Numeric.SpecFunctions:logGamma from math-functions-0.1.5.2, C

Percentage Accurate: 59.1% → 98.5%
Time: 8.7s
Alternatives: 16
Speedup: 4.4×

Specification

?
\[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
(FPCore (x y z)
  :precision binary64
  (/
 (*
  (- x 2.0)
  (+
   (*
    (+
     (*
      (+ (* (+ (* x 4.16438922228) 78.6994924154) x) 137.519416416)
      x)
     y)
    x)
   z))
 (+
  (*
   (+ (* (+ (* (+ x 43.3400022514) x) 263.505074721) x) 313.399215894)
   x)
  47.066876606)))
double code(double x, double y, double z) {
	return ((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606);
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    code = ((x - 2.0d0) * ((((((((x * 4.16438922228d0) + 78.6994924154d0) * x) + 137.519416416d0) * x) + y) * x) + z)) / (((((((x + 43.3400022514d0) * x) + 263.505074721d0) * x) + 313.399215894d0) * x) + 47.066876606d0)
end function
public static double code(double x, double y, double z) {
	return ((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606);
}
def code(x, y, z):
	return ((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606)
function code(x, y, z)
	return Float64(Float64(Float64(x - 2.0) * Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606))
end
function tmp = code(x, y, z)
	tmp = ((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606);
end
code[x_, y_, z_] := N[(N[(N[(x - 2.0), $MachinePrecision] * N[(N[(N[(N[(N[(N[(N[(N[(x * 4.16438922228), $MachinePrecision] + 78.6994924154), $MachinePrecision] * x), $MachinePrecision] + 137.519416416), $MachinePrecision] * x), $MachinePrecision] + y), $MachinePrecision] * x), $MachinePrecision] + z), $MachinePrecision]), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(x + 43.3400022514), $MachinePrecision] * x), $MachinePrecision] + 263.505074721), $MachinePrecision] * x), $MachinePrecision] + 313.399215894), $MachinePrecision] * x), $MachinePrecision] + 47.066876606), $MachinePrecision]), $MachinePrecision]
\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606}

Local Percentage Accuracy vs ?

The average percentage accuracy by input value. Horizontal axis shows value of an input variable; the variable is choosen in the title. Vertical axis is accuracy; higher is better. Red represent the original program, while blue represents Herbie's suggestion. These can be toggled with buttons below the plot. The line is an average while dots represent individual samples.

Accuracy vs Speed?

Herbie found 16 alternatives:

AlternativeAccuracySpeedup
The accuracy (vertical axis) and speed (horizontal axis) of each alternatives. Up and to the right is better. The red square shows the initial program, and each blue circle shows an alternative.The line shows the best available speed-accuracy tradeoffs.

Initial Program: 59.1% accurate, 1.0× speedup?

\[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
(FPCore (x y z)
  :precision binary64
  (/
 (*
  (- x 2.0)
  (+
   (*
    (+
     (*
      (+ (* (+ (* x 4.16438922228) 78.6994924154) x) 137.519416416)
      x)
     y)
    x)
   z))
 (+
  (*
   (+ (* (+ (* (+ x 43.3400022514) x) 263.505074721) x) 313.399215894)
   x)
  47.066876606)))
double code(double x, double y, double z) {
	return ((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606);
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    code = ((x - 2.0d0) * ((((((((x * 4.16438922228d0) + 78.6994924154d0) * x) + 137.519416416d0) * x) + y) * x) + z)) / (((((((x + 43.3400022514d0) * x) + 263.505074721d0) * x) + 313.399215894d0) * x) + 47.066876606d0)
end function
public static double code(double x, double y, double z) {
	return ((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606);
}
def code(x, y, z):
	return ((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606)
function code(x, y, z)
	return Float64(Float64(Float64(x - 2.0) * Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606))
end
function tmp = code(x, y, z)
	tmp = ((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606);
end
code[x_, y_, z_] := N[(N[(N[(x - 2.0), $MachinePrecision] * N[(N[(N[(N[(N[(N[(N[(N[(x * 4.16438922228), $MachinePrecision] + 78.6994924154), $MachinePrecision] * x), $MachinePrecision] + 137.519416416), $MachinePrecision] * x), $MachinePrecision] + y), $MachinePrecision] * x), $MachinePrecision] + z), $MachinePrecision]), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(x + 43.3400022514), $MachinePrecision] * x), $MachinePrecision] + 263.505074721), $MachinePrecision] * x), $MachinePrecision] + 313.399215894), $MachinePrecision] * x), $MachinePrecision] + 47.066876606), $MachinePrecision]), $MachinePrecision]
\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606}

Alternative 1: 98.5% accurate, 0.4× speedup?

\[\begin{array}{l} t_0 := \left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606\\ \mathbf{if}\;\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \leq 10^{+295}:\\ \;\;\;\;\frac{z}{t\_0} \cdot \left(x - 2\right) + \left(\left(y + \left(\left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x - -137.519416416\right) \cdot x\right) \cdot \frac{x}{t\_0}\right) \cdot \left(x - 2\right)\\ \mathbf{else}:\\ \;\;\;\;-1 \cdot \left(x \cdot \left(-1 \cdot \frac{-1 \cdot \frac{-1 \cdot \frac{y - 130977.50649958357}{x} - 3655.1204654076414}{x} - 110.1139242984811}{x} - 4.16438922228\right)\right)\\ \end{array} \]
(FPCore (x y z)
  :precision binary64
  (let* ((t_0
        (-
         (*
          (-
           (* (- (* (- x -43.3400022514) x) -263.505074721) x)
           -313.399215894)
          x)
         -47.066876606)))
  (if (<=
       (/
        (*
         (- x 2.0)
         (+
          (*
           (+
            (*
             (+
              (* (+ (* x 4.16438922228) 78.6994924154) x)
              137.519416416)
             x)
            y)
           x)
          z))
        (+
         (*
          (+
           (* (+ (* (+ x 43.3400022514) x) 263.505074721) x)
           313.399215894)
          x)
         47.066876606))
       1e+295)
    (+
     (* (/ z t_0) (- x 2.0))
     (*
      (*
       (+
        y
        (*
         (-
          (* (- (* 4.16438922228 x) -78.6994924154) x)
          -137.519416416)
         x))
       (/ x t_0))
      (- x 2.0)))
    (*
     -1.0
     (*
      x
      (-
       (*
        -1.0
        (/
         (-
          (*
           -1.0
           (/
            (-
             (* -1.0 (/ (- y 130977.50649958357) x))
             3655.1204654076414)
            x))
          110.1139242984811)
         x))
       4.16438922228))))))
double code(double x, double y, double z) {
	double t_0 = ((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606;
	double tmp;
	if ((((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606)) <= 1e+295) {
		tmp = ((z / t_0) * (x - 2.0)) + (((y + (((((4.16438922228 * x) - -78.6994924154) * x) - -137.519416416) * x)) * (x / t_0)) * (x - 2.0));
	} else {
		tmp = -1.0 * (x * ((-1.0 * (((-1.0 * (((-1.0 * ((y - 130977.50649958357) / x)) - 3655.1204654076414) / x)) - 110.1139242984811) / x)) - 4.16438922228));
	}
	return tmp;
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8) :: t_0
    real(8) :: tmp
    t_0 = ((((((x - (-43.3400022514d0)) * x) - (-263.505074721d0)) * x) - (-313.399215894d0)) * x) - (-47.066876606d0)
    if ((((x - 2.0d0) * ((((((((x * 4.16438922228d0) + 78.6994924154d0) * x) + 137.519416416d0) * x) + y) * x) + z)) / (((((((x + 43.3400022514d0) * x) + 263.505074721d0) * x) + 313.399215894d0) * x) + 47.066876606d0)) <= 1d+295) then
        tmp = ((z / t_0) * (x - 2.0d0)) + (((y + (((((4.16438922228d0 * x) - (-78.6994924154d0)) * x) - (-137.519416416d0)) * x)) * (x / t_0)) * (x - 2.0d0))
    else
        tmp = (-1.0d0) * (x * (((-1.0d0) * ((((-1.0d0) * ((((-1.0d0) * ((y - 130977.50649958357d0) / x)) - 3655.1204654076414d0) / x)) - 110.1139242984811d0) / x)) - 4.16438922228d0))
    end if
    code = tmp
end function
public static double code(double x, double y, double z) {
	double t_0 = ((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606;
	double tmp;
	if ((((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606)) <= 1e+295) {
		tmp = ((z / t_0) * (x - 2.0)) + (((y + (((((4.16438922228 * x) - -78.6994924154) * x) - -137.519416416) * x)) * (x / t_0)) * (x - 2.0));
	} else {
		tmp = -1.0 * (x * ((-1.0 * (((-1.0 * (((-1.0 * ((y - 130977.50649958357) / x)) - 3655.1204654076414) / x)) - 110.1139242984811) / x)) - 4.16438922228));
	}
	return tmp;
}
def code(x, y, z):
	t_0 = ((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606
	tmp = 0
	if (((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606)) <= 1e+295:
		tmp = ((z / t_0) * (x - 2.0)) + (((y + (((((4.16438922228 * x) - -78.6994924154) * x) - -137.519416416) * x)) * (x / t_0)) * (x - 2.0))
	else:
		tmp = -1.0 * (x * ((-1.0 * (((-1.0 * (((-1.0 * ((y - 130977.50649958357) / x)) - 3655.1204654076414) / x)) - 110.1139242984811) / x)) - 4.16438922228))
	return tmp
function code(x, y, z)
	t_0 = Float64(Float64(Float64(Float64(Float64(Float64(Float64(x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)
	tmp = 0.0
	if (Float64(Float64(Float64(x - 2.0) * Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606)) <= 1e+295)
		tmp = Float64(Float64(Float64(z / t_0) * Float64(x - 2.0)) + Float64(Float64(Float64(y + Float64(Float64(Float64(Float64(Float64(4.16438922228 * x) - -78.6994924154) * x) - -137.519416416) * x)) * Float64(x / t_0)) * Float64(x - 2.0)));
	else
		tmp = Float64(-1.0 * Float64(x * Float64(Float64(-1.0 * Float64(Float64(Float64(-1.0 * Float64(Float64(Float64(-1.0 * Float64(Float64(y - 130977.50649958357) / x)) - 3655.1204654076414) / x)) - 110.1139242984811) / x)) - 4.16438922228)));
	end
	return tmp
end
function tmp_2 = code(x, y, z)
	t_0 = ((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606;
	tmp = 0.0;
	if ((((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606)) <= 1e+295)
		tmp = ((z / t_0) * (x - 2.0)) + (((y + (((((4.16438922228 * x) - -78.6994924154) * x) - -137.519416416) * x)) * (x / t_0)) * (x - 2.0));
	else
		tmp = -1.0 * (x * ((-1.0 * (((-1.0 * (((-1.0 * ((y - 130977.50649958357) / x)) - 3655.1204654076414) / x)) - 110.1139242984811) / x)) - 4.16438922228));
	end
	tmp_2 = tmp;
end
code[x_, y_, z_] := Block[{t$95$0 = N[(N[(N[(N[(N[(N[(N[(x - -43.3400022514), $MachinePrecision] * x), $MachinePrecision] - -263.505074721), $MachinePrecision] * x), $MachinePrecision] - -313.399215894), $MachinePrecision] * x), $MachinePrecision] - -47.066876606), $MachinePrecision]}, If[LessEqual[N[(N[(N[(x - 2.0), $MachinePrecision] * N[(N[(N[(N[(N[(N[(N[(N[(x * 4.16438922228), $MachinePrecision] + 78.6994924154), $MachinePrecision] * x), $MachinePrecision] + 137.519416416), $MachinePrecision] * x), $MachinePrecision] + y), $MachinePrecision] * x), $MachinePrecision] + z), $MachinePrecision]), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(x + 43.3400022514), $MachinePrecision] * x), $MachinePrecision] + 263.505074721), $MachinePrecision] * x), $MachinePrecision] + 313.399215894), $MachinePrecision] * x), $MachinePrecision] + 47.066876606), $MachinePrecision]), $MachinePrecision], 1e+295], N[(N[(N[(z / t$95$0), $MachinePrecision] * N[(x - 2.0), $MachinePrecision]), $MachinePrecision] + N[(N[(N[(y + N[(N[(N[(N[(N[(4.16438922228 * x), $MachinePrecision] - -78.6994924154), $MachinePrecision] * x), $MachinePrecision] - -137.519416416), $MachinePrecision] * x), $MachinePrecision]), $MachinePrecision] * N[(x / t$95$0), $MachinePrecision]), $MachinePrecision] * N[(x - 2.0), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[(-1.0 * N[(x * N[(N[(-1.0 * N[(N[(N[(-1.0 * N[(N[(N[(-1.0 * N[(N[(y - 130977.50649958357), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision] - 3655.1204654076414), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision] - 110.1139242984811), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision] - 4.16438922228), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]]
\begin{array}{l}
t_0 := \left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606\\
\mathbf{if}\;\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \leq 10^{+295}:\\
\;\;\;\;\frac{z}{t\_0} \cdot \left(x - 2\right) + \left(\left(y + \left(\left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x - -137.519416416\right) \cdot x\right) \cdot \frac{x}{t\_0}\right) \cdot \left(x - 2\right)\\

\mathbf{else}:\\
\;\;\;\;-1 \cdot \left(x \cdot \left(-1 \cdot \frac{-1 \cdot \frac{-1 \cdot \frac{y - 130977.50649958357}{x} - 3655.1204654076414}{x} - 110.1139242984811}{x} - 4.16438922228\right)\right)\\


\end{array}
Derivation
  1. Split input into 2 regimes
  2. if (/.f64 (*.f64 (-.f64 x #s(literal 2 binary64)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x #s(literal 104109730557/25000000000 binary64)) #s(literal 393497462077/5000000000 binary64)) x) #s(literal 4297481763/31250000 binary64)) x) y) x) z)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 x #s(literal 216700011257/5000000000 binary64)) x) #s(literal 263505074721/1000000000 binary64)) x) #s(literal 156699607947/500000000 binary64)) x) #s(literal 23533438303/500000000 binary64))) < 9.9999999999999998e294

    1. Initial program 59.1%

      \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
    2. Applied rewrites63.0%

      \[\leadsto \color{blue}{\frac{z}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606} \cdot \left(x - 2\right) + \left(\left(y + \left(\left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x - -137.519416416\right) \cdot x\right) \cdot \frac{x}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606}\right) \cdot \left(x - 2\right)} \]

    if 9.9999999999999998e294 < (/.f64 (*.f64 (-.f64 x #s(literal 2 binary64)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x #s(literal 104109730557/25000000000 binary64)) #s(literal 393497462077/5000000000 binary64)) x) #s(literal 4297481763/31250000 binary64)) x) y) x) z)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 x #s(literal 216700011257/5000000000 binary64)) x) #s(literal 263505074721/1000000000 binary64)) x) #s(literal 156699607947/500000000 binary64)) x) #s(literal 23533438303/500000000 binary64)))

    1. Initial program 59.1%

      \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
    2. Applied rewrites63.0%

      \[\leadsto \color{blue}{\frac{z}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606} \cdot \left(x - 2\right) + \left(\left(y + \left(\left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x - -137.519416416\right) \cdot x\right) \cdot \frac{x}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606}\right) \cdot \left(x - 2\right)} \]
    3. Applied rewrites62.0%

      \[\leadsto \color{blue}{\frac{2 - x}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606} \cdot \left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right)} \]
    4. Taylor expanded in x around -inf

      \[\leadsto \color{blue}{-1 \cdot \left(x \cdot \left(-1 \cdot \frac{-1 \cdot \frac{-1 \cdot \frac{y - \frac{409304707811198655637810418659684985388407301}{3125000000000000000000000000000000000000}}{x} - \frac{2284450290879775841688574159837293}{625000000000000000000000000000}}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)\right)} \]
    5. Applied rewrites47.4%

      \[\leadsto \color{blue}{-1 \cdot \left(x \cdot \left(-1 \cdot \frac{-1 \cdot \frac{-1 \cdot \frac{y - 130977.50649958357}{x} - 3655.1204654076414}{x} - 110.1139242984811}{x} - 4.16438922228\right)\right)} \]
  3. Recombined 2 regimes into one program.
  4. Add Preprocessing

Alternative 2: 98.1% accurate, 0.5× speedup?

\[\begin{array}{l} \mathbf{if}\;\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \leq 10^{+295}:\\ \;\;\;\;\frac{z + \left(y + \left(\left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x - -137.519416416\right) \cdot x\right) \cdot x}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606} \cdot \left(x - 2\right)\\ \mathbf{else}:\\ \;\;\;\;-1 \cdot \left(x \cdot \left(-1 \cdot \frac{-1 \cdot \frac{-1 \cdot \frac{y - 130977.50649958357}{x} - 3655.1204654076414}{x} - 110.1139242984811}{x} - 4.16438922228\right)\right)\\ \end{array} \]
(FPCore (x y z)
  :precision binary64
  (if (<=
     (/
      (*
       (- x 2.0)
       (+
        (*
         (+
          (*
           (+
            (* (+ (* x 4.16438922228) 78.6994924154) x)
            137.519416416)
           x)
          y)
         x)
        z))
      (+
       (*
        (+
         (* (+ (* (+ x 43.3400022514) x) 263.505074721) x)
         313.399215894)
        x)
       47.066876606))
     1e+295)
  (*
   (/
    (+
     z
     (*
      (+
       y
       (*
        (-
         (* (- (* 4.16438922228 x) -78.6994924154) x)
         -137.519416416)
        x))
      x))
    (-
     (*
      (-
       (* (- (* (- x -43.3400022514) x) -263.505074721) x)
       -313.399215894)
      x)
     -47.066876606))
   (- x 2.0))
  (*
   -1.0
   (*
    x
    (-
     (*
      -1.0
      (/
       (-
        (*
         -1.0
         (/
          (-
           (* -1.0 (/ (- y 130977.50649958357) x))
           3655.1204654076414)
          x))
        110.1139242984811)
       x))
     4.16438922228)))))
double code(double x, double y, double z) {
	double tmp;
	if ((((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606)) <= 1e+295) {
		tmp = ((z + ((y + (((((4.16438922228 * x) - -78.6994924154) * x) - -137.519416416) * x)) * x)) / (((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * (x - 2.0);
	} else {
		tmp = -1.0 * (x * ((-1.0 * (((-1.0 * (((-1.0 * ((y - 130977.50649958357) / x)) - 3655.1204654076414) / x)) - 110.1139242984811) / x)) - 4.16438922228));
	}
	return tmp;
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8) :: tmp
    if ((((x - 2.0d0) * ((((((((x * 4.16438922228d0) + 78.6994924154d0) * x) + 137.519416416d0) * x) + y) * x) + z)) / (((((((x + 43.3400022514d0) * x) + 263.505074721d0) * x) + 313.399215894d0) * x) + 47.066876606d0)) <= 1d+295) then
        tmp = ((z + ((y + (((((4.16438922228d0 * x) - (-78.6994924154d0)) * x) - (-137.519416416d0)) * x)) * x)) / (((((((x - (-43.3400022514d0)) * x) - (-263.505074721d0)) * x) - (-313.399215894d0)) * x) - (-47.066876606d0))) * (x - 2.0d0)
    else
        tmp = (-1.0d0) * (x * (((-1.0d0) * ((((-1.0d0) * ((((-1.0d0) * ((y - 130977.50649958357d0) / x)) - 3655.1204654076414d0) / x)) - 110.1139242984811d0) / x)) - 4.16438922228d0))
    end if
    code = tmp
end function
public static double code(double x, double y, double z) {
	double tmp;
	if ((((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606)) <= 1e+295) {
		tmp = ((z + ((y + (((((4.16438922228 * x) - -78.6994924154) * x) - -137.519416416) * x)) * x)) / (((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * (x - 2.0);
	} else {
		tmp = -1.0 * (x * ((-1.0 * (((-1.0 * (((-1.0 * ((y - 130977.50649958357) / x)) - 3655.1204654076414) / x)) - 110.1139242984811) / x)) - 4.16438922228));
	}
	return tmp;
}
def code(x, y, z):
	tmp = 0
	if (((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606)) <= 1e+295:
		tmp = ((z + ((y + (((((4.16438922228 * x) - -78.6994924154) * x) - -137.519416416) * x)) * x)) / (((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * (x - 2.0)
	else:
		tmp = -1.0 * (x * ((-1.0 * (((-1.0 * (((-1.0 * ((y - 130977.50649958357) / x)) - 3655.1204654076414) / x)) - 110.1139242984811) / x)) - 4.16438922228))
	return tmp
function code(x, y, z)
	tmp = 0.0
	if (Float64(Float64(Float64(x - 2.0) * Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606)) <= 1e+295)
		tmp = Float64(Float64(Float64(z + Float64(Float64(y + Float64(Float64(Float64(Float64(Float64(4.16438922228 * x) - -78.6994924154) * x) - -137.519416416) * x)) * x)) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * Float64(x - 2.0));
	else
		tmp = Float64(-1.0 * Float64(x * Float64(Float64(-1.0 * Float64(Float64(Float64(-1.0 * Float64(Float64(Float64(-1.0 * Float64(Float64(y - 130977.50649958357) / x)) - 3655.1204654076414) / x)) - 110.1139242984811) / x)) - 4.16438922228)));
	end
	return tmp
end
function tmp_2 = code(x, y, z)
	tmp = 0.0;
	if ((((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606)) <= 1e+295)
		tmp = ((z + ((y + (((((4.16438922228 * x) - -78.6994924154) * x) - -137.519416416) * x)) * x)) / (((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * (x - 2.0);
	else
		tmp = -1.0 * (x * ((-1.0 * (((-1.0 * (((-1.0 * ((y - 130977.50649958357) / x)) - 3655.1204654076414) / x)) - 110.1139242984811) / x)) - 4.16438922228));
	end
	tmp_2 = tmp;
end
code[x_, y_, z_] := If[LessEqual[N[(N[(N[(x - 2.0), $MachinePrecision] * N[(N[(N[(N[(N[(N[(N[(N[(x * 4.16438922228), $MachinePrecision] + 78.6994924154), $MachinePrecision] * x), $MachinePrecision] + 137.519416416), $MachinePrecision] * x), $MachinePrecision] + y), $MachinePrecision] * x), $MachinePrecision] + z), $MachinePrecision]), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(x + 43.3400022514), $MachinePrecision] * x), $MachinePrecision] + 263.505074721), $MachinePrecision] * x), $MachinePrecision] + 313.399215894), $MachinePrecision] * x), $MachinePrecision] + 47.066876606), $MachinePrecision]), $MachinePrecision], 1e+295], N[(N[(N[(z + N[(N[(y + N[(N[(N[(N[(N[(4.16438922228 * x), $MachinePrecision] - -78.6994924154), $MachinePrecision] * x), $MachinePrecision] - -137.519416416), $MachinePrecision] * x), $MachinePrecision]), $MachinePrecision] * x), $MachinePrecision]), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(x - -43.3400022514), $MachinePrecision] * x), $MachinePrecision] - -263.505074721), $MachinePrecision] * x), $MachinePrecision] - -313.399215894), $MachinePrecision] * x), $MachinePrecision] - -47.066876606), $MachinePrecision]), $MachinePrecision] * N[(x - 2.0), $MachinePrecision]), $MachinePrecision], N[(-1.0 * N[(x * N[(N[(-1.0 * N[(N[(N[(-1.0 * N[(N[(N[(-1.0 * N[(N[(y - 130977.50649958357), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision] - 3655.1204654076414), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision] - 110.1139242984811), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision] - 4.16438922228), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]
\begin{array}{l}
\mathbf{if}\;\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \leq 10^{+295}:\\
\;\;\;\;\frac{z + \left(y + \left(\left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x - -137.519416416\right) \cdot x\right) \cdot x}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606} \cdot \left(x - 2\right)\\

\mathbf{else}:\\
\;\;\;\;-1 \cdot \left(x \cdot \left(-1 \cdot \frac{-1 \cdot \frac{-1 \cdot \frac{y - 130977.50649958357}{x} - 3655.1204654076414}{x} - 110.1139242984811}{x} - 4.16438922228\right)\right)\\


\end{array}
Derivation
  1. Split input into 2 regimes
  2. if (/.f64 (*.f64 (-.f64 x #s(literal 2 binary64)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x #s(literal 104109730557/25000000000 binary64)) #s(literal 393497462077/5000000000 binary64)) x) #s(literal 4297481763/31250000 binary64)) x) y) x) z)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 x #s(literal 216700011257/5000000000 binary64)) x) #s(literal 263505074721/1000000000 binary64)) x) #s(literal 156699607947/500000000 binary64)) x) #s(literal 23533438303/500000000 binary64))) < 9.9999999999999998e294

