
(FPCore (x y z)
:precision binary64
(/
(*
(- x 2.0)
(+
(*
(+
(*
(+ (* (+ (* x 4.16438922228) 78.6994924154) x) 137.519416416)
x)
y)
x)
z))
(+
(*
(+ (* (+ (* (+ x 43.3400022514) x) 263.505074721) x) 313.399215894)
x)
47.066876606)))double code(double x, double y, double z) {
return ((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606);
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
code = ((x - 2.0d0) * ((((((((x * 4.16438922228d0) + 78.6994924154d0) * x) + 137.519416416d0) * x) + y) * x) + z)) / (((((((x + 43.3400022514d0) * x) + 263.505074721d0) * x) + 313.399215894d0) * x) + 47.066876606d0)
end function
public static double code(double x, double y, double z) {
return ((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606);
}
def code(x, y, z): return ((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606)
function code(x, y, z) return Float64(Float64(Float64(x - 2.0) * Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606)) end
function tmp = code(x, y, z) tmp = ((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606); end
code[x_, y_, z_] := N[(N[(N[(x - 2.0), $MachinePrecision] * N[(N[(N[(N[(N[(N[(N[(N[(x * 4.16438922228), $MachinePrecision] + 78.6994924154), $MachinePrecision] * x), $MachinePrecision] + 137.519416416), $MachinePrecision] * x), $MachinePrecision] + y), $MachinePrecision] * x), $MachinePrecision] + z), $MachinePrecision]), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(x + 43.3400022514), $MachinePrecision] * x), $MachinePrecision] + 263.505074721), $MachinePrecision] * x), $MachinePrecision] + 313.399215894), $MachinePrecision] * x), $MachinePrecision] + 47.066876606), $MachinePrecision]), $MachinePrecision]
\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606}
Herbie found 16 alternatives:
| Alternative | Accuracy | Speedup |
|---|
(FPCore (x y z)
:precision binary64
(/
(*
(- x 2.0)
(+
(*
(+
(*
(+ (* (+ (* x 4.16438922228) 78.6994924154) x) 137.519416416)
x)
y)
x)
z))
(+
(*
(+ (* (+ (* (+ x 43.3400022514) x) 263.505074721) x) 313.399215894)
x)
47.066876606)))double code(double x, double y, double z) {
return ((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606);
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
code = ((x - 2.0d0) * ((((((((x * 4.16438922228d0) + 78.6994924154d0) * x) + 137.519416416d0) * x) + y) * x) + z)) / (((((((x + 43.3400022514d0) * x) + 263.505074721d0) * x) + 313.399215894d0) * x) + 47.066876606d0)
end function
public static double code(double x, double y, double z) {
return ((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606);
}
def code(x, y, z): return ((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606)
function code(x, y, z) return Float64(Float64(Float64(x - 2.0) * Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606)) end
function tmp = code(x, y, z) tmp = ((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606); end
code[x_, y_, z_] := N[(N[(N[(x - 2.0), $MachinePrecision] * N[(N[(N[(N[(N[(N[(N[(N[(x * 4.16438922228), $MachinePrecision] + 78.6994924154), $MachinePrecision] * x), $MachinePrecision] + 137.519416416), $MachinePrecision] * x), $MachinePrecision] + y), $MachinePrecision] * x), $MachinePrecision] + z), $MachinePrecision]), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(x + 43.3400022514), $MachinePrecision] * x), $MachinePrecision] + 263.505074721), $MachinePrecision] * x), $MachinePrecision] + 313.399215894), $MachinePrecision] * x), $MachinePrecision] + 47.066876606), $MachinePrecision]), $MachinePrecision]
\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606}
(FPCore (x y z)
:precision binary64
(let* ((t_0
(-
(*
(-
(* (- (* (- x -43.3400022514) x) -263.505074721) x)
-313.399215894)
x)
-47.066876606)))
(if (<=
(/
(*
(- x 2.0)
(+
(*
(+
(*
(+
(* (+ (* x 4.16438922228) 78.6994924154) x)
137.519416416)
x)
y)
x)
z))
(+
(*
(+
(* (+ (* (+ x 43.3400022514) x) 263.505074721) x)
313.399215894)
x)
47.066876606))
1e+295)
(+
(* (/ z t_0) (- x 2.0))
(*
(*
(+
y
(*
(-
(* (- (* 4.16438922228 x) -78.6994924154) x)
-137.519416416)
x))
(/ x t_0))
(- x 2.0)))
(*
-1.0
(*
x
(-
(*
-1.0
(/
(-
(*
-1.0
(/
(-
(* -1.0 (/ (- y 130977.50649958357) x))
3655.1204654076414)
x))
110.1139242984811)
x))
4.16438922228))))))double code(double x, double y, double z) {
double t_0 = ((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606;
double tmp;
if ((((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606)) <= 1e+295) {
tmp = ((z / t_0) * (x - 2.0)) + (((y + (((((4.16438922228 * x) - -78.6994924154) * x) - -137.519416416) * x)) * (x / t_0)) * (x - 2.0));
} else {
tmp = -1.0 * (x * ((-1.0 * (((-1.0 * (((-1.0 * ((y - 130977.50649958357) / x)) - 3655.1204654076414) / x)) - 110.1139242984811) / x)) - 4.16438922228));
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8) :: t_0
real(8) :: tmp
t_0 = ((((((x - (-43.3400022514d0)) * x) - (-263.505074721d0)) * x) - (-313.399215894d0)) * x) - (-47.066876606d0)
if ((((x - 2.0d0) * ((((((((x * 4.16438922228d0) + 78.6994924154d0) * x) + 137.519416416d0) * x) + y) * x) + z)) / (((((((x + 43.3400022514d0) * x) + 263.505074721d0) * x) + 313.399215894d0) * x) + 47.066876606d0)) <= 1d+295) then
tmp = ((z / t_0) * (x - 2.0d0)) + (((y + (((((4.16438922228d0 * x) - (-78.6994924154d0)) * x) - (-137.519416416d0)) * x)) * (x / t_0)) * (x - 2.0d0))
else
tmp = (-1.0d0) * (x * (((-1.0d0) * ((((-1.0d0) * ((((-1.0d0) * ((y - 130977.50649958357d0) / x)) - 3655.1204654076414d0) / x)) - 110.1139242984811d0) / x)) - 4.16438922228d0))
end if
code = tmp
end function
public static double code(double x, double y, double z) {
double t_0 = ((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606;
double tmp;
if ((((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606)) <= 1e+295) {
tmp = ((z / t_0) * (x - 2.0)) + (((y + (((((4.16438922228 * x) - -78.6994924154) * x) - -137.519416416) * x)) * (x / t_0)) * (x - 2.0));
} else {
tmp = -1.0 * (x * ((-1.0 * (((-1.0 * (((-1.0 * ((y - 130977.50649958357) / x)) - 3655.1204654076414) / x)) - 110.1139242984811) / x)) - 4.16438922228));
}
return tmp;
}
def code(x, y, z): t_0 = ((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606 tmp = 0 if (((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606)) <= 1e+295: tmp = ((z / t_0) * (x - 2.0)) + (((y + (((((4.16438922228 * x) - -78.6994924154) * x) - -137.519416416) * x)) * (x / t_0)) * (x - 2.0)) else: tmp = -1.0 * (x * ((-1.0 * (((-1.0 * (((-1.0 * ((y - 130977.50649958357) / x)) - 3655.1204654076414) / x)) - 110.1139242984811) / x)) - 4.16438922228)) return tmp
function code(x, y, z) t_0 = Float64(Float64(Float64(Float64(Float64(Float64(Float64(x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606) tmp = 0.0 if (Float64(Float64(Float64(x - 2.0) * Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606)) <= 1e+295) tmp = Float64(Float64(Float64(z / t_0) * Float64(x - 2.0)) + Float64(Float64(Float64(y + Float64(Float64(Float64(Float64(Float64(4.16438922228 * x) - -78.6994924154) * x) - -137.519416416) * x)) * Float64(x / t_0)) * Float64(x - 2.0))); else tmp = Float64(-1.0 * Float64(x * Float64(Float64(-1.0 * Float64(Float64(Float64(-1.0 * Float64(Float64(Float64(-1.0 * Float64(Float64(y - 130977.50649958357) / x)) - 3655.1204654076414) / x)) - 110.1139242984811) / x)) - 4.16438922228))); end return tmp end
function tmp_2 = code(x, y, z) t_0 = ((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606; tmp = 0.0; if ((((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606)) <= 1e+295) tmp = ((z / t_0) * (x - 2.0)) + (((y + (((((4.16438922228 * x) - -78.6994924154) * x) - -137.519416416) * x)) * (x / t_0)) * (x - 2.0)); else tmp = -1.0 * (x * ((-1.0 * (((-1.0 * (((-1.0 * ((y - 130977.50649958357) / x)) - 3655.1204654076414) / x)) - 110.1139242984811) / x)) - 4.16438922228)); end tmp_2 = tmp; end
code[x_, y_, z_] := Block[{t$95$0 = N[(N[(N[(N[(N[(N[(N[(x - -43.3400022514), $MachinePrecision] * x), $MachinePrecision] - -263.505074721), $MachinePrecision] * x), $MachinePrecision] - -313.399215894), $MachinePrecision] * x), $MachinePrecision] - -47.066876606), $MachinePrecision]}, If[LessEqual[N[(N[(N[(x - 2.0), $MachinePrecision] * N[(N[(N[(N[(N[(N[(N[(N[(x * 4.16438922228), $MachinePrecision] + 78.6994924154), $MachinePrecision] * x), $MachinePrecision] + 137.519416416), $MachinePrecision] * x), $MachinePrecision] + y), $MachinePrecision] * x), $MachinePrecision] + z), $MachinePrecision]), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(x + 43.3400022514), $MachinePrecision] * x), $MachinePrecision] + 263.505074721), $MachinePrecision] * x), $MachinePrecision] + 313.399215894), $MachinePrecision] * x), $MachinePrecision] + 47.066876606), $MachinePrecision]), $MachinePrecision], 1e+295], N[(N[(N[(z / t$95$0), $MachinePrecision] * N[(x - 2.0), $MachinePrecision]), $MachinePrecision] + N[(N[(N[(y + N[(N[(N[(N[(N[(4.16438922228 * x), $MachinePrecision] - -78.6994924154), $MachinePrecision] * x), $MachinePrecision] - -137.519416416), $MachinePrecision] * x), $MachinePrecision]), $MachinePrecision] * N[(x / t$95$0), $MachinePrecision]), $MachinePrecision] * N[(x - 2.0), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[(-1.0 * N[(x * N[(N[(-1.0 * N[(N[(N[(-1.0 * N[(N[(N[(-1.0 * N[(N[(y - 130977.50649958357), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision] - 3655.1204654076414), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision] - 110.1139242984811), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision] - 4.16438922228), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]]
\begin{array}{l}
t_0 := \left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606\\
\mathbf{if}\;\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \leq 10^{+295}:\\
\;\;\;\;\frac{z}{t\_0} \cdot \left(x - 2\right) + \left(\left(y + \left(\left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x - -137.519416416\right) \cdot x\right) \cdot \frac{x}{t\_0}\right) \cdot \left(x - 2\right)\\
\mathbf{else}:\\
\;\;\;\;-1 \cdot \left(x \cdot \left(-1 \cdot \frac{-1 \cdot \frac{-1 \cdot \frac{y - 130977.50649958357}{x} - 3655.1204654076414}{x} - 110.1139242984811}{x} - 4.16438922228\right)\right)\\
\end{array}
if (/.f64 (*.f64 (-.f64 x #s(literal 2 binary64)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x #s(literal 104109730557/25000000000 binary64)) #s(literal 393497462077/5000000000 binary64)) x) #s(literal 4297481763/31250000 binary64)) x) y) x) z)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 x #s(literal 216700011257/5000000000 binary64)) x) #s(literal 263505074721/1000000000 binary64)) x) #s(literal 156699607947/500000000 binary64)) x) #s(literal 23533438303/500000000 binary64))) < 9.9999999999999998e294Initial program 59.1%
Applied rewrites63.0%
