Numeric.SpecFunctions:logGamma from math-functions-0.1.5.2, D

Percentage Accurate: 58.1% → 99.1%
Time: 9.7s
Alternatives: 19
Speedup: 8.8×

Specification

?
\[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
(FPCore (x y z t a b)
  :precision binary64
  (+
 x
 (/
  (*
   y
   (+
    (*
     (+ (* (+ (* (+ (* z 3.13060547623) 11.1667541262) z) t) z) a)
     z)
    b))
  (+
   (*
    (+ (* (+ (* (+ z 15.234687407) z) 31.4690115749) z) 11.9400905721)
    z)
   0.607771387771))))
double code(double x, double y, double z, double t, double a, double b) {
	return x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771));
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z, t, a, b)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8), intent (in) :: t
    real(8), intent (in) :: a
    real(8), intent (in) :: b
    code = x + ((y * ((((((((z * 3.13060547623d0) + 11.1667541262d0) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407d0) * z) + 31.4690115749d0) * z) + 11.9400905721d0) * z) + 0.607771387771d0))
end function
public static double code(double x, double y, double z, double t, double a, double b) {
	return x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771));
}
def code(x, y, z, t, a, b):
	return x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))
function code(x, y, z, t, a, b)
	return Float64(x + Float64(Float64(y * Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771)))
end
function tmp = code(x, y, z, t, a, b)
	tmp = x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771));
end
code[x_, y_, z_, t_, a_, b_] := N[(x + N[(N[(y * N[(N[(N[(N[(N[(N[(N[(N[(z * 3.13060547623), $MachinePrecision] + 11.1667541262), $MachinePrecision] * z), $MachinePrecision] + t), $MachinePrecision] * z), $MachinePrecision] + a), $MachinePrecision] * z), $MachinePrecision] + b), $MachinePrecision]), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(z + 15.234687407), $MachinePrecision] * z), $MachinePrecision] + 31.4690115749), $MachinePrecision] * z), $MachinePrecision] + 11.9400905721), $MachinePrecision] * z), $MachinePrecision] + 0.607771387771), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771}

Local Percentage Accuracy vs ?

The average percentage accuracy by input value. Horizontal axis shows value of an input variable; the variable is choosen in the title. Vertical axis is accuracy; higher is better. Red represent the original program, while blue represents Herbie's suggestion. These can be toggled with buttons below the plot. The line is an average while dots represent individual samples.

Accuracy vs Speed?

Herbie found 19 alternatives:

AlternativeAccuracySpeedup
The accuracy (vertical axis) and speed (horizontal axis) of each alternatives. Up and to the right is better. The red square shows the initial program, and each blue circle shows an alternative.The line shows the best available speed-accuracy tradeoffs.

Initial Program: 58.1% accurate, 1.0× speedup?

\[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
(FPCore (x y z t a b)
  :precision binary64
  (+
 x
 (/
  (*
   y
   (+
    (*
     (+ (* (+ (* (+ (* z 3.13060547623) 11.1667541262) z) t) z) a)
     z)
    b))
  (+
   (*
    (+ (* (+ (* (+ z 15.234687407) z) 31.4690115749) z) 11.9400905721)
    z)
   0.607771387771))))
double code(double x, double y, double z, double t, double a, double b) {
	return x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771));
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z, t, a, b)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8), intent (in) :: t
    real(8), intent (in) :: a
    real(8), intent (in) :: b
    code = x + ((y * ((((((((z * 3.13060547623d0) + 11.1667541262d0) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407d0) * z) + 31.4690115749d0) * z) + 11.9400905721d0) * z) + 0.607771387771d0))
end function
public static double code(double x, double y, double z, double t, double a, double b) {
	return x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771));
}
def code(x, y, z, t, a, b):
	return x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))
function code(x, y, z, t, a, b)
	return Float64(x + Float64(Float64(y * Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771)))
end
function tmp = code(x, y, z, t, a, b)
	tmp = x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771));
end
code[x_, y_, z_, t_, a_, b_] := N[(x + N[(N[(y * N[(N[(N[(N[(N[(N[(N[(N[(z * 3.13060547623), $MachinePrecision] + 11.1667541262), $MachinePrecision] * z), $MachinePrecision] + t), $MachinePrecision] * z), $MachinePrecision] + a), $MachinePrecision] * z), $MachinePrecision] + b), $MachinePrecision]), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(z + 15.234687407), $MachinePrecision] * z), $MachinePrecision] + 31.4690115749), $MachinePrecision] * z), $MachinePrecision] + 11.9400905721), $MachinePrecision] * z), $MachinePrecision] + 0.607771387771), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771}

Alternative 1: 99.1% accurate, 0.4× speedup?

\[\begin{array}{l} t_1 := \left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z\\ \mathbf{if}\;x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \leq \infty:\\ \;\;\;\;x + \left(\left(\left(\left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot \frac{z}{t\_1 - -0.607771387771} - \frac{b}{-0.607771387771 - t\_1}\right) \cdot y\\ \mathbf{else}:\\ \;\;\;\;\left(\frac{\frac{t - -457.9610022158428}{z} - 36.52704169880642}{z} - -3.13060547623\right) \cdot y + x\\ \end{array} \]
(FPCore (x y z t a b)
  :precision binary64
  (let* ((t_1
        (*
         (-
          (* (- (* (- z -15.234687407) z) -31.4690115749) z)
          -11.9400905721)
         z)))
  (if (<=
       (+
        x
        (/
         (*
          y
          (+
           (*
            (+
             (* (+ (* (+ (* z 3.13060547623) 11.1667541262) z) t) z)
             a)
            z)
           b))
         (+
          (*
           (+
            (* (+ (* (+ z 15.234687407) z) 31.4690115749) z)
            11.9400905721)
           z)
          0.607771387771)))
       INFINITY)
    (+
     x
     (*
      (-
       (*
        (+ (* (+ (* (- (* 3.13060547623 z) -11.1667541262) z) t) z) a)
        (/ z (- t_1 -0.607771387771)))
       (/ b (- -0.607771387771 t_1)))
      y))
    (+
     (*
      (-
       (/ (- (/ (- t -457.9610022158428) z) 36.52704169880642) z)
       -3.13060547623)
      y)
     x))))
double code(double x, double y, double z, double t, double a, double b) {
	double t_1 = (((((z - -15.234687407) * z) - -31.4690115749) * z) - -11.9400905721) * z;
	double tmp;
	if ((x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))) <= ((double) INFINITY)) {
		tmp = x + (((((((((3.13060547623 * z) - -11.1667541262) * z) + t) * z) + a) * (z / (t_1 - -0.607771387771))) - (b / (-0.607771387771 - t_1))) * y);
	} else {
		tmp = ((((((t - -457.9610022158428) / z) - 36.52704169880642) / z) - -3.13060547623) * y) + x;
	}
	return tmp;
}
public static double code(double x, double y, double z, double t, double a, double b) {
	double t_1 = (((((z - -15.234687407) * z) - -31.4690115749) * z) - -11.9400905721) * z;
	double tmp;
	if ((x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))) <= Double.POSITIVE_INFINITY) {
		tmp = x + (((((((((3.13060547623 * z) - -11.1667541262) * z) + t) * z) + a) * (z / (t_1 - -0.607771387771))) - (b / (-0.607771387771 - t_1))) * y);
	} else {
		tmp = ((((((t - -457.9610022158428) / z) - 36.52704169880642) / z) - -3.13060547623) * y) + x;
	}
	return tmp;
}
def code(x, y, z, t, a, b):
	t_1 = (((((z - -15.234687407) * z) - -31.4690115749) * z) - -11.9400905721) * z
	tmp = 0
	if (x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))) <= math.inf:
		tmp = x + (((((((((3.13060547623 * z) - -11.1667541262) * z) + t) * z) + a) * (z / (t_1 - -0.607771387771))) - (b / (-0.607771387771 - t_1))) * y)
	else:
		tmp = ((((((t - -457.9610022158428) / z) - 36.52704169880642) / z) - -3.13060547623) * y) + x
	return tmp
function code(x, y, z, t, a, b)
	t_1 = Float64(Float64(Float64(Float64(Float64(Float64(z - -15.234687407) * z) - -31.4690115749) * z) - -11.9400905721) * z)
	tmp = 0.0
	if (Float64(x + Float64(Float64(y * Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))) <= Inf)
		tmp = Float64(x + Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(3.13060547623 * z) - -11.1667541262) * z) + t) * z) + a) * Float64(z / Float64(t_1 - -0.607771387771))) - Float64(b / Float64(-0.607771387771 - t_1))) * y));
	else
		tmp = Float64(Float64(Float64(Float64(Float64(Float64(Float64(t - -457.9610022158428) / z) - 36.52704169880642) / z) - -3.13060547623) * y) + x);
	end
	return tmp
end
function tmp_2 = code(x, y, z, t, a, b)
	t_1 = (((((z - -15.234687407) * z) - -31.4690115749) * z) - -11.9400905721) * z;
	tmp = 0.0;
	if ((x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))) <= Inf)
		tmp = x + (((((((((3.13060547623 * z) - -11.1667541262) * z) + t) * z) + a) * (z / (t_1 - -0.607771387771))) - (b / (-0.607771387771 - t_1))) * y);
	else
		tmp = ((((((t - -457.9610022158428) / z) - 36.52704169880642) / z) - -3.13060547623) * y) + x;
	end
	tmp_2 = tmp;
end
code[x_, y_, z_, t_, a_, b_] := Block[{t$95$1 = N[(N[(N[(N[(N[(N[(z - -15.234687407), $MachinePrecision] * z), $MachinePrecision] - -31.4690115749), $MachinePrecision] * z), $MachinePrecision] - -11.9400905721), $MachinePrecision] * z), $MachinePrecision]}, If[LessEqual[N[(x + N[(N[(y * N[(N[(N[(N[(N[(N[(N[(N[(z * 3.13060547623), $MachinePrecision] + 11.1667541262), $MachinePrecision] * z), $MachinePrecision] + t), $MachinePrecision] * z), $MachinePrecision] + a), $MachinePrecision] * z), $MachinePrecision] + b), $MachinePrecision]), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(z + 15.234687407), $MachinePrecision] * z), $MachinePrecision] + 31.4690115749), $MachinePrecision] * z), $MachinePrecision] + 11.9400905721), $MachinePrecision] * z), $MachinePrecision] + 0.607771387771), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], Infinity], N[(x + N[(N[(N[(N[(N[(N[(N[(N[(N[(3.13060547623 * z), $MachinePrecision] - -11.1667541262), $MachinePrecision] * z), $MachinePrecision] + t), $MachinePrecision] * z), $MachinePrecision] + a), $MachinePrecision] * N[(z / N[(t$95$1 - -0.607771387771), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] - N[(b / N[(-0.607771387771 - t$95$1), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision], N[(N[(N[(N[(N[(N[(N[(t - -457.9610022158428), $MachinePrecision] / z), $MachinePrecision] - 36.52704169880642), $MachinePrecision] / z), $MachinePrecision] - -3.13060547623), $MachinePrecision] * y), $MachinePrecision] + x), $MachinePrecision]]]
\begin{array}{l}
t_1 := \left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z\\
\mathbf{if}\;x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \leq \infty:\\
\;\;\;\;x + \left(\left(\left(\left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot \frac{z}{t\_1 - -0.607771387771} - \frac{b}{-0.607771387771 - t\_1}\right) \cdot y\\

\mathbf{else}:\\
\;\;\;\;\left(\frac{\frac{t - -457.9610022158428}{z} - 36.52704169880642}{z} - -3.13060547623\right) \cdot y + x\\


\end{array}
Derivation
  1. Split input into 2 regimes
  2. if (+.f64 x (/.f64 (*.f64 y (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 z #s(literal 313060547623/100000000000 binary64)) #s(literal 55833770631/5000000000 binary64)) z) t) z) a) z) b)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 z #s(literal 15234687407/1000000000 binary64)) z) #s(literal 314690115749/10000000000 binary64)) z) #s(literal 119400905721/10000000000 binary64)) z) #s(literal 607771387771/1000000000000 binary64)))) < +inf.0

    1. Initial program 58.1%

      \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
    2. Applied rewrites60.1%

      \[\leadsto x + \color{blue}{\frac{b + \left(a + \left(t + \left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z\right) \cdot z\right) \cdot z}{\left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z - -0.607771387771} \cdot y} \]
    3. Applied rewrites63.0%

      \[\leadsto x + \color{blue}{\left(\left(\left(\left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot \frac{z}{\left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z - -0.607771387771} - \frac{b}{-0.607771387771 - \left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z}\right)} \cdot y \]

    if +inf.0 < (+.f64 x (/.f64 (*.f64 y (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 z #s(literal 313060547623/100000000000 binary64)) #s(literal 55833770631/5000000000 binary64)) z) t) z) a) z) b)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 z #s(literal 15234687407/1000000000 binary64)) z) #s(literal 314690115749/10000000000 binary64)) z) #s(literal 119400905721/10000000000 binary64)) z) #s(literal 607771387771/1000000000000 binary64))))

    1. Initial program 58.1%

      \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
    2. Applied rewrites60.1%

      \[\leadsto x + \color{blue}{\frac{b + \left(a + \left(t + \left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z\right) \cdot z\right) \cdot z}{\left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z - -0.607771387771} \cdot y} \]
    3. Taylor expanded in z around -inf

      \[\leadsto x + \color{blue}{\left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right)} \cdot y \]
    4. Step-by-step derivation
      1. lower-+.f64N/A

        \[\leadsto x + \left(\frac{313060547623}{100000000000} + \color{blue}{-1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
      2. lower-*.f64N/A

        \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \color{blue}{\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
      3. lower-/.f64N/A

        \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{\color{blue}{z}}\right) \cdot y \]
      4. lower-+.f64N/A

        \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
      5. lower-*.f64N/A

        \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
      6. lower-/.f64N/A

        \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
      7. lower-+.f6457.0%

        \[\leadsto x + \left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right) \cdot y \]
    5. Applied rewrites57.0%

      \[\leadsto x + \color{blue}{\left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right)} \cdot y \]
    6. Step-by-step derivation
      1. lift-+.f64N/A

        \[\leadsto \color{blue}{x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y} \]
      2. +-commutativeN/A

        \[\leadsto \color{blue}{\left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y + x} \]
      3. lower-+.f6457.0%

        \[\leadsto \color{blue}{\left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right) \cdot y + x} \]
    7. Applied rewrites57.0%

      \[\leadsto \color{blue}{\left(\frac{\frac{t - -457.9610022158428}{z} - 36.52704169880642}{z} - -3.13060547623\right) \cdot y + x} \]
  3. Recombined 2 regimes into one program.
  4. Add Preprocessing

Alternative 2: 97.9% accurate, 1.0× speedup?

\[\begin{array}{l} t_1 := \frac{t - -457.9610022158428}{z} - 36.52704169880642\\ \mathbf{if}\;z \leq -34000:\\ \;\;\;\;x + \left(3.13060547623 + t\_1 \cdot \frac{1}{z}\right) \cdot y\\ \mathbf{elif}\;z \leq 122:\\ \;\;\;\;\left(b + z \cdot \left(a + z \cdot \left(t + z \cdot \left(11.1667541262 + 3.13060547623 \cdot z\right)\right)\right)\right) \cdot \frac{y}{\left(31.4690115749 \cdot z - -11.9400905721\right) \cdot z - -0.607771387771} + x\\ \mathbf{else}:\\ \;\;\;\;\left(\frac{t\_1}{z} - -3.13060547623\right) \cdot y + x\\ \end{array} \]
(FPCore (x y z t a b)
  :precision binary64
  (let* ((t_1 (- (/ (- t -457.9610022158428) z) 36.52704169880642)))
  (if (<= z -34000.0)
    (+ x (* (+ 3.13060547623 (* t_1 (/ 1.0 z))) y))
    (if (<= z 122.0)
      (+
       (*
        (+
         b
         (*
          z
          (+
           a
           (* z (+ t (* z (+ 11.1667541262 (* 3.13060547623 z))))))))
        (/
         y
         (-
          (* (- (* 31.4690115749 z) -11.9400905721) z)
          -0.607771387771)))
       x)
      (+ (* (- (/ t_1 z) -3.13060547623) y) x)))))
double code(double x, double y, double z, double t, double a, double b) {
	double t_1 = ((t - -457.9610022158428) / z) - 36.52704169880642;
	double tmp;
	if (z <= -34000.0) {
		tmp = x + ((3.13060547623 + (t_1 * (1.0 / z))) * y);
	} else if (z <= 122.0) {
		tmp = ((b + (z * (a + (z * (t + (z * (11.1667541262 + (3.13060547623 * z)))))))) * (y / ((((31.4690115749 * z) - -11.9400905721) * z) - -0.607771387771))) + x;
	} else {
		tmp = (((t_1 / z) - -3.13060547623) * y) + x;
	}
	return tmp;
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z, t, a, b)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8), intent (in) :: t
    real(8), intent (in) :: a
    real(8), intent (in) :: b
    real(8) :: t_1
    real(8) :: tmp
    t_1 = ((t - (-457.9610022158428d0)) / z) - 36.52704169880642d0
    if (z <= (-34000.0d0)) then
        tmp = x + ((3.13060547623d0 + (t_1 * (1.0d0 / z))) * y)
    else if (z <= 122.0d0) then
        tmp = ((b + (z * (a + (z * (t + (z * (11.1667541262d0 + (3.13060547623d0 * z)))))))) * (y / ((((31.4690115749d0 * z) - (-11.9400905721d0)) * z) - (-0.607771387771d0)))) + x
    else
        tmp = (((t_1 / z) - (-3.13060547623d0)) * y) + x
    end if
    code = tmp
end function
public static double code(double x, double y, double z, double t, double a, double b) {
	double t_1 = ((t - -457.9610022158428) / z) - 36.52704169880642;
	double tmp;
	if (z <= -34000.0) {
		tmp = x + ((3.13060547623 + (t_1 * (1.0 / z))) * y);
	} else if (z <= 122.0) {
		tmp = ((b + (z * (a + (z * (t + (z * (11.1667541262 + (3.13060547623 * z)))))))) * (y / ((((31.4690115749 * z) - -11.9400905721) * z) - -0.607771387771))) + x;
	} else {
		tmp = (((t_1 / z) - -3.13060547623) * y) + x;
	}
	return tmp;
}
def code(x, y, z, t, a, b):
	t_1 = ((t - -457.9610022158428) / z) - 36.52704169880642
	tmp = 0
	if z <= -34000.0:
		tmp = x + ((3.13060547623 + (t_1 * (1.0 / z))) * y)
	elif z <= 122.0:
		tmp = ((b + (z * (a + (z * (t + (z * (11.1667541262 + (3.13060547623 * z)))))))) * (y / ((((31.4690115749 * z) - -11.9400905721) * z) - -0.607771387771))) + x
	else:
		tmp = (((t_1 / z) - -3.13060547623) * y) + x
	return tmp
function code(x, y, z, t, a, b)
	t_1 = Float64(Float64(Float64(t - -457.9610022158428) / z) - 36.52704169880642)
	tmp = 0.0
	if (z <= -34000.0)
		tmp = Float64(x + Float64(Float64(3.13060547623 + Float64(t_1 * Float64(1.0 / z))) * y));
	elseif (z <= 122.0)
		tmp = Float64(Float64(Float64(b + Float64(z * Float64(a + Float64(z * Float64(t + Float64(z * Float64(11.1667541262 + Float64(3.13060547623 * z)))))))) * Float64(y / Float64(Float64(Float64(Float64(31.4690115749 * z) - -11.9400905721) * z) - -0.607771387771))) + x);
	else
		tmp = Float64(Float64(Float64(Float64(t_1 / z) - -3.13060547623) * y) + x);
	end
	return tmp
end
function tmp_2 = code(x, y, z, t, a, b)
	t_1 = ((t - -457.9610022158428) / z) - 36.52704169880642;
	tmp = 0.0;
	if (z <= -34000.0)
		tmp = x + ((3.13060547623 + (t_1 * (1.0 / z))) * y);
	elseif (z <= 122.0)
		tmp = ((b + (z * (a + (z * (t + (z * (11.1667541262 + (3.13060547623 * z)))))))) * (y / ((((31.4690115749 * z) - -11.9400905721) * z) - -0.607771387771))) + x;
	else
		tmp = (((t_1 / z) - -3.13060547623) * y) + x;
	end
	tmp_2 = tmp;
end
code[x_, y_, z_, t_, a_, b_] := Block[{t$95$1 = N[(N[(N[(t - -457.9610022158428), $MachinePrecision] / z), $MachinePrecision] - 36.52704169880642), $MachinePrecision]}, If[LessEqual[z, -34000.0], N[(x + N[(N[(3.13060547623 + N[(t$95$1 * N[(1.0 / z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision], If[LessEqual[z, 122.0], N[(N[(N[(b + N[(z * N[(a + N[(z * N[(t + N[(z * N[(11.1667541262 + N[(3.13060547623 * z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] * N[(y / N[(N[(N[(N[(31.4690115749 * z), $MachinePrecision] - -11.9400905721), $MachinePrecision] * z), $MachinePrecision] - -0.607771387771), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] + x), $MachinePrecision], N[(N[(N[(N[(t$95$1 / z), $MachinePrecision] - -3.13060547623), $MachinePrecision] * y), $MachinePrecision] + x), $MachinePrecision]]]]
\begin{array}{l}
t_1 := \frac{t - -457.9610022158428}{z} - 36.52704169880642\\
\mathbf{if}\;z \leq -34000:\\
\;\;\;\;x + \left(3.13060547623 + t\_1 \cdot \frac{1}{z}\right) \cdot y\\

\mathbf{elif}\;z \leq 122:\\
\;\;\;\;\left(b + z \cdot \left(a + z \cdot \left(t + z \cdot \left(11.1667541262 + 3.13060547623 \cdot z\right)\right)\right)\right) \cdot \frac{y}{\left(31.4690115749 \cdot z - -11.9400905721\right) \cdot z - -0.607771387771} + x\\

\mathbf{else}:\\
\;\;\;\;\left(\frac{t\_1}{z} - -3.13060547623\right) \cdot y + x\\


\end{array}
Derivation
  1. Split input into 3 regimes
  2. if z < -34000

    1. Initial program 58.1%

      \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
    2. Applied rewrites60.1%

      \[\leadsto x + \color{blue}{\frac{b + \left(a + \left(t + \left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z\right) \cdot z\right) \cdot z}{\left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z - -0.607771387771} \cdot y} \]
    3. Taylor expanded in z around -inf

      \[\leadsto x + \color{blue}{\left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right)} \cdot y \]
    4. Step-by-step derivation
      1. lower-+.f64N/A

        \[\leadsto x + \left(\frac{313060547623}{100000000000} + \color{blue}{-1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
      2. lower-*.f64N/A

        \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \color{blue}{\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
      3. lower-/.f64N/A

        \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{\color{blue}{z}}\right) \cdot y \]
      4. lower-+.f64N/A

