(sin (* z1 (* PI z0)))

Percentage Accurate: 52.2% → 96.3%
Time: 3.8s
Alternatives: 6
Speedup: 0.3×

Specification

?
\[\sin \left(z1 \cdot \left(\pi \cdot z0\right)\right) \]
(FPCore (z1 z0)
  :precision binary64
  (sin (* z1 (* PI z0))))
double code(double z1, double z0) {
	return sin((z1 * (((double) M_PI) * z0)));
}
public static double code(double z1, double z0) {
	return Math.sin((z1 * (Math.PI * z0)));
}
def code(z1, z0):
	return math.sin((z1 * (math.pi * z0)))
function code(z1, z0)
	return sin(Float64(z1 * Float64(pi * z0)))
end
function tmp = code(z1, z0)
	tmp = sin((z1 * (pi * z0)));
end
code[z1_, z0_] := N[Sin[N[(z1 * N[(Pi * z0), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]
\sin \left(z1 \cdot \left(\pi \cdot z0\right)\right)

Local Percentage Accuracy vs ?

The average percentage accuracy by input value. Horizontal axis shows value of an input variable; the variable is choosen in the title. Vertical axis is accuracy; higher is better. Red represent the original program, while blue represents Herbie's suggestion. These can be toggled with buttons below the plot. The line is an average while dots represent individual samples.

Accuracy vs Speed?

Herbie found 6 alternatives:

AlternativeAccuracySpeedup
The accuracy (vertical axis) and speed (horizontal axis) of each alternatives. Up and to the right is better. The red square shows the initial program, and each blue circle shows an alternative.The line shows the best available speed-accuracy tradeoffs.

Initial Program: 52.2% accurate, 1.0× speedup?

\[\sin \left(z1 \cdot \left(\pi \cdot z0\right)\right) \]
(FPCore (z1 z0)
  :precision binary64
  (sin (* z1 (* PI z0))))
double code(double z1, double z0) {
	return sin((z1 * (((double) M_PI) * z0)));
}
public static double code(double z1, double z0) {
	return Math.sin((z1 * (Math.PI * z0)));
}
def code(z1, z0):
	return math.sin((z1 * (math.pi * z0)))
function code(z1, z0)
	return sin(Float64(z1 * Float64(pi * z0)))
end
function tmp = code(z1, z0)
	tmp = sin((z1 * (pi * z0)));
end
code[z1_, z0_] := N[Sin[N[(z1 * N[(Pi * z0), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]
\sin \left(z1 \cdot \left(\pi \cdot z0\right)\right)

Alternative 1: 96.3% accurate, 0.3× speedup?

\[\mathsf{copysign}\left(1, z1\right) \cdot \left(\mathsf{copysign}\left(1, z0\right) \cdot \begin{array}{l} \mathbf{if}\;\left|z1\right| \cdot \left(\pi \cdot \left|z0\right|\right) \leq 4 \cdot 10^{+31}:\\ \;\;\;\;\sin \left(\left(\left|z0\right| \cdot \left|z1\right|\right) \cdot \pi\right)\\ \mathbf{else}:\\ \;\;\;\;\sin \left(\left|z1\right| \cdot \log 1\right)\\ \end{array}\right) \]
(FPCore (z1 z0)
  :precision binary64
  (*
 (copysign 1.0 z1)
 (*
  (copysign 1.0 z0)
  (if (<= (* (fabs z1) (* PI (fabs z0))) 4e+31)
    (sin (* (* (fabs z0) (fabs z1)) PI))
    (sin (* (fabs z1) (log 1.0)))))))
double code(double z1, double z0) {
	double tmp;
	if ((fabs(z1) * (((double) M_PI) * fabs(z0))) <= 4e+31) {
		tmp = sin(((fabs(z0) * fabs(z1)) * ((double) M_PI)));
	} else {
		tmp = sin((fabs(z1) * log(1.0)));
	}
	return copysign(1.0, z1) * (copysign(1.0, z0) * tmp);
}
public static double code(double z1, double z0) {
	double tmp;
	if ((Math.abs(z1) * (Math.PI * Math.abs(z0))) <= 4e+31) {
		tmp = Math.sin(((Math.abs(z0) * Math.abs(z1)) * Math.PI));
	} else {
		tmp = Math.sin((Math.abs(z1) * Math.log(1.0)));
	}
	return Math.copySign(1.0, z1) * (Math.copySign(1.0, z0) * tmp);
}
def code(z1, z0):
	tmp = 0
	if (math.fabs(z1) * (math.pi * math.fabs(z0))) <= 4e+31:
		tmp = math.sin(((math.fabs(z0) * math.fabs(z1)) * math.pi))
	else:
		tmp = math.sin((math.fabs(z1) * math.log(1.0)))
	return math.copysign(1.0, z1) * (math.copysign(1.0, z0) * tmp)
function code(z1, z0)
	tmp = 0.0
	if (Float64(abs(z1) * Float64(pi * abs(z0))) <= 4e+31)
		tmp = sin(Float64(Float64(abs(z0) * abs(z1)) * pi));
	else
		tmp = sin(Float64(abs(z1) * log(1.0)));
	end
	return Float64(copysign(1.0, z1) * Float64(copysign(1.0, z0) * tmp))
end
function tmp_2 = code(z1, z0)
	tmp = 0.0;
	if ((abs(z1) * (pi * abs(z0))) <= 4e+31)
		tmp = sin(((abs(z0) * abs(z1)) * pi));
	else
		tmp = sin((abs(z1) * log(1.0)));
	end
	tmp_2 = (sign(z1) * abs(1.0)) * ((sign(z0) * abs(1.0)) * tmp);
end
code[z1_, z0_] := N[(N[With[{TMP1 = Abs[1.0], TMP2 = Sign[z1]}, TMP1 * If[TMP2 == 0, 1, TMP2]], $MachinePrecision] * N[(N[With[{TMP1 = Abs[1.0], TMP2 = Sign[z0]}, TMP1 * If[TMP2 == 0, 1, TMP2]], $MachinePrecision] * If[LessEqual[N[(N[Abs[z1], $MachinePrecision] * N[(Pi * N[Abs[z0], $MachinePrecision]), $MachinePrecision]), $MachinePrecision], 4e+31], N[Sin[N[(N[(N[Abs[z0], $MachinePrecision] * N[Abs[z1], $MachinePrecision]), $MachinePrecision] * Pi), $MachinePrecision]], $MachinePrecision], N[Sin[N[(N[Abs[z1], $MachinePrecision] * N[Log[1.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]]), $MachinePrecision]), $MachinePrecision]
\mathsf{copysign}\left(1, z1\right) \cdot \left(\mathsf{copysign}\left(1, z0\right) \cdot \begin{array}{l}
\mathbf{if}\;\left|z1\right| \cdot \left(\pi \cdot \left|z0\right|\right) \leq 4 \cdot 10^{+31}:\\
\;\;\;\;\sin \left(\left(\left|z0\right| \cdot \left|z1\right|\right) \cdot \pi\right)\\