if 9.9999999999999998e294 < (/.f64 (*.f64 (-.f64 x #s(literal 2 binary64)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x #s(literal 104109730557/25000000000 binary64)) #s(literal 393497462077/5000000000 binary64)) x) #s(literal 4297481763/31250000 binary64)) x) y) x) z)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 x #s(literal 216700011257/5000000000 binary64)) x) #s(literal 263505074721/1000000000 binary64)) x) #s(literal 156699607947/500000000 binary64)) x) #s(literal 23533438303/500000000 binary64))) Initial program 59.1%
Applied rewrites63.0%
Applied rewrites62.0%
Taylor expanded in x around -inf
Applied rewrites47.4%
(FPCore (x y z)
:precision binary64
(if (<=
(/
(*
(- x 2.0)
(+
(*
(+
(*
(+
(* (+ (* x 4.16438922228) 78.6994924154) x)
137.519416416)
x)
y)
x)
z))
(+
(*
(+
(* (+ (* (+ x 43.3400022514) x) 263.505074721) x)
313.399215894)
x)
47.066876606))
1e+295)
(*
(/
(+
z
(*
(+
y
(*
(-
(* (- (* 4.16438922228 x) -78.6994924154) x)
-137.519416416)
x))
x))
(-
(*
(-
(* (- (* (- x -43.3400022514) x) -263.505074721) x)
-313.399215894)
x)
-47.066876606))
(- x 2.0))
(*
-1.0
(*
x
(-
(*
-1.0
(/
(-
(*
-1.0
(/
(-
(* -1.0 (/ (- y 130977.50649958357) x))
3655.1204654076414)
x))
110.1139242984811)
x))
4.16438922228)))))double code(double x, double y, double z) {
double tmp;
if ((((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606)) <= 1e+295) {
tmp = ((z + ((y + (((((4.16438922228 * x) - -78.6994924154) * x) - -137.519416416) * x)) * x)) / (((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * (x - 2.0);
} else {
tmp = -1.0 * (x * ((-1.0 * (((-1.0 * (((-1.0 * ((y - 130977.50649958357) / x)) - 3655.1204654076414) / x)) - 110.1139242984811) / x)) - 4.16438922228));
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8) :: tmp
if ((((x - 2.0d0) * ((((((((x * 4.16438922228d0) + 78.6994924154d0) * x) + 137.519416416d0) * x) + y) * x) + z)) / (((((((x + 43.3400022514d0) * x) + 263.505074721d0) * x) + 313.399215894d0) * x) + 47.066876606d0)) <= 1d+295) then
tmp = ((z + ((y + (((((4.16438922228d0 * x) - (-78.6994924154d0)) * x) - (-137.519416416d0)) * x)) * x)) / (((((((x - (-43.3400022514d0)) * x) - (-263.505074721d0)) * x) - (-313.399215894d0)) * x) - (-47.066876606d0))) * (x - 2.0d0)
else
tmp = (-1.0d0) * (x * (((-1.0d0) * ((((-1.0d0) * ((((-1.0d0) * ((y - 130977.50649958357d0) / x)) - 3655.1204654076414d0) / x)) - 110.1139242984811d0) / x)) - 4.16438922228d0))
end if
code = tmp
end function
public static double code(double x, double y, double z) {
double tmp;
if ((((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606)) <= 1e+295) {
tmp = ((z + ((y + (((((4.16438922228 * x) - -78.6994924154) * x) - -137.519416416) * x)) * x)) / (((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * (x - 2.0);
} else {
tmp = -1.0 * (x * ((-1.0 * (((-1.0 * (((-1.0 * ((y - 130977.50649958357) / x)) - 3655.1204654076414) / x)) - 110.1139242984811) / x)) - 4.16438922228));
}
return tmp;
}
def code(x, y, z): tmp = 0 if (((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606)) <= 1e+295: tmp = ((z + ((y + (((((4.16438922228 * x) - -78.6994924154) * x) - -137.519416416) * x)) * x)) / (((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * (x - 2.0) else: tmp = -1.0 * (x * ((-1.0 * (((-1.0 * (((-1.0 * ((y - 130977.50649958357) / x)) - 3655.1204654076414) / x)) - 110.1139242984811) / x)) - 4.16438922228)) return tmp
function code(x, y, z) tmp = 0.0 if (Float64(Float64(Float64(x - 2.0) * Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606)) <= 1e+295) tmp = Float64(Float64(Float64(z + Float64(Float64(y + Float64(Float64(Float64(Float64(Float64(4.16438922228 * x) - -78.6994924154) * x) - -137.519416416) * x)) * x)) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * Float64(x - 2.0)); else tmp = Float64(-1.0 * Float64(x * Float64(Float64(-1.0 * Float64(Float64(Float64(-1.0 * Float64(Float64(Float64(-1.0 * Float64(Float64(y - 130977.50649958357) / x)) - 3655.1204654076414) / x)) - 110.1139242984811) / x)) - 4.16438922228))); end return tmp end
function tmp_2 = code(x, y, z) tmp = 0.0; if ((((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606)) <= 1e+295) tmp = ((z + ((y + (((((4.16438922228 * x) - -78.6994924154) * x) - -137.519416416) * x)) * x)) / (((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * (x - 2.0); else tmp = -1.0 * (x * ((-1.0 * (((-1.0 * (((-1.0 * ((y - 130977.50649958357) / x)) - 3655.1204654076414) / x)) - 110.1139242984811) / x)) - 4.16438922228)); end tmp_2 = tmp; end
code[x_, y_, z_] := If[LessEqual[N[(N[(N[(x - 2.0), $MachinePrecision] * N[(N[(N[(N[(N[(N[(N[(N[(x * 4.16438922228), $MachinePrecision] + 78.6994924154), $MachinePrecision] * x), $MachinePrecision] + 137.519416416), $MachinePrecision] * x), $MachinePrecision] + y), $MachinePrecision] * x), $MachinePrecision] + z), $MachinePrecision]), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(x + 43.3400022514), $MachinePrecision] * x), $MachinePrecision] + 263.505074721), $MachinePrecision] * x), $MachinePrecision] + 313.399215894), $MachinePrecision] * x), $MachinePrecision] + 47.066876606), $MachinePrecision]), $MachinePrecision], 1e+295], N[(N[(N[(z + N[(N[(y + N[(N[(N[(N[(N[(4.16438922228 * x), $MachinePrecision] - -78.6994924154), $MachinePrecision] * x), $MachinePrecision] - -137.519416416), $MachinePrecision] * x), $MachinePrecision]), $MachinePrecision] * x), $MachinePrecision]), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(x - -43.3400022514), $MachinePrecision] * x), $MachinePrecision] - -263.505074721), $MachinePrecision] * x), $MachinePrecision] - -313.399215894), $MachinePrecision] * x), $MachinePrecision] - -47.066876606), $MachinePrecision]), $MachinePrecision] * N[(x - 2.0), $MachinePrecision]), $MachinePrecision], N[(-1.0 * N[(x * N[(N[(-1.0 * N[(N[(N[(-1.0 * N[(N[(N[(-1.0 * N[(N[(y - 130977.50649958357), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision] - 3655.1204654076414), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision] - 110.1139242984811), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision] - 4.16438922228), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]
\begin{array}{l}
\mathbf{if}\;\frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606} \leq 10^{+295}:\\
\;\;\;\;\frac{z + \left(y + \left(\left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x - -137.519416416\right) \cdot x\right) \cdot x}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606} \cdot \left(x - 2\right)\\
\mathbf{else}:\\
\;\;\;\;-1 \cdot \left(x \cdot \left(-1 \cdot \frac{-1 \cdot \frac{-1 \cdot \frac{y - 130977.50649958357}{x} - 3655.1204654076414}{x} - 110.1139242984811}{x} - 4.16438922228\right)\right)\\
\end{array}
if (/.f64 (*.f64 (-.f64 x #s(literal 2 binary64)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x #s(literal 104109730557/25000000000 binary64)) #s(literal 393497462077/5000000000 binary64)) x) #s(literal 4297481763/31250000 binary64)) x) y) x) z)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 x #s(literal 216700011257/5000000000 binary64)) x) #s(literal 263505074721/1000000000 binary64)) x) #s(literal 156699607947/500000000 binary64)) x) #s(literal 23533438303/500000000 binary64))) < 9.9999999999999998e294Initial program 59.1%
Applied rewrites62.1%
if 9.9999999999999998e294 < (/.f64 (*.f64 (-.f64 x #s(literal 2 binary64)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x #s(literal 104109730557/25000000000 binary64)) #s(literal 393497462077/5000000000 binary64)) x) #s(literal 4297481763/31250000 binary64)) x) y) x) z)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 x #s(literal 216700011257/5000000000 binary64)) x) #s(literal 263505074721/1000000000 binary64)) x) #s(literal 156699607947/500000000 binary64)) x) #s(literal 23533438303/500000000 binary64))) Initial program 59.1%
Applied rewrites63.0%
Applied rewrites62.0%
Taylor expanded in x around -inf
Applied rewrites47.4%
(FPCore (x y z)
:precision binary64
(let* ((t_0
(*
-1.0
(*
x
(-
(*
-1.0
(/
(-
(*
-1.0
(/
(-
(* -1.0 (/ (- y 130977.50649958357) x))
3655.1204654076414)
x))
110.1139242984811)
x))
4.16438922228)))))
(if (<= x -1000000000000.0)
t_0
(if (<= x 18.0)
(/
(+
(* -2.0 z)
(*
x
(+
z
(+
(* -2.0 y)
(* x (- (+ y (* -19.8795684148 x)) 275.038832832))))))
(+ (* (+ (* 263.505074721 x) 313.399215894) x) 47.066876606))
t_0))))double code(double x, double y, double z) {
double t_0 = -1.0 * (x * ((-1.0 * (((-1.0 * (((-1.0 * ((y - 130977.50649958357) / x)) - 3655.1204654076414) / x)) - 110.1139242984811) / x)) - 4.16438922228));
double tmp;
if (x <= -1000000000000.0) {
tmp = t_0;
} else if (x <= 18.0) {
tmp = ((-2.0 * z) + (x * (z + ((-2.0 * y) + (x * ((y + (-19.8795684148 * x)) - 275.038832832)))))) / ((((263.505074721 * x) + 313.399215894) * x) + 47.066876606);
} else {
tmp = t_0;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8) :: t_0
real(8) :: tmp
t_0 = (-1.0d0) * (x * (((-1.0d0) * ((((-1.0d0) * ((((-1.0d0) * ((y - 130977.50649958357d0) / x)) - 3655.1204654076414d0) / x)) - 110.1139242984811d0) / x)) - 4.16438922228d0))
if (x <= (-1000000000000.0d0)) then
tmp = t_0
else if (x <= 18.0d0) then
tmp = (((-2.0d0) * z) + (x * (z + (((-2.0d0) * y) + (x * ((y + ((-19.8795684148d0) * x)) - 275.038832832d0)))))) / ((((263.505074721d0 * x) + 313.399215894d0) * x) + 47.066876606d0)
else
tmp = t_0
end if
code = tmp
end function
public static double code(double x, double y, double z) {
double t_0 = -1.0 * (x * ((-1.0 * (((-1.0 * (((-1.0 * ((y - 130977.50649958357) / x)) - 3655.1204654076414) / x)) - 110.1139242984811) / x)) - 4.16438922228));
double tmp;
if (x <= -1000000000000.0) {
tmp = t_0;
} else if (x <= 18.0) {
tmp = ((-2.0 * z) + (x * (z + ((-2.0 * y) + (x * ((y + (-19.8795684148 * x)) - 275.038832832)))))) / ((((263.505074721 * x) + 313.399215894) * x) + 47.066876606);
} else {
tmp = t_0;
}
return tmp;
}
def code(x, y, z): t_0 = -1.0 * (x * ((-1.0 * (((-1.0 * (((-1.0 * ((y - 130977.50649958357) / x)) - 3655.1204654076414) / x)) - 110.1139242984811) / x)) - 4.16438922228)) tmp = 0 if x <= -1000000000000.0: tmp = t_0 elif x <= 18.0: tmp = ((-2.0 * z) + (x * (z + ((-2.0 * y) + (x * ((y + (-19.8795684148 * x)) - 275.038832832)))))) / ((((263.505074721 * x) + 313.399215894) * x) + 47.066876606) else: tmp = t_0 return tmp
function code(x, y, z) t_0 = Float64(-1.0 * Float64(x * Float64(Float64(-1.0 * Float64(Float64(Float64(-1.0 * Float64(Float64(Float64(-1.0 * Float64(Float64(y - 130977.50649958357) / x)) - 3655.1204654076414) / x)) - 110.1139242984811) / x)) - 4.16438922228))) tmp = 0.0 if (x <= -1000000000000.0) tmp = t_0; elseif (x <= 18.0) tmp = Float64(Float64(Float64(-2.0 * z) + Float64(x * Float64(z + Float64(Float64(-2.0 * y) + Float64(x * Float64(Float64(y + Float64(-19.8795684148 * x)) - 275.038832832)))))) / Float64(Float64(Float64(Float64(263.505074721 * x) + 313.399215894) * x) + 47.066876606)); else tmp = t_0; end return tmp end
