Optimal throwing angle

Percentage Accurate: 67.9% → 99.5%
Time: 3.3s
Alternatives: 4
Speedup: 0.5×

Specification

?
\[\tan^{-1} \left(\frac{v}{\sqrt{v \cdot v - \left(2 \cdot 9.8\right) \cdot H}}\right) \]
(FPCore (v H)
  :precision binary64
  (atan (/ v (sqrt (- (* v v) (* (* 2.0 9.8) H))))))
double code(double v, double H) {
	return atan((v / sqrt(((v * v) - ((2.0 * 9.8) * H)))));
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(v, h)
use fmin_fmax_functions
    real(8), intent (in) :: v
    real(8), intent (in) :: h
    code = atan((v / sqrt(((v * v) - ((2.0d0 * 9.8d0) * h)))))
end function
public static double code(double v, double H) {
	return Math.atan((v / Math.sqrt(((v * v) - ((2.0 * 9.8) * H)))));
}
def code(v, H):
	return math.atan((v / math.sqrt(((v * v) - ((2.0 * 9.8) * H)))))
function code(v, H)
	return atan(Float64(v / sqrt(Float64(Float64(v * v) - Float64(Float64(2.0 * 9.8) * H)))))
end
function tmp = code(v, H)
	tmp = atan((v / sqrt(((v * v) - ((2.0 * 9.8) * H)))));
end
code[v_, H_] := N[ArcTan[N[(v / N[Sqrt[N[(N[(v * v), $MachinePrecision] - N[(N[(2.0 * 9.8), $MachinePrecision] * H), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]
\tan^{-1} \left(\frac{v}{\sqrt{v \cdot v - \left(2 \cdot 9.8\right) \cdot H}}\right)

Local Percentage Accuracy vs ?

The average percentage accuracy by input value. Horizontal axis shows value of an input variable; the variable is choosen in the title. Vertical axis is accuracy; higher is better. Red represent the original program, while blue represents Herbie's suggestion. These can be toggled with buttons below the plot. The line is an average while dots represent individual samples.

Accuracy vs Speed?

Herbie found 4 alternatives:

AlternativeAccuracySpeedup
The accuracy (vertical axis) and speed (horizontal axis) of each alternatives. Up and to the right is better. The red square shows the initial program, and each blue circle shows an alternative.The line shows the best available speed-accuracy tradeoffs.

Initial Program: 67.9% accurate, 1.0× speedup?

\[\tan^{-1} \left(\frac{v}{\sqrt{v \cdot v - \left(2 \cdot 9.8\right) \cdot H}}\right) \]
(FPCore (v H)
  :precision binary64
  (atan (/ v (sqrt (- (* v v) (* (* 2.0 9.8) H))))))
double code(double v, double H) {
	return atan((v / sqrt(((v * v) - ((2.0 * 9.8) * H)))));
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(v, h)
use fmin_fmax_functions
    real(8), intent (in) :: v
    real(8), intent (in) :: h
    code = atan((v / sqrt(((v * v) - ((2.0d0 * 9.8d0) * h)))))
end function
public static double code(double v, double H) {
	return Math.atan((v / Math.sqrt(((v * v) - ((2.0 * 9.8) * H)))));
}
def code(v, H):
	return math.atan((v / math.sqrt(((v * v) - ((2.0 * 9.8) * H)))))
function code(v, H)
	return atan(Float64(v / sqrt(Float64(Float64(v * v) - Float64(Float64(2.0 * 9.8) * H)))))
end
function tmp = code(v, H)
	tmp = atan((v / sqrt(((v * v) - ((2.0 * 9.8) * H)))));
end
code[v_, H_] := N[ArcTan[N[(v / N[Sqrt[N[(N[(v * v), $MachinePrecision] - N[(N[(2.0 * 9.8), $MachinePrecision] * H), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]
\tan^{-1} \left(\frac{v}{\sqrt{v \cdot v - \left(2 \cdot 9.8\right) \cdot H}}\right)

Alternative 1: 99.5% accurate, 0.5× speedup?

