double tmp;
if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Double.POSITIVE_INFINITY) {
tmp = ((((((z * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / i;
} else {
tmp = (x + (z / y)) - ((a * x) / y);
}
return tmp;
}
def code(x, y, z, t, a, b, c, i): tmp = 0 if (((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= math.inf: tmp = ((((((z * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / i else: tmp = (x + (z / y)) - ((a * x) / y) return tmp
function code(x, y, z, t, a, b, c, i) tmp = 0.0 if (Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i)) <= Inf) tmp = Float64(Float64(Float64(Float64(Float64(Float64(Float64(z * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / i); else tmp = Float64(Float64(x + Float64(z / y)) - Float64(Float64(a * x) / y)); end return tmp end
function tmp_2 = code(x, y, z, t, a, b, c, i) tmp = 0.0; if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Inf) tmp = ((((((z * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / i; else tmp = (x + (z / y)) - ((a * x) / y); end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_, c_, i_] := If[LessEqual[N[(N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]), $MachinePrecision], Infinity], N[(N[(N[(N[(N[(N[(N[(z * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / i), $MachinePrecision], N[(N[(x + N[(z / y), $MachinePrecision]), $MachinePrecision] - N[(N[(a * x), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]]
\begin{array}{l}
\mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \leq \infty:\\
\;\;\;\;\frac{\left(\left(z \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{i}\\
\mathbf{else}:\\
\;\;\;\;\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\
\end{array}
if (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < +inf.0Initial program 56.6%
Taylor expanded in y around 0
Applied rewrites34.5%
Taylor expanded in x around 0
Applied rewrites33.5%
if +inf.0 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) Initial program 56.6%
Taylor expanded in y around inf
lower--.f64N/A
lower-+.f64N/A
lower-/.f64N/A
lower-/.f64N/A
lower-*.f6430.1%
Applied rewrites30.1%
(FPCore (x y z t a b c i)
:precision binary64
(if (<=
(/
(+
(*
(+ (* (+ (* (+ (* x y) z) y) 27464.7644705) y) 230661.510616)
y)
t)
(+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i))
INFINITY)
(/ (+ (* (+ 230661.510616 (* 27464.7644705 y)) y) t) i)
(- (+ x (/ z y)) (/ (* a x) y))))double code(double x, double y, double z, double t, double a, double b, double c, double i) {
double tmp;
if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= ((double) INFINITY)) {
tmp = (((230661.510616 + (27464.7644705 * y)) * y) + t) / i;
} else {
tmp = (x + (z / y)) - ((a * x) / y);
}
return tmp;
}
public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
double tmp;
if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Double.POSITIVE_INFINITY) {
tmp = (((230661.510616 + (27464.7644705 * y)) * y) + t) / i;
} else {
tmp = (x + (z / y)) - ((a * x) / y);
}
return tmp;
}
def code(x, y, z, t, a, b, c, i): tmp = 0 if (((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= math.inf: tmp = (((230661.510616 + (27464.7644705 * y)) * y) + t) / i else: tmp = (x + (z / y)) - ((a * x) / y) return tmp
function code(x, y, z, t, a, b, c, i) tmp = 0.0 if (Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i)) <= Inf) tmp = Float64(Float64(Float64(Float64(230661.510616 + Float64(27464.7644705 * y)) * y) + t) / i); else tmp = Float64(Float64(x + Float64(z / y)) - Float64(Float64(a * x) / y)); end return tmp end
function tmp_2 = code(x, y, z, t, a, b, c, i) tmp = 0.0; if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Inf) tmp = (((230661.510616 + (27464.7644705 * y)) * y) + t) / i; else tmp = (x + (z / y)) - ((a * x) / y); end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_, c_, i_] := If[LessEqual[N[(N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]), $MachinePrecision], Infinity], N[(N[(N[(N[(230661.510616 + N[(27464.7644705 * y), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / i), $MachinePrecision], N[(N[(x + N[(z / y), $MachinePrecision]), $MachinePrecision] - N[(N[(a * x), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]]