    1. Initial program 59.1%

      \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
    2. Applied rewrites62.1%

      \[\leadsto \color{blue}{\frac{z + \left(y + \left(\left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x - -137.519416416\right) \cdot x\right) \cdot x}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606} \cdot \left(x - 2\right)} \]

    if 9.9999999999999998e294 < (/.f64 (*.f64 (-.f64 x #s(literal 2 binary64)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x #s(literal 104109730557/25000000000 binary64)) #s(literal 393497462077/5000000000 binary64)) x) #s(literal 4297481763/31250000 binary64)) x) y) x) z)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 x #s(literal 216700011257/5000000000 binary64)) x) #s(literal 263505074721/1000000000 binary64)) x) #s(literal 156699607947/500000000 binary64)) x) #s(literal 23533438303/500000000 binary64)))

    1. Initial program 59.1%

      \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
    2. Applied rewrites63.0%

      \[\leadsto \color{blue}{\frac{z}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606} \cdot \left(x - 2\right) + \left(\left(y + \left(\left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x - -137.519416416\right) \cdot x\right) \cdot \frac{x}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606}\right) \cdot \left(x - 2\right)} \]
    3. Applied rewrites62.0%

      \[\leadsto \color{blue}{\frac{2 - x}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606} \cdot \left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right)} \]
    4. Taylor expanded in x around -inf

      \[\leadsto \color{blue}{-1 \cdot \left(x \cdot \left(-1 \cdot \frac{-1 \cdot \frac{-1 \cdot \frac{y - \frac{409304707811198655637810418659684985388407301}{3125000000000000000000000000000000000000}}{x} - \frac{2284450290879775841688574159837293}{625000000000000000000000000000}}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)\right)} \]
    5. Applied rewrites47.4%

      \[\leadsto \color{blue}{-1 \cdot \left(x \cdot \left(-1 \cdot \frac{-1 \cdot \frac{-1 \cdot \frac{y - 130977.50649958357}{x} - 3655.1204654076414}{x} - 110.1139242984811}{x} - 4.16438922228\right)\right)} \]
  3. Recombined 2 regimes into one program.
  4. Add Preprocessing

Alternative 3: 95.5% accurate, 1.0× speedup?

\[\begin{array}{l} t_0 := -1 \cdot \left(x \cdot \left(-1 \cdot \frac{-1 \cdot \frac{-1 \cdot \frac{y - 130977.50649958357}{x} - 3655.1204654076414}{x} - 110.1139242984811}{x} - 4.16438922228\right)\right)\\ \mathbf{if}\;x \leq -1000000000000:\\ \;\;\;\;t\_0\\ \mathbf{elif}\;x \leq 18:\\ \;\;\;\;\frac{-2 \cdot z + x \cdot \left(z + \left(-2 \cdot y + x \cdot \left(\left(y + -19.8795684148 \cdot x\right) - 275.038832832\right)\right)\right)}{\left(263.505074721 \cdot x + 313.399215894\right) \cdot x + 47.066876606}\\ \mathbf{else}:\\ \;\;\;\;t\_0\\ \end{array} \]
(FPCore (x y z)
  :precision binary64
  (let* ((t_0
        (*
         -1.0
         (*
          x
          (-
           (*
            -1.0
            (/
             (-
              (*
               -1.0
               (/
                (-
                 (* -1.0 (/ (- y 130977.50649958357) x))
                 3655.1204654076414)
                x))
              110.1139242984811)
             x))
           4.16438922228)))))
  (if (<= x -1000000000000.0)
    t_0
    (if (<= x 18.0)
      (/
       (+
        (* -2.0 z)
        (*
         x
         (+
          z
          (+
           (* -2.0 y)
           (* x (- (+ y (* -19.8795684148 x)) 275.038832832))))))
       (+ (* (+ (* 263.505074721 x) 313.399215894) x) 47.066876606))
      t_0))))
double code(double x, double y, double z) {
	double t_0 = -1.0 * (x * ((-1.0 * (((-1.0 * (((-1.0 * ((y - 130977.50649958357) / x)) - 3655.1204654076414) / x)) - 110.1139242984811) / x)) - 4.16438922228));
	double tmp;
	if (x <= -1000000000000.0) {
		tmp = t_0;
	} else if (x <= 18.0) {
		tmp = ((-2.0 * z) + (x * (z + ((-2.0 * y) + (x * ((y + (-19.8795684148 * x)) - 275.038832832)))))) / ((((263.505074721 * x) + 313.399215894) * x) + 47.066876606);
	} else {
		tmp = t_0;
	}
	return tmp;
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8) :: t_0
    real(8) :: tmp
    t_0 = (-1.0d0) * (x * (((-1.0d0) * ((((-1.0d0) * ((((-1.0d0) * ((y - 130977.50649958357d0) / x)) - 3655.1204654076414d0) / x)) - 110.1139242984811d0) / x)) - 4.16438922228d0))
    if (x <= (-1000000000000.0d0)) then
        tmp = t_0
    else if (x <= 18.0d0) then
        tmp = (((-2.0d0) * z) + (x * (z + (((-2.0d0) * y) + (x * ((y + ((-19.8795684148d0) * x)) - 275.038832832d0)))))) / ((((263.505074721d0 * x) + 313.399215894d0) * x) + 47.066876606d0)
    else
        tmp = t_0
    end if
    code = tmp
end function
public static double code(double x, double y, double z) {
	double t_0 = -1.0 * (x * ((-1.0 * (((-1.0 * (((-1.0 * ((y - 130977.50649958357) / x)) - 3655.1204654076414) / x)) - 110.1139242984811) / x)) - 4.16438922228));
	double tmp;
	if (x <= -1000000000000.0) {
		tmp = t_0;
	} else if (x <= 18.0) {
		tmp = ((-2.0 * z) + (x * (z + ((-2.0 * y) + (x * ((y + (-19.8795684148 * x)) - 275.038832832)))))) / ((((263.505074721 * x) + 313.399215894) * x) + 47.066876606);
	} else {
		tmp = t_0;
	}
	return tmp;
}
def code(x, y, z):
	t_0 = -1.0 * (x * ((-1.0 * (((-1.0 * (((-1.0 * ((y - 130977.50649958357) / x)) - 3655.1204654076414) / x)) - 110.1139242984811) / x)) - 4.16438922228))
	tmp = 0
	if x <= -1000000000000.0:
		tmp = t_0
	elif x <= 18.0:
		tmp = ((-2.0 * z) + (x * (z + ((-2.0 * y) + (x * ((y + (-19.8795684148 * x)) - 275.038832832)))))) / ((((263.505074721 * x) + 313.399215894) * x) + 47.066876606)
	else:
		tmp = t_0
	return tmp
function code(x, y, z)
	t_0 = Float64(-1.0 * Float64(x * Float64(Float64(-1.0 * Float64(Float64(Float64(-1.0 * Float64(Float64(Float64(-1.0 * Float64(Float64(y - 130977.50649958357) / x)) - 3655.1204654076414) / x)) - 110.1139242984811) / x)) - 4.16438922228)))
	tmp = 0.0
	if (x <= -1000000000000.0)
		tmp = t_0;
	elseif (x <= 18.0)
		tmp = Float64(Float64(Float64(-2.0 * z) + Float64(x * Float64(z + Float64(Float64(-2.0 * y) + Float64(x * Float64(Float64(y + Float64(-19.8795684148 * x)) - 275.038832832)))))) / Float64(Float64(Float64(Float64(263.505074721 * x) + 313.399215894) * x) + 47.066876606));
	else
		tmp = t_0;
	end
	return tmp
end
function tmp_2 = code(x, y, z)
	t_0 = -1.0 * (x * ((-1.0 * (((-1.0 * (((-1.0 * ((y - 130977.50649958357) / x)) - 3655.1204654076414) / x)) - 110.1139242984811) / x)) - 4.16438922228));
	tmp = 0.0;
	if (x <= -1000000000000.0)
		tmp = t_0;
	elseif (x <= 18.0)
		tmp = ((-2.0 * z) + (x * (z + ((-2.0 * y) + (x * ((y + (-19.8795684148 * x)) - 275.038832832)))))) / ((((263.505074721 * x) + 313.399215894) * x) + 47.066876606);
	else
		tmp = t_0;
	end
	tmp_2 = tmp;
end
code[x_, y_, z_] := Block[{t$95$0 = N[(-1.0 * N[(x * N[(N[(-1.0 * N[(N[(N[(-1.0 * N[(N[(N[(-1.0 * N[(N[(y - 130977.50649958357), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision] - 3655.1204654076414), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision] - 110.1139242984811), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision] - 4.16438922228), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[x, -1000000000000.0], t$95$0, If[LessEqual[x, 18.0], N[(N[(N[(-2.0 * z), $MachinePrecision] + N[(x * N[(z + N[(N[(-2.0 * y), $MachinePrecision] + N[(x * N[(N[(y + N[(-19.8795684148 * x), $MachinePrecision]), $MachinePrecision] - 275.038832832), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(N[(N[(N[(263.505074721 * x), $MachinePrecision] + 313.399215894), $MachinePrecision] * x), $MachinePrecision] + 47.066876606), $MachinePrecision]), $MachinePrecision], t$95$0]]]
\begin{array}{l}
t_0 := -1 \cdot \left(x \cdot \left(-1 \cdot \frac{-1 \cdot \frac{-1 \cdot \frac{y - 130977.50649958357}{x} - 3655.1204654076414}{x} - 110.1139242984811}{x} - 4.16438922228\right)\right)\\
\mathbf{if}\;x \leq -1000000000000:\\
\;\;\;\;t\_0\\

\mathbf{elif}\;x \leq 18:\\
\;\;\;\;\frac{-2 \cdot z + x \cdot \left(z + \left(-2 \cdot y + x \cdot \left(\left(y + -19.8795684148 \cdot x\right) - 275.038832832\right)\right)\right)}{\left(263.505074721 \cdot x + 313.399215894\right) \cdot x + 47.066876606}\\

\mathbf{else}:\\
\;\;\;\;t\_0\\


\end{array}
Derivation
  1. Split input into 2 regimes
  2. if x < -1e12 or 18 < x

    1. Initial program 59.1%

      \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
    2. Applied rewrites63.0%

      \[\leadsto \color{blue}{\frac{z}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606} \cdot \left(x - 2\right) + \left(\left(y + \left(\left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x - -137.519416416\right) \cdot x\right) \cdot \frac{x}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606}\right) \cdot \left(x - 2\right)} \]
    3. Applied rewrites62.0%

      \[\leadsto \color{blue}{\frac{2 - x}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606} \cdot \left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right)} \]
    4. Taylor expanded in x around -inf

      \[\leadsto \color{blue}{-1 \cdot \left(x \cdot \left(-1 \cdot \frac{-1 \cdot \frac{-1 \cdot \frac{y - \frac{409304707811198655637810418659684985388407301}{3125000000000000000000000000000000000000}}{x} - \frac{2284450290879775841688574159837293}{625000000000000000000000000000}}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)\right)} \]
    5. Applied rewrites47.4%

      \[\leadsto \color{blue}{-1 \cdot \left(x \cdot \left(-1 \cdot \frac{-1 \cdot \frac{-1 \cdot \frac{y - 130977.50649958357}{x} - 3655.1204654076414}{x} - 110.1139242984811}{x} - 4.16438922228\right)\right)} \]

    if -1e12 < x < 18

    1. Initial program 59.1%

      \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
    2. Taylor expanded in x around 0

      \[\leadsto \frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\color{blue}{\frac{263505074721}{1000000000}} \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
    3. Step-by-step derivation
      1. Applied rewrites51.3%

        \[\leadsto \frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\color{blue}{263.505074721} \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
      2. Taylor expanded in x around 0

        \[\leadsto \frac{\left(x - 2\right) \cdot \color{blue}{z}}{\left(263.505074721 \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
      3. Step-by-step derivation
        1. Applied rewrites34.7%

          \[\leadsto \frac{\left(x - 2\right) \cdot \color{blue}{z}}{\left(263.505074721 \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
        2. Taylor expanded in x around 0

          \[\leadsto \frac{\color{blue}{-2 \cdot z + x \cdot \left(z + \left(-2 \cdot y + x \cdot \left(\left(y + \frac{-49698921037}{2500000000} \cdot x\right) - \frac{4297481763}{15625000}\right)\right)\right)}}{\left(263.505074721 \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
        3. Step-by-step derivation
          1. lower-+.f64N/A

            \[\leadsto \frac{-2 \cdot z + \color{blue}{x \cdot \left(z + \left(-2 \cdot y + x \cdot \left(\left(y + \frac{-49698921037}{2500000000} \cdot x\right) - \frac{4297481763}{15625000}\right)\right)\right)}}{\left(\frac{263505074721}{1000000000} \cdot x + \frac{156699607947}{500000000}\right) \cdot x + \frac{23533438303}{500000000}} \]
          2. lower-*.f64N/A

            \[\leadsto \frac{-2 \cdot z + \color{blue}{x} \cdot \left(z + \left(-2 \cdot y + x \cdot \left(\left(y + \frac{-49698921037}{2500000000} \cdot x\right) - \frac{4297481763}{15625000}\right)\right)\right)}{\left(\frac{263505074721}{1000000000} \cdot x + \frac{156699607947}{500000000}\right) \cdot x + \frac{23533438303}{500000000}} \]
          3. lower-*.f64N/A

            \[\leadsto \frac{-2 \cdot z + x \cdot \color{blue}{\left(z + \left(-2 \cdot y + x \cdot \left(\left(y + \frac{-49698921037}{2500000000} \cdot x\right) - \frac{4297481763}{15625000}\right)\right)\right)}}{\left(\frac{263505074721}{1000000000} \cdot x + \frac{156699607947}{500000000}\right) \cdot x + \frac{23533438303}{500000000}} \]
          4. lower-+.f64N/A

            \[\leadsto \frac{-2 \cdot z + x \cdot \left(z + \color{blue}{\left(-2 \cdot y + x \cdot \left(\left(y + \frac{-49698921037}{2500000000} \cdot x\right) - \frac{4297481763}{15625000}\right)\right)}\right)}{\left(\frac{263505074721}{1000000000} \cdot x + \frac{156699607947}{500000000}\right) \cdot x + \frac{23533438303}{500000000}} \]
          5. lower-+.f64N/A

            \[\leadsto \frac{-2 \cdot z + x \cdot \left(z + \left(-2 \cdot y + \color{blue}{x \cdot \left(\left(y + \frac{-49698921037}{2500000000} \cdot x\right) - \frac{4297481763}{15625000}\right)}\right)\right)}{\left(\frac{263505074721}{1000000000} \cdot x + \frac{156699607947}{500000000}\right) \cdot x + \frac{23533438303}{500000000}} \]
          6. lower-*.f64N/A

            \[\leadsto \frac{-2 \cdot z + x \cdot \left(z + \left(-2 \cdot y + \color{blue}{x} \cdot \left(\left(y + \frac{-49698921037}{2500000000} \cdot x\right) - \frac{4297481763}{15625000}\right)\right)\right)}{\left(\frac{263505074721}{1000000000} \cdot x + \frac{156699607947}{500000000}\right) \cdot x + \frac{23533438303}{500000000}} \]
          7. lower-*.f64N/A

            \[\leadsto \frac{-2 \cdot z + x \cdot \left(z + \left(-2 \cdot y + x \cdot \color{blue}{\left(\left(y + \frac{-49698921037}{2500000000} \cdot x\right) - \frac{4297481763}{15625000}\right)}\right)\right)}{\left(\frac{263505074721}{1000000000} \cdot x + \frac{156699607947}{500000000}\right) \cdot x + \frac{23533438303}{500000000}} \]
          8. lower--.f64N/A

            \[\leadsto \frac{-2 \cdot z + x \cdot \left(z + \left(-2 \cdot y + x \cdot \left(\left(y + \frac{-49698921037}{2500000000} \cdot x\right) - \color{blue}{\frac{4297481763}{15625000}}\right)\right)\right)}{\left(\frac{263505074721}{1000000000} \cdot x + \frac{156699607947}{500000000}\right) \cdot x + \frac{23533438303}{500000000}} \]
          9. lower-+.f64N/A

            \[\leadsto \frac{-2 \cdot z + x \cdot \left(z + \left(-2 \cdot y + x \cdot \left(\left(y + \frac{-49698921037}{2500000000} \cdot x\right) - \frac{4297481763}{15625000}\right)\right)\right)}{\left(\frac{263505074721}{1000000000} \cdot x + \frac{156699607947}{500000000}\right) \cdot x + \frac{23533438303}{500000000}} \]
          10. lower-*.f6450.6%

            \[\leadsto \frac{-2 \cdot z + x \cdot \left(z + \left(-2 \cdot y + x \cdot \left(\left(y + -19.8795684148 \cdot x\right) - 275.038832832\right)\right)\right)}{\left(263.505074721 \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
        4. Applied rewrites50.6%

          \[\leadsto \frac{\color{blue}{-2 \cdot z + x \cdot \left(z + \left(-2 \cdot y + x \cdot \left(\left(y + -19.8795684148 \cdot x\right) - 275.038832832\right)\right)\right)}}{\left(263.505074721 \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
      4. Recombined 2 regimes into one program.
      5. Add Preprocessing

      Alternative 4: 92.4% accurate, 0.3× speedup?

      \[\begin{array}{l} t_0 := \left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)\\ t_1 := \left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606\\ t_2 := \frac{t\_0}{t\_1}\\ \mathbf{if}\;t\_2 \leq -2 \cdot 10^{+189}:\\ \;\;\;\;\frac{2 - x}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606} \cdot \left(\left(-1 \cdot y\right) \cdot x - z\right)\\ \mathbf{elif}\;t\_2 \leq 10^{+23}:\\ \;\;\;\;\frac{t\_0}{\left(263.505074721 \cdot x + 313.399215894\right) \cdot x + 47.066876606}\\ \mathbf{elif}\;t\_2 \leq 10^{+295}:\\ \;\;\;\;\frac{\left(x - 2\right) \cdot \left(y \cdot x + z\right)}{t\_1}\\ \mathbf{else}:\\ \;\;\;\;x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)\\ \end{array} \]
      (FPCore (x y z)
        :precision binary64
        (let* ((t_0
              (*
               (- x 2.0)
               (+
                (*
                 (+
                  (*
                   (+
                    (* (+ (* x 4.16438922228) 78.6994924154) x)
                    137.519416416)
                   x)
                  y)
                 x)
                z)))
             (t_1
              (+
               (*
                (+
                 (* (+ (* (+ x 43.3400022514) x) 263.505074721) x)
                 313.399215894)
                x)
               47.066876606))
             (t_2 (/ t_0 t_1)))
        (if (<= t_2 -2e+189)
          (*
           (/
            (- 2.0 x)
            (-
             (*
              (-
               (* (- (* (- x -43.3400022514) x) -263.505074721) x)
               -313.399215894)
              x)
             -47.066876606))
           (- (* (* -1.0 y) x) z))
          (if (<= t_2 1e+23)
            (/
             t_0
             (+ (* (+ (* 263.505074721 x) 313.399215894) x) 47.066876606))
            (if (<= t_2 1e+295)
              (/ (* (- x 2.0) (+ (* y x) z)) t_1)
              (* x (- 4.16438922228 (* 110.1139242984811 (/ 1.0 x)))))))))
      double code(double x, double y, double z) {
      	double t_0 = (x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z);
      	double t_1 = ((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606;
      	double t_2 = t_0 / t_1;
      	double tmp;
      	if (t_2 <= -2e+189) {
      		tmp = ((2.0 - x) / (((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * (((-1.0 * y) * x) - z);
      	} else if (t_2 <= 1e+23) {
      		tmp = t_0 / ((((263.505074721 * x) + 313.399215894) * x) + 47.066876606);
      	} else if (t_2 <= 1e+295) {
      		tmp = ((x - 2.0) * ((y * x) + z)) / t_1;
      	} else {
      		tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
      	}
      	return tmp;
      }
      
      module fmin_fmax_functions
          implicit none
          private
          public fmax
          public fmin
      
          interface fmax
              module procedure fmax88
              module procedure fmax44
              module procedure fmax84
              module procedure fmax48
          end interface
          interface fmin
              module procedure fmin88
              module procedure fmin44
              module procedure fmin84
              module procedure fmin48
          end interface
      contains
          real(8) function fmax88(x, y) result (res)
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
          end function
          real(4) function fmax44(x, y) result (res)
              real(4), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
          end function
          real(8) function fmax84(x, y) result(res)
              real(8), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
          end function
          real(8) function fmax48(x, y) result(res)
              real(4), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
          end function
          real(8) function fmin88(x, y) result (res)
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
          end function
          real(4) function fmin44(x, y) result (res)
              real(4), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
          end function
          real(8) function fmin84(x, y) result(res)
              real(8), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
          end function
          real(8) function fmin48(x, y) result(res)
              real(4), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
          end function
      end module
      
      real(8) function code(x, y, z)
      use fmin_fmax_functions
          real(8), intent (in) :: x
          real(8), intent (in) :: y
          real(8), intent (in) :: z
          real(8) :: t_0
          real(8) :: t_1
          real(8) :: t_2
          real(8) :: tmp
          t_0 = (x - 2.0d0) * ((((((((x * 4.16438922228d0) + 78.6994924154d0) * x) + 137.519416416d0) * x) + y) * x) + z)
          t_1 = ((((((x + 43.3400022514d0) * x) + 263.505074721d0) * x) + 313.399215894d0) * x) + 47.066876606d0
          t_2 = t_0 / t_1
          if (t_2 <= (-2d+189)) then
              tmp = ((2.0d0 - x) / (((((((x - (-43.3400022514d0)) * x) - (-263.505074721d0)) * x) - (-313.399215894d0)) * x) - (-47.066876606d0))) * ((((-1.0d0) * y) * x) - z)
          else if (t_2 <= 1d+23) then
              tmp = t_0 / ((((263.505074721d0 * x) + 313.399215894d0) * x) + 47.066876606d0)
          else if (t_2 <= 1d+295) then
              tmp = ((x - 2.0d0) * ((y * x) + z)) / t_1
          else
              tmp = x * (4.16438922228d0 - (110.1139242984811d0 * (1.0d0 / x)))
          end if
          code = tmp
      end function
      
      public static double code(double x, double y, double z) {
      	double t_0 = (x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z);
      	double t_1 = ((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606;
      	double t_2 = t_0 / t_1;
      	double tmp;
      	if (t_2 <= -2e+189) {
      		tmp = ((2.0 - x) / (((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * (((-1.0 * y) * x) - z);
      	} else if (t_2 <= 1e+23) {
      		tmp = t_0 / ((((263.505074721 * x) + 313.399215894) * x) + 47.066876606);
      	} else if (t_2 <= 1e+295) {
      		tmp = ((x - 2.0) * ((y * x) + z)) / t_1;
      	} else {
      		tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
      	}
      	return tmp;
      }
      
      def code(x, y, z):
      	t_0 = (x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)
      	t_1 = ((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606
      	t_2 = t_0 / t_1
      	tmp = 0
      	if t_2 <= -2e+189:
      		tmp = ((2.0 - x) / (((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * (((-1.0 * y) * x) - z)
      	elif t_2 <= 1e+23:
      		tmp = t_0 / ((((263.505074721 * x) + 313.399215894) * x) + 47.066876606)
      	elif t_2 <= 1e+295:
      		tmp = ((x - 2.0) * ((y * x) + z)) / t_1
      	else:
      		tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)))
      	return tmp
      
      function code(x, y, z)
      	t_0 = Float64(Float64(x - 2.0) * Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z))
      	t_1 = Float64(Float64(Float64(Float64(Float64(Float64(Float64(x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606)
      	t_2 = Float64(t_0 / t_1)
      	tmp = 0.0
      	if (t_2 <= -2e+189)
      		tmp = Float64(Float64(Float64(2.0 - x) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * Float64(Float64(Float64(-1.0 * y) * x) - z));
      	elseif (t_2 <= 1e+23)
      		tmp = Float64(t_0 / Float64(Float64(Float64(Float64(263.505074721 * x) + 313.399215894) * x) + 47.066876606));
      	elseif (t_2 <= 1e+295)
      		tmp = Float64(Float64(Float64(x - 2.0) * Float64(Float64(y * x) + z)) / t_1);
      	else
      		tmp = Float64(x * Float64(4.16438922228 - Float64(110.1139242984811 * Float64(1.0 / x))));
      	end
      	return tmp
      end
      
      function tmp_2 = code(x, y, z)
      	t_0 = (x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z);
      	t_1 = ((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606;
      	t_2 = t_0 / t_1;
      	tmp = 0.0;
      	if (t_2 <= -2e+189)
      		tmp = ((2.0 - x) / (((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * (((-1.0 * y) * x) - z);
      	elseif (t_2 <= 1e+23)
      		tmp = t_0 / ((((263.505074721 * x) + 313.399215894) * x) + 47.066876606);
      	elseif (t_2 <= 1e+295)
      		tmp = ((x - 2.0) * ((y * x) + z)) / t_1;
      	else
      		tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
      	end
      	tmp_2 = tmp;
      end
      
      code[x_, y_, z_] := Block[{t$95$0 = N[(N[(x - 2.0), $MachinePrecision] * N[(N[(N[(N[(N[(N[(N[(N[(x * 4.16438922228), $MachinePrecision] + 78.6994924154), $MachinePrecision] * x), $MachinePrecision] + 137.519416416), $MachinePrecision] * x), $MachinePrecision] + y), $MachinePrecision] * x), $MachinePrecision] + z), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$1 = N[(N[(N[(N[(N[(N[(N[(x + 43.3400022514), $MachinePrecision] * x), $MachinePrecision] + 263.505074721), $MachinePrecision] * x), $MachinePrecision] + 313.399215894), $MachinePrecision] * x), $MachinePrecision] + 47.066876606), $MachinePrecision]}, Block[{t$95$2 = N[(t$95$0 / t$95$1), $MachinePrecision]}, If[LessEqual[t$95$2, -2e+189], N[(N[(N[(2.0 - x), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(x - -43.3400022514), $MachinePrecision] * x), $MachinePrecision] - -263.505074721), $MachinePrecision] * x), $MachinePrecision] - -313.399215894), $MachinePrecision] * x), $MachinePrecision] - -47.066876606), $MachinePrecision]), $MachinePrecision] * N[(N[(N[(-1.0 * y), $MachinePrecision] * x), $MachinePrecision] - z), $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$2, 1e+23], N[(t$95$0 / N[(N[(N[(N[(263.505074721 * x), $MachinePrecision] + 313.399215894), $MachinePrecision] * x), $MachinePrecision] + 47.066876606), $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$2, 1e+295], N[(N[(N[(x - 2.0), $MachinePrecision] * N[(N[(y * x), $MachinePrecision] + z), $MachinePrecision]), $MachinePrecision] / t$95$1), $MachinePrecision], N[(x * N[(4.16438922228 - N[(110.1139242984811 * N[(1.0 / x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]]]]]]
      
      \begin{array}{l}
      t_0 := \left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)\\
      t_1 := \left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606\\
      t_2 := \frac{t\_0}{t\_1}\\
      \mathbf{if}\;t\_2 \leq -2 \cdot 10^{+189}:\\
      \;\;\;\;\frac{2 - x}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606} \cdot \left(\left(-1 \cdot y\right) \cdot x - z\right)\\
      