\[\mathsf{copysign}\left(1, v\right) \cdot \begin{array}{l} \mathbf{if}\;\left|v\right| \leq 3.6 \cdot 10^{+117}:\\ \;\;\;\;\tan^{-1} \left(\frac{\left|v\right|}{\sqrt{\left|v\right| \cdot \left|v\right| - H \cdot 19.6}}\right)\\ \mathbf{else}:\\ \;\;\;\;\tan^{-1} 1\\ \end{array} \]
(FPCore (v H)
  :precision binary64
  (*
 (copysign 1.0 v)
 (if (<= (fabs v) 3.6e+117)
   (atan (/ (fabs v) (sqrt (- (* (fabs v) (fabs v)) (* H 19.6)))))
   (atan 1.0))))
double code(double v, double H) {
	double tmp;
	if (fabs(v) <= 3.6e+117) {
		tmp = atan((fabs(v) / sqrt(((fabs(v) * fabs(v)) - (H * 19.6)))));
	} else {
		tmp = atan(1.0);
	}
	return copysign(1.0, v) * tmp;
}
public static double code(double v, double H) {
	double tmp;
	if (Math.abs(v) <= 3.6e+117) {
		tmp = Math.atan((Math.abs(v) / Math.sqrt(((Math.abs(v) * Math.abs(v)) - (H * 19.6)))));
	} else {
		tmp = Math.atan(1.0);
	}
	return Math.copySign(1.0, v) * tmp;
}
def code(v, H):
	tmp = 0
	if math.fabs(v) <= 3.6e+117:
		tmp = math.atan((math.fabs(v) / math.sqrt(((math.fabs(v) * math.fabs(v)) - (H * 19.6)))))
	else:
		tmp = math.atan(1.0)
	return math.copysign(1.0, v) * tmp
function code(v, H)
	tmp = 0.0
	if (abs(v) <= 3.6e+117)
		tmp = atan(Float64(abs(v) / sqrt(Float64(Float64(abs(v) * abs(v)) - Float64(H * 19.6)))));
	else
		tmp = atan(1.0);
	end
	return Float64(copysign(1.0, v) * tmp)
end
function tmp_2 = code(v, H)
	tmp = 0.0;
	if (abs(v) <= 3.6e+117)
		tmp = atan((abs(v) / sqrt(((abs(v) * abs(v)) - (H * 19.6)))));
	else
		tmp = atan(1.0);
	end
	tmp_2 = (sign(v) * abs(1.0)) * tmp;
end
code[v_, H_] := N[(N[With[{TMP1 = Abs[1.0], TMP2 = Sign[v]}, TMP1 * If[TMP2 == 0, 1, TMP2]], $MachinePrecision] * If[LessEqual[N[Abs[v], $MachinePrecision], 3.6e+117], N[ArcTan[N[(N[Abs[v], $MachinePrecision] / N[Sqrt[N[(N[(N[Abs[v], $MachinePrecision] * N[Abs[v], $MachinePrecision]), $MachinePrecision] - N[(H * 19.6), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[ArcTan[1.0], $MachinePrecision]]), $MachinePrecision]
\mathsf{copysign}\left(1, v\right) \cdot \begin{array}{l}
\mathbf{if}\;\left|v\right| \leq 3.6 \cdot 10^{+117}:\\
\;\;\;\;\tan^{-1} \left(\frac{\left|v\right|}{\sqrt{\left|v\right| \cdot \left|v\right| - H \cdot 19.6}}\right)\\

\mathbf{else}:\\
\;\;\;\;\tan^{-1} 1\\


\end{array}
Derivation
  1. Split input into 2 regimes
  2. if v < 3.6000000000000001e117

    1. Initial program 67.9%

      \[\tan^{-1} \left(\frac{v}{\sqrt{v \cdot v - \left(2 \cdot 9.8\right) \cdot H}}\right) \]
    2. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto \tan^{-1} \left(\frac{v}{\sqrt{v \cdot v - \color{blue}{\left(2 \cdot \frac{49}{5}\right) \cdot H}}}\right) \]
      2. *-commutativeN/A

        \[\leadsto \tan^{-1} \left(\frac{v}{\sqrt{v \cdot v - \color{blue}{H \cdot \left(2 \cdot \frac{49}{5}\right)}}}\right) \]
      3. lower-*.f6467.9%

        \[\leadsto \tan^{-1} \left(\frac{v}{\sqrt{v \cdot v - \color{blue}{H \cdot \left(2 \cdot 9.8\right)}}}\right) \]
      4. lift-*.f64N/A

        \[\leadsto \tan^{-1} \left(\frac{v}{\sqrt{v \cdot v - H \cdot \color{blue}{\left(2 \cdot \frac{49}{5}\right)}}}\right) \]
      5. metadata-eval67.9%

        \[\leadsto \tan^{-1} \left(\frac{v}{\sqrt{v \cdot v - H \cdot \color{blue}{19.6}}}\right) \]
    3. Applied rewrites67.9%

      \[\leadsto \tan^{-1} \left(\frac{v}{\sqrt{v \cdot v - \color{blue}{H \cdot 19.6}}}\right) \]

    if 3.6000000000000001e117 < v

    1. Initial program 67.9%

      \[\tan^{-1} \left(\frac{v}{\sqrt{v \cdot v - \left(2 \cdot 9.8\right) \cdot H}}\right) \]
    2. Taylor expanded in v around inf

      \[\leadsto \tan^{-1} \color{blue}{1} \]
    3. Step-by-step derivation
      1. Applied rewrites34.6%

        \[\leadsto \tan^{-1} \color{blue}{1} \]
    4. Recombined 2 regimes into one program.
    5. Add Preprocessing