\mathbf{else}:\\
\;\;\;\;\sin \left(\left|z1\right| \cdot \log 1\right)\\


\end{array}\right)
Derivation
  1. Split input into 2 regimes
  2. if (*.f64 z1 (*.f64 (PI.f64) z0)) < 3.9999999999999999e31

    1. Initial program 52.2%

      \[\sin \left(z1 \cdot \left(\pi \cdot z0\right)\right) \]
    2. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto \sin \color{blue}{\left(z1 \cdot \left(\pi \cdot z0\right)\right)} \]
      2. lift-*.f64N/A

        \[\leadsto \sin \left(z1 \cdot \color{blue}{\left(\pi \cdot z0\right)}\right) \]
      3. *-commutativeN/A

        \[\leadsto \sin \left(z1 \cdot \color{blue}{\left(z0 \cdot \pi\right)}\right) \]
      4. associate-*r*N/A

        \[\leadsto \sin \color{blue}{\left(\left(z1 \cdot z0\right) \cdot \pi\right)} \]
      5. lower-*.f64N/A

        \[\leadsto \sin \color{blue}{\left(\left(z1 \cdot z0\right) \cdot \pi\right)} \]
      6. *-commutativeN/A

        \[\leadsto \sin \left(\color{blue}{\left(z0 \cdot z1\right)} \cdot \pi\right) \]
      7. lower-*.f6452.1%

        \[\leadsto \sin \left(\color{blue}{\left(z0 \cdot z1\right)} \cdot \pi\right) \]
    3. Applied rewrites52.1%

      \[\leadsto \sin \color{blue}{\left(\left(z0 \cdot z1\right) \cdot \pi\right)} \]

    if 3.9999999999999999e31 < (*.f64 z1 (*.f64 (PI.f64) z0))

    1. Initial program 52.2%

      \[\sin \left(z1 \cdot \left(\pi \cdot z0\right)\right) \]
    2. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto \sin \left(z1 \cdot \color{blue}{\left(\pi \cdot z0\right)}\right) \]
      2. *-commutativeN/A

        \[\leadsto \sin \left(z1 \cdot \color{blue}{\left(z0 \cdot \pi\right)}\right) \]
      3. lift-PI.f64N/A

        \[\leadsto \sin \left(z1 \cdot \left(z0 \cdot \color{blue}{\mathsf{PI}\left(\right)}\right)\right) \]
      4. add-cube-cbrtN/A

        \[\leadsto \sin \left(z1 \cdot \left(z0 \cdot \color{blue}{\left(\left(\sqrt[3]{\mathsf{PI}\left(\right)} \cdot \sqrt[3]{\mathsf{PI}\left(\right)}\right) \cdot \sqrt[3]{\mathsf{PI}\left(\right)}\right)}\right)\right) \]
      5. associate-*r*N/A

        \[\leadsto \sin \left(z1 \cdot \color{blue}{\left(\left(z0 \cdot \left(\sqrt[3]{\mathsf{PI}\left(\right)} \cdot \sqrt[3]{\mathsf{PI}\left(\right)}\right)\right) \cdot \sqrt[3]{\mathsf{PI}\left(\right)}\right)}\right) \]
      6. lower-*.f64N/A

        \[\leadsto \sin \left(z1 \cdot \color{blue}{\left(\left(z0 \cdot \left(\sqrt[3]{\mathsf{PI}\left(\right)} \cdot \sqrt[3]{\mathsf{PI}\left(\right)}\right)\right) \cdot \sqrt[3]{\mathsf{PI}\left(\right)}\right)}\right) \]
      7. *-commutativeN/A

        \[\leadsto \sin \left(z1 \cdot \left(\color{blue}{\left(\left(\sqrt[3]{\mathsf{PI}\left(\right)} \cdot \sqrt[3]{\mathsf{PI}\left(\right)}\right) \cdot z0\right)} \cdot \sqrt[3]{\mathsf{PI}\left(\right)}\right)\right) \]
      8. lower-*.f64N/A

        \[\leadsto \sin \left(z1 \cdot \left(\color{blue}{\left(\left(\sqrt[3]{\mathsf{PI}\left(\right)} \cdot \sqrt[3]{\mathsf{PI}\left(\right)}\right) \cdot z0\right)} \cdot \sqrt[3]{\mathsf{PI}\left(\right)}\right)\right) \]
      9. lift-PI.f64N/A

        \[\leadsto \sin \left(z1 \cdot \left(\left(\left(\sqrt[3]{\color{blue}{\pi}} \cdot \sqrt[3]{\mathsf{PI}\left(\right)}\right) \cdot z0\right) \cdot \sqrt[3]{\mathsf{PI}\left(\right)}\right)\right) \]
      10. pow1/3N/A

        \[\leadsto \sin \left(z1 \cdot \left(\left(\left(\color{blue}{{\pi}^{\frac{1}{3}}} \cdot \sqrt[3]{\mathsf{PI}\left(\right)}\right) \cdot z0\right) \cdot \sqrt[3]{\mathsf{PI}\left(\right)}\right)\right) \]
      11. lift-PI.f64N/A

        \[\leadsto \sin \left(z1 \cdot \left(\left(\left({\pi}^{\frac{1}{3}} \cdot \sqrt[3]{\color{blue}{\pi}}\right) \cdot z0\right) \cdot \sqrt[3]{\mathsf{PI}\left(\right)}\right)\right) \]
      12. pow1/3N/A

        \[\leadsto \sin \left(z1 \cdot \left(\left(\left({\pi}^{\frac{1}{3}} \cdot \color{blue}{{\pi}^{\frac{1}{3}}}\right) \cdot z0\right) \cdot \sqrt[3]{\mathsf{PI}\left(\right)}\right)\right) \]
      13. pow-prod-upN/A

        \[\leadsto \sin \left(z1 \cdot \left(\left(\color{blue}{{\pi}^{\left(\frac{1}{3} + \frac{1}{3}\right)}} \cdot z0\right) \cdot \sqrt[3]{\mathsf{PI}\left(\right)}\right)\right) \]
      14. lower-pow.f64N/A

        \[\leadsto \sin \left(z1 \cdot \left(\left(\color{blue}{{\pi}^{\left(\frac{1}{3} + \frac{1}{3}\right)}} \cdot z0\right) \cdot \sqrt[3]{\mathsf{PI}\left(\right)}\right)\right) \]
      15. metadata-evalN/A

        \[\leadsto \sin \left(z1 \cdot \left(\left({\pi}^{\color{blue}{\frac{2}{3}}} \cdot z0\right) \cdot \sqrt[3]{\mathsf{PI}\left(\right)}\right)\right) \]
      16. lift-PI.f64N/A