      \mathbf{elif}\;t\_2 \leq 10^{+23}:\\
      \;\;\;\;\frac{t\_0}{\left(263.505074721 \cdot x + 313.399215894\right) \cdot x + 47.066876606}\\
      
      \mathbf{elif}\;t\_2 \leq 10^{+295}:\\
      \;\;\;\;\frac{\left(x - 2\right) \cdot \left(y \cdot x + z\right)}{t\_1}\\
      
      \mathbf{else}:\\
      \;\;\;\;x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)\\
      
      
      \end{array}
      
      Derivation
      1. Split input into 4 regimes
      2. if (/.f64 (*.f64 (-.f64 x #s(literal 2 binary64)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x #s(literal 104109730557/25000000000 binary64)) #s(literal 393497462077/5000000000 binary64)) x) #s(literal 4297481763/31250000 binary64)) x) y) x) z)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 x #s(literal 216700011257/5000000000 binary64)) x) #s(literal 263505074721/1000000000 binary64)) x) #s(literal 156699607947/500000000 binary64)) x) #s(literal 23533438303/500000000 binary64))) < -2e189

        1. Initial program 59.1%

          \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
        2. Applied rewrites63.0%

          \[\leadsto \color{blue}{\frac{z}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606} \cdot \left(x - 2\right) + \left(\left(y + \left(\left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x - -137.519416416\right) \cdot x\right) \cdot \frac{x}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606}\right) \cdot \left(x - 2\right)} \]
        3. Applied rewrites62.0%

          \[\leadsto \color{blue}{\frac{2 - x}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606} \cdot \left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right)} \]
        4. Taylor expanded in x around 0

          \[\leadsto \frac{2 - x}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606} \cdot \left(\color{blue}{\left(-1 \cdot y\right)} \cdot x - z\right) \]
        5. Step-by-step derivation
          1. lower-*.f6453.0%

            \[\leadsto \frac{2 - x}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606} \cdot \left(\left(-1 \cdot \color{blue}{y}\right) \cdot x - z\right) \]
        6. Applied rewrites53.0%

          \[\leadsto \frac{2 - x}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606} \cdot \left(\color{blue}{\left(-1 \cdot y\right)} \cdot x - z\right) \]

        if -2e189 < (/.f64 (*.f64 (-.f64 x #s(literal 2 binary64)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x #s(literal 104109730557/25000000000 binary64)) #s(literal 393497462077/5000000000 binary64)) x) #s(literal 4297481763/31250000 binary64)) x) y) x) z)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 x #s(literal 216700011257/5000000000 binary64)) x) #s(literal 263505074721/1000000000 binary64)) x) #s(literal 156699607947/500000000 binary64)) x) #s(literal 23533438303/500000000 binary64))) < 9.9999999999999992e22

        1. Initial program 59.1%

          \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
        2. Taylor expanded in x around 0

          \[\leadsto \frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\color{blue}{\frac{263505074721}{1000000000}} \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
        3. Step-by-step derivation
          1. Applied rewrites51.3%

            \[\leadsto \frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\color{blue}{263.505074721} \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]

          if 9.9999999999999992e22 < (/.f64 (*.f64 (-.f64 x #s(literal 2 binary64)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x #s(literal 104109730557/25000000000 binary64)) #s(literal 393497462077/5000000000 binary64)) x) #s(literal 4297481763/31250000 binary64)) x) y) x) z)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 x #s(literal 216700011257/5000000000 binary64)) x) #s(literal 263505074721/1000000000 binary64)) x) #s(literal 156699607947/500000000 binary64)) x) #s(literal 23533438303/500000000 binary64))) < 9.9999999999999998e294

          1. Initial program 59.1%

            \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
          2. Taylor expanded in x around 0

            \[\leadsto \frac{\left(x - 2\right) \cdot \left(\color{blue}{y} \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
          3. Step-by-step derivation
            1. Applied rewrites51.8%

              \[\leadsto \frac{\left(x - 2\right) \cdot \left(\color{blue}{y} \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]

            if 9.9999999999999998e294 < (/.f64 (*.f64 (-.f64 x #s(literal 2 binary64)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x #s(literal 104109730557/25000000000 binary64)) #s(literal 393497462077/5000000000 binary64)) x) #s(literal 4297481763/31250000 binary64)) x) y) x) z)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 x #s(literal 216700011257/5000000000 binary64)) x) #s(literal 263505074721/1000000000 binary64)) x) #s(literal 156699607947/500000000 binary64)) x) #s(literal 23533438303/500000000 binary64)))

            1. Initial program 59.1%

              \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
            2. Taylor expanded in x around inf

              \[\leadsto \color{blue}{x \cdot \left(\frac{104109730557}{25000000000} - \frac{13764240537310136880149}{125000000000000000000} \cdot \frac{1}{x}\right)} \]
            3. Step-by-step derivation
              1. lower-*.f64N/A

                \[\leadsto x \cdot \color{blue}{\left(\frac{104109730557}{25000000000} - \frac{13764240537310136880149}{125000000000000000000} \cdot \frac{1}{x}\right)} \]
              2. lower--.f64N/A

                \[\leadsto x \cdot \left(\frac{104109730557}{25000000000} - \color{blue}{\frac{13764240537310136880149}{125000000000000000000} \cdot \frac{1}{x}}\right) \]
              3. lower-*.f64N/A

                \[\leadsto x \cdot \left(\frac{104109730557}{25000000000} - \frac{13764240537310136880149}{125000000000000000000} \cdot \color{blue}{\frac{1}{x}}\right) \]
              4. lower-/.f6444.8%

                \[\leadsto x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{\color{blue}{x}}\right) \]
            4. Applied rewrites44.8%

              \[\leadsto \color{blue}{x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)} \]
          4. Recombined 4 regimes into one program.
          5. Add Preprocessing

          Alternative 5: 92.1% accurate, 0.3× speedup?

          \[\begin{array}{l} t_0 := \left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)\\ t_1 := \left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606\\ t_2 := \frac{t\_0}{t\_1}\\ \mathbf{if}\;t\_2 \leq -2 \cdot 10^{+189}:\\ \;\;\;\;\frac{2 - x}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606} \cdot \left(\left(-1 \cdot y\right) \cdot x - z\right)\\ \mathbf{elif}\;t\_2 \leq 5 \cdot 10^{+22}:\\ \;\;\;\;\frac{t\_0}{313.399215894 \cdot x + 47.066876606}\\ \mathbf{elif}\;t\_2 \leq 10^{+295}:\\ \;\;\;\;\frac{\left(x - 2\right) \cdot \left(y \cdot x + z\right)}{t\_1}\\ \mathbf{else}:\\ \;\;\;\;x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)\\ \end{array} \]
          (FPCore (x y z)
            :precision binary64
            (let* ((t_0
                  (*
                   (- x 2.0)
                   (+
                    (*
                     (+
                      (*
                       (+
                        (* (+ (* x 4.16438922228) 78.6994924154) x)
                        137.519416416)
                       x)
                      y)
                     x)
                    z)))
                 (t_1
                  (+
                   (*
                    (+
                     (* (+ (* (+ x 43.3400022514) x) 263.505074721) x)
                     313.399215894)
                    x)
                   47.066876606))
                 (t_2 (/ t_0 t_1)))
            (if (<= t_2 -2e+189)
              (*
               (/
                (- 2.0 x)
                (-
                 (*
                  (-
                   (* (- (* (- x -43.3400022514) x) -263.505074721) x)
                   -313.399215894)
                  x)
                 -47.066876606))
               (- (* (* -1.0 y) x) z))
              (if (<= t_2 5e+22)
                (/ t_0 (+ (* 313.399215894 x) 47.066876606))
                (if (<= t_2 1e+295)
                  (/ (* (- x 2.0) (+ (* y x) z)) t_1)
                  (* x (- 4.16438922228 (* 110.1139242984811 (/ 1.0 x)))))))))
          double code(double x, double y, double z) {
          	double t_0 = (x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z);
          	double t_1 = ((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606;
          	double t_2 = t_0 / t_1;
          	double tmp;
          	if (t_2 <= -2e+189) {
          		tmp = ((2.0 - x) / (((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * (((-1.0 * y) * x) - z);
          	} else if (t_2 <= 5e+22) {
          		tmp = t_0 / ((313.399215894 * x) + 47.066876606);
          	} else if (t_2 <= 1e+295) {
          		tmp = ((x - 2.0) * ((y * x) + z)) / t_1;
          	} else {
          		tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
          	}
          	return tmp;
          }
          
          module fmin_fmax_functions
              implicit none
              private
              public fmax
              public fmin
          
              interface fmax
                  module procedure fmax88
                  module procedure fmax44
                  module procedure fmax84
                  module procedure fmax48
              end interface
              interface fmin
                  module procedure fmin88
                  module procedure fmin44
                  module procedure fmin84
                  module procedure fmin48
              end interface
          contains
              real(8) function fmax88(x, y) result (res)
                  real(8), intent (in) :: x
                  real(8), intent (in) :: y
                  res = merge(y, merge(x, max(x, y), y /= y), x /= x)
              end function
              real(4) function fmax44(x, y) result (res)
                  real(4), intent (in) :: x
                  real(4), intent (in) :: y
                  res = merge(y, merge(x, max(x, y), y /= y), x /= x)
              end function
              real(8) function fmax84(x, y) result(res)
                  real(8), intent (in) :: x
                  real(4), intent (in) :: y
                  res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
              end function
              real(8) function fmax48(x, y) result(res)
                  real(4), intent (in) :: x
                  real(8), intent (in) :: y
                  res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
              end function
              real(8) function fmin88(x, y) result (res)
                  real(8), intent (in) :: x
                  real(8), intent (in) :: y
                  res = merge(y, merge(x, min(x, y), y /= y), x /= x)
              end function
              real(4) function fmin44(x, y) result (res)
                  real(4), intent (in) :: x
                  real(4), intent (in) :: y
                  res = merge(y, merge(x, min(x, y), y /= y), x /= x)
              end function
              real(8) function fmin84(x, y) result(res)
                  real(8), intent (in) :: x
                  real(4), intent (in) :: y
                  res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
              end function
              real(8) function fmin48(x, y) result(res)
                  real(4), intent (in) :: x
                  real(8), intent (in) :: y
                  res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
              end function
          end module
          
          real(8) function code(x, y, z)
          use fmin_fmax_functions
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              real(8), intent (in) :: z
              real(8) :: t_0
              real(8) :: t_1
              real(8) :: t_2
              real(8) :: tmp
              t_0 = (x - 2.0d0) * ((((((((x * 4.16438922228d0) + 78.6994924154d0) * x) + 137.519416416d0) * x) + y) * x) + z)
              t_1 = ((((((x + 43.3400022514d0) * x) + 263.505074721d0) * x) + 313.399215894d0) * x) + 47.066876606d0
              t_2 = t_0 / t_1
              if (t_2 <= (-2d+189)) then
                  tmp = ((2.0d0 - x) / (((((((x - (-43.3400022514d0)) * x) - (-263.505074721d0)) * x) - (-313.399215894d0)) * x) - (-47.066876606d0))) * ((((-1.0d0) * y) * x) - z)
              else if (t_2 <= 5d+22) then
                  tmp = t_0 / ((313.399215894d0 * x) + 47.066876606d0)
              else if (t_2 <= 1d+295) then
                  tmp = ((x - 2.0d0) * ((y * x) + z)) / t_1
              else
                  tmp = x * (4.16438922228d0 - (110.1139242984811d0 * (1.0d0 / x)))
              end if
              code = tmp
          end function
          
          public static double code(double x, double y, double z) {
          	double t_0 = (x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z);
          	double t_1 = ((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606;
          	double t_2 = t_0 / t_1;
          	double tmp;
          	if (t_2 <= -2e+189) {
          		tmp = ((2.0 - x) / (((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * (((-1.0 * y) * x) - z);
          	} else if (t_2 <= 5e+22) {
          		tmp = t_0 / ((313.399215894 * x) + 47.066876606);
          	} else if (t_2 <= 1e+295) {
          		tmp = ((x - 2.0) * ((y * x) + z)) / t_1;
          	} else {
          		tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
          	}
          	return tmp;
          }
          
          def code(x, y, z):
          	t_0 = (x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)
          	t_1 = ((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606
          	t_2 = t_0 / t_1
          	tmp = 0
          	if t_2 <= -2e+189:
          		tmp = ((2.0 - x) / (((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * (((-1.0 * y) * x) - z)
          	elif t_2 <= 5e+22:
          		tmp = t_0 / ((313.399215894 * x) + 47.066876606)
          	elif t_2 <= 1e+295:
          		tmp = ((x - 2.0) * ((y * x) + z)) / t_1
          	else:
          		tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)))
          	return tmp
          
          function code(x, y, z)
          	t_0 = Float64(Float64(x - 2.0) * Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z))
          	t_1 = Float64(Float64(Float64(Float64(Float64(Float64(Float64(x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606)
          	t_2 = Float64(t_0 / t_1)
          	tmp = 0.0
          	if (t_2 <= -2e+189)
          		tmp = Float64(Float64(Float64(2.0 - x) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * Float64(Float64(Float64(-1.0 * y) * x) - z));
          	elseif (t_2 <= 5e+22)
          		tmp = Float64(t_0 / Float64(Float64(313.399215894 * x) + 47.066876606));
          	elseif (t_2 <= 1e+295)
          		tmp = Float64(Float64(Float64(x - 2.0) * Float64(Float64(y * x) + z)) / t_1);
          	else
          		tmp = Float64(x * Float64(4.16438922228 - Float64(110.1139242984811 * Float64(1.0 / x))));
          	end
          	return tmp
          end
          
          function tmp_2 = code(x, y, z)
          	t_0 = (x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z);
          	t_1 = ((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606;
          	t_2 = t_0 / t_1;
          	tmp = 0.0;
          	if (t_2 <= -2e+189)
          		tmp = ((2.0 - x) / (((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * (((-1.0 * y) * x) - z);
          	elseif (t_2 <= 5e+22)
          		tmp = t_0 / ((313.399215894 * x) + 47.066876606);
          	elseif (t_2 <= 1e+295)
          		tmp = ((x - 2.0) * ((y * x) + z)) / t_1;
          	else
          		tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
          	end
          	tmp_2 = tmp;
          end
          
          code[x_, y_, z_] := Block[{t$95$0 = N[(N[(x - 2.0), $MachinePrecision] * N[(N[(N[(N[(N[(N[(N[(N[(x * 4.16438922228), $MachinePrecision] + 78.6994924154), $MachinePrecision] * x), $MachinePrecision] + 137.519416416), $MachinePrecision] * x), $MachinePrecision] + y), $MachinePrecision] * x), $MachinePrecision] + z), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$1 = N[(N[(N[(N[(N[(N[(N[(x + 43.3400022514), $MachinePrecision] * x), $MachinePrecision] + 263.505074721), $MachinePrecision] * x), $MachinePrecision] + 313.399215894), $MachinePrecision] * x), $MachinePrecision] + 47.066876606), $MachinePrecision]}, Block[{t$95$2 = N[(t$95$0 / t$95$1), $MachinePrecision]}, If[LessEqual[t$95$2, -2e+189], N[(N[(N[(2.0 - x), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(x - -43.3400022514), $MachinePrecision] * x), $MachinePrecision] - -263.505074721), $MachinePrecision] * x), $MachinePrecision] - -313.399215894), $MachinePrecision] * x), $MachinePrecision] - -47.066876606), $MachinePrecision]), $MachinePrecision] * N[(N[(N[(-1.0 * y), $MachinePrecision] * x), $MachinePrecision] - z), $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$2, 5e+22], N[(t$95$0 / N[(N[(313.399215894 * x), $MachinePrecision] + 47.066876606), $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$2, 1e+295], N[(N[(N[(x - 2.0), $MachinePrecision] * N[(N[(y * x), $MachinePrecision] + z), $MachinePrecision]), $MachinePrecision] / t$95$1), $MachinePrecision], N[(x * N[(4.16438922228 - N[(110.1139242984811 * N[(1.0 / x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]]]]]]
          
          \begin{array}{l}
          t_0 := \left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)\\
          t_1 := \left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606\\
          t_2 := \frac{t\_0}{t\_1}\\
          \mathbf{if}\;t\_2 \leq -2 \cdot 10^{+189}:\\
          \;\;\;\;\frac{2 - x}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606} \cdot \left(\left(-1 \cdot y\right) \cdot x - z\right)\\
          
          \mathbf{elif}\;t\_2 \leq 5 \cdot 10^{+22}:\\
          \;\;\;\;\frac{t\_0}{313.399215894 \cdot x + 47.066876606}\\
          
          \mathbf{elif}\;t\_2 \leq 10^{+295}:\\
          \;\;\;\;\frac{\left(x - 2\right) \cdot \left(y \cdot x + z\right)}{t\_1}\\
          
          \mathbf{else}:\\
          \;\;\;\;x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)\\
          
          
          \end{array}
          
          Derivation
          1. Split input into 4 regimes
          2. if (/.f64 (*.f64 (-.f64 x #s(literal 2 binary64)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x #s(literal 104109730557/25000000000 binary64)) #s(literal 393497462077/5000000000 binary64)) x) #s(literal 4297481763/31250000 binary64)) x) y) x) z)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 x #s(literal 216700011257/5000000000 binary64)) x) #s(literal 263505074721/1000000000 binary64)) x) #s(literal 156699607947/500000000 binary64)) x) #s(literal 23533438303/500000000 binary64))) < -2e189

            1. Initial program 59.1%

              \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
            2. Applied rewrites63.0%

              \[\leadsto \color{blue}{\frac{z}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606} \cdot \left(x - 2\right) + \left(\left(y + \left(\left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x - -137.519416416\right) \cdot x\right) \cdot \frac{x}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606}\right) \cdot \left(x - 2\right)} \]
            3. Applied rewrites62.0%

              \[\leadsto \color{blue}{\frac{2 - x}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606} \cdot \left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right)} \]
            4. Taylor expanded in x around 0

              \[\leadsto \frac{2 - x}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606} \cdot \left(\color{blue}{\left(-1 \cdot y\right)} \cdot x - z\right) \]
            5. Step-by-step derivation
              1. lower-*.f6453.0%

                \[\leadsto \frac{2 - x}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606} \cdot \left(\left(-1 \cdot \color{blue}{y}\right) \cdot x - z\right) \]
            6. Applied rewrites53.0%

              \[\leadsto \frac{2 - x}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606} \cdot \left(\color{blue}{\left(-1 \cdot y\right)} \cdot x - z\right) \]

            if -2e189 < (/.f64 (*.f64 (-.f64 x #s(literal 2 binary64)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x #s(literal 104109730557/25000000000 binary64)) #s(literal 393497462077/5000000000 binary64)) x) #s(literal 4297481763/31250000 binary64)) x) y) x) z)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 x #s(literal 216700011257/5000000000 binary64)) x) #s(literal 263505074721/1000000000 binary64)) x) #s(literal 156699607947/500000000 binary64)) x) #s(literal 23533438303/500000000 binary64))) < 4.9999999999999996e22

            1. Initial program 59.1%

              \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
            2. Taylor expanded in x around 0

              \[\leadsto \frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\color{blue}{\frac{156699607947}{500000000}} \cdot x + 47.066876606} \]
            3. Step-by-step derivation
              1. Applied rewrites51.3%

                \[\leadsto \frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\color{blue}{313.399215894} \cdot x + 47.066876606} \]

              if 4.9999999999999996e22 < (/.f64 (*.f64 (-.f64 x #s(literal 2 binary64)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x #s(literal 104109730557/25000000000 binary64)) #s(literal 393497462077/5000000000 binary64)) x) #s(literal 4297481763/31250000 binary64)) x) y) x) z)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 x #s(literal 216700011257/5000000000 binary64)) x) #s(literal 263505074721/1000000000 binary64)) x) #s(literal 156699607947/500000000 binary64)) x) #s(literal 23533438303/500000000 binary64))) < 9.9999999999999998e294

              1. Initial program 59.1%

                \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
              2. Taylor expanded in x around 0

                \[\leadsto \frac{\left(x - 2\right) \cdot \left(\color{blue}{y} \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
              3. Step-by-step derivation
                1. Applied rewrites51.8%

                  \[\leadsto \frac{\left(x - 2\right) \cdot \left(\color{blue}{y} \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]

                if 9.9999999999999998e294 < (/.f64 (*.f64 (-.f64 x #s(literal 2 binary64)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x #s(literal 104109730557/25000000000 binary64)) #s(literal 393497462077/5000000000 binary64)) x) #s(literal 4297481763/31250000 binary64)) x) y) x) z)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 x #s(literal 216700011257/5000000000 binary64)) x) #s(literal 263505074721/1000000000 binary64)) x) #s(literal 156699607947/500000000 binary64)) x) #s(literal 23533438303/500000000 binary64)))

                1. Initial program 59.1%

                  \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
                2. Taylor expanded in x around inf

                  \[\leadsto \color{blue}{x \cdot \left(\frac{104109730557}{25000000000} - \frac{13764240537310136880149}{125000000000000000000} \cdot \frac{1}{x}\right)} \]
                3. Step-by-step derivation
                  1. lower-*.f64N/A

                    \[\leadsto x \cdot \color{blue}{\left(\frac{104109730557}{25000000000} - \frac{13764240537310136880149}{125000000000000000000} \cdot \frac{1}{x}\right)} \]
                  2. lower--.f64N/A

                    \[\leadsto x \cdot \left(\frac{104109730557}{25000000000} - \color{blue}{\frac{13764240537310136880149}{125000000000000000000} \cdot \frac{1}{x}}\right) \]
                  3. lower-*.f64N/A

                    \[\leadsto x \cdot \left(\frac{104109730557}{25000000000} - \frac{13764240537310136880149}{125000000000000000000} \cdot \color{blue}{\frac{1}{x}}\right) \]
                  4. lower-/.f6444.8%

                    \[\leadsto x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{\color{blue}{x}}\right) \]
                4. Applied rewrites44.8%

                  \[\leadsto \color{blue}{x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)} \]
              4. Recombined 4 regimes into one program.
              5. Add Preprocessing

              Alternative 6: 92.1% accurate, 0.3× speedup?