        \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
      5. lower-*.f64N/A

        \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
      6. lower-/.f64N/A

        \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
      7. lower-+.f6457.0%

        \[\leadsto x + \left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right) \cdot y \]
    5. Applied rewrites57.0%

      \[\leadsto x + \color{blue}{\left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right)} \cdot y \]
    6. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \color{blue}{\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
      2. mul-1-negN/A

        \[\leadsto x + \left(\frac{313060547623}{100000000000} + \left(\mathsf{neg}\left(\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right)\right)\right) \cdot y \]
      3. lift-/.f64N/A

        \[\leadsto x + \left(\frac{313060547623}{100000000000} + \left(\mathsf{neg}\left(\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right)\right)\right) \cdot y \]
      4. mult-flipN/A

        \[\leadsto x + \left(\frac{313060547623}{100000000000} + \left(\mathsf{neg}\left(\left(\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}\right) \cdot \frac{1}{z}\right)\right)\right) \cdot y \]
      5. distribute-lft-neg-inN/A

        \[\leadsto x + \left(\frac{313060547623}{100000000000} + \left(\mathsf{neg}\left(\left(\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}\right)\right)\right) \cdot \color{blue}{\frac{1}{z}}\right) \cdot y \]
      6. lower-*.f64N/A

        \[\leadsto x + \left(\frac{313060547623}{100000000000} + \left(\mathsf{neg}\left(\left(\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}\right)\right)\right) \cdot \color{blue}{\frac{1}{z}}\right) \cdot y \]
    7. Applied rewrites56.9%

      \[\leadsto x + \left(3.13060547623 + \left(\frac{t - -457.9610022158428}{z} - 36.52704169880642\right) \cdot \color{blue}{\frac{1}{z}}\right) \cdot y \]

    if -34000 < z < 122

    1. Initial program 58.1%

      \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
    2. Taylor expanded in z around 0

      \[\leadsto x + \frac{y \cdot \color{blue}{b}}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
    3. Step-by-step derivation
      1. Applied rewrites64.0%

        \[\leadsto x + \frac{y \cdot \color{blue}{b}}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
      2. Taylor expanded in z around 0

        \[\leadsto x + \frac{y \cdot b}{\left(\color{blue}{\frac{314690115749}{10000000000}} \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
      3. Step-by-step derivation
        1. Applied rewrites63.4%

          \[\leadsto x + \frac{y \cdot b}{\left(\color{blue}{31.4690115749} \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
        2. Step-by-step derivation
          1. lift-+.f64N/A

            \[\leadsto \color{blue}{x + \frac{y \cdot b}{\left(\frac{314690115749}{10000000000} \cdot z + \frac{119400905721}{10000000000}\right) \cdot z + \frac{607771387771}{1000000000000}}} \]
          2. +-commutativeN/A

            \[\leadsto \color{blue}{\frac{y \cdot b}{\left(\frac{314690115749}{10000000000} \cdot z + \frac{119400905721}{10000000000}\right) \cdot z + \frac{607771387771}{1000000000000}} + x} \]
          3. lower-+.f6463.4%

            \[\leadsto \color{blue}{\frac{y \cdot b}{\left(31.4690115749 \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} + x} \]
        3. Applied rewrites64.2%

          \[\leadsto \color{blue}{b \cdot \frac{y}{\left(31.4690115749 \cdot z - -11.9400905721\right) \cdot z - -0.607771387771} + x} \]
        4. Taylor expanded in b around 0

          \[\leadsto \color{blue}{\left(b + z \cdot \left(a + z \cdot \left(t + z \cdot \left(\frac{55833770631}{5000000000} + \frac{313060547623}{100000000000} \cdot z\right)\right)\right)\right)} \cdot \frac{y}{\left(31.4690115749 \cdot z - -11.9400905721\right) \cdot z - -0.607771387771} + x \]
        5. Step-by-step derivation
          1. lower-+.f64N/A

            \[\leadsto \left(b + \color{blue}{z \cdot \left(a + z \cdot \left(t + z \cdot \left(\frac{55833770631}{5000000000} + \frac{313060547623}{100000000000} \cdot z\right)\right)\right)}\right) \cdot \frac{y}{\left(\frac{314690115749}{10000000000} \cdot z - \frac{-119400905721}{10000000000}\right) \cdot z - \frac{-607771387771}{1000000000000}} + x \]
          2. lower-*.f64N/A

            \[\leadsto \left(b + z \cdot \color{blue}{\left(a + z \cdot \left(t + z \cdot \left(\frac{55833770631}{5000000000} + \frac{313060547623}{100000000000} \cdot z\right)\right)\right)}\right) \cdot \frac{y}{\left(\frac{314690115749}{10000000000} \cdot z - \frac{-119400905721}{10000000000}\right) \cdot z - \frac{-607771387771}{1000000000000}} + x \]
          3. lower-+.f64N/A

            \[\leadsto \left(b + z \cdot \left(a + \color{blue}{z \cdot \left(t + z \cdot \left(\frac{55833770631}{5000000000} + \frac{313060547623}{100000000000} \cdot z\right)\right)}\right)\right) \cdot \frac{y}{\left(\frac{314690115749}{10000000000} \cdot z - \frac{-119400905721}{10000000000}\right) \cdot z - \frac{-607771387771}{1000000000000}} + x \]
          4. lower-*.f64N/A

            \[\leadsto \left(b + z \cdot \left(a + z \cdot \color{blue}{\left(t + z \cdot \left(\frac{55833770631}{5000000000} + \frac{313060547623}{100000000000} \cdot z\right)\right)}\right)\right) \cdot \frac{y}{\left(\frac{314690115749}{10000000000} \cdot z - \frac{-119400905721}{10000000000}\right) \cdot z - \frac{-607771387771}{1000000000000}} + x \]
          5. lower-+.f64N/A

            \[\leadsto \left(b + z \cdot \left(a + z \cdot \left(t + \color{blue}{z \cdot \left(\frac{55833770631}{5000000000} + \frac{313060547623}{100000000000} \cdot z\right)}\right)\right)\right) \cdot \frac{y}{\left(\frac{314690115749}{10000000000} \cdot z - \frac{-119400905721}{10000000000}\right) \cdot z - \frac{-607771387771}{1000000000000}} + x \]
          6. lower-*.f64N/A

            \[\leadsto \left(b + z \cdot \left(a + z \cdot \left(t + z \cdot \color{blue}{\left(\frac{55833770631}{5000000000} + \frac{313060547623}{100000000000} \cdot z\right)}\right)\right)\right) \cdot \frac{y}{\left(\frac{314690115749}{10000000000} \cdot z - \frac{-119400905721}{10000000000}\right) \cdot z - \frac{-607771387771}{1000000000000}} + x \]
          7. lower-+.f64N/A

            \[\leadsto \left(b + z \cdot \left(a + z \cdot \left(t + z \cdot \left(\frac{55833770631}{5000000000} + \color{blue}{\frac{313060547623}{100000000000} \cdot z}\right)\right)\right)\right) \cdot \frac{y}{\left(\frac{314690115749}{10000000000} \cdot z - \frac{-119400905721}{10000000000}\right) \cdot z - \frac{-607771387771}{1000000000000}} + x \]
          8. lower-*.f6454.9%

            \[\leadsto \left(b + z \cdot \left(a + z \cdot \left(t + z \cdot \left(11.1667541262 + 3.13060547623 \cdot \color{blue}{z}\right)\right)\right)\right) \cdot \frac{y}{\left(31.4690115749 \cdot z - -11.9400905721\right) \cdot z - -0.607771387771} + x \]
        6. Applied rewrites54.9%

          \[\leadsto \color{blue}{\left(b + z \cdot \left(a + z \cdot \left(t + z \cdot \left(11.1667541262 + 3.13060547623 \cdot z\right)\right)\right)\right)} \cdot \frac{y}{\left(31.4690115749 \cdot z - -11.9400905721\right) \cdot z - -0.607771387771} + x \]

        if 122 < z

        1. Initial program 58.1%

          \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
        2. Applied rewrites60.1%

          \[\leadsto x + \color{blue}{\frac{b + \left(a + \left(t + \left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z\right) \cdot z\right) \cdot z}{\left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z - -0.607771387771} \cdot y} \]
        3. Taylor expanded in z around -inf

          \[\leadsto x + \color{blue}{\left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right)} \cdot y \]
        4. Step-by-step derivation
          1. lower-+.f64N/A

            \[\leadsto x + \left(\frac{313060547623}{100000000000} + \color{blue}{-1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
          2. lower-*.f64N/A

            \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \color{blue}{\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
          3. lower-/.f64N/A

            \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{\color{blue}{z}}\right) \cdot y \]
          4. lower-+.f64N/A

            \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
          5. lower-*.f64N/A

            \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
          6. lower-/.f64N/A

            \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
          7. lower-+.f6457.0%

            \[\leadsto x + \left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right) \cdot y \]
        5. Applied rewrites57.0%

          \[\leadsto x + \color{blue}{\left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right)} \cdot y \]
        6. Step-by-step derivation
          1. lift-+.f64N/A

            \[\leadsto \color{blue}{x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y} \]
          2. +-commutativeN/A

            \[\leadsto \color{blue}{\left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y + x} \]
          3. lower-+.f6457.0%

            \[\leadsto \color{blue}{\left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right) \cdot y + x} \]
        7. Applied rewrites57.0%

          \[\leadsto \color{blue}{\left(\frac{\frac{t - -457.9610022158428}{z} - 36.52704169880642}{z} - -3.13060547623\right) \cdot y + x} \]
      4. Recombined 3 regimes into one program.
      5. Add Preprocessing

      Alternative 3: 97.9% accurate, 1.0× speedup?

      \[\begin{array}{l} t_1 := \frac{t - -457.9610022158428}{z} - 36.52704169880642\\ \mathbf{if}\;z \leq -34000:\\ \;\;\;\;x + \left(3.13060547623 + t\_1 \cdot \frac{1}{z}\right) \cdot y\\ \mathbf{elif}\;z \leq 122:\\ \;\;\;\;x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(31.4690115749 \cdot z + 11.9400905721\right) \cdot z + 0.607771387771}\\ \mathbf{else}:\\ \;\;\;\;\left(\frac{t\_1}{z} - -3.13060547623\right) \cdot y + x\\ \end{array} \]
      (FPCore (x y z t a b)
        :precision binary64
        (let* ((t_1 (- (/ (- t -457.9610022158428) z) 36.52704169880642)))
        (if (<= z -34000.0)
          (+ x (* (+ 3.13060547623 (* t_1 (/ 1.0 z))) y))
          (if (<= z 122.0)
            (+
             x
             (/
              (*
               y
               (+
                (*
                 (+
                  (* (+ (* (+ (* z 3.13060547623) 11.1667541262) z) t) z)
                  a)
                 z)
                b))
              (+
               (* (+ (* 31.4690115749 z) 11.9400905721) z)
               0.607771387771)))
            (+ (* (- (/ t_1 z) -3.13060547623) y) x)))))
      double code(double x, double y, double z, double t, double a, double b) {
      	double t_1 = ((t - -457.9610022158428) / z) - 36.52704169880642;
      	double tmp;
      	if (z <= -34000.0) {
      		tmp = x + ((3.13060547623 + (t_1 * (1.0 / z))) * y);
      	} else if (z <= 122.0) {
      		tmp = x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / ((((31.4690115749 * z) + 11.9400905721) * z) + 0.607771387771));
      	} else {
      		tmp = (((t_1 / z) - -3.13060547623) * y) + x;
      	}
      	return tmp;
      }
      
      module fmin_fmax_functions
          implicit none
          private
          public fmax
          public fmin
      
          interface fmax
              module procedure fmax88
              module procedure fmax44
              module procedure fmax84
              module procedure fmax48
          end interface
          interface fmin
              module procedure fmin88
              module procedure fmin44
              module procedure fmin84
              module procedure fmin48
          end interface
      contains
          real(8) function fmax88(x, y) result (res)
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
          end function
          real(4) function fmax44(x, y) result (res)
              real(4), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
          end function
          real(8) function fmax84(x, y) result(res)
              real(8), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
          end function
          real(8) function fmax48(x, y) result(res)
              real(4), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
          end function
          real(8) function fmin88(x, y) result (res)
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
          end function
          real(4) function fmin44(x, y) result (res)
              real(4), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
          end function
          real(8) function fmin84(x, y) result(res)
              real(8), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
          end function
          real(8) function fmin48(x, y) result(res)
              real(4), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
          end function
      end module
      
      real(8) function code(x, y, z, t, a, b)
      use fmin_fmax_functions
          real(8), intent (in) :: x
          real(8), intent (in) :: y
          real(8), intent (in) :: z
          real(8), intent (in) :: t
          real(8), intent (in) :: a
          real(8), intent (in) :: b
          real(8) :: t_1
          real(8) :: tmp
          t_1 = ((t - (-457.9610022158428d0)) / z) - 36.52704169880642d0
          if (z <= (-34000.0d0)) then
              tmp = x + ((3.13060547623d0 + (t_1 * (1.0d0 / z))) * y)
          else if (z <= 122.0d0) then
              tmp = x + ((y * ((((((((z * 3.13060547623d0) + 11.1667541262d0) * z) + t) * z) + a) * z) + b)) / ((((31.4690115749d0 * z) + 11.9400905721d0) * z) + 0.607771387771d0))
          else
              tmp = (((t_1 / z) - (-3.13060547623d0)) * y) + x
          end if
          code = tmp
      end function
      
      public static double code(double x, double y, double z, double t, double a, double b) {
      	double t_1 = ((t - -457.9610022158428) / z) - 36.52704169880642;
      	double tmp;
      	if (z <= -34000.0) {
      		tmp = x + ((3.13060547623 + (t_1 * (1.0 / z))) * y);
      	} else if (z <= 122.0) {
      		tmp = x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / ((((31.4690115749 * z) + 11.9400905721) * z) + 0.607771387771));
      	} else {
      		tmp = (((t_1 / z) - -3.13060547623) * y) + x;
      	}
      	return tmp;
      }
      
      def code(x, y, z, t, a, b):
      	t_1 = ((t - -457.9610022158428) / z) - 36.52704169880642
      	tmp = 0
      	if z <= -34000.0:
      		tmp = x + ((3.13060547623 + (t_1 * (1.0 / z))) * y)
      	elif z <= 122.0:
      		tmp = x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / ((((31.4690115749 * z) + 11.9400905721) * z) + 0.607771387771))
      	else:
      		tmp = (((t_1 / z) - -3.13060547623) * y) + x
      	return tmp
      
      function code(x, y, z, t, a, b)
      	t_1 = Float64(Float64(Float64(t - -457.9610022158428) / z) - 36.52704169880642)
      	tmp = 0.0
      	if (z <= -34000.0)
      		tmp = Float64(x + Float64(Float64(3.13060547623 + Float64(t_1 * Float64(1.0 / z))) * y));
      	elseif (z <= 122.0)
      		tmp = Float64(x + Float64(Float64(y * Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / Float64(Float64(Float64(Float64(31.4690115749 * z) + 11.9400905721) * z) + 0.607771387771)));
      	else
      		tmp = Float64(Float64(Float64(Float64(t_1 / z) - -3.13060547623) * y) + x);
      	end
      	return tmp
      end
      
      function tmp_2 = code(x, y, z, t, a, b)
      	t_1 = ((t - -457.9610022158428) / z) - 36.52704169880642;
      	tmp = 0.0;
      	if (z <= -34000.0)
      		tmp = x + ((3.13060547623 + (t_1 * (1.0 / z))) * y);
      	elseif (z <= 122.0)
      		tmp = x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / ((((31.4690115749 * z) + 11.9400905721) * z) + 0.607771387771));
      	else
      		tmp = (((t_1 / z) - -3.13060547623) * y) + x;
      	end
      	tmp_2 = tmp;
      end
      
      code[x_, y_, z_, t_, a_, b_] := Block[{t$95$1 = N[(N[(N[(t - -457.9610022158428), $MachinePrecision] / z), $MachinePrecision] - 36.52704169880642), $MachinePrecision]}, If[LessEqual[z, -34000.0], N[(x + N[(N[(3.13060547623 + N[(t$95$1 * N[(1.0 / z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision], If[LessEqual[z, 122.0], N[(x + N[(N[(y * N[(N[(N[(N[(N[(N[(N[(N[(z * 3.13060547623), $MachinePrecision] + 11.1667541262), $MachinePrecision] * z), $MachinePrecision] + t), $MachinePrecision] * z), $MachinePrecision] + a), $MachinePrecision] * z), $MachinePrecision] + b), $MachinePrecision]), $MachinePrecision] / N[(N[(N[(N[(31.4690115749 * z), $MachinePrecision] + 11.9400905721), $MachinePrecision] * z), $MachinePrecision] + 0.607771387771), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[(N[(N[(N[(t$95$1 / z), $MachinePrecision] - -3.13060547623), $MachinePrecision] * y), $MachinePrecision] + x), $MachinePrecision]]]]
      
      \begin{array}{l}
      t_1 := \frac{t - -457.9610022158428}{z} - 36.52704169880642\\
      \mathbf{if}\;z \leq -34000:\\
      \;\;\;\;x + \left(3.13060547623 + t\_1 \cdot \frac{1}{z}\right) \cdot y\\
      
      \mathbf{elif}\;z \leq 122:\\
      \;\;\;\;x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(31.4690115749 \cdot z + 11.9400905721\right) \cdot z + 0.607771387771}\\
      
      \mathbf{else}:\\
      \;\;\;\;\left(\frac{t\_1}{z} - -3.13060547623\right) \cdot y + x\\
      
      
      \end{array}
      
      Derivation
      1. Split input into 3 regimes
      2. if z < -34000

        1. Initial program 58.1%

          \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
        2. Applied rewrites60.1%

          \[\leadsto x + \color{blue}{\frac{b + \left(a + \left(t + \left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z\right) \cdot z\right) \cdot z}{\left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z - -0.607771387771} \cdot y} \]
        3. Taylor expanded in z around -inf

          \[\leadsto x + \color{blue}{\left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right)} \cdot y \]
        4. Step-by-step derivation
          1. lower-+.f64N/A

            \[\leadsto x + \left(\frac{313060547623}{100000000000} + \color{blue}{-1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
          2. lower-*.f64N/A

            \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \color{blue}{\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
          3. lower-/.f64N/A

            \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{\color{blue}{z}}\right) \cdot y \]
          4. lower-+.f64N/A

            \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
          5. lower-*.f64N/A

            \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
          6. lower-/.f64N/A

            \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
          7. lower-+.f6457.0%

            \[\leadsto x + \left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right) \cdot y \]
        5. Applied rewrites57.0%

          \[\leadsto x + \color{blue}{\left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right)} \cdot y \]
        6. Step-by-step derivation
          1. lift-*.f64N/A

            \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \color{blue}{\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
          2. mul-1-negN/A

            \[\leadsto x + \left(\frac{313060547623}{100000000000} + \left(\mathsf{neg}\left(\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right)\right)\right) \cdot y \]
          3. lift-/.f64N/A

            \[\leadsto x + \left(\frac{313060547623}{100000000000} + \left(\mathsf{neg}\left(\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right)\right)\right) \cdot y \]
          4. mult-flipN/A

            \[\leadsto x + \left(\frac{313060547623}{100000000000} + \left(\mathsf{neg}\left(\left(\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}\right) \cdot \frac{1}{z}\right)\right)\right) \cdot y \]
          5. distribute-lft-neg-inN/A

            \[\leadsto x + \left(\frac{313060547623}{100000000000} + \left(\mathsf{neg}\left(\left(\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}\right)\right)\right) \cdot \color{blue}{\frac{1}{z}}\right) \cdot y \]
          6. lower-*.f64N/A

            \[\leadsto x + \left(\frac{313060547623}{100000000000} + \left(\mathsf{neg}\left(\left(\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}\right)\right)\right) \cdot \color{blue}{\frac{1}{z}}\right) \cdot y \]
        7. Applied rewrites56.9%

          \[\leadsto x + \left(3.13060547623 + \left(\frac{t - -457.9610022158428}{z} - 36.52704169880642\right) \cdot \color{blue}{\frac{1}{z}}\right) \cdot y \]

        if -34000 < z < 122

        1. Initial program 58.1%

          \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
        2. Taylor expanded in z around 0

          \[\leadsto x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\color{blue}{\frac{314690115749}{10000000000}} \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
        3. Step-by-step derivation
          1. Applied rewrites54.7%

            \[\leadsto x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\color{blue}{31.4690115749} \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]

          if 122 < z

          1. Initial program 58.1%

            \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
          2. Applied rewrites60.1%

            \[\leadsto x + \color{blue}{\frac{b + \left(a + \left(t + \left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z\right) \cdot z\right) \cdot z}{\left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z - -0.607771387771} \cdot y} \]
          3. Taylor expanded in z around -inf

            \[\leadsto x + \color{blue}{\left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right)} \cdot y \]
          4. Step-by-step derivation
            1. lower-+.f64N/A

              \[\leadsto x + \left(\frac{313060547623}{100000000000} + \color{blue}{-1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
            2. lower-*.f64N/A

              \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \color{blue}{\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
            3. lower-/.f64N/A

              \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{\color{blue}{z}}\right) \cdot y \]
            4. lower-+.f64N/A

              \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
            5. lower-*.f64N/A

              \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
            6. lower-/.f64N/A

              \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
            7. lower-+.f6457.0%

              \[\leadsto x + \left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right) \cdot y \]
          5. Applied rewrites57.0%

            \[\leadsto x + \color{blue}{\left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right)} \cdot y \]
          6. Step-by-step derivation
            1. lift-+.f64N/A

              \[\leadsto \color{blue}{x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y} \]
            2. +-commutativeN/A

              \[\leadsto \color{blue}{\left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y + x} \]
            3. lower-+.f6457.0%

              \[\leadsto \color{blue}{\left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right) \cdot y + x} \]
          7. Applied rewrites57.0%

            \[\leadsto \color{blue}{\left(\frac{\frac{t - -457.9610022158428}{z} - 36.52704169880642}{z} - -3.13060547623\right) \cdot y + x} \]
        4. Recombined 3 regimes into one program.
        5. Add Preprocessing

        Alternative 4: 97.3% accurate, 0.5× speedup?

        \[\begin{array}{l} \mathbf{if}\;x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \leq \infty:\\ \;\;\;\;x + \left(\frac{-1}{-0.607771387771 - \left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z} \cdot \left(\left(\left(\left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)\right) \cdot y\\ \mathbf{else}:\\ \;\;\;\;\left(\frac{\frac{t - -457.9610022158428}{z} - 36.52704169880642}{z} - -3.13060547623\right) \cdot y + x\\ \end{array} \]
        (FPCore (x y z t a b)
          :precision binary64
          (if (<=
             (+
              x
              (/
               (*
                y
                (+
                 (*
                  (+
                   (* (+ (* (+ (* z 3.13060547623) 11.1667541262) z) t) z)
                   a)
                  z)
                 b))
               (+
                (*
                 (+
                  (* (+ (* (+ z 15.234687407) z) 31.4690115749) z)
                  11.9400905721)
                 z)
                0.607771387771)))
             INFINITY)
          (+
           x
           (*
            (*
             (/
              -1.0
              (-
               -0.607771387771
               (*
                (-
                 (* (- (* (- z -15.234687407) z) -31.4690115749) z)
                 -11.9400905721)
                z)))
             (+
              (*
               (+ (* (+ (* (- (* 3.13060547623 z) -11.1667541262) z) t) z) a)
               z)
              b))
            y))
          (+
           (*
            (-
             (/ (- (/ (- t -457.9610022158428) z) 36.52704169880642) z)
             -3.13060547623)
            y)
           x)))
        double code(double x, double y, double z, double t, double a, double b) {
        	double tmp;
        	if ((x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))) <= ((double) INFINITY)) {
        		tmp = x + (((-1.0 / (-0.607771387771 - ((((((z - -15.234687407) * z) - -31.4690115749) * z) - -11.9400905721) * z))) * ((((((((3.13060547623 * z) - -11.1667541262) * z) + t) * z) + a) * z) + b)) * y);
        	} else {
        		tmp = ((((((t - -457.9610022158428) / z) - 36.52704169880642) / z) - -3.13060547623) * y) + x;
        	}
        	return tmp;
        }
        
        public static double code(double x, double y, double z, double t, double a, double b) {
        	double tmp;
        	if ((x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))) <= Double.POSITIVE_INFINITY) {
        		tmp = x + (((-1.0 / (-0.607771387771 - ((((((z - -15.234687407) * z) - -31.4690115749) * z) - -11.9400905721) * z))) * ((((((((3.13060547623 * z) - -11.1667541262) * z) + t) * z) + a) * z) + b)) * y);
        	} else {
        		tmp = ((((((t - -457.9610022158428) / z) - 36.52704169880642) / z) - -3.13060547623) * y) + x;
        	}
        	return tmp;
        }
        
        def code(x, y, z, t, a, b):
        	tmp = 0
        	if (x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))) <= math.inf:
        		tmp = x + (((-1.0 / (-0.607771387771 - ((((((z - -15.234687407) * z) - -31.4690115749) * z) - -11.9400905721) * z))) * ((((((((3.13060547623 * z) - -11.1667541262) * z) + t) * z) + a) * z) + b)) * y)
        	else:
        		tmp = ((((((t - -457.9610022158428) / z) - 36.52704169880642) / z) - -3.13060547623) * y) + x
        	return tmp
        
        function code(x, y, z, t, a, b)
        	tmp = 0.0
        	if (Float64(x + Float64(Float64(y * Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))) <= Inf)
        		tmp = Float64(x + Float64(Float64(Float64(-1.0 / Float64(-0.607771387771 - Float64(Float64(Float64(Float64(Float64(Float64(z - -15.234687407) * z) - -31.4690115749) * z) - -11.9400905721) * z))) * Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(3.13060547623 * z) - -11.1667541262) * z) + t) * z) + a) * z) + b)) * y));
        	else
        		tmp = Float64(Float64(Float64(Float64(Float64(Float64(Float64(t - -457.9610022158428) / z) - 36.52704169880642) / z) - -3.13060547623) * y) + x);
        	end
        	return tmp
        end
        
        function tmp_2 = code(x, y, z, t, a, b)
        	tmp = 0.0;
        	if ((x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))) <= Inf)
        		tmp = x + (((-1.0 / (-0.607771387771 - ((((((z - -15.234687407) * z) - -31.4690115749) * z) - -11.9400905721) * z))) * ((((((((3.13060547623 * z) - -11.1667541262) * z) + t) * z) + a) * z) + b)) * y);
        	else
        		tmp = ((((((t - -457.9610022158428) / z) - 36.52704169880642) / z) - -3.13060547623) * y) + x;
        	end
        	tmp_2 = tmp;
        end
        
        code[x_, y_, z_, t_, a_, b_] := If[LessEqual[N[(x + N[(N[(y * N[(N[(N[(N[(N[(N[(N[(N[(z * 3.13060547623), $MachinePrecision] + 11.1667541262), $MachinePrecision] * z), $MachinePrecision] + t), $MachinePrecision] * z), $MachinePrecision] + a), $MachinePrecision] * z), $MachinePrecision] + b), $MachinePrecision]), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(z + 15.234687407), $MachinePrecision] * z), $MachinePrecision] + 31.4690115749), $MachinePrecision] * z), $MachinePrecision] + 11.9400905721), $MachinePrecision] * z), $MachinePrecision] + 0.607771387771), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], Infinity], N[(x + N[(N[(N[(-1.0 / N[(-0.607771387771 - N[(N[(N[(N[(N[(N[(z - -15.234687407), $MachinePrecision] * z), $MachinePrecision] - -31.4690115749), $MachinePrecision] * z), $MachinePrecision] - -11.9400905721), $MachinePrecision] * z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] * N[(N[(N[(N[(N[(N[(N[(N[(3.13060547623 * z), $MachinePrecision] - -11.1667541262), $MachinePrecision] * z), $MachinePrecision] + t), $MachinePrecision] * z), $MachinePrecision] + a), $MachinePrecision] * z), $MachinePrecision] + b), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision], N[(N[(N[(N[(N[(N[(N[(t - -457.9610022158428), $MachinePrecision] / z), $MachinePrecision] - 36.52704169880642), $MachinePrecision] / z), $MachinePrecision] - -3.13060547623), $MachinePrecision] * y), $MachinePrecision] + x), $MachinePrecision]]
        
        \begin{array}{l}
        \mathbf{if}\;x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \leq \infty:\\
        \;\;\;\;x + \left(\frac{-1}{-0.607771387771 - \left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z} \cdot \left(\left(\left(\left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)\right) \cdot y\\
        
