
(FPCore (xi yi zi ux uy maxCos)
:precision binary32
(let* ((t_0 (* (* (- 1.0 ux) maxCos) ux))
(t_1 (sqrt (- 1.0 (* t_0 t_0))))
(t_2 (* (* uy 2.0) PI)))
(+
(+ (* (* (cos t_2) t_1) xi) (* (* (sin t_2) t_1) yi))
(* t_0 zi))))float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
float t_0 = ((1.0f - ux) * maxCos) * ux;
float t_1 = sqrtf((1.0f - (t_0 * t_0)));
float t_2 = (uy * 2.0f) * ((float) M_PI);
return (((cosf(t_2) * t_1) * xi) + ((sinf(t_2) * t_1) * yi)) + (t_0 * zi);
}
function code(xi, yi, zi, ux, uy, maxCos) t_0 = Float32(Float32(Float32(Float32(1.0) - ux) * maxCos) * ux) t_1 = sqrt(Float32(Float32(1.0) - Float32(t_0 * t_0))) t_2 = Float32(Float32(uy * Float32(2.0)) * Float32(pi)) return Float32(Float32(Float32(Float32(cos(t_2) * t_1) * xi) + Float32(Float32(sin(t_2) * t_1) * yi)) + Float32(t_0 * zi)) end
function tmp = code(xi, yi, zi, ux, uy, maxCos) t_0 = ((single(1.0) - ux) * maxCos) * ux; t_1 = sqrt((single(1.0) - (t_0 * t_0))); t_2 = (uy * single(2.0)) * single(pi); tmp = (((cos(t_2) * t_1) * xi) + ((sin(t_2) * t_1) * yi)) + (t_0 * zi); end
\begin{array}{l}
t_0 := \left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\\
t_1 := \sqrt{1 - t\_0 \cdot t\_0}\\
t_2 := \left(uy \cdot 2\right) \cdot \pi\\
\left(\left(\cos t\_2 \cdot t\_1\right) \cdot xi + \left(\sin t\_2 \cdot t\_1\right) \cdot yi\right) + t\_0 \cdot zi
\end{array}
Herbie found 21 alternatives:
| Alternative | Accuracy | Speedup |
|---|
(FPCore (xi yi zi ux uy maxCos)
:precision binary32
(let* ((t_0 (* (* (- 1.0 ux) maxCos) ux))
(t_1 (sqrt (- 1.0 (* t_0 t_0))))
(t_2 (* (* uy 2.0) PI)))
(+
(+ (* (* (cos t_2) t_1) xi) (* (* (sin t_2) t_1) yi))
(* t_0 zi))))float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
float t_0 = ((1.0f - ux) * maxCos) * ux;
float t_1 = sqrtf((1.0f - (t_0 * t_0)));
float t_2 = (uy * 2.0f) * ((float) M_PI);
return (((cosf(t_2) * t_1) * xi) + ((sinf(t_2) * t_1) * yi)) + (t_0 * zi);
}
function code(xi, yi, zi, ux, uy, maxCos) t_0 = Float32(Float32(Float32(Float32(1.0) - ux) * maxCos) * ux) t_1 = sqrt(Float32(Float32(1.0) - Float32(t_0 * t_0))) t_2 = Float32(Float32(uy * Float32(2.0)) * Float32(pi)) return Float32(Float32(Float32(Float32(cos(t_2) * t_1) * xi) + Float32(Float32(sin(t_2) * t_1) * yi)) + Float32(t_0 * zi)) end
function tmp = code(xi, yi, zi, ux, uy, maxCos) t_0 = ((single(1.0) - ux) * maxCos) * ux; t_1 = sqrt((single(1.0) - (t_0 * t_0))); t_2 = (uy * single(2.0)) * single(pi); tmp = (((cos(t_2) * t_1) * xi) + ((sin(t_2) * t_1) * yi)) + (t_0 * zi); end
\begin{array}{l}
t_0 := \left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\\
t_1 := \sqrt{1 - t\_0 \cdot t\_0}\\
t_2 := \left(uy \cdot 2\right) \cdot \pi\\
\left(\left(\cos t\_2 \cdot t\_1\right) \cdot xi + \left(\sin t\_2 \cdot t\_1\right) \cdot yi\right) + t\_0 \cdot zi
\end{array}
(FPCore (xi yi zi ux uy maxCos)
:precision binary32
(let* ((t_0 (* maxCos (- 1.0 ux)))
(t_1 (sqrt (fma (* (* (- ux 1.0) (* maxCos ux)) t_0) ux 1.0))))
(fma
(* yi t_1)
(sin (fma (* uy (cbrt (* PI PI))) (cbrt PI) (* uy PI)))
(fma
(* xi (sin (fma (* -2.0 uy) PI (* PI 0.5))))
t_1
(* zi (* t_0 ux))))))float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
float t_0 = maxCos * (1.0f - ux);
float t_1 = sqrtf(fmaf((((ux - 1.0f) * (maxCos * ux)) * t_0), ux, 1.0f));
return fmaf((yi * t_1), sinf(fmaf((uy * cbrtf((((float) M_PI) * ((float) M_PI)))), cbrtf(((float) M_PI)), (uy * ((float) M_PI)))), fmaf((xi * sinf(fmaf((-2.0f * uy), ((float) M_PI), (((float) M_PI) * 0.5f)))), t_1, (zi * (t_0 * ux))));
}
function code(xi, yi, zi, ux, uy, maxCos) t_0 = Float32(maxCos * Float32(Float32(1.0) - ux)) t_1 = sqrt(fma(Float32(Float32(Float32(ux - Float32(1.0)) * Float32(maxCos * ux)) * t_0), ux, Float32(1.0))) return fma(Float32(yi * t_1), sin(fma(Float32(uy * cbrt(Float32(Float32(pi) * Float32(pi)))), cbrt(Float32(pi)), Float32(uy * Float32(pi)))), fma(Float32(xi * sin(fma(Float32(Float32(-2.0) * uy), Float32(pi), Float32(Float32(pi) * Float32(0.5))))), t_1, Float32(zi * Float32(t_0 * ux)))) end
\begin{array}{l}
t_0 := maxCos \cdot \left(1 - ux\right)\\