function tmp_2 = code(x, y, z) t_0 = -1.0 * (x * ((-1.0 * (((-1.0 * (((-1.0 * ((y - 130977.50649958357) / x)) - 3655.1204654076414) / x)) - 110.1139242984811) / x)) - 4.16438922228)); tmp = 0.0; if (x <= -1000000000000.0) tmp = t_0; elseif (x <= 18.0) tmp = ((-2.0 * z) + (x * (z + ((-2.0 * y) + (x * ((y + (-19.8795684148 * x)) - 275.038832832)))))) / ((((263.505074721 * x) + 313.399215894) * x) + 47.066876606); else tmp = t_0; end tmp_2 = tmp; end
code[x_, y_, z_] := Block[{t$95$0 = N[(-1.0 * N[(x * N[(N[(-1.0 * N[(N[(N[(-1.0 * N[(N[(N[(-1.0 * N[(N[(y - 130977.50649958357), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision] - 3655.1204654076414), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision] - 110.1139242984811), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision] - 4.16438922228), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[x, -1000000000000.0], t$95$0, If[LessEqual[x, 18.0], N[(N[(N[(-2.0 * z), $MachinePrecision] + N[(x * N[(z + N[(N[(-2.0 * y), $MachinePrecision] + N[(x * N[(N[(y + N[(-19.8795684148 * x), $MachinePrecision]), $MachinePrecision] - 275.038832832), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / N[(N[(N[(N[(263.505074721 * x), $MachinePrecision] + 313.399215894), $MachinePrecision] * x), $MachinePrecision] + 47.066876606), $MachinePrecision]), $MachinePrecision], t$95$0]]]
\begin{array}{l}
t_0 := -1 \cdot \left(x \cdot \left(-1 \cdot \frac{-1 \cdot \frac{-1 \cdot \frac{y - 130977.50649958357}{x} - 3655.1204654076414}{x} - 110.1139242984811}{x} - 4.16438922228\right)\right)\\
\mathbf{if}\;x \leq -1000000000000:\\
\;\;\;\;t\_0\\
\mathbf{elif}\;x \leq 18:\\
\;\;\;\;\frac{-2 \cdot z + x \cdot \left(z + \left(-2 \cdot y + x \cdot \left(\left(y + -19.8795684148 \cdot x\right) - 275.038832832\right)\right)\right)}{\left(263.505074721 \cdot x + 313.399215894\right) \cdot x + 47.066876606}\\
\mathbf{else}:\\
\;\;\;\;t\_0\\
\end{array}
if x < -1e12 or 18 < x Initial program 59.1%
Applied rewrites63.0%
Applied rewrites62.0%
Taylor expanded in x around -inf
Applied rewrites47.4%
if -1e12 < x < 18Initial program 59.1%
Taylor expanded in x around 0
Applied rewrites51.3%
Taylor expanded in x around 0
Applied rewrites34.7%
Taylor expanded in x around 0
lower-+.f64N/A
lower-*.f64N/A
lower-*.f64N/A
lower-+.f64N/A
lower-+.f64N/A
lower-*.f64N/A
lower-*.f64N/A
lower--.f64N/A
lower-+.f64N/A
lower-*.f6450.6%
Applied rewrites50.6%
(FPCore (x y z)
:precision binary64
(let* ((t_0
(*
(- x 2.0)
(+
(*
(+
(*
(+
(* (+ (* x 4.16438922228) 78.6994924154) x)
137.519416416)
x)
y)
x)
z)))
(t_1
(+
(*
(+
(* (+ (* (+ x 43.3400022514) x) 263.505074721) x)
313.399215894)
x)
47.066876606))
(t_2 (/ t_0 t_1)))
(if (<= t_2 -2e+189)
(*
(/
(- 2.0 x)
(-
(*
(-
(* (- (* (- x -43.3400022514) x) -263.505074721) x)
-313.399215894)
x)
-47.066876606))
(- (* (* -1.0 y) x) z))
(if (<= t_2 1e+23)
(/
t_0
(+ (* (+ (* 263.505074721 x) 313.399215894) x) 47.066876606))
(if (<= t_2 1e+295)
(/ (* (- x 2.0) (+ (* y x) z)) t_1)
(* x (- 4.16438922228 (* 110.1139242984811 (/ 1.0 x)))))))))double code(double x, double y, double z) {
double t_0 = (x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z);
double t_1 = ((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606;
double t_2 = t_0 / t_1;
double tmp;
if (t_2 <= -2e+189) {
tmp = ((2.0 - x) / (((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * (((-1.0 * y) * x) - z);
} else if (t_2 <= 1e+23) {
tmp = t_0 / ((((263.505074721 * x) + 313.399215894) * x) + 47.066876606);
} else if (t_2 <= 1e+295) {
tmp = ((x - 2.0) * ((y * x) + z)) / t_1;
} else {
tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8) :: t_0
real(8) :: t_1
real(8) :: t_2
real(8) :: tmp
t_0 = (x - 2.0d0) * ((((((((x * 4.16438922228d0) + 78.6994924154d0) * x) + 137.519416416d0) * x) + y) * x) + z)
t_1 = ((((((x + 43.3400022514d0) * x) + 263.505074721d0) * x) + 313.399215894d0) * x) + 47.066876606d0
t_2 = t_0 / t_1
if (t_2 <= (-2d+189)) then
tmp = ((2.0d0 - x) / (((((((x - (-43.3400022514d0)) * x) - (-263.505074721d0)) * x) - (-313.399215894d0)) * x) - (-47.066876606d0))) * ((((-1.0d0) * y) * x) - z)
else if (t_2 <= 1d+23) then
tmp = t_0 / ((((263.505074721d0 * x) + 313.399215894d0) * x) + 47.066876606d0)
else if (t_2 <= 1d+295) then
tmp = ((x - 2.0d0) * ((y * x) + z)) / t_1
else
tmp = x * (4.16438922228d0 - (110.1139242984811d0 * (1.0d0 / x)))
end if
code = tmp
end function
public static double code(double x, double y, double z) {
double t_0 = (x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z);
double t_1 = ((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606;
double t_2 = t_0 / t_1;
double tmp;
if (t_2 <= -2e+189) {
tmp = ((2.0 - x) / (((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * (((-1.0 * y) * x) - z);
} else if (t_2 <= 1e+23) {
tmp = t_0 / ((((263.505074721 * x) + 313.399215894) * x) + 47.066876606);
} else if (t_2 <= 1e+295) {
tmp = ((x - 2.0) * ((y * x) + z)) / t_1;
} else {
tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
}
return tmp;
}
def code(x, y, z): t_0 = (x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z) t_1 = ((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606 t_2 = t_0 / t_1 tmp = 0 if t_2 <= -2e+189: tmp = ((2.0 - x) / (((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * (((-1.0 * y) * x) - z) elif t_2 <= 1e+23: tmp = t_0 / ((((263.505074721 * x) + 313.399215894) * x) + 47.066876606) elif t_2 <= 1e+295: tmp = ((x - 2.0) * ((y * x) + z)) / t_1 else: tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x))) return tmp
function code(x, y, z) t_0 = Float64(Float64(x - 2.0) * Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) t_1 = Float64(Float64(Float64(Float64(Float64(Float64(Float64(x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606) t_2 = Float64(t_0 / t_1) tmp = 0.0 if (t_2 <= -2e+189) tmp = Float64(Float64(Float64(2.0 - x) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * Float64(Float64(Float64(-1.0 * y) * x) - z)); elseif (t_2 <= 1e+23) tmp = Float64(t_0 / Float64(Float64(Float64(Float64(263.505074721 * x) + 313.399215894) * x) + 47.066876606)); elseif (t_2 <= 1e+295) tmp = Float64(Float64(Float64(x - 2.0) * Float64(Float64(y * x) + z)) / t_1); else tmp = Float64(x * Float64(4.16438922228 - Float64(110.1139242984811 * Float64(1.0 / x)))); end return tmp end
function tmp_2 = code(x, y, z) t_0 = (x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z); t_1 = ((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606; t_2 = t_0 / t_1; tmp = 0.0; if (t_2 <= -2e+189) tmp = ((2.0 - x) / (((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * (((-1.0 * y) * x) - z); elseif (t_2 <= 1e+23) tmp = t_0 / ((((263.505074721 * x) + 313.399215894) * x) + 47.066876606); elseif (t_2 <= 1e+295) tmp = ((x - 2.0) * ((y * x) + z)) / t_1; else tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x))); end tmp_2 = tmp; end
code[x_, y_, z_] := Block[{t$95$0 = N[(N[(x - 2.0), $MachinePrecision] * N[(N[(N[(N[(N[(N[(N[(N[(x * 4.16438922228), $MachinePrecision] + 78.6994924154), $MachinePrecision] * x), $MachinePrecision] + 137.519416416), $MachinePrecision] * x), $MachinePrecision] + y), $MachinePrecision] * x), $MachinePrecision] + z), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$1 = N[(N[(N[(N[(N[(N[(N[(x + 43.3400022514), $MachinePrecision] * x), $MachinePrecision] + 263.505074721), $MachinePrecision] * x), $MachinePrecision] + 313.399215894), $MachinePrecision] * x), $MachinePrecision] + 47.066876606), $MachinePrecision]}, Block[{t$95$2 = N[(t$95$0 / t$95$1), $MachinePrecision]}, If[LessEqual[t$95$2, -2e+189], N[(N[(N[(2.0 - x), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(x - -43.3400022514), $MachinePrecision] * x), $MachinePrecision] - -263.505074721), $MachinePrecision] * x), $MachinePrecision] - -313.399215894), $MachinePrecision] * x), $MachinePrecision] - -47.066876606), $MachinePrecision]), $MachinePrecision] * N[(N[(N[(-1.0 * y), $MachinePrecision] * x), $MachinePrecision] - z), $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$2, 1e+23], N[(t$95$0 / N[(N[(N[(N[(263.505074721 * x), $MachinePrecision] + 313.399215894), $MachinePrecision] * x), $MachinePrecision] + 47.066876606), $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$2, 1e+295], N[(N[(N[(x - 2.0), $MachinePrecision] * N[(N[(y * x), $MachinePrecision] + z), $MachinePrecision]), $MachinePrecision] / t$95$1), $MachinePrecision], N[(x * N[(4.16438922228 - N[(110.1139242984811 * N[(1.0 / x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]]]]]]
\begin{array}{l}
t_0 := \left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)\\
t_1 := \left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606\\
t_2 := \frac{t\_0}{t\_1}\\
\mathbf{if}\;t\_2 \leq -2 \cdot 10^{+189}:\\
\;\;\;\;\frac{2 - x}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606} \cdot \left(\left(-1 \cdot y\right) \cdot x - z\right)\\
\mathbf{elif}\;t\_2 \leq 10^{+23}:\\
\;\;\;\;\frac{t\_0}{\left(263.505074721 \cdot x + 313.399215894\right) \cdot x + 47.066876606}\\
\mathbf{elif}\;t\_2 \leq 10^{+295}:\\
\;\;\;\;\frac{\left(x - 2\right) \cdot \left(y \cdot x + z\right)}{t\_1}\\
\mathbf{else}:\\
\;\;\;\;x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)\\
\end{array}
if (/.f64 (*.f64 (-.f64 x #s(literal 2 binary64)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x #s(literal 104109730557/25000000000 binary64)) #s(literal 393497462077/5000000000 binary64)) x) #s(literal 4297481763/31250000 binary64)) x) y) x) z)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 x #s(literal 216700011257/5000000000 binary64)) x) #s(literal 263505074721/1000000000 binary64)) x) #s(literal 156699607947/500000000 binary64)) x) #s(literal 23533438303/500000000 binary64))) < -2e189Initial program 59.1%
Applied rewrites63.0%
Applied rewrites62.0%
Taylor expanded in x around 0
lower-*.f6453.0%
Applied rewrites53.0%
if -2e189 < (/.f64 (*.f64 (-.f64 x #s(literal 2 binary64)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x #s(literal 104109730557/25000000000 binary64)) #s(literal 393497462077/5000000000 binary64)) x) #s(literal 4297481763/31250000 binary64)) x) y) x) z)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 x #s(literal 216700011257/5000000000 binary64)) x) #s(literal 263505074721/1000000000 binary64)) x) #s(literal 156699607947/500000000 binary64)) x) #s(literal 23533438303/500000000 binary64))) < 9.9999999999999992e22Initial program 59.1%
Taylor expanded in x around 0
Applied rewrites51.3%
if 9.9999999999999992e22 < (/.f64 (*.f64 (-.f64 x #s(literal 2 binary64)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x #s(literal 104109730557/25000000000 binary64)) #s(literal 393497462077/5000000000 binary64)) x) #s(literal 4297481763/31250000 binary64)) x) y) x) z)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 x #s(literal 216700011257/5000000000 binary64)) x) #s(literal 263505074721/1000000000 binary64)) x) #s(literal 156699607947/500000000 binary64)) x) #s(literal 23533438303/500000000 binary64))) < 9.9999999999999998e294Initial program 59.1%
Taylor expanded in x around 0
Applied rewrites51.8%