        \[\leadsto \sin \left(z1 \cdot \left(\left({\pi}^{\frac{2}{3}} \cdot z0\right) \cdot \sqrt[3]{\color{blue}{\pi}}\right)\right) \]
      17. lower-cbrt.f6451.8%

        \[\leadsto \sin \left(z1 \cdot \left(\left({\pi}^{0.6666666666666666} \cdot z0\right) \cdot \color{blue}{\sqrt[3]{\pi}}\right)\right) \]
    3. Applied rewrites51.8%

      \[\leadsto \sin \left(z1 \cdot \color{blue}{\left(\left({\pi}^{0.6666666666666666} \cdot z0\right) \cdot \sqrt[3]{\pi}\right)}\right) \]
    4. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto \sin \left(z1 \cdot \color{blue}{\left(\left({\pi}^{\frac{2}{3}} \cdot z0\right) \cdot \sqrt[3]{\pi}\right)}\right) \]
      2. *-commutativeN/A

        \[\leadsto \sin \left(z1 \cdot \color{blue}{\left(\sqrt[3]{\pi} \cdot \left({\pi}^{\frac{2}{3}} \cdot z0\right)\right)}\right) \]
      3. lift-*.f64N/A

        \[\leadsto \sin \left(z1 \cdot \left(\sqrt[3]{\pi} \cdot \color{blue}{\left({\pi}^{\frac{2}{3}} \cdot z0\right)}\right)\right) \]
      4. *-commutativeN/A

        \[\leadsto \sin \left(z1 \cdot \left(\sqrt[3]{\pi} \cdot \color{blue}{\left(z0 \cdot {\pi}^{\frac{2}{3}}\right)}\right)\right) \]
      5. associate-*r*N/A

        \[\leadsto \sin \left(z1 \cdot \color{blue}{\left(\left(\sqrt[3]{\pi} \cdot z0\right) \cdot {\pi}^{\frac{2}{3}}\right)}\right) \]
      6. *-commutativeN/A

        \[\leadsto \sin \left(z1 \cdot \left(\color{blue}{\left(z0 \cdot \sqrt[3]{\pi}\right)} \cdot {\pi}^{\frac{2}{3}}\right)\right) \]
      7. associate-*l*N/A

        \[\leadsto \sin \left(z1 \cdot \color{blue}{\left(z0 \cdot \left(\sqrt[3]{\pi} \cdot {\pi}^{\frac{2}{3}}\right)\right)}\right) \]
      8. lift-cbrt.f64N/A

        \[\leadsto \sin \left(z1 \cdot \left(z0 \cdot \left(\color{blue}{\sqrt[3]{\pi}} \cdot {\pi}^{\frac{2}{3}}\right)\right)\right) \]
      9. lift-pow.f64N/A

        \[\leadsto \sin \left(z1 \cdot \left(z0 \cdot \left(\sqrt[3]{\pi} \cdot \color{blue}{{\pi}^{\frac{2}{3}}}\right)\right)\right) \]
      10. metadata-evalN/A

        \[\leadsto \sin \left(z1 \cdot \left(z0 \cdot \left(\sqrt[3]{\pi} \cdot {\pi}^{\color{blue}{\left(2 \cdot \frac{1}{3}\right)}}\right)\right)\right) \]
      11. pow-sqrN/A

        \[\leadsto \sin \left(z1 \cdot \left(z0 \cdot \left(\sqrt[3]{\pi} \cdot \color{blue}{\left({\pi}^{\frac{1}{3}} \cdot {\pi}^{\frac{1}{3}}\right)}\right)\right)\right) \]
      12. pow1/3N/A

        \[\leadsto \sin \left(z1 \cdot \left(z0 \cdot \left(\sqrt[3]{\pi} \cdot \left(\color{blue}{\sqrt[3]{\pi}} \cdot {\pi}^{\frac{1}{3}}\right)\right)\right)\right) \]
      13. pow1/3N/A

        \[\leadsto \sin \left(z1 \cdot \left(z0 \cdot \left(\sqrt[3]{\pi} \cdot \left(\sqrt[3]{\pi} \cdot \color{blue}{\sqrt[3]{\pi}}\right)\right)\right)\right) \]
      14. rem-3cbrt-rftN/A

        \[\leadsto \sin \left(z1 \cdot \left(z0 \cdot \color{blue}{\pi}\right)\right) \]
      15. rem-log-expN/A

        \[\leadsto \sin \left(z1 \cdot \left(z0 \cdot \color{blue}{\log \left(e^{\pi}\right)}\right)\right) \]
      16. lift-PI.f64N/A

        \[\leadsto \sin \left(z1 \cdot \left(z0 \cdot \log \left(e^{\color{blue}{\mathsf{PI}\left(\right)}}\right)\right)\right) \]
      17. log-pow-revN/A

        \[\leadsto \sin \left(z1 \cdot \color{blue}{\log \left({\left(e^{\mathsf{PI}\left(\right)}\right)}^{z0}\right)}\right) \]
      18. lower-log.f64N/A

        \[\leadsto \sin \left(z1 \cdot \color{blue}{\log \left({\left(e^{\mathsf{PI}\left(\right)}\right)}^{z0}\right)}\right) \]
      19. lift-PI.f64N/A

        \[\leadsto \sin \left(z1 \cdot \log \left({\left(e^{\color{blue}{\pi}}\right)}^{z0}\right)\right) \]
      20. pow-expN/A

        \[\leadsto \sin \left(z1 \cdot \log \color{blue}{\left(e^{\pi \cdot z0}\right)}\right) \]
      21. *-commutativeN/A

        \[\leadsto \sin \left(z1 \cdot \log \left(e^{\color{blue}{z0 \cdot \pi}}\right)\right) \]
    5. Applied rewrites23.7%

      \[\leadsto \sin \left(z1 \cdot \color{blue}{\log \left(e^{\pi \cdot z0}\right)}\right) \]
    6. Taylor expanded in z0 around 0

      \[\leadsto \sin \left(z1 \cdot \log \color{blue}{1}\right) \]
    7. Step-by-step derivation
      1. Applied rewrites59.1%

        \[\leadsto \sin \left(z1 \cdot \log \color{blue}{1}\right) \]
    8. Recombined 2 regimes into one program.
    9. Add Preprocessing

    Alternative 2: 52.2% accurate, 1.0× speedup?

    \[\sin \left(\left(z0 \cdot z1\right) \cdot \pi\right) \]
    (FPCore (z1 z0)
      :precision binary64
      (sin (* (* z0 z1) PI)))
    double code(double z1, double z0) {
    	return sin(((z0 * z1) * ((double) M_PI)));
    }
    
    public static double code(double z1, double z0) {
    	return Math.sin(((z0 * z1) * Math.PI));
    }
    
    def code(z1, z0):
    	return math.sin(((z0 * z1) * math.pi))
    
    function code(z1, z0)
    	return sin(Float64(Float64(z0 * z1) * pi))
    end
    
    function tmp = code(z1, z0)
    	tmp = sin(((z0 * z1) * pi));
    end
    
    code[z1_, z0_] := N[Sin[N[(N[(z0 * z1), $MachinePrecision] * Pi), $MachinePrecision]], $MachinePrecision]
    