\begin{array}{l}
\mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \leq \infty:\\
\;\;\;\;\frac{\left(230661.510616 + 27464.7644705 \cdot y\right) \cdot y + t}{i}\\
\mathbf{else}:\\
\;\;\;\;\left(x + \frac{z}{y}\right) - \frac{a \cdot x}{y}\\
\end{array}
if (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < +inf.0Initial program 56.6%
Taylor expanded in y around 0
Applied rewrites34.5%
Taylor expanded in y around 0
lower-+.f64N/A
lower-*.f6432.2%
Applied rewrites32.2%
if +inf.0 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) Initial program 56.6%
Taylor expanded in y around inf
lower--.f64N/A
lower-+.f64N/A
lower-/.f64N/A
lower-/.f64N/A
lower-*.f6430.1%
Applied rewrites30.1%
(FPCore (x y z t a b c i)
:precision binary64
(if (<=
(/
(+
(*
(+ (* (+ (* (+ (* x y) z) y) 27464.7644705) y) 230661.510616)
y)
t)
(+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i))
INFINITY)
(/ (+ (* (+ 230661.510616 (* 27464.7644705 y)) y) t) i)
(/ (* x y) a)))double code(double x, double y, double z, double t, double a, double b, double c, double i) {
double tmp;
if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= ((double) INFINITY)) {
tmp = (((230661.510616 + (27464.7644705 * y)) * y) + t) / i;
} else {
tmp = (x * y) / a;
}
return tmp;
}
public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
double tmp;
if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Double.POSITIVE_INFINITY) {
tmp = (((230661.510616 + (27464.7644705 * y)) * y) + t) / i;
} else {
tmp = (x * y) / a;
}
return tmp;
}
def code(x, y, z, t, a, b, c, i): tmp = 0 if (((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= math.inf: tmp = (((230661.510616 + (27464.7644705 * y)) * y) + t) / i else: tmp = (x * y) / a return tmp
function code(x, y, z, t, a, b, c, i) tmp = 0.0 if (Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i)) <= Inf) tmp = Float64(Float64(Float64(Float64(230661.510616 + Float64(27464.7644705 * y)) * y) + t) / i); else tmp = Float64(Float64(x * y) / a); end return tmp end
function tmp_2 = code(x, y, z, t, a, b, c, i) tmp = 0.0; if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Inf) tmp = (((230661.510616 + (27464.7644705 * y)) * y) + t) / i; else tmp = (x * y) / a; end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_, c_, i_] := If[LessEqual[N[(N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]), $MachinePrecision], Infinity], N[(N[(N[(N[(230661.510616 + N[(27464.7644705 * y), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / i), $MachinePrecision], N[(N[(x * y), $MachinePrecision] / a), $MachinePrecision]]
\begin{array}{l}
\mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \leq \infty:\\
\;\;\;\;\frac{\left(230661.510616 + 27464.7644705 \cdot y\right) \cdot y + t}{i}\\
\mathbf{else}:\\
\;\;\;\;\frac{x \cdot y}{a}\\
\end{array}
if (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < +inf.0Initial program 56.6%
Taylor expanded in y around 0
Applied rewrites34.5%
Taylor expanded in y around 0
lower-+.f64N/A
lower-*.f6432.2%
Applied rewrites32.2%
if +inf.0 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) Initial program 56.6%
Taylor expanded in a around inf
lower-/.f64N/A
Applied rewrites6.2%
Taylor expanded in x around inf
lower-/.f64N/A
lower-*.f649.8%
Applied rewrites9.8%
(FPCore (x y z t a b c i)
:precision binary64
(if (<=
(/
(+
(*
(+ (* (+ (* (+ (* x y) z) y) 27464.7644705) y) 230661.510616)
y)
t)
(+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i))
INFINITY)
(/ (+ (* 230661.510616 y) t) i)
(/ (* x y) a)))double code(double x, double y, double z, double t, double a, double b, double c, double i) {
double tmp;