if 9.9999999999999998e294 < (/.f64 (*.f64 (-.f64 x #s(literal 2 binary64)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x #s(literal 104109730557/25000000000 binary64)) #s(literal 393497462077/5000000000 binary64)) x) #s(literal 4297481763/31250000 binary64)) x) y) x) z)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 x #s(literal 216700011257/5000000000 binary64)) x) #s(literal 263505074721/1000000000 binary64)) x) #s(literal 156699607947/500000000 binary64)) x) #s(literal 23533438303/500000000 binary64))) Initial program 59.1%
Taylor expanded in x around inf
lower-*.f64N/A
lower--.f64N/A
lower-*.f64N/A
lower-/.f6444.8%
Applied rewrites44.8%
(FPCore (x y z)
:precision binary64
(let* ((t_0
(*
(- x 2.0)
(+
(*
(+
(*
(+
(* (+ (* x 4.16438922228) 78.6994924154) x)
137.519416416)
x)
y)
x)
z)))
(t_1
(+
(*
(+
(* (+ (* (+ x 43.3400022514) x) 263.505074721) x)
313.399215894)
x)
47.066876606))
(t_2 (/ t_0 t_1)))
(if (<= t_2 -2e+189)
(*
(/
(- 2.0 x)
(-
(*
(-
(* (- (* (- x -43.3400022514) x) -263.505074721) x)
-313.399215894)
x)
-47.066876606))
(- (* (* -1.0 y) x) z))
(if (<= t_2 5e+22)
(/ t_0 (+ (* 313.399215894 x) 47.066876606))
(if (<= t_2 1e+295)
(/ (* (- x 2.0) (+ (* y x) z)) t_1)
(* x (- 4.16438922228 (* 110.1139242984811 (/ 1.0 x)))))))))double code(double x, double y, double z) {
double t_0 = (x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z);
double t_1 = ((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606;
double t_2 = t_0 / t_1;
double tmp;
if (t_2 <= -2e+189) {
tmp = ((2.0 - x) / (((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * (((-1.0 * y) * x) - z);
} else if (t_2 <= 5e+22) {
tmp = t_0 / ((313.399215894 * x) + 47.066876606);
} else if (t_2 <= 1e+295) {
tmp = ((x - 2.0) * ((y * x) + z)) / t_1;
} else {
tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8) :: t_0
real(8) :: t_1
real(8) :: t_2
real(8) :: tmp
t_0 = (x - 2.0d0) * ((((((((x * 4.16438922228d0) + 78.6994924154d0) * x) + 137.519416416d0) * x) + y) * x) + z)
t_1 = ((((((x + 43.3400022514d0) * x) + 263.505074721d0) * x) + 313.399215894d0) * x) + 47.066876606d0
t_2 = t_0 / t_1
if (t_2 <= (-2d+189)) then
tmp = ((2.0d0 - x) / (((((((x - (-43.3400022514d0)) * x) - (-263.505074721d0)) * x) - (-313.399215894d0)) * x) - (-47.066876606d0))) * ((((-1.0d0) * y) * x) - z)
else if (t_2 <= 5d+22) then
tmp = t_0 / ((313.399215894d0 * x) + 47.066876606d0)
else if (t_2 <= 1d+295) then
tmp = ((x - 2.0d0) * ((y * x) + z)) / t_1
else
tmp = x * (4.16438922228d0 - (110.1139242984811d0 * (1.0d0 / x)))
end if
code = tmp
end function
public static double code(double x, double y, double z) {
double t_0 = (x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z);
double t_1 = ((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606;
double t_2 = t_0 / t_1;
double tmp;
if (t_2 <= -2e+189) {
tmp = ((2.0 - x) / (((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * (((-1.0 * y) * x) - z);
} else if (t_2 <= 5e+22) {
tmp = t_0 / ((313.399215894 * x) + 47.066876606);
} else if (t_2 <= 1e+295) {
tmp = ((x - 2.0) * ((y * x) + z)) / t_1;
} else {
tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
}
return tmp;
}
def code(x, y, z): t_0 = (x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z) t_1 = ((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606 t_2 = t_0 / t_1 tmp = 0 if t_2 <= -2e+189: tmp = ((2.0 - x) / (((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * (((-1.0 * y) * x) - z) elif t_2 <= 5e+22: tmp = t_0 / ((313.399215894 * x) + 47.066876606) elif t_2 <= 1e+295: tmp = ((x - 2.0) * ((y * x) + z)) / t_1 else: tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x))) return tmp
function code(x, y, z) t_0 = Float64(Float64(x - 2.0) * Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) t_1 = Float64(Float64(Float64(Float64(Float64(Float64(Float64(x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606) t_2 = Float64(t_0 / t_1) tmp = 0.0 if (t_2 <= -2e+189) tmp = Float64(Float64(Float64(2.0 - x) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * Float64(Float64(Float64(-1.0 * y) * x) - z)); elseif (t_2 <= 5e+22) tmp = Float64(t_0 / Float64(Float64(313.399215894 * x) + 47.066876606)); elseif (t_2 <= 1e+295) tmp = Float64(Float64(Float64(x - 2.0) * Float64(Float64(y * x) + z)) / t_1); else tmp = Float64(x * Float64(4.16438922228 - Float64(110.1139242984811 * Float64(1.0 / x)))); end return tmp end
function tmp_2 = code(x, y, z) t_0 = (x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z); t_1 = ((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606; t_2 = t_0 / t_1; tmp = 0.0; if (t_2 <= -2e+189) tmp = ((2.0 - x) / (((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * (((-1.0 * y) * x) - z); elseif (t_2 <= 5e+22) tmp = t_0 / ((313.399215894 * x) + 47.066876606); elseif (t_2 <= 1e+295) tmp = ((x - 2.0) * ((y * x) + z)) / t_1; else tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x))); end tmp_2 = tmp; end
code[x_, y_, z_] := Block[{t$95$0 = N[(N[(x - 2.0), $MachinePrecision] * N[(N[(N[(N[(N[(N[(N[(N[(x * 4.16438922228), $MachinePrecision] + 78.6994924154), $MachinePrecision] * x), $MachinePrecision] + 137.519416416), $MachinePrecision] * x), $MachinePrecision] + y), $MachinePrecision] * x), $MachinePrecision] + z), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$1 = N[(N[(N[(N[(N[(N[(N[(x + 43.3400022514), $MachinePrecision] * x), $MachinePrecision] + 263.505074721), $MachinePrecision] * x), $MachinePrecision] + 313.399215894), $MachinePrecision] * x), $MachinePrecision] + 47.066876606), $MachinePrecision]}, Block[{t$95$2 = N[(t$95$0 / t$95$1), $MachinePrecision]}, If[LessEqual[t$95$2, -2e+189], N[(N[(N[(2.0 - x), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(x - -43.3400022514), $MachinePrecision] * x), $MachinePrecision] - -263.505074721), $MachinePrecision] * x), $MachinePrecision] - -313.399215894), $MachinePrecision] * x), $MachinePrecision] - -47.066876606), $MachinePrecision]), $MachinePrecision] * N[(N[(N[(-1.0 * y), $MachinePrecision] * x), $MachinePrecision] - z), $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$2, 5e+22], N[(t$95$0 / N[(N[(313.399215894 * x), $MachinePrecision] + 47.066876606), $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$2, 1e+295], N[(N[(N[(x - 2.0), $MachinePrecision] * N[(N[(y * x), $MachinePrecision] + z), $MachinePrecision]), $MachinePrecision] / t$95$1), $MachinePrecision], N[(x * N[(4.16438922228 - N[(110.1139242984811 * N[(1.0 / x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]]]]]]
\begin{array}{l}
t_0 := \left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)\\
t_1 := \left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606\\
t_2 := \frac{t\_0}{t\_1}\\
\mathbf{if}\;t\_2 \leq -2 \cdot 10^{+189}:\\
\;\;\;\;\frac{2 - x}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606} \cdot \left(\left(-1 \cdot y\right) \cdot x - z\right)\\
\mathbf{elif}\;t\_2 \leq 5 \cdot 10^{+22}:\\
\;\;\;\;\frac{t\_0}{313.399215894 \cdot x + 47.066876606}\\
\mathbf{elif}\;t\_2 \leq 10^{+295}:\\
\;\;\;\;\frac{\left(x - 2\right) \cdot \left(y \cdot x + z\right)}{t\_1}\\
\mathbf{else}:\\
\;\;\;\;x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)\\
\end{array}
if (/.f64 (*.f64 (-.f64 x #s(literal 2 binary64)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x #s(literal 104109730557/25000000000 binary64)) #s(literal 393497462077/5000000000 binary64)) x) #s(literal 4297481763/31250000 binary64)) x) y) x) z)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 x #s(literal 216700011257/5000000000 binary64)) x) #s(literal 263505074721/1000000000 binary64)) x) #s(literal 156699607947/500000000 binary64)) x) #s(literal 23533438303/500000000 binary64))) < -2e189Initial program 59.1%
Applied rewrites63.0%
Applied rewrites62.0%
Taylor expanded in x around 0
lower-*.f6453.0%
Applied rewrites53.0%
if -2e189 < (/.f64 (*.f64 (-.f64 x #s(literal 2 binary64)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x #s(literal 104109730557/25000000000 binary64)) #s(literal 393497462077/5000000000 binary64)) x) #s(literal 4297481763/31250000 binary64)) x) y) x) z)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 x #s(literal 216700011257/5000000000 binary64)) x) #s(literal 263505074721/1000000000 binary64)) x) #s(literal 156699607947/500000000 binary64)) x) #s(literal 23533438303/500000000 binary64))) < 4.9999999999999996e22Initial program 59.1%
Taylor expanded in x around 0
Applied rewrites51.3%
if 4.9999999999999996e22 < (/.f64 (*.f64 (-.f64 x #s(literal 2 binary64)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x #s(literal 104109730557/25000000000 binary64)) #s(literal 393497462077/5000000000 binary64)) x) #s(literal 4297481763/31250000 binary64)) x) y) x) z)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 x #s(literal 216700011257/5000000000 binary64)) x) #s(literal 263505074721/1000000000 binary64)) x) #s(literal 156699607947/500000000 binary64)) x) #s(literal 23533438303/500000000 binary64))) < 9.9999999999999998e294Initial program 59.1%
Taylor expanded in x around 0
Applied rewrites51.8%
if 9.9999999999999998e294 < (/.f64 (*.f64 (-.f64 x #s(literal 2 binary64)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x #s(literal 104109730557/25000000000 binary64)) #s(literal 393497462077/5000000000 binary64)) x) #s(literal 4297481763/31250000 binary64)) x) y) x) z)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 x #s(literal 216700011257/5000000000 binary64)) x) #s(literal 263505074721/1000000000 binary64)) x) #s(literal 156699607947/500000000 binary64)) x) #s(literal 23533438303/500000000 binary64))) Initial program 59.1%
Taylor expanded in x around inf
lower-*.f64N/A
lower--.f64N/A
lower-*.f64N/A
lower-/.f6444.8%
Applied rewrites44.8%
(FPCore (x y z)
:precision binary64
(let* ((t_0
(+
(*
(+
(* (+ (* (+ x 43.3400022514) x) 263.505074721) x)
313.399215894)
x)
47.066876606))
(t_1
(/
(*
(- x 2.0)
(+
(*
(+
(*
(+
(* (+ (* x 4.16438922228) 78.6994924154) x)
137.519416416)
x)
y)
x)
z))
t_0)))
(if (<= t_1 -1e+28)
(*
(/
(- 2.0 x)
(-
(*
(-
(* (- (* (- x -43.3400022514) x) -263.505074721) x)
-313.399215894)
x)
-47.066876606))
(- (* (* -1.0 y) x) z))
(if (<= t_1 10000000000.0)
(*
(-
(*
(-
(*
(-
-137.519416416
(* (- (* 4.16438922228 x) -78.6994924154) x))
x)
y)
x)
z)
(+
0.0424927283095952
(* x (- (* 1.787568985856513 x) 0.3041881842569256))))
(if (<= t_1 1e+295)
(/ (* (- x 2.0) (+ (* y x) z)) t_0)
(* x (- 4.16438922228 (* 110.1139242984811 (/ 1.0 x)))))))))double code(double x, double y, double z) {
double t_0 = ((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606;
double t_1 = ((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / t_0;
double tmp;
if (t_1 <= -1e+28) {
tmp = ((2.0 - x) / (((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * (((-1.0 * y) * x) - z);
} else if (t_1 <= 10000000000.0) {
tmp = (((((-137.519416416 - (((4.16438922228 * x) - -78.6994924154) * x)) * x) - y) * x) - z) * (0.0424927283095952 + (x * ((1.787568985856513 * x) - 0.3041881842569256)));