t_1 := \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot t\_0, ux, 1\right)}\\
\mathsf{fma}\left(yi \cdot t\_1, \sin \left(\mathsf{fma}\left(uy \cdot \sqrt[3]{\pi \cdot \pi}, \sqrt[3]{\pi}, uy \cdot \pi\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\mathsf{fma}\left(-2 \cdot uy, \pi, \pi \cdot 0.5\right)\right), t\_1, zi \cdot \left(t\_0 \cdot ux\right)\right)\right)
\end{array}
Initial program 98.9%
Applied rewrites99.0%
lift-cos.f32N/A
cos-neg-revN/A
lift-*.f32N/A
*-commutativeN/A
lift-+.f32N/A
count-2N/A
*-commutativeN/A
lift-*.f32N/A
lift-*.f32N/A
sin-+PI/2-revN/A
lower-sin.f32N/A
lift-*.f32N/A
lift-*.f32N/A
*-commutativeN/A
count-2N/A
lift-+.f32N/A
distribute-lft-neg-inN/A
lift-+.f32N/A
count-2N/A
distribute-lft-neg-outN/A
metadata-evalN/A
lower-fma.f32N/A
Applied rewrites99.1%
lift-*.f32N/A
lift-+.f32N/A
distribute-rgt-inN/A
lift-PI.f32N/A
add-cube-cbrtN/A
associate-*r*N/A
lower-fma.f32N/A
Applied rewrites99.1%
(FPCore (xi yi zi ux uy maxCos)
:precision binary32
(let* ((t_0 (* maxCos (- 1.0 ux)))
(t_1 (sqrt (fma (* (* (- ux 1.0) (* maxCos ux)) t_0) ux 1.0))))
(fma
(* yi t_1)
(sin (* PI (+ uy uy)))
(fma
(* xi (sin (fma (* -2.0 uy) PI (* PI 0.5))))
t_1
(* zi (* t_0 ux))))))float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
float t_0 = maxCos * (1.0f - ux);
float t_1 = sqrtf(fmaf((((ux - 1.0f) * (maxCos * ux)) * t_0), ux, 1.0f));
return fmaf((yi * t_1), sinf((((float) M_PI) * (uy + uy))), fmaf((xi * sinf(fmaf((-2.0f * uy), ((float) M_PI), (((float) M_PI) * 0.5f)))), t_1, (zi * (t_0 * ux))));
}
function code(xi, yi, zi, ux, uy, maxCos) t_0 = Float32(maxCos * Float32(Float32(1.0) - ux)) t_1 = sqrt(fma(Float32(Float32(Float32(ux - Float32(1.0)) * Float32(maxCos * ux)) * t_0), ux, Float32(1.0))) return fma(Float32(yi * t_1), sin(Float32(Float32(pi) * Float32(uy + uy))), fma(Float32(xi * sin(fma(Float32(Float32(-2.0) * uy), Float32(pi), Float32(Float32(pi) * Float32(0.5))))), t_1, Float32(zi * Float32(t_0 * ux)))) end
\begin{array}{l}
t_0 := maxCos \cdot \left(1 - ux\right)\\
t_1 := \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot t\_0, ux, 1\right)}\\
\mathsf{fma}\left(yi \cdot t\_1, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\mathsf{fma}\left(-2 \cdot uy, \pi, \pi \cdot 0.5\right)\right), t\_1, zi \cdot \left(t\_0 \cdot ux\right)\right)\right)
\end{array}
Initial program 98.9%
Applied rewrites99.0%
lift-cos.f32N/A
cos-neg-revN/A
lift-*.f32N/A
*-commutativeN/A
lift-+.f32N/A
count-2N/A
*-commutativeN/A
lift-*.f32N/A
lift-*.f32N/A
sin-+PI/2-revN/A
lower-sin.f32N/A
lift-*.f32N/A
lift-*.f32N/A
*-commutativeN/A
count-2N/A
lift-+.f32N/A
distribute-lft-neg-inN/A
lift-+.f32N/A
count-2N/A
distribute-lft-neg-outN/A
metadata-evalN/A
lower-fma.f32N/A
Applied rewrites99.1%
(FPCore (xi yi zi ux uy maxCos)
:precision binary32
(let* ((t_0 (* maxCos (- 1.0 ux)))
(t_1 (* PI (+ uy uy)))
(t_2 (sqrt (fma (* (* (- ux 1.0) (* maxCos ux)) t_0) ux 1.0))))
(fma
(* yi t_2)
(sin t_1)
(fma (* xi (cos t_1)) t_2 (* zi (* t_0 ux))))))float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
float t_0 = maxCos * (1.0f - ux);
float t_1 = ((float) M_PI) * (uy + uy);
float t_2 = sqrtf(fmaf((((ux - 1.0f) * (maxCos * ux)) * t_0), ux, 1.0f));
return fmaf((yi * t_2), sinf(t_1), fmaf((xi * cosf(t_1)), t_2, (zi * (t_0 * ux))));
}
function code(xi, yi, zi, ux, uy, maxCos) t_0 = Float32(maxCos * Float32(Float32(1.0) - ux)) t_1 = Float32(Float32(pi) * Float32(uy + uy)) t_2 = sqrt(fma(Float32(Float32(Float32(ux - Float32(1.0)) * Float32(maxCos * ux)) * t_0), ux, Float32(1.0))) return fma(Float32(yi * t_2), sin(t_1), fma(Float32(xi * cos(t_1)), t_2, Float32(zi * Float32(t_0 * ux)))) end
\begin{array}{l}
t_0 := maxCos \cdot \left(1 - ux\right)\\
t_1 := \pi \cdot \left(uy + uy\right)\\
t_2 := \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot t\_0, ux, 1\right)}\\
\mathsf{fma}\left(yi \cdot t\_2, \sin t\_1, \mathsf{fma}\left(xi \cdot \cos t\_1, t\_2, zi \cdot \left(t\_0 \cdot ux\right)\right)\right)
\end{array}
Initial program 98.9%
Applied rewrites99.0%
(FPCore (xi yi zi ux uy maxCos)
:precision binary32
(let* ((t_0 (* maxCos (- 1.0 ux)))
(t_1 (* PI (+ uy uy)))