              \[\begin{array}{l} t_0 := \left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606\\ t_1 := \frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{t\_0}\\ \mathbf{if}\;t\_1 \leq -1 \cdot 10^{+28}:\\ \;\;\;\;\frac{2 - x}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606} \cdot \left(\left(-1 \cdot y\right) \cdot x - z\right)\\ \mathbf{elif}\;t\_1 \leq 10000000000:\\ \;\;\;\;\left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + x \cdot \left(1.787568985856513 \cdot x - 0.3041881842569256\right)\right)\\ \mathbf{elif}\;t\_1 \leq 10^{+295}:\\ \;\;\;\;\frac{\left(x - 2\right) \cdot \left(y \cdot x + z\right)}{t\_0}\\ \mathbf{else}:\\ \;\;\;\;x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)\\ \end{array} \]
              (FPCore (x y z)
                :precision binary64
                (let* ((t_0
                      (+
                       (*
                        (+
                         (* (+ (* (+ x 43.3400022514) x) 263.505074721) x)
                         313.399215894)
                        x)
                       47.066876606))
                     (t_1
                      (/
                       (*
                        (- x 2.0)
                        (+
                         (*
                          (+
                           (*
                            (+
                             (* (+ (* x 4.16438922228) 78.6994924154) x)
                             137.519416416)
                            x)
                           y)
                          x)
                         z))
                       t_0)))
                (if (<= t_1 -1e+28)
                  (*
                   (/
                    (- 2.0 x)
                    (-
                     (*
                      (-
                       (* (- (* (- x -43.3400022514) x) -263.505074721) x)
                       -313.399215894)
                      x)
                     -47.066876606))
                   (- (* (* -1.0 y) x) z))
                  (if (<= t_1 10000000000.0)
                    (*
                     (-
                      (*
                       (-
                        (*
                         (-
                          -137.519416416
                          (* (- (* 4.16438922228 x) -78.6994924154) x))
                         x)
                        y)
                       x)
                      z)
                     (+
                      0.0424927283095952
                      (* x (- (* 1.787568985856513 x) 0.3041881842569256))))
                    (if (<= t_1 1e+295)
                      (/ (* (- x 2.0) (+ (* y x) z)) t_0)
                      (* x (- 4.16438922228 (* 110.1139242984811 (/ 1.0 x)))))))))
              double code(double x, double y, double z) {
              	double t_0 = ((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606;
              	double t_1 = ((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / t_0;
              	double tmp;
              	if (t_1 <= -1e+28) {
              		tmp = ((2.0 - x) / (((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * (((-1.0 * y) * x) - z);
              	} else if (t_1 <= 10000000000.0) {
              		tmp = (((((-137.519416416 - (((4.16438922228 * x) - -78.6994924154) * x)) * x) - y) * x) - z) * (0.0424927283095952 + (x * ((1.787568985856513 * x) - 0.3041881842569256)));
              	} else if (t_1 <= 1e+295) {
              		tmp = ((x - 2.0) * ((y * x) + z)) / t_0;
              	} else {
              		tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
              	}
              	return tmp;
              }
              
              module fmin_fmax_functions
                  implicit none
                  private
                  public fmax
                  public fmin
              
                  interface fmax
                      module procedure fmax88
                      module procedure fmax44
                      module procedure fmax84
                      module procedure fmax48
                  end interface
                  interface fmin
                      module procedure fmin88
                      module procedure fmin44
                      module procedure fmin84
                      module procedure fmin48
                  end interface
              contains
                  real(8) function fmax88(x, y) result (res)
                      real(8), intent (in) :: x
                      real(8), intent (in) :: y
                      res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                  end function
                  real(4) function fmax44(x, y) result (res)
                      real(4), intent (in) :: x
                      real(4), intent (in) :: y
                      res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                  end function
                  real(8) function fmax84(x, y) result(res)
                      real(8), intent (in) :: x
                      real(4), intent (in) :: y
                      res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                  end function
                  real(8) function fmax48(x, y) result(res)
                      real(4), intent (in) :: x
                      real(8), intent (in) :: y
                      res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                  end function
                  real(8) function fmin88(x, y) result (res)
                      real(8), intent (in) :: x
                      real(8), intent (in) :: y
                      res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                  end function
                  real(4) function fmin44(x, y) result (res)
                      real(4), intent (in) :: x
                      real(4), intent (in) :: y
                      res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                  end function
                  real(8) function fmin84(x, y) result(res)
                      real(8), intent (in) :: x
                      real(4), intent (in) :: y
                      res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                  end function
                  real(8) function fmin48(x, y) result(res)
                      real(4), intent (in) :: x
                      real(8), intent (in) :: y
                      res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                  end function
              end module
              
              real(8) function code(x, y, z)
              use fmin_fmax_functions
                  real(8), intent (in) :: x
                  real(8), intent (in) :: y
                  real(8), intent (in) :: z
                  real(8) :: t_0
                  real(8) :: t_1
                  real(8) :: tmp
                  t_0 = ((((((x + 43.3400022514d0) * x) + 263.505074721d0) * x) + 313.399215894d0) * x) + 47.066876606d0
                  t_1 = ((x - 2.0d0) * ((((((((x * 4.16438922228d0) + 78.6994924154d0) * x) + 137.519416416d0) * x) + y) * x) + z)) / t_0
                  if (t_1 <= (-1d+28)) then
                      tmp = ((2.0d0 - x) / (((((((x - (-43.3400022514d0)) * x) - (-263.505074721d0)) * x) - (-313.399215894d0)) * x) - (-47.066876606d0))) * ((((-1.0d0) * y) * x) - z)
                  else if (t_1 <= 10000000000.0d0) then
                      tmp = ((((((-137.519416416d0) - (((4.16438922228d0 * x) - (-78.6994924154d0)) * x)) * x) - y) * x) - z) * (0.0424927283095952d0 + (x * ((1.787568985856513d0 * x) - 0.3041881842569256d0)))
                  else if (t_1 <= 1d+295) then
                      tmp = ((x - 2.0d0) * ((y * x) + z)) / t_0
                  else
                      tmp = x * (4.16438922228d0 - (110.1139242984811d0 * (1.0d0 / x)))
                  end if
                  code = tmp
              end function
              
              public static double code(double x, double y, double z) {
              	double t_0 = ((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606;
              	double t_1 = ((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / t_0;
              	double tmp;
              	if (t_1 <= -1e+28) {
              		tmp = ((2.0 - x) / (((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * (((-1.0 * y) * x) - z);
              	} else if (t_1 <= 10000000000.0) {
              		tmp = (((((-137.519416416 - (((4.16438922228 * x) - -78.6994924154) * x)) * x) - y) * x) - z) * (0.0424927283095952 + (x * ((1.787568985856513 * x) - 0.3041881842569256)));
              	} else if (t_1 <= 1e+295) {
              		tmp = ((x - 2.0) * ((y * x) + z)) / t_0;
              	} else {
              		tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
              	}
              	return tmp;
              }
              
              def code(x, y, z):
              	t_0 = ((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606
              	t_1 = ((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / t_0
              	tmp = 0
              	if t_1 <= -1e+28:
              		tmp = ((2.0 - x) / (((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * (((-1.0 * y) * x) - z)
              	elif t_1 <= 10000000000.0:
              		tmp = (((((-137.519416416 - (((4.16438922228 * x) - -78.6994924154) * x)) * x) - y) * x) - z) * (0.0424927283095952 + (x * ((1.787568985856513 * x) - 0.3041881842569256)))
              	elif t_1 <= 1e+295:
              		tmp = ((x - 2.0) * ((y * x) + z)) / t_0
              	else:
              		tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)))
              	return tmp
              
              function code(x, y, z)
              	t_0 = Float64(Float64(Float64(Float64(Float64(Float64(Float64(x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606)
              	t_1 = Float64(Float64(Float64(x - 2.0) * Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / t_0)
              	tmp = 0.0
              	if (t_1 <= -1e+28)
              		tmp = Float64(Float64(Float64(2.0 - x) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * Float64(Float64(Float64(-1.0 * y) * x) - z));
              	elseif (t_1 <= 10000000000.0)
              		tmp = Float64(Float64(Float64(Float64(Float64(Float64(-137.519416416 - Float64(Float64(Float64(4.16438922228 * x) - -78.6994924154) * x)) * x) - y) * x) - z) * Float64(0.0424927283095952 + Float64(x * Float64(Float64(1.787568985856513 * x) - 0.3041881842569256))));
              	elseif (t_1 <= 1e+295)
              		tmp = Float64(Float64(Float64(x - 2.0) * Float64(Float64(y * x) + z)) / t_0);
              	else
              		tmp = Float64(x * Float64(4.16438922228 - Float64(110.1139242984811 * Float64(1.0 / x))));
              	end
              	return tmp
              end
              
              function tmp_2 = code(x, y, z)
              	t_0 = ((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606;
              	t_1 = ((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / t_0;
              	tmp = 0.0;
              	if (t_1 <= -1e+28)
              		tmp = ((2.0 - x) / (((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * (((-1.0 * y) * x) - z);
              	elseif (t_1 <= 10000000000.0)
              		tmp = (((((-137.519416416 - (((4.16438922228 * x) - -78.6994924154) * x)) * x) - y) * x) - z) * (0.0424927283095952 + (x * ((1.787568985856513 * x) - 0.3041881842569256)));
              	elseif (t_1 <= 1e+295)
              		tmp = ((x - 2.0) * ((y * x) + z)) / t_0;
              	else
              		tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
              	end
              	tmp_2 = tmp;
              end
              
              code[x_, y_, z_] := Block[{t$95$0 = N[(N[(N[(N[(N[(N[(N[(x + 43.3400022514), $MachinePrecision] * x), $MachinePrecision] + 263.505074721), $MachinePrecision] * x), $MachinePrecision] + 313.399215894), $MachinePrecision] * x), $MachinePrecision] + 47.066876606), $MachinePrecision]}, Block[{t$95$1 = N[(N[(N[(x - 2.0), $MachinePrecision] * N[(N[(N[(N[(N[(N[(N[(N[(x * 4.16438922228), $MachinePrecision] + 78.6994924154), $MachinePrecision] * x), $MachinePrecision] + 137.519416416), $MachinePrecision] * x), $MachinePrecision] + y), $MachinePrecision] * x), $MachinePrecision] + z), $MachinePrecision]), $MachinePrecision] / t$95$0), $MachinePrecision]}, If[LessEqual[t$95$1, -1e+28], N[(N[(N[(2.0 - x), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(x - -43.3400022514), $MachinePrecision] * x), $MachinePrecision] - -263.505074721), $MachinePrecision] * x), $MachinePrecision] - -313.399215894), $MachinePrecision] * x), $MachinePrecision] - -47.066876606), $MachinePrecision]), $MachinePrecision] * N[(N[(N[(-1.0 * y), $MachinePrecision] * x), $MachinePrecision] - z), $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$1, 10000000000.0], N[(N[(N[(N[(N[(N[(-137.519416416 - N[(N[(N[(4.16438922228 * x), $MachinePrecision] - -78.6994924154), $MachinePrecision] * x), $MachinePrecision]), $MachinePrecision] * x), $MachinePrecision] - y), $MachinePrecision] * x), $MachinePrecision] - z), $MachinePrecision] * N[(0.0424927283095952 + N[(x * N[(N[(1.787568985856513 * x), $MachinePrecision] - 0.3041881842569256), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$1, 1e+295], N[(N[(N[(x - 2.0), $MachinePrecision] * N[(N[(y * x), $MachinePrecision] + z), $MachinePrecision]), $MachinePrecision] / t$95$0), $MachinePrecision], N[(x * N[(4.16438922228 - N[(110.1139242984811 * N[(1.0 / x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]]]]]
              
              \begin{array}{l}
              t_0 := \left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606\\
              t_1 := \frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{t\_0}\\
              \mathbf{if}\;t\_1 \leq -1 \cdot 10^{+28}:\\
              \;\;\;\;\frac{2 - x}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606} \cdot \left(\left(-1 \cdot y\right) \cdot x - z\right)\\
              
              \mathbf{elif}\;t\_1 \leq 10000000000:\\
              \;\;\;\;\left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + x \cdot \left(1.787568985856513 \cdot x - 0.3041881842569256\right)\right)\\
              
              \mathbf{elif}\;t\_1 \leq 10^{+295}:\\
              \;\;\;\;\frac{\left(x - 2\right) \cdot \left(y \cdot x + z\right)}{t\_0}\\
              
              \mathbf{else}:\\
              \;\;\;\;x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)\\
              
              
              \end{array}
              
              Derivation
              1. Split input into 4 regimes
              2. if (/.f64 (*.f64 (-.f64 x #s(literal 2 binary64)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x #s(literal 104109730557/25000000000 binary64)) #s(literal 393497462077/5000000000 binary64)) x) #s(literal 4297481763/31250000 binary64)) x) y) x) z)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 x #s(literal 216700011257/5000000000 binary64)) x) #s(literal 263505074721/1000000000 binary64)) x) #s(literal 156699607947/500000000 binary64)) x) #s(literal 23533438303/500000000 binary64))) < -9.9999999999999996e27

                1. Initial program 59.1%

                  \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
                2. Applied rewrites63.0%

                  \[\leadsto \color{blue}{\frac{z}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606} \cdot \left(x - 2\right) + \left(\left(y + \left(\left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x - -137.519416416\right) \cdot x\right) \cdot \frac{x}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606}\right) \cdot \left(x - 2\right)} \]
                3. Applied rewrites62.0%

                  \[\leadsto \color{blue}{\frac{2 - x}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606} \cdot \left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right)} \]
                4. Taylor expanded in x around 0

                  \[\leadsto \frac{2 - x}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606} \cdot \left(\color{blue}{\left(-1 \cdot y\right)} \cdot x - z\right) \]
                5. Step-by-step derivation
                  1. lower-*.f6453.0%

                    \[\leadsto \frac{2 - x}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606} \cdot \left(\left(-1 \cdot \color{blue}{y}\right) \cdot x - z\right) \]
                6. Applied rewrites53.0%

                  \[\leadsto \frac{2 - x}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606} \cdot \left(\color{blue}{\left(-1 \cdot y\right)} \cdot x - z\right) \]

                if -9.9999999999999996e27 < (/.f64 (*.f64 (-.f64 x #s(literal 2 binary64)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x #s(literal 104109730557/25000000000 binary64)) #s(literal 393497462077/5000000000 binary64)) x) #s(literal 4297481763/31250000 binary64)) x) y) x) z)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 x #s(literal 216700011257/5000000000 binary64)) x) #s(literal 263505074721/1000000000 binary64)) x) #s(literal 156699607947/500000000 binary64)) x) #s(literal 23533438303/500000000 binary64))) < 1e10

                1. Initial program 59.1%

                  \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
                2. Applied rewrites62.0%

                  \[\leadsto \color{blue}{\left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(\left(x - 2\right) \cdot \frac{-1}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606}\right)} \]
                3. Taylor expanded in x around 0

                  \[\leadsto \left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \color{blue}{\left(\frac{1000000000}{23533438303} + \frac{-168466327098500000000}{553822718361107519809} \cdot x\right)} \]
                4. Step-by-step derivation
                  1. lower-+.f64N/A

                    \[\leadsto \left(\left(\left(\frac{-4297481763}{31250000} - \left(\frac{104109730557}{25000000000} \cdot x - \frac{-393497462077}{5000000000}\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(\frac{1000000000}{23533438303} + \color{blue}{\frac{-168466327098500000000}{553822718361107519809} \cdot x}\right) \]
                  2. lower-*.f6452.5%

                    \[\leadsto \left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot \color{blue}{x}\right) \]
                5. Applied rewrites52.5%

                  \[\leadsto \left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \color{blue}{\left(0.0424927283095952 + -0.3041881842569256 \cdot x\right)} \]
                6. Taylor expanded in x around 0

                  \[\leadsto \left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \color{blue}{\left(\frac{1000000000}{23533438303} + x \cdot \left(\frac{23298017199368982832548000000000}{13033352773350869092174451844127} \cdot x - \frac{168466327098500000000}{553822718361107519809}\right)\right)} \]
                7. Step-by-step derivation
                  1. lower-+.f64N/A

                    \[\leadsto \left(\left(\left(\frac{-4297481763}{31250000} - \left(\frac{104109730557}{25000000000} \cdot x - \frac{-393497462077}{5000000000}\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(\frac{1000000000}{23533438303} + \color{blue}{x \cdot \left(\frac{23298017199368982832548000000000}{13033352773350869092174451844127} \cdot x - \frac{168466327098500000000}{553822718361107519809}\right)}\right) \]
                  2. lower-*.f64N/A

                    \[\leadsto \left(\left(\left(\frac{-4297481763}{31250000} - \left(\frac{104109730557}{25000000000} \cdot x - \frac{-393497462077}{5000000000}\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(\frac{1000000000}{23533438303} + x \cdot \color{blue}{\left(\frac{23298017199368982832548000000000}{13033352773350869092174451844127} \cdot x - \frac{168466327098500000000}{553822718361107519809}\right)}\right) \]
                  3. lower--.f64N/A

                    \[\leadsto \left(\left(\left(\frac{-4297481763}{31250000} - \left(\frac{104109730557}{25000000000} \cdot x - \frac{-393497462077}{5000000000}\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(\frac{1000000000}{23533438303} + x \cdot \left(\frac{23298017199368982832548000000000}{13033352773350869092174451844127} \cdot x - \color{blue}{\frac{168466327098500000000}{553822718361107519809}}\right)\right) \]
                  4. lower-*.f6451.3%

                    \[\leadsto \left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + x \cdot \left(1.787568985856513 \cdot x - 0.3041881842569256\right)\right) \]
                8. Applied rewrites51.3%

                  \[\leadsto \left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \color{blue}{\left(0.0424927283095952 + x \cdot \left(1.787568985856513 \cdot x - 0.3041881842569256\right)\right)} \]

                if 1e10 < (/.f64 (*.f64 (-.f64 x #s(literal 2 binary64)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x #s(literal 104109730557/25000000000 binary64)) #s(literal 393497462077/5000000000 binary64)) x) #s(literal 4297481763/31250000 binary64)) x) y) x) z)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 x #s(literal 216700011257/5000000000 binary64)) x) #s(literal 263505074721/1000000000 binary64)) x) #s(literal 156699607947/500000000 binary64)) x) #s(literal 23533438303/500000000 binary64))) < 9.9999999999999998e294

                1. Initial program 59.1%

                  \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
                2. Taylor expanded in x around 0

                  \[\leadsto \frac{\left(x - 2\right) \cdot \left(\color{blue}{y} \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
                3. Step-by-step derivation
                  1. Applied rewrites51.8%

                    \[\leadsto \frac{\left(x - 2\right) \cdot \left(\color{blue}{y} \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]

                  if 9.9999999999999998e294 < (/.f64 (*.f64 (-.f64 x #s(literal 2 binary64)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x #s(literal 104109730557/25000000000 binary64)) #s(literal 393497462077/5000000000 binary64)) x) #s(literal 4297481763/31250000 binary64)) x) y) x) z)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 x #s(literal 216700011257/5000000000 binary64)) x) #s(literal 263505074721/1000000000 binary64)) x) #s(literal 156699607947/500000000 binary64)) x) #s(literal 23533438303/500000000 binary64)))

                  1. Initial program 59.1%

                    \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
                  2. Taylor expanded in x around inf

                    \[\leadsto \color{blue}{x \cdot \left(\frac{104109730557}{25000000000} - \frac{13764240537310136880149}{125000000000000000000} \cdot \frac{1}{x}\right)} \]
                  3. Step-by-step derivation
                    1. lower-*.f64N/A

                      \[\leadsto x \cdot \color{blue}{\left(\frac{104109730557}{25000000000} - \frac{13764240537310136880149}{125000000000000000000} \cdot \frac{1}{x}\right)} \]
                    2. lower--.f64N/A

                      \[\leadsto x \cdot \left(\frac{104109730557}{25000000000} - \color{blue}{\frac{13764240537310136880149}{125000000000000000000} \cdot \frac{1}{x}}\right) \]
                    3. lower-*.f64N/A

                      \[\leadsto x \cdot \left(\frac{104109730557}{25000000000} - \frac{13764240537310136880149}{125000000000000000000} \cdot \color{blue}{\frac{1}{x}}\right) \]
                    4. lower-/.f6444.8%

                      \[\leadsto x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{\color{blue}{x}}\right) \]
                  4. Applied rewrites44.8%

                    \[\leadsto \color{blue}{x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)} \]
                4. Recombined 4 regimes into one program.
                5. Add Preprocessing

                Alternative 7: 92.0% accurate, 1.2× speedup?

                \[\begin{array}{l} \mathbf{if}\;x \leq -15000000000000:\\ \;\;\;\;x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)\\ \mathbf{elif}\;x \leq 3.9 \cdot 10^{+21}:\\ \;\;\;\;\frac{\left(x - 2\right) \cdot \left(y \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606}\\ \mathbf{else}:\\ \;\;\;\;4.16438922228 \cdot x\\ \end{array} \]
                (FPCore (x y z)
                  :precision binary64
                  (if (<= x -15000000000000.0)
                  (* x (- 4.16438922228 (* 110.1139242984811 (/ 1.0 x))))
                  (if (<= x 3.9e+21)
                    (/
                     (* (- x 2.0) (+ (* y x) z))
                     (+
                      (*
                       (+
                        (* (+ (* (+ x 43.3400022514) x) 263.505074721) x)
                        313.399215894)
                       x)
                      47.066876606))
                    (* 4.16438922228 x))))
                double code(double x, double y, double z) {
                	double tmp;
                	if (x <= -15000000000000.0) {
                		tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
                	} else if (x <= 3.9e+21) {
                		tmp = ((x - 2.0) * ((y * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606);
                	} else {
                		tmp = 4.16438922228 * x;
                	}
                	return tmp;
                }
                
                module fmin_fmax_functions
                    implicit none
                    private
                    public fmax
                    public fmin
                
                    interface fmax
                        module procedure fmax88
                        module procedure fmax44
                        module procedure fmax84
                        module procedure fmax48
                    end interface
                    interface fmin
                        module procedure fmin88
                        module procedure fmin44
                        module procedure fmin84
                        module procedure fmin48
                    end interface
                contains
                    real(8) function fmax88(x, y) result (res)
                        real(8), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                    end function
                    real(4) function fmax44(x, y) result (res)
                        real(4), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                    end function
                    real(8) function fmax84(x, y) result(res)
                        real(8), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                    end function
                    real(8) function fmax48(x, y) result(res)
                        real(4), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                    end function
                    real(8) function fmin88(x, y) result (res)
                        real(8), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                    end function
                    real(4) function fmin44(x, y) result (res)
                        real(4), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                    end function
                    real(8) function fmin84(x, y) result(res)
                        real(8), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                    end function
                    real(8) function fmin48(x, y) result(res)
                        real(4), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                    end function
                end module
                
                real(8) function code(x, y, z)
                use fmin_fmax_functions
                    real(8), intent (in) :: x
                    real(8), intent (in) :: y
                    real(8), intent (in) :: z
                    real(8) :: tmp
                    if (x <= (-15000000000000.0d0)) then
                        tmp = x * (4.16438922228d0 - (110.1139242984811d0 * (1.0d0 / x)))
                    else if (x <= 3.9d+21) then
                        tmp = ((x - 2.0d0) * ((y * x) + z)) / (((((((x + 43.3400022514d0) * x) + 263.505074721d0) * x) + 313.399215894d0) * x) + 47.066876606d0)
                    else
                        tmp = 4.16438922228d0 * x
                    end if
                    code = tmp
                end function
                
                public static double code(double x, double y, double z) {
                	double tmp;
                	if (x <= -15000000000000.0) {
                		tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
                	} else if (x <= 3.9e+21) {
                		tmp = ((x - 2.0) * ((y * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606);
                	} else {
                		tmp = 4.16438922228 * x;
                	}
                	return tmp;
                }
                
                def code(x, y, z):
                	tmp = 0
                	if x <= -15000000000000.0:
                		tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)))
                	elif x <= 3.9e+21:
                		tmp = ((x - 2.0) * ((y * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606)
                	else:
                		tmp = 4.16438922228 * x
                	return tmp
                
                function code(x, y, z)
                	tmp = 0.0
                	if (x <= -15000000000000.0)
                		tmp = Float64(x * Float64(4.16438922228 - Float64(110.1139242984811 * Float64(1.0 / x))));
                	elseif (x <= 3.9e+21)
                		tmp = Float64(Float64(Float64(x - 2.0) * Float64(Float64(y * x) + z)) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606));
                	else
                		tmp = Float64(4.16438922228 * x);
                	end
                	return tmp
                end
                
                function tmp_2 = code(x, y, z)
                	tmp = 0.0;
                	if (x <= -15000000000000.0)
                		tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
                	elseif (x <= 3.9e+21)
                		tmp = ((x - 2.0) * ((y * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606);
                	else
                		tmp = 4.16438922228 * x;
                	end
                	tmp_2 = tmp;
                end
                
                code[x_, y_, z_] := If[LessEqual[x, -15000000000000.0], N[(x * N[(4.16438922228 - N[(110.1139242984811 * N[(1.0 / x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], If[LessEqual[x, 3.9e+21], N[(N[(N[(x - 2.0), $MachinePrecision] * N[(N[(y * x), $MachinePrecision] + z), $MachinePrecision]), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(x + 43.3400022514), $MachinePrecision] * x), $MachinePrecision] + 263.505074721), $MachinePrecision] * x), $MachinePrecision] + 313.399215894), $MachinePrecision] * x), $MachinePrecision] + 47.066876606), $MachinePrecision]), $MachinePrecision], N[(4.16438922228 * x), $MachinePrecision]]]
                
                \begin{array}{l}
                \mathbf{if}\;x \leq -15000000000000:\\
                \;\;\;\;x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)\\
                