} else if (t_1 <= 1e+295) {
tmp = ((x - 2.0) * ((y * x) + z)) / t_0;
} else {
tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8) :: t_0
real(8) :: t_1
real(8) :: tmp
t_0 = ((((((x + 43.3400022514d0) * x) + 263.505074721d0) * x) + 313.399215894d0) * x) + 47.066876606d0
t_1 = ((x - 2.0d0) * ((((((((x * 4.16438922228d0) + 78.6994924154d0) * x) + 137.519416416d0) * x) + y) * x) + z)) / t_0
if (t_1 <= (-1d+28)) then
tmp = ((2.0d0 - x) / (((((((x - (-43.3400022514d0)) * x) - (-263.505074721d0)) * x) - (-313.399215894d0)) * x) - (-47.066876606d0))) * ((((-1.0d0) * y) * x) - z)
else if (t_1 <= 10000000000.0d0) then
tmp = ((((((-137.519416416d0) - (((4.16438922228d0 * x) - (-78.6994924154d0)) * x)) * x) - y) * x) - z) * (0.0424927283095952d0 + (x * ((1.787568985856513d0 * x) - 0.3041881842569256d0)))
else if (t_1 <= 1d+295) then
tmp = ((x - 2.0d0) * ((y * x) + z)) / t_0
else
tmp = x * (4.16438922228d0 - (110.1139242984811d0 * (1.0d0 / x)))
end if
code = tmp
end function
public static double code(double x, double y, double z) {
double t_0 = ((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606;
double t_1 = ((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / t_0;
double tmp;
if (t_1 <= -1e+28) {
tmp = ((2.0 - x) / (((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * (((-1.0 * y) * x) - z);
} else if (t_1 <= 10000000000.0) {
tmp = (((((-137.519416416 - (((4.16438922228 * x) - -78.6994924154) * x)) * x) - y) * x) - z) * (0.0424927283095952 + (x * ((1.787568985856513 * x) - 0.3041881842569256)));
} else if (t_1 <= 1e+295) {
tmp = ((x - 2.0) * ((y * x) + z)) / t_0;
} else {
tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
}
return tmp;
}
def code(x, y, z): t_0 = ((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606 t_1 = ((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / t_0 tmp = 0 if t_1 <= -1e+28: tmp = ((2.0 - x) / (((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * (((-1.0 * y) * x) - z) elif t_1 <= 10000000000.0: tmp = (((((-137.519416416 - (((4.16438922228 * x) - -78.6994924154) * x)) * x) - y) * x) - z) * (0.0424927283095952 + (x * ((1.787568985856513 * x) - 0.3041881842569256))) elif t_1 <= 1e+295: tmp = ((x - 2.0) * ((y * x) + z)) / t_0 else: tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x))) return tmp
function code(x, y, z) t_0 = Float64(Float64(Float64(Float64(Float64(Float64(Float64(x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606) t_1 = Float64(Float64(Float64(x - 2.0) * Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / t_0) tmp = 0.0 if (t_1 <= -1e+28) tmp = Float64(Float64(Float64(2.0 - x) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * Float64(Float64(Float64(-1.0 * y) * x) - z)); elseif (t_1 <= 10000000000.0) tmp = Float64(Float64(Float64(Float64(Float64(Float64(-137.519416416 - Float64(Float64(Float64(4.16438922228 * x) - -78.6994924154) * x)) * x) - y) * x) - z) * Float64(0.0424927283095952 + Float64(x * Float64(Float64(1.787568985856513 * x) - 0.3041881842569256)))); elseif (t_1 <= 1e+295) tmp = Float64(Float64(Float64(x - 2.0) * Float64(Float64(y * x) + z)) / t_0); else tmp = Float64(x * Float64(4.16438922228 - Float64(110.1139242984811 * Float64(1.0 / x)))); end return tmp end
function tmp_2 = code(x, y, z) t_0 = ((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606; t_1 = ((x - 2.0) * ((((((((x * 4.16438922228) + 78.6994924154) * x) + 137.519416416) * x) + y) * x) + z)) / t_0; tmp = 0.0; if (t_1 <= -1e+28) tmp = ((2.0 - x) / (((((((x - -43.3400022514) * x) - -263.505074721) * x) - -313.399215894) * x) - -47.066876606)) * (((-1.0 * y) * x) - z); elseif (t_1 <= 10000000000.0) tmp = (((((-137.519416416 - (((4.16438922228 * x) - -78.6994924154) * x)) * x) - y) * x) - z) * (0.0424927283095952 + (x * ((1.787568985856513 * x) - 0.3041881842569256))); elseif (t_1 <= 1e+295) tmp = ((x - 2.0) * ((y * x) + z)) / t_0; else tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x))); end tmp_2 = tmp; end
code[x_, y_, z_] := Block[{t$95$0 = N[(N[(N[(N[(N[(N[(N[(x + 43.3400022514), $MachinePrecision] * x), $MachinePrecision] + 263.505074721), $MachinePrecision] * x), $MachinePrecision] + 313.399215894), $MachinePrecision] * x), $MachinePrecision] + 47.066876606), $MachinePrecision]}, Block[{t$95$1 = N[(N[(N[(x - 2.0), $MachinePrecision] * N[(N[(N[(N[(N[(N[(N[(N[(x * 4.16438922228), $MachinePrecision] + 78.6994924154), $MachinePrecision] * x), $MachinePrecision] + 137.519416416), $MachinePrecision] * x), $MachinePrecision] + y), $MachinePrecision] * x), $MachinePrecision] + z), $MachinePrecision]), $MachinePrecision] / t$95$0), $MachinePrecision]}, If[LessEqual[t$95$1, -1e+28], N[(N[(N[(2.0 - x), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(x - -43.3400022514), $MachinePrecision] * x), $MachinePrecision] - -263.505074721), $MachinePrecision] * x), $MachinePrecision] - -313.399215894), $MachinePrecision] * x), $MachinePrecision] - -47.066876606), $MachinePrecision]), $MachinePrecision] * N[(N[(N[(-1.0 * y), $MachinePrecision] * x), $MachinePrecision] - z), $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$1, 10000000000.0], N[(N[(N[(N[(N[(N[(-137.519416416 - N[(N[(N[(4.16438922228 * x), $MachinePrecision] - -78.6994924154), $MachinePrecision] * x), $MachinePrecision]), $MachinePrecision] * x), $MachinePrecision] - y), $MachinePrecision] * x), $MachinePrecision] - z), $MachinePrecision] * N[(0.0424927283095952 + N[(x * N[(N[(1.787568985856513 * x), $MachinePrecision] - 0.3041881842569256), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$1, 1e+295], N[(N[(N[(x - 2.0), $MachinePrecision] * N[(N[(y * x), $MachinePrecision] + z), $MachinePrecision]), $MachinePrecision] / t$95$0), $MachinePrecision], N[(x * N[(4.16438922228 - N[(110.1139242984811 * N[(1.0 / x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]]]]]
\begin{array}{l}
t_0 := \left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606\\
t_1 := \frac{\left(x - 2\right) \cdot \left(\left(\left(\left(x \cdot 4.16438922228 + 78.6994924154\right) \cdot x + 137.519416416\right) \cdot x + y\right) \cdot x + z\right)}{t\_0}\\
\mathbf{if}\;t\_1 \leq -1 \cdot 10^{+28}:\\
\;\;\;\;\frac{2 - x}{\left(\left(\left(x - -43.3400022514\right) \cdot x - -263.505074721\right) \cdot x - -313.399215894\right) \cdot x - -47.066876606} \cdot \left(\left(-1 \cdot y\right) \cdot x - z\right)\\
\mathbf{elif}\;t\_1 \leq 10000000000:\\
\;\;\;\;\left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + x \cdot \left(1.787568985856513 \cdot x - 0.3041881842569256\right)\right)\\
\mathbf{elif}\;t\_1 \leq 10^{+295}:\\
\;\;\;\;\frac{\left(x - 2\right) \cdot \left(y \cdot x + z\right)}{t\_0}\\
\mathbf{else}:\\
\;\;\;\;x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)\\
\end{array}
if (/.f64 (*.f64 (-.f64 x #s(literal 2 binary64)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x #s(literal 104109730557/25000000000 binary64)) #s(literal 393497462077/5000000000 binary64)) x) #s(literal 4297481763/31250000 binary64)) x) y) x) z)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 x #s(literal 216700011257/5000000000 binary64)) x) #s(literal 263505074721/1000000000 binary64)) x) #s(literal 156699607947/500000000 binary64)) x) #s(literal 23533438303/500000000 binary64))) < -9.9999999999999996e27Initial program 59.1%
Applied rewrites63.0%
Applied rewrites62.0%
Taylor expanded in x around 0
lower-*.f6453.0%
Applied rewrites53.0%
if -9.9999999999999996e27 < (/.f64 (*.f64 (-.f64 x #s(literal 2 binary64)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x #s(literal 104109730557/25000000000 binary64)) #s(literal 393497462077/5000000000 binary64)) x) #s(literal 4297481763/31250000 binary64)) x) y) x) z)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 x #s(literal 216700011257/5000000000 binary64)) x) #s(literal 263505074721/1000000000 binary64)) x) #s(literal 156699607947/500000000 binary64)) x) #s(literal 23533438303/500000000 binary64))) < 1e10Initial program 59.1%
Applied rewrites62.0%
Taylor expanded in x around 0
lower-+.f64N/A
lower-*.f6452.5%
Applied rewrites52.5%
Taylor expanded in x around 0
lower-+.f64N/A
lower-*.f64N/A
lower--.f64N/A
lower-*.f6451.3%
Applied rewrites51.3%
if 1e10 < (/.f64 (*.f64 (-.f64 x #s(literal 2 binary64)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x #s(literal 104109730557/25000000000 binary64)) #s(literal 393497462077/5000000000 binary64)) x) #s(literal 4297481763/31250000 binary64)) x) y) x) z)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 x #s(literal 216700011257/5000000000 binary64)) x) #s(literal 263505074721/1000000000 binary64)) x) #s(literal 156699607947/500000000 binary64)) x) #s(literal 23533438303/500000000 binary64))) < 9.9999999999999998e294Initial program 59.1%
Taylor expanded in x around 0
Applied rewrites51.8%
if 9.9999999999999998e294 < (/.f64 (*.f64 (-.f64 x #s(literal 2 binary64)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 x #s(literal 104109730557/25000000000 binary64)) #s(literal 393497462077/5000000000 binary64)) x) #s(literal 4297481763/31250000 binary64)) x) y) x) z)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 x #s(literal 216700011257/5000000000 binary64)) x) #s(literal 263505074721/1000000000 binary64)) x) #s(literal 156699607947/500000000 binary64)) x) #s(literal 23533438303/500000000 binary64))) Initial program 59.1%
Taylor expanded in x around inf
lower-*.f64N/A
lower--.f64N/A
lower-*.f64N/A
lower-/.f6444.8%
Applied rewrites44.8%
(FPCore (x y z)
:precision binary64
(if (<= x -15000000000000.0)
(* x (- 4.16438922228 (* 110.1139242984811 (/ 1.0 x))))
(if (<= x 3.9e+21)
(/
(* (- x 2.0) (+ (* y x) z))
(+
(*
(+
(* (+ (* (+ x 43.3400022514) x) 263.505074721) x)
313.399215894)
x)
47.066876606))
(* 4.16438922228 x))))double code(double x, double y, double z) {
double tmp;
if (x <= -15000000000000.0) {
tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
} else if (x <= 3.9e+21) {
tmp = ((x - 2.0) * ((y * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606);
} else {
tmp = 4.16438922228 * x;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8) :: tmp
if (x <= (-15000000000000.0d0)) then
tmp = x * (4.16438922228d0 - (110.1139242984811d0 * (1.0d0 / x)))
else if (x <= 3.9d+21) then
tmp = ((x - 2.0d0) * ((y * x) + z)) / (((((((x + 43.3400022514d0) * x) + 263.505074721d0) * x) + 313.399215894d0) * x) + 47.066876606d0)
else
tmp = 4.16438922228d0 * x
end if
code = tmp
end function
public static double code(double x, double y, double z) {
double tmp;
if (x <= -15000000000000.0) {
tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
} else if (x <= 3.9e+21) {
tmp = ((x - 2.0) * ((y * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606);
} else {
tmp = 4.16438922228 * x;
}
return tmp;
}
def code(x, y, z): tmp = 0 if x <= -15000000000000.0: tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x))) elif x <= 3.9e+21: tmp = ((x - 2.0) * ((y * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606) else: tmp = 4.16438922228 * x return tmp
