(sin (* (- 1/2 (+ z0 z0)) PI))

Percentage Accurate: 57.5% → 98.5%
Time: 3.0s
Alternatives: 8
Speedup: 1.1×

Specification

?
\[\sin \left(\left(0.5 - \left(z0 + z0\right)\right) \cdot \pi\right) \]
(FPCore (z0)
  :precision binary64
  (sin (* (- 0.5 (+ z0 z0)) PI)))
double code(double z0) {
	return sin(((0.5 - (z0 + z0)) * ((double) M_PI)));
}
public static double code(double z0) {
	return Math.sin(((0.5 - (z0 + z0)) * Math.PI));
}
def code(z0):
	return math.sin(((0.5 - (z0 + z0)) * math.pi))
function code(z0)
	return sin(Float64(Float64(0.5 - Float64(z0 + z0)) * pi))
end
function tmp = code(z0)
	tmp = sin(((0.5 - (z0 + z0)) * pi));
end
code[z0_] := N[Sin[N[(N[(0.5 - N[(z0 + z0), $MachinePrecision]), $MachinePrecision] * Pi), $MachinePrecision]], $MachinePrecision]
\sin \left(\left(0.5 - \left(z0 + z0\right)\right) \cdot \pi\right)

Local Percentage Accuracy vs ?

The average percentage accuracy by input value. Horizontal axis shows value of an input variable; the variable is choosen in the title. Vertical axis is accuracy; higher is better. Red represent the original program, while blue represents Herbie's suggestion. These can be toggled with buttons below the plot. The line is an average while dots represent individual samples.

Accuracy vs Speed?

Herbie found 8 alternatives:

AlternativeAccuracySpeedup
The accuracy (vertical axis) and speed (horizontal axis) of each alternatives. Up and to the right is better. The red square shows the initial program, and each blue circle shows an alternative.The line shows the best available speed-accuracy tradeoffs.

Initial Program: 57.5% accurate, 1.0× speedup?

\[\sin \left(\left(0.5 - \left(z0 + z0\right)\right) \cdot \pi\right) \]
(FPCore (z0)
  :precision binary64
  (sin (* (- 0.5 (+ z0 z0)) PI)))
double code(double z0) {
	return sin(((0.5 - (z0 + z0)) * ((double) M_PI)));
}
public static double code(double z0) {
	return Math.sin(((0.5 - (z0 + z0)) * Math.PI));
}
def code(z0):
	return math.sin(((0.5 - (z0 + z0)) * math.pi))
function code(z0)
	return sin(Float64(Float64(0.5 - Float64(z0 + z0)) * pi))
end
function tmp = code(z0)
	tmp = sin(((0.5 - (z0 + z0)) * pi));
end
code[z0_] := N[Sin[N[(N[(0.5 - N[(z0 + z0), $MachinePrecision]), $MachinePrecision] * Pi), $MachinePrecision]], $MachinePrecision]
\sin \left(\left(0.5 - \left(z0 + z0\right)\right) \cdot \pi\right)

Alternative 1: 98.5% accurate, 0.1× speedup?

\[\begin{array}{l} t_0 := 0.5 - \left|z0\right|\\ t_1 := \left(\sin \left(\pi \cdot \left(\left(1 - \frac{\left|z0\right|}{t\_0}\right) \cdot t\_0\right)\right) + \cos \left(\left(\left|z0\right| + \left|z0\right|\right) \cdot \pi\right)\right) \cdot 0.5\\ t_2 := \cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot \left|z0\right|\right) \cdot \pi\right)\\ \mathbf{if}\;\left|z0\right| \leq 85000:\\ \;\;\;\;\frac{{t\_1}^{3} + {t\_2}^{3}}{t\_1 \cdot t\_1 + \left(t\_2 \cdot t\_2 - t\_1 \cdot t\_2\right)}\\ \mathbf{else}:\\ \;\;\;\;\sin \left(0.5 \cdot \pi\right)\\ \end{array} \]
(FPCore (z0)
  :precision binary64
  (let* ((t_0 (- 0.5 (fabs z0)))
       (t_1
        (*
         (+
          (sin (* PI (* (- 1.0 (/ (fabs z0) t_0)) t_0)))
          (cos (* (+ (fabs z0) (fabs z0)) PI)))
         0.5))
       (t_2 (* (cos (* PI 0.5)) (sin (* (* -2.0 (fabs z0)) PI)))))
  (if (<= (fabs z0) 85000.0)
    (/
     (+ (pow t_1 3.0) (pow t_2 3.0))
     (+ (* t_1 t_1) (- (* t_2 t_2) (* t_1 t_2))))
    (sin (* 0.5 PI)))))
double code(double z0) {
	double t_0 = 0.5 - fabs(z0);
	double t_1 = (sin((((double) M_PI) * ((1.0 - (fabs(z0) / t_0)) * t_0))) + cos(((fabs(z0) + fabs(z0)) * ((double) M_PI)))) * 0.5;
	double t_2 = cos((((double) M_PI) * 0.5)) * sin(((-2.0 * fabs(z0)) * ((double) M_PI)));
	double tmp;
	if (fabs(z0) <= 85000.0) {
		tmp = (pow(t_1, 3.0) + pow(t_2, 3.0)) / ((t_1 * t_1) + ((t_2 * t_2) - (t_1 * t_2)));
	} else {
		tmp = sin((0.5 * ((double) M_PI)));
	}
	return tmp;
}
public static double code(double z0) {
	double t_0 = 0.5 - Math.abs(z0);
	double t_1 = (Math.sin((Math.PI * ((1.0 - (Math.abs(z0) / t_0)) * t_0))) + Math.cos(((Math.abs(z0) + Math.abs(z0)) * Math.PI))) * 0.5;
	double t_2 = Math.cos((Math.PI * 0.5)) * Math.sin(((-2.0 * Math.abs(z0)) * Math.PI));
	double tmp;
	if (Math.abs(z0) <= 85000.0) {
		tmp = (Math.pow(t_1, 3.0) + Math.pow(t_2, 3.0)) / ((t_1 * t_1) + ((t_2 * t_2) - (t_1 * t_2)));
	} else {
		tmp = Math.sin((0.5 * Math.PI));
	}
	return tmp;
}
def code(z0):
	t_0 = 0.5 - math.fabs(z0)
	t_1 = (math.sin((math.pi * ((1.0 - (math.fabs(z0) / t_0)) * t_0))) + math.cos(((math.fabs(z0) + math.fabs(z0)) * math.pi))) * 0.5
	t_2 = math.cos((math.pi * 0.5)) * math.sin(((-2.0 * math.fabs(z0)) * math.pi))
	tmp = 0
	if math.fabs(z0) <= 85000.0:
		tmp = (math.pow(t_1, 3.0) + math.pow(t_2, 3.0)) / ((t_1 * t_1) + ((t_2 * t_2) - (t_1 * t_2)))
	else:
		tmp = math.sin((0.5 * math.pi))
	return tmp
function code(z0)
	t_0 = Float64(0.5 - abs(z0))
	t_1 = Float64(Float64(sin(Float64(pi * Float64(Float64(1.0 - Float64(abs(z0) / t_0)) * t_0))) + cos(Float64(Float64(abs(z0) + abs(z0)) * pi))) * 0.5)
	t_2 = Float64(cos(Float64(pi * 0.5)) * sin(Float64(Float64(-2.0 * abs(z0)) * pi)))
	tmp = 0.0
	if (abs(z0) <= 85000.0)
		tmp = Float64(Float64((t_1 ^ 3.0) + (t_2 ^ 3.0)) / Float64(Float64(t_1 * t_1) + Float64(Float64(t_2 * t_2) - Float64(t_1 * t_2))));
	else
		tmp = sin(Float64(0.5 * pi));
	end
	return tmp
end
function tmp_2 = code(z0)
	t_0 = 0.5 - abs(z0);
	t_1 = (sin((pi * ((1.0 - (abs(z0) / t_0)) * t_0))) + cos(((abs(z0) + abs(z0)) * pi))) * 0.5;
	t_2 = cos((pi * 0.5)) * sin(((-2.0 * abs(z0)) * pi));
	tmp = 0.0;
	if (abs(z0) <= 85000.0)
		tmp = ((t_1 ^ 3.0) + (t_2 ^ 3.0)) / ((t_1 * t_1) + ((t_2 * t_2) - (t_1 * t_2)));
	else
		tmp = sin((0.5 * pi));
	end
	tmp_2 = tmp;
end
code[z0_] := Block[{t$95$0 = N[(0.5 - N[Abs[z0], $MachinePrecision]), $MachinePrecision]}, Block[{t$95$1 = N[(N[(N[Sin[N[(Pi * N[(N[(1.0 - N[(N[Abs[z0], $MachinePrecision] / t$95$0), $MachinePrecision]), $MachinePrecision] * t$95$0), $MachinePrecision]), $MachinePrecision]], $MachinePrecision] + N[Cos[N[(N[(N[Abs[z0], $MachinePrecision] + N[Abs[z0], $MachinePrecision]), $MachinePrecision] * Pi), $MachinePrecision]], $MachinePrecision]), $MachinePrecision] * 0.5), $MachinePrecision]}, Block[{t$95$2 = N[(N[Cos[N[(Pi * 0.5), $MachinePrecision]], $MachinePrecision] * N[Sin[N[(N[(-2.0 * N[Abs[z0], $MachinePrecision]), $MachinePrecision] * Pi), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]}, If[LessEqual[N[Abs[z0], $MachinePrecision], 85000.0], N[(N[(N[Power[t$95$1, 3.0], $MachinePrecision] + N[Power[t$95$2, 3.0], $MachinePrecision]), $MachinePrecision] / N[(N[(t$95$1 * t$95$1), $MachinePrecision] + N[(N[(t$95$2 * t$95$2), $MachinePrecision] - N[(t$95$1 * t$95$2), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[Sin[N[(0.5 * Pi), $MachinePrecision]], $MachinePrecision]]]]]
\begin{array}{l}
t_0 := 0.5 - \left|z0\right|\\
t_1 := \left(\sin \left(\pi \cdot \left(\left(1 - \frac{\left|z0\right|}{t\_0}\right) \cdot t\_0\right)\right) + \cos \left(\left(\left|z0\right| + \left|z0\right|\right) \cdot \pi\right)\right) \cdot 0.5\\
t_2 := \cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot \left|z0\right|\right) \cdot \pi\right)\\
\mathbf{if}\;\left|z0\right| \leq 85000:\\
\;\;\;\;\frac{{t\_1}^{3} + {t\_2}^{3}}{t\_1 \cdot t\_1 + \left(t\_2 \cdot t\_2 - t\_1 \cdot t\_2\right)}\\

\mathbf{else}:\\
\;\;\;\;\sin \left(0.5 \cdot \pi\right)\\


\end{array}
Derivation
  1. Split input into 2 regimes
  2. if z0 < 85000

    1. Initial program 57.5%

      \[\sin \left(\left(0.5 - \left(z0 + z0\right)\right) \cdot \pi\right) \]
    2. Step-by-step derivation
      1. lift-sin.f64N/A

        \[\leadsto \color{blue}{\sin \left(\left(\frac{1}{2} - \left(z0 + z0\right)\right) \cdot \pi\right)} \]
      2. lift-*.f64N/A

        \[\leadsto \sin \color{blue}{\left(\left(\frac{1}{2} - \left(z0 + z0\right)\right) \cdot \pi\right)} \]
      3. *-commutativeN/A

        \[\leadsto \sin \color{blue}{\left(\pi \cdot \left(\frac{1}{2} - \left(z0 + z0\right)\right)\right)} \]
      4. lift--.f64N/A

        \[\leadsto \sin \left(\pi \cdot \color{blue}{\left(\frac{1}{2} - \left(z0 + z0\right)\right)}\right) \]
      5. sub-flipN/A

        \[\leadsto \sin \left(\pi \cdot \color{blue}{\left(\frac{1}{2} + \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)}\right) \]
      6. distribute-lft-inN/A

        \[\leadsto \sin \color{blue}{\left(\pi \cdot \frac{1}{2} + \pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)} \]
      7. sin-sumN/A

        \[\leadsto \color{blue}{\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right) + \cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)} \]
      8. flip3-+N/A

        \[\leadsto \color{blue}{\frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right)\right)}} \]
    3. Applied rewrites57.5%

      \[\leadsto \color{blue}{\frac{{\left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)}} \]
    4. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto \frac{{\color{blue}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      2. lift-sin.f64N/A

        \[\leadsto \frac{{\left(\color{blue}{\sin \left(\pi \cdot \frac{1}{2}\right)} \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      3. lift-cos.f64N/A

        \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \color{blue}{\cos \left(\pi \cdot \left(z0 + z0\right)\right)}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      4. sin-cos-multN/A

        \[\leadsto \frac{{\color{blue}{\left(\frac{\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)}{2}\right)}}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      5. mult-flipN/A

        \[\leadsto \frac{{\color{blue}{\left(\left(\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)\right) \cdot \frac{1}{2}\right)}}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      6. metadata-evalN/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{\frac{1}{2}}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      7. lower-*.f64N/A

        \[\leadsto \frac{{\color{blue}{\left(\left(\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)\right) \cdot \frac{1}{2}\right)}}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
    5. Applied rewrites56.5%

      \[\leadsto \frac{{\color{blue}{\left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right)}}^{3} + {\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
    6. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\color{blue}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)} \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      2. lift-sin.f64N/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\color{blue}{\sin \left(\pi \cdot \frac{1}{2}\right)} \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      3. lift-cos.f64N/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \color{blue}{\cos \left(\pi \cdot \left(z0 + z0\right)\right)}\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      4. sin-cos-multN/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\color{blue}{\frac{\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)}{2}} \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      5. mult-flipN/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\color{blue}{\left(\left(\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)\right) \cdot \frac{1}{2}\right)} \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      6. metadata-evalN/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{\frac{1}{2}}\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      7. lower-*.f64N/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\color{blue}{\left(\left(\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)\right) \cdot \frac{1}{2}\right)} \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
    7. Applied rewrites56.8%

