UniformSampleCone 2

Percentage Accurate: 98.9% → 99.1%
Time: 11.2s
Alternatives: 21
Speedup: 1.0×

Specification

?
\[\left(\left(\left(\left(\left(-10000 \leq xi \land xi \leq 10000\right) \land \left(-10000 \leq yi \land yi \leq 10000\right)\right) \land \left(-10000 \leq zi \land zi \leq 10000\right)\right) \land \left(2.328306437 \cdot 10^{-10} \leq ux \land ux \leq 1\right)\right) \land \left(2.328306437 \cdot 10^{-10} \leq uy \land uy \leq 1\right)\right) \land \left(0 \leq maxCos \land maxCos \leq 1\right)\]
\[\begin{array}{l} t_0 := \left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\\ t_1 := \sqrt{1 - t\_0 \cdot t\_0}\\ t_2 := \left(uy \cdot 2\right) \cdot \pi\\ \left(\left(\cos t\_2 \cdot t\_1\right) \cdot xi + \left(\sin t\_2 \cdot t\_1\right) \cdot yi\right) + t\_0 \cdot zi \end{array} \]
(FPCore (xi yi zi ux uy maxCos)
  :precision binary32
  (let* ((t_0 (* (* (- 1.0 ux) maxCos) ux))
       (t_1 (sqrt (- 1.0 (* t_0 t_0))))
       (t_2 (* (* uy 2.0) PI)))
  (+
   (+ (* (* (cos t_2) t_1) xi) (* (* (sin t_2) t_1) yi))
   (* t_0 zi))))
float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
	float t_0 = ((1.0f - ux) * maxCos) * ux;
	float t_1 = sqrtf((1.0f - (t_0 * t_0)));
	float t_2 = (uy * 2.0f) * ((float) M_PI);
	return (((cosf(t_2) * t_1) * xi) + ((sinf(t_2) * t_1) * yi)) + (t_0 * zi);
}
function code(xi, yi, zi, ux, uy, maxCos)
	t_0 = Float32(Float32(Float32(Float32(1.0) - ux) * maxCos) * ux)
	t_1 = sqrt(Float32(Float32(1.0) - Float32(t_0 * t_0)))
	t_2 = Float32(Float32(uy * Float32(2.0)) * Float32(pi))
	return Float32(Float32(Float32(Float32(cos(t_2) * t_1) * xi) + Float32(Float32(sin(t_2) * t_1) * yi)) + Float32(t_0 * zi))
end
function tmp = code(xi, yi, zi, ux, uy, maxCos)
	t_0 = ((single(1.0) - ux) * maxCos) * ux;
	t_1 = sqrt((single(1.0) - (t_0 * t_0)));
	t_2 = (uy * single(2.0)) * single(pi);
	tmp = (((cos(t_2) * t_1) * xi) + ((sin(t_2) * t_1) * yi)) + (t_0 * zi);
end
\begin{array}{l}
t_0 := \left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\\
t_1 := \sqrt{1 - t\_0 \cdot t\_0}\\
t_2 := \left(uy \cdot 2\right) \cdot \pi\\
\left(\left(\cos t\_2 \cdot t\_1\right) \cdot xi + \left(\sin t\_2 \cdot t\_1\right) \cdot yi\right) + t\_0 \cdot zi
\end{array}

Local Percentage Accuracy vs ?

The average percentage accuracy by input value. Horizontal axis shows value of an input variable; the variable is choosen in the title. Vertical axis is accuracy; higher is better. Red represent the original program, while blue represents Herbie's suggestion. These can be toggled with buttons below the plot. The line is an average while dots represent individual samples.

Accuracy vs Speed?

Herbie found 21 alternatives:

AlternativeAccuracySpeedup
The accuracy (vertical axis) and speed (horizontal axis) of each alternatives. Up and to the right is better. The red square shows the initial program, and each blue circle shows an alternative.The line shows the best available speed-accuracy tradeoffs.

Initial Program: 98.9% accurate, 1.0× speedup?

\[\begin{array}{l} t_0 := \left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\\ t_1 := \sqrt{1 - t\_0 \cdot t\_0}\\ t_2 := \left(uy \cdot 2\right) \cdot \pi\\ \left(\left(\cos t\_2 \cdot t\_1\right) \cdot xi + \left(\sin t\_2 \cdot t\_1\right) \cdot yi\right) + t\_0 \cdot zi \end{array} \]
(FPCore (xi yi zi ux uy maxCos)
  :precision binary32
  (let* ((t_0 (* (* (- 1.0 ux) maxCos) ux))
       (t_1 (sqrt (- 1.0 (* t_0 t_0))))
       (t_2 (* (* uy 2.0) PI)))
  (+
   (+ (* (* (cos t_2) t_1) xi) (* (* (sin t_2) t_1) yi))
   (* t_0 zi))))
float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
	float t_0 = ((1.0f - ux) * maxCos) * ux;
	float t_1 = sqrtf((1.0f - (t_0 * t_0)));
	float t_2 = (uy * 2.0f) * ((float) M_PI);
	return (((cosf(t_2) * t_1) * xi) + ((sinf(t_2) * t_1) * yi)) + (t_0 * zi);
}
function code(xi, yi, zi, ux, uy, maxCos)
	t_0 = Float32(Float32(Float32(Float32(1.0) - ux) * maxCos) * ux)
	t_1 = sqrt(Float32(Float32(1.0) - Float32(t_0 * t_0)))
	t_2 = Float32(Float32(uy * Float32(2.0)) * Float32(pi))
	return Float32(Float32(Float32(Float32(cos(t_2) * t_1) * xi) + Float32(Float32(sin(t_2) * t_1) * yi)) + Float32(t_0 * zi))
end
function tmp = code(xi, yi, zi, ux, uy, maxCos)
	t_0 = ((single(1.0) - ux) * maxCos) * ux;
	t_1 = sqrt((single(1.0) - (t_0 * t_0)));
	t_2 = (uy * single(2.0)) * single(pi);
	tmp = (((cos(t_2) * t_1) * xi) + ((sin(t_2) * t_1) * yi)) + (t_0 * zi);
end
\begin{array}{l}
t_0 := \left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\\
t_1 := \sqrt{1 - t\_0 \cdot t\_0}\\
t_2 := \left(uy \cdot 2\right) \cdot \pi\\
\left(\left(\cos t\_2 \cdot t\_1\right) \cdot xi + \left(\sin t\_2 \cdot t\_1\right) \cdot yi\right) + t\_0 \cdot zi
\end{array}

Alternative 1: 99.1% accurate, 0.8× speedup?

\[\begin{array}{l} t_0 := maxCos \cdot \left(1 - ux\right)\\ t_1 := \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot t\_0, ux, 1\right)}\\ \mathsf{fma}\left(yi \cdot t\_1, \sin \left(\mathsf{fma}\left(uy \cdot \sqrt[3]{\pi \cdot \pi}, \sqrt[3]{\pi}, uy \cdot \pi\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\mathsf{fma}\left(-2 \cdot uy, \pi, \pi \cdot 0.5\right)\right), t\_1, zi \cdot \left(t\_0 \cdot ux\right)\right)\right) \end{array} \]
(FPCore (xi yi zi ux uy maxCos)
  :precision binary32
  (let* ((t_0 (* maxCos (- 1.0 ux)))
       (t_1 (sqrt (fma (* (* (- ux 1.0) (* maxCos ux)) t_0) ux 1.0))))
  (fma
   (* yi t_1)
   (sin (fma (* uy (cbrt (* PI PI))) (cbrt PI) (* uy PI)))
   (fma
    (* xi (sin (fma (* -2.0 uy) PI (* PI 0.5))))
    t_1
    (* zi (* t_0 ux))))))
float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
	float t_0 = maxCos * (1.0f - ux);
	float t_1 = sqrtf(fmaf((((ux - 1.0f) * (maxCos * ux)) * t_0), ux, 1.0f));
	return fmaf((yi * t_1), sinf(fmaf((uy * cbrtf((((float) M_PI) * ((float) M_PI)))), cbrtf(((float) M_PI)), (uy * ((float) M_PI)))), fmaf((xi * sinf(fmaf((-2.0f * uy), ((float) M_PI), (((float) M_PI) * 0.5f)))), t_1, (zi * (t_0 * ux))));
}
function code(xi, yi, zi, ux, uy, maxCos)
	t_0 = Float32(maxCos * Float32(Float32(1.0) - ux))
	t_1 = sqrt(fma(Float32(Float32(Float32(ux - Float32(1.0)) * Float32(maxCos * ux)) * t_0), ux, Float32(1.0)))
	return fma(Float32(yi * t_1), sin(fma(Float32(uy * cbrt(Float32(Float32(pi) * Float32(pi)))), cbrt(Float32(pi)), Float32(uy * Float32(pi)))), fma(Float32(xi * sin(fma(Float32(Float32(-2.0) * uy), Float32(pi), Float32(Float32(pi) * Float32(0.5))))), t_1, Float32(zi * Float32(t_0 * ux))))
end
\begin{array}{l}
t_0 := maxCos \cdot \left(1 - ux\right)\\
t_1 := \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot t\_0, ux, 1\right)}\\
\mathsf{fma}\left(yi \cdot t\_1, \sin \left(\mathsf{fma}\left(uy \cdot \sqrt[3]{\pi \cdot \pi}, \sqrt[3]{\pi}, uy \cdot \pi\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\mathsf{fma}\left(-2 \cdot uy, \pi, \pi \cdot 0.5\right)\right), t\_1, zi \cdot \left(t\_0 \cdot ux\right)\right)\right)
\end{array}
Derivation
  1. Initial program 98.9%