        \mathbf{else}:\\
        \;\;\;\;\left(\frac{\frac{t - -457.9610022158428}{z} - 36.52704169880642}{z} - -3.13060547623\right) \cdot y + x\\
        
        
        \end{array}
        
        Derivation
        1. Split input into 2 regimes
        2. if (+.f64 x (/.f64 (*.f64 y (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 z #s(literal 313060547623/100000000000 binary64)) #s(literal 55833770631/5000000000 binary64)) z) t) z) a) z) b)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 z #s(literal 15234687407/1000000000 binary64)) z) #s(literal 314690115749/10000000000 binary64)) z) #s(literal 119400905721/10000000000 binary64)) z) #s(literal 607771387771/1000000000000 binary64)))) < +inf.0

          1. Initial program 58.1%

            \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
          2. Applied rewrites60.1%

            \[\leadsto x + \color{blue}{\frac{b + \left(a + \left(t + \left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z\right) \cdot z\right) \cdot z}{\left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z - -0.607771387771} \cdot y} \]
          3. Applied rewrites60.1%

            \[\leadsto x + \color{blue}{\left(\frac{-1}{-0.607771387771 - \left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z} \cdot \left(\left(\left(\left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)\right)} \cdot y \]

          if +inf.0 < (+.f64 x (/.f64 (*.f64 y (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 z #s(literal 313060547623/100000000000 binary64)) #s(literal 55833770631/5000000000 binary64)) z) t) z) a) z) b)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 z #s(literal 15234687407/1000000000 binary64)) z) #s(literal 314690115749/10000000000 binary64)) z) #s(literal 119400905721/10000000000 binary64)) z) #s(literal 607771387771/1000000000000 binary64))))

          1. Initial program 58.1%

            \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
          2. Applied rewrites60.1%

            \[\leadsto x + \color{blue}{\frac{b + \left(a + \left(t + \left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z\right) \cdot z\right) \cdot z}{\left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z - -0.607771387771} \cdot y} \]
          3. Taylor expanded in z around -inf

            \[\leadsto x + \color{blue}{\left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right)} \cdot y \]
          4. Step-by-step derivation
            1. lower-+.f64N/A

              \[\leadsto x + \left(\frac{313060547623}{100000000000} + \color{blue}{-1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
            2. lower-*.f64N/A

              \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \color{blue}{\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
            3. lower-/.f64N/A

              \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{\color{blue}{z}}\right) \cdot y \]
            4. lower-+.f64N/A

              \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
            5. lower-*.f64N/A

              \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
            6. lower-/.f64N/A

              \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
            7. lower-+.f6457.0%

              \[\leadsto x + \left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right) \cdot y \]
          5. Applied rewrites57.0%

            \[\leadsto x + \color{blue}{\left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right)} \cdot y \]
          6. Step-by-step derivation
            1. lift-+.f64N/A

              \[\leadsto \color{blue}{x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y} \]
            2. +-commutativeN/A

              \[\leadsto \color{blue}{\left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y + x} \]
            3. lower-+.f6457.0%

              \[\leadsto \color{blue}{\left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right) \cdot y + x} \]
          7. Applied rewrites57.0%

            \[\leadsto \color{blue}{\left(\frac{\frac{t - -457.9610022158428}{z} - 36.52704169880642}{z} - -3.13060547623\right) \cdot y + x} \]
        3. Recombined 2 regimes into one program.
        4. Add Preprocessing

        Alternative 5: 96.6% accurate, 1.1× speedup?

        \[\begin{array}{l} t_1 := \frac{t - -457.9610022158428}{z} - 36.52704169880642\\ \mathbf{if}\;z \leq -4.6 \cdot 10^{+14}:\\ \;\;\;\;x + \left(3.13060547623 + t\_1 \cdot \frac{1}{z}\right) \cdot y\\ \mathbf{elif}\;z \leq 500:\\ \;\;\;\;x + \frac{y \cdot \left(\left(t \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771}\\ \mathbf{else}:\\ \;\;\;\;\left(\frac{t\_1}{z} - -3.13060547623\right) \cdot y + x\\ \end{array} \]
        (FPCore (x y z t a b)
          :precision binary64
          (let* ((t_1 (- (/ (- t -457.9610022158428) z) 36.52704169880642)))
          (if (<= z -4.6e+14)
            (+ x (* (+ 3.13060547623 (* t_1 (/ 1.0 z))) y))
            (if (<= z 500.0)
              (+
               x
               (/
                (* y (+ (* (+ (* t z) a) z) b))
                (+
                 (*
                  (+
                   (* (+ (* (+ z 15.234687407) z) 31.4690115749) z)
                   11.9400905721)
                  z)
                 0.607771387771)))
              (+ (* (- (/ t_1 z) -3.13060547623) y) x)))))
        double code(double x, double y, double z, double t, double a, double b) {
        	double t_1 = ((t - -457.9610022158428) / z) - 36.52704169880642;
        	double tmp;
        	if (z <= -4.6e+14) {
        		tmp = x + ((3.13060547623 + (t_1 * (1.0 / z))) * y);
        	} else if (z <= 500.0) {
        		tmp = x + ((y * ((((t * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771));
        	} else {
        		tmp = (((t_1 / z) - -3.13060547623) * y) + x;
        	}
        	return tmp;
        }
        
        module fmin_fmax_functions
            implicit none
            private
            public fmax
            public fmin
        
            interface fmax
                module procedure fmax88
                module procedure fmax44
                module procedure fmax84
                module procedure fmax48
            end interface
            interface fmin
                module procedure fmin88
                module procedure fmin44
                module procedure fmin84
                module procedure fmin48
            end interface
        contains
            real(8) function fmax88(x, y) result (res)
                real(8), intent (in) :: x
                real(8), intent (in) :: y
                res = merge(y, merge(x, max(x, y), y /= y), x /= x)
            end function
            real(4) function fmax44(x, y) result (res)
                real(4), intent (in) :: x
                real(4), intent (in) :: y
                res = merge(y, merge(x, max(x, y), y /= y), x /= x)
            end function
            real(8) function fmax84(x, y) result(res)
                real(8), intent (in) :: x
                real(4), intent (in) :: y
                res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
            end function
            real(8) function fmax48(x, y) result(res)
                real(4), intent (in) :: x
                real(8), intent (in) :: y
                res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
            end function
            real(8) function fmin88(x, y) result (res)
                real(8), intent (in) :: x
                real(8), intent (in) :: y
                res = merge(y, merge(x, min(x, y), y /= y), x /= x)
            end function
            real(4) function fmin44(x, y) result (res)
                real(4), intent (in) :: x
                real(4), intent (in) :: y
                res = merge(y, merge(x, min(x, y), y /= y), x /= x)
            end function
            real(8) function fmin84(x, y) result(res)
                real(8), intent (in) :: x
                real(4), intent (in) :: y
                res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
            end function
            real(8) function fmin48(x, y) result(res)
                real(4), intent (in) :: x
                real(8), intent (in) :: y
                res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
            end function
        end module
        
        real(8) function code(x, y, z, t, a, b)
        use fmin_fmax_functions
            real(8), intent (in) :: x
            real(8), intent (in) :: y
            real(8), intent (in) :: z
            real(8), intent (in) :: t
            real(8), intent (in) :: a
            real(8), intent (in) :: b
            real(8) :: t_1
            real(8) :: tmp
            t_1 = ((t - (-457.9610022158428d0)) / z) - 36.52704169880642d0
            if (z <= (-4.6d+14)) then
                tmp = x + ((3.13060547623d0 + (t_1 * (1.0d0 / z))) * y)
            else if (z <= 500.0d0) then
                tmp = x + ((y * ((((t * z) + a) * z) + b)) / (((((((z + 15.234687407d0) * z) + 31.4690115749d0) * z) + 11.9400905721d0) * z) + 0.607771387771d0))
            else
                tmp = (((t_1 / z) - (-3.13060547623d0)) * y) + x
            end if
            code = tmp
        end function
        
        public static double code(double x, double y, double z, double t, double a, double b) {
        	double t_1 = ((t - -457.9610022158428) / z) - 36.52704169880642;
        	double tmp;
        	if (z <= -4.6e+14) {
        		tmp = x + ((3.13060547623 + (t_1 * (1.0 / z))) * y);
        	} else if (z <= 500.0) {
        		tmp = x + ((y * ((((t * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771));
        	} else {
        		tmp = (((t_1 / z) - -3.13060547623) * y) + x;
        	}
        	return tmp;
        }
        
        def code(x, y, z, t, a, b):
        	t_1 = ((t - -457.9610022158428) / z) - 36.52704169880642
        	tmp = 0
        	if z <= -4.6e+14:
        		tmp = x + ((3.13060547623 + (t_1 * (1.0 / z))) * y)
        	elif z <= 500.0:
        		tmp = x + ((y * ((((t * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))
        	else:
        		tmp = (((t_1 / z) - -3.13060547623) * y) + x
        	return tmp
        
        function code(x, y, z, t, a, b)
        	t_1 = Float64(Float64(Float64(t - -457.9610022158428) / z) - 36.52704169880642)
        	tmp = 0.0
        	if (z <= -4.6e+14)
        		tmp = Float64(x + Float64(Float64(3.13060547623 + Float64(t_1 * Float64(1.0 / z))) * y));
        	elseif (z <= 500.0)
        		tmp = Float64(x + Float64(Float64(y * Float64(Float64(Float64(Float64(t * z) + a) * z) + b)) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771)));
        	else
        		tmp = Float64(Float64(Float64(Float64(t_1 / z) - -3.13060547623) * y) + x);
        	end
        	return tmp
        end
        
        function tmp_2 = code(x, y, z, t, a, b)
        	t_1 = ((t - -457.9610022158428) / z) - 36.52704169880642;
        	tmp = 0.0;
        	if (z <= -4.6e+14)
        		tmp = x + ((3.13060547623 + (t_1 * (1.0 / z))) * y);
        	elseif (z <= 500.0)
        		tmp = x + ((y * ((((t * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771));
        	else
        		tmp = (((t_1 / z) - -3.13060547623) * y) + x;
        	end
        	tmp_2 = tmp;
        end
        
        code[x_, y_, z_, t_, a_, b_] := Block[{t$95$1 = N[(N[(N[(t - -457.9610022158428), $MachinePrecision] / z), $MachinePrecision] - 36.52704169880642), $MachinePrecision]}, If[LessEqual[z, -4.6e+14], N[(x + N[(N[(3.13060547623 + N[(t$95$1 * N[(1.0 / z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision], If[LessEqual[z, 500.0], N[(x + N[(N[(y * N[(N[(N[(N[(t * z), $MachinePrecision] + a), $MachinePrecision] * z), $MachinePrecision] + b), $MachinePrecision]), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(z + 15.234687407), $MachinePrecision] * z), $MachinePrecision] + 31.4690115749), $MachinePrecision] * z), $MachinePrecision] + 11.9400905721), $MachinePrecision] * z), $MachinePrecision] + 0.607771387771), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[(N[(N[(N[(t$95$1 / z), $MachinePrecision] - -3.13060547623), $MachinePrecision] * y), $MachinePrecision] + x), $MachinePrecision]]]]
        
        \begin{array}{l}
        t_1 := \frac{t - -457.9610022158428}{z} - 36.52704169880642\\
        \mathbf{if}\;z \leq -4.6 \cdot 10^{+14}:\\
        \;\;\;\;x + \left(3.13060547623 + t\_1 \cdot \frac{1}{z}\right) \cdot y\\
        
        \mathbf{elif}\;z \leq 500:\\
        \;\;\;\;x + \frac{y \cdot \left(\left(t \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771}\\
        
        \mathbf{else}:\\
        \;\;\;\;\left(\frac{t\_1}{z} - -3.13060547623\right) \cdot y + x\\
        
        
        \end{array}
        
        Derivation
        1. Split input into 3 regimes
        2. if z < -4.6e14

          1. Initial program 58.1%

            \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
          2. Applied rewrites60.1%

            \[\leadsto x + \color{blue}{\frac{b + \left(a + \left(t + \left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z\right) \cdot z\right) \cdot z}{\left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z - -0.607771387771} \cdot y} \]
          3. Taylor expanded in z around -inf

            \[\leadsto x + \color{blue}{\left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right)} \cdot y \]
          4. Step-by-step derivation
            1. lower-+.f64N/A

              \[\leadsto x + \left(\frac{313060547623}{100000000000} + \color{blue}{-1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
            2. lower-*.f64N/A

              \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \color{blue}{\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
            3. lower-/.f64N/A

              \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{\color{blue}{z}}\right) \cdot y \]
            4. lower-+.f64N/A

              \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
            5. lower-*.f64N/A

              \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
            6. lower-/.f64N/A

              \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
            7. lower-+.f6457.0%

              \[\leadsto x + \left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right) \cdot y \]
          5. Applied rewrites57.0%

            \[\leadsto x + \color{blue}{\left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right)} \cdot y \]
          6. Step-by-step derivation
            1. lift-*.f64N/A

              \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \color{blue}{\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
            2. mul-1-negN/A

              \[\leadsto x + \left(\frac{313060547623}{100000000000} + \left(\mathsf{neg}\left(\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right)\right)\right) \cdot y \]
            3. lift-/.f64N/A

              \[\leadsto x + \left(\frac{313060547623}{100000000000} + \left(\mathsf{neg}\left(\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right)\right)\right) \cdot y \]
            4. mult-flipN/A

              \[\leadsto x + \left(\frac{313060547623}{100000000000} + \left(\mathsf{neg}\left(\left(\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}\right) \cdot \frac{1}{z}\right)\right)\right) \cdot y \]
            5. distribute-lft-neg-inN/A

              \[\leadsto x + \left(\frac{313060547623}{100000000000} + \left(\mathsf{neg}\left(\left(\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}\right)\right)\right) \cdot \color{blue}{\frac{1}{z}}\right) \cdot y \]
            6. lower-*.f64N/A

              \[\leadsto x + \left(\frac{313060547623}{100000000000} + \left(\mathsf{neg}\left(\left(\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}\right)\right)\right) \cdot \color{blue}{\frac{1}{z}}\right) \cdot y \]
          7. Applied rewrites56.9%

            \[\leadsto x + \left(3.13060547623 + \left(\frac{t - -457.9610022158428}{z} - 36.52704169880642\right) \cdot \color{blue}{\frac{1}{z}}\right) \cdot y \]

          if -4.6e14 < z < 500

          1. Initial program 58.1%

            \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
          2. Taylor expanded in z around 0

            \[\leadsto x + \frac{y \cdot \left(\left(\color{blue}{t} \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
          3. Step-by-step derivation
            1. Applied rewrites61.1%

              \[\leadsto x + \frac{y \cdot \left(\left(\color{blue}{t} \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]

            if 500 < z

            1. Initial program 58.1%

              \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
            2. Applied rewrites60.1%

              \[\leadsto x + \color{blue}{\frac{b + \left(a + \left(t + \left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z\right) \cdot z\right) \cdot z}{\left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z - -0.607771387771} \cdot y} \]
            3. Taylor expanded in z around -inf

              \[\leadsto x + \color{blue}{\left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right)} \cdot y \]
            4. Step-by-step derivation
              1. lower-+.f64N/A

                \[\leadsto x + \left(\frac{313060547623}{100000000000} + \color{blue}{-1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
              2. lower-*.f64N/A

                \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \color{blue}{\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
              3. lower-/.f64N/A

                \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{\color{blue}{z}}\right) \cdot y \]
              4. lower-+.f64N/A

                \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
              5. lower-*.f64N/A

                \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
              6. lower-/.f64N/A

                \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
              7. lower-+.f6457.0%

                \[\leadsto x + \left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right) \cdot y \]
            5. Applied rewrites57.0%

              \[\leadsto x + \color{blue}{\left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right)} \cdot y \]
            6. Step-by-step derivation
              1. lift-+.f64N/A

                \[\leadsto \color{blue}{x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y} \]
              2. +-commutativeN/A

                \[\leadsto \color{blue}{\left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y + x} \]
              3. lower-+.f6457.0%

                \[\leadsto \color{blue}{\left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right) \cdot y + x} \]
            7. Applied rewrites57.0%

              \[\leadsto \color{blue}{\left(\frac{\frac{t - -457.9610022158428}{z} - 36.52704169880642}{z} - -3.13060547623\right) \cdot y + x} \]
          4. Recombined 3 regimes into one program.
          5. Add Preprocessing

          Alternative 6: 96.2% accurate, 1.1× speedup?

          \[\begin{array}{l} t_1 := \frac{t - -457.9610022158428}{z} - 36.52704169880642\\ \mathbf{if}\;z \leq -0.012:\\ \;\;\;\;x + \left(3.13060547623 + t\_1 \cdot \frac{1}{z}\right) \cdot y\\ \mathbf{elif}\;z \leq 122:\\ \;\;\;\;x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{11.9400905721 \cdot z + 0.607771387771}\\ \mathbf{else}:\\ \;\;\;\;\left(\frac{t\_1}{z} - -3.13060547623\right) \cdot y + x\\ \end{array} \]
          (FPCore (x y z t a b)
            :precision binary64
            (let* ((t_1 (- (/ (- t -457.9610022158428) z) 36.52704169880642)))
            (if (<= z -0.012)
              (+ x (* (+ 3.13060547623 (* t_1 (/ 1.0 z))) y))
              (if (<= z 122.0)
                (+
                 x
                 (/
                  (*
                   y
                   (+
                    (*
                     (+
                      (* (+ (* (+ (* z 3.13060547623) 11.1667541262) z) t) z)
                      a)
                     z)
                    b))
                  (+ (* 11.9400905721 z) 0.607771387771)))
                (+ (* (- (/ t_1 z) -3.13060547623) y) x)))))
          double code(double x, double y, double z, double t, double a, double b) {
          	double t_1 = ((t - -457.9610022158428) / z) - 36.52704169880642;
          	double tmp;
          	if (z <= -0.012) {
          		tmp = x + ((3.13060547623 + (t_1 * (1.0 / z))) * y);
          	} else if (z <= 122.0) {
          		tmp = x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / ((11.9400905721 * z) + 0.607771387771));
          	} else {
          		tmp = (((t_1 / z) - -3.13060547623) * y) + x;
          	}
          	return tmp;
          }
          
          module fmin_fmax_functions
              implicit none
              private
              public fmax
              public fmin
          
              interface fmax
                  module procedure fmax88
                  module procedure fmax44
                  module procedure fmax84
                  module procedure fmax48
              end interface
              interface fmin
                  module procedure fmin88
                  module procedure fmin44
                  module procedure fmin84
                  module procedure fmin48
              end interface
          contains
              real(8) function fmax88(x, y) result (res)
                  real(8), intent (in) :: x
                  real(8), intent (in) :: y
                  res = merge(y, merge(x, max(x, y), y /= y), x /= x)
              end function
              real(4) function fmax44(x, y) result (res)
                  real(4), intent (in) :: x
                  real(4), intent (in) :: y
                  res = merge(y, merge(x, max(x, y), y /= y), x /= x)
              end function
              real(8) function fmax84(x, y) result(res)
                  real(8), intent (in) :: x
                  real(4), intent (in) :: y
                  res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
              end function
              real(8) function fmax48(x, y) result(res)
                  real(4), intent (in) :: x
                  real(8), intent (in) :: y
                  res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
              end function
              real(8) function fmin88(x, y) result (res)
                  real(8), intent (in) :: x
                  real(8), intent (in) :: y
                  res = merge(y, merge(x, min(x, y), y /= y), x /= x)
              end function
              real(4) function fmin44(x, y) result (res)
                  real(4), intent (in) :: x
                  real(4), intent (in) :: y
                  res = merge(y, merge(x, min(x, y), y /= y), x /= x)
              end function
              real(8) function fmin84(x, y) result(res)
                  real(8), intent (in) :: x
                  real(4), intent (in) :: y
                  res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
              end function
              real(8) function fmin48(x, y) result(res)
                  real(4), intent (in) :: x
                  real(8), intent (in) :: y
                  res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
              end function
          end module
          
          real(8) function code(x, y, z, t, a, b)
          use fmin_fmax_functions
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              real(8), intent (in) :: z
              real(8), intent (in) :: t
              real(8), intent (in) :: a
              real(8), intent (in) :: b
              real(8) :: t_1
              real(8) :: tmp
              t_1 = ((t - (-457.9610022158428d0)) / z) - 36.52704169880642d0
              if (z <= (-0.012d0)) then
                  tmp = x + ((3.13060547623d0 + (t_1 * (1.0d0 / z))) * y)
              else if (z <= 122.0d0) then
                  tmp = x + ((y * ((((((((z * 3.13060547623d0) + 11.1667541262d0) * z) + t) * z) + a) * z) + b)) / ((11.9400905721d0 * z) + 0.607771387771d0))
              else
                  tmp = (((t_1 / z) - (-3.13060547623d0)) * y) + x
              end if
              code = tmp
          end function
          
          public static double code(double x, double y, double z, double t, double a, double b) {
          	double t_1 = ((t - -457.9610022158428) / z) - 36.52704169880642;
          	double tmp;
          	if (z <= -0.012) {
          		tmp = x + ((3.13060547623 + (t_1 * (1.0 / z))) * y);
          	} else if (z <= 122.0) {
          		tmp = x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / ((11.9400905721 * z) + 0.607771387771));
          	} else {
          		tmp = (((t_1 / z) - -3.13060547623) * y) + x;
          	}
          	return tmp;
          }
          
          def code(x, y, z, t, a, b):
          	t_1 = ((t - -457.9610022158428) / z) - 36.52704169880642
          	tmp = 0
          	if z <= -0.012:
          		tmp = x + ((3.13060547623 + (t_1 * (1.0 / z))) * y)
          	elif z <= 122.0:
          		tmp = x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / ((11.9400905721 * z) + 0.607771387771))
          	else:
          		tmp = (((t_1 / z) - -3.13060547623) * y) + x
          	return tmp
          
          function code(x, y, z, t, a, b)
          	t_1 = Float64(Float64(Float64(t - -457.9610022158428) / z) - 36.52704169880642)
          	tmp = 0.0
          	if (z <= -0.012)
          		tmp = Float64(x + Float64(Float64(3.13060547623 + Float64(t_1 * Float64(1.0 / z))) * y));
          	elseif (z <= 122.0)
          		tmp = Float64(x + Float64(Float64(y * Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / Float64(Float64(11.9400905721 * z) + 0.607771387771)));
          	else
          		tmp = Float64(Float64(Float64(Float64(t_1 / z) - -3.13060547623) * y) + x);
          	end
          	return tmp
          end
          
          function tmp_2 = code(x, y, z, t, a, b)
          	t_1 = ((t - -457.9610022158428) / z) - 36.52704169880642;
          	tmp = 0.0;
          	if (z <= -0.012)
          		tmp = x + ((3.13060547623 + (t_1 * (1.0 / z))) * y);
          	elseif (z <= 122.0)
          		tmp = x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / ((11.9400905721 * z) + 0.607771387771));
          	else
          		tmp = (((t_1 / z) - -3.13060547623) * y) + x;
          	end
          	tmp_2 = tmp;
          end
          
          code[x_, y_, z_, t_, a_, b_] := Block[{t$95$1 = N[(N[(N[(t - -457.9610022158428), $MachinePrecision] / z), $MachinePrecision] - 36.52704169880642), $MachinePrecision]}, If[LessEqual[z, -0.012], N[(x + N[(N[(3.13060547623 + N[(t$95$1 * N[(1.0 / z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision], If[LessEqual[z, 122.0], N[(x + N[(N[(y * N[(N[(N[(N[(N[(N[(N[(N[(z * 3.13060547623), $MachinePrecision] + 11.1667541262), $MachinePrecision] * z), $MachinePrecision] + t), $MachinePrecision] * z), $MachinePrecision] + a), $MachinePrecision] * z), $MachinePrecision] + b), $MachinePrecision]), $MachinePrecision] / N[(N[(11.9400905721 * z), $MachinePrecision] + 0.607771387771), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[(N[(N[(N[(t$95$1 / z), $MachinePrecision] - -3.13060547623), $MachinePrecision] * y), $MachinePrecision] + x), $MachinePrecision]]]]
          
          \begin{array}{l}
          t_1 := \frac{t - -457.9610022158428}{z} - 36.52704169880642\\
          \mathbf{if}\;z \leq -0.012:\\
          \;\;\;\;x + \left(3.13060547623 + t\_1 \cdot \frac{1}{z}\right) \cdot y\\
          
          \mathbf{elif}\;z \leq 122:\\
          \;\;\;\;x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{11.9400905721 \cdot z + 0.607771387771}\\
          
          \mathbf{else}:\\
          \;\;\;\;\left(\frac{t\_1}{z} - -3.13060547623\right) \cdot y + x\\
          