      \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right)}^{3} + {\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\color{blue}{\left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right)} \cdot \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
    8. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \color{blue}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)} + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      2. lift-sin.f64N/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\color{blue}{\sin \left(\pi \cdot \frac{1}{2}\right)} \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      3. lift-cos.f64N/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \color{blue}{\cos \left(\pi \cdot \left(z0 + z0\right)\right)}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      4. sin-cos-multN/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \color{blue}{\frac{\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)}{2}} + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      5. mult-flipN/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \color{blue}{\left(\left(\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)\right) \cdot \frac{1}{2}\right)} + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      6. metadata-evalN/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{\frac{1}{2}}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      7. lower-*.f64N/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \color{blue}{\left(\left(\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)\right) \cdot \frac{1}{2}\right)} + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
    9. Applied rewrites56.8%

      \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right)}^{3} + {\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right) \cdot \color{blue}{\left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right)} + \left(\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
    10. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \color{blue}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)} \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      2. lift-sin.f64N/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\color{blue}{\sin \left(\pi \cdot \frac{1}{2}\right)} \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      3. lift-cos.f64N/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \color{blue}{\cos \left(\pi \cdot \left(z0 + z0\right)\right)}\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      4. sin-cos-multN/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \color{blue}{\frac{\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)}{2}} \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      5. mult-flipN/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \color{blue}{\left(\left(\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)\right) \cdot \frac{1}{2}\right)} \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      6. metadata-evalN/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\left(\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{\frac{1}{2}}\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      7. lower-*.f64N/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \color{blue}{\left(\left(\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)\right) \cdot \frac{1}{2}\right)} \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
    11. Applied rewrites56.8%

      \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right)}^{3} + {\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right) + \left(\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \color{blue}{\left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right)} \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
    12. Step-by-step derivation
      1. lift--.f64N/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \color{blue}{\left(\left(\frac{1}{2} - z0\right) - z0\right)}\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      2. sub-to-multN/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \color{blue}{\left(\left(1 - \frac{z0}{\frac{1}{2} - z0}\right) \cdot \left(\frac{1}{2} - z0\right)\right)}\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      3. lower-unsound-*.f64N/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \color{blue}{\left(\left(1 - \frac{z0}{\frac{1}{2} - z0}\right) \cdot \left(\frac{1}{2} - z0\right)\right)}\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      4. lower-unsound--.f64N/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\color{blue}{\left(1 - \frac{z0}{\frac{1}{2} - z0}\right)} \cdot \left(\frac{1}{2} - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      5. lower-unsound-/.f6456.8%

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(1 - \color{blue}{\frac{z0}{0.5 - z0}}\right) \cdot \left(0.5 - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right)}^{3} + {\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right) + \left(\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
    13. Applied rewrites56.8%

      \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \color{blue}{\left(\left(1 - \frac{z0}{0.5 - z0}\right) \cdot \left(0.5 - z0\right)\right)}\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right)}^{3} + {\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right) + \left(\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
    14. Step-by-step derivation
      1. lift--.f64N/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(1 - \frac{z0}{\frac{1}{2} - z0}\right) \cdot \left(\frac{1}{2} - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \color{blue}{\left(\left(\frac{1}{2} - z0\right) - z0\right)}\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      2. sub-to-multN/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(1 - \frac{z0}{\frac{1}{2} - z0}\right) \cdot \left(\frac{1}{2} - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \color{blue}{\left(\left(1 - \frac{z0}{\frac{1}{2} - z0}\right) \cdot \left(\frac{1}{2} - z0\right)\right)}\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      3. lower-unsound-*.f64N/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(1 - \frac{z0}{\frac{1}{2} - z0}\right) \cdot \left(\frac{1}{2} - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \color{blue}{\left(\left(1 - \frac{z0}{\frac{1}{2} - z0}\right) \cdot \left(\frac{1}{2} - z0\right)\right)}\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      4. lower-unsound--.f64N/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(1 - \frac{z0}{\frac{1}{2} - z0}\right) \cdot \left(\frac{1}{2} - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\color{blue}{\left(1 - \frac{z0}{\frac{1}{2} - z0}\right)} \cdot \left(\frac{1}{2} - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      5. lower-unsound-/.f6456.8%

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(1 - \frac{z0}{0.5 - z0}\right) \cdot \left(0.5 - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right)}^{3} + {\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(1 - \color{blue}{\frac{z0}{0.5 - z0}}\right) \cdot \left(0.5 - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right) + \left(\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
    15. Applied rewrites56.8%

      \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(1 - \frac{z0}{0.5 - z0}\right) \cdot \left(0.5 - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right)}^{3} + {\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \color{blue}{\left(\left(1 - \frac{z0}{0.5 - z0}\right) \cdot \left(0.5 - z0\right)\right)}\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right) + \left(\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
    16. Step-by-step derivation
      1. lift--.f64N/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(1 - \frac{z0}{\frac{1}{2} - z0}\right) \cdot \left(\frac{1}{2} - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(1 - \frac{z0}{\frac{1}{2} - z0}\right) \cdot \left(\frac{1}{2} - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \color{blue}{\left(\left(\frac{1}{2} - z0\right) - z0\right)}\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      2. sub-to-multN/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(1 - \frac{z0}{\frac{1}{2} - z0}\right) \cdot \left(\frac{1}{2} - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(1 - \frac{z0}{\frac{1}{2} - z0}\right) \cdot \left(\frac{1}{2} - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \color{blue}{\left(\left(1 - \frac{z0}{\frac{1}{2} - z0}\right) \cdot \left(\frac{1}{2} - z0\right)\right)}\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      3. lower-unsound-*.f64N/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(1 - \frac{z0}{\frac{1}{2} - z0}\right) \cdot \left(\frac{1}{2} - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(1 - \frac{z0}{\frac{1}{2} - z0}\right) \cdot \left(\frac{1}{2} - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \color{blue}{\left(\left(1 - \frac{z0}{\frac{1}{2} - z0}\right) \cdot \left(\frac{1}{2} - z0\right)\right)}\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      4. lower-unsound--.f64N/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(1 - \frac{z0}{\frac{1}{2} - z0}\right) \cdot \left(\frac{1}{2} - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(1 - \frac{z0}{\frac{1}{2} - z0}\right) \cdot \left(\frac{1}{2} - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\color{blue}{\left(1 - \frac{z0}{\frac{1}{2} - z0}\right)} \cdot \left(\frac{1}{2} - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      5. lower-unsound-/.f6456.8%

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(1 - \frac{z0}{0.5 - z0}\right) \cdot \left(0.5 - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right)}^{3} + {\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(1 - \frac{z0}{0.5 - z0}\right) \cdot \left(0.5 - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(1 - \color{blue}{\frac{z0}{0.5 - z0}}\right) \cdot \left(0.5 - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right) + \left(\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
    17. Applied rewrites56.8%

      \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(1 - \frac{z0}{0.5 - z0}\right) \cdot \left(0.5 - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right)}^{3} + {\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(1 - \frac{z0}{0.5 - z0}\right) \cdot \left(0.5 - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right) \cdot \left(\left(\sin \left(\pi \cdot \color{blue}{\left(\left(1 - \frac{z0}{0.5 - z0}\right) \cdot \left(0.5 - z0\right)\right)}\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right) + \left(\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
    18. Step-by-step derivation
      1. lift--.f64N/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(1 - \frac{z0}{\frac{1}{2} - z0}\right) \cdot \left(\frac{1}{2} - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(1 - \frac{z0}{\frac{1}{2} - z0}\right) \cdot \left(\frac{1}{2} - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(1 - \frac{z0}{\frac{1}{2} - z0}\right) \cdot \left(\frac{1}{2} - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\left(\sin \left(\pi \cdot \color{blue}{\left(\left(\frac{1}{2} - z0\right) - z0\right)}\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      2. sub-to-multN/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(1 - \frac{z0}{\frac{1}{2} - z0}\right) \cdot \left(\frac{1}{2} - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(1 - \frac{z0}{\frac{1}{2} - z0}\right) \cdot \left(\frac{1}{2} - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(1 - \frac{z0}{\frac{1}{2} - z0}\right) \cdot \left(\frac{1}{2} - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\left(\sin \left(\pi \cdot \color{blue}{\left(\left(1 - \frac{z0}{\frac{1}{2} - z0}\right) \cdot \left(\frac{1}{2} - z0\right)\right)}\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      3. lower-unsound-*.f64N/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(1 - \frac{z0}{\frac{1}{2} - z0}\right) \cdot \left(\frac{1}{2} - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(1 - \frac{z0}{\frac{1}{2} - z0}\right) \cdot \left(\frac{1}{2} - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(1 - \frac{z0}{\frac{1}{2} - z0}\right) \cdot \left(\frac{1}{2} - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\left(\sin \left(\pi \cdot \color{blue}{\left(\left(1 - \frac{z0}{\frac{1}{2} - z0}\right) \cdot \left(\frac{1}{2} - z0\right)\right)}\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      4. lower-unsound--.f64N/A

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(1 - \frac{z0}{\frac{1}{2} - z0}\right) \cdot \left(\frac{1}{2} - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(1 - \frac{z0}{\frac{1}{2} - z0}\right) \cdot \left(\frac{1}{2} - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(1 - \frac{z0}{\frac{1}{2} - z0}\right) \cdot \left(\frac{1}{2} - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\left(\sin \left(\pi \cdot \left(\color{blue}{\left(1 - \frac{z0}{\frac{1}{2} - z0}\right)} \cdot \left(\frac{1}{2} - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      5. lower-unsound-/.f6456.8%

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(1 - \frac{z0}{0.5 - z0}\right) \cdot \left(0.5 - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right)}^{3} + {\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(1 - \frac{z0}{0.5 - z0}\right) \cdot \left(0.5 - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(1 - \frac{z0}{0.5 - z0}\right) \cdot \left(0.5 - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right) + \left(\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\left(\sin \left(\pi \cdot \left(\left(1 - \color{blue}{\frac{z0}{0.5 - z0}}\right) \cdot \left(0.5 - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
    19. Applied rewrites56.8%

      \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(1 - \frac{z0}{0.5 - z0}\right) \cdot \left(0.5 - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right)}^{3} + {\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(1 - \frac{z0}{0.5 - z0}\right) \cdot \left(0.5 - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(1 - \frac{z0}{0.5 - z0}\right) \cdot \left(0.5 - z0\right)\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right) + \left(\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\left(\sin \left(\pi \cdot \color{blue}{\left(\left(1 - \frac{z0}{0.5 - z0}\right) \cdot \left(0.5 - z0\right)\right)}\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]

    if 85000 < z0

    1. Initial program 57.5%

      \[\sin \left(\left(0.5 - \left(z0 + z0\right)\right) \cdot \pi\right) \]
    2. Taylor expanded in z0 around 0

      \[\leadsto \sin \left(\color{blue}{\frac{1}{2}} \cdot \pi\right) \]
    3. Step-by-step derivation
      1. Applied rewrites97.2%

        \[\leadsto \sin \left(\color{blue}{0.5} \cdot \pi\right) \]
    4. Recombined 2 regimes into one program.
    5. Add Preprocessing

    Alternative 2: 98.5% accurate, 0.1× speedup?

    \[\begin{array}{l} t_0 := \cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot \left|z0\right|\right) \cdot \pi\right)\\ t_1 := \left(\sin \left(\pi \cdot \left(\left(0.5 - \left|z0\right|\right) - \left|z0\right|\right)\right) + \cos \left(\left(\left|z0\right| + \left|z0\right|\right) \cdot \pi\right)\right) \cdot 0.5\\ \mathbf{if}\;\left|z0\right| \leq 85000:\\ \;\;\;\;\frac{{t\_1}^{3} + {t\_0}^{3}}{t\_1 \cdot t\_1 + \left(t\_0 \cdot t\_0 - t\_1 \cdot t\_0\right)}\\ \mathbf{else}:\\ \;\;\;\;\sin \left(0.5 \cdot \pi\right)\\ \end{array} \]
    (FPCore (z0)
      :precision binary64
      (let* ((t_0 (* (cos (* PI 0.5)) (sin (* (* -2.0 (fabs z0)) PI))))
           (t_1
            (*
             (+
              (sin (* PI (- (- 0.5 (fabs z0)) (fabs z0))))
              (cos (* (+ (fabs z0) (fabs z0)) PI)))
             0.5)))
      (if (<= (fabs z0) 85000.0)
        (/
         (+ (pow t_1 3.0) (pow t_0 3.0))
         (+ (* t_1 t_1) (- (* t_0 t_0) (* t_1 t_0))))
        (sin (* 0.5 PI)))))
    double code(double z0) {
    	double t_0 = cos((((double) M_PI) * 0.5)) * sin(((-2.0 * fabs(z0)) * ((double) M_PI)));
    	double t_1 = (sin((((double) M_PI) * ((0.5 - fabs(z0)) - fabs(z0)))) + cos(((fabs(z0) + fabs(z0)) * ((double) M_PI)))) * 0.5;
    	double tmp;
    	if (fabs(z0) <= 85000.0) {
    		tmp = (pow(t_1, 3.0) + pow(t_0, 3.0)) / ((t_1 * t_1) + ((t_0 * t_0) - (t_1 * t_0)));
    	} else {
    		tmp = sin((0.5 * ((double) M_PI)));
    	}
    	return tmp;
    }
    
    public static double code(double z0) {
    	double t_0 = Math.cos((Math.PI * 0.5)) * Math.sin(((-2.0 * Math.abs(z0)) * Math.PI));
    	double t_1 = (Math.sin((Math.PI * ((0.5 - Math.abs(z0)) - Math.abs(z0)))) + Math.cos(((Math.abs(z0) + Math.abs(z0)) * Math.PI))) * 0.5;
    	double tmp;
    	if (Math.abs(z0) <= 85000.0) {
    		tmp = (Math.pow(t_1, 3.0) + Math.pow(t_0, 3.0)) / ((t_1 * t_1) + ((t_0 * t_0) - (t_1 * t_0)));
    	} else {
    		tmp = Math.sin((0.5 * Math.PI));
    	}
    	return tmp;
    }
    
    def code(z0):
    	t_0 = math.cos((math.pi * 0.5)) * math.sin(((-2.0 * math.fabs(z0)) * math.pi))
    	t_1 = (math.sin((math.pi * ((0.5 - math.fabs(z0)) - math.fabs(z0)))) + math.cos(((math.fabs(z0) + math.fabs(z0)) * math.pi))) * 0.5
    	tmp = 0
    	if math.fabs(z0) <= 85000.0:
    		tmp = (math.pow(t_1, 3.0) + math.pow(t_0, 3.0)) / ((t_1 * t_1) + ((t_0 * t_0) - (t_1 * t_0)))
    	else:
    		tmp = math.sin((0.5 * math.pi))
    	return tmp
    