    \sin \left(\left(z0 \cdot z1\right) \cdot \pi\right)
    
    Derivation
    1. Initial program 52.2%

      \[\sin \left(z1 \cdot \left(\pi \cdot z0\right)\right) \]
    2. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto \sin \color{blue}{\left(z1 \cdot \left(\pi \cdot z0\right)\right)} \]
      2. lift-*.f64N/A

        \[\leadsto \sin \left(z1 \cdot \color{blue}{\left(\pi \cdot z0\right)}\right) \]
      3. *-commutativeN/A

        \[\leadsto \sin \left(z1 \cdot \color{blue}{\left(z0 \cdot \pi\right)}\right) \]
      4. associate-*r*N/A

        \[\leadsto \sin \color{blue}{\left(\left(z1 \cdot z0\right) \cdot \pi\right)} \]
      5. lower-*.f64N/A

        \[\leadsto \sin \color{blue}{\left(\left(z1 \cdot z0\right) \cdot \pi\right)} \]
      6. *-commutativeN/A

        \[\leadsto \sin \left(\color{blue}{\left(z0 \cdot z1\right)} \cdot \pi\right) \]
      7. lower-*.f6452.1%

        \[\leadsto \sin \left(\color{blue}{\left(z0 \cdot z1\right)} \cdot \pi\right) \]
    3. Applied rewrites52.1%

      \[\leadsto \sin \color{blue}{\left(\left(z0 \cdot z1\right) \cdot \pi\right)} \]
    4. Add Preprocessing

    Alternative 3: 52.1% accurate, 0.2× speedup?

    \[\mathsf{copysign}\left(1, z1\right) \cdot \left(\mathsf{copysign}\left(1, z0\right) \cdot \sin \left(\mathsf{min}\left(\left|z1\right|, \left|z0\right|\right) \cdot \left(\pi \cdot \mathsf{max}\left(\left|z1\right|, \left|z0\right|\right)\right)\right)\right) \]
    (FPCore (z1 z0)
      :precision binary64
      (*
     (copysign 1.0 z1)
     (*
      (copysign 1.0 z0)
      (sin
       (* (fmin (fabs z1) (fabs z0)) (* PI (fmax (fabs z1) (fabs z0))))))))
    double code(double z1, double z0) {
    	return copysign(1.0, z1) * (copysign(1.0, z0) * sin((fmin(fabs(z1), fabs(z0)) * (((double) M_PI) * fmax(fabs(z1), fabs(z0))))));
    }
    
    public static double code(double z1, double z0) {
    	return Math.copySign(1.0, z1) * (Math.copySign(1.0, z0) * Math.sin((fmin(Math.abs(z1), Math.abs(z0)) * (Math.PI * fmax(Math.abs(z1), Math.abs(z0))))));
    }
    
    def code(z1, z0):
    	return math.copysign(1.0, z1) * (math.copysign(1.0, z0) * math.sin((fmin(math.fabs(z1), math.fabs(z0)) * (math.pi * fmax(math.fabs(z1), math.fabs(z0))))))
    
    function code(z1, z0)
    	return Float64(copysign(1.0, z1) * Float64(copysign(1.0, z0) * sin(Float64(fmin(abs(z1), abs(z0)) * Float64(pi * fmax(abs(z1), abs(z0)))))))
    end
    
    function tmp = code(z1, z0)
    	tmp = (sign(z1) * abs(1.0)) * ((sign(z0) * abs(1.0)) * sin((min(abs(z1), abs(z0)) * (pi * max(abs(z1), abs(z0))))));
    end
    
    code[z1_, z0_] := N[(N[With[{TMP1 = Abs[1.0], TMP2 = Sign[z1]}, TMP1 * If[TMP2 == 0, 1, TMP2]], $MachinePrecision] * N[(N[With[{TMP1 = Abs[1.0], TMP2 = Sign[z0]}, TMP1 * If[TMP2 == 0, 1, TMP2]], $MachinePrecision] * N[Sin[N[(N[Min[N[Abs[z1], $MachinePrecision], N[Abs[z0], $MachinePrecision]], $MachinePrecision] * N[(Pi * N[Max[N[Abs[z1], $MachinePrecision], N[Abs[z0], $MachinePrecision]], $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
    
    \mathsf{copysign}\left(1, z1\right) \cdot \left(\mathsf{copysign}\left(1, z0\right) \cdot \sin \left(\mathsf{min}\left(\left|z1\right|, \left|z0\right|\right) \cdot \left(\pi \cdot \mathsf{max}\left(\left|z1\right|, \left|z0\right|\right)\right)\right)\right)
    
    Derivation
    1. Initial program 52.2%

      \[\sin \left(z1 \cdot \left(\pi \cdot z0\right)\right) \]
    2. Add Preprocessing

    Alternative 4: 50.1% accurate, 0.1× speedup?

    \[\begin{array}{l} t_0 := \mathsf{min}\left(\left|z1\right|, \left|z0\right|\right)\\ t_1 := \mathsf{max}\left(\left|z1\right|, \left|z0\right|\right)\\ t_2 := t\_1 \cdot t\_0\\ \mathsf{copysign}\left(1, z1\right) \cdot \left(\mathsf{copysign}\left(1, z0\right) \cdot \left(\left(\left(\left(\left(\left(-0.16666666666666666 \cdot t\_0\right) \cdot \pi\right) \cdot \pi\right) \cdot t\_2\right) \cdot t\_1 + 1\right) \cdot \left(t\_2 \cdot \pi\right)\right)\right) \end{array} \]
    (FPCore (z1 z0)
      :precision binary64
      (let* ((t_0 (fmin (fabs z1) (fabs z0)))
           (t_1 (fmax (fabs z1) (fabs z0)))
           (t_2 (* t_1 t_0)))
      (*
       (copysign 1.0 z1)
       (*
        (copysign 1.0 z0)
        (*
         (+
          (* (* (* (* (* -0.16666666666666666 t_0) PI) PI) t_2) t_1)
          1.0)
         (* t_2 PI))))))
    double code(double z1, double z0) {
    	double t_0 = fmin(fabs(z1), fabs(z0));
    	double t_1 = fmax(fabs(z1), fabs(z0));
    	double t_2 = t_1 * t_0;
    	return copysign(1.0, z1) * (copysign(1.0, z0) * (((((((-0.16666666666666666 * t_0) * ((double) M_PI)) * ((double) M_PI)) * t_2) * t_1) + 1.0) * (t_2 * ((double) M_PI))));
    }
    