          
          \end{array}
          
          Derivation
          1. Split input into 3 regimes
          2. if z < -0.012

            1. Initial program 58.1%

              \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
            2. Applied rewrites60.1%

              \[\leadsto x + \color{blue}{\frac{b + \left(a + \left(t + \left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z\right) \cdot z\right) \cdot z}{\left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z - -0.607771387771} \cdot y} \]
            3. Taylor expanded in z around -inf

              \[\leadsto x + \color{blue}{\left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right)} \cdot y \]
            4. Step-by-step derivation
              1. lower-+.f64N/A

                \[\leadsto x + \left(\frac{313060547623}{100000000000} + \color{blue}{-1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
              2. lower-*.f64N/A

                \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \color{blue}{\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
              3. lower-/.f64N/A

                \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{\color{blue}{z}}\right) \cdot y \]
              4. lower-+.f64N/A

                \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
              5. lower-*.f64N/A

                \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
              6. lower-/.f64N/A

                \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
              7. lower-+.f6457.0%

                \[\leadsto x + \left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right) \cdot y \]
            5. Applied rewrites57.0%

              \[\leadsto x + \color{blue}{\left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right)} \cdot y \]
            6. Step-by-step derivation
              1. lift-*.f64N/A

                \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \color{blue}{\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
              2. mul-1-negN/A

                \[\leadsto x + \left(\frac{313060547623}{100000000000} + \left(\mathsf{neg}\left(\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right)\right)\right) \cdot y \]
              3. lift-/.f64N/A

                \[\leadsto x + \left(\frac{313060547623}{100000000000} + \left(\mathsf{neg}\left(\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right)\right)\right) \cdot y \]
              4. mult-flipN/A

                \[\leadsto x + \left(\frac{313060547623}{100000000000} + \left(\mathsf{neg}\left(\left(\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}\right) \cdot \frac{1}{z}\right)\right)\right) \cdot y \]
              5. distribute-lft-neg-inN/A

                \[\leadsto x + \left(\frac{313060547623}{100000000000} + \left(\mathsf{neg}\left(\left(\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}\right)\right)\right) \cdot \color{blue}{\frac{1}{z}}\right) \cdot y \]
              6. lower-*.f64N/A

                \[\leadsto x + \left(\frac{313060547623}{100000000000} + \left(\mathsf{neg}\left(\left(\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}\right)\right)\right) \cdot \color{blue}{\frac{1}{z}}\right) \cdot y \]
            7. Applied rewrites56.9%

              \[\leadsto x + \left(3.13060547623 + \left(\frac{t - -457.9610022158428}{z} - 36.52704169880642\right) \cdot \color{blue}{\frac{1}{z}}\right) \cdot y \]

            if -0.012 < z < 122

            1. Initial program 58.1%

              \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
            2. Taylor expanded in z around 0

              \[\leadsto x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\color{blue}{\frac{119400905721}{10000000000}} \cdot z + 0.607771387771} \]
            3. Step-by-step derivation
              1. Applied rewrites53.6%

                \[\leadsto x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\color{blue}{11.9400905721} \cdot z + 0.607771387771} \]

              if 122 < z

              1. Initial program 58.1%

                \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
              2. Applied rewrites60.1%

                \[\leadsto x + \color{blue}{\frac{b + \left(a + \left(t + \left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z\right) \cdot z\right) \cdot z}{\left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z - -0.607771387771} \cdot y} \]
              3. Taylor expanded in z around -inf

                \[\leadsto x + \color{blue}{\left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right)} \cdot y \]
              4. Step-by-step derivation
                1. lower-+.f64N/A

                  \[\leadsto x + \left(\frac{313060547623}{100000000000} + \color{blue}{-1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
                2. lower-*.f64N/A

                  \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \color{blue}{\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
                3. lower-/.f64N/A

                  \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{\color{blue}{z}}\right) \cdot y \]
                4. lower-+.f64N/A

                  \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
                5. lower-*.f64N/A

                  \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
                6. lower-/.f64N/A

                  \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
                7. lower-+.f6457.0%

                  \[\leadsto x + \left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right) \cdot y \]
              5. Applied rewrites57.0%

                \[\leadsto x + \color{blue}{\left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right)} \cdot y \]
              6. Step-by-step derivation
                1. lift-+.f64N/A

                  \[\leadsto \color{blue}{x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y} \]
                2. +-commutativeN/A

                  \[\leadsto \color{blue}{\left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y + x} \]
                3. lower-+.f6457.0%

                  \[\leadsto \color{blue}{\left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right) \cdot y + x} \]
              7. Applied rewrites57.0%

                \[\leadsto \color{blue}{\left(\frac{\frac{t - -457.9610022158428}{z} - 36.52704169880642}{z} - -3.13060547623\right) \cdot y + x} \]
            4. Recombined 3 regimes into one program.
            5. Add Preprocessing

            Alternative 7: 96.2% accurate, 0.5× speedup?

            \[\begin{array}{l} \mathbf{if}\;x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \leq \infty:\\ \;\;\;\;x - \left(b + \left(a + \left(t + \left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z\right) \cdot z\right) \cdot z\right) \cdot \frac{y}{-0.607771387771 - \left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z}\\ \mathbf{else}:\\ \;\;\;\;\left(\frac{\frac{t - -457.9610022158428}{z} - 36.52704169880642}{z} - -3.13060547623\right) \cdot y + x\\ \end{array} \]
            (FPCore (x y z t a b)
              :precision binary64
              (if (<=
                 (+
                  x
                  (/
                   (*
                    y
                    (+
                     (*
                      (+
                       (* (+ (* (+ (* z 3.13060547623) 11.1667541262) z) t) z)
                       a)
                      z)
                     b))
                   (+
                    (*
                     (+
                      (* (+ (* (+ z 15.234687407) z) 31.4690115749) z)
                      11.9400905721)
                     z)
                    0.607771387771)))
                 INFINITY)
              (-
               x
               (*
                (+
                 b
                 (*
                  (+ a (* (+ t (* (- (* 3.13060547623 z) -11.1667541262) z)) z))
                  z))
                (/
                 y
                 (-
                  -0.607771387771
                  (*
                   (-
                    (* (- (* (- z -15.234687407) z) -31.4690115749) z)
                    -11.9400905721)
                   z)))))
              (+
               (*
                (-
                 (/ (- (/ (- t -457.9610022158428) z) 36.52704169880642) z)
                 -3.13060547623)
                y)
               x)))
            double code(double x, double y, double z, double t, double a, double b) {
            	double tmp;
            	if ((x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))) <= ((double) INFINITY)) {
            		tmp = x - ((b + ((a + ((t + (((3.13060547623 * z) - -11.1667541262) * z)) * z)) * z)) * (y / (-0.607771387771 - ((((((z - -15.234687407) * z) - -31.4690115749) * z) - -11.9400905721) * z))));
            	} else {
            		tmp = ((((((t - -457.9610022158428) / z) - 36.52704169880642) / z) - -3.13060547623) * y) + x;
            	}
            	return tmp;
            }
            
            public static double code(double x, double y, double z, double t, double a, double b) {
            	double tmp;
            	if ((x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))) <= Double.POSITIVE_INFINITY) {
            		tmp = x - ((b + ((a + ((t + (((3.13060547623 * z) - -11.1667541262) * z)) * z)) * z)) * (y / (-0.607771387771 - ((((((z - -15.234687407) * z) - -31.4690115749) * z) - -11.9400905721) * z))));
            	} else {
            		tmp = ((((((t - -457.9610022158428) / z) - 36.52704169880642) / z) - -3.13060547623) * y) + x;
            	}
            	return tmp;
            }
            
            def code(x, y, z, t, a, b):
            	tmp = 0
            	if (x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))) <= math.inf:
            		tmp = x - ((b + ((a + ((t + (((3.13060547623 * z) - -11.1667541262) * z)) * z)) * z)) * (y / (-0.607771387771 - ((((((z - -15.234687407) * z) - -31.4690115749) * z) - -11.9400905721) * z))))
            	else:
            		tmp = ((((((t - -457.9610022158428) / z) - 36.52704169880642) / z) - -3.13060547623) * y) + x
            	return tmp
            
            function code(x, y, z, t, a, b)
            	tmp = 0.0
            	if (Float64(x + Float64(Float64(y * Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))) <= Inf)
            		tmp = Float64(x - Float64(Float64(b + Float64(Float64(a + Float64(Float64(t + Float64(Float64(Float64(3.13060547623 * z) - -11.1667541262) * z)) * z)) * z)) * Float64(y / Float64(-0.607771387771 - Float64(Float64(Float64(Float64(Float64(Float64(z - -15.234687407) * z) - -31.4690115749) * z) - -11.9400905721) * z)))));
            	else
            		tmp = Float64(Float64(Float64(Float64(Float64(Float64(Float64(t - -457.9610022158428) / z) - 36.52704169880642) / z) - -3.13060547623) * y) + x);
            	end
            	return tmp
            end
            
            function tmp_2 = code(x, y, z, t, a, b)
            	tmp = 0.0;
            	if ((x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))) <= Inf)
            		tmp = x - ((b + ((a + ((t + (((3.13060547623 * z) - -11.1667541262) * z)) * z)) * z)) * (y / (-0.607771387771 - ((((((z - -15.234687407) * z) - -31.4690115749) * z) - -11.9400905721) * z))));
            	else
            		tmp = ((((((t - -457.9610022158428) / z) - 36.52704169880642) / z) - -3.13060547623) * y) + x;
            	end
            	tmp_2 = tmp;
            end
            
            code[x_, y_, z_, t_, a_, b_] := If[LessEqual[N[(x + N[(N[(y * N[(N[(N[(N[(N[(N[(N[(N[(z * 3.13060547623), $MachinePrecision] + 11.1667541262), $MachinePrecision] * z), $MachinePrecision] + t), $MachinePrecision] * z), $MachinePrecision] + a), $MachinePrecision] * z), $MachinePrecision] + b), $MachinePrecision]), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(z + 15.234687407), $MachinePrecision] * z), $MachinePrecision] + 31.4690115749), $MachinePrecision] * z), $MachinePrecision] + 11.9400905721), $MachinePrecision] * z), $MachinePrecision] + 0.607771387771), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], Infinity], N[(x - N[(N[(b + N[(N[(a + N[(N[(t + N[(N[(N[(3.13060547623 * z), $MachinePrecision] - -11.1667541262), $MachinePrecision] * z), $MachinePrecision]), $MachinePrecision] * z), $MachinePrecision]), $MachinePrecision] * z), $MachinePrecision]), $MachinePrecision] * N[(y / N[(-0.607771387771 - N[(N[(N[(N[(N[(N[(z - -15.234687407), $MachinePrecision] * z), $MachinePrecision] - -31.4690115749), $MachinePrecision] * z), $MachinePrecision] - -11.9400905721), $MachinePrecision] * z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[(N[(N[(N[(N[(N[(N[(t - -457.9610022158428), $MachinePrecision] / z), $MachinePrecision] - 36.52704169880642), $MachinePrecision] / z), $MachinePrecision] - -3.13060547623), $MachinePrecision] * y), $MachinePrecision] + x), $MachinePrecision]]
            
            \begin{array}{l}
            \mathbf{if}\;x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \leq \infty:\\
            \;\;\;\;x - \left(b + \left(a + \left(t + \left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z\right) \cdot z\right) \cdot z\right) \cdot \frac{y}{-0.607771387771 - \left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z}\\
            
            \mathbf{else}:\\
            \;\;\;\;\left(\frac{\frac{t - -457.9610022158428}{z} - 36.52704169880642}{z} - -3.13060547623\right) \cdot y + x\\
            
            
            \end{array}
            
            Derivation
            1. Split input into 2 regimes
            2. if (+.f64 x (/.f64 (*.f64 y (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 z #s(literal 313060547623/100000000000 binary64)) #s(literal 55833770631/5000000000 binary64)) z) t) z) a) z) b)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 z #s(literal 15234687407/1000000000 binary64)) z) #s(literal 314690115749/10000000000 binary64)) z) #s(literal 119400905721/10000000000 binary64)) z) #s(literal 607771387771/1000000000000 binary64)))) < +inf.0

              1. Initial program 58.1%

                \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
              2. Applied rewrites59.6%

                \[\leadsto \color{blue}{x - \left(b + \left(a + \left(t + \left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z\right) \cdot z\right) \cdot z\right) \cdot \frac{y}{-0.607771387771 - \left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z}} \]

              if +inf.0 < (+.f64 x (/.f64 (*.f64 y (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 z #s(literal 313060547623/100000000000 binary64)) #s(literal 55833770631/5000000000 binary64)) z) t) z) a) z) b)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 z #s(literal 15234687407/1000000000 binary64)) z) #s(literal 314690115749/10000000000 binary64)) z) #s(literal 119400905721/10000000000 binary64)) z) #s(literal 607771387771/1000000000000 binary64))))

              1. Initial program 58.1%

                \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
              2. Applied rewrites60.1%

                \[\leadsto x + \color{blue}{\frac{b + \left(a + \left(t + \left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z\right) \cdot z\right) \cdot z}{\left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z - -0.607771387771} \cdot y} \]
              3. Taylor expanded in z around -inf

                \[\leadsto x + \color{blue}{\left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right)} \cdot y \]
              4. Step-by-step derivation
                1. lower-+.f64N/A

                  \[\leadsto x + \left(\frac{313060547623}{100000000000} + \color{blue}{-1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
                2. lower-*.f64N/A

                  \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \color{blue}{\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
                3. lower-/.f64N/A

                  \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{\color{blue}{z}}\right) \cdot y \]
                4. lower-+.f64N/A

                  \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
                5. lower-*.f64N/A

                  \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
                6. lower-/.f64N/A

                  \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
                7. lower-+.f6457.0%

                  \[\leadsto x + \left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right) \cdot y \]
              5. Applied rewrites57.0%

                \[\leadsto x + \color{blue}{\left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right)} \cdot y \]
              6. Step-by-step derivation
                1. lift-+.f64N/A

                  \[\leadsto \color{blue}{x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y} \]
                2. +-commutativeN/A

                  \[\leadsto \color{blue}{\left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y + x} \]
                3. lower-+.f6457.0%

                  \[\leadsto \color{blue}{\left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right) \cdot y + x} \]
              7. Applied rewrites57.0%

                \[\leadsto \color{blue}{\left(\frac{\frac{t - -457.9610022158428}{z} - 36.52704169880642}{z} - -3.13060547623\right) \cdot y + x} \]
            3. Recombined 2 regimes into one program.
            4. Add Preprocessing

            Alternative 8: 96.0% accurate, 0.5× speedup?

            \[\begin{array}{l} \mathbf{if}\;x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \leq \infty:\\ \;\;\;\;x + \frac{b + \left(a + \left(t + \left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z\right) \cdot z\right) \cdot z}{\left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z - -0.607771387771} \cdot y\\ \mathbf{else}:\\ \;\;\;\;\left(\frac{\frac{t - -457.9610022158428}{z} - 36.52704169880642}{z} - -3.13060547623\right) \cdot y + x\\ \end{array} \]
            (FPCore (x y z t a b)
              :precision binary64
              (if (<=
                 (+
                  x
                  (/
                   (*
                    y
                    (+
                     (*
                      (+
                       (* (+ (* (+ (* z 3.13060547623) 11.1667541262) z) t) z)
                       a)
                      z)
                     b))
                   (+
                    (*
                     (+
                      (* (+ (* (+ z 15.234687407) z) 31.4690115749) z)
                      11.9400905721)
                     z)
                    0.607771387771)))
                 INFINITY)
              (+
               x
               (*
                (/
                 (+
                  b
                  (*
                   (+ a (* (+ t (* (- (* 3.13060547623 z) -11.1667541262) z)) z))
                   z))
                 (-
                  (*
                   (-
                    (* (- (* (- z -15.234687407) z) -31.4690115749) z)
                    -11.9400905721)
                   z)
                  -0.607771387771))
                y))
              (+
               (*
                (-
                 (/ (- (/ (- t -457.9610022158428) z) 36.52704169880642) z)
                 -3.13060547623)
                y)
               x)))
            double code(double x, double y, double z, double t, double a, double b) {
            	double tmp;
            	if ((x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))) <= ((double) INFINITY)) {
            		tmp = x + (((b + ((a + ((t + (((3.13060547623 * z) - -11.1667541262) * z)) * z)) * z)) / (((((((z - -15.234687407) * z) - -31.4690115749) * z) - -11.9400905721) * z) - -0.607771387771)) * y);
            	} else {
            		tmp = ((((((t - -457.9610022158428) / z) - 36.52704169880642) / z) - -3.13060547623) * y) + x;
            	}
            	return tmp;
            }
            
            public static double code(double x, double y, double z, double t, double a, double b) {
            	double tmp;
            	if ((x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))) <= Double.POSITIVE_INFINITY) {
            		tmp = x + (((b + ((a + ((t + (((3.13060547623 * z) - -11.1667541262) * z)) * z)) * z)) / (((((((z - -15.234687407) * z) - -31.4690115749) * z) - -11.9400905721) * z) - -0.607771387771)) * y);
            	} else {
            		tmp = ((((((t - -457.9610022158428) / z) - 36.52704169880642) / z) - -3.13060547623) * y) + x;
            	}
            	return tmp;
            }
            
            def code(x, y, z, t, a, b):
            	tmp = 0
            	if (x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))) <= math.inf:
            		tmp = x + (((b + ((a + ((t + (((3.13060547623 * z) - -11.1667541262) * z)) * z)) * z)) / (((((((z - -15.234687407) * z) - -31.4690115749) * z) - -11.9400905721) * z) - -0.607771387771)) * y)
            	else:
            		tmp = ((((((t - -457.9610022158428) / z) - 36.52704169880642) / z) - -3.13060547623) * y) + x
            	return tmp
            
            function code(x, y, z, t, a, b)
            	tmp = 0.0
            	if (Float64(x + Float64(Float64(y * Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))) <= Inf)
            		tmp = Float64(x + Float64(Float64(Float64(b + Float64(Float64(a + Float64(Float64(t + Float64(Float64(Float64(3.13060547623 * z) - -11.1667541262) * z)) * z)) * z)) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(z - -15.234687407) * z) - -31.4690115749) * z) - -11.9400905721) * z) - -0.607771387771)) * y));
            	else
            		tmp = Float64(Float64(Float64(Float64(Float64(Float64(Float64(t - -457.9610022158428) / z) - 36.52704169880642) / z) - -3.13060547623) * y) + x);
            	end
            	return tmp
            end
            
            function tmp_2 = code(x, y, z, t, a, b)
            	tmp = 0.0;
            	if ((x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))) <= Inf)
            		tmp = x + (((b + ((a + ((t + (((3.13060547623 * z) - -11.1667541262) * z)) * z)) * z)) / (((((((z - -15.234687407) * z) - -31.4690115749) * z) - -11.9400905721) * z) - -0.607771387771)) * y);
            	else
            		tmp = ((((((t - -457.9610022158428) / z) - 36.52704169880642) / z) - -3.13060547623) * y) + x;
            	end
            	tmp_2 = tmp;
            end
            
            code[x_, y_, z_, t_, a_, b_] := If[LessEqual[N[(x + N[(N[(y * N[(N[(N[(N[(N[(N[(N[(N[(z * 3.13060547623), $MachinePrecision] + 11.1667541262), $MachinePrecision] * z), $MachinePrecision] + t), $MachinePrecision] * z), $MachinePrecision] + a), $MachinePrecision] * z), $MachinePrecision] + b), $MachinePrecision]), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(z + 15.234687407), $MachinePrecision] * z), $MachinePrecision] + 31.4690115749), $MachinePrecision] * z), $MachinePrecision] + 11.9400905721), $MachinePrecision] * z), $MachinePrecision] + 0.607771387771), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], Infinity], N[(x + N[(N[(N[(b + N[(N[(a + N[(N[(t + N[(N[(N[(3.13060547623 * z), $MachinePrecision] - -11.1667541262), $MachinePrecision] * z), $MachinePrecision]), $MachinePrecision] * z), $MachinePrecision]), $MachinePrecision] * z), $MachinePrecision]), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(z - -15.234687407), $MachinePrecision] * z), $MachinePrecision] - -31.4690115749), $MachinePrecision] * z), $MachinePrecision] - -11.9400905721), $MachinePrecision] * z), $MachinePrecision] - -0.607771387771), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision], N[(N[(N[(N[(N[(N[(N[(t - -457.9610022158428), $MachinePrecision] / z), $MachinePrecision] - 36.52704169880642), $MachinePrecision] / z), $MachinePrecision] - -3.13060547623), $MachinePrecision] * y), $MachinePrecision] + x), $MachinePrecision]]
            
            \begin{array}{l}
            \mathbf{if}\;x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \leq \infty:\\
            \;\;\;\;x + \frac{b + \left(a + \left(t + \left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z\right) \cdot z\right) \cdot z}{\left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z - -0.607771387771} \cdot y\\
            
            \mathbf{else}:\\
            \;\;\;\;\left(\frac{\frac{t - -457.9610022158428}{z} - 36.52704169880642}{z} - -3.13060547623\right) \cdot y + x\\
            
            
            \end{array}
            
            Derivation
            1. Split input into 2 regimes
            2. if (+.f64 x (/.f64 (*.f64 y (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 z #s(literal 313060547623/100000000000 binary64)) #s(literal 55833770631/5000000000 binary64)) z) t) z) a) z) b)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 z #s(literal 15234687407/1000000000 binary64)) z) #s(literal 314690115749/10000000000 binary64)) z) #s(literal 119400905721/10000000000 binary64)) z) #s(literal 607771387771/1000000000000 binary64)))) < +inf.0

              1. Initial program 58.1%

                \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
              2. Applied rewrites60.1%

                \[\leadsto x + \color{blue}{\frac{b + \left(a + \left(t + \left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z\right) \cdot z\right) \cdot z}{\left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z - -0.607771387771} \cdot y} \]

              if +inf.0 < (+.f64 x (/.f64 (*.f64 y (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 z #s(literal 313060547623/100000000000 binary64)) #s(literal 55833770631/5000000000 binary64)) z) t) z) a) z) b)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 z #s(literal 15234687407/1000000000 binary64)) z) #s(literal 314690115749/10000000000 binary64)) z) #s(literal 119400905721/10000000000 binary64)) z) #s(literal 607771387771/1000000000000 binary64))))

              1. Initial program 58.1%

                \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
              2. Applied rewrites60.1%

                \[\leadsto x + \color{blue}{\frac{b + \left(a + \left(t + \left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z\right) \cdot z\right) \cdot z}{\left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z - -0.607771387771} \cdot y} \]
              3. Taylor expanded in z around -inf

                \[\leadsto x + \color{blue}{\left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right)} \cdot y \]
              4. Step-by-step derivation
                1. lower-+.f64N/A

                  \[\leadsto x + \left(\frac{313060547623}{100000000000} + \color{blue}{-1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
                2. lower-*.f64N/A

                  \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \color{blue}{\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
                3. lower-/.f64N/A

                  \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{\color{blue}{z}}\right) \cdot y \]
                4. lower-+.f64N/A

                  \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
                5. lower-*.f64N/A

                  \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
                6. lower-/.f64N/A

                  \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
                7. lower-+.f6457.0%

                  \[\leadsto x + \left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right) \cdot y \]
              5. Applied rewrites57.0%

                \[\leadsto x + \color{blue}{\left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right)} \cdot y \]
              6. Step-by-step derivation
                1. lift-+.f64N/A

                  \[\leadsto \color{blue}{x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y} \]
                2. +-commutativeN/A

                  \[\leadsto \color{blue}{\left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y + x} \]
                3. lower-+.f6457.0%

                  \[\leadsto \color{blue}{\left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right) \cdot y + x} \]
              7. Applied rewrites57.0%

                \[\leadsto \color{blue}{\left(\frac{\frac{t - -457.9610022158428}{z} - 36.52704169880642}{z} - -3.13060547623\right) \cdot y + x} \]
            3. Recombined 2 regimes into one program.
            4. Add Preprocessing

            Alternative 9: 95.9% accurate, 1.1× speedup?