    function code(z0)
    	t_0 = Float64(cos(Float64(pi * 0.5)) * sin(Float64(Float64(-2.0 * abs(z0)) * pi)))
    	t_1 = Float64(Float64(sin(Float64(pi * Float64(Float64(0.5 - abs(z0)) - abs(z0)))) + cos(Float64(Float64(abs(z0) + abs(z0)) * pi))) * 0.5)
    	tmp = 0.0
    	if (abs(z0) <= 85000.0)
    		tmp = Float64(Float64((t_1 ^ 3.0) + (t_0 ^ 3.0)) / Float64(Float64(t_1 * t_1) + Float64(Float64(t_0 * t_0) - Float64(t_1 * t_0))));
    	else
    		tmp = sin(Float64(0.5 * pi));
    	end
    	return tmp
    end
    
    function tmp_2 = code(z0)
    	t_0 = cos((pi * 0.5)) * sin(((-2.0 * abs(z0)) * pi));
    	t_1 = (sin((pi * ((0.5 - abs(z0)) - abs(z0)))) + cos(((abs(z0) + abs(z0)) * pi))) * 0.5;
    	tmp = 0.0;
    	if (abs(z0) <= 85000.0)
    		tmp = ((t_1 ^ 3.0) + (t_0 ^ 3.0)) / ((t_1 * t_1) + ((t_0 * t_0) - (t_1 * t_0)));
    	else
    		tmp = sin((0.5 * pi));
    	end
    	tmp_2 = tmp;
    end
    
    code[z0_] := Block[{t$95$0 = N[(N[Cos[N[(Pi * 0.5), $MachinePrecision]], $MachinePrecision] * N[Sin[N[(N[(-2.0 * N[Abs[z0], $MachinePrecision]), $MachinePrecision] * Pi), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]}, Block[{t$95$1 = N[(N[(N[Sin[N[(Pi * N[(N[(0.5 - N[Abs[z0], $MachinePrecision]), $MachinePrecision] - N[Abs[z0], $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision] + N[Cos[N[(N[(N[Abs[z0], $MachinePrecision] + N[Abs[z0], $MachinePrecision]), $MachinePrecision] * Pi), $MachinePrecision]], $MachinePrecision]), $MachinePrecision] * 0.5), $MachinePrecision]}, If[LessEqual[N[Abs[z0], $MachinePrecision], 85000.0], N[(N[(N[Power[t$95$1, 3.0], $MachinePrecision] + N[Power[t$95$0, 3.0], $MachinePrecision]), $MachinePrecision] / N[(N[(t$95$1 * t$95$1), $MachinePrecision] + N[(N[(t$95$0 * t$95$0), $MachinePrecision] - N[(t$95$1 * t$95$0), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[Sin[N[(0.5 * Pi), $MachinePrecision]], $MachinePrecision]]]]
    
    \begin{array}{l}
    t_0 := \cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot \left|z0\right|\right) \cdot \pi\right)\\
    t_1 := \left(\sin \left(\pi \cdot \left(\left(0.5 - \left|z0\right|\right) - \left|z0\right|\right)\right) + \cos \left(\left(\left|z0\right| + \left|z0\right|\right) \cdot \pi\right)\right) \cdot 0.5\\
    \mathbf{if}\;\left|z0\right| \leq 85000:\\
    \;\;\;\;\frac{{t\_1}^{3} + {t\_0}^{3}}{t\_1 \cdot t\_1 + \left(t\_0 \cdot t\_0 - t\_1 \cdot t\_0\right)}\\
    
    \mathbf{else}:\\
    \;\;\;\;\sin \left(0.5 \cdot \pi\right)\\
    
    
    \end{array}
    
    Derivation
    1. Split input into 2 regimes
    2. if z0 < 85000

      1. Initial program 57.5%

        \[\sin \left(\left(0.5 - \left(z0 + z0\right)\right) \cdot \pi\right) \]
      2. Step-by-step derivation
        1. lift-sin.f64N/A

          \[\leadsto \color{blue}{\sin \left(\left(\frac{1}{2} - \left(z0 + z0\right)\right) \cdot \pi\right)} \]
        2. lift-*.f64N/A

          \[\leadsto \sin \color{blue}{\left(\left(\frac{1}{2} - \left(z0 + z0\right)\right) \cdot \pi\right)} \]
        3. *-commutativeN/A

          \[\leadsto \sin \color{blue}{\left(\pi \cdot \left(\frac{1}{2} - \left(z0 + z0\right)\right)\right)} \]
        4. lift--.f64N/A

          \[\leadsto \sin \left(\pi \cdot \color{blue}{\left(\frac{1}{2} - \left(z0 + z0\right)\right)}\right) \]
        5. sub-flipN/A

          \[\leadsto \sin \left(\pi \cdot \color{blue}{\left(\frac{1}{2} + \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)}\right) \]
        6. distribute-lft-inN/A

          \[\leadsto \sin \color{blue}{\left(\pi \cdot \frac{1}{2} + \pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)} \]
        7. sin-sumN/A

          \[\leadsto \color{blue}{\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right) + \cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)} \]
        8. flip3-+N/A

          \[\leadsto \color{blue}{\frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right)\right)}} \]
      3. Applied rewrites57.5%

        \[\leadsto \color{blue}{\frac{{\left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)}} \]
      4. Step-by-step derivation
        1. lift-*.f64N/A

          \[\leadsto \frac{{\color{blue}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
        2. lift-sin.f64N/A

          \[\leadsto \frac{{\left(\color{blue}{\sin \left(\pi \cdot \frac{1}{2}\right)} \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
        3. lift-cos.f64N/A

          \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \color{blue}{\cos \left(\pi \cdot \left(z0 + z0\right)\right)}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
        4. sin-cos-multN/A

          \[\leadsto \frac{{\color{blue}{\left(\frac{\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)}{2}\right)}}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
        5. mult-flipN/A

          \[\leadsto \frac{{\color{blue}{\left(\left(\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)\right) \cdot \frac{1}{2}\right)}}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
        6. metadata-evalN/A

          \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{\frac{1}{2}}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
        7. lower-*.f64N/A

          \[\leadsto \frac{{\color{blue}{\left(\left(\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)\right) \cdot \frac{1}{2}\right)}}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      5. Applied rewrites56.5%

        \[\leadsto \frac{{\color{blue}{\left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right)}}^{3} + {\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      6. Step-by-step derivation
        1. lift-*.f64N/A

          \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\color{blue}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)} \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
        2. lift-sin.f64N/A

          \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\color{blue}{\sin \left(\pi \cdot \frac{1}{2}\right)} \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
        3. lift-cos.f64N/A

          \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \color{blue}{\cos \left(\pi \cdot \left(z0 + z0\right)\right)}\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
        4. sin-cos-multN/A

          \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\color{blue}{\frac{\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)}{2}} \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
        5. mult-flipN/A

          \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\color{blue}{\left(\left(\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)\right) \cdot \frac{1}{2}\right)} \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
        6. metadata-evalN/A

          \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{\frac{1}{2}}\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
        7. lower-*.f64N/A

          \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\color{blue}{\left(\left(\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)\right) \cdot \frac{1}{2}\right)} \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      7. Applied rewrites56.8%

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right)}^{3} + {\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\color{blue}{\left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right)} \cdot \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      8. Step-by-step derivation
        1. lift-*.f64N/A

          \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \color{blue}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)} + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
        2. lift-sin.f64N/A

          \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\color{blue}{\sin \left(\pi \cdot \frac{1}{2}\right)} \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
        3. lift-cos.f64N/A

          \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \color{blue}{\cos \left(\pi \cdot \left(z0 + z0\right)\right)}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
        4. sin-cos-multN/A

          \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \color{blue}{\frac{\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)}{2}} + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
        5. mult-flipN/A

          \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \color{blue}{\left(\left(\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)\right) \cdot \frac{1}{2}\right)} + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
        6. metadata-evalN/A

          \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{\frac{1}{2}}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
        7. lower-*.f64N/A

          \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \color{blue}{\left(\left(\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)\right) \cdot \frac{1}{2}\right)} + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      9. Applied rewrites56.8%

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right)}^{3} + {\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right) \cdot \color{blue}{\left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right)} + \left(\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      10. Step-by-step derivation
        1. lift-*.f64N/A

          \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \color{blue}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)} \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
        2. lift-sin.f64N/A

          \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\color{blue}{\sin \left(\pi \cdot \frac{1}{2}\right)} \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
        3. lift-cos.f64N/A

          \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \color{blue}{\cos \left(\pi \cdot \left(z0 + z0\right)\right)}\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
        4. sin-cos-multN/A

          \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \color{blue}{\frac{\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)}{2}} \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
        5. mult-flipN/A

          \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \color{blue}{\left(\left(\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)\right) \cdot \frac{1}{2}\right)} \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
        6. metadata-evalN/A

          \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\left(\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{\frac{1}{2}}\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
        7. lower-*.f64N/A

          \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \color{blue}{\left(\left(\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)\right) \cdot \frac{1}{2}\right)} \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
      11. Applied rewrites56.8%

        \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right)}^{3} + {\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right) + \left(\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \color{blue}{\left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right)} \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]

      if 85000 < z0

      1. Initial program 57.5%

        \[\sin \left(\left(0.5 - \left(z0 + z0\right)\right) \cdot \pi\right) \]
      2. Taylor expanded in z0 around 0

        \[\leadsto \sin \left(\color{blue}{\frac{1}{2}} \cdot \pi\right) \]
      3. Step-by-step derivation
        1. Applied rewrites97.2%

          \[\leadsto \sin \left(\color{blue}{0.5} \cdot \pi\right) \]
      4. Recombined 2 regimes into one program.
      5. Add Preprocessing

      Alternative 3: 98.5% accurate, 0.2× speedup?

      \[\begin{array}{l} t_0 := \left|z0\right| + \left|z0\right|\\ t_1 := t\_0 \cdot \pi\\ \mathbf{if}\;\left|z0\right| \leq 85000:\\ \;\;\;\;\frac{\left(\sin \left(\left(\left(0.5 - \left|z0\right|\right) - \left|z0\right|\right) \cdot \pi\right) + \sin \left(\pi \cdot \left(0.5 + t\_0\right)\right)\right) + \left(\cos t\_1 + \sin \left(-\left(t\_1 + 0.5 \cdot \pi\right)\right)\right)}{2}\\ \mathbf{else}:\\ \;\;\;\;\sin \left(0.5 \cdot \pi\right)\\ \end{array} \]
      (FPCore (z0)
        :precision binary64
        (let* ((t_0 (+ (fabs z0) (fabs z0))) (t_1 (* t_0 PI)))
        (if (<= (fabs z0) 85000.0)
          (/
           (+
            (+
             (sin (* (- (- 0.5 (fabs z0)) (fabs z0)) PI))
             (sin (* PI (+ 0.5 t_0))))
            (+ (cos t_1) (sin (- (+ t_1 (* 0.5 PI))))))
           2.0)
          (sin (* 0.5 PI)))))
      double code(double z0) {
      	double t_0 = fabs(z0) + fabs(z0);
      	double t_1 = t_0 * ((double) M_PI);
      	double tmp;
      	if (fabs(z0) <= 85000.0) {
      		tmp = ((sin((((0.5 - fabs(z0)) - fabs(z0)) * ((double) M_PI))) + sin((((double) M_PI) * (0.5 + t_0)))) + (cos(t_1) + sin(-(t_1 + (0.5 * ((double) M_PI)))))) / 2.0;
      	} else {
      		tmp = sin((0.5 * ((double) M_PI)));
      	}
      	return tmp;
      }
      
      public static double code(double z0) {
      	double t_0 = Math.abs(z0) + Math.abs(z0);
      	double t_1 = t_0 * Math.PI;
      	double tmp;
      	if (Math.abs(z0) <= 85000.0) {
      		tmp = ((Math.sin((((0.5 - Math.abs(z0)) - Math.abs(z0)) * Math.PI)) + Math.sin((Math.PI * (0.5 + t_0)))) + (Math.cos(t_1) + Math.sin(-(t_1 + (0.5 * Math.PI))))) / 2.0;
      	} else {
      		tmp = Math.sin((0.5 * Math.PI));
      	}
      	return tmp;
      }
      
      def code(z0):
      	t_0 = math.fabs(z0) + math.fabs(z0)
      	t_1 = t_0 * math.pi
      	tmp = 0
      	if math.fabs(z0) <= 85000.0:
      		tmp = ((math.sin((((0.5 - math.fabs(z0)) - math.fabs(z0)) * math.pi)) + math.sin((math.pi * (0.5 + t_0)))) + (math.cos(t_1) + math.sin(-(t_1 + (0.5 * math.pi))))) / 2.0
      	else:
      		tmp = math.sin((0.5 * math.pi))
      	return tmp
      
      function code(z0)
      	t_0 = Float64(abs(z0) + abs(z0))
      	t_1 = Float64(t_0 * pi)
      	tmp = 0.0
      	if (abs(z0) <= 85000.0)
      		tmp = Float64(Float64(Float64(sin(Float64(Float64(Float64(0.5 - abs(z0)) - abs(z0)) * pi)) + sin(Float64(pi * Float64(0.5 + t_0)))) + Float64(cos(t_1) + sin(Float64(-Float64(t_1 + Float64(0.5 * pi)))))) / 2.0);
      	else
      		tmp = sin(Float64(0.5 * pi));
      	end
      	return tmp
      end
      
      function tmp_2 = code(z0)
      	t_0 = abs(z0) + abs(z0);
      	t_1 = t_0 * pi;
      	tmp = 0.0;
      	if (abs(z0) <= 85000.0)
      		tmp = ((sin((((0.5 - abs(z0)) - abs(z0)) * pi)) + sin((pi * (0.5 + t_0)))) + (cos(t_1) + sin(-(t_1 + (0.5 * pi))))) / 2.0;
      	else
      		tmp = sin((0.5 * pi));
      	end
      	tmp_2 = tmp;
      end
      
      code[z0_] := Block[{t$95$0 = N[(N[Abs[z0], $MachinePrecision] + N[Abs[z0], $MachinePrecision]), $MachinePrecision]}, Block[{t$95$1 = N[(t$95$0 * Pi), $MachinePrecision]}, If[LessEqual[N[Abs[z0], $MachinePrecision], 85000.0], N[(N[(N[(N[Sin[N[(N[(N[(0.5 - N[Abs[z0], $MachinePrecision]), $MachinePrecision] - N[Abs[z0], $MachinePrecision]), $MachinePrecision] * Pi), $MachinePrecision]], $MachinePrecision] + N[Sin[N[(Pi * N[(0.5 + t$95$0), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision] + N[(N[Cos[t$95$1], $MachinePrecision] + N[Sin[(-N[(t$95$1 + N[(0.5 * Pi), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / 2.0), $MachinePrecision], N[Sin[N[(0.5 * Pi), $MachinePrecision]], $MachinePrecision]]]]
      
      \begin{array}{l}
      t_0 := \left|z0\right| + \left|z0\right|\\
      t_1 := t\_0 \cdot \pi\\
      \mathbf{if}\;\left|z0\right| \leq 85000:\\
      \;\;\;\;\frac{\left(\sin \left(\left(\left(0.5 - \left|z0\right|\right) - \left|z0\right|\right) \cdot \pi\right) + \sin \left(\pi \cdot \left(0.5 + t\_0\right)\right)\right) + \left(\cos t\_1 + \sin \left(-\left(t\_1 + 0.5 \cdot \pi\right)\right)\right)}{2}\\
      