(t_2 (sqrt (fma (* (* -1.0 (* maxCos ux)) t_0) ux 1.0))))
(fma
(* yi t_2)
(sin t_1)
(fma (* xi (cos t_1)) t_2 (* zi (* t_0 ux))))))float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
float t_0 = maxCos * (1.0f - ux);
float t_1 = ((float) M_PI) * (uy + uy);
float t_2 = sqrtf(fmaf(((-1.0f * (maxCos * ux)) * t_0), ux, 1.0f));
return fmaf((yi * t_2), sinf(t_1), fmaf((xi * cosf(t_1)), t_2, (zi * (t_0 * ux))));
}
function code(xi, yi, zi, ux, uy, maxCos) t_0 = Float32(maxCos * Float32(Float32(1.0) - ux)) t_1 = Float32(Float32(pi) * Float32(uy + uy)) t_2 = sqrt(fma(Float32(Float32(Float32(-1.0) * Float32(maxCos * ux)) * t_0), ux, Float32(1.0))) return fma(Float32(yi * t_2), sin(t_1), fma(Float32(xi * cos(t_1)), t_2, Float32(zi * Float32(t_0 * ux)))) end
\begin{array}{l}
t_0 := maxCos \cdot \left(1 - ux\right)\\
t_1 := \pi \cdot \left(uy + uy\right)\\
t_2 := \sqrt{\mathsf{fma}\left(\left(-1 \cdot \left(maxCos \cdot ux\right)\right) \cdot t\_0, ux, 1\right)}\\
\mathsf{fma}\left(yi \cdot t\_2, \sin t\_1, \mathsf{fma}\left(xi \cdot \cos t\_1, t\_2, zi \cdot \left(t\_0 \cdot ux\right)\right)\right)
\end{array}
Initial program 98.9%
Applied rewrites99.0%
Taylor expanded in ux around 0
Applied rewrites98.9%
Taylor expanded in ux around 0
Applied rewrites98.8%
(FPCore (xi yi zi ux uy maxCos)
:precision binary32
(let* ((t_0 (* (+ uy uy) PI))
(t_1
(sqrt (fma (* maxCos ux) (* (* (- ux 1.0) ux) maxCos) 1.0))))
(fma
(* (* (- 1.0 ux) maxCos) ux)
zi
(fma (* xi (cos t_0)) t_1 (* (* yi (sin t_0)) t_1)))))float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
float t_0 = (uy + uy) * ((float) M_PI);
float t_1 = sqrtf(fmaf((maxCos * ux), (((ux - 1.0f) * ux) * maxCos), 1.0f));
return fmaf((((1.0f - ux) * maxCos) * ux), zi, fmaf((xi * cosf(t_0)), t_1, ((yi * sinf(t_0)) * t_1)));
}
function code(xi, yi, zi, ux, uy, maxCos) t_0 = Float32(Float32(uy + uy) * Float32(pi)) t_1 = sqrt(fma(Float32(maxCos * ux), Float32(Float32(Float32(ux - Float32(1.0)) * ux) * maxCos), Float32(1.0))) return fma(Float32(Float32(Float32(Float32(1.0) - ux) * maxCos) * ux), zi, fma(Float32(xi * cos(t_0)), t_1, Float32(Float32(yi * sin(t_0)) * t_1))) end
\begin{array}{l}
t_0 := \left(uy + uy\right) \cdot \pi\\
t_1 := \sqrt{\mathsf{fma}\left(maxCos \cdot ux, \left(\left(ux - 1\right) \cdot ux\right) \cdot maxCos, 1\right)}\\
\mathsf{fma}\left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux, zi, \mathsf{fma}\left(xi \cdot \cos t\_0, t\_1, \left(yi \cdot \sin t\_0\right) \cdot t\_1\right)\right)
\end{array}
Initial program 98.9%
lift--.f32N/A
lift-*.f32N/A
fp-cancel-sub-sign-invN/A
+-commutativeN/A
sum-to-multN/A
lower-unsound-*.f32N/A
Applied rewrites37.7%
lift--.f32N/A
lift-*.f32N/A
fp-cancel-sub-sign-invN/A
+-commutativeN/A
sum-to-multN/A
lower-unsound-*.f32N/A
Applied rewrites37.5%
Taylor expanded in ux around 0
Applied rewrites31.4%
Taylor expanded in ux around 0
Applied rewrites37.3%
Taylor expanded in ux around 0
Applied rewrites33.3%
Taylor expanded in ux around 0
Applied rewrites37.4%
Applied rewrites98.8%
(FPCore (xi yi zi ux uy maxCos) :precision binary32 (let* ((t_0 (* 2.0 (* uy PI)))) (+ (fma xi (cos t_0) (* yi (sin t_0))) (* (* (* (- 1.0 ux) maxCos) ux) zi))))
float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
float t_0 = 2.0f * (uy * ((float) M_PI));
return fmaf(xi, cosf(t_0), (yi * sinf(t_0))) + ((((1.0f - ux) * maxCos) * ux) * zi);
}
function code(xi, yi, zi, ux, uy, maxCos) t_0 = Float32(Float32(2.0) * Float32(uy * Float32(pi))) return Float32(fma(xi, cos(t_0), Float32(yi * sin(t_0))) + Float32(Float32(Float32(Float32(Float32(1.0) - ux) * maxCos) * ux) * zi)) end
\begin{array}{l}
t_0 := 2 \cdot \left(uy \cdot \pi\right)\\
\mathsf{fma}\left(xi, \cos t\_0, yi \cdot \sin t\_0\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi
\end{array}
Initial program 98.9%
Taylor expanded in ux around 0
lower-fma.f32N/A
lower-cos.f32N/A
lower-*.f32N/A
lower-*.f32N/A
lower-PI.f32N/A
lower-*.f32N/A
lower-sin.f32N/A
lower-*.f32N/A
lower-*.f32N/A
lower-PI.f3298.7%
Applied rewrites98.7%
(FPCore (xi yi zi ux uy maxCos) :precision binary32 (let* ((t_0 (* 2.0 (* uy PI)))) (fma maxCos (* ux (* zi (- 1.0 ux))) (fma xi (cos t_0) (* yi (sin t_0))))))