            \[\begin{array}{l} t_1 := \frac{t - -457.9610022158428}{z} - 36.52704169880642\\ \mathbf{if}\;z \leq -235000:\\ \;\;\;\;x + \left(3.13060547623 + t\_1 \cdot \frac{1}{z}\right) \cdot y\\ \mathbf{elif}\;z \leq 195:\\ \;\;\;\;x + \frac{1}{0.607771387771} \cdot \left(\left(\left(\left(\left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right) \cdot y\right)\\ \mathbf{else}:\\ \;\;\;\;\left(\frac{t\_1}{z} - -3.13060547623\right) \cdot y + x\\ \end{array} \]
            (FPCore (x y z t a b)
              :precision binary64
              (let* ((t_1 (- (/ (- t -457.9610022158428) z) 36.52704169880642)))
              (if (<= z -235000.0)
                (+ x (* (+ 3.13060547623 (* t_1 (/ 1.0 z))) y))
                (if (<= z 195.0)
                  (+
                   x
                   (*
                    (/ 1.0 0.607771387771)
                    (*
                     (+
                      (*
                       (+
                        (* (+ (* (- (* 3.13060547623 z) -11.1667541262) z) t) z)
                        a)
                       z)
                      b)
                     y)))
                  (+ (* (- (/ t_1 z) -3.13060547623) y) x)))))
            double code(double x, double y, double z, double t, double a, double b) {
            	double t_1 = ((t - -457.9610022158428) / z) - 36.52704169880642;
            	double tmp;
            	if (z <= -235000.0) {
            		tmp = x + ((3.13060547623 + (t_1 * (1.0 / z))) * y);
            	} else if (z <= 195.0) {
            		tmp = x + ((1.0 / 0.607771387771) * (((((((((3.13060547623 * z) - -11.1667541262) * z) + t) * z) + a) * z) + b) * y));
            	} else {
            		tmp = (((t_1 / z) - -3.13060547623) * y) + x;
            	}
            	return tmp;
            }
            
            module fmin_fmax_functions
                implicit none
                private
                public fmax
                public fmin
            
                interface fmax
                    module procedure fmax88
                    module procedure fmax44
                    module procedure fmax84
                    module procedure fmax48
                end interface
                interface fmin
                    module procedure fmin88
                    module procedure fmin44
                    module procedure fmin84
                    module procedure fmin48
                end interface
            contains
                real(8) function fmax88(x, y) result (res)
                    real(8), intent (in) :: x
                    real(8), intent (in) :: y
                    res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                end function
                real(4) function fmax44(x, y) result (res)
                    real(4), intent (in) :: x
                    real(4), intent (in) :: y
                    res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                end function
                real(8) function fmax84(x, y) result(res)
                    real(8), intent (in) :: x
                    real(4), intent (in) :: y
                    res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                end function
                real(8) function fmax48(x, y) result(res)
                    real(4), intent (in) :: x
                    real(8), intent (in) :: y
                    res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                end function
                real(8) function fmin88(x, y) result (res)
                    real(8), intent (in) :: x
                    real(8), intent (in) :: y
                    res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                end function
                real(4) function fmin44(x, y) result (res)
                    real(4), intent (in) :: x
                    real(4), intent (in) :: y
                    res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                end function
                real(8) function fmin84(x, y) result(res)
                    real(8), intent (in) :: x
                    real(4), intent (in) :: y
                    res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                end function
                real(8) function fmin48(x, y) result(res)
                    real(4), intent (in) :: x
                    real(8), intent (in) :: y
                    res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                end function
            end module
            
            real(8) function code(x, y, z, t, a, b)
            use fmin_fmax_functions
                real(8), intent (in) :: x
                real(8), intent (in) :: y
                real(8), intent (in) :: z
                real(8), intent (in) :: t
                real(8), intent (in) :: a
                real(8), intent (in) :: b
                real(8) :: t_1
                real(8) :: tmp
                t_1 = ((t - (-457.9610022158428d0)) / z) - 36.52704169880642d0
                if (z <= (-235000.0d0)) then
                    tmp = x + ((3.13060547623d0 + (t_1 * (1.0d0 / z))) * y)
                else if (z <= 195.0d0) then
                    tmp = x + ((1.0d0 / 0.607771387771d0) * (((((((((3.13060547623d0 * z) - (-11.1667541262d0)) * z) + t) * z) + a) * z) + b) * y))
                else
                    tmp = (((t_1 / z) - (-3.13060547623d0)) * y) + x
                end if
                code = tmp
            end function
            
            public static double code(double x, double y, double z, double t, double a, double b) {
            	double t_1 = ((t - -457.9610022158428) / z) - 36.52704169880642;
            	double tmp;
            	if (z <= -235000.0) {
            		tmp = x + ((3.13060547623 + (t_1 * (1.0 / z))) * y);
            	} else if (z <= 195.0) {
            		tmp = x + ((1.0 / 0.607771387771) * (((((((((3.13060547623 * z) - -11.1667541262) * z) + t) * z) + a) * z) + b) * y));
            	} else {
            		tmp = (((t_1 / z) - -3.13060547623) * y) + x;
            	}
            	return tmp;
            }
            
            def code(x, y, z, t, a, b):
            	t_1 = ((t - -457.9610022158428) / z) - 36.52704169880642
            	tmp = 0
            	if z <= -235000.0:
            		tmp = x + ((3.13060547623 + (t_1 * (1.0 / z))) * y)
            	elif z <= 195.0:
            		tmp = x + ((1.0 / 0.607771387771) * (((((((((3.13060547623 * z) - -11.1667541262) * z) + t) * z) + a) * z) + b) * y))
            	else:
            		tmp = (((t_1 / z) - -3.13060547623) * y) + x
            	return tmp
            
            function code(x, y, z, t, a, b)
            	t_1 = Float64(Float64(Float64(t - -457.9610022158428) / z) - 36.52704169880642)
            	tmp = 0.0
            	if (z <= -235000.0)
            		tmp = Float64(x + Float64(Float64(3.13060547623 + Float64(t_1 * Float64(1.0 / z))) * y));
            	elseif (z <= 195.0)
            		tmp = Float64(x + Float64(Float64(1.0 / 0.607771387771) * Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(3.13060547623 * z) - -11.1667541262) * z) + t) * z) + a) * z) + b) * y)));
            	else
            		tmp = Float64(Float64(Float64(Float64(t_1 / z) - -3.13060547623) * y) + x);
            	end
            	return tmp
            end
            
            function tmp_2 = code(x, y, z, t, a, b)
            	t_1 = ((t - -457.9610022158428) / z) - 36.52704169880642;
            	tmp = 0.0;
            	if (z <= -235000.0)
            		tmp = x + ((3.13060547623 + (t_1 * (1.0 / z))) * y);
            	elseif (z <= 195.0)
            		tmp = x + ((1.0 / 0.607771387771) * (((((((((3.13060547623 * z) - -11.1667541262) * z) + t) * z) + a) * z) + b) * y));
            	else
            		tmp = (((t_1 / z) - -3.13060547623) * y) + x;
            	end
            	tmp_2 = tmp;
            end
            
            code[x_, y_, z_, t_, a_, b_] := Block[{t$95$1 = N[(N[(N[(t - -457.9610022158428), $MachinePrecision] / z), $MachinePrecision] - 36.52704169880642), $MachinePrecision]}, If[LessEqual[z, -235000.0], N[(x + N[(N[(3.13060547623 + N[(t$95$1 * N[(1.0 / z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision], If[LessEqual[z, 195.0], N[(x + N[(N[(1.0 / 0.607771387771), $MachinePrecision] * N[(N[(N[(N[(N[(N[(N[(N[(N[(3.13060547623 * z), $MachinePrecision] - -11.1667541262), $MachinePrecision] * z), $MachinePrecision] + t), $MachinePrecision] * z), $MachinePrecision] + a), $MachinePrecision] * z), $MachinePrecision] + b), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[(N[(N[(N[(t$95$1 / z), $MachinePrecision] - -3.13060547623), $MachinePrecision] * y), $MachinePrecision] + x), $MachinePrecision]]]]
            
            \begin{array}{l}
            t_1 := \frac{t - -457.9610022158428}{z} - 36.52704169880642\\
            \mathbf{if}\;z \leq -235000:\\
            \;\;\;\;x + \left(3.13060547623 + t\_1 \cdot \frac{1}{z}\right) \cdot y\\
            
            \mathbf{elif}\;z \leq 195:\\
            \;\;\;\;x + \frac{1}{0.607771387771} \cdot \left(\left(\left(\left(\left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right) \cdot y\right)\\
            
            \mathbf{else}:\\
            \;\;\;\;\left(\frac{t\_1}{z} - -3.13060547623\right) \cdot y + x\\
            
            
            \end{array}
            
            Derivation
            1. Split input into 3 regimes
            2. if z < -235000

              1. Initial program 58.1%

                \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
              2. Applied rewrites60.1%

                \[\leadsto x + \color{blue}{\frac{b + \left(a + \left(t + \left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z\right) \cdot z\right) \cdot z}{\left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z - -0.607771387771} \cdot y} \]
              3. Taylor expanded in z around -inf

                \[\leadsto x + \color{blue}{\left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right)} \cdot y \]
              4. Step-by-step derivation
                1. lower-+.f64N/A

                  \[\leadsto x + \left(\frac{313060547623}{100000000000} + \color{blue}{-1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
                2. lower-*.f64N/A

                  \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \color{blue}{\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
                3. lower-/.f64N/A

                  \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{\color{blue}{z}}\right) \cdot y \]
                4. lower-+.f64N/A

                  \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
                5. lower-*.f64N/A

                  \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
                6. lower-/.f64N/A

                  \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
                7. lower-+.f6457.0%

                  \[\leadsto x + \left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right) \cdot y \]
              5. Applied rewrites57.0%

                \[\leadsto x + \color{blue}{\left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right)} \cdot y \]
              6. Step-by-step derivation
                1. lift-*.f64N/A

                  \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \color{blue}{\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
                2. mul-1-negN/A

                  \[\leadsto x + \left(\frac{313060547623}{100000000000} + \left(\mathsf{neg}\left(\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right)\right)\right) \cdot y \]
                3. lift-/.f64N/A

                  \[\leadsto x + \left(\frac{313060547623}{100000000000} + \left(\mathsf{neg}\left(\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right)\right)\right) \cdot y \]
                4. mult-flipN/A

                  \[\leadsto x + \left(\frac{313060547623}{100000000000} + \left(\mathsf{neg}\left(\left(\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}\right) \cdot \frac{1}{z}\right)\right)\right) \cdot y \]
                5. distribute-lft-neg-inN/A

                  \[\leadsto x + \left(\frac{313060547623}{100000000000} + \left(\mathsf{neg}\left(\left(\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}\right)\right)\right) \cdot \color{blue}{\frac{1}{z}}\right) \cdot y \]
                6. lower-*.f64N/A

                  \[\leadsto x + \left(\frac{313060547623}{100000000000} + \left(\mathsf{neg}\left(\left(\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}\right)\right)\right) \cdot \color{blue}{\frac{1}{z}}\right) \cdot y \]
              7. Applied rewrites56.9%

                \[\leadsto x + \left(3.13060547623 + \left(\frac{t - -457.9610022158428}{z} - 36.52704169880642\right) \cdot \color{blue}{\frac{1}{z}}\right) \cdot y \]

              if -235000 < z < 195

              1. Initial program 58.1%

                \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
              2. Taylor expanded in z around 0

                \[\leadsto x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\color{blue}{\frac{607771387771}{1000000000000}}} \]
              3. Step-by-step derivation
                1. Applied rewrites54.3%

                  \[\leadsto x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\color{blue}{0.607771387771}} \]
                2. Applied rewrites54.3%

                  \[\leadsto x + \color{blue}{\frac{1}{0.607771387771} \cdot \left(\left(\left(\left(\left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right) \cdot y\right)} \]

                if 195 < z

                1. Initial program 58.1%

                  \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
                2. Applied rewrites60.1%

                  \[\leadsto x + \color{blue}{\frac{b + \left(a + \left(t + \left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z\right) \cdot z\right) \cdot z}{\left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z - -0.607771387771} \cdot y} \]
                3. Taylor expanded in z around -inf

                  \[\leadsto x + \color{blue}{\left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right)} \cdot y \]
                4. Step-by-step derivation
                  1. lower-+.f64N/A

                    \[\leadsto x + \left(\frac{313060547623}{100000000000} + \color{blue}{-1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
                  2. lower-*.f64N/A

                    \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \color{blue}{\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
                  3. lower-/.f64N/A

                    \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{\color{blue}{z}}\right) \cdot y \]
                  4. lower-+.f64N/A

                    \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
                  5. lower-*.f64N/A

                    \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
                  6. lower-/.f64N/A

                    \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
                  7. lower-+.f6457.0%

                    \[\leadsto x + \left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right) \cdot y \]
                5. Applied rewrites57.0%

                  \[\leadsto x + \color{blue}{\left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right)} \cdot y \]
                6. Step-by-step derivation
                  1. lift-+.f64N/A

                    \[\leadsto \color{blue}{x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y} \]
                  2. +-commutativeN/A

                    \[\leadsto \color{blue}{\left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y + x} \]
                  3. lower-+.f6457.0%

                    \[\leadsto \color{blue}{\left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right) \cdot y + x} \]
                7. Applied rewrites57.0%

                  \[\leadsto \color{blue}{\left(\frac{\frac{t - -457.9610022158428}{z} - 36.52704169880642}{z} - -3.13060547623\right) \cdot y + x} \]
              4. Recombined 3 regimes into one program.
              5. Add Preprocessing

              Alternative 10: 95.8% accurate, 1.2× speedup?

              \[\begin{array}{l} t_1 := \frac{t - -457.9610022158428}{z} - 36.52704169880642\\ \mathbf{if}\;z \leq -235000:\\ \;\;\;\;x + \left(3.13060547623 + t\_1 \cdot \frac{1}{z}\right) \cdot y\\ \mathbf{elif}\;z \leq 195:\\ \;\;\;\;x + \left(\left(\left(\left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right) \cdot \frac{y}{0.607771387771}\\ \mathbf{else}:\\ \;\;\;\;\left(\frac{t\_1}{z} - -3.13060547623\right) \cdot y + x\\ \end{array} \]
              (FPCore (x y z t a b)
                :precision binary64
                (let* ((t_1 (- (/ (- t -457.9610022158428) z) 36.52704169880642)))
                (if (<= z -235000.0)
                  (+ x (* (+ 3.13060547623 (* t_1 (/ 1.0 z))) y))
                  (if (<= z 195.0)
                    (+
                     x
                     (*
                      (+
                       (*
                        (+
                         (* (+ (* (- (* 3.13060547623 z) -11.1667541262) z) t) z)
                         a)
                        z)
                       b)
                      (/ y 0.607771387771)))
                    (+ (* (- (/ t_1 z) -3.13060547623) y) x)))))
              double code(double x, double y, double z, double t, double a, double b) {
              	double t_1 = ((t - -457.9610022158428) / z) - 36.52704169880642;
              	double tmp;
              	if (z <= -235000.0) {
              		tmp = x + ((3.13060547623 + (t_1 * (1.0 / z))) * y);
              	} else if (z <= 195.0) {
              		tmp = x + (((((((((3.13060547623 * z) - -11.1667541262) * z) + t) * z) + a) * z) + b) * (y / 0.607771387771));
              	} else {
              		tmp = (((t_1 / z) - -3.13060547623) * y) + x;
              	}
              	return tmp;
              }
              
              module fmin_fmax_functions
                  implicit none
                  private
                  public fmax
                  public fmin
              
                  interface fmax
                      module procedure fmax88
                      module procedure fmax44
                      module procedure fmax84
                      module procedure fmax48
                  end interface
                  interface fmin
                      module procedure fmin88
                      module procedure fmin44
                      module procedure fmin84
                      module procedure fmin48
                  end interface
              contains
                  real(8) function fmax88(x, y) result (res)
                      real(8), intent (in) :: x
                      real(8), intent (in) :: y
                      res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                  end function
                  real(4) function fmax44(x, y) result (res)
                      real(4), intent (in) :: x
                      real(4), intent (in) :: y
                      res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                  end function
                  real(8) function fmax84(x, y) result(res)
                      real(8), intent (in) :: x
                      real(4), intent (in) :: y
                      res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                  end function
                  real(8) function fmax48(x, y) result(res)
                      real(4), intent (in) :: x
                      real(8), intent (in) :: y
                      res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                  end function
                  real(8) function fmin88(x, y) result (res)
                      real(8), intent (in) :: x
                      real(8), intent (in) :: y
                      res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                  end function
                  real(4) function fmin44(x, y) result (res)
                      real(4), intent (in) :: x
                      real(4), intent (in) :: y
                      res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                  end function
                  real(8) function fmin84(x, y) result(res)
                      real(8), intent (in) :: x
                      real(4), intent (in) :: y
                      res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                  end function
                  real(8) function fmin48(x, y) result(res)
                      real(4), intent (in) :: x
                      real(8), intent (in) :: y
                      res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                  end function
              end module
              
              real(8) function code(x, y, z, t, a, b)
              use fmin_fmax_functions
                  real(8), intent (in) :: x
                  real(8), intent (in) :: y
                  real(8), intent (in) :: z
                  real(8), intent (in) :: t
                  real(8), intent (in) :: a
                  real(8), intent (in) :: b
                  real(8) :: t_1
                  real(8) :: tmp
                  t_1 = ((t - (-457.9610022158428d0)) / z) - 36.52704169880642d0
                  if (z <= (-235000.0d0)) then
                      tmp = x + ((3.13060547623d0 + (t_1 * (1.0d0 / z))) * y)
                  else if (z <= 195.0d0) then
                      tmp = x + (((((((((3.13060547623d0 * z) - (-11.1667541262d0)) * z) + t) * z) + a) * z) + b) * (y / 0.607771387771d0))
                  else
                      tmp = (((t_1 / z) - (-3.13060547623d0)) * y) + x
                  end if
                  code = tmp
              end function
              
              public static double code(double x, double y, double z, double t, double a, double b) {
              	double t_1 = ((t - -457.9610022158428) / z) - 36.52704169880642;
              	double tmp;
              	if (z <= -235000.0) {
              		tmp = x + ((3.13060547623 + (t_1 * (1.0 / z))) * y);
              	} else if (z <= 195.0) {
              		tmp = x + (((((((((3.13060547623 * z) - -11.1667541262) * z) + t) * z) + a) * z) + b) * (y / 0.607771387771));
              	} else {
              		tmp = (((t_1 / z) - -3.13060547623) * y) + x;
              	}
              	return tmp;
              }
              
              def code(x, y, z, t, a, b):
              	t_1 = ((t - -457.9610022158428) / z) - 36.52704169880642
              	tmp = 0
              	if z <= -235000.0:
              		tmp = x + ((3.13060547623 + (t_1 * (1.0 / z))) * y)
              	elif z <= 195.0:
              		tmp = x + (((((((((3.13060547623 * z) - -11.1667541262) * z) + t) * z) + a) * z) + b) * (y / 0.607771387771))
              	else:
              		tmp = (((t_1 / z) - -3.13060547623) * y) + x
              	return tmp
              
              function code(x, y, z, t, a, b)
              	t_1 = Float64(Float64(Float64(t - -457.9610022158428) / z) - 36.52704169880642)
              	tmp = 0.0
              	if (z <= -235000.0)
              		tmp = Float64(x + Float64(Float64(3.13060547623 + Float64(t_1 * Float64(1.0 / z))) * y));
              	elseif (z <= 195.0)
              		tmp = Float64(x + Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(3.13060547623 * z) - -11.1667541262) * z) + t) * z) + a) * z) + b) * Float64(y / 0.607771387771)));
              	else
              		tmp = Float64(Float64(Float64(Float64(t_1 / z) - -3.13060547623) * y) + x);
              	end
              	return tmp
              end
              
              function tmp_2 = code(x, y, z, t, a, b)
              	t_1 = ((t - -457.9610022158428) / z) - 36.52704169880642;
              	tmp = 0.0;
              	if (z <= -235000.0)
              		tmp = x + ((3.13060547623 + (t_1 * (1.0 / z))) * y);
              	elseif (z <= 195.0)
              		tmp = x + (((((((((3.13060547623 * z) - -11.1667541262) * z) + t) * z) + a) * z) + b) * (y / 0.607771387771));
              	else
              		tmp = (((t_1 / z) - -3.13060547623) * y) + x;
              	end
              	tmp_2 = tmp;
              end
              
              code[x_, y_, z_, t_, a_, b_] := Block[{t$95$1 = N[(N[(N[(t - -457.9610022158428), $MachinePrecision] / z), $MachinePrecision] - 36.52704169880642), $MachinePrecision]}, If[LessEqual[z, -235000.0], N[(x + N[(N[(3.13060547623 + N[(t$95$1 * N[(1.0 / z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision], If[LessEqual[z, 195.0], N[(x + N[(N[(N[(N[(N[(N[(N[(N[(N[(3.13060547623 * z), $MachinePrecision] - -11.1667541262), $MachinePrecision] * z), $MachinePrecision] + t), $MachinePrecision] * z), $MachinePrecision] + a), $MachinePrecision] * z), $MachinePrecision] + b), $MachinePrecision] * N[(y / 0.607771387771), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[(N[(N[(N[(t$95$1 / z), $MachinePrecision] - -3.13060547623), $MachinePrecision] * y), $MachinePrecision] + x), $MachinePrecision]]]]
              
              \begin{array}{l}
              t_1 := \frac{t - -457.9610022158428}{z} - 36.52704169880642\\
              \mathbf{if}\;z \leq -235000:\\
              \;\;\;\;x + \left(3.13060547623 + t\_1 \cdot \frac{1}{z}\right) \cdot y\\
              
              \mathbf{elif}\;z \leq 195:\\
              \;\;\;\;x + \left(\left(\left(\left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right) \cdot \frac{y}{0.607771387771}\\
              
              \mathbf{else}:\\
              \;\;\;\;\left(\frac{t\_1}{z} - -3.13060547623\right) \cdot y + x\\
              
              
              \end{array}
              
              Derivation
              1. Split input into 3 regimes
              2. if z < -235000

                1. Initial program 58.1%

                  \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
                2. Applied rewrites60.1%

                  \[\leadsto x + \color{blue}{\frac{b + \left(a + \left(t + \left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z\right) \cdot z\right) \cdot z}{\left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z - -0.607771387771} \cdot y} \]
                3. Taylor expanded in z around -inf

                  \[\leadsto x + \color{blue}{\left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right)} \cdot y \]
                4. Step-by-step derivation
                  1. lower-+.f64N/A

                    \[\leadsto x + \left(\frac{313060547623}{100000000000} + \color{blue}{-1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
                  2. lower-*.f64N/A

                    \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \color{blue}{\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
                  3. lower-/.f64N/A

                    \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{\color{blue}{z}}\right) \cdot y \]
                  4. lower-+.f64N/A

                    \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
                  5. lower-*.f64N/A

                    \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
                  6. lower-/.f64N/A

                    \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
                  7. lower-+.f6457.0%

                    \[\leadsto x + \left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right) \cdot y \]
                5. Applied rewrites57.0%

                  \[\leadsto x + \color{blue}{\left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right)} \cdot y \]
                6. Step-by-step derivation
                  1. lift-*.f64N/A

                    \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \color{blue}{\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
                  2. mul-1-negN/A

                    \[\leadsto x + \left(\frac{313060547623}{100000000000} + \left(\mathsf{neg}\left(\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right)\right)\right) \cdot y \]
                  3. lift-/.f64N/A

                    \[\leadsto x + \left(\frac{313060547623}{100000000000} + \left(\mathsf{neg}\left(\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right)\right)\right) \cdot y \]
                  4. mult-flipN/A

                    \[\leadsto x + \left(\frac{313060547623}{100000000000} + \left(\mathsf{neg}\left(\left(\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}\right) \cdot \frac{1}{z}\right)\right)\right) \cdot y \]
                  5. distribute-lft-neg-inN/A

                    \[\leadsto x + \left(\frac{313060547623}{100000000000} + \left(\mathsf{neg}\left(\left(\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}\right)\right)\right) \cdot \color{blue}{\frac{1}{z}}\right) \cdot y \]
                  6. lower-*.f64N/A

                    \[\leadsto x + \left(\frac{313060547623}{100000000000} + \left(\mathsf{neg}\left(\left(\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}\right)\right)\right) \cdot \color{blue}{\frac{1}{z}}\right) \cdot y \]
                7. Applied rewrites56.9%

                  \[\leadsto x + \left(3.13060547623 + \left(\frac{t - -457.9610022158428}{z} - 36.52704169880642\right) \cdot \color{blue}{\frac{1}{z}}\right) \cdot y \]

                if -235000 < z < 195

                1. Initial program 58.1%

                  \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
                2. Taylor expanded in z around 0

                  \[\leadsto x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\color{blue}{\frac{607771387771}{1000000000000}}} \]
                3. Step-by-step derivation
                  1. Applied rewrites54.3%

                    \[\leadsto x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\color{blue}{0.607771387771}} \]
                  2. Applied rewrites54.3%

                    \[\leadsto x + \color{blue}{\left(\left(\left(\left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right) \cdot \frac{y}{0.607771387771}} \]

                  if 195 < z

                  1. Initial program 58.1%

                    \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
                  2. Applied rewrites60.1%

                    \[\leadsto x + \color{blue}{\frac{b + \left(a + \left(t + \left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z\right) \cdot z\right) \cdot z}{\left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z - -0.607771387771} \cdot y} \]
                  3. Taylor expanded in z around -inf

                    \[\leadsto x + \color{blue}{\left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right)} \cdot y \]
                  4. Step-by-step derivation
                    1. lower-+.f64N/A

                      \[\leadsto x + \left(\frac{313060547623}{100000000000} + \color{blue}{-1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
                    2. lower-*.f64N/A

                      \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \color{blue}{\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
                    3. lower-/.f64N/A

                      \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{\color{blue}{z}}\right) \cdot y \]
                    4. lower-+.f64N/A

                      \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
                    5. lower-*.f64N/A

                      \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
                    6. lower-/.f64N/A

                      \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
                    7. lower-+.f6457.0%

                      \[\leadsto x + \left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right) \cdot y \]
                  5. Applied rewrites57.0%

                    \[\leadsto x + \color{blue}{\left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right)} \cdot y \]
                  6. Step-by-step derivation
                    1. lift-+.f64N/A

                      \[\leadsto \color{blue}{x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y} \]
                    2. +-commutativeN/A

                      \[\leadsto \color{blue}{\left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y + x} \]
                    3. lower-+.f6457.0%

                      \[\leadsto \color{blue}{\left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right) \cdot y + x} \]
                  7. Applied rewrites57.0%

                    \[\leadsto \color{blue}{\left(\frac{\frac{t - -457.9610022158428}{z} - 36.52704169880642}{z} - -3.13060547623\right) \cdot y + x} \]
                4. Recombined 3 regimes into one program.
                5. Add Preprocessing

                Alternative 11: 95.8% accurate, 1.4× speedup?