    Alternative 2: 95.4% accurate, 0.3× speedup?

    \[\begin{array}{l} t_0 := \tan^{-1} \left(\frac{\left|v\right|}{\sqrt{\left|v\right| \cdot \left|v\right| - \left(2 \cdot 9.8\right) \cdot H}}\right)\\ \mathsf{copysign}\left(1, v\right) \cdot \begin{array}{l} \mathbf{if}\;t\_0 \leq 0:\\ \;\;\;\;\tan^{-1} 1\\ \mathbf{elif}\;t\_0 \leq 0.0004:\\ \;\;\;\;\tan^{-1} \left(\frac{\left|v\right|}{\sqrt{-19.6 \cdot H}}\right)\\ \mathbf{else}:\\ \;\;\;\;\tan^{-1} 1\\ \end{array} \end{array} \]
    (FPCore (v H)
      :precision binary64
      (let* ((t_0
            (atan
             (/
              (fabs v)
              (sqrt (- (* (fabs v) (fabs v)) (* (* 2.0 9.8) H)))))))
      (*
       (copysign 1.0 v)
       (if (<= t_0 0.0)
         (atan 1.0)
         (if (<= t_0 0.0004)
           (atan (/ (fabs v) (sqrt (* -19.6 H))))
           (atan 1.0))))))
    double code(double v, double H) {
    	double t_0 = atan((fabs(v) / sqrt(((fabs(v) * fabs(v)) - ((2.0 * 9.8) * H)))));
    	double tmp;
    	if (t_0 <= 0.0) {
    		tmp = atan(1.0);
    	} else if (t_0 <= 0.0004) {
    		tmp = atan((fabs(v) / sqrt((-19.6 * H))));
    	} else {
    		tmp = atan(1.0);
    	}
    	return copysign(1.0, v) * tmp;
    }
    
    public static double code(double v, double H) {
    	double t_0 = Math.atan((Math.abs(v) / Math.sqrt(((Math.abs(v) * Math.abs(v)) - ((2.0 * 9.8) * H)))));
    	double tmp;
    	if (t_0 <= 0.0) {
    		tmp = Math.atan(1.0);
    	} else if (t_0 <= 0.0004) {
    		tmp = Math.atan((Math.abs(v) / Math.sqrt((-19.6 * H))));
    	} else {
    		tmp = Math.atan(1.0);
    	}
    	return Math.copySign(1.0, v) * tmp;
    }
    
    def code(v, H):
    	t_0 = math.atan((math.fabs(v) / math.sqrt(((math.fabs(v) * math.fabs(v)) - ((2.0 * 9.8) * H)))))
    	tmp = 0
    	if t_0 <= 0.0:
    		tmp = math.atan(1.0)
    	elif t_0 <= 0.0004:
    		tmp = math.atan((math.fabs(v) / math.sqrt((-19.6 * H))))
    	else:
    		tmp = math.atan(1.0)
    	return math.copysign(1.0, v) * tmp
    
    function code(v, H)
    	t_0 = atan(Float64(abs(v) / sqrt(Float64(Float64(abs(v) * abs(v)) - Float64(Float64(2.0 * 9.8) * H)))))
    	tmp = 0.0
    	if (t_0 <= 0.0)
    		tmp = atan(1.0);
    	elseif (t_0 <= 0.0004)
    		tmp = atan(Float64(abs(v) / sqrt(Float64(-19.6 * H))));
    	else
    		tmp = atan(1.0);
    	end
    	return Float64(copysign(1.0, v) * tmp)
    end
    
    function tmp_2 = code(v, H)
    	t_0 = atan((abs(v) / sqrt(((abs(v) * abs(v)) - ((2.0 * 9.8) * H)))));
    	tmp = 0.0;
    	if (t_0 <= 0.0)
    		tmp = atan(1.0);
    	elseif (t_0 <= 0.0004)
    		tmp = atan((abs(v) / sqrt((-19.6 * H))));
    	else
    		tmp = atan(1.0);
    	end
    	tmp_2 = (sign(v) * abs(1.0)) * tmp;
    end
    