function code(x, y, z) tmp = 0.0 if (x <= -15000000000000.0) tmp = Float64(x * Float64(4.16438922228 - Float64(110.1139242984811 * Float64(1.0 / x)))); elseif (x <= 3.9e+21) tmp = Float64(Float64(Float64(x - 2.0) * Float64(Float64(y * x) + z)) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606)); else tmp = Float64(4.16438922228 * x); end return tmp end
function tmp_2 = code(x, y, z) tmp = 0.0; if (x <= -15000000000000.0) tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x))); elseif (x <= 3.9e+21) tmp = ((x - 2.0) * ((y * x) + z)) / (((((((x + 43.3400022514) * x) + 263.505074721) * x) + 313.399215894) * x) + 47.066876606); else tmp = 4.16438922228 * x; end tmp_2 = tmp; end
code[x_, y_, z_] := If[LessEqual[x, -15000000000000.0], N[(x * N[(4.16438922228 - N[(110.1139242984811 * N[(1.0 / x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], If[LessEqual[x, 3.9e+21], N[(N[(N[(x - 2.0), $MachinePrecision] * N[(N[(y * x), $MachinePrecision] + z), $MachinePrecision]), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(x + 43.3400022514), $MachinePrecision] * x), $MachinePrecision] + 263.505074721), $MachinePrecision] * x), $MachinePrecision] + 313.399215894), $MachinePrecision] * x), $MachinePrecision] + 47.066876606), $MachinePrecision]), $MachinePrecision], N[(4.16438922228 * x), $MachinePrecision]]]
\begin{array}{l}
\mathbf{if}\;x \leq -15000000000000:\\
\;\;\;\;x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)\\
\mathbf{elif}\;x \leq 3.9 \cdot 10^{+21}:\\
\;\;\;\;\frac{\left(x - 2\right) \cdot \left(y \cdot x + z\right)}{\left(\left(\left(x + 43.3400022514\right) \cdot x + 263.505074721\right) \cdot x + 313.399215894\right) \cdot x + 47.066876606}\\
\mathbf{else}:\\
\;\;\;\;4.16438922228 \cdot x\\
\end{array}
if x < -1.5e13Initial program 59.1%
Taylor expanded in x around inf
lower-*.f64N/A
lower--.f64N/A
lower-*.f64N/A
lower-/.f6444.8%
Applied rewrites44.8%
if -1.5e13 < x < 3.9e21Initial program 59.1%
Taylor expanded in x around 0
Applied rewrites51.8%
if 3.9e21 < x Initial program 59.1%
Taylor expanded in x around -inf
lower-*.f64N/A
lower-*.f64N/A
lower--.f64N/A
lower-*.f64N/A
lower-/.f64N/A
lower--.f64N/A
lower-*.f64N/A
lower-/.f6444.4%
Applied rewrites44.4%
Taylor expanded in x around inf
Applied rewrites44.4%
lift-*.f64N/A
mul-1-negN/A
lift-*.f64N/A
*-commutativeN/A
distribute-lft-neg-inN/A
lower-*.f64N/A
lower-neg.f6444.4%
Applied rewrites44.4%
Taylor expanded in x around inf
Applied rewrites44.4%
(FPCore (x y z)
:precision binary64
(if (<= x -15500000000000.0)
(* x (- 4.16438922228 (* 110.1139242984811 (/ 1.0 x))))
(if (<= x 4800.0)
(*
(-
(*
(-
(*
(-
-137.519416416
(* (- (* 4.16438922228 x) -78.6994924154) x))
x)
y)
x)
z)
(+
0.0424927283095952
(* x (- (* 1.787568985856513 x) 0.3041881842569256))))
(*
-1.0
(*
x
(-
(*
-1.0
(/ (- (* 3655.1204654076414 (/ 1.0 x)) 110.1139242984811) x))
4.16438922228))))))double code(double x, double y, double z) {
double tmp;
if (x <= -15500000000000.0) {
tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
} else if (x <= 4800.0) {
tmp = (((((-137.519416416 - (((4.16438922228 * x) - -78.6994924154) * x)) * x) - y) * x) - z) * (0.0424927283095952 + (x * ((1.787568985856513 * x) - 0.3041881842569256)));
} else {
tmp = -1.0 * (x * ((-1.0 * (((3655.1204654076414 * (1.0 / x)) - 110.1139242984811) / x)) - 4.16438922228));
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8) :: tmp
if (x <= (-15500000000000.0d0)) then
tmp = x * (4.16438922228d0 - (110.1139242984811d0 * (1.0d0 / x)))
else if (x <= 4800.0d0) then
tmp = ((((((-137.519416416d0) - (((4.16438922228d0 * x) - (-78.6994924154d0)) * x)) * x) - y) * x) - z) * (0.0424927283095952d0 + (x * ((1.787568985856513d0 * x) - 0.3041881842569256d0)))
else
tmp = (-1.0d0) * (x * (((-1.0d0) * (((3655.1204654076414d0 * (1.0d0 / x)) - 110.1139242984811d0) / x)) - 4.16438922228d0))
end if
code = tmp
end function
public static double code(double x, double y, double z) {
double tmp;
if (x <= -15500000000000.0) {
tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
} else if (x <= 4800.0) {
tmp = (((((-137.519416416 - (((4.16438922228 * x) - -78.6994924154) * x)) * x) - y) * x) - z) * (0.0424927283095952 + (x * ((1.787568985856513 * x) - 0.3041881842569256)));
} else {
tmp = -1.0 * (x * ((-1.0 * (((3655.1204654076414 * (1.0 / x)) - 110.1139242984811) / x)) - 4.16438922228));
}
return tmp;
}
def code(x, y, z): tmp = 0 if x <= -15500000000000.0: tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x))) elif x <= 4800.0: tmp = (((((-137.519416416 - (((4.16438922228 * x) - -78.6994924154) * x)) * x) - y) * x) - z) * (0.0424927283095952 + (x * ((1.787568985856513 * x) - 0.3041881842569256))) else: tmp = -1.0 * (x * ((-1.0 * (((3655.1204654076414 * (1.0 / x)) - 110.1139242984811) / x)) - 4.16438922228)) return tmp
function code(x, y, z) tmp = 0.0 if (x <= -15500000000000.0) tmp = Float64(x * Float64(4.16438922228 - Float64(110.1139242984811 * Float64(1.0 / x)))); elseif (x <= 4800.0) tmp = Float64(Float64(Float64(Float64(Float64(Float64(-137.519416416 - Float64(Float64(Float64(4.16438922228 * x) - -78.6994924154) * x)) * x) - y) * x) - z) * Float64(0.0424927283095952 + Float64(x * Float64(Float64(1.787568985856513 * x) - 0.3041881842569256)))); else tmp = Float64(-1.0 * Float64(x * Float64(Float64(-1.0 * Float64(Float64(Float64(3655.1204654076414 * Float64(1.0 / x)) - 110.1139242984811) / x)) - 4.16438922228))); end return tmp end
function tmp_2 = code(x, y, z) tmp = 0.0; if (x <= -15500000000000.0) tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x))); elseif (x <= 4800.0) tmp = (((((-137.519416416 - (((4.16438922228 * x) - -78.6994924154) * x)) * x) - y) * x) - z) * (0.0424927283095952 + (x * ((1.787568985856513 * x) - 0.3041881842569256))); else tmp = -1.0 * (x * ((-1.0 * (((3655.1204654076414 * (1.0 / x)) - 110.1139242984811) / x)) - 4.16438922228)); end tmp_2 = tmp; end
code[x_, y_, z_] := If[LessEqual[x, -15500000000000.0], N[(x * N[(4.16438922228 - N[(110.1139242984811 * N[(1.0 / x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], If[LessEqual[x, 4800.0], N[(N[(N[(N[(N[(N[(-137.519416416 - N[(N[(N[(4.16438922228 * x), $MachinePrecision] - -78.6994924154), $MachinePrecision] * x), $MachinePrecision]), $MachinePrecision] * x), $MachinePrecision] - y), $MachinePrecision] * x), $MachinePrecision] - z), $MachinePrecision] * N[(0.0424927283095952 + N[(x * N[(N[(1.787568985856513 * x), $MachinePrecision] - 0.3041881842569256), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[(-1.0 * N[(x * N[(N[(-1.0 * N[(N[(N[(3655.1204654076414 * N[(1.0 / x), $MachinePrecision]), $MachinePrecision] - 110.1139242984811), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision] - 4.16438922228), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]]
\begin{array}{l}
\mathbf{if}\;x \leq -15500000000000:\\
\;\;\;\;x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)\\
\mathbf{elif}\;x \leq 4800:\\
\;\;\;\;\left(\left(\left(-137.519416416 - \left(4.16438922228 \cdot x - -78.6994924154\right) \cdot x\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + x \cdot \left(1.787568985856513 \cdot x - 0.3041881842569256\right)\right)\\
\mathbf{else}:\\
\;\;\;\;-1 \cdot \left(x \cdot \left(-1 \cdot \frac{3655.1204654076414 \cdot \frac{1}{x} - 110.1139242984811}{x} - 4.16438922228\right)\right)\\
\end{array}
if x < -1.55e13Initial program 59.1%
Taylor expanded in x around inf
lower-*.f64N/A
lower--.f64N/A
lower-*.f64N/A
lower-/.f6444.8%
Applied rewrites44.8%
if -1.55e13 < x < 4800Initial program 59.1%
Applied rewrites62.0%
Taylor expanded in x around 0
lower-+.f64N/A
lower-*.f6452.5%
Applied rewrites52.5%
Taylor expanded in x around 0
lower-+.f64N/A
lower-*.f64N/A
lower--.f64N/A
lower-*.f6451.3%
Applied rewrites51.3%
if 4800 < x Initial program 59.1%
Taylor expanded in x around -inf
lower-*.f64N/A
lower-*.f64N/A
lower--.f64N/A
lower-*.f64N/A
lower-/.f64N/A
lower--.f64N/A
lower-*.f64N/A
lower-/.f6444.4%
Applied rewrites44.4%
(FPCore (x y z)
:precision binary64
(if (<= x -14200000000000.0)
(* x (- 4.16438922228 (* 110.1139242984811 (/ 1.0 x))))
(if (<= x 7400000.0)
(*
(- (* (- (* (- (* -78.6994924154 x) 137.519416416) x) y) x) z)
(+ 0.0424927283095952 (* -0.3041881842569256 x)))
(*
-1.0
(*
x
(-
(*
-1.0
(/ (- (* 3655.1204654076414 (/ 1.0 x)) 110.1139242984811) x))
4.16438922228))))))double code(double x, double y, double z) {
double tmp;
if (x <= -14200000000000.0) {
tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
} else if (x <= 7400000.0) {
tmp = ((((((-78.6994924154 * x) - 137.519416416) * x) - y) * x) - z) * (0.0424927283095952 + (-0.3041881842569256 * x));
} else {
tmp = -1.0 * (x * ((-1.0 * (((3655.1204654076414 * (1.0 / x)) - 110.1139242984811) / x)) - 4.16438922228));
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8) :: tmp
if (x <= (-14200000000000.0d0)) then
tmp = x * (4.16438922228d0 - (110.1139242984811d0 * (1.0d0 / x)))
else if (x <= 7400000.0d0) then
tmp = (((((((-78.6994924154d0) * x) - 137.519416416d0) * x) - y) * x) - z) * (0.0424927283095952d0 + ((-0.3041881842569256d0) * x))
else
tmp = (-1.0d0) * (x * (((-1.0d0) * (((3655.1204654076414d0 * (1.0d0 / x)) - 110.1139242984811d0) / x)) - 4.16438922228d0))
end if
code = tmp
end function
public static double code(double x, double y, double z) {
double tmp;
if (x <= -14200000000000.0) {
tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
} else if (x <= 7400000.0) {
tmp = ((((((-78.6994924154 * x) - 137.519416416) * x) - y) * x) - z) * (0.0424927283095952 + (-0.3041881842569256 * x));
} else {
tmp = -1.0 * (x * ((-1.0 * (((3655.1204654076414 * (1.0 / x)) - 110.1139242984811) / x)) - 4.16438922228));
}
return tmp;
}
def code(x, y, z): tmp = 0 if x <= -14200000000000.0: tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x))) elif x <= 7400000.0: tmp = ((((((-78.6994924154 * x) - 137.519416416) * x) - y) * x) - z) * (0.0424927283095952 + (-0.3041881842569256 * x)) else: tmp = -1.0 * (x * ((-1.0 * (((3655.1204654076414 * (1.0 / x)) - 110.1139242984811) / x)) - 4.16438922228)) return tmp
function code(x, y, z) tmp = 0.0 if (x <= -14200000000000.0) tmp = Float64(x * Float64(4.16438922228 - Float64(110.1139242984811 * Float64(1.0 / x)))); elseif (x <= 7400000.0) tmp = Float64(Float64(Float64(Float64(Float64(Float64(Float64(-78.6994924154 * x) - 137.519416416) * x) - y) * x) - z) * Float64(0.0424927283095952 + Float64(-0.3041881842569256 * x))); else tmp = Float64(-1.0 * Float64(x * Float64(Float64(-1.0 * Float64(Float64(Float64(3655.1204654076414 * Float64(1.0 / x)) - 110.1139242984811) / x)) - 4.16438922228))); end return tmp end
function tmp_2 = code(x, y, z) tmp = 0.0; if (x <= -14200000000000.0) tmp = x * (4.16438922228 - (110.1139242984811 * (1.0 / x))); elseif (x <= 7400000.0) tmp = ((((((-78.6994924154 * x) - 137.519416416) * x) - y) * x) - z) * (0.0424927283095952 + (-0.3041881842569256 * x)); else tmp = -1.0 * (x * ((-1.0 * (((3655.1204654076414 * (1.0 / x)) - 110.1139242984811) / x)) - 4.16438922228)); end tmp_2 = tmp; end