                \mathbf{elif}\;x \leq 3.9 \cdot 10^{+21}:\\
                \;\;\;\;\frac{\left(x - 2\right) \cdot \left(y \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606}\\
                
                \mathbf{else}:\\
                \;\;\;\;4.16438922228 \cdot x\\
                
                
                \end{array}
                
                Derivation
                1. Split input into 3 regimes
                2. if x < -1.5e13

                  1. Initial program 59.1%

                    \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
                  2. Taylor expanded in x around inf

                    \[\leadsto \color{blue}{x \cdot \left(\frac{104109730557}{25000000000} - \frac{13764240537310136880149}{125000000000000000000} \cdot \frac{1}{x}\right)} \]
                  3. Step-by-step derivation
                    1. lower-*.f64N/A

                      \[\leadsto x \cdot \color{blue}{\left(\frac{104109730557}{25000000000} - \frac{13764240537310136880149}{125000000000000000000} \cdot \frac{1}{x}\right)} \]
                    2. lower--.f64N/A

                      \[\leadsto x \cdot \left(\frac{104109730557}{25000000000} - \color{blue}{\frac{13764240537310136880149}{125000000000000000000} \cdot \frac{1}{x}}\right) \]
                    3. lower-*.f64N/A

                      \[\leadsto x \cdot \left(\frac{104109730557}{25000000000} - \frac{13764240537310136880149}{125000000000000000000} \cdot \color{blue}{\frac{1}{x}}\right) \]
                    4. lower-/.f6444.8%

                      \[\leadsto x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{\color{blue}{x}}\right) \]
                  4. Applied rewrites44.8%

                    \[\leadsto \color{blue}{x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)} \]

                  if -1.5e13 < x < 3.9e21

                  1. Initial program 59.1%

                    \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
                  2. Taylor expanded in x around 0

                    \[\leadsto \frac{\left(x - 2\right) \cdot \left(\color{blue}{y} \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
                  3. Step-by-step derivation
                    1. Applied rewrites51.8%

                      \[\leadsto \frac{\left(x - 2\right) \cdot \left(\color{blue}{y} \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]

                    if 3.9e21 < x

                    1. Initial program 59.1%

                      \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
                    2. Taylor expanded in x around -inf

                      \[\leadsto \color{blue}{-1 \cdot \left(x \cdot \left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)\right)} \]
                    3. Step-by-step derivation
                      1. lower-*.f64N/A

                        \[\leadsto -1 \cdot \color{blue}{\left(x \cdot \left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)\right)} \]
                      2. lower-*.f64N/A

                        \[\leadsto -1 \cdot \left(x \cdot \color{blue}{\left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)}\right) \]
                      3. lower--.f64N/A

                        \[\leadsto -1 \cdot \left(x \cdot \left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \color{blue}{\frac{104109730557}{25000000000}}\right)\right) \]
                      4. lower-*.f64N/A

                        \[\leadsto -1 \cdot \left(x \cdot \left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)\right) \]
                      5. lower-/.f64N/A

                        \[\leadsto -1 \cdot \left(x \cdot \left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)\right) \]
                      6. lower--.f64N/A

                        \[\leadsto -1 \cdot \left(x \cdot \left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)\right) \]
                      7. lower-*.f64N/A

                        \[\leadsto -1 \cdot \left(x \cdot \left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)\right) \]
                      8. lower-/.f6444.4%

                        \[\leadsto -1 \cdot \left(x \cdot \left(-1 \cdot \frac{3655.1204654076414 \cdot \frac{1}{x} - 110.1139242984811}{x} - 4.16438922228\right)\right) \]
                    4. Applied rewrites44.4%

                      \[\leadsto \color{blue}{-1 \cdot \left(x \cdot \left(-1 \cdot \frac{3655.1204654076414 \cdot \frac{1}{x} - 110.1139242984811}{x} - 4.16438922228\right)\right)} \]
                    5. Taylor expanded in x around inf

                      \[\leadsto -1 \cdot \left(x \cdot \frac{-104109730557}{25000000000}\right) \]
                    6. Step-by-step derivation
                      1. Applied rewrites44.4%

                        \[\leadsto -1 \cdot \left(x \cdot -4.16438922228\right) \]
                      2. Step-by-step derivation
                        1. lift-*.f64N/A

                          \[\leadsto -1 \cdot \color{blue}{\left(x \cdot \frac{-104109730557}{25000000000}\right)} \]
                        2. mul-1-negN/A

                          \[\leadsto \mathsf{neg}\left(x \cdot \frac{-104109730557}{25000000000}\right) \]
                        3. lift-*.f64N/A

                          \[\leadsto \mathsf{neg}\left(x \cdot \frac{-104109730557}{25000000000}\right) \]
                        4. *-commutativeN/A

                          \[\leadsto \mathsf{neg}\left(\frac{-104109730557}{25000000000} \cdot x\right) \]
                        5. distribute-lft-neg-inN/A

                          \[\leadsto \left(\mathsf{neg}\left(\frac{-104109730557}{25000000000}\right)\right) \cdot \color{blue}{x} \]
                        6. lower-*.f64N/A

                          \[\leadsto \left(\mathsf{neg}\left(\frac{-104109730557}{25000000000}\right)\right) \cdot \color{blue}{x} \]
                        7. lower-neg.f6444.4%

                          \[\leadsto \left(--4.16438922228\right) \cdot x \]
                      3. Applied rewrites44.4%

                        \[\leadsto \left(--4.16438922228\right) \cdot \color{blue}{x} \]
                      4. Taylor expanded in x around inf

                        \[\leadsto \frac{104109730557}{25000000000} \cdot x \]
                      5. Step-by-step derivation
                        1. Applied rewrites44.4%

                          \[\leadsto 4.16438922228 \cdot x \]
                      6. Recombined 3 regimes into one program.
                      7. Add Preprocessing

                      Alternative 8: 91.4% accurate, 1.2× speedup?

                      \[\begin{array}{l} \mathbf{if}\;x \leq -15500000000000:\\ \;\;\;\;x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)\\ \mathbf{elif}\;x \leq 4800:\\ \;\;\;\;\left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + x \cdot \left(1.787568985856513 \cdot x - 0.3041881842569256\right)\right)\\ \mathbf{else}:\\ \;\;\;\;-1 \cdot \left(x \cdot \left(-1 \cdot \frac{3655.1204654076414 \cdot \frac{1}{x} - 110.1139242984811}{x} - 4.16438922228\right)\right)\\ \end{array} \]
                      (FPCore (x y z)
                        :precision binary64
                        (if (<= x -15500000000000.0)
                        (* x (- 4.16438922228 (* 110.1139242984811 (/ 1.0 x))))
                        (if (<= x 4800.0)
                          (*
                           (-
                            (*
                             (-
                              (*
                               (-
                                -137.519416416
                                (* (- (* 4.16438922228 x) -78.6994924154) x))
                               x)
                              y)
                             x)
                            z)
                           (+
                            0.0424927283095952
                            (* x (- (* 1.787568985856513 x) 0.3041881842569256))))
                          (*
                           -1.0
                           (*
                            x
                            (-
                             (*
                              -1.0
                              (/ (- (* 3655.1204654076414 (/ 1.0 x)) 110.1139242984811) x))
                             4.16438922228))))))
                      double code(double x, double y, double z) {
                      	double tmp;
                      	if (x <= -15500000000000.0) {
                      		tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
                      	} else if (x <= 4800.0) {
                      		tmp = (((((-137.519416416 - (((4.16438922228 * x) - -78.6994924154) * x)) * x) - y) * x) - z) * (0.0424927283095952 + (x * ((1.787568985856513 * x) - 0.3041881842569256)));
                      	} else {
                      		tmp = -1.0 * (x * ((-1.0 * (((3655.1204654076414 * (1.0 / x)) - 110.1139242984811) / x)) - 4.16438922228));
                      	}
                      	return tmp;
                      }
                      
                      module fmin_fmax_functions
                          implicit none
                          private
                          public fmax
                          public fmin
                      
                          interface fmax
                              module procedure fmax88
                              module procedure fmax44
                              module procedure fmax84
                              module procedure fmax48
                          end interface
                          interface fmin
                              module procedure fmin88
                              module procedure fmin44
                              module procedure fmin84
                              module procedure fmin48
                          end interface
                      contains
                          real(8) function fmax88(x, y) result (res)
                              real(8), intent (in) :: x
                              real(8), intent (in) :: y
                              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                          end function
                          real(4) function fmax44(x, y) result (res)
                              real(4), intent (in) :: x
                              real(4), intent (in) :: y
                              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                          end function
                          real(8) function fmax84(x, y) result(res)
                              real(8), intent (in) :: x
                              real(4), intent (in) :: y
                              res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                          end function
                          real(8) function fmax48(x, y) result(res)
                              real(4), intent (in) :: x
                              real(8), intent (in) :: y
                              res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                          end function
                          real(8) function fmin88(x, y) result (res)
                              real(8), intent (in) :: x
                              real(8), intent (in) :: y
                              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                          end function
                          real(4) function fmin44(x, y) result (res)
                              real(4), intent (in) :: x
                              real(4), intent (in) :: y
                              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                          end function
                          real(8) function fmin84(x, y) result(res)
                              real(8), intent (in) :: x
                              real(4), intent (in) :: y
                              res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                          end function
                          real(8) function fmin48(x, y) result(res)
                              real(4), intent (in) :: x
                              real(8), intent (in) :: y
                              res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                          end function
                      end module
                      
                      real(8) function code(x, y, z)
                      use fmin_fmax_functions
                          real(8), intent (in) :: x
                          real(8), intent (in) :: y
                          real(8), intent (in) :: z
                          real(8) :: tmp
                          if (x <= (-15500000000000.0d0)) then
                              tmp = x * (4.16438922228d0 - (110.1139242984811d0 * (1.0d0 / x)))
                          else if (x <= 4800.0d0) then
                              tmp = ((((((-137.519416416d0) - (((4.16438922228d0 * x) - (-78.6994924154d0)) * x)) * x) - y) * x) - z) * (0.0424927283095952d0 + (x * ((1.787568985856513d0 * x) - 0.3041881842569256d0)))
                          else
                              tmp = (-1.0d0) * (x * (((-1.0d0) * (((3655.1204654076414d0 * (1.0d0 / x)) - 110.1139242984811d0) / x)) - 4.16438922228d0))
                          end if
                          code = tmp
                      end function
                      
                      public static double code(double x, double y, double z) {
                      	double tmp;
                      	if (x <= -15500000000000.0) {
                      		tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
                      	} else if (x <= 4800.0) {
                      		tmp = (((((-137.519416416 - (((4.16438922228 * x) - -78.6994924154) * x)) * x) - y) * x) - z) * (0.0424927283095952 + (x * ((1.787568985856513 * x) - 0.3041881842569256)));
                      	} else {
                      		tmp = -1.0 * (x * ((-1.0 * (((3655.1204654076414 * (1.0 / x)) - 110.1139242984811) / x)) - 4.16438922228));
                      	}
                      	return tmp;
                      }
                      
                      def code(x, y, z):
                      	tmp = 0
                      	if x <= -15500000000000.0:
                      		tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)))
                      	elif x <= 4800.0:
                      		tmp = (((((-137.519416416 - (((4.16438922228 * x) - -78.6994924154) * x)) * x) - y) * x) - z) * (0.0424927283095952 + (x * ((1.787568985856513 * x) - 0.3041881842569256)))
                      	else:
                      		tmp = -1.0 * (x * ((-1.0 * (((3655.1204654076414 * (1.0 / x)) - 110.1139242984811) / x)) - 4.16438922228))
                      	return tmp
                      
                      function code(x, y, z)
                      	tmp = 0.0
                      	if (x <= -15500000000000.0)
                      		tmp = Float64(x * Float64(4.16438922228 - Float64(110.1139242984811 * Float64(1.0 / x))));
                      	elseif (x <= 4800.0)
                      		tmp = Float64(Float64(Float64(Float64(Float64(Float64(-137.519416416 - Float64(Float64(Float64(4.16438922228 * x) - -78.6994924154) * x)) * x) - y) * x) - z) * Float64(0.0424927283095952 + Float64(x * Float64(Float64(1.787568985856513 * x) - 0.3041881842569256))));
                      	else
                      		tmp = Float64(-1.0 * Float64(x * Float64(Float64(-1.0 * Float64(Float64(Float64(3655.1204654076414 * Float64(1.0 / x)) - 110.1139242984811) / x)) - 4.16438922228)));
                      	end
                      	return tmp
                      end
                      
                      function tmp_2 = code(x, y, z)
                      	tmp = 0.0;
                      	if (x <= -15500000000000.0)
                      		tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
                      	elseif (x <= 4800.0)
                      		tmp = (((((-137.519416416 - (((4.16438922228 * x) - -78.6994924154) * x)) * x) - y) * x) - z) * (0.0424927283095952 + (x * ((1.787568985856513 * x) - 0.3041881842569256)));
                      	else
                      		tmp = -1.0 * (x * ((-1.0 * (((3655.1204654076414 * (1.0 / x)) - 110.1139242984811) / x)) - 4.16438922228));
                      	end
                      	tmp_2 = tmp;
                      end
                      
                      code[x_, y_, z_] := If[LessEqual[x, -15500000000000.0], N[(x * N[(4.16438922228 - N[(110.1139242984811 * N[(1.0 / x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], If[LessEqual[x, 4800.0], N[(N[(N[(N[(N[(N[(-137.519416416 - N[(N[(N[(4.16438922228 * x), $MachinePrecision] - -78.6994924154), $MachinePrecision] * x), $MachinePrecision]), $MachinePrecision] * x), $MachinePrecision] - y), $MachinePrecision] * x), $MachinePrecision] - z), $MachinePrecision] * N[(0.0424927283095952 + N[(x * N[(N[(1.787568985856513 * x), $MachinePrecision] - 0.3041881842569256), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[(-1.0 * N[(x * N[(N[(-1.0 * N[(N[(N[(3655.1204654076414 * N[(1.0 / x), $MachinePrecision]), $MachinePrecision] - 110.1139242984811), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision] - 4.16438922228), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]]
                      
                      \begin{array}{l}
                      \mathbf{if}\;x \leq -15500000000000:\\
                      \;\;\;\;x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)\\
                      
                      \mathbf{elif}\;x \leq 4800:\\
                      \;\;\;\;\left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + x \cdot \left(1.787568985856513 \cdot x - 0.3041881842569256\right)\right)\\
                      
                      \mathbf{else}:\\
                      \;\;\;\;-1 \cdot \left(x \cdot \left(-1 \cdot \frac{3655.1204654076414 \cdot \frac{1}{x} - 110.1139242984811}{x} - 4.16438922228\right)\right)\\
                      
                      
                      \end{array}
                      
                      Derivation
                      1. Split input into 3 regimes
                      2. if x < -1.55e13

                        1. Initial program 59.1%

                          \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
                        2. Taylor expanded in x around inf

                          \[\leadsto \color{blue}{x \cdot \left(\frac{104109730557}{25000000000} - \frac{13764240537310136880149}{125000000000000000000} \cdot \frac{1}{x}\right)} \]
                        3. Step-by-step derivation
                          1. lower-*.f64N/A

                            \[\leadsto x \cdot \color{blue}{\left(\frac{104109730557}{25000000000} - \frac{13764240537310136880149}{125000000000000000000} \cdot \frac{1}{x}\right)} \]
                          2. lower--.f64N/A

                            \[\leadsto x \cdot \left(\frac{104109730557}{25000000000} - \color{blue}{\frac{13764240537310136880149}{125000000000000000000} \cdot \frac{1}{x}}\right) \]
                          3. lower-*.f64N/A

                            \[\leadsto x \cdot \left(\frac{104109730557}{25000000000} - \frac{13764240537310136880149}{125000000000000000000} \cdot \color{blue}{\frac{1}{x}}\right) \]
                          4. lower-/.f6444.8%

                            \[\leadsto x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{\color{blue}{x}}\right) \]
                        4. Applied rewrites44.8%

                          \[\leadsto \color{blue}{x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)} \]

                        if -1.55e13 < x < 4800

                        1. Initial program 59.1%

                          \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
                        2. Applied rewrites62.0%

                          \[\leadsto \color{blue}{\left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(\left(x - 2\right) \cdot \frac{-1}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606}\right)} \]
                        3. Taylor expanded in x around 0

                          \[\leadsto \left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \color{blue}{\left(\frac{1000000000}{23533438303} + \frac{-168466327098500000000}{553822718361107519809} \cdot x\right)} \]
                        4. Step-by-step derivation
                          1. lower-+.f64N/A

                            \[\leadsto \left(\left(\left(\frac{-4297481763}{31250000} - \left(\frac{104109730557}{25000000000} \cdot x - \frac{-393497462077}{5000000000}\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(\frac{1000000000}{23533438303} + \color{blue}{\frac{-168466327098500000000}{553822718361107519809} \cdot x}\right) \]
                          2. lower-*.f6452.5%

                            \[\leadsto \left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot \color{blue}{x}\right) \]
                        5. Applied rewrites52.5%

                          \[\leadsto \left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \color{blue}{\left(0.0424927283095952 + -0.3041881842569256 \cdot x\right)} \]
                        6. Taylor expanded in x around 0

                          \[\leadsto \left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \color{blue}{\left(\frac{1000000000}{23533438303} + x \cdot \left(\frac{23298017199368982832548000000000}{13033352773350869092174451844127} \cdot x - \frac{168466327098500000000}{553822718361107519809}\right)\right)} \]
                        7. Step-by-step derivation
                          1. lower-+.f64N/A

                            \[\leadsto \left(\left(\left(\frac{-4297481763}{31250000} - \left(\frac{104109730557}{25000000000} \cdot x - \frac{-393497462077}{5000000000}\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(\frac{1000000000}{23533438303} + \color{blue}{x \cdot \left(\frac{23298017199368982832548000000000}{13033352773350869092174451844127} \cdot x - \frac{168466327098500000000}{553822718361107519809}\right)}\right) \]
                          2. lower-*.f64N/A

                            \[\leadsto \left(\left(\left(\frac{-4297481763}{31250000} - \left(\frac{104109730557}{25000000000} \cdot x - \frac{-393497462077}{5000000000}\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(\frac{1000000000}{23533438303} + x \cdot \color{blue}{\left(\frac{23298017199368982832548000000000}{13033352773350869092174451844127} \cdot x - \frac{168466327098500000000}{553822718361107519809}\right)}\right) \]
                          3. lower--.f64N/A

                            \[\leadsto \left(\left(\left(\frac{-4297481763}{31250000} - \left(\frac{104109730557}{25000000000} \cdot x - \frac{-393497462077}{5000000000}\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(\frac{1000000000}{23533438303} + x \cdot \left(\frac{23298017199368982832548000000000}{13033352773350869092174451844127} \cdot x - \color{blue}{\frac{168466327098500000000}{553822718361107519809}}\right)\right) \]
                          4. lower-*.f6451.3%

                            \[\leadsto \left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + x \cdot \left(1.787568985856513 \cdot x - 0.3041881842569256\right)\right) \]
                        8. Applied rewrites51.3%

                          \[\leadsto \left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \color{blue}{\left(0.0424927283095952 + x \cdot \left(1.787568985856513 \cdot x - 0.3041881842569256\right)\right)} \]

                        if 4800 < x

                        1. Initial program 59.1%

                          \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
                        2. Taylor expanded in x around -inf

                          \[\leadsto \color{blue}{-1 \cdot \left(x \cdot \left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)\right)} \]
                        3. Step-by-step derivation
                          1. lower-*.f64N/A

                            \[\leadsto -1 \cdot \color{blue}{\left(x \cdot \left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)\right)} \]
                          2. lower-*.f64N/A

                            \[\leadsto -1 \cdot \left(x \cdot \color{blue}{\left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)}\right) \]
                          3. lower--.f64N/A

                            \[\leadsto -1 \cdot \left(x \cdot \left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \color{blue}{\frac{104109730557}{25000000000}}\right)\right) \]
                          4. lower-*.f64N/A

                            \[\leadsto -1 \cdot \left(x \cdot \left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)\right) \]
                          5. lower-/.f64N/A

                            \[\leadsto -1 \cdot \left(x \cdot \left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)\right) \]
                          6. lower--.f64N/A

                            \[\leadsto -1 \cdot \left(x \cdot \left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)\right) \]
                          7. lower-*.f64N/A

                            \[\leadsto -1 \cdot \left(x \cdot \left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)\right) \]
                          8. lower-/.f6444.4%

                            \[\leadsto -1 \cdot \left(x \cdot \left(-1 \cdot \frac{3655.1204654076414 \cdot \frac{1}{x} - 110.1139242984811}{x} - 4.16438922228\right)\right) \]
                        4. Applied rewrites44.4%

                          \[\leadsto \color{blue}{-1 \cdot \left(x \cdot \left(-1 \cdot \frac{3655.1204654076414 \cdot \frac{1}{x} - 110.1139242984811}{x} - 4.16438922228\right)\right)} \]
                      3. Recombined 3 regimes into one program.
                      4. Add Preprocessing

                      Alternative 9: 91.1% accurate, 1.3× speedup?

                      \[\begin{array}{l} \mathbf{if}\;x \leq -14200000000000:\\ \;\;\;\;x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)\\ \mathbf{elif}\;x \leq 7400000:\\ \;\;\;\;\left(\left(\left(-78.6994924154 \cdot x - 137.519416416\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot x\right)\\ \mathbf{else}:\\ \;\;\;\;-1 \cdot \left(x \cdot \left(-1 \cdot \frac{3655.1204654076414 \cdot \frac{1}{x} - 110.1139242984811}{x} - 4.16438922228\right)\right)\\ \end{array} \]
                      (FPCore (x y z)
                        :precision binary64
                        (if (<= x -14200000000000.0)
                        (* x (- 4.16438922228 (* 110.1139242984811 (/ 1.0 x))))
                        (if (<= x 7400000.0)
                          (*
                           (- (* (- (* (- (* -78.6994924154 x) 137.519416416) x) y) x) z)
                           (+ 0.0424927283095952 (* -0.3041881842569256 x)))
                          (*
                           -1.0
                           (*
                            x
                            (-
                             (*
                              -1.0
                              (/ (- (* 3655.1204654076414 (/ 1.0 x)) 110.1139242984811) x))
                             4.16438922228))))))
                      double code(double x, double y, double z) {
                      	double tmp;
                      	if (x <= -14200000000000.0) {
                      		tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
                      	} else if (x <= 7400000.0) {
                      		tmp = ((((((-78.6994924154 * x) - 137.519416416) * x) - y) * x) - z) * (0.0424927283095952 + (-0.3041881842569256 * x));
                      	} else {
                      		tmp = -1.0 * (x * ((-1.0 * (((3655.1204654076414 * (1.0 / x)) - 110.1139242984811) / x)) - 4.16438922228));
                      	}
                      	return tmp;
                      }
                      
                      module fmin_fmax_functions
                          implicit none
                          private
                          public fmax
                          public fmin
                      