      \mathbf{else}:\\
      \;\;\;\;\sin \left(0.5 \cdot \pi\right)\\
      
      
      \end{array}
      
      Derivation
      1. Split input into 2 regimes
      2. if z0 < 85000

        1. Initial program 57.5%

          \[\sin \left(\left(0.5 - \left(z0 + z0\right)\right) \cdot \pi\right) \]
        2. Step-by-step derivation
          1. lift-sin.f64N/A

            \[\leadsto \color{blue}{\sin \left(\left(\frac{1}{2} - \left(z0 + z0\right)\right) \cdot \pi\right)} \]
          2. lift-*.f64N/A

            \[\leadsto \sin \color{blue}{\left(\left(\frac{1}{2} - \left(z0 + z0\right)\right) \cdot \pi\right)} \]
          3. *-commutativeN/A

            \[\leadsto \sin \color{blue}{\left(\pi \cdot \left(\frac{1}{2} - \left(z0 + z0\right)\right)\right)} \]
          4. lift--.f64N/A

            \[\leadsto \sin \left(\pi \cdot \color{blue}{\left(\frac{1}{2} - \left(z0 + z0\right)\right)}\right) \]
          5. sub-flipN/A

            \[\leadsto \sin \left(\pi \cdot \color{blue}{\left(\frac{1}{2} + \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)}\right) \]
          6. distribute-lft-inN/A

            \[\leadsto \sin \color{blue}{\left(\pi \cdot \frac{1}{2} + \pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)} \]
          7. sin-sumN/A

            \[\leadsto \color{blue}{\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right) + \cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)} \]
          8. flip3-+N/A

            \[\leadsto \color{blue}{\frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right)\right)}} \]
        3. Applied rewrites57.5%

          \[\leadsto \color{blue}{\frac{{\left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)}} \]
        4. Step-by-step derivation
          1. lift-*.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\color{blue}{\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          2. *-commutativeN/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\color{blue}{\left(\sin \left(\left(-2 \cdot z0\right) \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)}}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          3. lift-sin.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\color{blue}{\sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)} \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          4. lift-*.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\sin \color{blue}{\left(\left(-2 \cdot z0\right) \cdot \pi\right)} \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          5. lift-*.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\sin \left(\color{blue}{\left(-2 \cdot z0\right)} \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          6. metadata-evalN/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\sin \left(\left(\color{blue}{\left(\mathsf{neg}\left(2\right)\right)} \cdot z0\right) \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          7. distribute-lft-neg-outN/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\sin \left(\color{blue}{\left(\mathsf{neg}\left(2 \cdot z0\right)\right)} \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          8. count-2N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(z0 + z0\right)}\right)\right) \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          9. lift-+.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(z0 + z0\right)}\right)\right) \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          10. distribute-lft-neg-inN/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\sin \color{blue}{\left(\mathsf{neg}\left(\left(z0 + z0\right) \cdot \pi\right)\right)} \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          11. *-commutativeN/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\sin \left(\mathsf{neg}\left(\color{blue}{\pi \cdot \left(z0 + z0\right)}\right)\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          12. lift-*.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\sin \left(\mathsf{neg}\left(\color{blue}{\pi \cdot \left(z0 + z0\right)}\right)\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          13. lift-cos.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{\cos \left(\pi \cdot \frac{1}{2}\right)}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          14. lift-*.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \cos \color{blue}{\left(\pi \cdot \frac{1}{2}\right)}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          15. metadata-evalN/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \cos \left(\pi \cdot \color{blue}{\frac{1}{2}}\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          16. mult-flipN/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \cos \color{blue}{\left(\frac{\pi}{2}\right)}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          17. lift-PI.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \cos \left(\frac{\color{blue}{\mathsf{PI}\left(\right)}}{2}\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          18. cos-PI/2N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{0}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          19. sin-PIN/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{\sin \mathsf{PI}\left(\right)}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          20. lift-PI.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \sin \color{blue}{\pi}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
        5. Applied rewrites57.5%

          \[\leadsto \frac{{\left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\color{blue}{\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}}^{3}}{\left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
        6. Step-by-step derivation
          1. lift-*.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\color{blue}{\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)} \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          2. *-commutativeN/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\color{blue}{\left(\sin \left(\left(-2 \cdot z0\right) \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)} \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          3. lift-sin.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\color{blue}{\sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)} \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          4. lift-*.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\sin \color{blue}{\left(\left(-2 \cdot z0\right) \cdot \pi\right)} \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          5. lift-*.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\sin \left(\color{blue}{\left(-2 \cdot z0\right)} \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          6. metadata-evalN/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\sin \left(\left(\color{blue}{\left(\mathsf{neg}\left(2\right)\right)} \cdot z0\right) \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          7. distribute-lft-neg-outN/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\sin \left(\color{blue}{\left(\mathsf{neg}\left(2 \cdot z0\right)\right)} \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          8. count-2N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(z0 + z0\right)}\right)\right) \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          9. lift-+.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(z0 + z0\right)}\right)\right) \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          10. distribute-lft-neg-inN/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\sin \color{blue}{\left(\mathsf{neg}\left(\left(z0 + z0\right) \cdot \pi\right)\right)} \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          11. *-commutativeN/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\sin \left(\mathsf{neg}\left(\color{blue}{\pi \cdot \left(z0 + z0\right)}\right)\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          12. lift-*.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\sin \left(\mathsf{neg}\left(\color{blue}{\pi \cdot \left(z0 + z0\right)}\right)\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          13. lift-cos.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{\cos \left(\pi \cdot \frac{1}{2}\right)}\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          14. lift-*.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \cos \color{blue}{\left(\pi \cdot \frac{1}{2}\right)}\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          15. metadata-evalN/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \cos \left(\pi \cdot \color{blue}{\frac{1}{2}}\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          16. mult-flipN/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \cos \color{blue}{\left(\frac{\pi}{2}\right)}\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          17. lift-PI.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \cos \left(\frac{\color{blue}{\mathsf{PI}\left(\right)}}{2}\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          18. cos-PI/2N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{0}\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          19. sin-PIN/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{\sin \mathsf{PI}\left(\right)}\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          20. lift-PI.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \sin \color{blue}{\pi}\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
        7. Applied rewrites57.5%

          \[\leadsto \frac{{\left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\color{blue}{\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}} \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
        8. Step-by-step derivation
          1. lift-*.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \color{blue}{\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          2. *-commutativeN/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \color{blue}{\left(\sin \left(\left(-2 \cdot z0\right) \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          3. lift-sin.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \left(\color{blue}{\sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)} \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          4. lift-*.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \left(\sin \color{blue}{\left(\left(-2 \cdot z0\right) \cdot \pi\right)} \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          5. lift-*.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \left(\sin \left(\color{blue}{\left(-2 \cdot z0\right)} \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          6. metadata-evalN/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \left(\sin \left(\left(\color{blue}{\left(\mathsf{neg}\left(2\right)\right)} \cdot z0\right) \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          7. distribute-lft-neg-outN/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \left(\sin \left(\color{blue}{\left(\mathsf{neg}\left(2 \cdot z0\right)\right)} \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          8. count-2N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \left(\sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(z0 + z0\right)}\right)\right) \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          9. lift-+.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \left(\sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(z0 + z0\right)}\right)\right) \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          10. distribute-lft-neg-inN/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \left(\sin \color{blue}{\left(\mathsf{neg}\left(\left(z0 + z0\right) \cdot \pi\right)\right)} \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          11. *-commutativeN/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \left(\sin \left(\mathsf{neg}\left(\color{blue}{\pi \cdot \left(z0 + z0\right)}\right)\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          12. lift-*.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \left(\sin \left(\mathsf{neg}\left(\color{blue}{\pi \cdot \left(z0 + z0\right)}\right)\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          13. lift-cos.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{\cos \left(\pi \cdot \frac{1}{2}\right)}\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          14. lift-*.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \cos \color{blue}{\left(\pi \cdot \frac{1}{2}\right)}\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          15. metadata-evalN/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \cos \left(\pi \cdot \color{blue}{\frac{1}{2}}\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          16. mult-flipN/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \cos \color{blue}{\left(\frac{\pi}{2}\right)}\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          17. lift-PI.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \cos \left(\frac{\color{blue}{\mathsf{PI}\left(\right)}}{2}\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          18. cos-PI/2N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{0}\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          19. sin-PIN/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{\sin \mathsf{PI}\left(\right)}\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          20. lift-PI.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \sin \color{blue}{\pi}\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
        9. Applied rewrites57.5%

          \[\leadsto \frac{{\left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \color{blue}{\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}} - \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
        10. Step-by-step derivation
          1. lift-*.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}\right)} \]
          2. *-commutativeN/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{\left(\sin \left(\left(-2 \cdot z0\right) \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)}\right)} \]
          3. lift-sin.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\color{blue}{\sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)} \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)\right)} \]
          4. lift-*.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \color{blue}{\left(\left(-2 \cdot z0\right) \cdot \pi\right)} \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)\right)} \]
          5. lift-*.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\color{blue}{\left(-2 \cdot z0\right)} \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)\right)} \]
          6. metadata-evalN/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\left(\color{blue}{\left(\mathsf{neg}\left(2\right)\right)} \cdot z0\right) \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)\right)} \]
          7. distribute-lft-neg-outN/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\color{blue}{\left(\mathsf{neg}\left(2 \cdot z0\right)\right)} \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)\right)} \]
          8. count-2N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(z0 + z0\right)}\right)\right) \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)\right)} \]
          9. lift-+.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(z0 + z0\right)}\right)\right) \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)\right)} \]
          10. distribute-lft-neg-inN/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \color{blue}{\left(\mathsf{neg}\left(\left(z0 + z0\right) \cdot \pi\right)\right)} \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)\right)} \]
          11. *-commutativeN/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\mathsf{neg}\left(\color{blue}{\pi \cdot \left(z0 + z0\right)}\right)\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)\right)} \]
          12. lift-*.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\mathsf{neg}\left(\color{blue}{\pi \cdot \left(z0 + z0\right)}\right)\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)\right)} \]
          13. lift-cos.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{\cos \left(\pi \cdot \frac{1}{2}\right)}\right)\right)} \]
          14. lift-*.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \cos \color{blue}{\left(\pi \cdot \frac{1}{2}\right)}\right)\right)} \]
          15. metadata-evalN/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \cos \left(\pi \cdot \color{blue}{\frac{1}{2}}\right)\right)\right)} \]
          16. mult-flipN/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \cos \color{blue}{\left(\frac{\pi}{2}\right)}\right)\right)} \]
          17. lift-PI.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \cos \left(\frac{\color{blue}{\mathsf{PI}\left(\right)}}{2}\right)\right)\right)} \]
          18. cos-PI/2N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{0}\right)\right)} \]
          19. sin-PIN/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{\sin \mathsf{PI}\left(\right)}\right)\right)} \]
          20. lift-PI.f64N/A

            \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \sin \color{blue}{\pi}\right)\right)} \]
        11. Applied rewrites57.5%

          \[\leadsto \frac{{\left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}}\right)} \]
        12. Applied rewrites53.6%

          \[\leadsto \color{blue}{\frac{\left(\sin \left(\left(\left(0.5 - z0\right) - z0\right) \cdot \pi\right) + \sin \left(\pi \cdot \left(0.5 + \left(z0 + z0\right)\right)\right)\right) + \left(\cos \left(\left(z0 + z0\right) \cdot \pi\right) + \left(-\cos \left(\left(z0 + z0\right) \cdot \pi\right)\right)\right)}{2}} \]
        13. Step-by-step derivation
          1. lift-neg.f64N/A

            \[\leadsto \frac{\left(\sin \left(\left(\left(\frac{1}{2} - z0\right) - z0\right) \cdot \pi\right) + \sin \left(\pi \cdot \left(\frac{1}{2} + \left(z0 + z0\right)\right)\right)\right) + \left(\cos \left(\left(z0 + z0\right) \cdot \pi\right) + \color{blue}{\left(\mathsf{neg}\left(\cos \left(\left(z0 + z0\right) \cdot \pi\right)\right)\right)}\right)}{2} \]
          2. lift-cos.f64N/A

            \[\leadsto \frac{\left(\sin \left(\left(\left(\frac{1}{2} - z0\right) - z0\right) \cdot \pi\right) + \sin \left(\pi \cdot \left(\frac{1}{2} + \left(z0 + z0\right)\right)\right)\right) + \left(\cos \left(\left(z0 + z0\right) \cdot \pi\right) + \left(\mathsf{neg}\left(\color{blue}{\cos \left(\left(z0 + z0\right) \cdot \pi\right)}\right)\right)\right)}{2} \]
          3. sin-+PI/2-revN/A

            \[\leadsto \frac{\left(\sin \left(\left(\left(\frac{1}{2} - z0\right) - z0\right) \cdot \pi\right) + \sin \left(\pi \cdot \left(\frac{1}{2} + \left(z0 + z0\right)\right)\right)\right) + \left(\cos \left(\left(z0 + z0\right) \cdot \pi\right) + \left(\mathsf{neg}\left(\color{blue}{\sin \left(\left(z0 + z0\right) \cdot \pi + \frac{\mathsf{PI}\left(\right)}{2}\right)}\right)\right)\right)}{2} \]
          4. sin-neg-revN/A