    \[\left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
  2. Applied rewrites99.0%

    \[\leadsto \color{blue}{\mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\pi \cdot \left(uy + uy\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right)} \]
  3. Step-by-step derivation
    1. lift-cos.f32N/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \color{blue}{\cos \left(\pi \cdot \left(uy + uy\right)\right)}, \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    2. cos-neg-revN/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \color{blue}{\cos \left(\mathsf{neg}\left(\pi \cdot \left(uy + uy\right)\right)\right)}, \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    3. lift-*.f32N/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\mathsf{neg}\left(\color{blue}{\pi \cdot \left(uy + uy\right)}\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    4. *-commutativeN/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\mathsf{neg}\left(\color{blue}{\left(uy + uy\right) \cdot \pi}\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    5. lift-+.f32N/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\mathsf{neg}\left(\color{blue}{\left(uy + uy\right)} \cdot \pi\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    6. count-2N/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\mathsf{neg}\left(\color{blue}{\left(2 \cdot uy\right)} \cdot \pi\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    7. *-commutativeN/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\mathsf{neg}\left(\color{blue}{\left(uy \cdot 2\right)} \cdot \pi\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    8. lift-*.f32N/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\mathsf{neg}\left(\color{blue}{\left(uy \cdot 2\right)} \cdot \pi\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    9. lift-*.f32N/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\mathsf{neg}\left(\color{blue}{\left(uy \cdot 2\right) \cdot \pi}\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    10. sin-+PI/2-revN/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \color{blue}{\sin \left(\left(\mathsf{neg}\left(\left(uy \cdot 2\right) \cdot \pi\right)\right) + \frac{\mathsf{PI}\left(\right)}{2}\right)}, \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    11. lower-sin.f32N/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \color{blue}{\sin \left(\left(\mathsf{neg}\left(\left(uy \cdot 2\right) \cdot \pi\right)\right) + \frac{\mathsf{PI}\left(\right)}{2}\right)}, \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    12. lift-*.f32N/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(uy \cdot 2\right) \cdot \pi}\right)\right) + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    13. lift-*.f32N/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(uy \cdot 2\right)} \cdot \pi\right)\right) + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    14. *-commutativeN/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(2 \cdot uy\right)} \cdot \pi\right)\right) + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    15. count-2N/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(uy + uy\right)} \cdot \pi\right)\right) + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    16. lift-+.f32N/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(uy + uy\right)} \cdot \pi\right)\right) + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    17. distribute-lft-neg-inN/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\color{blue}{\left(\mathsf{neg}\left(\left(uy + uy\right)\right)\right) \cdot \pi} + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    18. lift-+.f32N/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(uy + uy\right)}\right)\right) \cdot \pi + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    19. count-2N/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\left(\mathsf{neg}\left(\color{blue}{2 \cdot uy}\right)\right) \cdot \pi + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    20. distribute-lft-neg-outN/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\color{blue}{\left(\left(\mathsf{neg}\left(2\right)\right) \cdot uy\right)} \cdot \pi + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    21. metadata-evalN/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\left(\color{blue}{-2} \cdot uy\right) \cdot \pi + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    22. lower-fma.f32N/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \color{blue}{\left(\mathsf{fma}\left(-2 \cdot uy, \pi, \frac{\mathsf{PI}\left(\right)}{2}\right)\right)}, \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
  4. Applied rewrites99.1%

    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \color{blue}{\sin \left(\mathsf{fma}\left(-2 \cdot uy, \pi, \pi \cdot 0.5\right)\right)}, \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
  5. Step-by-step derivation
    1. lift-*.f32N/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \color{blue}{\left(\pi \cdot \left(uy + uy\right)\right)}, \mathsf{fma}\left(xi \cdot \sin \left(\mathsf{fma}\left(-2 \cdot uy, \pi, \pi \cdot \frac{1}{2}\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    2. lift-+.f32N/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \color{blue}{\left(uy + uy\right)}\right), \mathsf{fma}\left(xi \cdot \sin \left(\mathsf{fma}\left(-2 \cdot uy, \pi, \pi \cdot \frac{1}{2}\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    3. distribute-rgt-inN/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \color{blue}{\left(uy \cdot \pi + uy \cdot \pi\right)}, \mathsf{fma}\left(xi \cdot \sin \left(\mathsf{fma}\left(-2 \cdot uy, \pi, \pi \cdot \frac{1}{2}\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    4. lift-PI.f32N/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(uy \cdot \color{blue}{\mathsf{PI}\left(\right)} + uy \cdot \pi\right), \mathsf{fma}\left(xi \cdot \sin \left(\mathsf{fma}\left(-2 \cdot uy, \pi, \pi \cdot \frac{1}{2}\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    5. add-cube-cbrtN/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(uy \cdot \color{blue}{\left(\left(\sqrt[3]{\mathsf{PI}\left(\right)} \cdot \sqrt[3]{\mathsf{PI}\left(\right)}\right) \cdot \sqrt[3]{\mathsf{PI}\left(\right)}\right)} + uy \cdot \pi\right), \mathsf{fma}\left(xi \cdot \sin \left(\mathsf{fma}\left(-2 \cdot uy, \pi, \pi \cdot \frac{1}{2}\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    6. associate-*r*N/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\color{blue}{\left(uy \cdot \left(\sqrt[3]{\mathsf{PI}\left(\right)} \cdot \sqrt[3]{\mathsf{PI}\left(\right)}\right)\right) \cdot \sqrt[3]{\mathsf{PI}\left(\right)}} + uy \cdot \pi\right), \mathsf{fma}\left(xi \cdot \sin \left(\mathsf{fma}\left(-2 \cdot uy, \pi, \pi \cdot \frac{1}{2}\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    7. lower-fma.f32N/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \color{blue}{\left(\mathsf{fma}\left(uy \cdot \left(\sqrt[3]{\mathsf{PI}\left(\right)} \cdot \sqrt[3]{\mathsf{PI}\left(\right)}\right), \sqrt[3]{\mathsf{PI}\left(\right)}, uy \cdot \pi\right)\right)}, \mathsf{fma}\left(xi \cdot \sin \left(\mathsf{fma}\left(-2 \cdot uy, \pi, \pi \cdot \frac{1}{2}\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
  6. Applied rewrites99.1%

    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \color{blue}{\left(\mathsf{fma}\left(uy \cdot \sqrt[3]{\pi \cdot \pi}, \sqrt[3]{\pi}, uy \cdot \pi\right)\right)}, \mathsf{fma}\left(xi \cdot \sin \left(\mathsf{fma}\left(-2 \cdot uy, \pi, \pi \cdot 0.5\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
  7. Add Preprocessing

Alternative 2: 99.1% accurate, 1.0× speedup?

\[\begin{array}{l} t_0 := maxCos \cdot \left(1 - ux\right)\\ t_1 := \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot t\_0, ux, 1\right)}\\ \mathsf{fma}\left(yi \cdot t\_1, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\mathsf{fma}\left(-2 \cdot uy, \pi, \pi \cdot 0.5\right)\right), t\_1, zi \cdot \left(t\_0 \cdot ux\right)\right)\right) \end{array} \]
(FPCore (xi yi zi ux uy maxCos)
  :precision binary32
  (let* ((t_0 (* maxCos (- 1.0 ux)))
       (t_1 (sqrt (fma (* (* (- ux 1.0) (* maxCos ux)) t_0) ux 1.0))))
  (fma
   (* yi t_1)
   (sin (* PI (+ uy uy)))
   (fma
    (* xi (sin (fma (* -2.0 uy) PI (* PI 0.5))))
    t_1
    (* zi (* t_0 ux))))))
float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
	float t_0 = maxCos * (1.0f - ux);
	float t_1 = sqrtf(fmaf((((ux - 1.0f) * (maxCos * ux)) * t_0), ux, 1.0f));
	return fmaf((yi * t_1), sinf((((float) M_PI) * (uy + uy))), fmaf((xi * sinf(fmaf((-2.0f * uy), ((float) M_PI), (((float) M_PI) * 0.5f)))), t_1, (zi * (t_0 * ux))));
}
function code(xi, yi, zi, ux, uy, maxCos)
	t_0 = Float32(maxCos * Float32(Float32(1.0) - ux))
	t_1 = sqrt(fma(Float32(Float32(Float32(ux - Float32(1.0)) * Float32(maxCos * ux)) * t_0), ux, Float32(1.0)))
	return fma(Float32(yi * t_1), sin(Float32(Float32(pi) * Float32(uy + uy))), fma(Float32(xi * sin(fma(Float32(Float32(-2.0) * uy), Float32(pi), Float32(Float32(pi) * Float32(0.5))))), t_1, Float32(zi * Float32(t_0 * ux))))
end
\begin{array}{l}
t_0 := maxCos \cdot \left(1 - ux\right)\\
t_1 := \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot t\_0, ux, 1\right)}\\
\mathsf{fma}\left(yi \cdot t\_1, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\mathsf{fma}\left(-2 \cdot uy, \pi, \pi \cdot 0.5\right)\right), t\_1, zi \cdot \left(t\_0 \cdot ux\right)\right)\right)
\end{array}
Derivation
  1. Initial program 98.9%