float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
float t_0 = 2.0f * (uy * ((float) M_PI));
return fmaf(maxCos, (ux * (zi * (1.0f - ux))), fmaf(xi, cosf(t_0), (yi * sinf(t_0))));
}
function code(xi, yi, zi, ux, uy, maxCos) t_0 = Float32(Float32(2.0) * Float32(uy * Float32(pi))) return fma(maxCos, Float32(ux * Float32(zi * Float32(Float32(1.0) - ux))), fma(xi, cos(t_0), Float32(yi * sin(t_0)))) end
\begin{array}{l}
t_0 := 2 \cdot \left(uy \cdot \pi\right)\\
\mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), \mathsf{fma}\left(xi, \cos t\_0, yi \cdot \sin t\_0\right)\right)
\end{array}
Initial program 98.9%
Taylor expanded in uy around 0
lower-fma.f32N/A
lower-*.f32N/A
lower-*.f32N/A
lower--.f32N/A
lower-*.f32N/A
lower-sqrt.f32N/A
lower--.f32N/A
Applied rewrites52.3%
Taylor expanded in ux around 0
lower-+.f32N/A
lower-*.f32N/A
lower-*.f3250.2%
Applied rewrites50.2%
Taylor expanded in maxCos around 0
lower-fma.f32N/A
lower-*.f32N/A
lower-*.f32N/A
lower--.f32N/A
lower-fma.f32N/A
Applied rewrites98.7%
(FPCore (xi yi zi ux uy maxCos)
:precision binary32
(if (<= uy 0.0017999999690800905)
(fma
maxCos
(* ux (* zi (- 1.0 ux)))
(+
xi
(* uy (fma -2.0 (* uy (* xi (pow PI 2.0))) (* 2.0 (* yi PI))))))
(fma
xi
(sin (fma -2.0 (* uy PI) (* 0.5 PI)))
(* yi (sin (* 2.0 (* uy PI)))))))float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
float tmp;
if (uy <= 0.0017999999690800905f) {
tmp = fmaf(maxCos, (ux * (zi * (1.0f - ux))), (xi + (uy * fmaf(-2.0f, (uy * (xi * powf(((float) M_PI), 2.0f))), (2.0f * (yi * ((float) M_PI)))))));
} else {
tmp = fmaf(xi, sinf(fmaf(-2.0f, (uy * ((float) M_PI)), (0.5f * ((float) M_PI)))), (yi * sinf((2.0f * (uy * ((float) M_PI))))));
}
return tmp;
}
function code(xi, yi, zi, ux, uy, maxCos) tmp = Float32(0.0) if (uy <= Float32(0.0017999999690800905)) tmp = fma(maxCos, Float32(ux * Float32(zi * Float32(Float32(1.0) - ux))), Float32(xi + Float32(uy * fma(Float32(-2.0), Float32(uy * Float32(xi * (Float32(pi) ^ Float32(2.0)))), Float32(Float32(2.0) * Float32(yi * Float32(pi))))))); else tmp = fma(xi, sin(fma(Float32(-2.0), Float32(uy * Float32(pi)), Float32(Float32(0.5) * Float32(pi)))), Float32(yi * sin(Float32(Float32(2.0) * Float32(uy * Float32(pi)))))); end return tmp end
\begin{array}{l}
\mathbf{if}\;uy \leq 0.0017999999690800905:\\
\;\;\;\;\mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\pi}^{2}\right), 2 \cdot \left(yi \cdot \pi\right)\right)\right)\\
\mathbf{else}:\\
\;\;\;\;\mathsf{fma}\left(xi, \sin \left(\mathsf{fma}\left(-2, uy \cdot \pi, 0.5 \cdot \pi\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \pi\right)\right)\right)\\
\end{array}
if uy < 0.00179999997Initial program 98.9%
Taylor expanded in uy around 0
Applied rewrites86.3%
Taylor expanded in ux around 0
lower-+.f32N/A
lower-*.f32N/A
lower-fma.f32N/A
lower-*.f32N/A
lower-*.f32N/A
lower-pow.f32N/A
lower-PI.f32N/A
lower-*.f32N/A
Applied rewrites86.1%
if 0.00179999997 < uy Initial program 98.9%
Applied rewrites99.0%
lift-cos.f32N/A
cos-neg-revN/A
lift-*.f32N/A
*-commutativeN/A
lift-+.f32N/A
count-2N/A
*-commutativeN/A
lift-*.f32N/A
lift-*.f32N/A
sin-+PI/2-revN/A
lower-sin.f32N/A
lift-*.f32N/A
lift-*.f32N/A
*-commutativeN/A
count-2N/A
lift-+.f32N/A
distribute-lft-neg-inN/A
lift-+.f32N/A
count-2N/A
distribute-lft-neg-outN/A
metadata-evalN/A
lower-fma.f32N/A
Applied rewrites99.1%
Taylor expanded in ux around 0
lower-fma.f32N/A
lower-sin.f32N/A
lower-fma.f32N/A
lower-*.f32N/A
lower-PI.f32N/A
lower-*.f32N/A
lower-PI.f32N/A
Applied rewrites90.5%
(FPCore (xi yi zi ux uy maxCos)
:precision binary32
(let* ((t_0 (* 2.0 (* uy PI))))
(if (<= uy 0.0017999999690800905)
(fma
maxCos
(* ux (* zi (- 1.0 ux)))
(+
xi
(* uy (fma -2.0 (* uy (* xi (pow PI 2.0))) (* 2.0 (* yi PI))))))
(fma xi (cos t_0) (* yi (sin t_0))))))float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
float t_0 = 2.0f * (uy * ((float) M_PI));
float tmp;
if (uy <= 0.0017999999690800905f) {
tmp = fmaf(maxCos, (ux * (zi * (1.0f - ux))), (xi + (uy * fmaf(-2.0f, (uy * (xi * powf(((float) M_PI), 2.0f))), (2.0f * (yi * ((float) M_PI)))))));