code[x_, y_, z_] := If[LessEqual[x, -14200000000000.0], N[(x * N[(4.16438922228 - N[(110.1139242984811 * N[(1.0 / x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], If[LessEqual[x, 7400000.0], N[(N[(N[(N[(N[(N[(N[(-78.6994924154 * x), $MachinePrecision] - 137.519416416), $MachinePrecision] * x), $MachinePrecision] - y), $MachinePrecision] * x), $MachinePrecision] - z), $MachinePrecision] * N[(0.0424927283095952 + N[(-0.3041881842569256 * x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[(-1.0 * N[(x * N[(N[(-1.0 * N[(N[(N[(3655.1204654076414 * N[(1.0 / x), $MachinePrecision]), $MachinePrecision] - 110.1139242984811), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision] - 4.16438922228), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]]
\begin{array}{l}
\mathbf{if}\;x \leq -14200000000000:\\
\;\;\;\;x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)\\
\mathbf{elif}\;x \leq 7400000:\\
\;\;\;\;\left(\left(\left(-78.6994924154 \cdot x - 137.519416416\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot x\right)\\
\mathbf{else}:\\
\;\;\;\;-1 \cdot \left(x \cdot \left(-1 \cdot \frac{3655.1204654076414 \cdot \frac{1}{x} - 110.1139242984811}{x} - 4.16438922228\right)\right)\\
\end{array}
if x < -1.42e13Initial program 59.1%
Taylor expanded in x around inf
lower-*.f64N/A
lower--.f64N/A
lower-*.f64N/A
lower-/.f6444.8%
Applied rewrites44.8%
if -1.42e13 < x < 7.4e6Initial program 59.1%
Applied rewrites62.0%
Taylor expanded in x around 0
lower-+.f64N/A
lower-*.f6452.5%
Applied rewrites52.5%
Taylor expanded in x around 0
lower--.f64N/A
lower-*.f6451.3%
Applied rewrites51.3%
if 7.4e6 < x Initial program 59.1%
Taylor expanded in x around -inf
lower-*.f64N/A
lower-*.f64N/A
lower--.f64N/A
lower-*.f64N/A
lower-/.f64N/A
lower--.f64N/A
lower-*.f64N/A
lower-/.f6444.4%
Applied rewrites44.4%
(FPCore (x y z)
:precision binary64
(let* ((t_0 (* x (- 4.16438922228 (* 110.1139242984811 (/ 1.0 x))))))
(if (<= x -14200000000000.0)
t_0
(if (<= x 7400000.0)
(*
(- (* (- (* (- (* -78.6994924154 x) 137.519416416) x) y) x) z)
(+ 0.0424927283095952 (* -0.3041881842569256 x)))
t_0))))double code(double x, double y, double z) {
double t_0 = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
double tmp;
if (x <= -14200000000000.0) {
tmp = t_0;
} else if (x <= 7400000.0) {
tmp = ((((((-78.6994924154 * x) - 137.519416416) * x) - y) * x) - z) * (0.0424927283095952 + (-0.3041881842569256 * x));
} else {
tmp = t_0;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8) :: t_0
real(8) :: tmp
t_0 = x * (4.16438922228d0 - (110.1139242984811d0 * (1.0d0 / x)))
if (x <= (-14200000000000.0d0)) then
tmp = t_0
else if (x <= 7400000.0d0) then
tmp = (((((((-78.6994924154d0) * x) - 137.519416416d0) * x) - y) * x) - z) * (0.0424927283095952d0 + ((-0.3041881842569256d0) * x))
else
tmp = t_0
end if
code = tmp
end function
public static double code(double x, double y, double z) {
double t_0 = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
double tmp;
if (x <= -14200000000000.0) {
tmp = t_0;
} else if (x <= 7400000.0) {
tmp = ((((((-78.6994924154 * x) - 137.519416416) * x) - y) * x) - z) * (0.0424927283095952 + (-0.3041881842569256 * x));
} else {
tmp = t_0;
}
return tmp;
}
def code(x, y, z): t_0 = x * (4.16438922228 - (110.1139242984811 * (1.0 / x))) tmp = 0 if x <= -14200000000000.0: tmp = t_0 elif x <= 7400000.0: tmp = ((((((-78.6994924154 * x) - 137.519416416) * x) - y) * x) - z) * (0.0424927283095952 + (-0.3041881842569256 * x)) else: tmp = t_0 return tmp
function code(x, y, z) t_0 = Float64(x * Float64(4.16438922228 - Float64(110.1139242984811 * Float64(1.0 / x)))) tmp = 0.0 if (x <= -14200000000000.0) tmp = t_0; elseif (x <= 7400000.0) tmp = Float64(Float64(Float64(Float64(Float64(Float64(Float64(-78.6994924154 * x) - 137.519416416) * x) - y) * x) - z) * Float64(0.0424927283095952 + Float64(-0.3041881842569256 * x))); else tmp = t_0; end return tmp end
function tmp_2 = code(x, y, z) t_0 = x * (4.16438922228 - (110.1139242984811 * (1.0 / x))); tmp = 0.0; if (x <= -14200000000000.0) tmp = t_0; elseif (x <= 7400000.0) tmp = ((((((-78.6994924154 * x) - 137.519416416) * x) - y) * x) - z) * (0.0424927283095952 + (-0.3041881842569256 * x)); else tmp = t_0; end tmp_2 = tmp; end
code[x_, y_, z_] := Block[{t$95$0 = N[(x * N[(4.16438922228 - N[(110.1139242984811 * N[(1.0 / x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[x, -14200000000000.0], t$95$0, If[LessEqual[x, 7400000.0], N[(N[(N[(N[(N[(N[(N[(-78.6994924154 * x), $MachinePrecision] - 137.519416416), $MachinePrecision] * x), $MachinePrecision] - y), $MachinePrecision] * x), $MachinePrecision] - z), $MachinePrecision] * N[(0.0424927283095952 + N[(-0.3041881842569256 * x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], t$95$0]]]
\begin{array}{l}
t_0 := x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)\\
\mathbf{if}\;x \leq -14200000000000:\\
\;\;\;\;t\_0\\
\mathbf{elif}\;x \leq 7400000:\\
\;\;\;\;\left(\left(\left(-78.6994924154 \cdot x - 137.519416416\right) \cdot x - y\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot x\right)\\
\mathbf{else}:\\
\;\;\;\;t\_0\\
\end{array}
if x < -1.42e13 or 7.4e6 < x Initial program 59.1%
Taylor expanded in x around inf
lower-*.f64N/A
lower--.f64N/A
lower-*.f64N/A
lower-/.f6444.8%
Applied rewrites44.8%
if -1.42e13 < x < 7.4e6Initial program 59.1%
Applied rewrites62.0%
Taylor expanded in x around 0
lower-+.f64N/A
lower-*.f6452.5%
Applied rewrites52.5%
Taylor expanded in x around 0
lower--.f64N/A
lower-*.f6451.3%
Applied rewrites51.3%
(FPCore (x y z)
:precision binary64
(let* ((t_0 (* x (- 4.16438922228 (* 110.1139242984811 (/ 1.0 x))))))
(if (<= x -15500000000000.0)
t_0
(if (<= x 7400000.0)
(*
(- (* (- (* -137.519416416 x) y) x) z)
(+ 0.0424927283095952 (* -0.3041881842569256 x)))
t_0))))double code(double x, double y, double z) {
double t_0 = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
double tmp;
if (x <= -15500000000000.0) {
tmp = t_0;
} else if (x <= 7400000.0) {
tmp = ((((-137.519416416 * x) - y) * x) - z) * (0.0424927283095952 + (-0.3041881842569256 * x));
} else {
tmp = t_0;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8) :: t_0
real(8) :: tmp
t_0 = x * (4.16438922228d0 - (110.1139242984811d0 * (1.0d0 / x)))
if (x <= (-15500000000000.0d0)) then
tmp = t_0
else if (x <= 7400000.0d0) then
tmp = (((((-137.519416416d0) * x) - y) * x) - z) * (0.0424927283095952d0 + ((-0.3041881842569256d0) * x))
else
tmp = t_0
end if
code = tmp
end function
public static double code(double x, double y, double z) {
double t_0 = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
double tmp;
if (x <= -15500000000000.0) {
tmp = t_0;
} else if (x <= 7400000.0) {
tmp = ((((-137.519416416 * x) - y) * x) - z) * (0.0424927283095952 + (-0.3041881842569256 * x));
} else {
tmp = t_0;
}
return tmp;
}
def code(x, y, z): t_0 = x * (4.16438922228 - (110.1139242984811 * (1.0 / x))) tmp = 0 if x <= -15500000000000.0: tmp = t_0 elif x <= 7400000.0: tmp = ((((-137.519416416 * x) - y) * x) - z) * (0.0424927283095952 + (-0.3041881842569256 * x)) else: tmp = t_0 return tmp
function code(x, y, z) t_0 = Float64(x * Float64(4.16438922228 - Float64(110.1139242984811 * Float64(1.0 / x)))) tmp = 0.0 if (x <= -15500000000000.0) tmp = t_0; elseif (x <= 7400000.0) tmp = Float64(Float64(Float64(Float64(Float64(-137.519416416 * x) - y) * x) - z) * Float64(0.0424927283095952 + Float64(-0.3041881842569256 * x))); else tmp = t_0; end return tmp end
function tmp_2 = code(x, y, z) t_0 = x * (4.16438922228 - (110.1139242984811 * (1.0 / x))); tmp = 0.0; if (x <= -15500000000000.0) tmp = t_0; elseif (x <= 7400000.0) tmp = ((((-137.519416416 * x) - y) * x) - z) * (0.0424927283095952 + (-0.3041881842569256 * x)); else tmp = t_0; end tmp_2 = tmp; end
code[x_, y_, z_] := Block[{t$95$0 = N[(x * N[(4.16438922228 - N[(110.1139242984811 * N[(1.0 / x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[x, -15500000000000.0], t$95$0, If[LessEqual[x, 7400000.0], N[(N[(N[(N[(N[(-137.519416416 * x), $MachinePrecision] - y), $MachinePrecision] * x), $MachinePrecision] - z), $MachinePrecision] * N[(0.0424927283095952 + N[(-0.3041881842569256 * x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], t$95$0]]]
\begin{array}{l}
t_0 := x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)\\
\mathbf{if}\;x \leq -15500000000000:\\
\;\;\;\;t\_0\\
\mathbf{elif}\;x \leq 7400000:\\
\;\;\;\;\left(\left(-137.519416416 \cdot x - y\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot x\right)\\
\mathbf{else}:\\
\;\;\;\;t\_0\\
\end{array}
if x < -1.55e13 or 7.4e6 < x Initial program 59.1%
Taylor expanded in x around inf
lower-*.f64N/A
lower--.f64N/A
lower-*.f64N/A
lower-/.f6444.8%
Applied rewrites44.8%
if -1.55e13 < x < 7.4e6Initial program 59.1%
Applied rewrites62.0%
Taylor expanded in x around 0
lower-+.f64N/A
lower-*.f6452.5%
Applied rewrites52.5%
Taylor expanded in x around 0
Applied rewrites52.3%
(FPCore (x y z)
:precision binary64
(let* ((t_0 (* x (- 4.16438922228 (* 110.1139242984811 (/ 1.0 x))))))
(if (<= x -15000000000000.0)
t_0
(if (<= x 7400000.0)
(*
(- (* (* -1.0 y) x) z)
(+ 0.0424927283095952 (* -0.3041881842569256 x)))
t_0))))double code(double x, double y, double z) {
double t_0 = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
double tmp;
if (x <= -15000000000000.0) {
tmp = t_0;
} else if (x <= 7400000.0) {
tmp = (((-1.0 * y) * x) - z) * (0.0424927283095952 + (-0.3041881842569256 * x));
} else {
tmp = t_0;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8) :: t_0
real(8) :: tmp
t_0 = x * (4.16438922228d0 - (110.1139242984811d0 * (1.0d0 / x)))
if (x <= (-15000000000000.0d0)) then
tmp = t_0
else if (x <= 7400000.0d0) then
tmp = ((((-1.0d0) * y) * x) - z) * (0.0424927283095952d0 + ((-0.3041881842569256d0) * x))
else
tmp = t_0
end if
code = tmp
end function
public static double code(double x, double y, double z) {
double t_0 = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
double tmp;
if (x <= -15000000000000.0) {
tmp = t_0;
} else if (x <= 7400000.0) {
tmp = (((-1.0 * y) * x) - z) * (0.0424927283095952 + (-0.3041881842569256 * x));
} else {
tmp = t_0;
}
return tmp;
}
def code(x, y, z): t_0 = x * (4.16438922228 - (110.1139242984811 * (1.0 / x))) tmp = 0 if x <= -15000000000000.0: tmp = t_0 elif x <= 7400000.0: tmp = (((-1.0 * y) * x) - z) * (0.0424927283095952 + (-0.3041881842569256 * x)) else: tmp = t_0 return tmp
function code(x, y, z) t_0 = Float64(x * Float64(4.16438922228 - Float64(110.1139242984811 * Float64(1.0 / x)))) tmp = 0.0 if (x <= -15000000000000.0) tmp = t_0; elseif (x <= 7400000.0) tmp = Float64(Float64(Float64(Float64(-1.0 * y) * x) - z) * Float64(0.0424927283095952 + Float64(-0.3041881842569256 * x))); else tmp = t_0; end return tmp end