            \[\leadsto \frac{\left(\sin \left(\left(\left(\frac{1}{2} - z0\right) - z0\right) \cdot \pi\right) + \sin \left(\pi \cdot \left(\frac{1}{2} + \left(z0 + z0\right)\right)\right)\right) + \left(\cos \left(\left(z0 + z0\right) \cdot \pi\right) + \color{blue}{\sin \left(\mathsf{neg}\left(\left(\left(z0 + z0\right) \cdot \pi + \frac{\mathsf{PI}\left(\right)}{2}\right)\right)\right)}\right)}{2} \]
          5. lower-sin.f64N/A

            \[\leadsto \frac{\left(\sin \left(\left(\left(\frac{1}{2} - z0\right) - z0\right) \cdot \pi\right) + \sin \left(\pi \cdot \left(\frac{1}{2} + \left(z0 + z0\right)\right)\right)\right) + \left(\cos \left(\left(z0 + z0\right) \cdot \pi\right) + \color{blue}{\sin \left(\mathsf{neg}\left(\left(\left(z0 + z0\right) \cdot \pi + \frac{\mathsf{PI}\left(\right)}{2}\right)\right)\right)}\right)}{2} \]
          6. lower-neg.f64N/A

            \[\leadsto \frac{\left(\sin \left(\left(\left(\frac{1}{2} - z0\right) - z0\right) \cdot \pi\right) + \sin \left(\pi \cdot \left(\frac{1}{2} + \left(z0 + z0\right)\right)\right)\right) + \left(\cos \left(\left(z0 + z0\right) \cdot \pi\right) + \sin \color{blue}{\left(-\left(\left(z0 + z0\right) \cdot \pi + \frac{\mathsf{PI}\left(\right)}{2}\right)\right)}\right)}{2} \]
          7. lift-PI.f64N/A

            \[\leadsto \frac{\left(\sin \left(\left(\left(\frac{1}{2} - z0\right) - z0\right) \cdot \pi\right) + \sin \left(\pi \cdot \left(\frac{1}{2} + \left(z0 + z0\right)\right)\right)\right) + \left(\cos \left(\left(z0 + z0\right) \cdot \pi\right) + \sin \left(-\left(\left(z0 + z0\right) \cdot \pi + \frac{\color{blue}{\pi}}{2}\right)\right)\right)}{2} \]
          8. mult-flip-revN/A

            \[\leadsto \frac{\left(\sin \left(\left(\left(\frac{1}{2} - z0\right) - z0\right) \cdot \pi\right) + \sin \left(\pi \cdot \left(\frac{1}{2} + \left(z0 + z0\right)\right)\right)\right) + \left(\cos \left(\left(z0 + z0\right) \cdot \pi\right) + \sin \left(-\left(\left(z0 + z0\right) \cdot \pi + \color{blue}{\pi \cdot \frac{1}{2}}\right)\right)\right)}{2} \]
          9. metadata-evalN/A

            \[\leadsto \frac{\left(\sin \left(\left(\left(\frac{1}{2} - z0\right) - z0\right) \cdot \pi\right) + \sin \left(\pi \cdot \left(\frac{1}{2} + \left(z0 + z0\right)\right)\right)\right) + \left(\cos \left(\left(z0 + z0\right) \cdot \pi\right) + \sin \left(-\left(\left(z0 + z0\right) \cdot \pi + \pi \cdot \color{blue}{\frac{1}{2}}\right)\right)\right)}{2} \]
          10. lift-*.f64N/A

            \[\leadsto \frac{\left(\sin \left(\left(\left(\frac{1}{2} - z0\right) - z0\right) \cdot \pi\right) + \sin \left(\pi \cdot \left(\frac{1}{2} + \left(z0 + z0\right)\right)\right)\right) + \left(\cos \left(\left(z0 + z0\right) \cdot \pi\right) + \sin \left(-\left(\left(z0 + z0\right) \cdot \pi + \color{blue}{\pi \cdot \frac{1}{2}}\right)\right)\right)}{2} \]
          11. lower-+.f6456.8%

            \[\leadsto \frac{\left(\sin \left(\left(\left(0.5 - z0\right) - z0\right) \cdot \pi\right) + \sin \left(\pi \cdot \left(0.5 + \left(z0 + z0\right)\right)\right)\right) + \left(\cos \left(\left(z0 + z0\right) \cdot \pi\right) + \sin \left(-\color{blue}{\left(\left(z0 + z0\right) \cdot \pi + \pi \cdot 0.5\right)}\right)\right)}{2} \]
          12. lift-*.f64N/A

            \[\leadsto \frac{\left(\sin \left(\left(\left(\frac{1}{2} - z0\right) - z0\right) \cdot \pi\right) + \sin \left(\pi \cdot \left(\frac{1}{2} + \left(z0 + z0\right)\right)\right)\right) + \left(\cos \left(\left(z0 + z0\right) \cdot \pi\right) + \sin \left(-\left(\left(z0 + z0\right) \cdot \pi + \color{blue}{\pi \cdot \frac{1}{2}}\right)\right)\right)}{2} \]
          13. *-commutativeN/A

            \[\leadsto \frac{\left(\sin \left(\left(\left(\frac{1}{2} - z0\right) - z0\right) \cdot \pi\right) + \sin \left(\pi \cdot \left(\frac{1}{2} + \left(z0 + z0\right)\right)\right)\right) + \left(\cos \left(\left(z0 + z0\right) \cdot \pi\right) + \sin \left(-\left(\left(z0 + z0\right) \cdot \pi + \color{blue}{\frac{1}{2} \cdot \pi}\right)\right)\right)}{2} \]
          14. lower-*.f6456.8%

            \[\leadsto \frac{\left(\sin \left(\left(\left(0.5 - z0\right) - z0\right) \cdot \pi\right) + \sin \left(\pi \cdot \left(0.5 + \left(z0 + z0\right)\right)\right)\right) + \left(\cos \left(\left(z0 + z0\right) \cdot \pi\right) + \sin \left(-\left(\left(z0 + z0\right) \cdot \pi + \color{blue}{0.5 \cdot \pi}\right)\right)\right)}{2} \]
        14. Applied rewrites56.8%

          \[\leadsto \frac{\left(\sin \left(\left(\left(0.5 - z0\right) - z0\right) \cdot \pi\right) + \sin \left(\pi \cdot \left(0.5 + \left(z0 + z0\right)\right)\right)\right) + \left(\cos \left(\left(z0 + z0\right) \cdot \pi\right) + \color{blue}{\sin \left(-\left(\left(z0 + z0\right) \cdot \pi + 0.5 \cdot \pi\right)\right)}\right)}{2} \]

        if 85000 < z0

        1. Initial program 57.5%

          \[\sin \left(\left(0.5 - \left(z0 + z0\right)\right) \cdot \pi\right) \]
        2. Taylor expanded in z0 around 0

          \[\leadsto \sin \left(\color{blue}{\frac{1}{2}} \cdot \pi\right) \]
        3. Step-by-step derivation
          1. Applied rewrites97.2%

            \[\leadsto \sin \left(\color{blue}{0.5} \cdot \pi\right) \]
        4. Recombined 2 regimes into one program.
        5. Add Preprocessing

        Alternative 4: 98.5% accurate, 0.2× speedup?

        \[\begin{array}{l} t_0 := \left|z0\right| + \left|z0\right|\\ \mathbf{if}\;\left|z0\right| \leq 85000:\\ \;\;\;\;\left(\sin \left(\left(\left(0.5 - \left|z0\right|\right) - \left|z0\right|\right) \cdot \pi\right) + \cos \left(t\_0 \cdot \pi\right)\right) \cdot 0.5 - \sin \left(\left(-\pi\right) \cdot t\_0\right) \cdot \cos \left(-0.5 \cdot \pi\right)\\ \mathbf{else}:\\ \;\;\;\;\sin \left(0.5 \cdot \pi\right)\\ \end{array} \]
        (FPCore (z0)
          :precision binary64
          (let* ((t_0 (+ (fabs z0) (fabs z0))))
          (if (<= (fabs z0) 85000.0)
            (-
             (*
              (+
               (sin (* (- (- 0.5 (fabs z0)) (fabs z0)) PI))
               (cos (* t_0 PI)))
              0.5)
             (* (sin (* (- PI) t_0)) (cos (* -0.5 PI))))
            (sin (* 0.5 PI)))))
        double code(double z0) {
        	double t_0 = fabs(z0) + fabs(z0);
        	double tmp;
        	if (fabs(z0) <= 85000.0) {
        		tmp = ((sin((((0.5 - fabs(z0)) - fabs(z0)) * ((double) M_PI))) + cos((t_0 * ((double) M_PI)))) * 0.5) - (sin((-((double) M_PI) * t_0)) * cos((-0.5 * ((double) M_PI))));
        	} else {
        		tmp = sin((0.5 * ((double) M_PI)));
        	}
        	return tmp;
        }
        
        public static double code(double z0) {
        	double t_0 = Math.abs(z0) + Math.abs(z0);
        	double tmp;
        	if (Math.abs(z0) <= 85000.0) {
        		tmp = ((Math.sin((((0.5 - Math.abs(z0)) - Math.abs(z0)) * Math.PI)) + Math.cos((t_0 * Math.PI))) * 0.5) - (Math.sin((-Math.PI * t_0)) * Math.cos((-0.5 * Math.PI)));
        	} else {
        		tmp = Math.sin((0.5 * Math.PI));
        	}
        	return tmp;
        }
        
        def code(z0):
        	t_0 = math.fabs(z0) + math.fabs(z0)
        	tmp = 0
        	if math.fabs(z0) <= 85000.0:
        		tmp = ((math.sin((((0.5 - math.fabs(z0)) - math.fabs(z0)) * math.pi)) + math.cos((t_0 * math.pi))) * 0.5) - (math.sin((-math.pi * t_0)) * math.cos((-0.5 * math.pi)))
        	else:
        		tmp = math.sin((0.5 * math.pi))
        	return tmp
        
        function code(z0)
        	t_0 = Float64(abs(z0) + abs(z0))
        	tmp = 0.0
        	if (abs(z0) <= 85000.0)
        		tmp = Float64(Float64(Float64(sin(Float64(Float64(Float64(0.5 - abs(z0)) - abs(z0)) * pi)) + cos(Float64(t_0 * pi))) * 0.5) - Float64(sin(Float64(Float64(-pi) * t_0)) * cos(Float64(-0.5 * pi))));
        	else
        		tmp = sin(Float64(0.5 * pi));
        	end
        	return tmp
        end
        
        function tmp_2 = code(z0)
        	t_0 = abs(z0) + abs(z0);
        	tmp = 0.0;
        	if (abs(z0) <= 85000.0)
        		tmp = ((sin((((0.5 - abs(z0)) - abs(z0)) * pi)) + cos((t_0 * pi))) * 0.5) - (sin((-pi * t_0)) * cos((-0.5 * pi)));
        	else
        		tmp = sin((0.5 * pi));
        	end
        	tmp_2 = tmp;
        end
        
        code[z0_] := Block[{t$95$0 = N[(N[Abs[z0], $MachinePrecision] + N[Abs[z0], $MachinePrecision]), $MachinePrecision]}, If[LessEqual[N[Abs[z0], $MachinePrecision], 85000.0], N[(N[(N[(N[Sin[N[(N[(N[(0.5 - N[Abs[z0], $MachinePrecision]), $MachinePrecision] - N[Abs[z0], $MachinePrecision]), $MachinePrecision] * Pi), $MachinePrecision]], $MachinePrecision] + N[Cos[N[(t$95$0 * Pi), $MachinePrecision]], $MachinePrecision]), $MachinePrecision] * 0.5), $MachinePrecision] - N[(N[Sin[N[((-Pi) * t$95$0), $MachinePrecision]], $MachinePrecision] * N[Cos[N[(-0.5 * Pi), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[Sin[N[(0.5 * Pi), $MachinePrecision]], $MachinePrecision]]]
        
        \begin{array}{l}
        t_0 := \left|z0\right| + \left|z0\right|\\
        \mathbf{if}\;\left|z0\right| \leq 85000:\\
        \;\;\;\;\left(\sin \left(\left(\left(0.5 - \left|z0\right|\right) - \left|z0\right|\right) \cdot \pi\right) + \cos \left(t\_0 \cdot \pi\right)\right) \cdot 0.5 - \sin \left(\left(-\pi\right) \cdot t\_0\right) \cdot \cos \left(-0.5 \cdot \pi\right)\\
        
        \mathbf{else}:\\
        \;\;\;\;\sin \left(0.5 \cdot \pi\right)\\
        
        
        \end{array}
        
        Derivation
        1. Split input into 2 regimes
        2. if z0 < 85000

          1. Initial program 57.5%

            \[\sin \left(\left(0.5 - \left(z0 + z0\right)\right) \cdot \pi\right) \]
          2. Step-by-step derivation
            1. lift-sin.f64N/A

              \[\leadsto \color{blue}{\sin \left(\left(\frac{1}{2} - \left(z0 + z0\right)\right) \cdot \pi\right)} \]
            2. lift-*.f64N/A

              \[\leadsto \sin \color{blue}{\left(\left(\frac{1}{2} - \left(z0 + z0\right)\right) \cdot \pi\right)} \]
            3. *-commutativeN/A

              \[\leadsto \sin \color{blue}{\left(\pi \cdot \left(\frac{1}{2} - \left(z0 + z0\right)\right)\right)} \]
            4. lift--.f64N/A

              \[\leadsto \sin \left(\pi \cdot \color{blue}{\left(\frac{1}{2} - \left(z0 + z0\right)\right)}\right) \]
            5. sub-flipN/A

              \[\leadsto \sin \left(\pi \cdot \color{blue}{\left(\frac{1}{2} + \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)}\right) \]
            6. distribute-lft-inN/A

              \[\leadsto \sin \color{blue}{\left(\pi \cdot \frac{1}{2} + \pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)} \]
            7. sin-sumN/A

              \[\leadsto \color{blue}{\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right) + \cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)} \]
            8. flip3-+N/A

              \[\leadsto \color{blue}{\frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right)\right)}} \]
          3. Applied rewrites57.5%

            \[\leadsto \color{blue}{\frac{{\left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)}} \]
          4. Step-by-step derivation
            1. lift-*.f64N/A

              \[\leadsto \frac{{\color{blue}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
            2. lift-sin.f64N/A

              \[\leadsto \frac{{\left(\color{blue}{\sin \left(\pi \cdot \frac{1}{2}\right)} \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
            3. lift-cos.f64N/A