                          interface fmax
                              module procedure fmax88
                              module procedure fmax44
                              module procedure fmax84
                              module procedure fmax48
                          end interface
                          interface fmin
                              module procedure fmin88
                              module procedure fmin44
                              module procedure fmin84
                              module procedure fmin48
                          end interface
                      contains
                          real(8) function fmax88(x, y) result (res)
                              real(8), intent (in) :: x
                              real(8), intent (in) :: y
                              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                          end function
                          real(4) function fmax44(x, y) result (res)
                              real(4), intent (in) :: x
                              real(4), intent (in) :: y
                              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                          end function
                          real(8) function fmax84(x, y) result(res)
                              real(8), intent (in) :: x
                              real(4), intent (in) :: y
                              res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                          end function
                          real(8) function fmax48(x, y) result(res)
                              real(4), intent (in) :: x
                              real(8), intent (in) :: y
                              res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                          end function
                          real(8) function fmin88(x, y) result (res)
                              real(8), intent (in) :: x
                              real(8), intent (in) :: y
                              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                          end function
                          real(4) function fmin44(x, y) result (res)
                              real(4), intent (in) :: x
                              real(4), intent (in) :: y
                              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                          end function
                          real(8) function fmin84(x, y) result(res)
                              real(8), intent (in) :: x
                              real(4), intent (in) :: y
                              res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                          end function
                          real(8) function fmin48(x, y) result(res)
                              real(4), intent (in) :: x
                              real(8), intent (in) :: y
                              res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                          end function
                      end module
                      
                      real(8) function code(x, y, z)
                      use fmin_fmax_functions
                          real(8), intent (in) :: x
                          real(8), intent (in) :: y
                          real(8), intent (in) :: z
                          real(8) :: tmp
                          if (x <= (-14200000000000.0d0)) then
                              tmp = x * (4.16438922228d0 - (110.1139242984811d0 * (1.0d0 / x)))
                          else if (x <= 7400000.0d0) then
                              tmp = (((((((-78.6994924154d0) * x) - 137.519416416d0) * x) - y) * x) - z) * (0.0424927283095952d0 + ((-0.3041881842569256d0) * x))
                          else
                              tmp = (-1.0d0) * (x * (((-1.0d0) * (((3655.1204654076414d0 * (1.0d0 / x)) - 110.1139242984811d0) / x)) - 4.16438922228d0))
                          end if
                          code = tmp
                      end function
                      
                      public static double code(double x, double y, double z) {
                      	double tmp;
                      	if (x <= -14200000000000.0) {
                      		tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
                      	} else if (x <= 7400000.0) {
                      		tmp = ((((((-78.6994924154 * x) - 137.519416416) * x) - y) * x) - z) * (0.0424927283095952 + (-0.3041881842569256 * x));
                      	} else {
                      		tmp = -1.0 * (x * ((-1.0 * (((3655.1204654076414 * (1.0 / x)) - 110.1139242984811) / x)) - 4.16438922228));
                      	}
                      	return tmp;
                      }
                      
                      def code(x, y, z):
                      	tmp = 0
                      	if x <= -14200000000000.0:
                      		tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)))
                      	elif x <= 7400000.0:
                      		tmp = ((((((-78.6994924154 * x) - 137.519416416) * x) - y) * x) - z) * (0.0424927283095952 + (-0.3041881842569256 * x))
                      	else:
                      		tmp = -1.0 * (x * ((-1.0 * (((3655.1204654076414 * (1.0 / x)) - 110.1139242984811) / x)) - 4.16438922228))
                      	return tmp
                      
                      function code(x, y, z)
                      	tmp = 0.0
                      	if (x <= -14200000000000.0)
                      		tmp = Float64(x * Float64(4.16438922228 - Float64(110.1139242984811 * Float64(1.0 / x))));
                      	elseif (x <= 7400000.0)
                      		tmp = Float64(Float64(Float64(Float64(Float64(Float64(Float64(-78.6994924154 * x) - 137.519416416) * x) - y) * x) - z) * Float64(0.0424927283095952 + Float64(-0.3041881842569256 * x)));
                      	else
                      		tmp = Float64(-1.0 * Float64(x * Float64(Float64(-1.0 * Float64(Float64(Float64(3655.1204654076414 * Float64(1.0 / x)) - 110.1139242984811) / x)) - 4.16438922228)));
                      	end
                      	return tmp
                      end
                      
                      function tmp_2 = code(x, y, z)
                      	tmp = 0.0;
                      	if (x <= -14200000000000.0)
                      		tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
                      	elseif (x <= 7400000.0)
                      		tmp = ((((((-78.6994924154 * x) - 137.519416416) * x) - y) * x) - z) * (0.0424927283095952 + (-0.3041881842569256 * x));
                      	else
                      		tmp = -1.0 * (x * ((-1.0 * (((3655.1204654076414 * (1.0 / x)) - 110.1139242984811) / x)) - 4.16438922228));
                      	end
                      	tmp_2 = tmp;
                      end
                      
                      code[x_, y_, z_] := If[LessEqual[x, -14200000000000.0], N[(x * N[(4.16438922228 - N[(110.1139242984811 * N[(1.0 / x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], If[LessEqual[x, 7400000.0], N[(N[(N[(N[(N[(N[(N[(-78.6994924154 * x), $MachinePrecision] - 137.519416416), $MachinePrecision] * x), $MachinePrecision] - y), $MachinePrecision] * x), $MachinePrecision] - z), $MachinePrecision] * N[(0.0424927283095952 + N[(-0.3041881842569256 * x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[(-1.0 * N[(x * N[(N[(-1.0 * N[(N[(N[(3655.1204654076414 * N[(1.0 / x), $MachinePrecision]), $MachinePrecision] - 110.1139242984811), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision] - 4.16438922228), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]]
                      
                      \begin{array}{l}
                      \mathbf{if}\;x \leq -14200000000000:\\
                      \;\;\;\;x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)\\
                      
                      \mathbf{elif}\;x \leq 7400000:\\
                      \;\;\;\;\left(\left(\left(-78.6994924154 \cdot x - 137.519416416\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot x\right)\\
                      
                      \mathbf{else}:\\
                      \;\;\;\;-1 \cdot \left(x \cdot \left(-1 \cdot \frac{3655.1204654076414 \cdot \frac{1}{x} - 110.1139242984811}{x} - 4.16438922228\right)\right)\\
                      
                      
                      \end{array}
                      
                      Derivation
                      1. Split input into 3 regimes
                      2. if x < -1.42e13

                        1. Initial program 59.1%

                          \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
                        2. Taylor expanded in x around inf

                          \[\leadsto \color{blue}{x \cdot \left(\frac{104109730557}{25000000000} - \frac{13764240537310136880149}{125000000000000000000} \cdot \frac{1}{x}\right)} \]
                        3. Step-by-step derivation
                          1. lower-*.f64N/A

                            \[\leadsto x \cdot \color{blue}{\left(\frac{104109730557}{25000000000} - \frac{13764240537310136880149}{125000000000000000000} \cdot \frac{1}{x}\right)} \]
                          2. lower--.f64N/A

                            \[\leadsto x \cdot \left(\frac{104109730557}{25000000000} - \color{blue}{\frac{13764240537310136880149}{125000000000000000000} \cdot \frac{1}{x}}\right) \]
                          3. lower-*.f64N/A

                            \[\leadsto x \cdot \left(\frac{104109730557}{25000000000} - \frac{13764240537310136880149}{125000000000000000000} \cdot \color{blue}{\frac{1}{x}}\right) \]
                          4. lower-/.f6444.8%

                            \[\leadsto x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{\color{blue}{x}}\right) \]
                        4. Applied rewrites44.8%

                          \[\leadsto \color{blue}{x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)} \]

                        if -1.42e13 < x < 7.4e6

                        1. Initial program 59.1%

                          \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
                        2. Applied rewrites62.0%

                          \[\leadsto \color{blue}{\left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(\left(x - 2\right) \cdot \frac{-1}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606}\right)} \]
                        3. Taylor expanded in x around 0

                          \[\leadsto \left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \color{blue}{\left(\frac{1000000000}{23533438303} + \frac{-168466327098500000000}{553822718361107519809} \cdot x\right)} \]
                        4. Step-by-step derivation
                          1. lower-+.f64N/A

                            \[\leadsto \left(\left(\left(\frac{-4297481763}{31250000} - \left(\frac{104109730557}{25000000000} \cdot x - \frac{-393497462077}{5000000000}\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(\frac{1000000000}{23533438303} + \color{blue}{\frac{-168466327098500000000}{553822718361107519809} \cdot x}\right) \]
                          2. lower-*.f6452.5%

                            \[\leadsto \left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot \color{blue}{x}\right) \]
                        5. Applied rewrites52.5%

                          \[\leadsto \left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \color{blue}{\left(0.0424927283095952 + -0.3041881842569256 \cdot x\right)} \]
                        6. Taylor expanded in x around 0

                          \[\leadsto \left(\left(\color{blue}{\left(\frac{-393497462077}{5000000000} \cdot x - \frac{4297481763}{31250000}\right)} \cdot x - y\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot x\right) \]
                        7. Step-by-step derivation
                          1. lower--.f64N/A

                            \[\leadsto \left(\left(\left(\frac{-393497462077}{5000000000} \cdot x - \color{blue}{\frac{4297481763}{31250000}}\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(\frac{1000000000}{23533438303} + \frac{-168466327098500000000}{553822718361107519809} \cdot x\right) \]
                          2. lower-*.f6451.3%

                            \[\leadsto \left(\left(\left(-78.6994924154 \cdot x - 137.519416416\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot x\right) \]
                        8. Applied rewrites51.3%

                          \[\leadsto \left(\left(\color{blue}{\left(-78.6994924154 \cdot x - 137.519416416\right)} \cdot x - y\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot x\right) \]

                        if 7.4e6 < x

                        1. Initial program 59.1%

                          \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
                        2. Taylor expanded in x around -inf

                          \[\leadsto \color{blue}{-1 \cdot \left(x \cdot \left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)\right)} \]
                        3. Step-by-step derivation
                          1. lower-*.f64N/A

                            \[\leadsto -1 \cdot \color{blue}{\left(x \cdot \left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)\right)} \]
                          2. lower-*.f64N/A

                            \[\leadsto -1 \cdot \left(x \cdot \color{blue}{\left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)}\right) \]
                          3. lower--.f64N/A

                            \[\leadsto -1 \cdot \left(x \cdot \left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \color{blue}{\frac{104109730557}{25000000000}}\right)\right) \]
                          4. lower-*.f64N/A

                            \[\leadsto -1 \cdot \left(x \cdot \left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)\right) \]
                          5. lower-/.f64N/A

                            \[\leadsto -1 \cdot \left(x \cdot \left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)\right) \]
                          6. lower--.f64N/A

                            \[\leadsto -1 \cdot \left(x \cdot \left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)\right) \]
                          7. lower-*.f64N/A

                            \[\leadsto -1 \cdot \left(x \cdot \left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)\right) \]
                          8. lower-/.f6444.4%

                            \[\leadsto -1 \cdot \left(x \cdot \left(-1 \cdot \frac{3655.1204654076414 \cdot \frac{1}{x} - 110.1139242984811}{x} - 4.16438922228\right)\right) \]
                        4. Applied rewrites44.4%

                          \[\leadsto \color{blue}{-1 \cdot \left(x \cdot \left(-1 \cdot \frac{3655.1204654076414 \cdot \frac{1}{x} - 110.1139242984811}{x} - 4.16438922228\right)\right)} \]
                      3. Recombined 3 regimes into one program.
                      4. Add Preprocessing

                      Alternative 10: 90.0% accurate, 1.6× speedup?

                      \[\begin{array}{l} t_0 := x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)\\ \mathbf{if}\;x \leq -14200000000000:\\ \;\;\;\;t\_0\\ \mathbf{elif}\;x \leq 7400000:\\ \;\;\;\;\left(\left(\left(-78.6994924154 \cdot x - 137.519416416\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot x\right)\\ \mathbf{else}:\\ \;\;\;\;t\_0\\ \end{array} \]
                      (FPCore (x y z)
                        :precision binary64
                        (let* ((t_0 (* x (- 4.16438922228 (* 110.1139242984811 (/ 1.0 x))))))
                        (if (<= x -14200000000000.0)
                          t_0
                          (if (<= x 7400000.0)
                            (*
                             (- (* (- (* (- (* -78.6994924154 x) 137.519416416) x) y) x) z)
                             (+ 0.0424927283095952 (* -0.3041881842569256 x)))
                            t_0))))
                      double code(double x, double y, double z) {
                      	double t_0 = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
                      	double tmp;
                      	if (x <= -14200000000000.0) {
                      		tmp = t_0;
                      	} else if (x <= 7400000.0) {
                      		tmp = ((((((-78.6994924154 * x) - 137.519416416) * x) - y) * x) - z) * (0.0424927283095952 + (-0.3041881842569256 * x));
                      	} else {
                      		tmp = t_0;
                      	}
                      	return tmp;
                      }
                      
                      module fmin_fmax_functions
                          implicit none
                          private
                          public fmax
                          public fmin
                      
                          interface fmax
                              module procedure fmax88
                              module procedure fmax44
                              module procedure fmax84
                              module procedure fmax48
                          end interface
                          interface fmin
                              module procedure fmin88
                              module procedure fmin44
                              module procedure fmin84
                              module procedure fmin48
                          end interface
                      contains
                          real(8) function fmax88(x, y) result (res)
                              real(8), intent (in) :: x
                              real(8), intent (in) :: y
                              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                          end function
                          real(4) function fmax44(x, y) result (res)
                              real(4), intent (in) :: x
                              real(4), intent (in) :: y
                              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                          end function
                          real(8) function fmax84(x, y) result(res)
                              real(8), intent (in) :: x
                              real(4), intent (in) :: y
                              res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                          end function
                          real(8) function fmax48(x, y) result(res)
                              real(4), intent (in) :: x
                              real(8), intent (in) :: y
                              res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                          end function
                          real(8) function fmin88(x, y) result (res)
                              real(8), intent (in) :: x
                              real(8), intent (in) :: y
                              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                          end function
                          real(4) function fmin44(x, y) result (res)
                              real(4), intent (in) :: x
                              real(4), intent (in) :: y
                              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                          end function
                          real(8) function fmin84(x, y) result(res)
                              real(8), intent (in) :: x
                              real(4), intent (in) :: y
                              res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                          end function
                          real(8) function fmin48(x, y) result(res)
                              real(4), intent (in) :: x
                              real(8), intent (in) :: y
                              res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                          end function
                      end module
                      
                      real(8) function code(x, y, z)
                      use fmin_fmax_functions
                          real(8), intent (in) :: x
                          real(8), intent (in) :: y
                          real(8), intent (in) :: z
                          real(8) :: t_0
                          real(8) :: tmp
                          t_0 = x * (4.16438922228d0 - (110.1139242984811d0 * (1.0d0 / x)))
                          if (x <= (-14200000000000.0d0)) then
                              tmp = t_0
                          else if (x <= 7400000.0d0) then
                              tmp = (((((((-78.6994924154d0) * x) - 137.519416416d0) * x) - y) * x) - z) * (0.0424927283095952d0 + ((-0.3041881842569256d0) * x))
                          else
                              tmp = t_0
                          end if
                          code = tmp
                      end function
                      
                      public static double code(double x, double y, double z) {
                      	double t_0 = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
                      	double tmp;
                      	if (x <= -14200000000000.0) {
                      		tmp = t_0;
                      	} else if (x <= 7400000.0) {
                      		tmp = ((((((-78.6994924154 * x) - 137.519416416) * x) - y) * x) - z) * (0.0424927283095952 + (-0.3041881842569256 * x));
                      	} else {
                      		tmp = t_0;
                      	}
                      	return tmp;
                      }
                      
                      def code(x, y, z):
                      	t_0 = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)))
                      	tmp = 0
                      	if x <= -14200000000000.0:
                      		tmp = t_0
                      	elif x <= 7400000.0:
                      		tmp = ((((((-78.6994924154 * x) - 137.519416416) * x) - y) * x) - z) * (0.0424927283095952 + (-0.3041881842569256 * x))
                      	else:
                      		tmp = t_0
                      	return tmp
                      
                      function code(x, y, z)
                      	t_0 = Float64(x * Float64(4.16438922228 - Float64(110.1139242984811 * Float64(1.0 / x))))
                      	tmp = 0.0
                      	if (x <= -14200000000000.0)
                      		tmp = t_0;
                      	elseif (x <= 7400000.0)
                      		tmp = Float64(Float64(Float64(Float64(Float64(Float64(Float64(-78.6994924154 * x) - 137.519416416) * x) - y) * x) - z) * Float64(0.0424927283095952 + Float64(-0.3041881842569256 * x)));
                      	else
                      		tmp = t_0;
                      	end
                      	return tmp
                      end
                      
                      function tmp_2 = code(x, y, z)
                      	t_0 = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
                      	tmp = 0.0;
                      	if (x <= -14200000000000.0)
                      		tmp = t_0;
                      	elseif (x <= 7400000.0)
                      		tmp = ((((((-78.6994924154 * x) - 137.519416416) * x) - y) * x) - z) * (0.0424927283095952 + (-0.3041881842569256 * x));
                      	else
                      		tmp = t_0;
                      	end
                      	tmp_2 = tmp;
                      end
                      
                      code[x_, y_, z_] := Block[{t$95$0 = N[(x * N[(4.16438922228 - N[(110.1139242984811 * N[(1.0 / x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[x, -14200000000000.0], t$95$0, If[LessEqual[x, 7400000.0], N[(N[(N[(N[(N[(N[(N[(-78.6994924154 * x), $MachinePrecision] - 137.519416416), $MachinePrecision] * x), $MachinePrecision] - y), $MachinePrecision] * x), $MachinePrecision] - z), $MachinePrecision] * N[(0.0424927283095952 + N[(-0.3041881842569256 * x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], t$95$0]]]
                      
                      \begin{array}{l}
                      t_0 := x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)\\
                      \mathbf{if}\;x \leq -14200000000000:\\
                      \;\;\;\;t\_0\\
                      
                      \mathbf{elif}\;x \leq 7400000:\\
                      \;\;\;\;\left(\left(\left(-78.6994924154 \cdot x - 137.519416416\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot x\right)\\
                      
                      \mathbf{else}:\\
                      \;\;\;\;t\_0\\
                      
                      
                      \end{array}
                      
                      Derivation
                      1. Split input into 2 regimes
                      2. if x < -1.42e13 or 7.4e6 < x

                        1. Initial program 59.1%

                          \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
                        2. Taylor expanded in x around inf

                          \[\leadsto \color{blue}{x \cdot \left(\frac{104109730557}{25000000000} - \frac{13764240537310136880149}{125000000000000000000} \cdot \frac{1}{x}\right)} \]
                        3. Step-by-step derivation
                          1. lower-*.f64N/A

                            \[\leadsto x \cdot \color{blue}{\left(\frac{104109730557}{25000000000} - \frac{13764240537310136880149}{125000000000000000000} \cdot \frac{1}{x}\right)} \]
                          2. lower--.f64N/A

                            \[\leadsto x \cdot \left(\frac{104109730557}{25000000000} - \color{blue}{\frac{13764240537310136880149}{125000000000000000000} \cdot \frac{1}{x}}\right) \]
                          3. lower-*.f64N/A

                            \[\leadsto x \cdot \left(\frac{104109730557}{25000000000} - \frac{13764240537310136880149}{125000000000000000000} \cdot \color{blue}{\frac{1}{x}}\right) \]
                          4. lower-/.f6444.8%

                            \[\leadsto x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{\color{blue}{x}}\right) \]
                        4. Applied rewrites44.8%

                          \[\leadsto \color{blue}{x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)} \]

                        if -1.42e13 < x < 7.4e6

                        1. Initial program 59.1%

                          \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
                        2. Applied rewrites62.0%

                          \[\leadsto \color{blue}{\left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(\left(x - 2\right) \cdot \frac{-1}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606}\right)} \]
                        3. Taylor expanded in x around 0

                          \[\leadsto \left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \color{blue}{\left(\frac{1000000000}{23533438303} + \frac{-168466327098500000000}{553822718361107519809} \cdot x\right)} \]
                        4. Step-by-step derivation
                          1. lower-+.f64N/A

                            \[\leadsto \left(\left(\left(\frac{-4297481763}{31250000} - \left(\frac{104109730557}{25000000000} \cdot x - \frac{-393497462077}{5000000000}\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(\frac{1000000000}{23533438303} + \color{blue}{\frac{-168466327098500000000}{553822718361107519809} \cdot x}\right) \]
                          2. lower-*.f6452.5%

                            \[\leadsto \left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot \color{blue}{x}\right) \]
                        5. Applied rewrites52.5%

                          \[\leadsto \left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \color{blue}{\left(0.0424927283095952 + -0.3041881842569256 \cdot x\right)} \]
                        6. Taylor expanded in x around 0

                          \[\leadsto \left(\left(\color{blue}{\left(\frac{-393497462077}{5000000000} \cdot x - \frac{4297481763}{31250000}\right)} \cdot x - y\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot x\right) \]
                        7. Step-by-step derivation
                          1. lower--.f64N/A

                            \[\leadsto \left(\left(\left(\frac{-393497462077}{5000000000} \cdot x - \color{blue}{\frac{4297481763}{31250000}}\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(\frac{1000000000}{23533438303} + \frac{-168466327098500000000}{553822718361107519809} \cdot x\right) \]
                          2. lower-*.f6451.3%

                            \[\leadsto \left(\left(\left(-78.6994924154 \cdot x - 137.519416416\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot x\right) \]
                        8. Applied rewrites51.3%

                          \[\leadsto \left(\left(\color{blue}{\left(-78.6994924154 \cdot x - 137.519416416\right)} \cdot x - y\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot x\right) \]
                      3. Recombined 2 regimes into one program.
                      4. Add Preprocessing

                      Alternative 11: 89.7% accurate, 1.9× speedup?

                      \[\begin{array}{l} t_0 := x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)\\ \mathbf{if}\;x \leq -15500000000000:\\ \;\;\;\;t\_0\\ \mathbf{elif}\;x \leq 7400000:\\ \;\;\;\;\left(\left(-137.519416416 \cdot x - y\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot x\right)\\ \mathbf{else}:\\ \;\;\;\;t\_0\\ \end{array} \]
                      (FPCore (x y z)
                        :precision binary64
                        (let* ((t_0 (* x (- 4.16438922228 (* 110.1139242984811 (/ 1.0 x))))))
                        (if (<= x -15500000000000.0)
                          t_0
                          (if (<= x 7400000.0)
                            (*
                             (- (* (- (* -137.519416416 x) y) x) z)
                             (+ 0.0424927283095952 (* -0.3041881842569256 x)))
                            t_0))))
                      double code(double x, double y, double z) {
                      	double t_0 = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
                      	double tmp;
                      	if (x <= -15500000000000.0) {
                      		tmp = t_0;
                      	} else if (x <= 7400000.0) {
                      		tmp = ((((-137.519416416 * x) - y) * x) - z) * (0.0424927283095952 + (-0.3041881842569256 * x));
                      	} else {
                      		tmp = t_0;
                      	}
                      	return tmp;
                      }
                      
                      module fmin_fmax_functions
                          implicit none
                          private
                          public fmax
                          public fmin
                      