    \[\left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
  2. Applied rewrites99.0%

    \[\leadsto \color{blue}{\mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\pi \cdot \left(uy + uy\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right)} \]
  3. Step-by-step derivation
    1. lift-cos.f32N/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \color{blue}{\cos \left(\pi \cdot \left(uy + uy\right)\right)}, \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    2. cos-neg-revN/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \color{blue}{\cos \left(\mathsf{neg}\left(\pi \cdot \left(uy + uy\right)\right)\right)}, \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    3. lift-*.f32N/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\mathsf{neg}\left(\color{blue}{\pi \cdot \left(uy + uy\right)}\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    4. *-commutativeN/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\mathsf{neg}\left(\color{blue}{\left(uy + uy\right) \cdot \pi}\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    5. lift-+.f32N/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\mathsf{neg}\left(\color{blue}{\left(uy + uy\right)} \cdot \pi\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    6. count-2N/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\mathsf{neg}\left(\color{blue}{\left(2 \cdot uy\right)} \cdot \pi\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    7. *-commutativeN/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\mathsf{neg}\left(\color{blue}{\left(uy \cdot 2\right)} \cdot \pi\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    8. lift-*.f32N/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\mathsf{neg}\left(\color{blue}{\left(uy \cdot 2\right)} \cdot \pi\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    9. lift-*.f32N/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\mathsf{neg}\left(\color{blue}{\left(uy \cdot 2\right) \cdot \pi}\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    10. sin-+PI/2-revN/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \color{blue}{\sin \left(\left(\mathsf{neg}\left(\left(uy \cdot 2\right) \cdot \pi\right)\right) + \frac{\mathsf{PI}\left(\right)}{2}\right)}, \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    11. lower-sin.f32N/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \color{blue}{\sin \left(\left(\mathsf{neg}\left(\left(uy \cdot 2\right) \cdot \pi\right)\right) + \frac{\mathsf{PI}\left(\right)}{2}\right)}, \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    12. lift-*.f32N/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(uy \cdot 2\right) \cdot \pi}\right)\right) + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    13. lift-*.f32N/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(uy \cdot 2\right)} \cdot \pi\right)\right) + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    14. *-commutativeN/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(2 \cdot uy\right)} \cdot \pi\right)\right) + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    15. count-2N/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(uy + uy\right)} \cdot \pi\right)\right) + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    16. lift-+.f32N/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(uy + uy\right)} \cdot \pi\right)\right) + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    17. distribute-lft-neg-inN/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\color{blue}{\left(\mathsf{neg}\left(\left(uy + uy\right)\right)\right) \cdot \pi} + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    18. lift-+.f32N/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(uy + uy\right)}\right)\right) \cdot \pi + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    19. count-2N/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\left(\mathsf{neg}\left(\color{blue}{2 \cdot uy}\right)\right) \cdot \pi + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    20. distribute-lft-neg-outN/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\color{blue}{\left(\left(\mathsf{neg}\left(2\right)\right) \cdot uy\right)} \cdot \pi + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    21. metadata-evalN/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\left(\color{blue}{-2} \cdot uy\right) \cdot \pi + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    22. lower-fma.f32N/A

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \color{blue}{\left(\mathsf{fma}\left(-2 \cdot uy, \pi, \frac{\mathsf{PI}\left(\right)}{2}\right)\right)}, \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
  4. Applied rewrites99.1%

    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \color{blue}{\sin \left(\mathsf{fma}\left(-2 \cdot uy, \pi, \pi \cdot 0.5\right)\right)}, \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
  5. Add Preprocessing

Alternative 3: 99.0% accurate, 1.0× speedup?

\[\begin{array}{l} t_0 := maxCos \cdot \left(1 - ux\right)\\ t_1 := \pi \cdot \left(uy + uy\right)\\ t_2 := \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot t\_0, ux, 1\right)}\\ \mathsf{fma}\left(yi \cdot t\_2, \sin t\_1, \mathsf{fma}\left(xi \cdot \cos t\_1, t\_2, zi \cdot \left(t\_0 \cdot ux\right)\right)\right) \end{array} \]
(FPCore (xi yi zi ux uy maxCos)
  :precision binary32
  (let* ((t_0 (* maxCos (- 1.0 ux)))
       (t_1 (* PI (+ uy uy)))
       (t_2 (sqrt (fma (* (* (- ux 1.0) (* maxCos ux)) t_0) ux 1.0))))
  (fma
   (* yi t_2)
   (sin t_1)
   (fma (* xi (cos t_1)) t_2 (* zi (* t_0 ux))))))
float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
	float t_0 = maxCos * (1.0f - ux);
	float t_1 = ((float) M_PI) * (uy + uy);
	float t_2 = sqrtf(fmaf((((ux - 1.0f) * (maxCos * ux)) * t_0), ux, 1.0f));
	return fmaf((yi * t_2), sinf(t_1), fmaf((xi * cosf(t_1)), t_2, (zi * (t_0 * ux))));
}
function code(xi, yi, zi, ux, uy, maxCos)
	t_0 = Float32(maxCos * Float32(Float32(1.0) - ux))
	t_1 = Float32(Float32(pi) * Float32(uy + uy))
	t_2 = sqrt(fma(Float32(Float32(Float32(ux - Float32(1.0)) * Float32(maxCos * ux)) * t_0), ux, Float32(1.0)))
	return fma(Float32(yi * t_2), sin(t_1), fma(Float32(xi * cos(t_1)), t_2, Float32(zi * Float32(t_0 * ux))))
end
\begin{array}{l}
t_0 := maxCos \cdot \left(1 - ux\right)\\
t_1 := \pi \cdot \left(uy + uy\right)\\
t_2 := \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot t\_0, ux, 1\right)}\\
\mathsf{fma}\left(yi \cdot t\_2, \sin t\_1, \mathsf{fma}\left(xi \cdot \cos t\_1, t\_2, zi \cdot \left(t\_0 \cdot ux\right)\right)\right)
\end{array}
Derivation
  1. Initial program 98.9%

    \[\left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
  2. Applied rewrites99.0%

    \[\leadsto \color{blue}{\mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\pi \cdot \left(uy + uy\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right)} \]
  3. Add Preprocessing

Alternative 4: 98.8% accurate, 1.1× speedup?

\[\begin{array}{l} t_0 := maxCos \cdot \left(1 - ux\right)\\ t_1 := \pi \cdot \left(uy + uy\right)\\ t_2 := \sqrt{\mathsf{fma}\left(\left(-1 \cdot \left(maxCos \cdot ux\right)\right) \cdot t\_0, ux, 1\right)}\\ \mathsf{fma}\left(yi \cdot t\_2, \sin t\_1, \mathsf{fma}\left(xi \cdot \cos t\_1, t\_2, zi \cdot \left(t\_0 \cdot ux\right)\right)\right) \end{array} \]
(FPCore (xi yi zi ux uy maxCos)
  :precision binary32
  (let* ((t_0 (* maxCos (- 1.0 ux)))
       (t_1 (* PI (+ uy uy)))
       (t_2 (sqrt (fma (* (* -1.0 (* maxCos ux)) t_0) ux 1.0))))
  (fma
   (* yi t_2)
   (sin t_1)
   (fma (* xi (cos t_1)) t_2 (* zi (* t_0 ux))))))
float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
	float t_0 = maxCos * (1.0f - ux);
	float t_1 = ((float) M_PI) * (uy + uy);
	float t_2 = sqrtf(fmaf(((-1.0f * (maxCos * ux)) * t_0), ux, 1.0f));
	return fmaf((yi * t_2), sinf(t_1), fmaf((xi * cosf(t_1)), t_2, (zi * (t_0 * ux))));
}
function code(xi, yi, zi, ux, uy, maxCos)
	t_0 = Float32(maxCos * Float32(Float32(1.0) - ux))
	t_1 = Float32(Float32(pi) * Float32(uy + uy))
	t_2 = sqrt(fma(Float32(Float32(Float32(-1.0) * Float32(maxCos * ux)) * t_0), ux, Float32(1.0)))
	return fma(Float32(yi * t_2), sin(t_1), fma(Float32(xi * cos(t_1)), t_2, Float32(zi * Float32(t_0 * ux))))
end
\begin{array}{l}
t_0 := maxCos \cdot \left(1 - ux\right)\\
t_1 := \pi \cdot \left(uy + uy\right)\\
t_2 := \sqrt{\mathsf{fma}\left(\left(-1 \cdot \left(maxCos \cdot ux\right)\right) \cdot t\_0, ux, 1\right)}\\
\mathsf{fma}\left(yi \cdot t\_2, \sin t\_1, \mathsf{fma}\left(xi \cdot \cos t\_1, t\_2, zi \cdot \left(t\_0 \cdot ux\right)\right)\right)
\end{array}
Derivation
  1. Initial program 98.9%

    \[\left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
  2. Applied rewrites99.0%

    \[\leadsto \color{blue}{\mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\pi \cdot \left(uy + uy\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right)} \]
  3. Taylor expanded in ux around 0