              \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \color{blue}{\cos \left(\pi \cdot \left(z0 + z0\right)\right)}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
            4. sin-cos-multN/A

              \[\leadsto \frac{{\color{blue}{\left(\frac{\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)}{2}\right)}}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
            5. mult-flipN/A

              \[\leadsto \frac{{\color{blue}{\left(\left(\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)\right) \cdot \frac{1}{2}\right)}}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
            6. metadata-evalN/A

              \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{\frac{1}{2}}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
            7. lower-*.f64N/A

              \[\leadsto \frac{{\color{blue}{\left(\left(\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)\right) \cdot \frac{1}{2}\right)}}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          5. Applied rewrites56.5%

            \[\leadsto \frac{{\color{blue}{\left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right)}}^{3} + {\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          6. Step-by-step derivation
            1. lift-*.f64N/A

              \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\color{blue}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)} \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
            2. lift-sin.f64N/A

              \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\color{blue}{\sin \left(\pi \cdot \frac{1}{2}\right)} \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
            3. lift-cos.f64N/A

              \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \color{blue}{\cos \left(\pi \cdot \left(z0 + z0\right)\right)}\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
            4. sin-cos-multN/A

              \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\color{blue}{\frac{\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)}{2}} \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
            5. mult-flipN/A

              \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\color{blue}{\left(\left(\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)\right) \cdot \frac{1}{2}\right)} \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
            6. metadata-evalN/A

              \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{\frac{1}{2}}\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
            7. lower-*.f64N/A

              \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\color{blue}{\left(\left(\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)\right) \cdot \frac{1}{2}\right)} \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          7. Applied rewrites56.8%

            \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right)}^{3} + {\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\color{blue}{\left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right)} \cdot \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          8. Step-by-step derivation
            1. lift-*.f64N/A

              \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \color{blue}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)} + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
            2. lift-sin.f64N/A

              \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\color{blue}{\sin \left(\pi \cdot \frac{1}{2}\right)} \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
            3. lift-cos.f64N/A

              \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \color{blue}{\cos \left(\pi \cdot \left(z0 + z0\right)\right)}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
            4. sin-cos-multN/A

              \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \color{blue}{\frac{\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)}{2}} + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
            5. mult-flipN/A

              \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \color{blue}{\left(\left(\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)\right) \cdot \frac{1}{2}\right)} + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
            6. metadata-evalN/A

              \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{\frac{1}{2}}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
            7. lower-*.f64N/A

              \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \color{blue}{\left(\left(\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)\right) \cdot \frac{1}{2}\right)} + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          9. Applied rewrites56.8%

            \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right)}^{3} + {\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right) \cdot \color{blue}{\left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right)} + \left(\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          10. Step-by-step derivation
            1. lift-*.f64N/A

              \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \color{blue}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)} \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
            2. lift-sin.f64N/A

              \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\color{blue}{\sin \left(\pi \cdot \frac{1}{2}\right)} \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
            3. lift-cos.f64N/A

              \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \color{blue}{\cos \left(\pi \cdot \left(z0 + z0\right)\right)}\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
            4. sin-cos-multN/A

              \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \color{blue}{\frac{\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)}{2}} \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
            5. mult-flipN/A

              \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \color{blue}{\left(\left(\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)\right) \cdot \frac{1}{2}\right)} \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
            6. metadata-evalN/A

              \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\left(\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{\frac{1}{2}}\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
            7. lower-*.f64N/A

              \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(\frac{1}{2} - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot \frac{1}{2}\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \color{blue}{\left(\left(\sin \left(\pi \cdot \frac{1}{2} - \pi \cdot \left(z0 + z0\right)\right) + \sin \left(\pi \cdot \frac{1}{2} + \pi \cdot \left(z0 + z0\right)\right)\right) \cdot \frac{1}{2}\right)} \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          11. Applied rewrites56.8%

            \[\leadsto \frac{{\left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right)}^{3} + {\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right) \cdot \left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right) + \left(\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \color{blue}{\left(\left(\sin \left(\pi \cdot \left(\left(0.5 - z0\right) - z0\right)\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5\right)} \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
          12. Applied rewrites56.8%

            \[\leadsto \color{blue}{\left(\sin \left(\left(\left(0.5 - z0\right) - z0\right) \cdot \pi\right) + \cos \left(\left(z0 + z0\right) \cdot \pi\right)\right) \cdot 0.5 - \sin \left(\left(-\pi\right) \cdot \left(z0 + z0\right)\right) \cdot \cos \left(-0.5 \cdot \pi\right)} \]

          if 85000 < z0

          1. Initial program 57.5%

            \[\sin \left(\left(0.5 - \left(z0 + z0\right)\right) \cdot \pi\right) \]
          2. Taylor expanded in z0 around 0

            \[\leadsto \sin \left(\color{blue}{\frac{1}{2}} \cdot \pi\right) \]
          3. Step-by-step derivation
            1. Applied rewrites97.2%

              \[\leadsto \sin \left(\color{blue}{0.5} \cdot \pi\right) \]
          4. Recombined 2 regimes into one program.
          5. Add Preprocessing

          Alternative 5: 98.5% accurate, 0.5× speedup?

          \[\begin{array}{l} t_0 := 2 \cdot \left|z0\right|\\ \mathbf{if}\;\left|z0\right| \leq 85000:\\ \;\;\;\;0.5 \cdot \left(\sin \left(\pi \cdot \left(0.5 + t\_0\right)\right) + \sin \left(\pi \cdot \left(0.5 - t\_0\right)\right)\right)\\ \mathbf{else}:\\ \;\;\;\;\sin \left(0.5 \cdot \pi\right)\\ \end{array} \]
          (FPCore (z0)
            :precision binary64
            (let* ((t_0 (* 2.0 (fabs z0))))
            (if (<= (fabs z0) 85000.0)
              (* 0.5 (+ (sin (* PI (+ 0.5 t_0))) (sin (* PI (- 0.5 t_0)))))
              (sin (* 0.5 PI)))))
          double code(double z0) {
          	double t_0 = 2.0 * fabs(z0);
          	double tmp;
          	if (fabs(z0) <= 85000.0) {
          		tmp = 0.5 * (sin((((double) M_PI) * (0.5 + t_0))) + sin((((double) M_PI) * (0.5 - t_0))));
          	} else {
          		tmp = sin((0.5 * ((double) M_PI)));
          	}
          	return tmp;
          }
          
          public static double code(double z0) {
          	double t_0 = 2.0 * Math.abs(z0);
          	double tmp;
          	if (Math.abs(z0) <= 85000.0) {
          		tmp = 0.5 * (Math.sin((Math.PI * (0.5 + t_0))) + Math.sin((Math.PI * (0.5 - t_0))));
          	} else {
          		tmp = Math.sin((0.5 * Math.PI));
          	}
          	return tmp;
          }
          
          def code(z0):
          	t_0 = 2.0 * math.fabs(z0)
          	tmp = 0
          	if math.fabs(z0) <= 85000.0:
          		tmp = 0.5 * (math.sin((math.pi * (0.5 + t_0))) + math.sin((math.pi * (0.5 - t_0))))
          	else:
          		tmp = math.sin((0.5 * math.pi))
          	return tmp
          
          function code(z0)
          	t_0 = Float64(2.0 * abs(z0))
          	tmp = 0.0
          	if (abs(z0) <= 85000.0)
          		tmp = Float64(0.5 * Float64(sin(Float64(pi * Float64(0.5 + t_0))) + sin(Float64(pi * Float64(0.5 - t_0)))));
          	else
          		tmp = sin(Float64(0.5 * pi));
          	end
          	return tmp
          end
          
          function tmp_2 = code(z0)
          	t_0 = 2.0 * abs(z0);
          	tmp = 0.0;
          	if (abs(z0) <= 85000.0)
          		tmp = 0.5 * (sin((pi * (0.5 + t_0))) + sin((pi * (0.5 - t_0))));
          	else
          		tmp = sin((0.5 * pi));
          	end
          	tmp_2 = tmp;
          end
          
          code[z0_] := Block[{t$95$0 = N[(2.0 * N[Abs[z0], $MachinePrecision]), $MachinePrecision]}, If[LessEqual[N[Abs[z0], $MachinePrecision], 85000.0], N[(0.5 * N[(N[Sin[N[(Pi * N[(0.5 + t$95$0), $MachinePrecision]), $MachinePrecision]], $MachinePrecision] + N[Sin[N[(Pi * N[(0.5 - t$95$0), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[Sin[N[(0.5 * Pi), $MachinePrecision]], $MachinePrecision]]]
          
          \begin{array}{l}
          t_0 := 2 \cdot \left|z0\right|\\
          \mathbf{if}\;\left|z0\right| \leq 85000:\\
          \;\;\;\;0.5 \cdot \left(\sin \left(\pi \cdot \left(0.5 + t\_0\right)\right) + \sin \left(\pi \cdot \left(0.5 - t\_0\right)\right)\right)\\
          
          \mathbf{else}:\\
          \;\;\;\;\sin \left(0.5 \cdot \pi\right)\\
          
          
          \end{array}
          
          Derivation
          1. Split input into 2 regimes
          2. if z0 < 85000

            1. Initial program 57.5%

              \[\sin \left(\left(0.5 - \left(z0 + z0\right)\right) \cdot \pi\right) \]
            2. Step-by-step derivation
              1. lift-sin.f64N/A

                \[\leadsto \color{blue}{\sin \left(\left(\frac{1}{2} - \left(z0 + z0\right)\right) \cdot \pi\right)} \]
              2. lift-*.f64N/A

                \[\leadsto \sin \color{blue}{\left(\left(\frac{1}{2} - \left(z0 + z0\right)\right) \cdot \pi\right)} \]
              3. *-commutativeN/A

                \[\leadsto \sin \color{blue}{\left(\pi \cdot \left(\frac{1}{2} - \left(z0 + z0\right)\right)\right)} \]
              4. lift--.f64N/A

                \[\leadsto \sin \left(\pi \cdot \color{blue}{\left(\frac{1}{2} - \left(z0 + z0\right)\right)}\right) \]
              5. sub-flipN/A

                \[\leadsto \sin \left(\pi \cdot \color{blue}{\left(\frac{1}{2} + \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)}\right) \]
              6. distribute-lft-inN/A

                \[\leadsto \sin \color{blue}{\left(\pi \cdot \frac{1}{2} + \pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)} \]
              7. sin-sumN/A

                \[\leadsto \color{blue}{\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right) + \cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)} \]
              8. flip3-+N/A

                \[\leadsto \color{blue}{\frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right)}^{3} + {\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\pi \cdot \left(\mathsf{neg}\left(\left(z0 + z0\right)\right)\right)\right)\right)\right)}} \]
            3. Applied rewrites57.5%

              \[\leadsto \color{blue}{\frac{{\left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}^{3}}{\left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)}} \]
            4. Step-by-step derivation
              1. lift-*.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\color{blue}{\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              2. *-commutativeN/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\color{blue}{\left(\sin \left(\left(-2 \cdot z0\right) \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)}}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              3. lift-sin.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\color{blue}{\sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)} \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              4. lift-*.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\sin \color{blue}{\left(\left(-2 \cdot z0\right) \cdot \pi\right)} \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              5. lift-*.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\sin \left(\color{blue}{\left(-2 \cdot z0\right)} \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              6. metadata-evalN/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\sin \left(\left(\color{blue}{\left(\mathsf{neg}\left(2\right)\right)} \cdot z0\right) \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              7. distribute-lft-neg-outN/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\sin \left(\color{blue}{\left(\mathsf{neg}\left(2 \cdot z0\right)\right)} \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              8. count-2N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(z0 + z0\right)}\right)\right) \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              9. lift-+.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(z0 + z0\right)}\right)\right) \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              10. distribute-lft-neg-inN/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\sin \color{blue}{\left(\mathsf{neg}\left(\left(z0 + z0\right) \cdot \pi\right)\right)} \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              11. *-commutativeN/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\sin \left(\mathsf{neg}\left(\color{blue}{\pi \cdot \left(z0 + z0\right)}\right)\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              12. lift-*.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\sin \left(\mathsf{neg}\left(\color{blue}{\pi \cdot \left(z0 + z0\right)}\right)\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              13. lift-cos.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{\cos \left(\pi \cdot \frac{1}{2}\right)}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              14. lift-*.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \cos \color{blue}{\left(\pi \cdot \frac{1}{2}\right)}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              15. metadata-evalN/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \cos \left(\pi \cdot \color{blue}{\frac{1}{2}}\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              16. mult-flipN/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \cos \color{blue}{\left(\frac{\pi}{2}\right)}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              17. lift-PI.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \cos \left(\frac{\color{blue}{\mathsf{PI}\left(\right)}}{2}\right)\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              18. cos-PI/2N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{0}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              19. sin-PIN/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{\sin \mathsf{PI}\left(\right)}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              20. lift-PI.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \sin \color{blue}{\pi}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
            5. Applied rewrites57.5%