} else {
tmp = fmaf(xi, cosf(t_0), (yi * sinf(t_0)));
}
return tmp;
}
function code(xi, yi, zi, ux, uy, maxCos) t_0 = Float32(Float32(2.0) * Float32(uy * Float32(pi))) tmp = Float32(0.0) if (uy <= Float32(0.0017999999690800905)) tmp = fma(maxCos, Float32(ux * Float32(zi * Float32(Float32(1.0) - ux))), Float32(xi + Float32(uy * fma(Float32(-2.0), Float32(uy * Float32(xi * (Float32(pi) ^ Float32(2.0)))), Float32(Float32(2.0) * Float32(yi * Float32(pi))))))); else tmp = fma(xi, cos(t_0), Float32(yi * sin(t_0))); end return tmp end
\begin{array}{l}
t_0 := 2 \cdot \left(uy \cdot \pi\right)\\
\mathbf{if}\;uy \leq 0.0017999999690800905:\\
\;\;\;\;\mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\pi}^{2}\right), 2 \cdot \left(yi \cdot \pi\right)\right)\right)\\
\mathbf{else}:\\
\;\;\;\;\mathsf{fma}\left(xi, \cos t\_0, yi \cdot \sin t\_0\right)\\
\end{array}
if uy < 0.00179999997Initial program 98.9%
Taylor expanded in uy around 0
Applied rewrites86.3%
Taylor expanded in ux around 0
lower-+.f32N/A
lower-*.f32N/A
lower-fma.f32N/A
lower-*.f32N/A
lower-*.f32N/A
lower-pow.f32N/A
lower-PI.f32N/A
lower-*.f32N/A
Applied rewrites86.1%
if 0.00179999997 < uy Initial program 98.9%
Applied rewrites99.0%
Taylor expanded in ux around 0
lower-fma.f32N/A
lower-cos.f32N/A
lower-*.f32N/A
lower-*.f32N/A
lower-PI.f32N/A
lower-*.f32N/A
lower-sin.f32N/A
lower-*.f32N/A
lower-*.f32N/A
lower-PI.f3290.5%
Applied rewrites90.5%
(FPCore (xi yi zi ux uy maxCos) :precision binary32 (let* ((t_0 (* 2.0 (* uy PI)))) (fma maxCos (* ux zi) (fma xi (cos t_0) (* yi (sin t_0))))))
float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
float t_0 = 2.0f * (uy * ((float) M_PI));
return fmaf(maxCos, (ux * zi), fmaf(xi, cosf(t_0), (yi * sinf(t_0))));
}
function code(xi, yi, zi, ux, uy, maxCos) t_0 = Float32(Float32(2.0) * Float32(uy * Float32(pi))) return fma(maxCos, Float32(ux * zi), fma(xi, cos(t_0), Float32(yi * sin(t_0)))) end
\begin{array}{l}
t_0 := 2 \cdot \left(uy \cdot \pi\right)\\
\mathsf{fma}\left(maxCos, ux \cdot zi, \mathsf{fma}\left(xi, \cos t\_0, yi \cdot \sin t\_0\right)\right)
\end{array}
Initial program 98.9%
Taylor expanded in uy around 0
lower-fma.f32N/A
lower-*.f32N/A
lower-*.f32N/A
lower--.f32N/A
lower-*.f32N/A
lower-sqrt.f32N/A
lower--.f32N/A
Applied rewrites52.3%
Taylor expanded in ux around 0
lower-+.f32N/A
lower-*.f32N/A
lower-*.f3250.2%
Applied rewrites50.2%
Taylor expanded in xi around 0
lower-*.f32N/A
lower-*.f3211.9%
Applied rewrites11.9%
Taylor expanded in ux around 0
lower-fma.f32N/A
lower-*.f32N/A
lower-fma.f32N/A
lower-cos.f32N/A
lower-*.f32N/A
lower-*.f32N/A
lower-PI.f32N/A
lower-*.f32N/A
Applied rewrites95.9%
(FPCore (xi yi zi ux uy maxCos)
:precision binary32
(let* ((t_0 (* ux (* zi (- 1.0 ux)))))
(if (<= uy 0.03500000014901161)
(fma
maxCos
t_0
(+
xi
(* uy (fma -2.0 (* uy (* xi (pow PI 2.0))) (* 2.0 (* yi PI))))))
(fma
(*
yi
(sqrt (fma (* (* (- ux 1.0) (* maxCos ux)) maxCos) ux 1.0)))
(sin (* PI (+ uy uy)))
(* maxCos t_0)))))float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
float t_0 = ux * (zi * (1.0f - ux));
float tmp;
if (uy <= 0.03500000014901161f) {
tmp = fmaf(maxCos, t_0, (xi + (uy * fmaf(-2.0f, (uy * (xi * powf(((float) M_PI), 2.0f))), (2.0f * (yi * ((float) M_PI)))))));
} else {
tmp = fmaf((yi * sqrtf(fmaf((((ux - 1.0f) * (maxCos * ux)) * maxCos), ux, 1.0f))), sinf((((float) M_PI) * (uy + uy))), (maxCos * t_0));
}
return tmp;
}
function code(xi, yi, zi, ux, uy, maxCos) t_0 = Float32(ux * Float32(zi * Float32(Float32(1.0) - ux))) tmp = Float32(0.0) if (uy <= Float32(0.03500000014901161)) tmp = fma(maxCos, t_0, Float32(xi + Float32(uy * fma(Float32(-2.0), Float32(uy * Float32(xi * (Float32(pi) ^ Float32(2.0)))), Float32(Float32(2.0) * Float32(yi * Float32(pi))))))); else tmp = fma(Float32(yi * sqrt(fma(Float32(Float32(Float32(ux - Float32(1.0)) * Float32(maxCos * ux)) * maxCos), ux, Float32(1.0)))), sin(Float32(Float32(pi) * Float32(uy + uy))), Float32(maxCos * t_0)); end return tmp end
\begin{array}{l}
t_0 := ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\\