    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\color{blue}{-1} \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\pi \cdot \left(uy + uy\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
  4. Step-by-step derivation
    1. Applied rewrites98.9%

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\color{blue}{-1} \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\pi \cdot \left(uy + uy\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    2. Taylor expanded in ux around 0

      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(-1 \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\pi \cdot \left(uy + uy\right)\right), \sqrt{\mathsf{fma}\left(\left(\color{blue}{-1} \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
    3. Step-by-step derivation
      1. Applied rewrites98.8%

        \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(-1 \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\pi \cdot \left(uy + uy\right)\right), \sqrt{\mathsf{fma}\left(\left(\color{blue}{-1} \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
      2. Add Preprocessing

      Alternative 5: 98.8% accurate, 1.1× speedup?

      \[\begin{array}{l} t_0 := \left(uy + uy\right) \cdot \pi\\ t_1 := \sqrt{\mathsf{fma}\left(maxCos \cdot ux, \left(\left(ux - 1\right) \cdot ux\right) \cdot maxCos, 1\right)}\\ \mathsf{fma}\left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux, zi, \mathsf{fma}\left(xi \cdot \cos t\_0, t\_1, \left(yi \cdot \sin t\_0\right) \cdot t\_1\right)\right) \end{array} \]
      (FPCore (xi yi zi ux uy maxCos)
        :precision binary32
        (let* ((t_0 (* (+ uy uy) PI))
             (t_1
              (sqrt (fma (* maxCos ux) (* (* (- ux 1.0) ux) maxCos) 1.0))))
        (fma
         (* (* (- 1.0 ux) maxCos) ux)
         zi
         (fma (* xi (cos t_0)) t_1 (* (* yi (sin t_0)) t_1)))))
      float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
      	float t_0 = (uy + uy) * ((float) M_PI);
      	float t_1 = sqrtf(fmaf((maxCos * ux), (((ux - 1.0f) * ux) * maxCos), 1.0f));
      	return fmaf((((1.0f - ux) * maxCos) * ux), zi, fmaf((xi * cosf(t_0)), t_1, ((yi * sinf(t_0)) * t_1)));
      }
      
      function code(xi, yi, zi, ux, uy, maxCos)
      	t_0 = Float32(Float32(uy + uy) * Float32(pi))
      	t_1 = sqrt(fma(Float32(maxCos * ux), Float32(Float32(Float32(ux - Float32(1.0)) * ux) * maxCos), Float32(1.0)))
      	return fma(Float32(Float32(Float32(Float32(1.0) - ux) * maxCos) * ux), zi, fma(Float32(xi * cos(t_0)), t_1, Float32(Float32(yi * sin(t_0)) * t_1)))
      end
      
      \begin{array}{l}
      t_0 := \left(uy + uy\right) \cdot \pi\\
      t_1 := \sqrt{\mathsf{fma}\left(maxCos \cdot ux, \left(\left(ux - 1\right) \cdot ux\right) \cdot maxCos, 1\right)}\\
      \mathsf{fma}\left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux, zi, \mathsf{fma}\left(xi \cdot \cos t\_0, t\_1, \left(yi \cdot \sin t\_0\right) \cdot t\_1\right)\right)
      \end{array}
      
      Derivation
      1. Initial program 98.9%

        \[\left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
      2. Step-by-step derivation
        1. lift--.f32N/A

          \[\leadsto \left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{\color{blue}{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
        2. lift-*.f32N/A

          \[\leadsto \left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \color{blue}{\left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
        3. fp-cancel-sub-sign-invN/A

          \[\leadsto \left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{\color{blue}{1 + \left(\mathsf{neg}\left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
        4. +-commutativeN/A

          \[\leadsto \left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{\color{blue}{\left(\mathsf{neg}\left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) + 1}}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
        5. sum-to-multN/A

          \[\leadsto \left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{\color{blue}{\left(1 + \frac{1}{\left(\mathsf{neg}\left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot \left(\left(\mathsf{neg}\left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)\right)}}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
        6. lower-unsound-*.f32N/A

          \[\leadsto \left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{\color{blue}{\left(1 + \frac{1}{\left(\mathsf{neg}\left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot \left(\left(\mathsf{neg}\left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)\right)}}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
      3. Applied rewrites37.7%

        \[\leadsto \left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{\color{blue}{\left(1 + \frac{1}{\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)}\right) \cdot \left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)}}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
      4. Step-by-step derivation
        1. lift--.f32N/A

          \[\leadsto \left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{\left(1 + \frac{1}{\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)}\right) \cdot \left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{\color{blue}{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
        2. lift-*.f32N/A

          \[\leadsto \left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{\left(1 + \frac{1}{\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)}\right) \cdot \left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \color{blue}{\left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
        3. fp-cancel-sub-sign-invN/A

          \[\leadsto \left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{\left(1 + \frac{1}{\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)}\right) \cdot \left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{\color{blue}{1 + \left(\mathsf{neg}\left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
        4. +-commutativeN/A

          \[\leadsto \left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{\left(1 + \frac{1}{\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)}\right) \cdot \left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{\color{blue}{\left(\mathsf{neg}\left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) + 1}}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
        5. sum-to-multN/A

          \[\leadsto \left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{\left(1 + \frac{1}{\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)}\right) \cdot \left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{\color{blue}{\left(1 + \frac{1}{\left(\mathsf{neg}\left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot \left(\left(\mathsf{neg}\left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)\right)}}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
        6. lower-unsound-*.f32N/A

          \[\leadsto \left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{\left(1 + \frac{1}{\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)}\right) \cdot \left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{\color{blue}{\left(1 + \frac{1}{\left(\mathsf{neg}\left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot \left(\left(\mathsf{neg}\left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)\right)}}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
      5. Applied rewrites37.5%

        \[\leadsto \left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{\left(1 + \frac{1}{\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)}\right) \cdot \left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{\color{blue}{\left(1 + \frac{1}{\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)}\right) \cdot \left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)}}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
      6. Taylor expanded in ux around 0

        \[\leadsto \left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{\left(1 + \frac{1}{\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\color{blue}{maxCos} \cdot ux\right)}\right) \cdot \left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{\left(1 + \frac{1}{\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)}\right) \cdot \left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
      7. Step-by-step derivation
        1. Applied rewrites31.4%

          \[\leadsto \left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{\left(1 + \frac{1}{\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\color{blue}{maxCos} \cdot ux\right)}\right) \cdot \left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{\left(1 + \frac{1}{\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)}\right) \cdot \left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
        2. Taylor expanded in ux around 0

          \[\leadsto \left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{\left(1 + \frac{1}{\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot ux\right)}\right) \cdot \left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\color{blue}{maxCos} \cdot ux\right)\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{\left(1 + \frac{1}{\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)}\right) \cdot \left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
        3. Step-by-step derivation
          1. Applied rewrites37.3%

            \[\leadsto \left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{\left(1 + \frac{1}{\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot ux\right)}\right) \cdot \left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\color{blue}{maxCos} \cdot ux\right)\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{\left(1 + \frac{1}{\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)}\right) \cdot \left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
          2. Taylor expanded in ux around 0

            \[\leadsto \left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{\left(1 + \frac{1}{\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot ux\right)}\right) \cdot \left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot ux\right)\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{\left(1 + \frac{1}{\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\color{blue}{maxCos} \cdot ux\right)}\right) \cdot \left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
          3. Step-by-step derivation
            1. Applied rewrites33.3%

              \[\leadsto \left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{\left(1 + \frac{1}{\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot ux\right)}\right) \cdot \left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot ux\right)\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{\left(1 + \frac{1}{\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\color{blue}{maxCos} \cdot ux\right)}\right) \cdot \left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
            2. Taylor expanded in ux around 0

              \[\leadsto \left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{\left(1 + \frac{1}{\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot ux\right)}\right) \cdot \left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot ux\right)\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{\left(1 + \frac{1}{\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot ux\right)}\right) \cdot \left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\color{blue}{maxCos} \cdot ux\right)\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
            3. Step-by-step derivation
              1. Applied rewrites37.4%

                \[\leadsto \left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{\left(1 + \frac{1}{\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot ux\right)}\right) \cdot \left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot ux\right)\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{\left(1 + \frac{1}{\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot ux\right)}\right) \cdot \left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(\color{blue}{maxCos} \cdot ux\right)\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
              2. Applied rewrites98.8%

                \[\leadsto \color{blue}{\mathsf{fma}\left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux, zi, \mathsf{fma}\left(xi \cdot \cos \left(\left(uy + uy\right) \cdot \pi\right), \sqrt{\mathsf{fma}\left(maxCos \cdot ux, \left(\left(ux - 1\right) \cdot ux\right) \cdot maxCos, 1\right)}, \left(yi \cdot \sin \left(\left(uy + uy\right) \cdot \pi\right)\right) \cdot \sqrt{\mathsf{fma}\left(maxCos \cdot ux, \left(\left(ux - 1\right) \cdot ux\right) \cdot maxCos, 1\right)}\right)\right)} \]
              3. Add Preprocessing