                \[\begin{array}{l} t_1 := \frac{t - -457.9610022158428}{z} - 36.52704169880642\\ \mathbf{if}\;z \leq -235000:\\ \;\;\;\;x + \left(3.13060547623 + t\_1 \cdot \frac{1}{z}\right) \cdot y\\ \mathbf{elif}\;z \leq 195:\\ \;\;\;\;x + \frac{y \cdot \left(\left(\left(11.1667541262 \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{0.607771387771}\\ \mathbf{else}:\\ \;\;\;\;\left(\frac{t\_1}{z} - -3.13060547623\right) \cdot y + x\\ \end{array} \]
                (FPCore (x y z t a b)
                  :precision binary64
                  (let* ((t_1 (- (/ (- t -457.9610022158428) z) 36.52704169880642)))
                  (if (<= z -235000.0)
                    (+ x (* (+ 3.13060547623 (* t_1 (/ 1.0 z))) y))
                    (if (<= z 195.0)
                      (+
                       x
                       (/
                        (* y (+ (* (+ (* (+ (* 11.1667541262 z) t) z) a) z) b))
                        0.607771387771))
                      (+ (* (- (/ t_1 z) -3.13060547623) y) x)))))
                double code(double x, double y, double z, double t, double a, double b) {
                	double t_1 = ((t - -457.9610022158428) / z) - 36.52704169880642;
                	double tmp;
                	if (z <= -235000.0) {
                		tmp = x + ((3.13060547623 + (t_1 * (1.0 / z))) * y);
                	} else if (z <= 195.0) {
                		tmp = x + ((y * ((((((11.1667541262 * z) + t) * z) + a) * z) + b)) / 0.607771387771);
                	} else {
                		tmp = (((t_1 / z) - -3.13060547623) * y) + x;
                	}
                	return tmp;
                }
                
                module fmin_fmax_functions
                    implicit none
                    private
                    public fmax
                    public fmin
                
                    interface fmax
                        module procedure fmax88
                        module procedure fmax44
                        module procedure fmax84
                        module procedure fmax48
                    end interface
                    interface fmin
                        module procedure fmin88
                        module procedure fmin44
                        module procedure fmin84
                        module procedure fmin48
                    end interface
                contains
                    real(8) function fmax88(x, y) result (res)
                        real(8), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                    end function
                    real(4) function fmax44(x, y) result (res)
                        real(4), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                    end function
                    real(8) function fmax84(x, y) result(res)
                        real(8), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                    end function
                    real(8) function fmax48(x, y) result(res)
                        real(4), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                    end function
                    real(8) function fmin88(x, y) result (res)
                        real(8), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                    end function
                    real(4) function fmin44(x, y) result (res)
                        real(4), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                    end function
                    real(8) function fmin84(x, y) result(res)
                        real(8), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                    end function
                    real(8) function fmin48(x, y) result(res)
                        real(4), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                    end function
                end module
                
                real(8) function code(x, y, z, t, a, b)
                use fmin_fmax_functions
                    real(8), intent (in) :: x
                    real(8), intent (in) :: y
                    real(8), intent (in) :: z
                    real(8), intent (in) :: t
                    real(8), intent (in) :: a
                    real(8), intent (in) :: b
                    real(8) :: t_1
                    real(8) :: tmp
                    t_1 = ((t - (-457.9610022158428d0)) / z) - 36.52704169880642d0
                    if (z <= (-235000.0d0)) then
                        tmp = x + ((3.13060547623d0 + (t_1 * (1.0d0 / z))) * y)
                    else if (z <= 195.0d0) then
                        tmp = x + ((y * ((((((11.1667541262d0 * z) + t) * z) + a) * z) + b)) / 0.607771387771d0)
                    else
                        tmp = (((t_1 / z) - (-3.13060547623d0)) * y) + x
                    end if
                    code = tmp
                end function
                
                public static double code(double x, double y, double z, double t, double a, double b) {
                	double t_1 = ((t - -457.9610022158428) / z) - 36.52704169880642;
                	double tmp;
                	if (z <= -235000.0) {
                		tmp = x + ((3.13060547623 + (t_1 * (1.0 / z))) * y);
                	} else if (z <= 195.0) {
                		tmp = x + ((y * ((((((11.1667541262 * z) + t) * z) + a) * z) + b)) / 0.607771387771);
                	} else {
                		tmp = (((t_1 / z) - -3.13060547623) * y) + x;
                	}
                	return tmp;
                }
                
                def code(x, y, z, t, a, b):
                	t_1 = ((t - -457.9610022158428) / z) - 36.52704169880642
                	tmp = 0
                	if z <= -235000.0:
                		tmp = x + ((3.13060547623 + (t_1 * (1.0 / z))) * y)
                	elif z <= 195.0:
                		tmp = x + ((y * ((((((11.1667541262 * z) + t) * z) + a) * z) + b)) / 0.607771387771)
                	else:
                		tmp = (((t_1 / z) - -3.13060547623) * y) + x
                	return tmp
                
                function code(x, y, z, t, a, b)
                	t_1 = Float64(Float64(Float64(t - -457.9610022158428) / z) - 36.52704169880642)
                	tmp = 0.0
                	if (z <= -235000.0)
                		tmp = Float64(x + Float64(Float64(3.13060547623 + Float64(t_1 * Float64(1.0 / z))) * y));
                	elseif (z <= 195.0)
                		tmp = Float64(x + Float64(Float64(y * Float64(Float64(Float64(Float64(Float64(Float64(11.1667541262 * z) + t) * z) + a) * z) + b)) / 0.607771387771));
                	else
                		tmp = Float64(Float64(Float64(Float64(t_1 / z) - -3.13060547623) * y) + x);
                	end
                	return tmp
                end
                
                function tmp_2 = code(x, y, z, t, a, b)
                	t_1 = ((t - -457.9610022158428) / z) - 36.52704169880642;
                	tmp = 0.0;
                	if (z <= -235000.0)
                		tmp = x + ((3.13060547623 + (t_1 * (1.0 / z))) * y);
                	elseif (z <= 195.0)
                		tmp = x + ((y * ((((((11.1667541262 * z) + t) * z) + a) * z) + b)) / 0.607771387771);
                	else
                		tmp = (((t_1 / z) - -3.13060547623) * y) + x;
                	end
                	tmp_2 = tmp;
                end
                
                code[x_, y_, z_, t_, a_, b_] := Block[{t$95$1 = N[(N[(N[(t - -457.9610022158428), $MachinePrecision] / z), $MachinePrecision] - 36.52704169880642), $MachinePrecision]}, If[LessEqual[z, -235000.0], N[(x + N[(N[(3.13060547623 + N[(t$95$1 * N[(1.0 / z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision], If[LessEqual[z, 195.0], N[(x + N[(N[(y * N[(N[(N[(N[(N[(N[(11.1667541262 * z), $MachinePrecision] + t), $MachinePrecision] * z), $MachinePrecision] + a), $MachinePrecision] * z), $MachinePrecision] + b), $MachinePrecision]), $MachinePrecision] / 0.607771387771), $MachinePrecision]), $MachinePrecision], N[(N[(N[(N[(t$95$1 / z), $MachinePrecision] - -3.13060547623), $MachinePrecision] * y), $MachinePrecision] + x), $MachinePrecision]]]]
                
                \begin{array}{l}
                t_1 := \frac{t - -457.9610022158428}{z} - 36.52704169880642\\
                \mathbf{if}\;z \leq -235000:\\
                \;\;\;\;x + \left(3.13060547623 + t\_1 \cdot \frac{1}{z}\right) \cdot y\\
                
                \mathbf{elif}\;z \leq 195:\\
                \;\;\;\;x + \frac{y \cdot \left(\left(\left(11.1667541262 \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{0.607771387771}\\
                
                \mathbf{else}:\\
                \;\;\;\;\left(\frac{t\_1}{z} - -3.13060547623\right) \cdot y + x\\
                
                
                \end{array}
                
                Derivation
                1. Split input into 3 regimes
                2. if z < -235000

                  1. Initial program 58.1%

                    \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
                  2. Applied rewrites60.1%

                    \[\leadsto x + \color{blue}{\frac{b + \left(a + \left(t + \left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z\right) \cdot z\right) \cdot z}{\left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z - -0.607771387771} \cdot y} \]
                  3. Taylor expanded in z around -inf

                    \[\leadsto x + \color{blue}{\left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right)} \cdot y \]
                  4. Step-by-step derivation
                    1. lower-+.f64N/A

                      \[\leadsto x + \left(\frac{313060547623}{100000000000} + \color{blue}{-1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
                    2. lower-*.f64N/A

                      \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \color{blue}{\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
                    3. lower-/.f64N/A

                      \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{\color{blue}{z}}\right) \cdot y \]
                    4. lower-+.f64N/A

                      \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
                    5. lower-*.f64N/A

                      \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
                    6. lower-/.f64N/A

                      \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
                    7. lower-+.f6457.0%

                      \[\leadsto x + \left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right) \cdot y \]
                  5. Applied rewrites57.0%

                    \[\leadsto x + \color{blue}{\left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right)} \cdot y \]
                  6. Step-by-step derivation
                    1. lift-*.f64N/A

                      \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \color{blue}{\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
                    2. mul-1-negN/A

                      \[\leadsto x + \left(\frac{313060547623}{100000000000} + \left(\mathsf{neg}\left(\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right)\right)\right) \cdot y \]
                    3. lift-/.f64N/A

                      \[\leadsto x + \left(\frac{313060547623}{100000000000} + \left(\mathsf{neg}\left(\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right)\right)\right) \cdot y \]
                    4. mult-flipN/A

                      \[\leadsto x + \left(\frac{313060547623}{100000000000} + \left(\mathsf{neg}\left(\left(\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}\right) \cdot \frac{1}{z}\right)\right)\right) \cdot y \]
                    5. distribute-lft-neg-inN/A

                      \[\leadsto x + \left(\frac{313060547623}{100000000000} + \left(\mathsf{neg}\left(\left(\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}\right)\right)\right) \cdot \color{blue}{\frac{1}{z}}\right) \cdot y \]
                    6. lower-*.f64N/A

                      \[\leadsto x + \left(\frac{313060547623}{100000000000} + \left(\mathsf{neg}\left(\left(\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}\right)\right)\right) \cdot \color{blue}{\frac{1}{z}}\right) \cdot y \]
                  7. Applied rewrites56.9%

                    \[\leadsto x + \left(3.13060547623 + \left(\frac{t - -457.9610022158428}{z} - 36.52704169880642\right) \cdot \color{blue}{\frac{1}{z}}\right) \cdot y \]

                  if -235000 < z < 195

                  1. Initial program 58.1%

                    \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
                  2. Taylor expanded in z around 0

                    \[\leadsto x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\color{blue}{\frac{607771387771}{1000000000000}}} \]
                  3. Step-by-step derivation
                    1. Applied rewrites54.3%

                      \[\leadsto x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\color{blue}{0.607771387771}} \]
                    2. Taylor expanded in z around 0

                      \[\leadsto x + \frac{y \cdot \left(\left(\left(\color{blue}{\frac{55833770631}{5000000000}} \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{0.607771387771} \]
                    3. Step-by-step derivation
                      1. Applied rewrites54.4%

                        \[\leadsto x + \frac{y \cdot \left(\left(\left(\color{blue}{11.1667541262} \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{0.607771387771} \]

                      if 195 < z

                      1. Initial program 58.1%

                        \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
                      2. Applied rewrites60.1%

                        \[\leadsto x + \color{blue}{\frac{b + \left(a + \left(t + \left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z\right) \cdot z\right) \cdot z}{\left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z - -0.607771387771} \cdot y} \]
                      3. Taylor expanded in z around -inf

                        \[\leadsto x + \color{blue}{\left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right)} \cdot y \]
                      4. Step-by-step derivation
                        1. lower-+.f64N/A

                          \[\leadsto x + \left(\frac{313060547623}{100000000000} + \color{blue}{-1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
                        2. lower-*.f64N/A

                          \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \color{blue}{\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
                        3. lower-/.f64N/A

                          \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{\color{blue}{z}}\right) \cdot y \]
                        4. lower-+.f64N/A

                          \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
                        5. lower-*.f64N/A

                          \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
                        6. lower-/.f64N/A

                          \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
                        7. lower-+.f6457.0%

                          \[\leadsto x + \left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right) \cdot y \]
                      5. Applied rewrites57.0%

                        \[\leadsto x + \color{blue}{\left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right)} \cdot y \]
                      6. Step-by-step derivation
                        1. lift-+.f64N/A

                          \[\leadsto \color{blue}{x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y} \]
                        2. +-commutativeN/A

                          \[\leadsto \color{blue}{\left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y + x} \]
                        3. lower-+.f6457.0%

                          \[\leadsto \color{blue}{\left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right) \cdot y + x} \]
                      7. Applied rewrites57.0%

                        \[\leadsto \color{blue}{\left(\frac{\frac{t - -457.9610022158428}{z} - 36.52704169880642}{z} - -3.13060547623\right) \cdot y + x} \]
                    4. Recombined 3 regimes into one program.
                    5. Add Preprocessing

                    Alternative 12: 95.8% accurate, 1.4× speedup?

                    \[\begin{array}{l} t_1 := \left(\frac{\frac{t - -457.9610022158428}{z} - 36.52704169880642}{z} - -3.13060547623\right) \cdot y + x\\ \mathbf{if}\;z \leq -235000:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;z \leq 195:\\ \;\;\;\;x + \frac{y \cdot \left(\left(\left(11.1667541262 \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{0.607771387771}\\ \mathbf{else}:\\ \;\;\;\;t\_1\\ \end{array} \]
                    (FPCore (x y z t a b)
                      :precision binary64
                      (let* ((t_1
                            (+
                             (*
                              (-
                               (/ (- (/ (- t -457.9610022158428) z) 36.52704169880642) z)
                               -3.13060547623)
                              y)
                             x)))
                      (if (<= z -235000.0)
                        t_1
                        (if (<= z 195.0)
                          (+
                           x
                           (/
                            (* y (+ (* (+ (* (+ (* 11.1667541262 z) t) z) a) z) b))
                            0.607771387771))
                          t_1))))
                    double code(double x, double y, double z, double t, double a, double b) {
                    	double t_1 = ((((((t - -457.9610022158428) / z) - 36.52704169880642) / z) - -3.13060547623) * y) + x;
                    	double tmp;
                    	if (z <= -235000.0) {
                    		tmp = t_1;
                    	} else if (z <= 195.0) {
                    		tmp = x + ((y * ((((((11.1667541262 * z) + t) * z) + a) * z) + b)) / 0.607771387771);
                    	} else {
                    		tmp = t_1;
                    	}
                    	return tmp;
                    }
                    
                    module fmin_fmax_functions
                        implicit none
                        private
                        public fmax
                        public fmin
                    
                        interface fmax
                            module procedure fmax88
                            module procedure fmax44
                            module procedure fmax84
                            module procedure fmax48
                        end interface
                        interface fmin
                            module procedure fmin88
                            module procedure fmin44
                            module procedure fmin84
                            module procedure fmin48
                        end interface
                    contains
                        real(8) function fmax88(x, y) result (res)
                            real(8), intent (in) :: x
                            real(8), intent (in) :: y
                            res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                        end function
                        real(4) function fmax44(x, y) result (res)
                            real(4), intent (in) :: x
                            real(4), intent (in) :: y
                            res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                        end function
                        real(8) function fmax84(x, y) result(res)
                            real(8), intent (in) :: x
                            real(4), intent (in) :: y
                            res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                        end function
                        real(8) function fmax48(x, y) result(res)
                            real(4), intent (in) :: x
                            real(8), intent (in) :: y
                            res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                        end function
                        real(8) function fmin88(x, y) result (res)
                            real(8), intent (in) :: x
                            real(8), intent (in) :: y
                            res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                        end function
                        real(4) function fmin44(x, y) result (res)
                            real(4), intent (in) :: x
                            real(4), intent (in) :: y
                            res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                        end function
                        real(8) function fmin84(x, y) result(res)
                            real(8), intent (in) :: x
                            real(4), intent (in) :: y
                            res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                        end function
                        real(8) function fmin48(x, y) result(res)
                            real(4), intent (in) :: x
                            real(8), intent (in) :: y
                            res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                        end function
                    end module
                    
                    real(8) function code(x, y, z, t, a, b)
                    use fmin_fmax_functions
                        real(8), intent (in) :: x
                        real(8), intent (in) :: y
                        real(8), intent (in) :: z
                        real(8), intent (in) :: t
                        real(8), intent (in) :: a
                        real(8), intent (in) :: b
                        real(8) :: t_1
                        real(8) :: tmp
                        t_1 = ((((((t - (-457.9610022158428d0)) / z) - 36.52704169880642d0) / z) - (-3.13060547623d0)) * y) + x
                        if (z <= (-235000.0d0)) then
                            tmp = t_1
                        else if (z <= 195.0d0) then
                            tmp = x + ((y * ((((((11.1667541262d0 * z) + t) * z) + a) * z) + b)) / 0.607771387771d0)
                        else
                            tmp = t_1
                        end if
                        code = tmp
                    end function
                    
                    public static double code(double x, double y, double z, double t, double a, double b) {
                    	double t_1 = ((((((t - -457.9610022158428) / z) - 36.52704169880642) / z) - -3.13060547623) * y) + x;
                    	double tmp;
                    	if (z <= -235000.0) {
                    		tmp = t_1;
                    	} else if (z <= 195.0) {
                    		tmp = x + ((y * ((((((11.1667541262 * z) + t) * z) + a) * z) + b)) / 0.607771387771);
                    	} else {
                    		tmp = t_1;
                    	}
                    	return tmp;
                    }
                    
                    def code(x, y, z, t, a, b):
                    	t_1 = ((((((t - -457.9610022158428) / z) - 36.52704169880642) / z) - -3.13060547623) * y) + x
                    	tmp = 0
                    	if z <= -235000.0:
                    		tmp = t_1
                    	elif z <= 195.0:
                    		tmp = x + ((y * ((((((11.1667541262 * z) + t) * z) + a) * z) + b)) / 0.607771387771)
                    	else:
                    		tmp = t_1
                    	return tmp
                    
                    function code(x, y, z, t, a, b)
                    	t_1 = Float64(Float64(Float64(Float64(Float64(Float64(Float64(t - -457.9610022158428) / z) - 36.52704169880642) / z) - -3.13060547623) * y) + x)
                    	tmp = 0.0
                    	if (z <= -235000.0)
                    		tmp = t_1;
                    	elseif (z <= 195.0)
                    		tmp = Float64(x + Float64(Float64(y * Float64(Float64(Float64(Float64(Float64(Float64(11.1667541262 * z) + t) * z) + a) * z) + b)) / 0.607771387771));
                    	else
                    		tmp = t_1;
                    	end
                    	return tmp
                    end
                    
                    function tmp_2 = code(x, y, z, t, a, b)
                    	t_1 = ((((((t - -457.9610022158428) / z) - 36.52704169880642) / z) - -3.13060547623) * y) + x;
                    	tmp = 0.0;
                    	if (z <= -235000.0)
                    		tmp = t_1;
                    	elseif (z <= 195.0)
                    		tmp = x + ((y * ((((((11.1667541262 * z) + t) * z) + a) * z) + b)) / 0.607771387771);
                    	else
                    		tmp = t_1;
                    	end
                    	tmp_2 = tmp;
                    end
                    
                    code[x_, y_, z_, t_, a_, b_] := Block[{t$95$1 = N[(N[(N[(N[(N[(N[(N[(t - -457.9610022158428), $MachinePrecision] / z), $MachinePrecision] - 36.52704169880642), $MachinePrecision] / z), $MachinePrecision] - -3.13060547623), $MachinePrecision] * y), $MachinePrecision] + x), $MachinePrecision]}, If[LessEqual[z, -235000.0], t$95$1, If[LessEqual[z, 195.0], N[(x + N[(N[(y * N[(N[(N[(N[(N[(N[(11.1667541262 * z), $MachinePrecision] + t), $MachinePrecision] * z), $MachinePrecision] + a), $MachinePrecision] * z), $MachinePrecision] + b), $MachinePrecision]), $MachinePrecision] / 0.607771387771), $MachinePrecision]), $MachinePrecision], t$95$1]]]
                    
                    \begin{array}{l}
                    t_1 := \left(\frac{\frac{t - -457.9610022158428}{z} - 36.52704169880642}{z} - -3.13060547623\right) \cdot y + x\\
                    \mathbf{if}\;z \leq -235000:\\
                    \;\;\;\;t\_1\\
                    
                    \mathbf{elif}\;z \leq 195:\\
                    \;\;\;\;x + \frac{y \cdot \left(\left(\left(11.1667541262 \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{0.607771387771}\\
                    
                    \mathbf{else}:\\
                    \;\;\;\;t\_1\\
                    
                    
                    \end{array}
                    
                    Derivation
                    1. Split input into 2 regimes
                    2. if z < -235000 or 195 < z

                      1. Initial program 58.1%

                        \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
                      2. Applied rewrites60.1%

                        \[\leadsto x + \color{blue}{\frac{b + \left(a + \left(t + \left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z\right) \cdot z\right) \cdot z}{\left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z - -0.607771387771} \cdot y} \]
                      3. Taylor expanded in z around -inf

                        \[\leadsto x + \color{blue}{\left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right)} \cdot y \]
                      4. Step-by-step derivation
                        1. lower-+.f64N/A

                          \[\leadsto x + \left(\frac{313060547623}{100000000000} + \color{blue}{-1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
                        2. lower-*.f64N/A

                          \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \color{blue}{\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
                        3. lower-/.f64N/A

                          \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{\color{blue}{z}}\right) \cdot y \]
                        4. lower-+.f64N/A

                          \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
                        5. lower-*.f64N/A

                          \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
                        6. lower-/.f64N/A

                          \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
                        7. lower-+.f6457.0%

                          \[\leadsto x + \left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right) \cdot y \]
                      5. Applied rewrites57.0%

                        \[\leadsto x + \color{blue}{\left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right)} \cdot y \]
                      6. Step-by-step derivation
                        1. lift-+.f64N/A

                          \[\leadsto \color{blue}{x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y} \]
                        2. +-commutativeN/A

                          \[\leadsto \color{blue}{\left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y + x} \]
                        3. lower-+.f6457.0%

                          \[\leadsto \color{blue}{\left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right) \cdot y + x} \]
                      7. Applied rewrites57.0%

                        \[\leadsto \color{blue}{\left(\frac{\frac{t - -457.9610022158428}{z} - 36.52704169880642}{z} - -3.13060547623\right) \cdot y + x} \]

                      if -235000 < z < 195

                      1. Initial program 58.1%

                        \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
                      2. Taylor expanded in z around 0

                        \[\leadsto x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\color{blue}{\frac{607771387771}{1000000000000}}} \]
                      3. Step-by-step derivation
                        1. Applied rewrites54.3%

                          \[\leadsto x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\color{blue}{0.607771387771}} \]
                        2. Taylor expanded in z around 0

                          \[\leadsto x + \frac{y \cdot \left(\left(\left(\color{blue}{\frac{55833770631}{5000000000}} \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{0.607771387771} \]
                        3. Step-by-step derivation
                          1. Applied rewrites54.4%

                            \[\leadsto x + \frac{y \cdot \left(\left(\left(\color{blue}{11.1667541262} \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{0.607771387771} \]
                        4. Recombined 2 regimes into one program.
                        5. Add Preprocessing

                        Alternative 13: 95.6% accurate, 1.5× speedup?