    code[v_, H_] := Block[{t$95$0 = N[ArcTan[N[(N[Abs[v], $MachinePrecision] / N[Sqrt[N[(N[(N[Abs[v], $MachinePrecision] * N[Abs[v], $MachinePrecision]), $MachinePrecision] - N[(N[(2.0 * 9.8), $MachinePrecision] * H), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, N[(N[With[{TMP1 = Abs[1.0], TMP2 = Sign[v]}, TMP1 * If[TMP2 == 0, 1, TMP2]], $MachinePrecision] * If[LessEqual[t$95$0, 0.0], N[ArcTan[1.0], $MachinePrecision], If[LessEqual[t$95$0, 0.0004], N[ArcTan[N[(N[Abs[v], $MachinePrecision] / N[Sqrt[N[(-19.6 * H), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[ArcTan[1.0], $MachinePrecision]]]), $MachinePrecision]]
    
    \begin{array}{l}
    t_0 := \tan^{-1} \left(\frac{\left|v\right|}{\sqrt{\left|v\right| \cdot \left|v\right| - \left(2 \cdot 9.8\right) \cdot H}}\right)\\
    \mathsf{copysign}\left(1, v\right) \cdot \begin{array}{l}
    \mathbf{if}\;t\_0 \leq 0:\\
    \;\;\;\;\tan^{-1} 1\\
    
    \mathbf{elif}\;t\_0 \leq 0.0004:\\
    \;\;\;\;\tan^{-1} \left(\frac{\left|v\right|}{\sqrt{-19.6 \cdot H}}\right)\\
    
    \mathbf{else}:\\
    \;\;\;\;\tan^{-1} 1\\
    
    
    \end{array}
    \end{array}
    
    Derivation
    1. Split input into 2 regimes
    2. if (atan.f64 (/.f64 v (sqrt.f64 (-.f64 (*.f64 v v) (*.f64 (*.f64 #s(literal 2 binary64) #s(literal 49/5 binary64)) H))))) < 0.0 or 4.0000000000000002e-4 < (atan.f64 (/.f64 v (sqrt.f64 (-.f64 (*.f64 v v) (*.f64 (*.f64 #s(literal 2 binary64) #s(literal 49/5 binary64)) H)))))

      1. Initial program 67.9%

        \[\tan^{-1} \left(\frac{v}{\sqrt{v \cdot v - \left(2 \cdot 9.8\right) \cdot H}}\right) \]
      2. Taylor expanded in v around inf

        \[\leadsto \tan^{-1} \color{blue}{1} \]
      3. Step-by-step derivation
        1. Applied rewrites34.6%

          \[\leadsto \tan^{-1} \color{blue}{1} \]

        if 0.0 < (atan.f64 (/.f64 v (sqrt.f64 (-.f64 (*.f64 v v) (*.f64 (*.f64 #s(literal 2 binary64) #s(literal 49/5 binary64)) H))))) < 4.0000000000000002e-4

        1. Initial program 67.9%

          \[\tan^{-1} \left(\frac{v}{\sqrt{v \cdot v - \left(2 \cdot 9.8\right) \cdot H}}\right) \]
        2. Taylor expanded in v around 0

          \[\leadsto \tan^{-1} \left(\frac{v}{\sqrt{\color{blue}{\frac{-98}{5} \cdot H}}}\right) \]
        3. Step-by-step derivation
          1. lower-*.f6440.1%

            \[\leadsto \tan^{-1} \left(\frac{v}{\sqrt{-19.6 \cdot \color{blue}{H}}}\right) \]
        4. Applied rewrites40.1%

          \[\leadsto \tan^{-1} \left(\frac{v}{\sqrt{\color{blue}{-19.6 \cdot H}}}\right) \]
      4. Recombined 2 regimes into one program.
      5. Add Preprocessing

      Alternative 3: 66.7% accurate, 0.7× speedup?