              Alternative 6: 98.7% accurate, 1.5× speedup?

              \[\begin{array}{l} t_0 := 2 \cdot \left(uy \cdot \pi\right)\\ \mathsf{fma}\left(xi, \cos t\_0, yi \cdot \sin t\_0\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \end{array} \]
              (FPCore (xi yi zi ux uy maxCos)
                :precision binary32
                (let* ((t_0 (* 2.0 (* uy PI))))
                (+
                 (fma xi (cos t_0) (* yi (sin t_0)))
                 (* (* (* (- 1.0 ux) maxCos) ux) zi))))
              float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
              	float t_0 = 2.0f * (uy * ((float) M_PI));
              	return fmaf(xi, cosf(t_0), (yi * sinf(t_0))) + ((((1.0f - ux) * maxCos) * ux) * zi);
              }
              
              function code(xi, yi, zi, ux, uy, maxCos)
              	t_0 = Float32(Float32(2.0) * Float32(uy * Float32(pi)))
              	return Float32(fma(xi, cos(t_0), Float32(yi * sin(t_0))) + Float32(Float32(Float32(Float32(Float32(1.0) - ux) * maxCos) * ux) * zi))
              end
              
              \begin{array}{l}
              t_0 := 2 \cdot \left(uy \cdot \pi\right)\\
              \mathsf{fma}\left(xi, \cos t\_0, yi \cdot \sin t\_0\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi
              \end{array}
              
              Derivation
              1. Initial program 98.9%

                \[\left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
              2. Taylor expanded in ux around 0

                \[\leadsto \color{blue}{\left(xi \cdot \cos \left(2 \cdot \left(uy \cdot \pi\right)\right) + yi \cdot \sin \left(2 \cdot \left(uy \cdot \pi\right)\right)\right)} + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
              3. Step-by-step derivation
                1. lower-fma.f32N/A

                  \[\leadsto \mathsf{fma}\left(xi, \color{blue}{\cos \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)}, yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
                2. lower-cos.f32N/A

                  \[\leadsto \mathsf{fma}\left(xi, \cos \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
                3. lower-*.f32N/A

                  \[\leadsto \mathsf{fma}\left(xi, \cos \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
                4. lower-*.f32N/A

                  \[\leadsto \mathsf{fma}\left(xi, \cos \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
                5. lower-PI.f32N/A

                  \[\leadsto \mathsf{fma}\left(xi, \cos \left(2 \cdot \left(uy \cdot \pi\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
                6. lower-*.f32N/A

                  \[\leadsto \mathsf{fma}\left(xi, \cos \left(2 \cdot \left(uy \cdot \pi\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
                7. lower-sin.f32N/A

                  \[\leadsto \mathsf{fma}\left(xi, \cos \left(2 \cdot \left(uy \cdot \pi\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
                8. lower-*.f32N/A

                  \[\leadsto \mathsf{fma}\left(xi, \cos \left(2 \cdot \left(uy \cdot \pi\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
                9. lower-*.f32N/A

                  \[\leadsto \mathsf{fma}\left(xi, \cos \left(2 \cdot \left(uy \cdot \pi\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
                10. lower-PI.f3298.7%

                  \[\leadsto \mathsf{fma}\left(xi, \cos \left(2 \cdot \left(uy \cdot \pi\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \pi\right)\right)\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
              4. Applied rewrites98.7%

                \[\leadsto \color{blue}{\mathsf{fma}\left(xi, \cos \left(2 \cdot \left(uy \cdot \pi\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \pi\right)\right)\right)} + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
              5. Add Preprocessing

              Alternative 7: 98.7% accurate, 1.6× speedup?

              \[\begin{array}{l} t_0 := 2 \cdot \left(uy \cdot \pi\right)\\ \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), \mathsf{fma}\left(xi, \cos t\_0, yi \cdot \sin t\_0\right)\right) \end{array} \]
              (FPCore (xi yi zi ux uy maxCos)
                :precision binary32
                (let* ((t_0 (* 2.0 (* uy PI))))
                (fma
                 maxCos
                 (* ux (* zi (- 1.0 ux)))
                 (fma xi (cos t_0) (* yi (sin t_0))))))
              float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
              	float t_0 = 2.0f * (uy * ((float) M_PI));
              	return fmaf(maxCos, (ux * (zi * (1.0f - ux))), fmaf(xi, cosf(t_0), (yi * sinf(t_0))));
              }
              
              function code(xi, yi, zi, ux, uy, maxCos)
              	t_0 = Float32(Float32(2.0) * Float32(uy * Float32(pi)))
              	return fma(maxCos, Float32(ux * Float32(zi * Float32(Float32(1.0) - ux))), fma(xi, cos(t_0), Float32(yi * sin(t_0))))
              end
              
              \begin{array}{l}
              t_0 := 2 \cdot \left(uy \cdot \pi\right)\\
              \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), \mathsf{fma}\left(xi, \cos t\_0, yi \cdot \sin t\_0\right)\right)
              \end{array}
              
              Derivation
              1. Initial program 98.9%

                \[\left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
              2. Taylor expanded in uy around 0

                \[\leadsto \color{blue}{maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right) + xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}} \]
              3. Step-by-step derivation
                1. lower-fma.f32N/A

                  \[\leadsto \mathsf{fma}\left(maxCos, \color{blue}{ux \cdot \left(zi \cdot \left(1 - ux\right)\right)}, xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                2. lower-*.f32N/A

                  \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \color{blue}{\left(zi \cdot \left(1 - ux\right)\right)}, xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                3. lower-*.f32N/A

                  \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \color{blue}{\left(1 - ux\right)}\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                4. lower--.f32N/A

                  \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - \color{blue}{ux}\right)\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                5. lower-*.f32N/A

                  \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                6. lower-sqrt.f32N/A

                  \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                7. lower--.f32N/A

                  \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
              4. Applied rewrites52.3%

                \[\leadsto \color{blue}{\mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)} \]
              5. Taylor expanded in ux around 0

                \[\leadsto xi + \color{blue}{maxCos \cdot \left(ux \cdot zi\right)} \]
              6. Step-by-step derivation
                1. lower-+.f32N/A

                  \[\leadsto xi + maxCos \cdot \color{blue}{\left(ux \cdot zi\right)} \]
                2. lower-*.f32N/A

                  \[\leadsto xi + maxCos \cdot \left(ux \cdot \color{blue}{zi}\right) \]
                3. lower-*.f3250.2%

                  \[\leadsto xi + maxCos \cdot \left(ux \cdot zi\right) \]
              7. Applied rewrites50.2%

                \[\leadsto xi + \color{blue}{maxCos \cdot \left(ux \cdot zi\right)} \]
              8. Taylor expanded in maxCos around 0

                \[\leadsto \color{blue}{maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right) + \left(xi \cdot \cos \left(2 \cdot \left(uy \cdot \pi\right)\right) + yi \cdot \sin \left(2 \cdot \left(uy \cdot \pi\right)\right)\right)} \]
              9. Step-by-step derivation
                1. lower-fma.f32N/A

                  \[\leadsto \mathsf{fma}\left(maxCos, \color{blue}{ux \cdot \left(zi \cdot \left(1 - ux\right)\right)}, xi \cdot \cos \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right) + yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                2. lower-*.f32N/A

                  \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \color{blue}{\left(zi \cdot \left(1 - ux\right)\right)}, xi \cdot \cos \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right) + yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                3. lower-*.f32N/A

                  \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \color{blue}{\left(1 - ux\right)}\right), xi \cdot \cos \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right) + yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                4. lower--.f32N/A

                  \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - \color{blue}{ux}\right)\right), xi \cdot \cos \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right) + yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                5. lower-fma.f32N/A

                  \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), \mathsf{fma}\left(xi, \cos \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right)\right) \]
              10. Applied rewrites98.7%

                \[\leadsto \color{blue}{\mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), \mathsf{fma}\left(xi, \cos \left(2 \cdot \left(uy \cdot \pi\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \pi\right)\right)\right)\right)} \]
              11. Add Preprocessing

              Alternative 8: 96.2% accurate, 1.6× speedup?