                        \[\begin{array}{l} t_1 := \left(\frac{\frac{t - -457.9610022158428}{z} - 36.52704169880642}{z} - -3.13060547623\right) \cdot y + x\\ \mathbf{if}\;z \leq -235000:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;z \leq 6500:\\ \;\;\;\;x + \frac{y \cdot \left(\left(t \cdot z + a\right) \cdot z + b\right)}{0.607771387771}\\ \mathbf{else}:\\ \;\;\;\;t\_1\\ \end{array} \]
                        (FPCore (x y z t a b)
                          :precision binary64
                          (let* ((t_1
                                (+
                                 (*
                                  (-
                                   (/ (- (/ (- t -457.9610022158428) z) 36.52704169880642) z)
                                   -3.13060547623)
                                  y)
                                 x)))
                          (if (<= z -235000.0)
                            t_1
                            (if (<= z 6500.0)
                              (+ x (/ (* y (+ (* (+ (* t z) a) z) b)) 0.607771387771))
                              t_1))))
                        double code(double x, double y, double z, double t, double a, double b) {
                        	double t_1 = ((((((t - -457.9610022158428) / z) - 36.52704169880642) / z) - -3.13060547623) * y) + x;
                        	double tmp;
                        	if (z <= -235000.0) {
                        		tmp = t_1;
                        	} else if (z <= 6500.0) {
                        		tmp = x + ((y * ((((t * z) + a) * z) + b)) / 0.607771387771);
                        	} else {
                        		tmp = t_1;
                        	}
                        	return tmp;
                        }
                        
                        module fmin_fmax_functions
                            implicit none
                            private
                            public fmax
                            public fmin
                        
                            interface fmax
                                module procedure fmax88
                                module procedure fmax44
                                module procedure fmax84
                                module procedure fmax48
                            end interface
                            interface fmin
                                module procedure fmin88
                                module procedure fmin44
                                module procedure fmin84
                                module procedure fmin48
                            end interface
                        contains
                            real(8) function fmax88(x, y) result (res)
                                real(8), intent (in) :: x
                                real(8), intent (in) :: y
                                res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                            end function
                            real(4) function fmax44(x, y) result (res)
                                real(4), intent (in) :: x
                                real(4), intent (in) :: y
                                res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                            end function
                            real(8) function fmax84(x, y) result(res)
                                real(8), intent (in) :: x
                                real(4), intent (in) :: y
                                res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                            end function
                            real(8) function fmax48(x, y) result(res)
                                real(4), intent (in) :: x
                                real(8), intent (in) :: y
                                res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                            end function
                            real(8) function fmin88(x, y) result (res)
                                real(8), intent (in) :: x
                                real(8), intent (in) :: y
                                res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                            end function
                            real(4) function fmin44(x, y) result (res)
                                real(4), intent (in) :: x
                                real(4), intent (in) :: y
                                res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                            end function
                            real(8) function fmin84(x, y) result(res)
                                real(8), intent (in) :: x
                                real(4), intent (in) :: y
                                res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                            end function
                            real(8) function fmin48(x, y) result(res)
                                real(4), intent (in) :: x
                                real(8), intent (in) :: y
                                res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                            end function
                        end module
                        
                        real(8) function code(x, y, z, t, a, b)
                        use fmin_fmax_functions
                            real(8), intent (in) :: x
                            real(8), intent (in) :: y
                            real(8), intent (in) :: z
                            real(8), intent (in) :: t
                            real(8), intent (in) :: a
                            real(8), intent (in) :: b
                            real(8) :: t_1
                            real(8) :: tmp
                            t_1 = ((((((t - (-457.9610022158428d0)) / z) - 36.52704169880642d0) / z) - (-3.13060547623d0)) * y) + x
                            if (z <= (-235000.0d0)) then
                                tmp = t_1
                            else if (z <= 6500.0d0) then
                                tmp = x + ((y * ((((t * z) + a) * z) + b)) / 0.607771387771d0)
                            else
                                tmp = t_1
                            end if
                            code = tmp
                        end function
                        
                        public static double code(double x, double y, double z, double t, double a, double b) {
                        	double t_1 = ((((((t - -457.9610022158428) / z) - 36.52704169880642) / z) - -3.13060547623) * y) + x;
                        	double tmp;
                        	if (z <= -235000.0) {
                        		tmp = t_1;
                        	} else if (z <= 6500.0) {
                        		tmp = x + ((y * ((((t * z) + a) * z) + b)) / 0.607771387771);
                        	} else {
                        		tmp = t_1;
                        	}
                        	return tmp;
                        }
                        
                        def code(x, y, z, t, a, b):
                        	t_1 = ((((((t - -457.9610022158428) / z) - 36.52704169880642) / z) - -3.13060547623) * y) + x
                        	tmp = 0
                        	if z <= -235000.0:
                        		tmp = t_1
                        	elif z <= 6500.0:
                        		tmp = x + ((y * ((((t * z) + a) * z) + b)) / 0.607771387771)
                        	else:
                        		tmp = t_1
                        	return tmp
                        
                        function code(x, y, z, t, a, b)
                        	t_1 = Float64(Float64(Float64(Float64(Float64(Float64(Float64(t - -457.9610022158428) / z) - 36.52704169880642) / z) - -3.13060547623) * y) + x)
                        	tmp = 0.0
                        	if (z <= -235000.0)
                        		tmp = t_1;
                        	elseif (z <= 6500.0)
                        		tmp = Float64(x + Float64(Float64(y * Float64(Float64(Float64(Float64(t * z) + a) * z) + b)) / 0.607771387771));
                        	else
                        		tmp = t_1;
                        	end
                        	return tmp
                        end
                        
                        function tmp_2 = code(x, y, z, t, a, b)
                        	t_1 = ((((((t - -457.9610022158428) / z) - 36.52704169880642) / z) - -3.13060547623) * y) + x;
                        	tmp = 0.0;
                        	if (z <= -235000.0)
                        		tmp = t_1;
                        	elseif (z <= 6500.0)
                        		tmp = x + ((y * ((((t * z) + a) * z) + b)) / 0.607771387771);
                        	else
                        		tmp = t_1;
                        	end
                        	tmp_2 = tmp;
                        end
                        
                        code[x_, y_, z_, t_, a_, b_] := Block[{t$95$1 = N[(N[(N[(N[(N[(N[(N[(t - -457.9610022158428), $MachinePrecision] / z), $MachinePrecision] - 36.52704169880642), $MachinePrecision] / z), $MachinePrecision] - -3.13060547623), $MachinePrecision] * y), $MachinePrecision] + x), $MachinePrecision]}, If[LessEqual[z, -235000.0], t$95$1, If[LessEqual[z, 6500.0], N[(x + N[(N[(y * N[(N[(N[(N[(t * z), $MachinePrecision] + a), $MachinePrecision] * z), $MachinePrecision] + b), $MachinePrecision]), $MachinePrecision] / 0.607771387771), $MachinePrecision]), $MachinePrecision], t$95$1]]]
                        
                        \begin{array}{l}
                        t_1 := \left(\frac{\frac{t - -457.9610022158428}{z} - 36.52704169880642}{z} - -3.13060547623\right) \cdot y + x\\
                        \mathbf{if}\;z \leq -235000:\\
                        \;\;\;\;t\_1\\
                        
                        \mathbf{elif}\;z \leq 6500:\\
                        \;\;\;\;x + \frac{y \cdot \left(\left(t \cdot z + a\right) \cdot z + b\right)}{0.607771387771}\\
                        
                        \mathbf{else}:\\
                        \;\;\;\;t\_1\\
                        
                        
                        \end{array}
                        
                        Derivation
                        1. Split input into 2 regimes
                        2. if z < -235000 or 6500 < z

                          1. Initial program 58.1%

                            \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
                          2. Applied rewrites60.1%

                            \[\leadsto x + \color{blue}{\frac{b + \left(a + \left(t + \left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z\right) \cdot z\right) \cdot z}{\left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z - -0.607771387771} \cdot y} \]
                          3. Taylor expanded in z around -inf

                            \[\leadsto x + \color{blue}{\left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right)} \cdot y \]
                          4. Step-by-step derivation
                            1. lower-+.f64N/A

                              \[\leadsto x + \left(\frac{313060547623}{100000000000} + \color{blue}{-1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
                            2. lower-*.f64N/A

                              \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \color{blue}{\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
                            3. lower-/.f64N/A

                              \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{\color{blue}{z}}\right) \cdot y \]
                            4. lower-+.f64N/A

                              \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
                            5. lower-*.f64N/A

                              \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
                            6. lower-/.f64N/A

                              \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
                            7. lower-+.f6457.0%

                              \[\leadsto x + \left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right) \cdot y \]
                          5. Applied rewrites57.0%

                            \[\leadsto x + \color{blue}{\left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right)} \cdot y \]
                          6. Step-by-step derivation
                            1. lift-+.f64N/A

                              \[\leadsto \color{blue}{x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y} \]
                            2. +-commutativeN/A

                              \[\leadsto \color{blue}{\left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y + x} \]
                            3. lower-+.f6457.0%

                              \[\leadsto \color{blue}{\left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right) \cdot y + x} \]
                          7. Applied rewrites57.0%

                            \[\leadsto \color{blue}{\left(\frac{\frac{t - -457.9610022158428}{z} - 36.52704169880642}{z} - -3.13060547623\right) \cdot y + x} \]

                          if -235000 < z < 6500

                          1. Initial program 58.1%

                            \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
                          2. Taylor expanded in z around 0

                            \[\leadsto x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\color{blue}{\frac{607771387771}{1000000000000}}} \]
                          3. Step-by-step derivation
                            1. Applied rewrites54.3%

                              \[\leadsto x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\color{blue}{0.607771387771}} \]
                            2. Taylor expanded in z around 0

                              \[\leadsto x + \frac{y \cdot \left(\left(\color{blue}{t} \cdot z + a\right) \cdot z + b\right)}{0.607771387771} \]
                            3. Step-by-step derivation
                              1. Applied rewrites56.6%

                                \[\leadsto x + \frac{y \cdot \left(\left(\color{blue}{t} \cdot z + a\right) \cdot z + b\right)}{0.607771387771} \]
                            4. Recombined 2 regimes into one program.
                            5. Add Preprocessing

                            Alternative 14: 91.8% accurate, 1.6× speedup?

                            \[\begin{array}{l} \mathbf{if}\;z \leq -4.7 \cdot 10^{+58}:\\ \;\;\;\;x + 3.13060547623 \cdot y\\ \mathbf{elif}\;z \leq 9:\\ \;\;\;\;x + \frac{y \cdot \left(\left(t \cdot z + a\right) \cdot z + b\right)}{0.607771387771}\\ \mathbf{else}:\\ \;\;\;\;x + \left(3.13060547623 + \frac{-36.52704169880642}{z}\right) \cdot y\\ \end{array} \]
                            (FPCore (x y z t a b)
                              :precision binary64
                              (if (<= z -4.7e+58)
                              (+ x (* 3.13060547623 y))
                              (if (<= z 9.0)
                                (+ x (/ (* y (+ (* (+ (* t z) a) z) b)) 0.607771387771))
                                (+ x (* (+ 3.13060547623 (/ -36.52704169880642 z)) y)))))
                            double code(double x, double y, double z, double t, double a, double b) {
                            	double tmp;
                            	if (z <= -4.7e+58) {
                            		tmp = x + (3.13060547623 * y);
                            	} else if (z <= 9.0) {
                            		tmp = x + ((y * ((((t * z) + a) * z) + b)) / 0.607771387771);
                            	} else {
                            		tmp = x + ((3.13060547623 + (-36.52704169880642 / z)) * y);
                            	}
                            	return tmp;
                            }
                            
                            module fmin_fmax_functions
                                implicit none
                                private
                                public fmax
                                public fmin
                            
                                interface fmax
                                    module procedure fmax88
                                    module procedure fmax44
                                    module procedure fmax84
                                    module procedure fmax48
                                end interface
                                interface fmin
                                    module procedure fmin88
                                    module procedure fmin44
                                    module procedure fmin84
                                    module procedure fmin48
                                end interface
                            contains
                                real(8) function fmax88(x, y) result (res)
                                    real(8), intent (in) :: x
                                    real(8), intent (in) :: y
                                    res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                end function
                                real(4) function fmax44(x, y) result (res)
                                    real(4), intent (in) :: x
                                    real(4), intent (in) :: y
                                    res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                end function
                                real(8) function fmax84(x, y) result(res)
                                    real(8), intent (in) :: x
                                    real(4), intent (in) :: y
                                    res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                                end function
                                real(8) function fmax48(x, y) result(res)
                                    real(4), intent (in) :: x
                                    real(8), intent (in) :: y
                                    res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                                end function
                                real(8) function fmin88(x, y) result (res)
                                    real(8), intent (in) :: x
                                    real(8), intent (in) :: y
                                    res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                end function
                                real(4) function fmin44(x, y) result (res)
                                    real(4), intent (in) :: x
                                    real(4), intent (in) :: y
                                    res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                end function
                                real(8) function fmin84(x, y) result(res)
                                    real(8), intent (in) :: x
                                    real(4), intent (in) :: y
                                    res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                                end function
                                real(8) function fmin48(x, y) result(res)
                                    real(4), intent (in) :: x
                                    real(8), intent (in) :: y
                                    res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                                end function
                            end module
                            
                            real(8) function code(x, y, z, t, a, b)
                            use fmin_fmax_functions
                                real(8), intent (in) :: x
                                real(8), intent (in) :: y
                                real(8), intent (in) :: z
                                real(8), intent (in) :: t
                                real(8), intent (in) :: a
                                real(8), intent (in) :: b
                                real(8) :: tmp
                                if (z <= (-4.7d+58)) then
                                    tmp = x + (3.13060547623d0 * y)
                                else if (z <= 9.0d0) then
                                    tmp = x + ((y * ((((t * z) + a) * z) + b)) / 0.607771387771d0)
                                else
                                    tmp = x + ((3.13060547623d0 + ((-36.52704169880642d0) / z)) * y)
                                end if
                                code = tmp
                            end function
                            
                            public static double code(double x, double y, double z, double t, double a, double b) {
                            	double tmp;
                            	if (z <= -4.7e+58) {
                            		tmp = x + (3.13060547623 * y);
                            	} else if (z <= 9.0) {
                            		tmp = x + ((y * ((((t * z) + a) * z) + b)) / 0.607771387771);
                            	} else {
                            		tmp = x + ((3.13060547623 + (-36.52704169880642 / z)) * y);
                            	}
                            	return tmp;
                            }
                            
                            def code(x, y, z, t, a, b):
                            	tmp = 0
                            	if z <= -4.7e+58:
                            		tmp = x + (3.13060547623 * y)
                            	elif z <= 9.0:
                            		tmp = x + ((y * ((((t * z) + a) * z) + b)) / 0.607771387771)
                            	else:
                            		tmp = x + ((3.13060547623 + (-36.52704169880642 / z)) * y)
                            	return tmp
                            
                            function code(x, y, z, t, a, b)
                            	tmp = 0.0
                            	if (z <= -4.7e+58)
                            		tmp = Float64(x + Float64(3.13060547623 * y));
                            	elseif (z <= 9.0)
                            		tmp = Float64(x + Float64(Float64(y * Float64(Float64(Float64(Float64(t * z) + a) * z) + b)) / 0.607771387771));
                            	else
                            		tmp = Float64(x + Float64(Float64(3.13060547623 + Float64(-36.52704169880642 / z)) * y));
                            	end
                            	return tmp
                            end
                            
                            function tmp_2 = code(x, y, z, t, a, b)
                            	tmp = 0.0;
                            	if (z <= -4.7e+58)
                            		tmp = x + (3.13060547623 * y);
                            	elseif (z <= 9.0)
                            		tmp = x + ((y * ((((t * z) + a) * z) + b)) / 0.607771387771);
                            	else
                            		tmp = x + ((3.13060547623 + (-36.52704169880642 / z)) * y);
                            	end
                            	tmp_2 = tmp;
                            end
                            
                            code[x_, y_, z_, t_, a_, b_] := If[LessEqual[z, -4.7e+58], N[(x + N[(3.13060547623 * y), $MachinePrecision]), $MachinePrecision], If[LessEqual[z, 9.0], N[(x + N[(N[(y * N[(N[(N[(N[(t * z), $MachinePrecision] + a), $MachinePrecision] * z), $MachinePrecision] + b), $MachinePrecision]), $MachinePrecision] / 0.607771387771), $MachinePrecision]), $MachinePrecision], N[(x + N[(N[(3.13060547623 + N[(-36.52704169880642 / z), $MachinePrecision]), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision]]]
                            
                            \begin{array}{l}
                            \mathbf{if}\;z \leq -4.7 \cdot 10^{+58}:\\
                            \;\;\;\;x + 3.13060547623 \cdot y\\
                            
                            \mathbf{elif}\;z \leq 9:\\
                            \;\;\;\;x + \frac{y \cdot \left(\left(t \cdot z + a\right) \cdot z + b\right)}{0.607771387771}\\
                            
                            \mathbf{else}:\\
                            \;\;\;\;x + \left(3.13060547623 + \frac{-36.52704169880642}{z}\right) \cdot y\\
                            
                            
                            \end{array}
                            
                            Derivation
                            1. Split input into 3 regimes
                            2. if z < -4.6999999999999997e58

                              1. Initial program 58.1%

                                \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
                              2. Taylor expanded in z around inf

                                \[\leadsto x + \color{blue}{\frac{313060547623}{100000000000} \cdot y} \]
                              3. Step-by-step derivation
                                1. lower-*.f6463.6%

                                  \[\leadsto x + 3.13060547623 \cdot \color{blue}{y} \]
                              4. Applied rewrites63.6%

                                \[\leadsto x + \color{blue}{3.13060547623 \cdot y} \]

                              if -4.6999999999999997e58 < z < 9

                              1. Initial program 58.1%

                                \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
                              2. Taylor expanded in z around 0

                                \[\leadsto x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\color{blue}{\frac{607771387771}{1000000000000}}} \]
                              3. Step-by-step derivation
                                1. Applied rewrites54.3%

                                  \[\leadsto x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\color{blue}{0.607771387771}} \]
                                2. Taylor expanded in z around 0

                                  \[\leadsto x + \frac{y \cdot \left(\left(\color{blue}{t} \cdot z + a\right) \cdot z + b\right)}{0.607771387771} \]
                                3. Step-by-step derivation
                                  1. Applied rewrites56.6%

                                    \[\leadsto x + \frac{y \cdot \left(\left(\color{blue}{t} \cdot z + a\right) \cdot z + b\right)}{0.607771387771} \]

                                  if 9 < z

                                  1. Initial program 58.1%

                                    \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
                                  2. Applied rewrites60.1%

                                    \[\leadsto x + \color{blue}{\frac{b + \left(a + \left(t + \left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z\right) \cdot z\right) \cdot z}{\left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z - -0.607771387771} \cdot y} \]
                                  3. Taylor expanded in z around -inf

                                    \[\leadsto x + \color{blue}{\left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right)} \cdot y \]
                                  4. Step-by-step derivation
                                    1. lower-+.f64N/A

                                      \[\leadsto x + \left(\frac{313060547623}{100000000000} + \color{blue}{-1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
                                    2. lower-*.f64N/A

                                      \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \color{blue}{\frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}}\right) \cdot y \]
                                    3. lower-/.f64N/A

                                      \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{\color{blue}{z}}\right) \cdot y \]
                                    4. lower-+.f64N/A

                                      \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
                                    5. lower-*.f64N/A

                                      \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
                                    6. lower-/.f64N/A

                                      \[\leadsto x + \left(\frac{313060547623}{100000000000} + -1 \cdot \frac{\frac{3652704169880641883561}{100000000000000000000} + -1 \cdot \frac{\frac{45796100221584283915100827016327}{100000000000000000000000000000} + t}{z}}{z}\right) \cdot y \]
                                    7. lower-+.f6457.0%

                                      \[\leadsto x + \left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right) \cdot y \]
                                  5. Applied rewrites57.0%

                                    \[\leadsto x + \color{blue}{\left(3.13060547623 + -1 \cdot \frac{36.52704169880642 + -1 \cdot \frac{457.9610022158428 + t}{z}}{z}\right)} \cdot y \]
                                  6. Taylor expanded in z around inf

                                    \[\leadsto x + \left(3.13060547623 + \frac{\frac{-3652704169880641883561}{100000000000000000000}}{\color{blue}{z}}\right) \cdot y \]
                                  7. Step-by-step derivation
                                    1. lower-/.f6459.9%

                                      \[\leadsto x + \left(3.13060547623 + \frac{-36.52704169880642}{z}\right) \cdot y \]
                                  8. Applied rewrites59.9%

                                    \[\leadsto x + \left(3.13060547623 + \frac{-36.52704169880642}{\color{blue}{z}}\right) \cdot y \]
                                4. Recombined 3 regimes into one program.
                                5. Add Preprocessing

                                Alternative 15: 87.6% accurate, 0.7× speedup?

                                \[\begin{array}{l} \mathbf{if}\;x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \leq \infty:\\ \;\;\;\;x + \left(a \cdot z + b\right) \cdot \left(y \cdot 1.6453555072203998\right)\\ \mathbf{else}:\\ \;\;\;\;x + 3.13060547623 \cdot y\\ \end{array} \]
                                (FPCore (x y z t a b)
                                  :precision binary64
                                  (if (<=
                                     (+
                                      x
                                      (/
                                       (*
                                        y
                                        (+
                                         (*
                                          (+
                                           (* (+ (* (+ (* z 3.13060547623) 11.1667541262) z) t) z)
                                           a)
                                          z)
                                         b))
                                       (+
                                        (*
                                         (+
                                          (* (+ (* (+ z 15.234687407) z) 31.4690115749) z)
                                          11.9400905721)
                                         z)
                                        0.607771387771)))
                                     INFINITY)
                                  (+ x (* (+ (* a z) b) (* y 1.6453555072203998)))
                                  (+ x (* 3.13060547623 y))))
                                double code(double x, double y, double z, double t, double a, double b) {
                                	double tmp;
                                	if ((x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))) <= ((double) INFINITY)) {
                                		tmp = x + (((a * z) + b) * (y * 1.6453555072203998));
                                	} else {
                                		tmp = x + (3.13060547623 * y);
                                	}
                                	return tmp;
                                }
                                
                                public static double code(double x, double y, double z, double t, double a, double b) {
                                	double tmp;
                                	if ((x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))) <= Double.POSITIVE_INFINITY) {
                                		tmp = x + (((a * z) + b) * (y * 1.6453555072203998));
                                	} else {
                                		tmp = x + (3.13060547623 * y);
                                	}
                                	return tmp;
                                }
                                
                                def code(x, y, z, t, a, b):
                                	tmp = 0
                                	if (x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))) <= math.inf:
                                		tmp = x + (((a * z) + b) * (y * 1.6453555072203998))
                                	else:
                                		tmp = x + (3.13060547623 * y)
                                	return tmp
                                
                                function code(x, y, z, t, a, b)
                                	tmp = 0.0
                                	if (Float64(x + Float64(Float64(y * Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))) <= Inf)
                                		tmp = Float64(x + Float64(Float64(Float64(a * z) + b) * Float64(y * 1.6453555072203998)));
                                	else
                                		tmp = Float64(x + Float64(3.13060547623 * y));
                                	end
                                	return tmp
                                end
                                
                                function tmp_2 = code(x, y, z, t, a, b)
                                	tmp = 0.0;
                                	if ((x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))) <= Inf)
                                		tmp = x + (((a * z) + b) * (y * 1.6453555072203998));
                                	else
                                		tmp = x + (3.13060547623 * y);
                                	end
                                	tmp_2 = tmp;
                                end
                                
                                code[x_, y_, z_, t_, a_, b_] := If[LessEqual[N[(x + N[(N[(y * N[(N[(N[(N[(N[(N[(N[(N[(z * 3.13060547623), $MachinePrecision] + 11.1667541262), $MachinePrecision] * z), $MachinePrecision] + t), $MachinePrecision] * z), $MachinePrecision] + a), $MachinePrecision] * z), $MachinePrecision] + b), $MachinePrecision]), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(z + 15.234687407), $MachinePrecision] * z), $MachinePrecision] + 31.4690115749), $MachinePrecision] * z), $MachinePrecision] + 11.9400905721), $MachinePrecision] * z), $MachinePrecision] + 0.607771387771), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], Infinity], N[(x + N[(N[(N[(a * z), $MachinePrecision] + b), $MachinePrecision] * N[(y * 1.6453555072203998), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[(x + N[(3.13060547623 * y), $MachinePrecision]), $MachinePrecision]]
                                
                                \begin{array}{l}
                                \mathbf{if}\;x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \leq \infty:\\
                                \;\;\;\;x + \left(a \cdot z + b\right) \cdot \left(y \cdot 1.6453555072203998\right)\\
                                
                                \mathbf{else}:\\
                                \;\;\;\;x + 3.13060547623 \cdot y\\
                                
                                
                                \end{array}
                                
                                Derivation
                                1. Split input into 2 regimes
                                2. if (+.f64 x (/.f64 (*.f64 y (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 z #s(literal 313060547623/100000000000 binary64)) #s(literal 55833770631/5000000000 binary64)) z) t) z) a) z) b)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 z #s(literal 15234687407/1000000000 binary64)) z) #s(literal 314690115749/10000000000 binary64)) z) #s(literal 119400905721/10000000000 binary64)) z) #s(literal 607771387771/1000000000000 binary64)))) < +inf.0

                                  1. Initial program 58.1%

                                    \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
                                  2. Taylor expanded in z around 0

                                    \[\leadsto x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\color{blue}{\frac{607771387771}{1000000000000}}} \]
                                  3. Step-by-step derivation
                                    1. Applied rewrites54.3%

                                      \[\leadsto x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\color{blue}{0.607771387771}} \]
                                    2. Taylor expanded in z around 0

                                      \[\leadsto x + \frac{y \cdot \left(\color{blue}{a} \cdot z + b\right)}{0.607771387771} \]
                                    3. Step-by-step derivation
                                      1. Applied rewrites59.2%

                                        \[\leadsto x + \frac{y \cdot \left(\color{blue}{a} \cdot z + b\right)}{0.607771387771} \]
                                      2. Step-by-step derivation
                                        1. lift-/.f64N/A

                                          \[\leadsto x + \color{blue}{\frac{y \cdot \left(a \cdot z + b\right)}{\frac{607771387771}{1000000000000}}} \]
                                        2. mult-flipN/A

                                          \[\leadsto x + \color{blue}{\left(y \cdot \left(a \cdot z + b\right)\right) \cdot \frac{1}{\frac{607771387771}{1000000000000}}} \]
                                        3. lift-*.f64N/A

                                          \[\leadsto x + \color{blue}{\left(y \cdot \left(a \cdot z + b\right)\right)} \cdot \frac{1}{\frac{607771387771}{1000000000000}} \]
                                        4. *-commutativeN/A

                                          \[\leadsto x + \color{blue}{\left(\left(a \cdot z + b\right) \cdot y\right)} \cdot \frac{1}{\frac{607771387771}{1000000000000}} \]
                                        5. associate-*l*N/A

                                          \[\leadsto x + \color{blue}{\left(a \cdot z + b\right) \cdot \left(y \cdot \frac{1}{\frac{607771387771}{1000000000000}}\right)} \]
                                        6. lower-*.f64N/A

                                          \[\leadsto x + \color{blue}{\left(a \cdot z + b\right) \cdot \left(y \cdot \frac{1}{\frac{607771387771}{1000000000000}}\right)} \]
                                        7. lower-*.f64N/A

                                          \[\leadsto x + \left(a \cdot z + b\right) \cdot \color{blue}{\left(y \cdot \frac{1}{\frac{607771387771}{1000000000000}}\right)} \]
                                        8. lower-/.f6459.2%

                                          \[\leadsto x + \left(a \cdot z + b\right) \cdot \left(y \cdot \color{blue}{\frac{1}{0.607771387771}}\right) \]
                                      3. Applied rewrites59.2%

                                        \[\leadsto x + \color{blue}{\left(a \cdot z + b\right) \cdot \left(y \cdot \frac{1}{0.607771387771}\right)} \]
                                      4. Taylor expanded in z around 0

                                        \[\leadsto x + \left(a \cdot z + b\right) \cdot \left(y \cdot \color{blue}{\frac{1000000000000}{607771387771}}\right) \]
                                      5. Step-by-step derivation
                                        1. Applied rewrites59.2%

                                          \[\leadsto x + \left(a \cdot z + b\right) \cdot \left(y \cdot \color{blue}{1.6453555072203998}\right) \]

                                        if +inf.0 < (+.f64 x (/.f64 (*.f64 y (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 z #s(literal 313060547623/100000000000 binary64)) #s(literal 55833770631/5000000000 binary64)) z) t) z) a) z) b)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 z #s(literal 15234687407/1000000000 binary64)) z) #s(literal 314690115749/10000000000 binary64)) z) #s(literal 119400905721/10000000000 binary64)) z) #s(literal 607771387771/1000000000000 binary64))))

                                        1. Initial program 58.1%

                                          \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
                                        2. Taylor expanded in z around inf

                                          \[\leadsto x + \color{blue}{\frac{313060547623}{100000000000} \cdot y} \]
                                        3. Step-by-step derivation
                                          1. lower-*.f6463.6%

                                            \[\leadsto x + 3.13060547623 \cdot \color{blue}{y} \]
                                        4. Applied rewrites63.6%

                                          \[\leadsto x + \color{blue}{3.13060547623 \cdot y} \]
                                      6. Recombined 2 regimes into one program.
                                      7. Add Preprocessing

                                      Alternative 16: 81.5% accurate, 0.8× speedup?