                          interface fmax
                              module procedure fmax88
                              module procedure fmax44
                              module procedure fmax84
                              module procedure fmax48
                          end interface
                          interface fmin
                              module procedure fmin88
                              module procedure fmin44
                              module procedure fmin84
                              module procedure fmin48
                          end interface
                      contains
                          real(8) function fmax88(x, y) result (res)
                              real(8), intent (in) :: x
                              real(8), intent (in) :: y
                              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                          end function
                          real(4) function fmax44(x, y) result (res)
                              real(4), intent (in) :: x
                              real(4), intent (in) :: y
                              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                          end function
                          real(8) function fmax84(x, y) result(res)
                              real(8), intent (in) :: x
                              real(4), intent (in) :: y
                              res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                          end function
                          real(8) function fmax48(x, y) result(res)
                              real(4), intent (in) :: x
                              real(8), intent (in) :: y
                              res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                          end function
                          real(8) function fmin88(x, y) result (res)
                              real(8), intent (in) :: x
                              real(8), intent (in) :: y
                              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                          end function
                          real(4) function fmin44(x, y) result (res)
                              real(4), intent (in) :: x
                              real(4), intent (in) :: y
                              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                          end function
                          real(8) function fmin84(x, y) result(res)
                              real(8), intent (in) :: x
                              real(4), intent (in) :: y
                              res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                          end function
                          real(8) function fmin48(x, y) result(res)
                              real(4), intent (in) :: x
                              real(8), intent (in) :: y
                              res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                          end function
                      end module
                      
                      real(8) function code(x, y, z)
                      use fmin_fmax_functions
                          real(8), intent (in) :: x
                          real(8), intent (in) :: y
                          real(8), intent (in) :: z
                          real(8) :: t_0
                          real(8) :: tmp
                          t_0 = x * (4.16438922228d0 - (110.1139242984811d0 * (1.0d0 / x)))
                          if (x <= (-15500000000000.0d0)) then
                              tmp = t_0
                          else if (x <= 7400000.0d0) then
                              tmp = (((((-137.519416416d0) * x) - y) * x) - z) * (0.0424927283095952d0 + ((-0.3041881842569256d0) * x))
                          else
                              tmp = t_0
                          end if
                          code = tmp
                      end function
                      
                      public static double code(double x, double y, double z) {
                      	double t_0 = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
                      	double tmp;
                      	if (x <= -15500000000000.0) {
                      		tmp = t_0;
                      	} else if (x <= 7400000.0) {
                      		tmp = ((((-137.519416416 * x) - y) * x) - z) * (0.0424927283095952 + (-0.3041881842569256 * x));
                      	} else {
                      		tmp = t_0;
                      	}
                      	return tmp;
                      }
                      
                      def code(x, y, z):
                      	t_0 = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)))
                      	tmp = 0
                      	if x <= -15500000000000.0:
                      		tmp = t_0
                      	elif x <= 7400000.0:
                      		tmp = ((((-137.519416416 * x) - y) * x) - z) * (0.0424927283095952 + (-0.3041881842569256 * x))
                      	else:
                      		tmp = t_0
                      	return tmp
                      
                      function code(x, y, z)
                      	t_0 = Float64(x * Float64(4.16438922228 - Float64(110.1139242984811 * Float64(1.0 / x))))
                      	tmp = 0.0
                      	if (x <= -15500000000000.0)
                      		tmp = t_0;
                      	elseif (x <= 7400000.0)
                      		tmp = Float64(Float64(Float64(Float64(Float64(-137.519416416 * x) - y) * x) - z) * Float64(0.0424927283095952 + Float64(-0.3041881842569256 * x)));
                      	else
                      		tmp = t_0;
                      	end
                      	return tmp
                      end
                      
                      function tmp_2 = code(x, y, z)
                      	t_0 = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
                      	tmp = 0.0;
                      	if (x <= -15500000000000.0)
                      		tmp = t_0;
                      	elseif (x <= 7400000.0)
                      		tmp = ((((-137.519416416 * x) - y) * x) - z) * (0.0424927283095952 + (-0.3041881842569256 * x));
                      	else
                      		tmp = t_0;
                      	end
                      	tmp_2 = tmp;
                      end
                      
                      code[x_, y_, z_] := Block[{t$95$0 = N[(x * N[(4.16438922228 - N[(110.1139242984811 * N[(1.0 / x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[x, -15500000000000.0], t$95$0, If[LessEqual[x, 7400000.0], N[(N[(N[(N[(N[(-137.519416416 * x), $MachinePrecision] - y), $MachinePrecision] * x), $MachinePrecision] - z), $MachinePrecision] * N[(0.0424927283095952 + N[(-0.3041881842569256 * x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], t$95$0]]]
                      
                      \begin{array}{l}
                      t_0 := x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)\\
                      \mathbf{if}\;x \leq -15500000000000:\\
                      \;\;\;\;t\_0\\
                      
                      \mathbf{elif}\;x \leq 7400000:\\
                      \;\;\;\;\left(\left(-137.519416416 \cdot x - y\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot x\right)\\
                      
                      \mathbf{else}:\\
                      \;\;\;\;t\_0\\
                      
                      
                      \end{array}
                      
                      Derivation
                      1. Split input into 2 regimes
                      2. if x < -1.55e13 or 7.4e6 < x

                        1. Initial program 59.1%

                          \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
                        2. Taylor expanded in x around inf

                          \[\leadsto \color{blue}{x \cdot \left(\frac{104109730557}{25000000000} - \frac{13764240537310136880149}{125000000000000000000} \cdot \frac{1}{x}\right)} \]
                        3. Step-by-step derivation
                          1. lower-*.f64N/A

                            \[\leadsto x \cdot \color{blue}{\left(\frac{104109730557}{25000000000} - \frac{13764240537310136880149}{125000000000000000000} \cdot \frac{1}{x}\right)} \]
                          2. lower--.f64N/A

                            \[\leadsto x \cdot \left(\frac{104109730557}{25000000000} - \color{blue}{\frac{13764240537310136880149}{125000000000000000000} \cdot \frac{1}{x}}\right) \]
                          3. lower-*.f64N/A

                            \[\leadsto x \cdot \left(\frac{104109730557}{25000000000} - \frac{13764240537310136880149}{125000000000000000000} \cdot \color{blue}{\frac{1}{x}}\right) \]
                          4. lower-/.f6444.8%

                            \[\leadsto x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{\color{blue}{x}}\right) \]
                        4. Applied rewrites44.8%

                          \[\leadsto \color{blue}{x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)} \]

                        if -1.55e13 < x < 7.4e6

                        1. Initial program 59.1%

                          \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
                        2. Applied rewrites62.0%

                          \[\leadsto \color{blue}{\left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(\left(x - 2\right) \cdot \frac{-1}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606}\right)} \]
                        3. Taylor expanded in x around 0

                          \[\leadsto \left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \color{blue}{\left(\frac{1000000000}{23533438303} + \frac{-168466327098500000000}{553822718361107519809} \cdot x\right)} \]
                        4. Step-by-step derivation
                          1. lower-+.f64N/A

                            \[\leadsto \left(\left(\left(\frac{-4297481763}{31250000} - \left(\frac{104109730557}{25000000000} \cdot x - \frac{-393497462077}{5000000000}\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(\frac{1000000000}{23533438303} + \color{blue}{\frac{-168466327098500000000}{553822718361107519809} \cdot x}\right) \]
                          2. lower-*.f6452.5%

                            \[\leadsto \left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot \color{blue}{x}\right) \]
                        5. Applied rewrites52.5%

                          \[\leadsto \left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \color{blue}{\left(0.0424927283095952 + -0.3041881842569256 \cdot x\right)} \]
                        6. Taylor expanded in x around 0

                          \[\leadsto \left(\left(\color{blue}{\frac{-4297481763}{31250000}} \cdot x - y\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot x\right) \]
                        7. Step-by-step derivation
                          1. Applied rewrites52.3%

                            \[\leadsto \left(\left(\color{blue}{-137.519416416} \cdot x - y\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot x\right) \]
                        8. Recombined 2 regimes into one program.
                        9. Add Preprocessing

                        Alternative 12: 89.5% accurate, 2.0× speedup?

                        \[\begin{array}{l} t_0 := x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)\\ \mathbf{if}\;x \leq -15000000000000:\\ \;\;\;\;t\_0\\ \mathbf{elif}\;x \leq 7400000:\\ \;\;\;\;\left(\left(-1 \cdot y\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot x\right)\\ \mathbf{else}:\\ \;\;\;\;t\_0\\ \end{array} \]
                        (FPCore (x y z)
                          :precision binary64
                          (let* ((t_0 (* x (- 4.16438922228 (* 110.1139242984811 (/ 1.0 x))))))
                          (if (<= x -15000000000000.0)
                            t_0
                            (if (<= x 7400000.0)
                              (*
                               (- (* (* -1.0 y) x) z)
                               (+ 0.0424927283095952 (* -0.3041881842569256 x)))
                              t_0))))
                        double code(double x, double y, double z) {
                        	double t_0 = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
                        	double tmp;
                        	if (x <= -15000000000000.0) {
                        		tmp = t_0;
                        	} else if (x <= 7400000.0) {
                        		tmp = (((-1.0 * y) * x) - z) * (0.0424927283095952 + (-0.3041881842569256 * x));
                        	} else {
                        		tmp = t_0;
                        	}
                        	return tmp;
                        }
                        
                        module fmin_fmax_functions
                            implicit none
                            private
                            public fmax
                            public fmin
                        
                            interface fmax
                                module procedure fmax88
                                module procedure fmax44
                                module procedure fmax84
                                module procedure fmax48
                            end interface
                            interface fmin
                                module procedure fmin88
                                module procedure fmin44
                                module procedure fmin84
                                module procedure fmin48
                            end interface
                        contains
                            real(8) function fmax88(x, y) result (res)
                                real(8), intent (in) :: x
                                real(8), intent (in) :: y
                                res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                            end function
                            real(4) function fmax44(x, y) result (res)
                                real(4), intent (in) :: x
                                real(4), intent (in) :: y
                                res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                            end function
                            real(8) function fmax84(x, y) result(res)
                                real(8), intent (in) :: x
                                real(4), intent (in) :: y
                                res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                            end function
                            real(8) function fmax48(x, y) result(res)
                                real(4), intent (in) :: x
                                real(8), intent (in) :: y
                                res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                            end function
                            real(8) function fmin88(x, y) result (res)
                                real(8), intent (in) :: x
                                real(8), intent (in) :: y
                                res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                            end function
                            real(4) function fmin44(x, y) result (res)
                                real(4), intent (in) :: x
                                real(4), intent (in) :: y
                                res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                            end function
                            real(8) function fmin84(x, y) result(res)
                                real(8), intent (in) :: x
                                real(4), intent (in) :: y
                                res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                            end function
                            real(8) function fmin48(x, y) result(res)
                                real(4), intent (in) :: x
                                real(8), intent (in) :: y
                                res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                            end function
                        end module
                        
                        real(8) function code(x, y, z)
                        use fmin_fmax_functions
                            real(8), intent (in) :: x
                            real(8), intent (in) :: y
                            real(8), intent (in) :: z
                            real(8) :: t_0
                            real(8) :: tmp
                            t_0 = x * (4.16438922228d0 - (110.1139242984811d0 * (1.0d0 / x)))
                            if (x <= (-15000000000000.0d0)) then
                                tmp = t_0
                            else if (x <= 7400000.0d0) then
                                tmp = ((((-1.0d0) * y) * x) - z) * (0.0424927283095952d0 + ((-0.3041881842569256d0) * x))
                            else
                                tmp = t_0
                            end if
                            code = tmp
                        end function
                        
                        public static double code(double x, double y, double z) {
                        	double t_0 = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
                        	double tmp;
                        	if (x <= -15000000000000.0) {
                        		tmp = t_0;
                        	} else if (x <= 7400000.0) {
                        		tmp = (((-1.0 * y) * x) - z) * (0.0424927283095952 + (-0.3041881842569256 * x));
                        	} else {
                        		tmp = t_0;
                        	}
                        	return tmp;
                        }
                        
                        def code(x, y, z):
                        	t_0 = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)))
                        	tmp = 0
                        	if x <= -15000000000000.0:
                        		tmp = t_0
                        	elif x <= 7400000.0:
                        		tmp = (((-1.0 * y) * x) - z) * (0.0424927283095952 + (-0.3041881842569256 * x))
                        	else:
                        		tmp = t_0
                        	return tmp
                        
                        function code(x, y, z)
                        	t_0 = Float64(x * Float64(4.16438922228 - Float64(110.1139242984811 * Float64(1.0 / x))))
                        	tmp = 0.0
                        	if (x <= -15000000000000.0)
                        		tmp = t_0;
                        	elseif (x <= 7400000.0)
                        		tmp = Float64(Float64(Float64(Float64(-1.0 * y) * x) - z) * Float64(0.0424927283095952 + Float64(-0.3041881842569256 * x)));
                        	else
                        		tmp = t_0;
                        	end
                        	return tmp
                        end
                        
                        function tmp_2 = code(x, y, z)
                        	t_0 = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
                        	tmp = 0.0;
                        	if (x <= -15000000000000.0)
                        		tmp = t_0;
                        	elseif (x <= 7400000.0)
                        		tmp = (((-1.0 * y) * x) - z) * (0.0424927283095952 + (-0.3041881842569256 * x));
                        	else
                        		tmp = t_0;
                        	end
                        	tmp_2 = tmp;
                        end
                        
                        code[x_, y_, z_] := Block[{t$95$0 = N[(x * N[(4.16438922228 - N[(110.1139242984811 * N[(1.0 / x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[x, -15000000000000.0], t$95$0, If[LessEqual[x, 7400000.0], N[(N[(N[(N[(-1.0 * y), $MachinePrecision] * x), $MachinePrecision] - z), $MachinePrecision] * N[(0.0424927283095952 + N[(-0.3041881842569256 * x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], t$95$0]]]
                        
                        \begin{array}{l}
                        t_0 := x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)\\
                        \mathbf{if}\;x \leq -15000000000000:\\
                        \;\;\;\;t\_0\\
                        
                        \mathbf{elif}\;x \leq 7400000:\\
                        \;\;\;\;\left(\left(-1 \cdot y\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot x\right)\\
                        
                        \mathbf{else}:\\
                        \;\;\;\;t\_0\\
                        
                        
                        \end{array}
                        
                        Derivation
                        1. Split input into 2 regimes
                        2. if x < -1.5e13 or 7.4e6 < x

                          1. Initial program 59.1%

                            \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
                          2. Taylor expanded in x around inf

                            \[\leadsto \color{blue}{x \cdot \left(\frac{104109730557}{25000000000} - \frac{13764240537310136880149}{125000000000000000000} \cdot \frac{1}{x}\right)} \]
                          3. Step-by-step derivation
                            1. lower-*.f64N/A

                              \[\leadsto x \cdot \color{blue}{\left(\frac{104109730557}{25000000000} - \frac{13764240537310136880149}{125000000000000000000} \cdot \frac{1}{x}\right)} \]
                            2. lower--.f64N/A

                              \[\leadsto x \cdot \left(\frac{104109730557}{25000000000} - \color{blue}{\frac{13764240537310136880149}{125000000000000000000} \cdot \frac{1}{x}}\right) \]
                            3. lower-*.f64N/A

                              \[\leadsto x \cdot \left(\frac{104109730557}{25000000000} - \frac{13764240537310136880149}{125000000000000000000} \cdot \color{blue}{\frac{1}{x}}\right) \]
                            4. lower-/.f6444.8%

                              \[\leadsto x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{\color{blue}{x}}\right) \]
                          4. Applied rewrites44.8%

                            \[\leadsto \color{blue}{x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)} \]

                          if -1.5e13 < x < 7.4e6

                          1. Initial program 59.1%

                            \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
                          2. Applied rewrites62.0%

                            \[\leadsto \color{blue}{\left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(\left(x - 2\right) \cdot \frac{-1}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606}\right)} \]
                          3. Taylor expanded in x around 0

                            \[\leadsto \left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \color{blue}{\left(\frac{1000000000}{23533438303} + \frac{-168466327098500000000}{553822718361107519809} \cdot x\right)} \]
                          4. Step-by-step derivation
                            1. lower-+.f64N/A

                              \[\leadsto \left(\left(\left(\frac{-4297481763}{31250000} - \left(\frac{104109730557}{25000000000} \cdot x - \frac{-393497462077}{5000000000}\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(\frac{1000000000}{23533438303} + \color{blue}{\frac{-168466327098500000000}{553822718361107519809} \cdot x}\right) \]
                            2. lower-*.f6452.5%

                              \[\leadsto \left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot \color{blue}{x}\right) \]
                          5. Applied rewrites52.5%

                            \[\leadsto \left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \color{blue}{\left(0.0424927283095952 + -0.3041881842569256 \cdot x\right)} \]
                          6. Taylor expanded in x around 0

                            \[\leadsto \left(\color{blue}{\left(-1 \cdot y\right)} \cdot x - z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot x\right) \]
                          7. Step-by-step derivation
                            1. lower-*.f6448.9%

                              \[\leadsto \left(\left(-1 \cdot \color{blue}{y}\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot x\right) \]
                          8. Applied rewrites48.9%

                            \[\leadsto \left(\color{blue}{\left(-1 \cdot y\right)} \cdot x - z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot x\right) \]
                        3. Recombined 2 regimes into one program.
                        4. Add Preprocessing

                        Alternative 13: 76.0% accurate, 2.1× speedup?

                        \[\begin{array}{l} t_0 := x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)\\ \mathbf{if}\;x \leq -15500000000000:\\ \;\;\;\;t\_0\\ \mathbf{elif}\;x \leq 0.155:\\ \;\;\;\;\left(-1 \cdot z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot x\right)\\ \mathbf{else}:\\ \;\;\;\;t\_0\\ \end{array} \]
                        (FPCore (x y z)
                          :precision binary64
                          (let* ((t_0 (* x (- 4.16438922228 (* 110.1139242984811 (/ 1.0 x))))))
                          (if (<= x -15500000000000.0)
                            t_0
                            (if (<= x 0.155)
                              (* (* -1.0 z) (+ 0.0424927283095952 (* -0.3041881842569256 x)))
                              t_0))))
                        double code(double x, double y, double z) {
                        	double t_0 = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
                        	double tmp;
                        	if (x <= -15500000000000.0) {
                        		tmp = t_0;
                        	} else if (x <= 0.155) {
                        		tmp = (-1.0 * z) * (0.0424927283095952 + (-0.3041881842569256 * x));
                        	} else {
                        		tmp = t_0;
                        	}
                        	return tmp;
                        }
                        
                        module fmin_fmax_functions
                            implicit none
                            private
                            public fmax
                            public fmin
                        
                            interface fmax
                                module procedure fmax88
                                module procedure fmax44
                                module procedure fmax84
                                module procedure fmax48
                            end interface
                            interface fmin
                                module procedure fmin88
                                module procedure fmin44
                                module procedure fmin84
                                module procedure fmin48
                            end interface
                        contains
                            real(8) function fmax88(x, y) result (res)
                                real(8), intent (in) :: x
                                real(8), intent (in) :: y
                                res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                            end function
                            real(4) function fmax44(x, y) result (res)
                                real(4), intent (in) :: x
                                real(4), intent (in) :: y
                                res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                            end function
                            real(8) function fmax84(x, y) result(res)
                                real(8), intent (in) :: x
                                real(4), intent (in) :: y
                                res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                            end function
                            real(8) function fmax48(x, y) result(res)
                                real(4), intent (in) :: x
                                real(8), intent (in) :: y
                                res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                            end function
                            real(8) function fmin88(x, y) result (res)
                                real(8), intent (in) :: x
                                real(8), intent (in) :: y
                                res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                            end function
                            real(4) function fmin44(x, y) result (res)
                                real(4), intent (in) :: x
                                real(4), intent (in) :: y
                                res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                            end function
                            real(8) function fmin84(x, y) result(res)
                                real(8), intent (in) :: x
                                real(4), intent (in) :: y
                                res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                            end function
                            real(8) function fmin48(x, y) result(res)
                                real(4), intent (in) :: x
                                real(8), intent (in) :: y
                                res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                            end function
                        end module
                        
                        real(8) function code(x, y, z)
                        use fmin_fmax_functions
                            real(8), intent (in) :: x
                            real(8), intent (in) :: y
                            real(8), intent (in) :: z
                            real(8) :: t_0
                            real(8) :: tmp
                            t_0 = x * (4.16438922228d0 - (110.1139242984811d0 * (1.0d0 / x)))
                            if (x <= (-15500000000000.0d0)) then
                                tmp = t_0
                            else if (x <= 0.155d0) then
                                tmp = ((-1.0d0) * z) * (0.0424927283095952d0 + ((-0.3041881842569256d0) * x))
                            else
                                tmp = t_0
                            end if
                            code = tmp
                        end function
                        
                        public static double code(double x, double y, double z) {
                        	double t_0 = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
                        	double tmp;
                        	if (x <= -15500000000000.0) {
                        		tmp = t_0;
                        	} else if (x <= 0.155) {
                        		tmp = (-1.0 * z) * (0.0424927283095952 + (-0.3041881842569256 * x));
                        	} else {
                        		tmp = t_0;
                        	}
                        	return tmp;
                        }
                        
                        def code(x, y, z):
                        	t_0 = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)))
                        	tmp = 0
                        	if x <= -15500000000000.0:
                        		tmp = t_0
                        	elif x <= 0.155:
                        		tmp = (-1.0 * z) * (0.0424927283095952 + (-0.3041881842569256 * x))
                        	else:
                        		tmp = t_0
                        	return tmp
                        
                        function code(x, y, z)
                        	t_0 = Float64(x * Float64(4.16438922228 - Float64(110.1139242984811 * Float64(1.0 / x))))
                        	tmp = 0.0
                        	if (x <= -15500000000000.0)
                        		tmp = t_0;
                        	elseif (x <= 0.155)
                        		tmp = Float64(Float64(-1.0 * z) * Float64(0.0424927283095952 + Float64(-0.3041881842569256 * x)));
                        	else
                        		tmp = t_0;
                        	end
                        	return tmp
                        end
                        
                        function tmp_2 = code(x, y, z)
                        	t_0 = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
                        	tmp = 0.0;
                        	if (x <= -15500000000000.0)
                        		tmp = t_0;
                        	elseif (x <= 0.155)
                        		tmp = (-1.0 * z) * (0.0424927283095952 + (-0.3041881842569256 * x));
                        	else
                        		tmp = t_0;
                        	end
                        	tmp_2 = tmp;
                        end
                        
                        code[x_, y_, z_] := Block[{t$95$0 = N[(x * N[(4.16438922228 - N[(110.1139242984811 * N[(1.0 / x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[x, -15500000000000.0], t$95$0, If[LessEqual[x, 0.155], N[(N[(-1.0 * z), $MachinePrecision] * N[(0.0424927283095952 + N[(-0.3041881842569256 * x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], t$95$0]]]
                        
                        \begin{array}{l}
                        t_0 := x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)\\
                        \mathbf{if}\;x \leq -15500000000000:\\
                        \;\;\;\;t\_0\\
                        
                        \mathbf{elif}\;x \leq 0.155:\\
                        \;\;\;\;\left(-1 \cdot z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot x\right)\\
                        
                        \mathbf{else}:\\
                        \;\;\;\;t\_0\\
                        
                        
                        \end{array}
                        
                        Derivation
                        1. Split input into 2 regimes
                        2. if x < -1.55e13 or 0.155 < x

                          1. Initial program 59.1%

                            \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
                          2. Taylor expanded in x around inf

                            \[\leadsto \color{blue}{x \cdot \left(\frac{104109730557}{25000000000} - \frac{13764240537310136880149}{125000000000000000000} \cdot \frac{1}{x}\right)} \]
                          3. Step-by-step derivation
                            1. lower-*.f64N/A

                              \[\leadsto x \cdot \color{blue}{\left(\frac{104109730557}{25000000000} - \frac{13764240537310136880149}{125000000000000000000} \cdot \frac{1}{x}\right)} \]
                            2. lower--.f64N/A

                              \[\leadsto x \cdot \left(\frac{104109730557}{25000000000} - \color{blue}{\frac{13764240537310136880149}{125000000000000000000} \cdot \frac{1}{x}}\right) \]
                            3. lower-*.f64N/A

                              \[\leadsto x \cdot \left(\frac{104109730557}{25000000000} - \frac{13764240537310136880149}{125000000000000000000} \cdot \color{blue}{\frac{1}{x}}\right) \]
                            4. lower-/.f6444.8%

                              \[\leadsto x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{\color{blue}{x}}\right) \]
                          4. Applied rewrites44.8%

                            \[\leadsto \color{blue}{x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)} \]

                          if -1.55e13 < x < 0.155

                          1. Initial program 59.1%

                            \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
                          2. Applied rewrites62.0%

                            \[\leadsto \color{blue}{\left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(\left(x - 2\right) \cdot \frac{-1}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606}\right)} \]
                          3. Taylor expanded in x around 0

                            \[\leadsto \left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \color{blue}{\left(\frac{1000000000}{23533438303} + \frac{-168466327098500000000}{553822718361107519809} \cdot x\right)} \]
                          4. Step-by-step derivation
                            1. lower-+.f64N/A

                              \[\leadsto \left(\left(\left(\frac{-4297481763}{31250000} - \left(\frac{104109730557}{25000000000} \cdot x - \frac{-393497462077}{5000000000}\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(\frac{1000000000}{23533438303} + \color{blue}{\frac{-168466327098500000000}{553822718361107519809} \cdot x}\right) \]
                            2. lower-*.f6452.5%

                              \[\leadsto \left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot \color{blue}{x}\right) \]
                          5. Applied rewrites52.5%

                            \[\leadsto \left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \color{blue}{\left(0.0424927283095952 + -0.3041881842569256 \cdot x\right)} \]
                          6. Taylor expanded in x around 0

                            \[\leadsto \color{blue}{\left(-1 \cdot z\right)} \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot x\right) \]
                          7. Step-by-step derivation
                            1. lower-*.f6435.1%

                              \[\leadsto \left(-1 \cdot \color{blue}{z}\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot x\right) \]
                          8. Applied rewrites35.1%

                            \[\leadsto \color{blue}{\left(-1 \cdot z\right)} \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot x\right) \]
                        3. Recombined 2 regimes into one program.
                        4. Add Preprocessing

                        Alternative 14: 75.8% accurate, 2.5× speedup?