              \[\leadsto \frac{{\left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\color{blue}{\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}}^{3}}{\left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
            6. Step-by-step derivation
              1. lift-*.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\color{blue}{\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)} \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              2. *-commutativeN/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\color{blue}{\left(\sin \left(\left(-2 \cdot z0\right) \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)} \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              3. lift-sin.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\color{blue}{\sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)} \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              4. lift-*.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\sin \color{blue}{\left(\left(-2 \cdot z0\right) \cdot \pi\right)} \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              5. lift-*.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\sin \left(\color{blue}{\left(-2 \cdot z0\right)} \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              6. metadata-evalN/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\sin \left(\left(\color{blue}{\left(\mathsf{neg}\left(2\right)\right)} \cdot z0\right) \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              7. distribute-lft-neg-outN/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\sin \left(\color{blue}{\left(\mathsf{neg}\left(2 \cdot z0\right)\right)} \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              8. count-2N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(z0 + z0\right)}\right)\right) \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              9. lift-+.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(z0 + z0\right)}\right)\right) \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              10. distribute-lft-neg-inN/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\sin \color{blue}{\left(\mathsf{neg}\left(\left(z0 + z0\right) \cdot \pi\right)\right)} \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              11. *-commutativeN/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\sin \left(\mathsf{neg}\left(\color{blue}{\pi \cdot \left(z0 + z0\right)}\right)\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              12. lift-*.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\sin \left(\mathsf{neg}\left(\color{blue}{\pi \cdot \left(z0 + z0\right)}\right)\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              13. lift-cos.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{\cos \left(\pi \cdot \frac{1}{2}\right)}\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              14. lift-*.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \cos \color{blue}{\left(\pi \cdot \frac{1}{2}\right)}\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              15. metadata-evalN/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \cos \left(\pi \cdot \color{blue}{\frac{1}{2}}\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              16. mult-flipN/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \cos \color{blue}{\left(\frac{\pi}{2}\right)}\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              17. lift-PI.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \cos \left(\frac{\color{blue}{\mathsf{PI}\left(\right)}}{2}\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              18. cos-PI/2N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{0}\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              19. sin-PIN/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{\sin \mathsf{PI}\left(\right)}\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              20. lift-PI.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \sin \color{blue}{\pi}\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
            7. Applied rewrites57.5%

              \[\leadsto \frac{{\left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\color{blue}{\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}} \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right) - \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
            8. Step-by-step derivation
              1. lift-*.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \color{blue}{\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              2. *-commutativeN/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \color{blue}{\left(\sin \left(\left(-2 \cdot z0\right) \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              3. lift-sin.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \left(\color{blue}{\sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)} \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              4. lift-*.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \left(\sin \color{blue}{\left(\left(-2 \cdot z0\right) \cdot \pi\right)} \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              5. lift-*.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \left(\sin \left(\color{blue}{\left(-2 \cdot z0\right)} \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              6. metadata-evalN/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \left(\sin \left(\left(\color{blue}{\left(\mathsf{neg}\left(2\right)\right)} \cdot z0\right) \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              7. distribute-lft-neg-outN/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \left(\sin \left(\color{blue}{\left(\mathsf{neg}\left(2 \cdot z0\right)\right)} \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              8. count-2N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \left(\sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(z0 + z0\right)}\right)\right) \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              9. lift-+.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \left(\sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(z0 + z0\right)}\right)\right) \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              10. distribute-lft-neg-inN/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \left(\sin \color{blue}{\left(\mathsf{neg}\left(\left(z0 + z0\right) \cdot \pi\right)\right)} \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              11. *-commutativeN/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \left(\sin \left(\mathsf{neg}\left(\color{blue}{\pi \cdot \left(z0 + z0\right)}\right)\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              12. lift-*.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \left(\sin \left(\mathsf{neg}\left(\color{blue}{\pi \cdot \left(z0 + z0\right)}\right)\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              13. lift-cos.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{\cos \left(\pi \cdot \frac{1}{2}\right)}\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              14. lift-*.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \cos \color{blue}{\left(\pi \cdot \frac{1}{2}\right)}\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              15. metadata-evalN/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \cos \left(\pi \cdot \color{blue}{\frac{1}{2}}\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              16. mult-flipN/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \cos \color{blue}{\left(\frac{\pi}{2}\right)}\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              17. lift-PI.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \cos \left(\frac{\color{blue}{\mathsf{PI}\left(\right)}}{2}\right)\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              18. cos-PI/2N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{0}\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              19. sin-PIN/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{\sin \mathsf{PI}\left(\right)}\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
              20. lift-PI.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \sin \color{blue}{\pi}\right) - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
            9. Applied rewrites57.5%

              \[\leadsto \frac{{\left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \color{blue}{\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}} - \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\cos \left(\pi \cdot 0.5\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)\right)} \]
            10. Step-by-step derivation
              1. lift-*.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{\left(\cos \left(\pi \cdot \frac{1}{2}\right) \cdot \sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)\right)}\right)} \]
              2. *-commutativeN/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{\left(\sin \left(\left(-2 \cdot z0\right) \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)}\right)} \]
              3. lift-sin.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\color{blue}{\sin \left(\left(-2 \cdot z0\right) \cdot \pi\right)} \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)\right)} \]
              4. lift-*.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \color{blue}{\left(\left(-2 \cdot z0\right) \cdot \pi\right)} \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)\right)} \]
              5. lift-*.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\color{blue}{\left(-2 \cdot z0\right)} \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)\right)} \]
              6. metadata-evalN/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\left(\color{blue}{\left(\mathsf{neg}\left(2\right)\right)} \cdot z0\right) \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)\right)} \]
              7. distribute-lft-neg-outN/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\color{blue}{\left(\mathsf{neg}\left(2 \cdot z0\right)\right)} \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)\right)} \]
              8. count-2N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(z0 + z0\right)}\right)\right) \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)\right)} \]
              9. lift-+.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(z0 + z0\right)}\right)\right) \cdot \pi\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)\right)} \]
              10. distribute-lft-neg-inN/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \color{blue}{\left(\mathsf{neg}\left(\left(z0 + z0\right) \cdot \pi\right)\right)} \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)\right)} \]
              11. *-commutativeN/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\mathsf{neg}\left(\color{blue}{\pi \cdot \left(z0 + z0\right)}\right)\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)\right)} \]
              12. lift-*.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\mathsf{neg}\left(\color{blue}{\pi \cdot \left(z0 + z0\right)}\right)\right) \cdot \cos \left(\pi \cdot \frac{1}{2}\right)\right)\right)} \]
              13. lift-cos.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{\cos \left(\pi \cdot \frac{1}{2}\right)}\right)\right)} \]
              14. lift-*.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \cos \color{blue}{\left(\pi \cdot \frac{1}{2}\right)}\right)\right)} \]
              15. metadata-evalN/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \cos \left(\pi \cdot \color{blue}{\frac{1}{2}}\right)\right)\right)} \]
              16. mult-flipN/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \cos \color{blue}{\left(\frac{\pi}{2}\right)}\right)\right)} \]
              17. lift-PI.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \cos \left(\frac{\color{blue}{\mathsf{PI}\left(\right)}}{2}\right)\right)\right)} \]
              18. cos-PI/2N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{0}\right)\right)} \]
              19. sin-PIN/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{\sin \mathsf{PI}\left(\right)}\right)\right)} \]
              20. lift-PI.f64N/A

                \[\leadsto \frac{{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot \frac{1}{2}\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\mathsf{neg}\left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \sin \color{blue}{\pi}\right)\right)} \]
            11. Applied rewrites57.5%

              \[\leadsto \frac{{\left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right)}^{3} + {\left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}\right)}^{3}}{\left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) + \left(\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} \cdot \frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2} - \left(\sin \left(\pi \cdot 0.5\right) \cdot \cos \left(\pi \cdot \left(z0 + z0\right)\right)\right) \cdot \color{blue}{\frac{\cos \left(\left(\pi \cdot -2\right) \cdot z0 - \pi\right) - \cos \left(\left(\pi \cdot -2\right) \cdot z0 + \pi\right)}{2}}\right)} \]
            12. Applied rewrites53.6%

              \[\leadsto \color{blue}{\frac{\left(\sin \left(\left(\left(0.5 - z0\right) - z0\right) \cdot \pi\right) + \sin \left(\pi \cdot \left(0.5 + \left(z0 + z0\right)\right)\right)\right) + \left(\cos \left(\left(z0 + z0\right) \cdot \pi\right) + \left(-\cos \left(\left(z0 + z0\right) \cdot \pi\right)\right)\right)}{2}} \]
            13. Taylor expanded in z0 around inf

              \[\leadsto \color{blue}{\frac{1}{2} \cdot \left(\sin \left(\pi \cdot \left(\frac{1}{2} + 2 \cdot z0\right)\right) + \sin \left(\pi \cdot \left(\frac{1}{2} - 2 \cdot z0\right)\right)\right)} \]
            14. Step-by-step derivation
              1. lower-*.f64N/A

                \[\leadsto \frac{1}{2} \cdot \color{blue}{\left(\sin \left(\mathsf{PI}\left(\right) \cdot \left(\frac{1}{2} + 2 \cdot z0\right)\right) + \sin \left(\mathsf{PI}\left(\right) \cdot \left(\frac{1}{2} - 2 \cdot z0\right)\right)\right)} \]
              2. lower-+.f64N/A

                \[\leadsto \frac{1}{2} \cdot \left(\sin \left(\mathsf{PI}\left(\right) \cdot \left(\frac{1}{2} + 2 \cdot z0\right)\right) + \color{blue}{\sin \left(\mathsf{PI}\left(\right) \cdot \left(\frac{1}{2} - 2 \cdot z0\right)\right)}\right) \]
              3. lower-sin.f64N/A

                \[\leadsto \frac{1}{2} \cdot \left(\sin \left(\mathsf{PI}\left(\right) \cdot \left(\frac{1}{2} + 2 \cdot z0\right)\right) + \sin \color{blue}{\left(\mathsf{PI}\left(\right) \cdot \left(\frac{1}{2} - 2 \cdot z0\right)\right)}\right) \]
              4. lower-*.f64N/A

                \[\leadsto \frac{1}{2} \cdot \left(\sin \left(\mathsf{PI}\left(\right) \cdot \left(\frac{1}{2} + 2 \cdot z0\right)\right) + \sin \left(\color{blue}{\mathsf{PI}\left(\right)} \cdot \left(\frac{1}{2} - 2 \cdot z0\right)\right)\right) \]
              5. lower-PI.f64N/A

                \[\leadsto \frac{1}{2} \cdot \left(\sin \left(\pi \cdot \left(\frac{1}{2} + 2 \cdot z0\right)\right) + \sin \left(\mathsf{PI}\left(\right) \cdot \left(\frac{1}{2} - 2 \cdot z0\right)\right)\right) \]
              6. lower-+.f64N/A

                \[\leadsto \frac{1}{2} \cdot \left(\sin \left(\pi \cdot \left(\frac{1}{2} + 2 \cdot z0\right)\right) + \sin \left(\mathsf{PI}\left(\right) \cdot \left(\frac{1}{2} - 2 \cdot z0\right)\right)\right) \]
              7. lower-*.f64N/A

                \[\leadsto \frac{1}{2} \cdot \left(\sin \left(\pi \cdot \left(\frac{1}{2} + 2 \cdot z0\right)\right) + \sin \left(\mathsf{PI}\left(\right) \cdot \left(\frac{1}{2} - 2 \cdot z0\right)\right)\right) \]
              8. lower-sin.f64N/A

                \[\leadsto \frac{1}{2} \cdot \left(\sin \left(\pi \cdot \left(\frac{1}{2} + 2 \cdot z0\right)\right) + \sin \left(\mathsf{PI}\left(\right) \cdot \left(\frac{1}{2} - 2 \cdot z0\right)\right)\right) \]
              9. lower-*.f64N/A

                \[\leadsto \frac{1}{2} \cdot \left(\sin \left(\pi \cdot \left(\frac{1}{2} + 2 \cdot z0\right)\right) + \sin \left(\mathsf{PI}\left(\right) \cdot \left(\frac{1}{2} - 2 \cdot z0\right)\right)\right) \]
              10. lower-PI.f64N/A

                \[\leadsto \frac{1}{2} \cdot \left(\sin \left(\pi \cdot \left(\frac{1}{2} + 2 \cdot z0\right)\right) + \sin \left(\pi \cdot \left(\frac{1}{2} - 2 \cdot z0\right)\right)\right) \]
              11. lower--.f64N/A

                \[\leadsto \frac{1}{2} \cdot \left(\sin \left(\pi \cdot \left(\frac{1}{2} + 2 \cdot z0\right)\right) + \sin \left(\pi \cdot \left(\frac{1}{2} - 2 \cdot z0\right)\right)\right) \]
              12. lower-*.f6453.6%

                \[\leadsto 0.5 \cdot \left(\sin \left(\pi \cdot \left(0.5 + 2 \cdot z0\right)\right) + \sin \left(\pi \cdot \left(0.5 - 2 \cdot z0\right)\right)\right) \]
            15. Applied rewrites53.6%

              \[\leadsto \color{blue}{0.5 \cdot \left(\sin \left(\pi \cdot \left(0.5 + 2 \cdot z0\right)\right) + \sin \left(\pi \cdot \left(0.5 - 2 \cdot z0\right)\right)\right)} \]

            if 85000 < z0

            1. Initial program 57.5%

              \[\sin \left(\left(0.5 - \left(z0 + z0\right)\right) \cdot \pi\right) \]
            2. Taylor expanded in z0 around 0

              \[\leadsto \sin \left(\color{blue}{\frac{1}{2}} \cdot \pi\right) \]
            3. Step-by-step derivation
              1. Applied rewrites97.2%

                \[\leadsto \sin \left(\color{blue}{0.5} \cdot \pi\right) \]
            4. Recombined 2 regimes into one program.
            5. Add Preprocessing

            Alternative 6: 98.5% accurate, 0.9× speedup?

            \[\begin{array}{l} \mathbf{if}\;\left|z0\right| \leq 85000:\\ \;\;\;\;\sin \left(\left(0.5 - \left(\left|z0\right| + \left|z0\right|\right)\right) \cdot \pi\right)\\ \mathbf{else}:\\ \;\;\;\;\sin \left(0.5 \cdot \pi\right)\\ \end{array} \]
            (FPCore (z0)
              :precision binary64
              (if (<= (fabs z0) 85000.0)
              (sin (* (- 0.5 (+ (fabs z0) (fabs z0))) PI))
              (sin (* 0.5 PI))))
            double code(double z0) {
            	double tmp;
            	if (fabs(z0) <= 85000.0) {
            		tmp = sin(((0.5 - (fabs(z0) + fabs(z0))) * ((double) M_PI)));
            	} else {
            		tmp = sin((0.5 * ((double) M_PI)));
            	}
            	return tmp;
            }
            
            public static double code(double z0) {
            	double tmp;
            	if (Math.abs(z0) <= 85000.0) {
            		tmp = Math.sin(((0.5 - (Math.abs(z0) + Math.abs(z0))) * Math.PI));
            	} else {
            		tmp = Math.sin((0.5 * Math.PI));
            	}
            	return tmp;
            }
            
            def code(z0):
            	tmp = 0
            	if math.fabs(z0) <= 85000.0:
            		tmp = math.sin(((0.5 - (math.fabs(z0) + math.fabs(z0))) * math.pi))
            	else:
            		tmp = math.sin((0.5 * math.pi))
            	return tmp
            
            function code(z0)
            	tmp = 0.0
            	if (abs(z0) <= 85000.0)
            		tmp = sin(Float64(Float64(0.5 - Float64(abs(z0) + abs(z0))) * pi));
            	else
            		tmp = sin(Float64(0.5 * pi));
            	end
            	return tmp
            end
            
            function tmp_2 = code(z0)
            	tmp = 0.0;
            	if (abs(z0) <= 85000.0)
            		tmp = sin(((0.5 - (abs(z0) + abs(z0))) * pi));
            	else
            		tmp = sin((0.5 * pi));
            	end
            	tmp_2 = tmp;
            end
            
            code[z0_] := If[LessEqual[N[Abs[z0], $MachinePrecision], 85000.0], N[Sin[N[(N[(0.5 - N[(N[Abs[z0], $MachinePrecision] + N[Abs[z0], $MachinePrecision]), $MachinePrecision]), $MachinePrecision] * Pi), $MachinePrecision]], $MachinePrecision], N[Sin[N[(0.5 * Pi), $MachinePrecision]], $MachinePrecision]]
            
            \begin{array}{l}
            \mathbf{if}\;\left|z0\right| \leq 85000:\\
            \;\;\;\;\sin \left(\left(0.5 - \left(\left|z0\right| + \left|z0\right|\right)\right) \cdot \pi\right)\\
            