                                      \[\begin{array}{l} \mathbf{if}\;x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \leq \infty:\\ \;\;\;\;x + \left(1.6453555072203998 \cdot b\right) \cdot y\\ \mathbf{else}:\\ \;\;\;\;x + 3.13060547623 \cdot y\\ \end{array} \]
                                      (FPCore (x y z t a b)
                                        :precision binary64
                                        (if (<=
                                           (+
                                            x
                                            (/
                                             (*
                                              y
                                              (+
                                               (*
                                                (+
                                                 (* (+ (* (+ (* z 3.13060547623) 11.1667541262) z) t) z)
                                                 a)
                                                z)
                                               b))
                                             (+
                                              (*
                                               (+
                                                (* (+ (* (+ z 15.234687407) z) 31.4690115749) z)
                                                11.9400905721)
                                               z)
                                              0.607771387771)))
                                           INFINITY)
                                        (+ x (* (* 1.6453555072203998 b) y))
                                        (+ x (* 3.13060547623 y))))
                                      double code(double x, double y, double z, double t, double a, double b) {
                                      	double tmp;
                                      	if ((x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))) <= ((double) INFINITY)) {
                                      		tmp = x + ((1.6453555072203998 * b) * y);
                                      	} else {
                                      		tmp = x + (3.13060547623 * y);
                                      	}
                                      	return tmp;
                                      }
                                      
                                      public static double code(double x, double y, double z, double t, double a, double b) {
                                      	double tmp;
                                      	if ((x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))) <= Double.POSITIVE_INFINITY) {
                                      		tmp = x + ((1.6453555072203998 * b) * y);
                                      	} else {
                                      		tmp = x + (3.13060547623 * y);
                                      	}
                                      	return tmp;
                                      }
                                      
                                      def code(x, y, z, t, a, b):
                                      	tmp = 0
                                      	if (x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))) <= math.inf:
                                      		tmp = x + ((1.6453555072203998 * b) * y)
                                      	else:
                                      		tmp = x + (3.13060547623 * y)
                                      	return tmp
                                      
                                      function code(x, y, z, t, a, b)
                                      	tmp = 0.0
                                      	if (Float64(x + Float64(Float64(y * Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))) <= Inf)
                                      		tmp = Float64(x + Float64(Float64(1.6453555072203998 * b) * y));
                                      	else
                                      		tmp = Float64(x + Float64(3.13060547623 * y));
                                      	end
                                      	return tmp
                                      end
                                      
                                      function tmp_2 = code(x, y, z, t, a, b)
                                      	tmp = 0.0;
                                      	if ((x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))) <= Inf)
                                      		tmp = x + ((1.6453555072203998 * b) * y);
                                      	else
                                      		tmp = x + (3.13060547623 * y);
                                      	end
                                      	tmp_2 = tmp;
                                      end
                                      
                                      code[x_, y_, z_, t_, a_, b_] := If[LessEqual[N[(x + N[(N[(y * N[(N[(N[(N[(N[(N[(N[(N[(z * 3.13060547623), $MachinePrecision] + 11.1667541262), $MachinePrecision] * z), $MachinePrecision] + t), $MachinePrecision] * z), $MachinePrecision] + a), $MachinePrecision] * z), $MachinePrecision] + b), $MachinePrecision]), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(z + 15.234687407), $MachinePrecision] * z), $MachinePrecision] + 31.4690115749), $MachinePrecision] * z), $MachinePrecision] + 11.9400905721), $MachinePrecision] * z), $MachinePrecision] + 0.607771387771), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], Infinity], N[(x + N[(N[(1.6453555072203998 * b), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision], N[(x + N[(3.13060547623 * y), $MachinePrecision]), $MachinePrecision]]
                                      
                                      \begin{array}{l}
                                      \mathbf{if}\;x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \leq \infty:\\
                                      \;\;\;\;x + \left(1.6453555072203998 \cdot b\right) \cdot y\\
                                      
                                      \mathbf{else}:\\
                                      \;\;\;\;x + 3.13060547623 \cdot y\\
                                      
                                      
                                      \end{array}
                                      
                                      Derivation
                                      1. Split input into 2 regimes
                                      2. if (+.f64 x (/.f64 (*.f64 y (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 z #s(literal 313060547623/100000000000 binary64)) #s(literal 55833770631/5000000000 binary64)) z) t) z) a) z) b)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 z #s(literal 15234687407/1000000000 binary64)) z) #s(literal 314690115749/10000000000 binary64)) z) #s(literal 119400905721/10000000000 binary64)) z) #s(literal 607771387771/1000000000000 binary64)))) < +inf.0

                                        1. Initial program 58.1%

                                          \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
                                        2. Applied rewrites60.1%

                                          \[\leadsto x + \color{blue}{\frac{b + \left(a + \left(t + \left(3.13060547623 \cdot z - -11.1667541262\right) \cdot z\right) \cdot z\right) \cdot z}{\left(\left(\left(z - -15.234687407\right) \cdot z - -31.4690115749\right) \cdot z - -11.9400905721\right) \cdot z - -0.607771387771} \cdot y} \]
                                        3. Taylor expanded in z around 0

                                          \[\leadsto x + \color{blue}{\left(\frac{1000000000000}{607771387771} \cdot b\right)} \cdot y \]
                                        4. Step-by-step derivation
                                          1. lower-*.f6460.0%

                                            \[\leadsto x + \left(1.6453555072203998 \cdot \color{blue}{b}\right) \cdot y \]
                                        5. Applied rewrites60.0%

                                          \[\leadsto x + \color{blue}{\left(1.6453555072203998 \cdot b\right)} \cdot y \]

                                        if +inf.0 < (+.f64 x (/.f64 (*.f64 y (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 z #s(literal 313060547623/100000000000 binary64)) #s(literal 55833770631/5000000000 binary64)) z) t) z) a) z) b)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 z #s(literal 15234687407/1000000000 binary64)) z) #s(literal 314690115749/10000000000 binary64)) z) #s(literal 119400905721/10000000000 binary64)) z) #s(literal 607771387771/1000000000000 binary64))))

                                        1. Initial program 58.1%

                                          \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
                                        2. Taylor expanded in z around inf

                                          \[\leadsto x + \color{blue}{\frac{313060547623}{100000000000} \cdot y} \]
                                        3. Step-by-step derivation
                                          1. lower-*.f6463.6%

                                            \[\leadsto x + 3.13060547623 \cdot \color{blue}{y} \]
                                        4. Applied rewrites63.6%

                                          \[\leadsto x + \color{blue}{3.13060547623 \cdot y} \]
                                      3. Recombined 2 regimes into one program.
                                      4. Add Preprocessing

                                      Alternative 17: 81.5% accurate, 0.8× speedup?

                                      \[\begin{array}{l} \mathbf{if}\;x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \leq \infty:\\ \;\;\;\;x + 1.6453555072203998 \cdot \left(b \cdot y\right)\\ \mathbf{else}:\\ \;\;\;\;x + 3.13060547623 \cdot y\\ \end{array} \]
                                      (FPCore (x y z t a b)
                                        :precision binary64
                                        (if (<=
                                           (+
                                            x
                                            (/
                                             (*
                                              y
                                              (+
                                               (*
                                                (+
                                                 (* (+ (* (+ (* z 3.13060547623) 11.1667541262) z) t) z)
                                                 a)
                                                z)
                                               b))
                                             (+
                                              (*
                                               (+
                                                (* (+ (* (+ z 15.234687407) z) 31.4690115749) z)
                                                11.9400905721)
                                               z)
                                              0.607771387771)))
                                           INFINITY)
                                        (+ x (* 1.6453555072203998 (* b y)))
                                        (+ x (* 3.13060547623 y))))
                                      double code(double x, double y, double z, double t, double a, double b) {
                                      	double tmp;
                                      	if ((x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))) <= ((double) INFINITY)) {
                                      		tmp = x + (1.6453555072203998 * (b * y));
                                      	} else {
                                      		tmp = x + (3.13060547623 * y);
                                      	}
                                      	return tmp;
                                      }
                                      
                                      public static double code(double x, double y, double z, double t, double a, double b) {
                                      	double tmp;
                                      	if ((x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))) <= Double.POSITIVE_INFINITY) {
                                      		tmp = x + (1.6453555072203998 * (b * y));
                                      	} else {
                                      		tmp = x + (3.13060547623 * y);
                                      	}
                                      	return tmp;
                                      }
                                      
                                      def code(x, y, z, t, a, b):
                                      	tmp = 0
                                      	if (x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))) <= math.inf:
                                      		tmp = x + (1.6453555072203998 * (b * y))
                                      	else:
                                      		tmp = x + (3.13060547623 * y)
                                      	return tmp
                                      
                                      function code(x, y, z, t, a, b)
                                      	tmp = 0.0
                                      	if (Float64(x + Float64(Float64(y * Float64(Float64(Float64(Float64(Float64(Float64(Float64(Float64(z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / Float64(Float64(Float64(Float64(Float64(Float64(Float64(z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))) <= Inf)
                                      		tmp = Float64(x + Float64(1.6453555072203998 * Float64(b * y)));
                                      	else
                                      		tmp = Float64(x + Float64(3.13060547623 * y));
                                      	end
                                      	return tmp
                                      end
                                      
                                      function tmp_2 = code(x, y, z, t, a, b)
                                      	tmp = 0.0;
                                      	if ((x + ((y * ((((((((z * 3.13060547623) + 11.1667541262) * z) + t) * z) + a) * z) + b)) / (((((((z + 15.234687407) * z) + 31.4690115749) * z) + 11.9400905721) * z) + 0.607771387771))) <= Inf)
                                      		tmp = x + (1.6453555072203998 * (b * y));
                                      	else
                                      		tmp = x + (3.13060547623 * y);
                                      	end
                                      	tmp_2 = tmp;
                                      end
                                      
                                      code[x_, y_, z_, t_, a_, b_] := If[LessEqual[N[(x + N[(N[(y * N[(N[(N[(N[(N[(N[(N[(N[(z * 3.13060547623), $MachinePrecision] + 11.1667541262), $MachinePrecision] * z), $MachinePrecision] + t), $MachinePrecision] * z), $MachinePrecision] + a), $MachinePrecision] * z), $MachinePrecision] + b), $MachinePrecision]), $MachinePrecision] / N[(N[(N[(N[(N[(N[(N[(z + 15.234687407), $MachinePrecision] * z), $MachinePrecision] + 31.4690115749), $MachinePrecision] * z), $MachinePrecision] + 11.9400905721), $MachinePrecision] * z), $MachinePrecision] + 0.607771387771), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], Infinity], N[(x + N[(1.6453555072203998 * N[(b * y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[(x + N[(3.13060547623 * y), $MachinePrecision]), $MachinePrecision]]
                                      
                                      \begin{array}{l}
                                      \mathbf{if}\;x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \leq \infty:\\
                                      \;\;\;\;x + 1.6453555072203998 \cdot \left(b \cdot y\right)\\
                                      
                                      \mathbf{else}:\\
                                      \;\;\;\;x + 3.13060547623 \cdot y\\
                                      
                                      
                                      \end{array}
                                      
                                      Derivation
                                      1. Split input into 2 regimes
                                      2. if (+.f64 x (/.f64 (*.f64 y (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 z #s(literal 313060547623/100000000000 binary64)) #s(literal 55833770631/5000000000 binary64)) z) t) z) a) z) b)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 z #s(literal 15234687407/1000000000 binary64)) z) #s(literal 314690115749/10000000000 binary64)) z) #s(literal 119400905721/10000000000 binary64)) z) #s(literal 607771387771/1000000000000 binary64)))) < +inf.0

                                        1. Initial program 58.1%

                                          \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
                                        2. Taylor expanded in z around 0

                                          \[\leadsto x + \frac{y \cdot \color{blue}{b}}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
                                        3. Step-by-step derivation
                                          1. Applied rewrites64.0%

                                            \[\leadsto x + \frac{y \cdot \color{blue}{b}}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
                                          2. Taylor expanded in z around 0

                                            \[\leadsto x + \frac{y \cdot b}{\left(\color{blue}{\frac{314690115749}{10000000000}} \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
                                          3. Step-by-step derivation
                                            1. Applied rewrites63.4%

                                              \[\leadsto x + \frac{y \cdot b}{\left(\color{blue}{31.4690115749} \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
                                            2. Taylor expanded in z around 0

                                              \[\leadsto x + \color{blue}{\frac{1000000000000}{607771387771} \cdot \left(b \cdot y\right)} \]
                                            3. Step-by-step derivation
                                              1. lower-*.f64N/A

                                                \[\leadsto x + \frac{1000000000000}{607771387771} \cdot \color{blue}{\left(b \cdot y\right)} \]
                                              2. lower-*.f6460.0%

                                                \[\leadsto x + 1.6453555072203998 \cdot \left(b \cdot \color{blue}{y}\right) \]
                                            4. Applied rewrites60.0%

                                              \[\leadsto x + \color{blue}{1.6453555072203998 \cdot \left(b \cdot y\right)} \]

                                            if +inf.0 < (+.f64 x (/.f64 (*.f64 y (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 z #s(literal 313060547623/100000000000 binary64)) #s(literal 55833770631/5000000000 binary64)) z) t) z) a) z) b)) (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 (*.f64 (+.f64 z #s(literal 15234687407/1000000000 binary64)) z) #s(literal 314690115749/10000000000 binary64)) z) #s(literal 119400905721/10000000000 binary64)) z) #s(literal 607771387771/1000000000000 binary64))))

                                            1. Initial program 58.1%

                                              \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
                                            2. Taylor expanded in z around inf

                                              \[\leadsto x + \color{blue}{\frac{313060547623}{100000000000} \cdot y} \]
                                            3. Step-by-step derivation
                                              1. lower-*.f6463.6%

                                                \[\leadsto x + 3.13060547623 \cdot \color{blue}{y} \]
                                            4. Applied rewrites63.6%

                                              \[\leadsto x + \color{blue}{3.13060547623 \cdot y} \]
                                          4. Recombined 2 regimes into one program.
                                          5. Add Preprocessing

                                          Alternative 18: 63.6% accurate, 8.8× speedup?

                                          \[x + 3.13060547623 \cdot y \]
                                          (FPCore (x y z t a b)
                                            :precision binary64
                                            (+ x (* 3.13060547623 y)))
                                          double code(double x, double y, double z, double t, double a, double b) {
                                          	return x + (3.13060547623 * y);
                                          }
                                          
                                          module fmin_fmax_functions
                                              implicit none
                                              private
                                              public fmax
                                              public fmin
                                          
                                              interface fmax
                                                  module procedure fmax88
                                                  module procedure fmax44
                                                  module procedure fmax84
                                                  module procedure fmax48
                                              end interface
                                              interface fmin
                                                  module procedure fmin88
                                                  module procedure fmin44
                                                  module procedure fmin84
                                                  module procedure fmin48
                                              end interface
                                          contains
                                              real(8) function fmax88(x, y) result (res)
                                                  real(8), intent (in) :: x
                                                  real(8), intent (in) :: y
                                                  res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                              end function
                                              real(4) function fmax44(x, y) result (res)
                                                  real(4), intent (in) :: x
                                                  real(4), intent (in) :: y
                                                  res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                              end function
                                              real(8) function fmax84(x, y) result(res)
                                                  real(8), intent (in) :: x
                                                  real(4), intent (in) :: y
                                                  res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                                              end function
                                              real(8) function fmax48(x, y) result(res)
                                                  real(4), intent (in) :: x
                                                  real(8), intent (in) :: y
                                                  res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                                              end function
                                              real(8) function fmin88(x, y) result (res)
                                                  real(8), intent (in) :: x
                                                  real(8), intent (in) :: y
                                                  res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                              end function
                                              real(4) function fmin44(x, y) result (res)
                                                  real(4), intent (in) :: x
                                                  real(4), intent (in) :: y
                                                  res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                              end function
                                              real(8) function fmin84(x, y) result(res)
                                                  real(8), intent (in) :: x
                                                  real(4), intent (in) :: y
                                                  res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                                              end function
                                              real(8) function fmin48(x, y) result(res)
                                                  real(4), intent (in) :: x
                                                  real(8), intent (in) :: y
                                                  res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                                              end function
                                          end module
                                          
                                          real(8) function code(x, y, z, t, a, b)
                                          use fmin_fmax_functions
                                              real(8), intent (in) :: x
                                              real(8), intent (in) :: y
                                              real(8), intent (in) :: z
                                              real(8), intent (in) :: t
                                              real(8), intent (in) :: a
                                              real(8), intent (in) :: b
                                              code = x + (3.13060547623d0 * y)
                                          end function
                                          
                                          public static double code(double x, double y, double z, double t, double a, double b) {
                                          	return x + (3.13060547623 * y);
                                          }
                                          
                                          def code(x, y, z, t, a, b):
                                          	return x + (3.13060547623 * y)
                                          
                                          function code(x, y, z, t, a, b)
                                          	return Float64(x + Float64(3.13060547623 * y))
                                          end
                                          
                                          function tmp = code(x, y, z, t, a, b)
                                          	tmp = x + (3.13060547623 * y);
                                          end
                                          
                                          code[x_, y_, z_, t_, a_, b_] := N[(x + N[(3.13060547623 * y), $MachinePrecision]), $MachinePrecision]
                                          
                                          x + 3.13060547623 \cdot y
                                          
                                          Derivation
                                          1. Initial program 58.1%

                                            \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
                                          2. Taylor expanded in z around inf

                                            \[\leadsto x + \color{blue}{\frac{313060547623}{100000000000} \cdot y} \]
                                          3. Step-by-step derivation
                                            1. lower-*.f6463.6%

                                              \[\leadsto x + 3.13060547623 \cdot \color{blue}{y} \]
                                          4. Applied rewrites63.6%

                                            \[\leadsto x + \color{blue}{3.13060547623 \cdot y} \]
                                          5. Add Preprocessing

                                          Alternative 19: 46.2% accurate, 13.2× speedup?

                                          \[x \cdot 1 \]
                                          (FPCore (x y z t a b)
                                            :precision binary64
                                            (* x 1.0))
                                          double code(double x, double y, double z, double t, double a, double b) {
                                          	return x * 1.0;
                                          }
                                          
                                          module fmin_fmax_functions
                                              implicit none
                                              private
                                              public fmax
                                              public fmin
                                          
                                              interface fmax
                                                  module procedure fmax88
                                                  module procedure fmax44
                                                  module procedure fmax84
                                                  module procedure fmax48
                                              end interface
                                              interface fmin
                                                  module procedure fmin88
                                                  module procedure fmin44
                                                  module procedure fmin84
                                                  module procedure fmin48
                                              end interface
                                          contains
                                              real(8) function fmax88(x, y) result (res)
                                                  real(8), intent (in) :: x
                                                  real(8), intent (in) :: y
                                                  res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                              end function
                                              real(4) function fmax44(x, y) result (res)
                                                  real(4), intent (in) :: x
                                                  real(4), intent (in) :: y
                                                  res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                              end function
                                              real(8) function fmax84(x, y) result(res)
                                                  real(8), intent (in) :: x
                                                  real(4), intent (in) :: y
                                                  res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                                              end function
                                              real(8) function fmax48(x, y) result(res)
                                                  real(4), intent (in) :: x
                                                  real(8), intent (in) :: y
                                                  res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                                              end function
                                              real(8) function fmin88(x, y) result (res)
                                                  real(8), intent (in) :: x
                                                  real(8), intent (in) :: y
                                                  res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                              end function
                                              real(4) function fmin44(x, y) result (res)
                                                  real(4), intent (in) :: x
                                                  real(4), intent (in) :: y
                                                  res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                              end function
                                              real(8) function fmin84(x, y) result(res)
                                                  real(8), intent (in) :: x
                                                  real(4), intent (in) :: y
                                                  res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                                              end function
                                              real(8) function fmin48(x, y) result(res)
                                                  real(4), intent (in) :: x
                                                  real(8), intent (in) :: y
                                                  res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                                              end function
                                          end module
                                          
                                          real(8) function code(x, y, z, t, a, b)
                                          use fmin_fmax_functions
                                              real(8), intent (in) :: x
                                              real(8), intent (in) :: y
                                              real(8), intent (in) :: z
                                              real(8), intent (in) :: t
                                              real(8), intent (in) :: a
                                              real(8), intent (in) :: b
                                              code = x * 1.0d0
                                          end function
                                          
                                          public static double code(double x, double y, double z, double t, double a, double b) {
                                          	return x * 1.0;
                                          }
                                          
                                          def code(x, y, z, t, a, b):
                                          	return x * 1.0
                                          
                                          function code(x, y, z, t, a, b)
                                          	return Float64(x * 1.0)
                                          end
                                          
                                          function tmp = code(x, y, z, t, a, b)
                                          	tmp = x * 1.0;
                                          end
                                          
                                          code[x_, y_, z_, t_, a_, b_] := N[(x * 1.0), $MachinePrecision]
                                          
                                          x \cdot 1
                                          
                                          Derivation
                                          1. Initial program 58.1%

                                            \[x + \frac{y \cdot \left(\left(\left(\left(z \cdot 3.13060547623 + 11.1667541262\right) \cdot z + t\right) \cdot z + a\right) \cdot z + b\right)}{\left(\left(\left(z + 15.234687407\right) \cdot z + 31.4690115749\right) \cdot z + 11.9400905721\right) \cdot z + 0.607771387771} \]
                                          2. Taylor expanded in x around inf

                                            \[\leadsto \color{blue}{x \cdot \left(1 + \frac{y \cdot \left(b + z \cdot \left(a + z \cdot \left(t + z \cdot \left(\frac{55833770631}{5000000000} + \frac{313060547623}{100000000000} \cdot z\right)\right)\right)\right)}{x \cdot \left(\frac{607771387771}{1000000000000} + z \cdot \left(\frac{119400905721}{10000000000} + z \cdot \left(\frac{314690115749}{10000000000} + z \cdot \left(\frac{15234687407}{1000000000} + z\right)\right)\right)\right)}\right)} \]
                                          3. Applied rewrites52.1%

                                            \[\leadsto \color{blue}{x \cdot \left(1 + \frac{y \cdot \left(b + z \cdot \left(a + z \cdot \left(t + z \cdot \left(11.1667541262 + 3.13060547623 \cdot z\right)\right)\right)\right)}{x \cdot \left(0.607771387771 + z \cdot \left(11.9400905721 + z \cdot \left(31.4690115749 + z \cdot \left(15.234687407 + z\right)\right)\right)\right)}\right)} \]
                                          4. Taylor expanded in x around inf

                                            \[\leadsto x \cdot 1 \]
                                          5. Step-by-step derivation
                                            1. Applied rewrites46.2%

                                              \[\leadsto x \cdot 1 \]
                                            2. Add Preprocessing

                                            Reproduce

                                            ?
                                            herbie shell --seed 2025258 
                                            (FPCore (x y z t a b)
                                              :name "Numeric.SpecFunctions:logGamma from math-functions-0.1.5.2, D"
                                              :precision binary64
                                              (+ x (/ (* y (+ (* (+ (* (+ (* (+ (* z 3.13060547623) 11.1667541262) z) t) z) a) z) b)) (+ (* (+ (* (+ (* (+ z 15.234687407) z) 31.4690115749) z) 11.9400905721) z) 0.607771387771))))