if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= ((double) INFINITY)) {
tmp = ((230661.510616 * y) + t) / i;
} else {
tmp = (x * y) / a;
}
return tmp;
}
public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
double tmp;
if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Double.POSITIVE_INFINITY) {
tmp = ((230661.510616 * y) + t) / i;
} else {
tmp = (x * y) / a;
}
return tmp;
}
def code(x, y, z, t, a, b, c, i): tmp = 0 if (((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= math.inf: tmp = ((230661.510616 * y) + t) / i else: tmp = (x * y) / a return tmp
function code(x, y, z, t, a, b, c, i) tmp = 0.0 if (Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i)) <= Inf) tmp = Float64(Float64(Float64(230661.510616 * y) + t) / i); else tmp = Float64(Float64(x * y) / a); end return tmp end
function tmp_2 = code(x, y, z, t, a, b, c, i) tmp = 0.0; if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Inf) tmp = ((230661.510616 * y) + t) / i; else tmp = (x * y) / a; end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_, c_, i_] := If[LessEqual[N[(N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]), $MachinePrecision], Infinity], N[(N[(N[(230661.510616 * y), $MachinePrecision] + t), $MachinePrecision] / i), $MachinePrecision], N[(N[(x * y), $MachinePrecision] / a), $MachinePrecision]]
\begin{array}{l}
\mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \leq \infty:\\
\;\;\;\;\frac{230661.510616 \cdot y + t}{i}\\
\mathbf{else}:\\
\;\;\;\;\frac{x \cdot y}{a}\\
\end{array}
if (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < +inf.0Initial program 56.6%
Taylor expanded in y around 0
Applied rewrites34.5%
Taylor expanded in y around 0
Applied rewrites32.2%
if +inf.0 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) Initial program 56.6%
Taylor expanded in a around inf
lower-/.f64N/A
Applied rewrites6.2%
Taylor expanded in x around inf
lower-/.f64N/A
lower-*.f649.8%
Applied rewrites9.8%
(FPCore (x y z t a b c i)
:precision binary64
(if (<=
(/
(+
(*
(+ (* (+ (* (+ (* x y) z) y) 27464.7644705) y) 230661.510616)
y)
t)
(+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i))
INFINITY)
(/ t i)
(/ (* x y) a)))double code(double x, double y, double z, double t, double a, double b, double c, double i) {
double tmp;
if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= ((double) INFINITY)) {
tmp = t / i;
} else {
tmp = (x * y) / a;
}
return tmp;
}
public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
double tmp;
if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Double.POSITIVE_INFINITY) {
tmp = t / i;
} else {
tmp = (x * y) / a;
}
return tmp;
}
def code(x, y, z, t, a, b, c, i): tmp = 0 if (((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= math.inf: tmp = t / i else: tmp = (x * y) / a return tmp
function code(x, y, z, t, a, b, c, i) tmp = 0.0 if (Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i)) <= Inf) tmp = Float64(t / i); else tmp = Float64(Float64(x * y) / a); end return tmp end
function tmp_2 = code(x, y, z, t, a, b, c, i) tmp = 0.0; if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Inf) tmp = t / i; else tmp = (x * y) / a; end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_, c_, i_] := If[LessEqual[N[(N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]), $MachinePrecision], Infinity], N[(t / i), $MachinePrecision], N[(N[(x * y), $MachinePrecision] / a), $MachinePrecision]]
\begin{array}{l}
\mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \leq \infty:\\
\;\;\;\;\frac{t}{i}\\
\mathbf{else}:\\
\;\;\;\;\frac{x \cdot y}{a}\\
\end{array}
if (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < +inf.0Initial program 56.6%
Taylor expanded in y around 0
lower-/.f6429.0%
Applied rewrites29.0%
if +inf.0 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) Initial program 56.6%
Taylor expanded in a around inf
lower-/.f64N/A
Applied rewrites6.2%
Taylor expanded in x around inf
lower-/.f64N/A
lower-*.f649.8%