                        \[\begin{array}{l} \mathbf{if}\;x \leq -15500000000000:\\ \;\;\;\;4.16438922228 \cdot x\\ \mathbf{elif}\;x \leq 0.41:\\ \;\;\;\;\left(-1 \cdot z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot x\right)\\ \mathbf{else}:\\ \;\;\;\;4.16438922228 \cdot x\\ \end{array} \]
                        (FPCore (x y z)
                          :precision binary64
                          (if (<= x -15500000000000.0)
                          (* 4.16438922228 x)
                          (if (<= x 0.41)
                            (* (* -1.0 z) (+ 0.0424927283095952 (* -0.3041881842569256 x)))
                            (* 4.16438922228 x))))
                        double code(double x, double y, double z) {
                        	double tmp;
                        	if (x <= -15500000000000.0) {
                        		tmp = 4.16438922228 * x;
                        	} else if (x <= 0.41) {
                        		tmp = (-1.0 * z) * (0.0424927283095952 + (-0.3041881842569256 * x));
                        	} else {
                        		tmp = 4.16438922228 * x;
                        	}
                        	return tmp;
                        }
                        
                        module fmin_fmax_functions
                            implicit none
                            private
                            public fmax
                            public fmin
                        
                            interface fmax
                                module procedure fmax88
                                module procedure fmax44
                                module procedure fmax84
                                module procedure fmax48
                            end interface
                            interface fmin
                                module procedure fmin88
                                module procedure fmin44
                                module procedure fmin84
                                module procedure fmin48
                            end interface
                        contains
                            real(8) function fmax88(x, y) result (res)
                                real(8), intent (in) :: x
                                real(8), intent (in) :: y
                                res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                            end function
                            real(4) function fmax44(x, y) result (res)
                                real(4), intent (in) :: x
                                real(4), intent (in) :: y
                                res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                            end function
                            real(8) function fmax84(x, y) result(res)
                                real(8), intent (in) :: x
                                real(4), intent (in) :: y
                                res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                            end function
                            real(8) function fmax48(x, y) result(res)
                                real(4), intent (in) :: x
                                real(8), intent (in) :: y
                                res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                            end function
                            real(8) function fmin88(x, y) result (res)
                                real(8), intent (in) :: x
                                real(8), intent (in) :: y
                                res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                            end function
                            real(4) function fmin44(x, y) result (res)
                                real(4), intent (in) :: x
                                real(4), intent (in) :: y
                                res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                            end function
                            real(8) function fmin84(x, y) result(res)
                                real(8), intent (in) :: x
                                real(4), intent (in) :: y
                                res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                            end function
                            real(8) function fmin48(x, y) result(res)
                                real(4), intent (in) :: x
                                real(8), intent (in) :: y
                                res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                            end function
                        end module
                        
                        real(8) function code(x, y, z)
                        use fmin_fmax_functions
                            real(8), intent (in) :: x
                            real(8), intent (in) :: y
                            real(8), intent (in) :: z
                            real(8) :: tmp
                            if (x <= (-15500000000000.0d0)) then
                                tmp = 4.16438922228d0 * x
                            else if (x <= 0.41d0) then
                                tmp = ((-1.0d0) * z) * (0.0424927283095952d0 + ((-0.3041881842569256d0) * x))
                            else
                                tmp = 4.16438922228d0 * x
                            end if
                            code = tmp
                        end function
                        
                        public static double code(double x, double y, double z) {
                        	double tmp;
                        	if (x <= -15500000000000.0) {
                        		tmp = 4.16438922228 * x;
                        	} else if (x <= 0.41) {
                        		tmp = (-1.0 * z) * (0.0424927283095952 + (-0.3041881842569256 * x));
                        	} else {
                        		tmp = 4.16438922228 * x;
                        	}
                        	return tmp;
                        }
                        
                        def code(x, y, z):
                        	tmp = 0
                        	if x <= -15500000000000.0:
                        		tmp = 4.16438922228 * x
                        	elif x <= 0.41:
                        		tmp = (-1.0 * z) * (0.0424927283095952 + (-0.3041881842569256 * x))
                        	else:
                        		tmp = 4.16438922228 * x
                        	return tmp
                        
                        function code(x, y, z)
                        	tmp = 0.0
                        	if (x <= -15500000000000.0)
                        		tmp = Float64(4.16438922228 * x);
                        	elseif (x <= 0.41)
                        		tmp = Float64(Float64(-1.0 * z) * Float64(0.0424927283095952 + Float64(-0.3041881842569256 * x)));
                        	else
                        		tmp = Float64(4.16438922228 * x);
                        	end
                        	return tmp
                        end
                        
                        function tmp_2 = code(x, y, z)
                        	tmp = 0.0;
                        	if (x <= -15500000000000.0)
                        		tmp = 4.16438922228 * x;
                        	elseif (x <= 0.41)
                        		tmp = (-1.0 * z) * (0.0424927283095952 + (-0.3041881842569256 * x));
                        	else
                        		tmp = 4.16438922228 * x;
                        	end
                        	tmp_2 = tmp;
                        end
                        
                        code[x_, y_, z_] := If[LessEqual[x, -15500000000000.0], N[(4.16438922228 * x), $MachinePrecision], If[LessEqual[x, 0.41], N[(N[(-1.0 * z), $MachinePrecision] * N[(0.0424927283095952 + N[(-0.3041881842569256 * x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[(4.16438922228 * x), $MachinePrecision]]]
                        
                        \begin{array}{l}
                        \mathbf{if}\;x \leq -15500000000000:\\
                        \;\;\;\;4.16438922228 \cdot x\\
                        
                        \mathbf{elif}\;x \leq 0.41:\\
                        \;\;\;\;\left(-1 \cdot z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot x\right)\\
                        
                        \mathbf{else}:\\
                        \;\;\;\;4.16438922228 \cdot x\\
                        
                        
                        \end{array}
                        
                        Derivation
                        1. Split input into 2 regimes
                        2. if x < -1.55e13 or 0.40999999999999998 < x

                          1. Initial program 59.1%

                            \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
                          2. Taylor expanded in x around -inf

                            \[\leadsto \color{blue}{-1 \cdot \left(x \cdot \left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)\right)} \]
                          3. Step-by-step derivation
                            1. lower-*.f64N/A

                              \[\leadsto -1 \cdot \color{blue}{\left(x \cdot \left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)\right)} \]
                            2. lower-*.f64N/A

                              \[\leadsto -1 \cdot \left(x \cdot \color{blue}{\left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)}\right) \]
                            3. lower--.f64N/A

                              \[\leadsto -1 \cdot \left(x \cdot \left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \color{blue}{\frac{104109730557}{25000000000}}\right)\right) \]
                            4. lower-*.f64N/A

                              \[\leadsto -1 \cdot \left(x \cdot \left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)\right) \]
                            5. lower-/.f64N/A

                              \[\leadsto -1 \cdot \left(x \cdot \left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)\right) \]
                            6. lower--.f64N/A

                              \[\leadsto -1 \cdot \left(x \cdot \left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)\right) \]
                            7. lower-*.f64N/A

                              \[\leadsto -1 \cdot \left(x \cdot \left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)\right) \]
                            8. lower-/.f6444.4%

                              \[\leadsto -1 \cdot \left(x \cdot \left(-1 \cdot \frac{3655.1204654076414 \cdot \frac{1}{x} - 110.1139242984811}{x} - 4.16438922228\right)\right) \]
                          4. Applied rewrites44.4%

                            \[\leadsto \color{blue}{-1 \cdot \left(x \cdot \left(-1 \cdot \frac{3655.1204654076414 \cdot \frac{1}{x} - 110.1139242984811}{x} - 4.16438922228\right)\right)} \]
                          5. Taylor expanded in x around inf

                            \[\leadsto -1 \cdot \left(x \cdot \frac{-104109730557}{25000000000}\right) \]
                          6. Step-by-step derivation
                            1. Applied rewrites44.4%

                              \[\leadsto -1 \cdot \left(x \cdot -4.16438922228\right) \]
                            2. Step-by-step derivation
                              1. lift-*.f64N/A

                                \[\leadsto -1 \cdot \color{blue}{\left(x \cdot \frac{-104109730557}{25000000000}\right)} \]
                              2. mul-1-negN/A

                                \[\leadsto \mathsf{neg}\left(x \cdot \frac{-104109730557}{25000000000}\right) \]
                              3. lift-*.f64N/A

                                \[\leadsto \mathsf{neg}\left(x \cdot \frac{-104109730557}{25000000000}\right) \]
                              4. *-commutativeN/A

                                \[\leadsto \mathsf{neg}\left(\frac{-104109730557}{25000000000} \cdot x\right) \]
                              5. distribute-lft-neg-inN/A

                                \[\leadsto \left(\mathsf{neg}\left(\frac{-104109730557}{25000000000}\right)\right) \cdot \color{blue}{x} \]
                              6. lower-*.f64N/A

                                \[\leadsto \left(\mathsf{neg}\left(\frac{-104109730557}{25000000000}\right)\right) \cdot \color{blue}{x} \]
                              7. lower-neg.f6444.4%

                                \[\leadsto \left(--4.16438922228\right) \cdot x \]
                            3. Applied rewrites44.4%

                              \[\leadsto \left(--4.16438922228\right) \cdot \color{blue}{x} \]
                            4. Taylor expanded in x around inf

                              \[\leadsto \frac{104109730557}{25000000000} \cdot x \]
                            5. Step-by-step derivation
                              1. Applied rewrites44.4%

                                \[\leadsto 4.16438922228 \cdot x \]

                              if -1.55e13 < x < 0.40999999999999998

                              1. Initial program 59.1%

                                \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
                              2. Applied rewrites62.0%

                                \[\leadsto \color{blue}{\left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(\left(x - 2\right) \cdot \frac{-1}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606}\right)} \]
                              3. Taylor expanded in x around 0

                                \[\leadsto \left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \color{blue}{\left(\frac{1000000000}{23533438303} + \frac{-168466327098500000000}{553822718361107519809} \cdot x\right)} \]
                              4. Step-by-step derivation
                                1. lower-+.f64N/A

                                  \[\leadsto \left(\left(\left(\frac{-4297481763}{31250000} - \left(\frac{104109730557}{25000000000} \cdot x - \frac{-393497462077}{5000000000}\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(\frac{1000000000}{23533438303} + \color{blue}{\frac{-168466327098500000000}{553822718361107519809} \cdot x}\right) \]
                                2. lower-*.f6452.5%

                                  \[\leadsto \left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot \color{blue}{x}\right) \]
                              5. Applied rewrites52.5%

                                \[\leadsto \left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \color{blue}{\left(0.0424927283095952 + -0.3041881842569256 \cdot x\right)} \]
                              6. Taylor expanded in x around 0

                                \[\leadsto \color{blue}{\left(-1 \cdot z\right)} \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot x\right) \]
                              7. Step-by-step derivation
                                1. lower-*.f6435.1%

                                  \[\leadsto \left(-1 \cdot \color{blue}{z}\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot x\right) \]
                              8. Applied rewrites35.1%

                                \[\leadsto \color{blue}{\left(-1 \cdot z\right)} \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot x\right) \]
                            6. Recombined 2 regimes into one program.
                            7. Add Preprocessing

                            Alternative 15: 75.7% accurate, 4.4× speedup?

                            \[\begin{array}{l} \mathbf{if}\;x \leq -15500000000000:\\ \;\;\;\;4.16438922228 \cdot x\\ \mathbf{elif}\;x \leq 4800:\\ \;\;\;\;-0.0424927283095952 \cdot z\\ \mathbf{else}:\\ \;\;\;\;4.16438922228 \cdot x\\ \end{array} \]
                            (FPCore (x y z)
                              :precision binary64
                              (if (<= x -15500000000000.0)
                              (* 4.16438922228 x)
                              (if (<= x 4800.0) (* -0.0424927283095952 z) (* 4.16438922228 x))))
                            double code(double x, double y, double z) {
                            	double tmp;
                            	if (x <= -15500000000000.0) {
                            		tmp = 4.16438922228 * x;
                            	} else if (x <= 4800.0) {
                            		tmp = -0.0424927283095952 * z;
                            	} else {
                            		tmp = 4.16438922228 * x;
                            	}
                            	return tmp;
                            }
                            
                            module fmin_fmax_functions
                                implicit none
                                private
                                public fmax
                                public fmin
                            
                                interface fmax
                                    module procedure fmax88
                                    module procedure fmax44
                                    module procedure fmax84
                                    module procedure fmax48
                                end interface
                                interface fmin
                                    module procedure fmin88
                                    module procedure fmin44
                                    module procedure fmin84
                                    module procedure fmin48
                                end interface
                            contains
                                real(8) function fmax88(x, y) result (res)
                                    real(8), intent (in) :: x
                                    real(8), intent (in) :: y
                                    res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                end function
                                real(4) function fmax44(x, y) result (res)
                                    real(4), intent (in) :: x
                                    real(4), intent (in) :: y
                                    res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                end function
                                real(8) function fmax84(x, y) result(res)
                                    real(8), intent (in) :: x
                                    real(4), intent (in) :: y
                                    res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                                end function
                                real(8) function fmax48(x, y) result(res)
                                    real(4), intent (in) :: x
                                    real(8), intent (in) :: y
                                    res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                                end function
                                real(8) function fmin88(x, y) result (res)
                                    real(8), intent (in) :: x
                                    real(8), intent (in) :: y
                                    res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                end function
                                real(4) function fmin44(x, y) result (res)
                                    real(4), intent (in) :: x
                                    real(4), intent (in) :: y
                                    res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                end function
                                real(8) function fmin84(x, y) result(res)
                                    real(8), intent (in) :: x
                                    real(4), intent (in) :: y
                                    res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                                end function
                                real(8) function fmin48(x, y) result(res)
                                    real(4), intent (in) :: x
                                    real(8), intent (in) :: y
                                    res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                                end function
                            end module
                            
                            real(8) function code(x, y, z)
                            use fmin_fmax_functions
                                real(8), intent (in) :: x
                                real(8), intent (in) :: y
                                real(8), intent (in) :: z
                                real(8) :: tmp
                                if (x <= (-15500000000000.0d0)) then
                                    tmp = 4.16438922228d0 * x
                                else if (x <= 4800.0d0) then
                                    tmp = (-0.0424927283095952d0) * z
                                else
                                    tmp = 4.16438922228d0 * x
                                end if
                                code = tmp
                            end function
                            
                            public static double code(double x, double y, double z) {
                            	double tmp;
                            	if (x <= -15500000000000.0) {
                            		tmp = 4.16438922228 * x;
                            	} else if (x <= 4800.0) {
                            		tmp = -0.0424927283095952 * z;
                            	} else {
                            		tmp = 4.16438922228 * x;
                            	}
                            	return tmp;
                            }
                            
                            def code(x, y, z):
                            	tmp = 0
                            	if x <= -15500000000000.0:
                            		tmp = 4.16438922228 * x
                            	elif x <= 4800.0:
                            		tmp = -0.0424927283095952 * z
                            	else:
                            		tmp = 4.16438922228 * x
                            	return tmp
                            
                            function code(x, y, z)
                            	tmp = 0.0
                            	if (x <= -15500000000000.0)
                            		tmp = Float64(4.16438922228 * x);
                            	elseif (x <= 4800.0)
                            		tmp = Float64(-0.0424927283095952 * z);
                            	else
                            		tmp = Float64(4.16438922228 * x);
                            	end
                            	return tmp
                            end
                            
                            function tmp_2 = code(x, y, z)
                            	tmp = 0.0;
                            	if (x <= -15500000000000.0)
                            		tmp = 4.16438922228 * x;
                            	elseif (x <= 4800.0)
                            		tmp = -0.0424927283095952 * z;
                            	else
                            		tmp = 4.16438922228 * x;
                            	end
                            	tmp_2 = tmp;
                            end
                            
                            code[x_, y_, z_] := If[LessEqual[x, -15500000000000.0], N[(4.16438922228 * x), $MachinePrecision], If[LessEqual[x, 4800.0], N[(-0.0424927283095952 * z), $MachinePrecision], N[(4.16438922228 * x), $MachinePrecision]]]
                            
                            \begin{array}{l}
                            \mathbf{if}\;x \leq -15500000000000:\\
                            \;\;\;\;4.16438922228 \cdot x\\
                            
                            \mathbf{elif}\;x \leq 4800:\\
                            \;\;\;\;-0.0424927283095952 \cdot z\\
                            
                            \mathbf{else}:\\
                            \;\;\;\;4.16438922228 \cdot x\\
                            
                            
                            \end{array}
                            
                            Derivation
                            1. Split input into 2 regimes
                            2. if x < -1.55e13 or 4800 < x

                              1. Initial program 59.1%

                                \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
                              2. Taylor expanded in x around -inf

                                \[\leadsto \color{blue}{-1 \cdot \left(x \cdot \left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)\right)} \]
                              3. Step-by-step derivation
                                1. lower-*.f64N/A

                                  \[\leadsto -1 \cdot \color{blue}{\left(x \cdot \left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)\right)} \]
                                2. lower-*.f64N/A

                                  \[\leadsto -1 \cdot \left(x \cdot \color{blue}{\left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)}\right) \]
                                3. lower--.f64N/A

                                  \[\leadsto -1 \cdot \left(x \cdot \left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \color{blue}{\frac{104109730557}{25000000000}}\right)\right) \]
                                4. lower-*.f64N/A

                                  \[\leadsto -1 \cdot \left(x \cdot \left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)\right) \]
                                5. lower-/.f64N/A

                                  \[\leadsto -1 \cdot \left(x \cdot \left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)\right) \]
                                6. lower--.f64N/A

                                  \[\leadsto -1 \cdot \left(x \cdot \left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)\right) \]
                                7. lower-*.f64N/A

                                  \[\leadsto -1 \cdot \left(x \cdot \left(-1 \cdot \frac{\frac{2284450290879775841688574159837293}{625000000000000000000000000000} \cdot \frac{1}{x} - \frac{13764240537310136880149}{125000000000000000000}}{x} - \frac{104109730557}{25000000000}\right)\right) \]
                                8. lower-/.f6444.4%

                                  \[\leadsto -1 \cdot \left(x \cdot \left(-1 \cdot \frac{3655.1204654076414 \cdot \frac{1}{x} - 110.1139242984811}{x} - 4.16438922228\right)\right) \]
                              4. Applied rewrites44.4%

                                \[\leadsto \color{blue}{-1 \cdot \left(x \cdot \left(-1 \cdot \frac{3655.1204654076414 \cdot \frac{1}{x} - 110.1139242984811}{x} - 4.16438922228\right)\right)} \]
                              5. Taylor expanded in x around inf

                                \[\leadsto -1 \cdot \left(x \cdot \frac{-104109730557}{25000000000}\right) \]
                              6. Step-by-step derivation
                                1. Applied rewrites44.4%

                                  \[\leadsto -1 \cdot \left(x \cdot -4.16438922228\right) \]
                                2. Step-by-step derivation
                                  1. lift-*.f64N/A

                                    \[\leadsto -1 \cdot \color{blue}{\left(x \cdot \frac{-104109730557}{25000000000}\right)} \]
                                  2. mul-1-negN/A

                                    \[\leadsto \mathsf{neg}\left(x \cdot \frac{-104109730557}{25000000000}\right) \]
                                  3. lift-*.f64N/A

                                    \[\leadsto \mathsf{neg}\left(x \cdot \frac{-104109730557}{25000000000}\right) \]
                                  4. *-commutativeN/A

                                    \[\leadsto \mathsf{neg}\left(\frac{-104109730557}{25000000000} \cdot x\right) \]
                                  5. distribute-lft-neg-inN/A

                                    \[\leadsto \left(\mathsf{neg}\left(\frac{-104109730557}{25000000000}\right)\right) \cdot \color{blue}{x} \]
                                  6. lower-*.f64N/A

                                    \[\leadsto \left(\mathsf{neg}\left(\frac{-104109730557}{25000000000}\right)\right) \cdot \color{blue}{x} \]
                                  7. lower-neg.f6444.4%

                                    \[\leadsto \left(--4.16438922228\right) \cdot x \]
                                3. Applied rewrites44.4%

                                  \[\leadsto \left(--4.16438922228\right) \cdot \color{blue}{x} \]
                                4. Taylor expanded in x around inf

                                  \[\leadsto \frac{104109730557}{25000000000} \cdot x \]
                                5. Step-by-step derivation
                                  1. Applied rewrites44.4%

                                    \[\leadsto 4.16438922228 \cdot x \]

                                  if -1.55e13 < x < 4800

                                  1. Initial program 59.1%

                                    \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
                                  2. Taylor expanded in x around 0

                                    \[\leadsto \color{blue}{\frac{-1000000000}{23533438303} \cdot z} \]
                                  3. Step-by-step derivation
                                    1. lower-*.f6434.7%

                                      \[\leadsto -0.0424927283095952 \cdot \color{blue}{z} \]
                                  4. Applied rewrites34.7%

                                    \[\leadsto \color{blue}{-0.0424927283095952 \cdot z} \]
                                6. Recombined 2 regimes into one program.
                                7. Add Preprocessing

                                Alternative 16: 34.7% accurate, 13.2× speedup?

                                \[-0.0424927283095952 \cdot z \]
                                (FPCore (x y z)
                                  :precision binary64
                                  (* -0.0424927283095952 z))
                                double code(double x, double y, double z) {
                                	return -0.0424927283095952 * z;
                                }
                                
                                module fmin_fmax_functions
                                    implicit none
                                    private
                                    public fmax
                                    public fmin
                                
                                    interface fmax
                                        module procedure fmax88
                                        module procedure fmax44
                                        module procedure fmax84
                                        module procedure fmax48
                                    end interface
                                    interface fmin
                                        module procedure fmin88
                                        module procedure fmin44
                                        module procedure fmin84
                                        module procedure fmin48
                                    end interface
                                contains
                                    real(8) function fmax88(x, y) result (res)
                                        real(8), intent (in) :: x
                                        real(8), intent (in) :: y
                                        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                    end function
                                    real(4) function fmax44(x, y) result (res)
                                        real(4), intent (in) :: x
                                        real(4), intent (in) :: y
                                        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                    end function
                                    real(8) function fmax84(x, y) result(res)
                                        real(8), intent (in) :: x
                                        real(4), intent (in) :: y
                                        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                                    end function
                                    real(8) function fmax48(x, y) result(res)
                                        real(4), intent (in) :: x
                                        real(8), intent (in) :: y
                                        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                                    end function
                                    real(8) function fmin88(x, y) result (res)
                                        real(8), intent (in) :: x
                                        real(8), intent (in) :: y
                                        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                    end function
                                    real(4) function fmin44(x, y) result (res)
                                        real(4), intent (in) :: x
                                        real(4), intent (in) :: y
                                        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                    end function
                                    real(8) function fmin84(x, y) result(res)
                                        real(8), intent (in) :: x
                                        real(4), intent (in) :: y
                                        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                                    end function
                                    real(8) function fmin48(x, y) result(res)
                                        real(4), intent (in) :: x
                                        real(8), intent (in) :: y
                                        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                                    end function
                                end module
                                
                                real(8) function code(x, y, z)
                                use fmin_fmax_functions
                                    real(8), intent (in) :: x
                                    real(8), intent (in) :: y
                                    real(8), intent (in) :: z
                                    code = (-0.0424927283095952d0) * z
                                end function
                                
                                public static double code(double x, double y, double z) {
                                	return -0.0424927283095952 * z;
                                }
                                
                                def code(x, y, z):
                                	return -0.0424927283095952 * z
                                
                                function code(x, y, z)
                                	return Float64(-0.0424927283095952 * z)
                                end
                                
                                function tmp = code(x, y, z)
                                	tmp = -0.0424927283095952 * z;
                                end
                                
                                code[x_, y_, z_] := N[(-0.0424927283095952 * z), $MachinePrecision]
                                
                                -0.0424927283095952 \cdot z
                                
                                Derivation
                                1. Initial program 59.1%

                                  \[\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \]
                                2. Taylor expanded in x around 0

                                  \[\leadsto \color{blue}{\frac{-1000000000}{23533438303} \cdot z} \]
                                3. Step-by-step derivation
                                  1. lower-*.f6434.7%

                                    \[\leadsto -0.0424927283095952 \cdot \color{blue}{z} \]
                                4. Applied rewrites34.7%

                                  \[\leadsto \color{blue}{-0.0424927283095952 \cdot z} \]
                                5. Add Preprocessing

                                Reproduce

                                ?
                                herbie shell --seed 2025258 
                                (FPCore (x y z)
                                  :name "Numeric.SpecFunctions:logGamma from math-functions-0.1.5.2, C"
                                  :precision binary64
                                  (/ (* (- x 2.0) (+ (* (+ (* (+ (* (+ (* x 4.16438922228) 78.6994924154) x) 137.519416416) x) y) x) z)) (+ (* (+ (* (+ (* (+ x 43.3400022514) x) 263.505074721) x) 313.399215894) x) 47.066876606)))