\mathbf{if}\;uy \leq 0.03500000014901161:\\
\;\;\;\;\mathsf{fma}\left(maxCos, t\_0, xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\pi}^{2}\right), 2 \cdot \left(yi \cdot \pi\right)\right)\right)\\
\mathbf{else}:\\
\;\;\;\;\mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot maxCos, ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), maxCos \cdot t\_0\right)\\
\end{array}
if uy < 0.0350000001Initial program 98.9%
Taylor expanded in uy around 0
Applied rewrites86.3%
Taylor expanded in ux around 0
lower-+.f32N/A
lower-*.f32N/A
lower-fma.f32N/A
lower-*.f32N/A
lower-*.f32N/A
lower-pow.f32N/A
lower-PI.f32N/A
lower-*.f32N/A
Applied rewrites86.1%
if 0.0350000001 < uy Initial program 98.9%
Applied rewrites99.0%
lift-cos.f32N/A
cos-neg-revN/A
lift-*.f32N/A
*-commutativeN/A
lift-+.f32N/A
count-2N/A
*-commutativeN/A
lift-*.f32N/A
lift-*.f32N/A
sin-+PI/2-revN/A
lower-sin.f32N/A
lift-*.f32N/A
lift-*.f32N/A
*-commutativeN/A
count-2N/A
lift-+.f32N/A
distribute-lft-neg-inN/A
lift-+.f32N/A
count-2N/A
distribute-lft-neg-outN/A
metadata-evalN/A
lower-fma.f32N/A
Applied rewrites99.1%
Taylor expanded in xi around 0
lower-*.f32N/A
lower-*.f32N/A
lower-*.f32N/A
lower--.f3244.1%
Applied rewrites44.1%
Taylor expanded in ux around 0
Applied rewrites44.1%
(FPCore (xi yi zi ux uy maxCos)
:precision binary32
(let* ((t_0 (* ux (* zi (- 1.0 ux)))))
(if (<= uy 0.03500000014901161)
(fma
maxCos
t_0
(+
xi
(* uy (fma -2.0 (* uy (* xi (pow PI 2.0))) (* 2.0 (* yi PI))))))
(fma
(*
yi
(sqrt
(fma
(* (* (- ux 1.0) (* maxCos ux)) (* maxCos (- 1.0 ux)))
ux
1.0)))
(sin (* PI (+ uy uy)))
(* maxCos t_0)))))float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
float t_0 = ux * (zi * (1.0f - ux));
float tmp;
if (uy <= 0.03500000014901161f) {
tmp = fmaf(maxCos, t_0, (xi + (uy * fmaf(-2.0f, (uy * (xi * powf(((float) M_PI), 2.0f))), (2.0f * (yi * ((float) M_PI)))))));
} else {
tmp = fmaf((yi * sqrtf(fmaf((((ux - 1.0f) * (maxCos * ux)) * (maxCos * (1.0f - ux))), ux, 1.0f))), sinf((((float) M_PI) * (uy + uy))), (maxCos * t_0));
}
return tmp;
}
function code(xi, yi, zi, ux, uy, maxCos) t_0 = Float32(ux * Float32(zi * Float32(Float32(1.0) - ux))) tmp = Float32(0.0) if (uy <= Float32(0.03500000014901161)) tmp = fma(maxCos, t_0, Float32(xi + Float32(uy * fma(Float32(-2.0), Float32(uy * Float32(xi * (Float32(pi) ^ Float32(2.0)))), Float32(Float32(2.0) * Float32(yi * Float32(pi))))))); else tmp = fma(Float32(yi * sqrt(fma(Float32(Float32(Float32(ux - Float32(1.0)) * Float32(maxCos * ux)) * Float32(maxCos * Float32(Float32(1.0) - ux))), ux, Float32(1.0)))), sin(Float32(Float32(pi) * Float32(uy + uy))), Float32(maxCos * t_0)); end return tmp end
\begin{array}{l}
t_0 := ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\\
\mathbf{if}\;uy \leq 0.03500000014901161:\\
\;\;\;\;\mathsf{fma}\left(maxCos, t\_0, xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\pi}^{2}\right), 2 \cdot \left(yi \cdot \pi\right)\right)\right)\\
\mathbf{else}:\\
\;\;\;\;\mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), maxCos \cdot t\_0\right)\\
\end{array}
if uy < 0.0350000001Initial program 98.9%
Taylor expanded in uy around 0
Applied rewrites86.3%
Taylor expanded in ux around 0
lower-+.f32N/A
lower-*.f32N/A
lower-fma.f32N/A
lower-*.f32N/A
lower-*.f32N/A
lower-pow.f32N/A
lower-PI.f32N/A
lower-*.f32N/A
Applied rewrites86.1%
if 0.0350000001 < uy Initial program 98.9%
Applied rewrites99.0%
Taylor expanded in xi around 0
lower-*.f32N/A
lower-*.f32N/A
lower-*.f32N/A
lower--.f3244.1%
Applied rewrites44.1%
(FPCore (xi yi zi ux uy maxCos) :precision binary32 (fma maxCos (* ux (* zi (- 1.0 ux))) (+ xi (* uy (fma -2.0 (* uy (* xi (pow PI 2.0))) (* 2.0 (* yi PI)))))))
float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
return fmaf(maxCos, (ux * (zi * (1.0f - ux))), (xi + (uy * fmaf(-2.0f, (uy * (xi * powf(((float) M_PI), 2.0f))), (2.0f * (yi * ((float) M_PI)))))));
}
function code(xi, yi, zi, ux, uy, maxCos) return fma(maxCos, Float32(ux * Float32(zi * Float32(Float32(1.0) - ux))), Float32(xi + Float32(uy * fma(Float32(-2.0), Float32(uy * Float32(xi * (Float32(pi) ^ Float32(2.0)))), Float32(Float32(2.0) * Float32(yi * Float32(pi))))))) end
\mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\pi}^{2}\right), 2 \cdot \left(yi \cdot \pi\right)\right)\right)
Initial program 98.9%
Taylor expanded in uy around 0
Applied rewrites86.3%
Taylor expanded in ux around 0
lower-+.f32N/A
lower-*.f32N/A
lower-fma.f32N/A
lower-*.f32N/A
lower-*.f32N/A
lower-pow.f32N/A
lower-PI.f32N/A
lower-*.f32N/A
Applied rewrites86.1%
(FPCore (xi yi zi ux uy maxCos) :precision binary32 (+ xi (fma maxCos (* ux zi) (* uy (fma -2.0 (* uy (* xi (pow PI 2.0))) (* 2.0 (* yi PI)))))))
float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
return xi + fmaf(maxCos, (ux * zi), (uy * fmaf(-2.0f, (uy * (xi * powf(((float) M_PI), 2.0f))), (2.0f * (yi * ((float) M_PI))))));
}
function code(xi, yi, zi, ux, uy, maxCos) return Float32(xi + fma(maxCos, Float32(ux * zi), Float32(uy * fma(Float32(-2.0), Float32(uy * Float32(xi * (Float32(pi) ^ Float32(2.0)))), Float32(Float32(2.0) * Float32(yi * Float32(pi))))))) end
xi + \mathsf{fma}\left(maxCos, ux \cdot zi, uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\pi}^{2}\right), 2 \cdot \left(yi \cdot \pi\right)\right)\right)
Initial program 98.9%
Taylor expanded in uy around 0
Applied rewrites86.3%
Taylor expanded in ux around 0
lower-+.f32N/A
lower-fma.f32N/A
lower-*.f32N/A
lower-*.f32N/A
lower-fma.f32N/A
Applied rewrites83.4%
(FPCore (xi yi zi ux uy maxCos) :precision binary32 (+ xi (fma 2.0 (* uy (* yi PI)) (* maxCos (* ux (* zi (- 1.0 ux)))))))
float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
return xi + fmaf(2.0f, (uy * (yi * ((float) M_PI))), (maxCos * (ux * (zi * (1.0f - ux)))));
}
function code(xi, yi, zi, ux, uy, maxCos) return Float32(xi + fma(Float32(2.0), Float32(uy * Float32(yi * Float32(pi))), Float32(maxCos * Float32(ux * Float32(zi * Float32(Float32(1.0) - ux)))))) end
xi + \mathsf{fma}\left(2, uy \cdot \left(yi \cdot \pi\right), maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right)\right)
Initial program 98.9%
Taylor expanded in uy around 0
lower-fma.f32N/A
Applied rewrites82.1%
Taylor expanded in maxCos around 0
lower-+.f32N/A
lower-fma.f32N/A
lower-*.f32N/A
lower-*.f32N/A
lower-PI.f32N/A
lower-*.f32N/A
lower-*.f32N/A
lower-*.f32N/A
lower--.f3281.9%
Applied rewrites81.9%
(FPCore (xi yi zi ux uy maxCos) :precision binary32 (fma (* (* (- 1.0 ux) ux) maxCos) zi (+ xi (* 2.0 (* uy (* yi PI))))))
float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
return fmaf((((1.0f - ux) * ux) * maxCos), zi, (xi + (2.0f * (uy * (yi * ((float) M_PI))))));
}
function code(xi, yi, zi, ux, uy, maxCos) return fma(Float32(Float32(Float32(Float32(1.0) - ux) * ux) * maxCos), zi, Float32(xi + Float32(Float32(2.0) * Float32(uy * Float32(yi * Float32(pi)))))) end
\mathsf{fma}\left(\left(\left(1 - ux\right) \cdot ux\right) \cdot maxCos, zi, xi + 2 \cdot \left(uy \cdot \left(yi \cdot \pi\right)\right)\right)
Initial program 98.9%
Taylor expanded in uy around 0
lower-fma.f32N/A
Applied rewrites82.1%
Applied rewrites82.1%
Taylor expanded in ux around 0
lower-+.f32N/A
lower-*.f32N/A
lower-*.f32N/A
lower-*.f32N/A
lower-PI.f3281.9%
Applied rewrites81.9%
(FPCore (xi yi zi ux uy maxCos) :precision binary32 (+ xi (fma 2.0 (* uy (* yi PI)) (* maxCos (* ux zi)))))
float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
return xi + fmaf(2.0f, (uy * (yi * ((float) M_PI))), (maxCos * (ux * zi)));
}
function code(xi, yi, zi, ux, uy, maxCos) return Float32(xi + fma(Float32(2.0), Float32(uy * Float32(yi * Float32(pi))), Float32(maxCos * Float32(ux * zi)))) end
xi + \mathsf{fma}\left(2, uy \cdot \left(yi \cdot \pi\right), maxCos \cdot \left(ux \cdot zi\right)\right)
Initial program 98.9%
Taylor expanded in uy around 0
lower-fma.f32N/A
Applied rewrites82.1%
Taylor expanded in ux around 0
lower-+.f32N/A
lower-fma.f32N/A
lower-*.f32N/A
lower-*.f32N/A
lower-PI.f32N/A
lower-*.f32N/A
lower-*.f3279.3%
Applied rewrites79.3%
(FPCore (xi yi zi ux uy maxCos) :precision binary32 (+ xi (* 2.0 (* uy (* yi PI)))))
float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
return xi + (2.0f * (uy * (yi * ((float) M_PI))));
}