    public static double code(double z1, double z0) {
    	double t_0 = fmin(Math.abs(z1), Math.abs(z0));
    	double t_1 = fmax(Math.abs(z1), Math.abs(z0));
    	double t_2 = t_1 * t_0;
    	return Math.copySign(1.0, z1) * (Math.copySign(1.0, z0) * (((((((-0.16666666666666666 * t_0) * Math.PI) * Math.PI) * t_2) * t_1) + 1.0) * (t_2 * Math.PI)));
    }
    
    def code(z1, z0):
    	t_0 = fmin(math.fabs(z1), math.fabs(z0))
    	t_1 = fmax(math.fabs(z1), math.fabs(z0))
    	t_2 = t_1 * t_0
    	return math.copysign(1.0, z1) * (math.copysign(1.0, z0) * (((((((-0.16666666666666666 * t_0) * math.pi) * math.pi) * t_2) * t_1) + 1.0) * (t_2 * math.pi)))
    
    function code(z1, z0)
    	t_0 = fmin(abs(z1), abs(z0))
    	t_1 = fmax(abs(z1), abs(z0))
    	t_2 = Float64(t_1 * t_0)
    	return Float64(copysign(1.0, z1) * Float64(copysign(1.0, z0) * Float64(Float64(Float64(Float64(Float64(Float64(Float64(-0.16666666666666666 * t_0) * pi) * pi) * t_2) * t_1) + 1.0) * Float64(t_2 * pi))))
    end
    
    function tmp = code(z1, z0)
    	t_0 = min(abs(z1), abs(z0));
    	t_1 = max(abs(z1), abs(z0));
    	t_2 = t_1 * t_0;
    	tmp = (sign(z1) * abs(1.0)) * ((sign(z0) * abs(1.0)) * (((((((-0.16666666666666666 * t_0) * pi) * pi) * t_2) * t_1) + 1.0) * (t_2 * pi)));
    end
    
    code[z1_, z0_] := Block[{t$95$0 = N[Min[N[Abs[z1], $MachinePrecision], N[Abs[z0], $MachinePrecision]], $MachinePrecision]}, Block[{t$95$1 = N[Max[N[Abs[z1], $MachinePrecision], N[Abs[z0], $MachinePrecision]], $MachinePrecision]}, Block[{t$95$2 = N[(t$95$1 * t$95$0), $MachinePrecision]}, N[(N[With[{TMP1 = Abs[1.0], TMP2 = Sign[z1]}, TMP1 * If[TMP2 == 0, 1, TMP2]], $MachinePrecision] * N[(N[With[{TMP1 = Abs[1.0], TMP2 = Sign[z0]}, TMP1 * If[TMP2 == 0, 1, TMP2]], $MachinePrecision] * N[(N[(N[(N[(N[(N[(N[(-0.16666666666666666 * t$95$0), $MachinePrecision] * Pi), $MachinePrecision] * Pi), $MachinePrecision] * t$95$2), $MachinePrecision] * t$95$1), $MachinePrecision] + 1.0), $MachinePrecision] * N[(t$95$2 * Pi), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]]]
    
    \begin{array}{l}
    t_0 := \mathsf{min}\left(\left|z1\right|, \left|z0\right|\right)\\
    t_1 := \mathsf{max}\left(\left|z1\right|, \left|z0\right|\right)\\
    t_2 := t\_1 \cdot t\_0\\
    \mathsf{copysign}\left(1, z1\right) \cdot \left(\mathsf{copysign}\left(1, z0\right) \cdot \left(\left(\left(\left(\left(\left(-0.16666666666666666 \cdot t\_0\right) \cdot \pi\right) \cdot \pi\right) \cdot t\_2\right) \cdot t\_1 + 1\right) \cdot \left(t\_2 \cdot \pi\right)\right)\right)
    \end{array}
    
    Derivation
    1. Initial program 52.2%

      \[\sin \left(z1 \cdot \left(\pi \cdot z0\right)\right) \]
    2. Taylor expanded in z1 around 0

      \[\leadsto \color{blue}{z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\pi}^{3}\right)\right) + z0 \cdot \pi\right)} \]
    3. Step-by-step derivation
      1. lower-*.f64N/A

        \[\leadsto z1 \cdot \color{blue}{\left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\mathsf{PI}\left(\right)}^{3}\right)\right) + z0 \cdot \mathsf{PI}\left(\right)\right)} \]
      2. lower-+.f64N/A

        \[\leadsto z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\mathsf{PI}\left(\right)}^{3}\right)\right) + \color{blue}{z0 \cdot \mathsf{PI}\left(\right)}\right) \]
      3. lower-*.f64N/A

        \[\leadsto z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\mathsf{PI}\left(\right)}^{3}\right)\right) + \color{blue}{z0} \cdot \mathsf{PI}\left(\right)\right) \]
      4. lower-*.f64N/A

        \[\leadsto z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\mathsf{PI}\left(\right)}^{3}\right)\right) + z0 \cdot \mathsf{PI}\left(\right)\right) \]
      5. lower-pow.f64N/A

        \[\leadsto z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\mathsf{PI}\left(\right)}^{3}\right)\right) + z0 \cdot \mathsf{PI}\left(\right)\right) \]
      6. lower-*.f64N/A

        \[\leadsto z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\mathsf{PI}\left(\right)}^{3}\right)\right) + z0 \cdot \mathsf{PI}\left(\right)\right) \]
      7. lower-pow.f64N/A

        \[\leadsto z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\mathsf{PI}\left(\right)}^{3}\right)\right) + z0 \cdot \mathsf{PI}\left(\right)\right) \]
      8. lower-pow.f64N/A

        \[\leadsto z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\mathsf{PI}\left(\right)}^{3}\right)\right) + z0 \cdot \mathsf{PI}\left(\right)\right) \]
      9. lower-PI.f64N/A

        \[\leadsto z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\pi}^{3}\right)\right) + z0 \cdot \mathsf{PI}\left(\right)\right) \]
      10. lower-*.f64N/A

        \[\leadsto z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\pi}^{3}\right)\right) + z0 \cdot \color{blue}{\mathsf{PI}\left(\right)}\right) \]
      11. lower-PI.f6441.6%

        \[\leadsto z1 \cdot \left(-0.16666666666666666 \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\pi}^{3}\right)\right) + z0 \cdot \pi\right) \]
    4. Applied rewrites41.6%

      \[\leadsto \color{blue}{z1 \cdot \left(-0.16666666666666666 \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\pi}^{3}\right)\right) + z0 \cdot \pi\right)} \]
    5. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto z1 \cdot \color{blue}{\left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\pi}^{3}\right)\right) + z0 \cdot \pi\right)} \]
      2. lift-+.f64N/A

        \[\leadsto z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\pi}^{3}\right)\right) + \color{blue}{z0 \cdot \pi}\right) \]
      3. distribute-lft-inN/A