Applied rewrites9.8%
(FPCore (x y z t a b c i)
:precision binary64
(if (<=
(/
(+
(*
(+ (* (+ (* (+ (* x y) z) y) 27464.7644705) y) 230661.510616)
y)
t)
(+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i))
INFINITY)
(/ t i)
(/ z a)))double code(double x, double y, double z, double t, double a, double b, double c, double i) {
double tmp;
if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= ((double) INFINITY)) {
tmp = t / i;
} else {
tmp = z / a;
}
return tmp;
}
public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
double tmp;
if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Double.POSITIVE_INFINITY) {
tmp = t / i;
} else {
tmp = z / a;
}
return tmp;
}
def code(x, y, z, t, a, b, c, i): tmp = 0 if (((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= math.inf: tmp = t / i else: tmp = z / a return tmp
function code(x, y, z, t, a, b, c, i) tmp = 0.0 if (Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(y + a) * y) + b) * y) + c) * y) + i)) <= Inf) tmp = Float64(t / i); else tmp = Float64(z / a); end return tmp end
function tmp_2 = code(x, y, z, t, a, b, c, i) tmp = 0.0; if ((((((((((x * y) + z) * y) + 27464.7644705) * y) + 230661.510616) * y) + t) / (((((((y + a) * y) + b) * y) + c) * y) + i)) <= Inf) tmp = t / i; else tmp = z / a; end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_, c_, i_] := If[LessEqual[N[(N[(N[(N[(N[(N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + 27464.7644705), $MachinePrecision] * y), $MachinePrecision] + 230661.510616), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(y + a), $MachinePrecision] * y), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision] + c), $MachinePrecision] * y), $MachinePrecision] + i), $MachinePrecision]), $MachinePrecision], Infinity], N[(t / i), $MachinePrecision], N[(z / a), $MachinePrecision]]
\begin{array}{l}
\mathbf{if}\;\frac{\left(\left(\left(x \cdot y + z\right) \cdot y + 27464.7644705\right) \cdot y + 230661.510616\right) \cdot y + t}{\left(\left(\left(y + a\right) \cdot y + b\right) \cdot y + c\right) \cdot y + i} \leq \infty:\\
\;\;\;\;\frac{t}{i}\\
\mathbf{else}:\\
\;\;\;\;\frac{z}{a}\\
\end{array}
if (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) < +inf.0Initial program 56.6%
Taylor expanded in y around 0
lower-/.f6429.0%
Applied rewrites29.0%
if +inf.0 < (/.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x y) z) y) #s(literal 54929528941/2000000 binary64)) y) #s(literal 28832688827/125000 binary64)) y) t) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 y a) y) b) y) c) y) i)) Initial program 56.6%
Taylor expanded in a around inf
lower-/.f64N/A
Applied rewrites6.2%
Taylor expanded in z around inf
lower-/.f647.6%
Applied rewrites7.6%
(FPCore (x y z t a b c i) :precision binary64 (/ z a))
double code(double x, double y, double z, double t, double a, double b, double c, double i) {
return z / a;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t, a, b, c, i)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
real(8), intent (in) :: a
real(8), intent (in) :: b
real(8), intent (in) :: c
real(8), intent (in) :: i
code = z / a
end function
public static double code(double x, double y, double z, double t, double a, double b, double c, double i) {
return z / a;
}
def code(x, y, z, t, a, b, c, i): return z / a
function code(x, y, z, t, a, b, c, i) return Float64(z / a) end
function tmp = code(x, y, z, t, a, b, c, i) tmp = z / a; end
code[x_, y_, z_, t_, a_, b_, c_, i_] := N[(z / a), $MachinePrecision]
\frac{z}{a}
Initial program 56.6%
Taylor expanded in a around inf
lower-/.f64N/A
Applied rewrites6.2%
Taylor expanded in z around inf
lower-/.f647.6%
Applied rewrites7.6%
herbie shell --seed 2025258
(FPCore (x y z t a b c i)
:name "Numeric.SpecFunctions:logGamma from math-functions-0.1.5.2"
:precision binary64
(/ (+ (* (+ (* (+ (* (+ (* x y) z) y) 27464.7644705) y) 230661.510616) y) t) (+ (* (+ (* (+ (* (+ y a) y) b) y) c) y) i)))