function code(xi, yi, zi, ux, uy, maxCos) return Float32(xi + Float32(Float32(2.0) * Float32(uy * Float32(yi * Float32(pi))))) end
function tmp = code(xi, yi, zi, ux, uy, maxCos) tmp = xi + (single(2.0) * (uy * (yi * single(pi)))); end
xi + 2 \cdot \left(uy \cdot \left(yi \cdot \pi\right)\right)
Initial program 98.9%
Taylor expanded in uy around 0
lower-fma.f32N/A
Applied rewrites82.1%
Taylor expanded in ux around 0
lower-+.f32N/A
lower-*.f32N/A
lower-*.f32N/A
lower-*.f32N/A
lower-PI.f3274.5%
Applied rewrites74.5%
(FPCore (xi yi zi ux uy maxCos) :precision binary32 (fma (* maxCos ux) zi xi))
float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
return fmaf((maxCos * ux), zi, xi);
}
function code(xi, yi, zi, ux, uy, maxCos) return fma(Float32(maxCos * ux), zi, xi) end
\mathsf{fma}\left(maxCos \cdot ux, zi, xi\right)
Initial program 98.9%
Taylor expanded in uy around 0
lower-fma.f32N/A
lower-*.f32N/A
lower-*.f32N/A
lower--.f32N/A
lower-*.f32N/A
lower-sqrt.f32N/A
lower--.f32N/A
Applied rewrites52.3%
Taylor expanded in ux around 0
lower-+.f32N/A
lower-*.f32N/A
lower-*.f3250.2%
Applied rewrites50.2%
lift-+.f32N/A
+-commutativeN/A
lift-*.f32N/A
lift-*.f32N/A
associate-*r*N/A
lift-*.f32N/A
lower-fma.f3250.2%
Applied rewrites50.2%
(FPCore (xi yi zi ux uy maxCos) :precision binary32 (* (* maxCos ux) zi))
float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
return (maxCos * ux) * zi;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(4) function code(xi, yi, zi, ux, uy, maxcos)
use fmin_fmax_functions
real(4), intent (in) :: xi
real(4), intent (in) :: yi
real(4), intent (in) :: zi
real(4), intent (in) :: ux
real(4), intent (in) :: uy
real(4), intent (in) :: maxcos
code = (maxcos * ux) * zi
end function
function code(xi, yi, zi, ux, uy, maxCos) return Float32(Float32(maxCos * ux) * zi) end
function tmp = code(xi, yi, zi, ux, uy, maxCos) tmp = (maxCos * ux) * zi; end
\left(maxCos \cdot ux\right) \cdot zi
Initial program 98.9%
Taylor expanded in uy around 0
lower-fma.f32N/A
lower-*.f32N/A
lower-*.f32N/A
lower--.f32N/A
lower-*.f32N/A
lower-sqrt.f32N/A
lower--.f32N/A
Applied rewrites52.3%
Taylor expanded in ux around 0
lower-+.f32N/A
lower-*.f32N/A
lower-*.f3250.2%
Applied rewrites50.2%
Taylor expanded in xi around 0
lower-*.f32N/A
lower-*.f3211.9%
Applied rewrites11.9%
lift-*.f32N/A
lift-*.f32N/A
associate-*r*N/A
lift-*.f32N/A
lower-*.f3211.9%
Applied rewrites11.9%
(FPCore (xi yi zi ux uy maxCos) :precision binary32 (* maxCos (* ux zi)))
float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
return maxCos * (ux * zi);
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(4) function code(xi, yi, zi, ux, uy, maxcos)
use fmin_fmax_functions
real(4), intent (in) :: xi
real(4), intent (in) :: yi
real(4), intent (in) :: zi
real(4), intent (in) :: ux
real(4), intent (in) :: uy
real(4), intent (in) :: maxcos
code = maxcos * (ux * zi)
end function
function code(xi, yi, zi, ux, uy, maxCos) return Float32(maxCos * Float32(ux * zi)) end
function tmp = code(xi, yi, zi, ux, uy, maxCos) tmp = maxCos * (ux * zi); end
maxCos \cdot \left(ux \cdot zi\right)
Initial program 98.9%
Taylor expanded in uy around 0
lower-fma.f32N/A
lower-*.f32N/A
lower-*.f32N/A
lower--.f32N/A
lower-*.f32N/A
lower-sqrt.f32N/A
lower--.f32N/A
Applied rewrites52.3%
Taylor expanded in ux around 0
lower-+.f32N/A
lower-*.f32N/A
lower-*.f3250.2%
Applied rewrites50.2%
Taylor expanded in xi around 0
lower-*.f32N/A
lower-*.f3211.9%
Applied rewrites11.9%
herbie shell --seed 2025227
(FPCore (xi yi zi ux uy maxCos)
:name "UniformSampleCone 2"
:precision binary32
:pre (and (and (and (and (and (and (<= -10000.0 xi) (<= xi 10000.0)) (and (<= -10000.0 yi) (<= yi 10000.0))) (and (<= -10000.0 zi) (<= zi 10000.0))) (and (<= 2.328306437e-10 ux) (<= ux 1.0))) (and (<= 2.328306437e-10 uy) (<= uy 1.0))) (and (<= 0.0 maxCos) (<= maxCos 1.0)))
(+ (+ (* (* (cos (* (* uy 2.0) PI)) (sqrt (- 1.0 (* (* (* (- 1.0 ux) maxCos) ux) (* (* (- 1.0 ux) maxCos) ux))))) xi) (* (* (sin (* (* uy 2.0) PI)) (sqrt (- 1.0 (* (* (* (- 1.0 ux) maxCos) ux) (* (* (- 1.0 ux) maxCos) ux))))) yi)) (* (* (* (- 1.0 ux) maxCos) ux) zi)))