              \[\begin{array}{l} \mathbf{if}\;uy \leq 0.0017999999690800905:\\ \;\;\;\;\mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\pi}^{2}\right), 2 \cdot \left(yi \cdot \pi\right)\right)\right)\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(xi, \sin \left(\mathsf{fma}\left(-2, uy \cdot \pi, 0.5 \cdot \pi\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \pi\right)\right)\right)\\ \end{array} \]
              (FPCore (xi yi zi ux uy maxCos)
                :precision binary32
                (if (<= uy 0.0017999999690800905)
                (fma
                 maxCos
                 (* ux (* zi (- 1.0 ux)))
                 (+
                  xi
                  (* uy (fma -2.0 (* uy (* xi (pow PI 2.0))) (* 2.0 (* yi PI))))))
                (fma
                 xi
                 (sin (fma -2.0 (* uy PI) (* 0.5 PI)))
                 (* yi (sin (* 2.0 (* uy PI)))))))
              float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
              	float tmp;
              	if (uy <= 0.0017999999690800905f) {
              		tmp = fmaf(maxCos, (ux * (zi * (1.0f - ux))), (xi + (uy * fmaf(-2.0f, (uy * (xi * powf(((float) M_PI), 2.0f))), (2.0f * (yi * ((float) M_PI)))))));
              	} else {
              		tmp = fmaf(xi, sinf(fmaf(-2.0f, (uy * ((float) M_PI)), (0.5f * ((float) M_PI)))), (yi * sinf((2.0f * (uy * ((float) M_PI))))));
              	}
              	return tmp;
              }
              
              function code(xi, yi, zi, ux, uy, maxCos)
              	tmp = Float32(0.0)
              	if (uy <= Float32(0.0017999999690800905))
              		tmp = fma(maxCos, Float32(ux * Float32(zi * Float32(Float32(1.0) - ux))), Float32(xi + Float32(uy * fma(Float32(-2.0), Float32(uy * Float32(xi * (Float32(pi) ^ Float32(2.0)))), Float32(Float32(2.0) * Float32(yi * Float32(pi)))))));
              	else
              		tmp = fma(xi, sin(fma(Float32(-2.0), Float32(uy * Float32(pi)), Float32(Float32(0.5) * Float32(pi)))), Float32(yi * sin(Float32(Float32(2.0) * Float32(uy * Float32(pi))))));
              	end
              	return tmp
              end
              
              \begin{array}{l}
              \mathbf{if}\;uy \leq 0.0017999999690800905:\\
              \;\;\;\;\mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\pi}^{2}\right), 2 \cdot \left(yi \cdot \pi\right)\right)\right)\\
              
              \mathbf{else}:\\
              \;\;\;\;\mathsf{fma}\left(xi, \sin \left(\mathsf{fma}\left(-2, uy \cdot \pi, 0.5 \cdot \pi\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \pi\right)\right)\right)\\
              
              
              \end{array}
              
              Derivation
              1. Split input into 2 regimes
              2. if uy < 0.00179999997

                1. Initial program 98.9%

                  \[\left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
                2. Taylor expanded in uy around 0

                  \[\leadsto \color{blue}{maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right) + \left(uy \cdot \left(-2 \cdot \left(uy \cdot \left(xi \cdot \left({\pi}^{2} \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right)\right) + 2 \cdot \left(yi \cdot \left(\pi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right)\right) + xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)} \]
                3. Applied rewrites86.3%

                  \[\leadsto \color{blue}{\mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), \mathsf{fma}\left(uy, \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot \left({\pi}^{2} \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right), 2 \cdot \left(yi \cdot \left(\pi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right)\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right)} \]
                4. Taylor expanded in ux around 0

                  \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \left(-2 \cdot \left(uy \cdot \left(xi \cdot {\pi}^{2}\right)\right) + 2 \cdot \left(yi \cdot \pi\right)\right)\right) \]
                5. Step-by-step derivation
                  1. lower-+.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \left(-2 \cdot \left(uy \cdot \left(xi \cdot {\mathsf{PI}\left(\right)}^{2}\right)\right) + 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  2. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \left(-2 \cdot \left(uy \cdot \left(xi \cdot {\mathsf{PI}\left(\right)}^{2}\right)\right) + 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  3. lower-fma.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\mathsf{PI}\left(\right)}^{2}\right), 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  4. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\mathsf{PI}\left(\right)}^{2}\right), 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  5. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\mathsf{PI}\left(\right)}^{2}\right), 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  6. lower-pow.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\mathsf{PI}\left(\right)}^{2}\right), 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  7. lower-PI.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\pi}^{2}\right), 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  8. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\pi}^{2}\right), 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                6. Applied rewrites86.1%

                  \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\pi}^{2}\right), 2 \cdot \left(yi \cdot \pi\right)\right)\right) \]

                if 0.00179999997 < uy

                1. Initial program 98.9%

                  \[\left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
                2. Applied rewrites99.0%

                  \[\leadsto \color{blue}{\mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\pi \cdot \left(uy + uy\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right)} \]
                3. Step-by-step derivation
                  1. lift-cos.f32N/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \color{blue}{\cos \left(\pi \cdot \left(uy + uy\right)\right)}, \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  2. cos-neg-revN/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \color{blue}{\cos \left(\mathsf{neg}\left(\pi \cdot \left(uy + uy\right)\right)\right)}, \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  3. lift-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\mathsf{neg}\left(\color{blue}{\pi \cdot \left(uy + uy\right)}\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  4. *-commutativeN/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\mathsf{neg}\left(\color{blue}{\left(uy + uy\right) \cdot \pi}\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  5. lift-+.f32N/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\mathsf{neg}\left(\color{blue}{\left(uy + uy\right)} \cdot \pi\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  6. count-2N/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\mathsf{neg}\left(\color{blue}{\left(2 \cdot uy\right)} \cdot \pi\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  7. *-commutativeN/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\mathsf{neg}\left(\color{blue}{\left(uy \cdot 2\right)} \cdot \pi\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  8. lift-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\mathsf{neg}\left(\color{blue}{\left(uy \cdot 2\right)} \cdot \pi\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  9. lift-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\mathsf{neg}\left(\color{blue}{\left(uy \cdot 2\right) \cdot \pi}\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  10. sin-+PI/2-revN/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \color{blue}{\sin \left(\left(\mathsf{neg}\left(\left(uy \cdot 2\right) \cdot \pi\right)\right) + \frac{\mathsf{PI}\left(\right)}{2}\right)}, \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  11. lower-sin.f32N/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \color{blue}{\sin \left(\left(\mathsf{neg}\left(\left(uy \cdot 2\right) \cdot \pi\right)\right) + \frac{\mathsf{PI}\left(\right)}{2}\right)}, \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  12. lift-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(uy \cdot 2\right) \cdot \pi}\right)\right) + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  13. lift-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(uy \cdot 2\right)} \cdot \pi\right)\right) + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  14. *-commutativeN/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(2 \cdot uy\right)} \cdot \pi\right)\right) + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  15. count-2N/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(uy + uy\right)} \cdot \pi\right)\right) + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  16. lift-+.f32N/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(uy + uy\right)} \cdot \pi\right)\right) + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  17. distribute-lft-neg-inN/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\color{blue}{\left(\mathsf{neg}\left(\left(uy + uy\right)\right)\right) \cdot \pi} + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  18. lift-+.f32N/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(uy + uy\right)}\right)\right) \cdot \pi + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  19. count-2N/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\left(\mathsf{neg}\left(\color{blue}{2 \cdot uy}\right)\right) \cdot \pi + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  20. distribute-lft-neg-outN/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\color{blue}{\left(\left(\mathsf{neg}\left(2\right)\right) \cdot uy\right)} \cdot \pi + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  21. metadata-evalN/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\left(\color{blue}{-2} \cdot uy\right) \cdot \pi + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  22. lower-fma.f32N/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \color{blue}{\left(\mathsf{fma}\left(-2 \cdot uy, \pi, \frac{\mathsf{PI}\left(\right)}{2}\right)\right)}, \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                4. Applied rewrites99.1%