function tmp_2 = code(x, y, z) t_0 = x * (4.16438922228 - (110.1139242984811 * (1.0 / x))); tmp = 0.0; if (x <= -15000000000000.0) tmp = t_0; elseif (x <= 7400000.0) tmp = (((-1.0 * y) * x) - z) * (0.0424927283095952 + (-0.3041881842569256 * x)); else tmp = t_0; end tmp_2 = tmp; end
code[x_, y_, z_] := Block[{t$95$0 = N[(x * N[(4.16438922228 - N[(110.1139242984811 * N[(1.0 / x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[x, -15000000000000.0], t$95$0, If[LessEqual[x, 7400000.0], N[(N[(N[(N[(-1.0 * y), $MachinePrecision] * x), $MachinePrecision] - z), $MachinePrecision] * N[(0.0424927283095952 + N[(-0.3041881842569256 * x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], t$95$0]]]
\begin{array}{l}
t_0 := x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)\\
\mathbf{if}\;x \leq -15000000000000:\\
\;\;\;\;t\_0\\
\mathbf{elif}\;x \leq 7400000:\\
\;\;\;\;\left(\left(-1 \cdot y\right) \cdot x - z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot x\right)\\
\mathbf{else}:\\
\;\;\;\;t\_0\\
\end{array}
if x < -1.5e13 or 7.4e6 < x Initial program 59.1%
Taylor expanded in x around inf
lower-*.f64N/A
lower--.f64N/A
lower-*.f64N/A
lower-/.f6444.8%
Applied rewrites44.8%
if -1.5e13 < x < 7.4e6Initial program 59.1%
Applied rewrites62.0%
Taylor expanded in x around 0
lower-+.f64N/A
lower-*.f6452.5%
Applied rewrites52.5%
Taylor expanded in x around 0
lower-*.f6448.9%
Applied rewrites48.9%
(FPCore (x y z)
:precision binary64
(let* ((t_0 (* x (- 4.16438922228 (* 110.1139242984811 (/ 1.0 x))))))
(if (<= x -15500000000000.0)
t_0
(if (<= x 0.155)
(* (* -1.0 z) (+ 0.0424927283095952 (* -0.3041881842569256 x)))
t_0))))double code(double x, double y, double z) {
double t_0 = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
double tmp;
if (x <= -15500000000000.0) {
tmp = t_0;
} else if (x <= 0.155) {
tmp = (-1.0 * z) * (0.0424927283095952 + (-0.3041881842569256 * x));
} else {
tmp = t_0;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8) :: t_0
real(8) :: tmp
t_0 = x * (4.16438922228d0 - (110.1139242984811d0 * (1.0d0 / x)))
if (x <= (-15500000000000.0d0)) then
tmp = t_0
else if (x <= 0.155d0) then
tmp = ((-1.0d0) * z) * (0.0424927283095952d0 + ((-0.3041881842569256d0) * x))
else
tmp = t_0
end if
code = tmp
end function
public static double code(double x, double y, double z) {
double t_0 = x * (4.16438922228 - (110.1139242984811 * (1.0 / x)));
double tmp;
if (x <= -15500000000000.0) {
tmp = t_0;
} else if (x <= 0.155) {
tmp = (-1.0 * z) * (0.0424927283095952 + (-0.3041881842569256 * x));
} else {
tmp = t_0;
}
return tmp;
}
def code(x, y, z): t_0 = x * (4.16438922228 - (110.1139242984811 * (1.0 / x))) tmp = 0 if x <= -15500000000000.0: tmp = t_0 elif x <= 0.155: tmp = (-1.0 * z) * (0.0424927283095952 + (-0.3041881842569256 * x)) else: tmp = t_0 return tmp
function code(x, y, z) t_0 = Float64(x * Float64(4.16438922228 - Float64(110.1139242984811 * Float64(1.0 / x)))) tmp = 0.0 if (x <= -15500000000000.0) tmp = t_0; elseif (x <= 0.155) tmp = Float64(Float64(-1.0 * z) * Float64(0.0424927283095952 + Float64(-0.3041881842569256 * x))); else tmp = t_0; end return tmp end
function tmp_2 = code(x, y, z) t_0 = x * (4.16438922228 - (110.1139242984811 * (1.0 / x))); tmp = 0.0; if (x <= -15500000000000.0) tmp = t_0; elseif (x <= 0.155) tmp = (-1.0 * z) * (0.0424927283095952 + (-0.3041881842569256 * x)); else tmp = t_0; end tmp_2 = tmp; end
code[x_, y_, z_] := Block[{t$95$0 = N[(x * N[(4.16438922228 - N[(110.1139242984811 * N[(1.0 / x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[x, -15500000000000.0], t$95$0, If[LessEqual[x, 0.155], N[(N[(-1.0 * z), $MachinePrecision] * N[(0.0424927283095952 + N[(-0.3041881842569256 * x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], t$95$0]]]
\begin{array}{l}
t_0 := x \cdot \left(4.16438922228 - 110.1139242984811 \cdot \frac{1}{x}\right)\\
\mathbf{if}\;x \leq -15500000000000:\\
\;\;\;\;t\_0\\
\mathbf{elif}\;x \leq 0.155:\\
\;\;\;\;\left(-1 \cdot z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot x\right)\\
\mathbf{else}:\\
\;\;\;\;t\_0\\
\end{array}
if x < -1.55e13 or 0.155 < x Initial program 59.1%
Taylor expanded in x around inf
lower-*.f64N/A
lower--.f64N/A
lower-*.f64N/A
lower-/.f6444.8%
Applied rewrites44.8%
if -1.55e13 < x < 0.155Initial program 59.1%
Applied rewrites62.0%
Taylor expanded in x around 0
lower-+.f64N/A
lower-*.f6452.5%
Applied rewrites52.5%
Taylor expanded in x around 0
lower-*.f6435.1%
Applied rewrites35.1%
(FPCore (x y z)
:precision binary64
(if (<= x -15500000000000.0)
(* 4.16438922228 x)
(if (<= x 0.41)
(* (* -1.0 z) (+ 0.0424927283095952 (* -0.3041881842569256 x)))
(* 4.16438922228 x))))double code(double x, double y, double z) {
double tmp;
if (x <= -15500000000000.0) {
tmp = 4.16438922228 * x;
} else if (x <= 0.41) {
tmp = (-1.0 * z) * (0.0424927283095952 + (-0.3041881842569256 * x));
} else {
tmp = 4.16438922228 * x;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8) :: tmp
if (x <= (-15500000000000.0d0)) then
tmp = 4.16438922228d0 * x
else if (x <= 0.41d0) then
tmp = ((-1.0d0) * z) * (0.0424927283095952d0 + ((-0.3041881842569256d0) * x))
else
tmp = 4.16438922228d0 * x
end if
code = tmp
end function
public static double code(double x, double y, double z) {
double tmp;
if (x <= -15500000000000.0) {
tmp = 4.16438922228 * x;
} else if (x <= 0.41) {
tmp = (-1.0 * z) * (0.0424927283095952 + (-0.3041881842569256 * x));
} else {
tmp = 4.16438922228 * x;
}
return tmp;
}
def code(x, y, z): tmp = 0 if x <= -15500000000000.0: tmp = 4.16438922228 * x elif x <= 0.41: tmp = (-1.0 * z) * (0.0424927283095952 + (-0.3041881842569256 * x)) else: tmp = 4.16438922228 * x return tmp
function code(x, y, z) tmp = 0.0 if (x <= -15500000000000.0) tmp = Float64(4.16438922228 * x); elseif (x <= 0.41) tmp = Float64(Float64(-1.0 * z) * Float64(0.0424927283095952 + Float64(-0.3041881842569256 * x))); else tmp = Float64(4.16438922228 * x); end return tmp end
function tmp_2 = code(x, y, z) tmp = 0.0; if (x <= -15500000000000.0) tmp = 4.16438922228 * x; elseif (x <= 0.41) tmp = (-1.0 * z) * (0.0424927283095952 + (-0.3041881842569256 * x)); else tmp = 4.16438922228 * x; end tmp_2 = tmp; end
code[x_, y_, z_] := If[LessEqual[x, -15500000000000.0], N[(4.16438922228 * x), $MachinePrecision], If[LessEqual[x, 0.41], N[(N[(-1.0 * z), $MachinePrecision] * N[(0.0424927283095952 + N[(-0.3041881842569256 * x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[(4.16438922228 * x), $MachinePrecision]]]
\begin{array}{l}
\mathbf{if}\;x \leq -15500000000000:\\
\;\;\;\;4.16438922228 \cdot x\\
\mathbf{elif}\;x \leq 0.41:\\
\;\;\;\;\left(-1 \cdot z\right) \cdot \left(0.0424927283095952 + -0.3041881842569256 \cdot x\right)\\
\mathbf{else}:\\
\;\;\;\;4.16438922228 \cdot x\\
\end{array}
if x < -1.55e13 or 0.40999999999999998 < x Initial program 59.1%
Taylor expanded in x around -inf
lower-*.f64N/A
lower-*.f64N/A
lower--.f64N/A
lower-*.f64N/A
lower-/.f64N/A
lower--.f64N/A
lower-*.f64N/A
lower-/.f6444.4%
Applied rewrites44.4%
Taylor expanded in x around inf
Applied rewrites44.4%
lift-*.f64N/A
mul-1-negN/A
lift-*.f64N/A
*-commutativeN/A
distribute-lft-neg-inN/A
lower-*.f64N/A
lower-neg.f6444.4%
Applied rewrites44.4%
Taylor expanded in x around inf
Applied rewrites44.4%
if -1.55e13 < x < 0.40999999999999998Initial program 59.1%
Applied rewrites62.0%
Taylor expanded in x around 0
lower-+.f64N/A
lower-*.f6452.5%
Applied rewrites52.5%
Taylor expanded in x around 0
lower-*.f6435.1%
Applied rewrites35.1%
(FPCore (x y z) :precision binary64 (if (<= x -15500000000000.0) (* 4.16438922228 x) (if (<= x 4800.0) (* -0.0424927283095952 z) (* 4.16438922228 x))))
double code(double x, double y, double z) {
double tmp;
if (x <= -15500000000000.0) {
tmp = 4.16438922228 * x;
} else if (x <= 4800.0) {
tmp = -0.0424927283095952 * z;
} else {
tmp = 4.16438922228 * x;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8) :: tmp
if (x <= (-15500000000000.0d0)) then
tmp = 4.16438922228d0 * x
else if (x <= 4800.0d0) then
tmp = (-0.0424927283095952d0) * z
else
tmp = 4.16438922228d0 * x
end if
code = tmp
end function
public static double code(double x, double y, double z) {
double tmp;
if (x <= -15500000000000.0) {
tmp = 4.16438922228 * x;
} else if (x <= 4800.0) {
tmp = -0.0424927283095952 * z;
} else {
tmp = 4.16438922228 * x;
}
return tmp;
}
def code(x, y, z): tmp = 0 if x <= -15500000000000.0: tmp = 4.16438922228 * x elif x <= 4800.0: tmp = -0.0424927283095952 * z else: tmp = 4.16438922228 * x return tmp
function code(x, y, z) tmp = 0.0 if (x <= -15500000000000.0) tmp = Float64(4.16438922228 * x); elseif (x <= 4800.0) tmp = Float64(-0.0424927283095952 * z); else tmp = Float64(4.16438922228 * x); end return tmp end
function tmp_2 = code(x, y, z) tmp = 0.0; if (x <= -15500000000000.0) tmp = 4.16438922228 * x; elseif (x <= 4800.0) tmp = -0.0424927283095952 * z; else tmp = 4.16438922228 * x; end tmp_2 = tmp; end
code[x_, y_, z_] := If[LessEqual[x, -15500000000000.0], N[(4.16438922228 * x), $MachinePrecision], If[LessEqual[x, 4800.0], N[(-0.0424927283095952 * z), $MachinePrecision], N[(4.16438922228 * x), $MachinePrecision]]]
\begin{array}{l}
\mathbf{if}\;x \leq -15500000000000:\\
\;\;\;\;4.16438922228 \cdot x\\
\mathbf{elif}\;x \leq 4800:\\
\;\;\;\;-0.0424927283095952 \cdot z\\
\mathbf{else}:\\
\;\;\;\;4.16438922228 \cdot x\\
\end{array}
if x < -1.55e13 or 4800 < x Initial program 59.1%
Taylor expanded in x around -inf
lower-*.f64N/A
lower-*.f64N/A
lower--.f64N/A
lower-*.f64N/A
lower-/.f64N/A
lower--.f64N/A
lower-*.f64N/A
lower-/.f6444.4%
Applied rewrites44.4%
Taylor expanded in x around inf
Applied rewrites44.4%
lift-*.f64N/A
mul-1-negN/A
lift-*.f64N/A
*-commutativeN/A
distribute-lft-neg-inN/A
lower-*.f64N/A
lower-neg.f6444.4%
Applied rewrites44.4%
Taylor expanded in x around inf
Applied rewrites44.4%
if -1.55e13 < x < 4800Initial program 59.1%
Taylor expanded in x around 0
lower-*.f6434.7%
Applied rewrites34.7%
(FPCore (x y z) :precision binary64 (* -0.0424927283095952 z))
double code(double x, double y, double z) {
return -0.0424927283095952 * z;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
code = (-0.0424927283095952d0) * z
end function
public static double code(double x, double y, double z) {
return -0.0424927283095952 * z;
}
def code(x, y, z): return -0.0424927283095952 * z
function code(x, y, z) return Float64(-0.0424927283095952 * z) end
function tmp = code(x, y, z) tmp = -0.0424927283095952 * z; end
code[x_, y_, z_] := N[(-0.0424927283095952 * z), $MachinePrecision]
-0.0424927283095952 \cdot z
Initial program 59.1%
Taylor expanded in x around 0
lower-*.f6434.7%
Applied rewrites34.7%
herbie shell --seed 2025258
(FPCore (x y z)
:name "Numeric.SpecFunctions:logGamma from math-functions-0.1.5.2, C"
:precision binary64
(/ (* (- x 2.0) (+ (* (+ (* (+ (* (+ (* x 4.16438922228) 78.6994924154) x) 137.519416416) x) y) x) z)) (+ (* (+ (* (+ (* (+ x 43.3400022514) x) 263.505074721) x) 313.399215894) x) 47.066876606)))