            \mathbf{else}:\\
            \;\;\;\;\sin \left(0.5 \cdot \pi\right)\\
            
            
            \end{array}
            
            Derivation
            1. Split input into 2 regimes
            2. if z0 < 85000

              1. Initial program 57.5%

                \[\sin \left(\left(0.5 - \left(z0 + z0\right)\right) \cdot \pi\right) \]

              if 85000 < z0

              1. Initial program 57.5%

                \[\sin \left(\left(0.5 - \left(z0 + z0\right)\right) \cdot \pi\right) \]
              2. Taylor expanded in z0 around 0

                \[\leadsto \sin \left(\color{blue}{\frac{1}{2}} \cdot \pi\right) \]
              3. Step-by-step derivation
                1. Applied rewrites97.2%

                  \[\leadsto \sin \left(\color{blue}{0.5} \cdot \pi\right) \]
              4. Recombined 2 regimes into one program.
              5. Add Preprocessing

              Alternative 7: 98.5% accurate, 0.9× speedup?

              \[\begin{array}{l} \mathbf{if}\;\left|z0\right| \leq 85000:\\ \;\;\;\;\cos \left(\left(\left|z0\right| + \left|z0\right|\right) \cdot \pi\right)\\ \mathbf{else}:\\ \;\;\;\;\sin \left(0.5 \cdot \pi\right)\\ \end{array} \]
              (FPCore (z0)
                :precision binary64
                (if (<= (fabs z0) 85000.0)
                (cos (* (+ (fabs z0) (fabs z0)) PI))
                (sin (* 0.5 PI))))
              double code(double z0) {
              	double tmp;
              	if (fabs(z0) <= 85000.0) {
              		tmp = cos(((fabs(z0) + fabs(z0)) * ((double) M_PI)));
              	} else {
              		tmp = sin((0.5 * ((double) M_PI)));
              	}
              	return tmp;
              }
              
              public static double code(double z0) {
              	double tmp;
              	if (Math.abs(z0) <= 85000.0) {
              		tmp = Math.cos(((Math.abs(z0) + Math.abs(z0)) * Math.PI));
              	} else {
              		tmp = Math.sin((0.5 * Math.PI));
              	}
              	return tmp;
              }
              
              def code(z0):
              	tmp = 0
              	if math.fabs(z0) <= 85000.0:
              		tmp = math.cos(((math.fabs(z0) + math.fabs(z0)) * math.pi))
              	else:
              		tmp = math.sin((0.5 * math.pi))
              	return tmp
              
              function code(z0)
              	tmp = 0.0
              	if (abs(z0) <= 85000.0)
              		tmp = cos(Float64(Float64(abs(z0) + abs(z0)) * pi));
              	else
              		tmp = sin(Float64(0.5 * pi));
              	end
              	return tmp
              end
              
              function tmp_2 = code(z0)
              	tmp = 0.0;
              	if (abs(z0) <= 85000.0)
              		tmp = cos(((abs(z0) + abs(z0)) * pi));
              	else
              		tmp = sin((0.5 * pi));
              	end
              	tmp_2 = tmp;
              end
              
              code[z0_] := If[LessEqual[N[Abs[z0], $MachinePrecision], 85000.0], N[Cos[N[(N[(N[Abs[z0], $MachinePrecision] + N[Abs[z0], $MachinePrecision]), $MachinePrecision] * Pi), $MachinePrecision]], $MachinePrecision], N[Sin[N[(0.5 * Pi), $MachinePrecision]], $MachinePrecision]]
              
              \begin{array}{l}
              \mathbf{if}\;\left|z0\right| \leq 85000:\\
              \;\;\;\;\cos \left(\left(\left|z0\right| + \left|z0\right|\right) \cdot \pi\right)\\
              
              \mathbf{else}:\\
              \;\;\;\;\sin \left(0.5 \cdot \pi\right)\\
              
              
              \end{array}
              
              Derivation
              1. Split input into 2 regimes
              2. if z0 < 85000

                1. Initial program 57.5%

                  \[\sin \left(\left(0.5 - \left(z0 + z0\right)\right) \cdot \pi\right) \]
                2. Step-by-step derivation
                  1. lift-sin.f64N/A

                    \[\leadsto \color{blue}{\sin \left(\left(\frac{1}{2} - \left(z0 + z0\right)\right) \cdot \pi\right)} \]
                  2. lift-*.f64N/A

                    \[\leadsto \sin \color{blue}{\left(\left(\frac{1}{2} - \left(z0 + z0\right)\right) \cdot \pi\right)} \]
                  3. lift--.f64N/A

                    \[\leadsto \sin \left(\color{blue}{\left(\frac{1}{2} - \left(z0 + z0\right)\right)} \cdot \pi\right) \]
                  4. sub-negate-revN/A

                    \[\leadsto \sin \left(\color{blue}{\left(\mathsf{neg}\left(\left(\left(z0 + z0\right) - \frac{1}{2}\right)\right)\right)} \cdot \pi\right) \]
                  5. distribute-lft-neg-outN/A

                    \[\leadsto \sin \color{blue}{\left(\mathsf{neg}\left(\left(\left(z0 + z0\right) - \frac{1}{2}\right) \cdot \pi\right)\right)} \]
                  6. sin-negN/A

                    \[\leadsto \color{blue}{\mathsf{neg}\left(\sin \left(\left(\left(z0 + z0\right) - \frac{1}{2}\right) \cdot \pi\right)\right)} \]
                  7. sin-+PI-revN/A

                    \[\leadsto \color{blue}{\sin \left(\left(\left(z0 + z0\right) - \frac{1}{2}\right) \cdot \pi + \mathsf{PI}\left(\right)\right)} \]
                  8. lower-sin.f64N/A

                    \[\leadsto \color{blue}{\sin \left(\left(\left(z0 + z0\right) - \frac{1}{2}\right) \cdot \pi + \mathsf{PI}\left(\right)\right)} \]
                  9. lift-PI.f64N/A

                    \[\leadsto \sin \left(\left(\left(z0 + z0\right) - \frac{1}{2}\right) \cdot \pi + \color{blue}{\pi}\right) \]
                  10. lower-+.f64N/A

                    \[\leadsto \sin \color{blue}{\left(\left(\left(z0 + z0\right) - \frac{1}{2}\right) \cdot \pi + \pi\right)} \]
                  11. lower-*.f64N/A

                    \[\leadsto \sin \left(\color{blue}{\left(\left(z0 + z0\right) - \frac{1}{2}\right) \cdot \pi} + \pi\right) \]
                  12. lower--.f6457.5%

                    \[\leadsto \sin \left(\color{blue}{\left(\left(z0 + z0\right) - 0.5\right)} \cdot \pi + \pi\right) \]
                3. Applied rewrites57.5%

                  \[\leadsto \color{blue}{\sin \left(\left(\left(z0 + z0\right) - 0.5\right) \cdot \pi + \pi\right)} \]
                4. Step-by-step derivation
                  1. lift-sin.f64N/A

                    \[\leadsto \color{blue}{\sin \left(\left(\left(z0 + z0\right) - \frac{1}{2}\right) \cdot \pi + \pi\right)} \]
                  2. lift-+.f64N/A

                    \[\leadsto \sin \color{blue}{\left(\left(\left(z0 + z0\right) - \frac{1}{2}\right) \cdot \pi + \pi\right)} \]
                  3. lift-*.f64N/A

                    \[\leadsto \sin \left(\color{blue}{\left(\left(z0 + z0\right) - \frac{1}{2}\right) \cdot \pi} + \pi\right) \]
                  4. distribute-lft1-inN/A

                    \[\leadsto \sin \color{blue}{\left(\left(\left(\left(z0 + z0\right) - \frac{1}{2}\right) + 1\right) \cdot \pi\right)} \]
                  5. *-commutativeN/A

                    \[\leadsto \sin \color{blue}{\left(\pi \cdot \left(\left(\left(z0 + z0\right) - \frac{1}{2}\right) + 1\right)\right)} \]
                  6. lift--.f64N/A

                    \[\leadsto \sin \left(\pi \cdot \left(\color{blue}{\left(\left(z0 + z0\right) - \frac{1}{2}\right)} + 1\right)\right) \]
                  7. sub-flipN/A

                    \[\leadsto \sin \left(\pi \cdot \left(\color{blue}{\left(\left(z0 + z0\right) + \left(\mathsf{neg}\left(\frac{1}{2}\right)\right)\right)} + 1\right)\right) \]
                  8. associate-+l+N/A

                    \[\leadsto \sin \left(\pi \cdot \color{blue}{\left(\left(z0 + z0\right) + \left(\left(\mathsf{neg}\left(\frac{1}{2}\right)\right) + 1\right)\right)}\right) \]
                  9. metadata-evalN/A

                    \[\leadsto \sin \left(\pi \cdot \left(\left(z0 + z0\right) + \left(\color{blue}{\frac{-1}{2}} + 1\right)\right)\right) \]
                  10. metadata-evalN/A

                    \[\leadsto \sin \left(\pi \cdot \left(\left(z0 + z0\right) + \color{blue}{\frac{1}{2}}\right)\right) \]
                  11. distribute-lft-outN/A

                    \[\leadsto \sin \color{blue}{\left(\pi \cdot \left(z0 + z0\right) + \pi \cdot \frac{1}{2}\right)} \]
                  12. lift-*.f64N/A

                    \[\leadsto \sin \left(\color{blue}{\pi \cdot \left(z0 + z0\right)} + \pi \cdot \frac{1}{2}\right) \]
                  13. metadata-evalN/A

                    \[\leadsto \sin \left(\pi \cdot \left(z0 + z0\right) + \pi \cdot \color{blue}{\frac{1}{2}}\right) \]
                  14. mult-flipN/A

                    \[\leadsto \sin \left(\pi \cdot \left(z0 + z0\right) + \color{blue}{\frac{\pi}{2}}\right) \]
                  15. lift-PI.f64N/A

                    \[\leadsto \sin \left(\pi \cdot \left(z0 + z0\right) + \frac{\color{blue}{\mathsf{PI}\left(\right)}}{2}\right) \]
                  16. sin-+PI/2-revN/A

                    \[\leadsto \color{blue}{\cos \left(\pi \cdot \left(z0 + z0\right)\right)} \]
                  17. lift-cos.f6457.5%

                    \[\leadsto \color{blue}{\cos \left(\pi \cdot \left(z0 + z0\right)\right)} \]
                  18. lift-*.f64N/A

                    \[\leadsto \cos \color{blue}{\left(\pi \cdot \left(z0 + z0\right)\right)} \]
                  19. *-commutativeN/A

                    \[\leadsto \cos \color{blue}{\left(\left(z0 + z0\right) \cdot \pi\right)} \]
                5. Applied rewrites57.5%

                  \[\leadsto \color{blue}{\cos \left(\left(z0 + z0\right) \cdot \pi\right)} \]

                if 85000 < z0

                1. Initial program 57.5%

                  \[\sin \left(\left(0.5 - \left(z0 + z0\right)\right) \cdot \pi\right) \]
                2. Taylor expanded in z0 around 0

                  \[\leadsto \sin \left(\color{blue}{\frac{1}{2}} \cdot \pi\right) \]
                3. Step-by-step derivation
                  1. Applied rewrites97.2%

                    \[\leadsto \sin \left(\color{blue}{0.5} \cdot \pi\right) \]
                4. Recombined 2 regimes into one program.
                5. Add Preprocessing

                Alternative 8: 97.2% accurate, 1.1× speedup?

                \[\sin \left(0.5 \cdot \pi\right) \]
                (FPCore (z0)
                  :precision binary64
                  (sin (* 0.5 PI)))
                double code(double z0) {
                	return sin((0.5 * ((double) M_PI)));
                }
                
                public static double code(double z0) {
                	return Math.sin((0.5 * Math.PI));
                }
                
                def code(z0):
                	return math.sin((0.5 * math.pi))
                
                function code(z0)
                	return sin(Float64(0.5 * pi))
                end
                
                function tmp = code(z0)
                	tmp = sin((0.5 * pi));
                end
                
                code[z0_] := N[Sin[N[(0.5 * Pi), $MachinePrecision]], $MachinePrecision]
                
                \sin \left(0.5 \cdot \pi\right)
                
                Derivation
                1. Initial program 57.5%

                  \[\sin \left(\left(0.5 - \left(z0 + z0\right)\right) \cdot \pi\right) \]
                2. Taylor expanded in z0 around 0

                  \[\leadsto \sin \left(\color{blue}{\frac{1}{2}} \cdot \pi\right) \]
                3. Step-by-step derivation
                  1. Applied rewrites97.2%

                    \[\leadsto \sin \left(\color{blue}{0.5} \cdot \pi\right) \]
                  2. Add Preprocessing

                  Reproduce

                  ?
                  herbie shell --seed 2025250 
                  (FPCore (z0)
                    :name "(sin (* (- 1/2 (+ z0 z0)) PI))"
                    :precision binary64
                    (sin (* (- 0.5 (+ z0 z0)) PI)))