                  \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \color{blue}{\sin \left(\mathsf{fma}\left(-2 \cdot uy, \pi, \pi \cdot 0.5\right)\right)}, \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                5. Taylor expanded in ux around 0

                  \[\leadsto \color{blue}{xi \cdot \sin \left(-2 \cdot \left(uy \cdot \pi\right) + \frac{1}{2} \cdot \pi\right) + yi \cdot \sin \left(2 \cdot \left(uy \cdot \pi\right)\right)} \]
                6. Step-by-step derivation
                  1. lower-fma.f32N/A

                    \[\leadsto \mathsf{fma}\left(xi, \color{blue}{\sin \left(-2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right) + \frac{1}{2} \cdot \mathsf{PI}\left(\right)\right)}, yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  2. lower-sin.f32N/A

                    \[\leadsto \mathsf{fma}\left(xi, \sin \left(-2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right) + \frac{1}{2} \cdot \mathsf{PI}\left(\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  3. lower-fma.f32N/A

                    \[\leadsto \mathsf{fma}\left(xi, \sin \left(\mathsf{fma}\left(-2, uy \cdot \mathsf{PI}\left(\right), \frac{1}{2} \cdot \mathsf{PI}\left(\right)\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  4. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(xi, \sin \left(\mathsf{fma}\left(-2, uy \cdot \mathsf{PI}\left(\right), \frac{1}{2} \cdot \mathsf{PI}\left(\right)\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  5. lower-PI.f32N/A

                    \[\leadsto \mathsf{fma}\left(xi, \sin \left(\mathsf{fma}\left(-2, uy \cdot \pi, \frac{1}{2} \cdot \mathsf{PI}\left(\right)\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  6. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(xi, \sin \left(\mathsf{fma}\left(-2, uy \cdot \pi, \frac{1}{2} \cdot \mathsf{PI}\left(\right)\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  7. lower-PI.f32N/A

                    \[\leadsto \mathsf{fma}\left(xi, \sin \left(\mathsf{fma}\left(-2, uy \cdot \pi, \frac{1}{2} \cdot \pi\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                7. Applied rewrites90.5%

                  \[\leadsto \color{blue}{\mathsf{fma}\left(xi, \sin \left(\mathsf{fma}\left(-2, uy \cdot \pi, 0.5 \cdot \pi\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \pi\right)\right)\right)} \]
              3. Recombined 2 regimes into one program.
              4. Add Preprocessing

              Alternative 9: 96.2% accurate, 1.7× speedup?

              \[\begin{array}{l} t_0 := 2 \cdot \left(uy \cdot \pi\right)\\ \mathbf{if}\;uy \leq 0.0017999999690800905:\\ \;\;\;\;\mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\pi}^{2}\right), 2 \cdot \left(yi \cdot \pi\right)\right)\right)\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(xi, \cos t\_0, yi \cdot \sin t\_0\right)\\ \end{array} \]
              (FPCore (xi yi zi ux uy maxCos)
                :precision binary32
                (let* ((t_0 (* 2.0 (* uy PI))))
                (if (<= uy 0.0017999999690800905)
                  (fma
                   maxCos
                   (* ux (* zi (- 1.0 ux)))
                   (+
                    xi
                    (* uy (fma -2.0 (* uy (* xi (pow PI 2.0))) (* 2.0 (* yi PI))))))
                  (fma xi (cos t_0) (* yi (sin t_0))))))
              float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
              	float t_0 = 2.0f * (uy * ((float) M_PI));
              	float tmp;
              	if (uy <= 0.0017999999690800905f) {
              		tmp = fmaf(maxCos, (ux * (zi * (1.0f - ux))), (xi + (uy * fmaf(-2.0f, (uy * (xi * powf(((float) M_PI), 2.0f))), (2.0f * (yi * ((float) M_PI)))))));
              	} else {
              		tmp = fmaf(xi, cosf(t_0), (yi * sinf(t_0)));
              	}
              	return tmp;
              }
              
              function code(xi, yi, zi, ux, uy, maxCos)
              	t_0 = Float32(Float32(2.0) * Float32(uy * Float32(pi)))
              	tmp = Float32(0.0)
              	if (uy <= Float32(0.0017999999690800905))
              		tmp = fma(maxCos, Float32(ux * Float32(zi * Float32(Float32(1.0) - ux))), Float32(xi + Float32(uy * fma(Float32(-2.0), Float32(uy * Float32(xi * (Float32(pi) ^ Float32(2.0)))), Float32(Float32(2.0) * Float32(yi * Float32(pi)))))));
              	else
              		tmp = fma(xi, cos(t_0), Float32(yi * sin(t_0)));
              	end
              	return tmp
              end
              
              \begin{array}{l}
              t_0 := 2 \cdot \left(uy \cdot \pi\right)\\
              \mathbf{if}\;uy \leq 0.0017999999690800905:\\
              \;\;\;\;\mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\pi}^{2}\right), 2 \cdot \left(yi \cdot \pi\right)\right)\right)\\
              
              \mathbf{else}:\\
              \;\;\;\;\mathsf{fma}\left(xi, \cos t\_0, yi \cdot \sin t\_0\right)\\
              
              
              \end{array}
              
              Derivation
              1. Split input into 2 regimes
              2. if uy < 0.00179999997

                1. Initial program 98.9%

                  \[\left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
                2. Taylor expanded in uy around 0

                  \[\leadsto \color{blue}{maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right) + \left(uy \cdot \left(-2 \cdot \left(uy \cdot \left(xi \cdot \left({\pi}^{2} \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right)\right) + 2 \cdot \left(yi \cdot \left(\pi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right)\right) + xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)} \]
                3. Applied rewrites86.3%

                  \[\leadsto \color{blue}{\mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), \mathsf{fma}\left(uy, \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot \left({\pi}^{2} \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right), 2 \cdot \left(yi \cdot \left(\pi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right)\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right)} \]
                4. Taylor expanded in ux around 0

                  \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \left(-2 \cdot \left(uy \cdot \left(xi \cdot {\pi}^{2}\right)\right) + 2 \cdot \left(yi \cdot \pi\right)\right)\right) \]
                5. Step-by-step derivation
                  1. lower-+.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \left(-2 \cdot \left(uy \cdot \left(xi \cdot {\mathsf{PI}\left(\right)}^{2}\right)\right) + 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  2. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \left(-2 \cdot \left(uy \cdot \left(xi \cdot {\mathsf{PI}\left(\right)}^{2}\right)\right) + 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  3. lower-fma.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\mathsf{PI}\left(\right)}^{2}\right), 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  4. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\mathsf{PI}\left(\right)}^{2}\right), 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  5. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\mathsf{PI}\left(\right)}^{2}\right), 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  6. lower-pow.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\mathsf{PI}\left(\right)}^{2}\right), 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  7. lower-PI.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\pi}^{2}\right), 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  8. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\pi}^{2}\right), 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                6. Applied rewrites86.1%

                  \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\pi}^{2}\right), 2 \cdot \left(yi \cdot \pi\right)\right)\right) \]

                if 0.00179999997 < uy

                1. Initial program 98.9%

                  \[\left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
                2. Applied rewrites99.0%

                  \[\leadsto \color{blue}{\mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\pi \cdot \left(uy + uy\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right)} \]
                3. Taylor expanded in ux around 0

                  \[\leadsto \color{blue}{xi \cdot \cos \left(2 \cdot \left(uy \cdot \pi\right)\right) + yi \cdot \sin \left(2 \cdot \left(uy \cdot \pi\right)\right)} \]
                4. Step-by-step derivation
                  1. lower-fma.f32N/A

                    \[\leadsto \mathsf{fma}\left(xi, \color{blue}{\cos \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)}, yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  2. lower-cos.f32N/A

                    \[\leadsto \mathsf{fma}\left(xi, \cos \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  3. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(xi, \cos \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  4. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(xi, \cos \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  5. lower-PI.f32N/A

                    \[\leadsto \mathsf{fma}\left(xi, \cos \left(2 \cdot \left(uy \cdot \pi\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  6. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(xi, \cos \left(2 \cdot \left(uy \cdot \pi\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  7. lower-sin.f32N/A

                    \[\leadsto \mathsf{fma}\left(xi, \cos \left(2 \cdot \left(uy \cdot \pi\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  8. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(xi, \cos \left(2 \cdot \left(uy \cdot \pi\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  9. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(xi, \cos \left(2 \cdot \left(uy \cdot \pi\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  10. lower-PI.f3290.5%

                    \[\leadsto \mathsf{fma}\left(xi, \cos \left(2 \cdot \left(uy \cdot \pi\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \pi\right)\right)\right) \]
                5. Applied rewrites90.5%

                  \[\leadsto \color{blue}{\mathsf{fma}\left(xi, \cos \left(2 \cdot \left(uy \cdot \pi\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \pi\right)\right)\right)} \]
              3. Recombined 2 regimes into one program.
              4. Add Preprocessing

              Alternative 10: 95.9% accurate, 1.6× speedup?

              \[\begin{array}{l} t_0 := 2 \cdot \left(uy \cdot \pi\right)\\ \mathsf{fma}\left(maxCos, ux \cdot zi, \mathsf{fma}\left(xi, \cos t\_0, yi \cdot \sin t\_0\right)\right) \end{array} \]
              (FPCore (xi yi zi ux uy maxCos)
                :precision binary32
                (let* ((t_0 (* 2.0 (* uy PI))))
                (fma maxCos (* ux zi) (fma xi (cos t_0) (* yi (sin t_0))))))
              float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
              	float t_0 = 2.0f * (uy * ((float) M_PI));
              	return fmaf(maxCos, (ux * zi), fmaf(xi, cosf(t_0), (yi * sinf(t_0))));
              }
              
              function code(xi, yi, zi, ux, uy, maxCos)
              	t_0 = Float32(Float32(2.0) * Float32(uy * Float32(pi)))
              	return fma(maxCos, Float32(ux * zi), fma(xi, cos(t_0), Float32(yi * sin(t_0))))
              end
              
              \begin{array}{l}
              t_0 := 2 \cdot \left(uy \cdot \pi\right)\\
              \mathsf{fma}\left(maxCos, ux \cdot zi, \mathsf{fma}\left(xi, \cos t\_0, yi \cdot \sin t\_0\right)\right)
              \end{array}
              