      \[\mathsf{copysign}\left(1, v\right) \cdot \tan^{-1} 1 \]
      (FPCore (v H)
        :precision binary64
        (* (copysign 1.0 v) (atan 1.0)))
      double code(double v, double H) {
      	return copysign(1.0, v) * atan(1.0);
      }
      
      public static double code(double v, double H) {
      	return Math.copySign(1.0, v) * Math.atan(1.0);
      }
      
      def code(v, H):
      	return math.copysign(1.0, v) * math.atan(1.0)
      
      function code(v, H)
      	return Float64(copysign(1.0, v) * atan(1.0))
      end
      
      function tmp = code(v, H)
      	tmp = (sign(v) * abs(1.0)) * atan(1.0);
      end
      
      code[v_, H_] := N[(N[With[{TMP1 = Abs[1.0], TMP2 = Sign[v]}, TMP1 * If[TMP2 == 0, 1, TMP2]], $MachinePrecision] * N[ArcTan[1.0], $MachinePrecision]), $MachinePrecision]
      
      \mathsf{copysign}\left(1, v\right) \cdot \tan^{-1} 1
      
      Derivation
      1. Initial program 67.9%

        \[\tan^{-1} \left(\frac{v}{\sqrt{v \cdot v - \left(2 \cdot 9.8\right) \cdot H}}\right) \]
      2. Taylor expanded in v around inf

        \[\leadsto \tan^{-1} \color{blue}{1} \]
      3. Step-by-step derivation
        1. Applied rewrites34.6%

          \[\leadsto \tan^{-1} \color{blue}{1} \]
        2. Add Preprocessing

        Alternative 4: 33.9% accurate, 1.4× speedup?

        \[\tan^{-1} -1 \]
        (FPCore (v H)
          :precision binary64
          (atan -1.0))
        double code(double v, double H) {
        	return atan(-1.0);
        }
        
        module fmin_fmax_functions
            implicit none
            private
            public fmax
            public fmin
        
            interface fmax
                module procedure fmax88
                module procedure fmax44
                module procedure fmax84
                module procedure fmax48
            end interface
            interface fmin
                module procedure fmin88
                module procedure fmin44
                module procedure fmin84
                module procedure fmin48
            end interface
        contains
            real(8) function fmax88(x, y) result (res)
                real(8), intent (in) :: x
                real(8), intent (in) :: y
                res = merge(y, merge(x, max(x, y), y /= y), x /= x)
            end function
            real(4) function fmax44(x, y) result (res)
                real(4), intent (in) :: x
                real(4), intent (in) :: y
                res = merge(y, merge(x, max(x, y), y /= y), x /= x)
            end function
            real(8) function fmax84(x, y) result(res)
                real(8), intent (in) :: x
                real(4), intent (in) :: y
                res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
            end function
            real(8) function fmax48(x, y) result(res)
                real(4), intent (in) :: x
                real(8), intent (in) :: y
                res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
            end function
            real(8) function fmin88(x, y) result (res)
                real(8), intent (in) :: x
                real(8), intent (in) :: y
                res = merge(y, merge(x, min(x, y), y /= y), x /= x)
            end function
            real(4) function fmin44(x, y) result (res)
                real(4), intent (in) :: x
                real(4), intent (in) :: y
                res = merge(y, merge(x, min(x, y), y /= y), x /= x)
            end function
            real(8) function fmin84(x, y) result(res)
                real(8), intent (in) :: x
                real(4), intent (in) :: y
                res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
            end function
            real(8) function fmin48(x, y) result(res)
                real(4), intent (in) :: x
                real(8), intent (in) :: y
                res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
            end function
        end module
        
        real(8) function code(v, h)
        use fmin_fmax_functions
            real(8), intent (in) :: v
            real(8), intent (in) :: h
            code = atan((-1.0d0))
        end function
        
        public static double code(double v, double H) {
        	return Math.atan(-1.0);
        }
        
        def code(v, H):
        	return math.atan(-1.0)
        
        function code(v, H)
        	return atan(-1.0)
        end
        
        function tmp = code(v, H)
        	tmp = atan(-1.0);
        end
        
        code[v_, H_] := N[ArcTan[-1.0], $MachinePrecision]
        
        \tan^{-1} -1
        
        Derivation
        1. Initial program 67.9%

          \[\tan^{-1} \left(\frac{v}{\sqrt{v \cdot v - \left(2 \cdot 9.8\right) \cdot H}}\right) \]
        2. Taylor expanded in v around -inf

          \[\leadsto \tan^{-1} \color{blue}{-1} \]
        3. Step-by-step derivation
          1. Applied rewrites33.9%

            \[\leadsto \tan^{-1} \color{blue}{-1} \]
          2. Add Preprocessing

          Reproduce

          ?
          herbie shell --seed 2025258 
          (FPCore (v H)
            :name "Optimal throwing angle"
            :precision binary64
            (atan (/ v (sqrt (- (* v v) (* (* 2.0 9.8) H))))))