        \[\leadsto z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\pi}^{3}\right)\right)\right) + \color{blue}{z1 \cdot \left(z0 \cdot \pi\right)} \]
      4. lift-*.f64N/A

        \[\leadsto z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\pi}^{3}\right)\right)\right) + z1 \cdot \left(z0 \cdot \color{blue}{\pi}\right) \]
      5. associate-*l*N/A

        \[\leadsto z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\pi}^{3}\right)\right)\right) + \left(z1 \cdot z0\right) \cdot \color{blue}{\pi} \]
      6. *-commutativeN/A

        \[\leadsto z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\pi}^{3}\right)\right)\right) + \left(z0 \cdot z1\right) \cdot \pi \]
      7. lift-*.f64N/A

        \[\leadsto z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\pi}^{3}\right)\right)\right) + \left(z0 \cdot z1\right) \cdot \pi \]
      8. fp-cancel-sign-sub-invN/A

        \[\leadsto z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\pi}^{3}\right)\right)\right) - \color{blue}{\left(\mathsf{neg}\left(z0 \cdot z1\right)\right) \cdot \pi} \]
      9. lower--.f64N/A

        \[\leadsto z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\pi}^{3}\right)\right)\right) - \color{blue}{\left(\mathsf{neg}\left(z0 \cdot z1\right)\right) \cdot \pi} \]
    6. Applied rewrites41.4%

      \[\leadsto \left(-0.16666666666666666 \cdot z1\right) \cdot \left(\left(\left(\left(\left(z1 \cdot z1\right) \cdot \pi\right) \cdot \pi\right) \cdot \pi\right) \cdot \left(\left(z0 \cdot z0\right) \cdot z0\right)\right) - \color{blue}{\left(\left(-z1\right) \cdot z0\right) \cdot \pi} \]
    7. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto \left(\frac{-1}{6} \cdot z1\right) \cdot \left(\left(\left(\left(\left(z1 \cdot z1\right) \cdot \pi\right) \cdot \pi\right) \cdot \pi\right) \cdot \left(\left(z0 \cdot z0\right) \cdot z0\right)\right) - \color{blue}{\left(\left(-z1\right) \cdot z0\right)} \cdot \pi \]
      2. lift-*.f64N/A

        \[\leadsto \left(\frac{-1}{6} \cdot z1\right) \cdot \left(\left(\left(\left(\left(z1 \cdot z1\right) \cdot \pi\right) \cdot \pi\right) \cdot \pi\right) \cdot \left(\left(z0 \cdot z0\right) \cdot z0\right)\right) - \left(\left(-z1\right) \cdot \color{blue}{z0}\right) \cdot \pi \]
      3. associate-*r*N/A

        \[\leadsto \left(\left(\frac{-1}{6} \cdot z1\right) \cdot \left(\left(\left(\left(z1 \cdot z1\right) \cdot \pi\right) \cdot \pi\right) \cdot \pi\right)\right) \cdot \left(\left(z0 \cdot z0\right) \cdot z0\right) - \color{blue}{\left(\left(-z1\right) \cdot z0\right)} \cdot \pi \]
      4. lift-*.f64N/A

        \[\leadsto \left(\left(\frac{-1}{6} \cdot z1\right) \cdot \left(\left(\left(\left(z1 \cdot z1\right) \cdot \pi\right) \cdot \pi\right) \cdot \pi\right)\right) \cdot \left(\left(z0 \cdot z0\right) \cdot z0\right) - \left(\left(-z1\right) \cdot \color{blue}{z0}\right) \cdot \pi \]
      5. associate-*r*N/A

        \[\leadsto \left(\left(\left(\frac{-1}{6} \cdot z1\right) \cdot \left(\left(\left(\left(z1 \cdot z1\right) \cdot \pi\right) \cdot \pi\right) \cdot \pi\right)\right) \cdot \left(z0 \cdot z0\right)\right) \cdot z0 - \color{blue}{\left(\left(-z1\right) \cdot z0\right)} \cdot \pi \]
      6. lower-*.f64N/A

        \[\leadsto \left(\left(\left(\frac{-1}{6} \cdot z1\right) \cdot \left(\left(\left(\left(z1 \cdot z1\right) \cdot \pi\right) \cdot \pi\right) \cdot \pi\right)\right) \cdot \left(z0 \cdot z0\right)\right) \cdot z0 - \color{blue}{\left(\left(-z1\right) \cdot z0\right)} \cdot \pi \]
    8. Applied rewrites49.9%

      \[\leadsto \left(\left(\left(-0.16666666666666666 \cdot z1\right) \cdot \pi\right) \cdot \left(\left(\left(z0 \cdot z1\right) \cdot \pi\right) \cdot \left(\left(z0 \cdot z1\right) \cdot \pi\right)\right)\right) \cdot z0 - \color{blue}{\left(\left(-z1\right) \cdot z0\right)} \cdot \pi \]
    9. Step-by-step derivation
      1. lift--.f64N/A

        \[\leadsto \left(\left(\left(\frac{-1}{6} \cdot z1\right) \cdot \pi\right) \cdot \left(\left(\left(z0 \cdot z1\right) \cdot \pi\right) \cdot \left(\left(z0 \cdot z1\right) \cdot \pi\right)\right)\right) \cdot z0 - \color{blue}{\left(\left(-z1\right) \cdot z0\right) \cdot \pi} \]
      2. lift-*.f64N/A

        \[\leadsto \left(\left(\left(\frac{-1}{6} \cdot z1\right) \cdot \pi\right) \cdot \left(\left(\left(z0 \cdot z1\right) \cdot \pi\right) \cdot \left(\left(z0 \cdot z1\right) \cdot \pi\right)\right)\right) \cdot z0 - \left(\left(-z1\right) \cdot z0\right) \cdot \color{blue}{\pi} \]
      3. lift-*.f64N/A

        \[\leadsto \left(\left(\left(\frac{-1}{6} \cdot z1\right) \cdot \pi\right) \cdot \left(\left(\left(z0 \cdot z1\right) \cdot \pi\right) \cdot \left(\left(z0 \cdot z1\right) \cdot \pi\right)\right)\right) \cdot z0 - \left(\left(-z1\right) \cdot z0\right) \cdot \pi \]
      4. lift-neg.f64N/A

        \[\leadsto \left(\left(\left(\frac{-1}{6} \cdot z1\right) \cdot \pi\right) \cdot \left(\left(\left(z0 \cdot z1\right) \cdot \pi\right) \cdot \left(\left(z0 \cdot z1\right) \cdot \pi\right)\right)\right) \cdot z0 - \left(\left(\mathsf{neg}\left(z1\right)\right) \cdot z0\right) \cdot \pi \]
      5. distribute-lft-neg-outN/A

        \[\leadsto \left(\left(\left(\frac{-1}{6} \cdot z1\right) \cdot \pi\right) \cdot \left(\left(\left(z0 \cdot z1\right) \cdot \pi\right) \cdot \left(\left(z0 \cdot z1\right) \cdot \pi\right)\right)\right) \cdot z0 - \left(\mathsf{neg}\left(z1 \cdot z0\right)\right) \cdot \pi \]
      6. *-commutativeN/A

        \[\leadsto \left(\left(\left(\frac{-1}{6} \cdot z1\right) \cdot \pi\right) \cdot \left(\left(\left(z0 \cdot z1\right) \cdot \pi\right) \cdot \left(\left(z0 \cdot z1\right) \cdot \pi\right)\right)\right) \cdot z0 - \left(\mathsf{neg}\left(z0 \cdot z1\right)\right) \cdot \pi \]
      7. lift-*.f64N/A

        \[\leadsto \left(\left(\left(\frac{-1}{6} \cdot z1\right) \cdot \pi\right) \cdot \left(\left(\left(z0 \cdot z1\right) \cdot \pi\right) \cdot \left(\left(z0 \cdot z1\right) \cdot \pi\right)\right)\right) \cdot z0 - \left(\mathsf{neg}\left(z0 \cdot z1\right)\right) \cdot \pi \]
      8. fp-cancel-sign-subN/A

        \[\leadsto \left(\left(\left(\frac{-1}{6} \cdot z1\right) \cdot \pi\right) \cdot \left(\left(\left(z0 \cdot z1\right) \cdot \pi\right) \cdot \left(\left(z0 \cdot z1\right) \cdot \pi\right)\right)\right) \cdot z0 + \color{blue}{\left(z0 \cdot z1\right) \cdot \pi} \]
      9. lift-*.f64N/A

        \[\leadsto \left(\left(\left(\frac{-1}{6} \cdot z1\right) \cdot \pi\right) \cdot \left(\left(\left(z0 \cdot z1\right) \cdot \pi\right) \cdot \left(\left(z0 \cdot z1\right) \cdot \pi\right)\right)\right) \cdot z0 + \left(z0 \cdot z1\right) \cdot \color{blue}{\pi} \]
    10. Applied rewrites50.1%

      \[\leadsto \left(\left(\left(\left(\left(-0.16666666666666666 \cdot z1\right) \cdot \pi\right) \cdot \pi\right) \cdot \left(z0 \cdot z1\right)\right) \cdot z0 + 1\right) \cdot \color{blue}{\left(\left(z0 \cdot z1\right) \cdot \pi\right)} \]
    11. Add Preprocessing

    Alternative 5: 50.1% accurate, 10.1× speedup?

    \[\left(z0 \cdot z1\right) \cdot \pi \]
    (FPCore (z1 z0)
      :precision binary64
      (* (* z0 z1) PI))
    double code(double z1, double z0) {
    	return (z0 * z1) * ((double) M_PI);
    }
    
    public static double code(double z1, double z0) {
    	return (z0 * z1) * Math.PI;
    }
    
    def code(z1, z0):
    	return (z0 * z1) * math.pi
    
    function code(z1, z0)
    	return Float64(Float64(z0 * z1) * pi)
    end
    
    function tmp = code(z1, z0)
    	tmp = (z0 * z1) * pi;
    end
    
    code[z1_, z0_] := N[(N[(z0 * z1), $MachinePrecision] * Pi), $MachinePrecision]
    
    \left(z0 \cdot z1\right) \cdot \pi
    
    Derivation
    1. Initial program 52.2%

      \[\sin \left(z1 \cdot \left(\pi \cdot z0\right)\right) \]
    2. Taylor expanded in z1 around 0

      \[\leadsto \color{blue}{z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\pi}^{3}\right)\right) + z0 \cdot \pi\right)} \]
    3. Step-by-step derivation
      1. lower-*.f64N/A

        \[\leadsto z1 \cdot \color{blue}{\left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\mathsf{PI}\left(\right)}^{3}\right)\right) + z0 \cdot \mathsf{PI}\left(\right)\right)} \]
      2. lower-+.f64N/A

        \[\leadsto z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\mathsf{PI}\left(\right)}^{3}\right)\right) + \color{blue}{z0 \cdot \mathsf{PI}\left(\right)}\right) \]
      3. lower-*.f64N/A

        \[\leadsto z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\mathsf{PI}\left(\right)}^{3}\right)\right) + \color{blue}{z0} \cdot \mathsf{PI}\left(\right)\right) \]
      4. lower-*.f64N/A

        \[\leadsto z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\mathsf{PI}\left(\right)}^{3}\right)\right) + z0 \cdot \mathsf{PI}\left(\right)\right) \]
      5. lower-pow.f64N/A

        \[\leadsto z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\mathsf{PI}\left(\right)}^{3}\right)\right) + z0 \cdot \mathsf{PI}\left(\right)\right) \]
      6. lower-*.f64N/A

        \[\leadsto z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\mathsf{PI}\left(\right)}^{3}\right)\right) + z0 \cdot \mathsf{PI}\left(\right)\right) \]
      7. lower-pow.f64N/A

        \[\leadsto z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\mathsf{PI}\left(\right)}^{3}\right)\right) + z0 \cdot \mathsf{PI}\left(\right)\right) \]
      8. lower-pow.f64N/A

        \[\leadsto z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\mathsf{PI}\left(\right)}^{3}\right)\right) + z0 \cdot \mathsf{PI}\left(\right)\right) \]
      9. lower-PI.f64N/A

        \[\leadsto z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\pi}^{3}\right)\right) + z0 \cdot \mathsf{PI}\left(\right)\right) \]
      10. lower-*.f64N/A

        \[\leadsto z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\pi}^{3}\right)\right) + z0 \cdot \color{blue}{\mathsf{PI}\left(\right)}\right) \]
      11. lower-PI.f6441.6%

        \[\leadsto z1 \cdot \left(-0.16666666666666666 \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\pi}^{3}\right)\right) + z0 \cdot \pi\right) \]
    4. Applied rewrites41.6%

      \[\leadsto \color{blue}{z1 \cdot \left(-0.16666666666666666 \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\pi}^{3}\right)\right) + z0 \cdot \pi\right)} \]
    5. Taylor expanded in z1 around 0

      \[\leadsto z1 \cdot \left(z0 \cdot \color{blue}{\pi}\right) \]
    6. Step-by-step derivation
      1. lower-*.f64N/A

        \[\leadsto z1 \cdot \left(z0 \cdot \mathsf{PI}\left(\right)\right) \]
      2. lower-PI.f6450.1%

        \[\leadsto z1 \cdot \left(z0 \cdot \pi\right) \]
    7. Applied rewrites50.1%

      \[\leadsto z1 \cdot \left(z0 \cdot \color{blue}{\pi}\right) \]
    8. Taylor expanded in z1 around 0

      \[\leadsto z0 \cdot \color{blue}{\left(z1 \cdot \pi\right)} \]
    9. Step-by-step derivation
      1. lower-*.f64N/A

        \[\leadsto z0 \cdot \left(z1 \cdot \color{blue}{\mathsf{PI}\left(\right)}\right) \]
      2. lower-*.f64N/A

        \[\leadsto z0 \cdot \left(z1 \cdot \mathsf{PI}\left(\right)\right) \]
      3. lower-PI.f6450.1%

        \[\leadsto z0 \cdot \left(z1 \cdot \pi\right) \]
    10. Applied rewrites50.1%

      \[\leadsto z0 \cdot \color{blue}{\left(z1 \cdot \pi\right)} \]
    11. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto z0 \cdot \left(z1 \cdot \color{blue}{\pi}\right) \]
      2. lift-*.f64N/A

        \[\leadsto z0 \cdot \left(z1 \cdot \pi\right) \]
      3. associate-*l*N/A

        \[\leadsto \left(z0 \cdot z1\right) \cdot \pi \]
      4. lift-*.f64N/A

        \[\leadsto \left(z0 \cdot z1\right) \cdot \pi \]
      5. lift-*.f6450.1%

        \[\leadsto \left(z0 \cdot z1\right) \cdot \pi \]
    12. Applied rewrites50.1%

      \[\leadsto \left(z0 \cdot z1\right) \cdot \pi \]
    13. Add Preprocessing

    Alternative 6: 50.1% accurate, 10.1× speedup?

    \[z0 \cdot \left(z1 \cdot \pi\right) \]
    (FPCore (z1 z0)
      :precision binary64
      (* z0 (* z1 PI)))
    double code(double z1, double z0) {
    	return z0 * (z1 * ((double) M_PI));
    }
    
    public static double code(double z1, double z0) {
    	return z0 * (z1 * Math.PI);
    }
    
    def code(z1, z0):
    	return z0 * (z1 * math.pi)
    
    function code(z1, z0)
    	return Float64(z0 * Float64(z1 * pi))
    end
    
    function tmp = code(z1, z0)
    	tmp = z0 * (z1 * pi);
    end
    
    code[z1_, z0_] := N[(z0 * N[(z1 * Pi), $MachinePrecision]), $MachinePrecision]
    
    z0 \cdot \left(z1 \cdot \pi\right)
    
    Derivation
    1. Initial program 52.2%

      \[\sin \left(z1 \cdot \left(\pi \cdot z0\right)\right) \]
    2. Taylor expanded in z1 around 0

      \[\leadsto \color{blue}{z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\pi}^{3}\right)\right) + z0 \cdot \pi\right)} \]
    3. Step-by-step derivation
      1. lower-*.f64N/A

        \[\leadsto z1 \cdot \color{blue}{\left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\mathsf{PI}\left(\right)}^{3}\right)\right) + z0 \cdot \mathsf{PI}\left(\right)\right)} \]
      2. lower-+.f64N/A

        \[\leadsto z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\mathsf{PI}\left(\right)}^{3}\right)\right) + \color{blue}{z0 \cdot \mathsf{PI}\left(\right)}\right) \]
      3. lower-*.f64N/A

        \[\leadsto z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\mathsf{PI}\left(\right)}^{3}\right)\right) + \color{blue}{z0} \cdot \mathsf{PI}\left(\right)\right) \]
      4. lower-*.f64N/A

        \[\leadsto z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\mathsf{PI}\left(\right)}^{3}\right)\right) + z0 \cdot \mathsf{PI}\left(\right)\right) \]
      5. lower-pow.f64N/A

        \[\leadsto z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\mathsf{PI}\left(\right)}^{3}\right)\right) + z0 \cdot \mathsf{PI}\left(\right)\right) \]
      6. lower-*.f64N/A

        \[\leadsto z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\mathsf{PI}\left(\right)}^{3}\right)\right) + z0 \cdot \mathsf{PI}\left(\right)\right) \]
      7. lower-pow.f64N/A

        \[\leadsto z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\mathsf{PI}\left(\right)}^{3}\right)\right) + z0 \cdot \mathsf{PI}\left(\right)\right) \]
      8. lower-pow.f64N/A

        \[\leadsto z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\mathsf{PI}\left(\right)}^{3}\right)\right) + z0 \cdot \mathsf{PI}\left(\right)\right) \]
      9. lower-PI.f64N/A

        \[\leadsto z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\pi}^{3}\right)\right) + z0 \cdot \mathsf{PI}\left(\right)\right) \]
      10. lower-*.f64N/A

        \[\leadsto z1 \cdot \left(\frac{-1}{6} \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\pi}^{3}\right)\right) + z0 \cdot \color{blue}{\mathsf{PI}\left(\right)}\right) \]
      11. lower-PI.f6441.6%

        \[\leadsto z1 \cdot \left(-0.16666666666666666 \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\pi}^{3}\right)\right) + z0 \cdot \pi\right) \]
    4. Applied rewrites41.6%

      \[\leadsto \color{blue}{z1 \cdot \left(-0.16666666666666666 \cdot \left({z0}^{3} \cdot \left({z1}^{2} \cdot {\pi}^{3}\right)\right) + z0 \cdot \pi\right)} \]
    5. Taylor expanded in z1 around 0

      \[\leadsto z1 \cdot \left(z0 \cdot \color{blue}{\pi}\right) \]
    6. Step-by-step derivation
      1. lower-*.f64N/A

        \[\leadsto z1 \cdot \left(z0 \cdot \mathsf{PI}\left(\right)\right) \]
      2. lower-PI.f6450.1%

        \[\leadsto z1 \cdot \left(z0 \cdot \pi\right) \]
    7. Applied rewrites50.1%

      \[\leadsto z1 \cdot \left(z0 \cdot \color{blue}{\pi}\right) \]
    8. Taylor expanded in z1 around 0

      \[\leadsto z0 \cdot \color{blue}{\left(z1 \cdot \pi\right)} \]
    9. Step-by-step derivation
      1. lower-*.f64N/A

        \[\leadsto z0 \cdot \left(z1 \cdot \color{blue}{\mathsf{PI}\left(\right)}\right) \]
      2. lower-*.f64N/A

        \[\leadsto z0 \cdot \left(z1 \cdot \mathsf{PI}\left(\right)\right) \]
      3. lower-PI.f6450.1%

        \[\leadsto z0 \cdot \left(z1 \cdot \pi\right) \]
    10. Applied rewrites50.1%

      \[\leadsto z0 \cdot \color{blue}{\left(z1 \cdot \pi\right)} \]
    11. Add Preprocessing

    Reproduce

    ?
    herbie shell --seed 2025250 
    (FPCore (z1 z0)
      :name "(sin (* z1 (* PI z0)))"
      :precision binary64
      (sin (* z1 (* PI z0))))