              Derivation
              1. Initial program 98.9%

                \[\left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
              2. Taylor expanded in uy around 0

                \[\leadsto \color{blue}{maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right) + xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}} \]
              3. Step-by-step derivation
                1. lower-fma.f32N/A

                  \[\leadsto \mathsf{fma}\left(maxCos, \color{blue}{ux \cdot \left(zi \cdot \left(1 - ux\right)\right)}, xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                2. lower-*.f32N/A

                  \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \color{blue}{\left(zi \cdot \left(1 - ux\right)\right)}, xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                3. lower-*.f32N/A

                  \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \color{blue}{\left(1 - ux\right)}\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                4. lower--.f32N/A

                  \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - \color{blue}{ux}\right)\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                5. lower-*.f32N/A

                  \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                6. lower-sqrt.f32N/A

                  \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                7. lower--.f32N/A

                  \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
              4. Applied rewrites52.3%

                \[\leadsto \color{blue}{\mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)} \]
              5. Taylor expanded in ux around 0

                \[\leadsto xi + \color{blue}{maxCos \cdot \left(ux \cdot zi\right)} \]
              6. Step-by-step derivation
                1. lower-+.f32N/A

                  \[\leadsto xi + maxCos \cdot \color{blue}{\left(ux \cdot zi\right)} \]
                2. lower-*.f32N/A

                  \[\leadsto xi + maxCos \cdot \left(ux \cdot \color{blue}{zi}\right) \]
                3. lower-*.f3250.2%

                  \[\leadsto xi + maxCos \cdot \left(ux \cdot zi\right) \]
              7. Applied rewrites50.2%

                \[\leadsto xi + \color{blue}{maxCos \cdot \left(ux \cdot zi\right)} \]
              8. Taylor expanded in xi around 0

                \[\leadsto maxCos \cdot \left(ux \cdot \color{blue}{zi}\right) \]
              9. Step-by-step derivation
                1. lower-*.f32N/A

                  \[\leadsto maxCos \cdot \left(ux \cdot zi\right) \]
                2. lower-*.f3211.9%

                  \[\leadsto maxCos \cdot \left(ux \cdot zi\right) \]
              10. Applied rewrites11.9%

                \[\leadsto maxCos \cdot \left(ux \cdot \color{blue}{zi}\right) \]
              11. Taylor expanded in ux around 0

                \[\leadsto \color{blue}{maxCos \cdot \left(ux \cdot zi\right) + \left(xi \cdot \cos \left(2 \cdot \left(uy \cdot \pi\right)\right) + yi \cdot \sin \left(2 \cdot \left(uy \cdot \pi\right)\right)\right)} \]
              12. Step-by-step derivation
                1. lower-fma.f32N/A

                  \[\leadsto \mathsf{fma}\left(maxCos, \color{blue}{ux \cdot zi}, xi \cdot \cos \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right) + yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                2. lower-*.f32N/A

                  \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \color{blue}{zi}, xi \cdot \cos \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right) + yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                3. lower-fma.f32N/A

                  \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot zi, \mathsf{fma}\left(xi, \cos \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right)\right) \]
                4. lower-cos.f32N/A

                  \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot zi, \mathsf{fma}\left(xi, \cos \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right)\right) \]
                5. lower-*.f32N/A

                  \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot zi, \mathsf{fma}\left(xi, \cos \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right)\right) \]
                6. lower-*.f32N/A

                  \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot zi, \mathsf{fma}\left(xi, \cos \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right)\right) \]
                7. lower-PI.f32N/A

                  \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot zi, \mathsf{fma}\left(xi, \cos \left(2 \cdot \left(uy \cdot \pi\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right)\right) \]
                8. lower-*.f32N/A

                  \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot zi, \mathsf{fma}\left(xi, \cos \left(2 \cdot \left(uy \cdot \pi\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \mathsf{PI}\left(\right)\right)\right)\right)\right) \]
              13. Applied rewrites95.9%

                \[\leadsto \color{blue}{\mathsf{fma}\left(maxCos, ux \cdot zi, \mathsf{fma}\left(xi, \cos \left(2 \cdot \left(uy \cdot \pi\right)\right), yi \cdot \sin \left(2 \cdot \left(uy \cdot \pi\right)\right)\right)\right)} \]
              14. Add Preprocessing

              Alternative 11: 88.5% accurate, 1.9× speedup?

              \[\begin{array}{l} t_0 := ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\\ \mathbf{if}\;uy \leq 0.03500000014901161:\\ \;\;\;\;\mathsf{fma}\left(maxCos, t\_0, xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\pi}^{2}\right), 2 \cdot \left(yi \cdot \pi\right)\right)\right)\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot maxCos, ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), maxCos \cdot t\_0\right)\\ \end{array} \]
              (FPCore (xi yi zi ux uy maxCos)
                :precision binary32
                (let* ((t_0 (* ux (* zi (- 1.0 ux)))))
                (if (<= uy 0.03500000014901161)
                  (fma
                   maxCos
                   t_0
                   (+
                    xi
                    (* uy (fma -2.0 (* uy (* xi (pow PI 2.0))) (* 2.0 (* yi PI))))))
                  (fma
                   (*
                    yi
                    (sqrt (fma (* (* (- ux 1.0) (* maxCos ux)) maxCos) ux 1.0)))
                   (sin (* PI (+ uy uy)))
                   (* maxCos t_0)))))
              float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
              	float t_0 = ux * (zi * (1.0f - ux));
              	float tmp;
              	if (uy <= 0.03500000014901161f) {
              		tmp = fmaf(maxCos, t_0, (xi + (uy * fmaf(-2.0f, (uy * (xi * powf(((float) M_PI), 2.0f))), (2.0f * (yi * ((float) M_PI)))))));
              	} else {
              		tmp = fmaf((yi * sqrtf(fmaf((((ux - 1.0f) * (maxCos * ux)) * maxCos), ux, 1.0f))), sinf((((float) M_PI) * (uy + uy))), (maxCos * t_0));
              	}
              	return tmp;
              }
              
              function code(xi, yi, zi, ux, uy, maxCos)
              	t_0 = Float32(ux * Float32(zi * Float32(Float32(1.0) - ux)))
              	tmp = Float32(0.0)
              	if (uy <= Float32(0.03500000014901161))
              		tmp = fma(maxCos, t_0, Float32(xi + Float32(uy * fma(Float32(-2.0), Float32(uy * Float32(xi * (Float32(pi) ^ Float32(2.0)))), Float32(Float32(2.0) * Float32(yi * Float32(pi)))))));
              	else
              		tmp = fma(Float32(yi * sqrt(fma(Float32(Float32(Float32(ux - Float32(1.0)) * Float32(maxCos * ux)) * maxCos), ux, Float32(1.0)))), sin(Float32(Float32(pi) * Float32(uy + uy))), Float32(maxCos * t_0));
              	end
              	return tmp
              end
              
              \begin{array}{l}
              t_0 := ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\\
              \mathbf{if}\;uy \leq 0.03500000014901161:\\
              \;\;\;\;\mathsf{fma}\left(maxCos, t\_0, xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\pi}^{2}\right), 2 \cdot \left(yi \cdot \pi\right)\right)\right)\\
              
              \mathbf{else}:\\
              \;\;\;\;\mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot maxCos, ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), maxCos \cdot t\_0\right)\\
              
              
              \end{array}
              
              Derivation
              1. Split input into 2 regimes
              2. if uy < 0.0350000001

                1. Initial program 98.9%

                  \[\left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
                2. Taylor expanded in uy around 0

                  \[\leadsto \color{blue}{maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right) + \left(uy \cdot \left(-2 \cdot \left(uy \cdot \left(xi \cdot \left({\pi}^{2} \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right)\right) + 2 \cdot \left(yi \cdot \left(\pi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right)\right) + xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)} \]
                3. Applied rewrites86.3%

                  \[\leadsto \color{blue}{\mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), \mathsf{fma}\left(uy, \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot \left({\pi}^{2} \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right), 2 \cdot \left(yi \cdot \left(\pi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right)\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right)} \]
                4. Taylor expanded in ux around 0

                  \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \left(-2 \cdot \left(uy \cdot \left(xi \cdot {\pi}^{2}\right)\right) + 2 \cdot \left(yi \cdot \pi\right)\right)\right) \]
                5. Step-by-step derivation
                  1. lower-+.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \left(-2 \cdot \left(uy \cdot \left(xi \cdot {\mathsf{PI}\left(\right)}^{2}\right)\right) + 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  2. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \left(-2 \cdot \left(uy \cdot \left(xi \cdot {\mathsf{PI}\left(\right)}^{2}\right)\right) + 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  3. lower-fma.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\mathsf{PI}\left(\right)}^{2}\right), 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  4. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\mathsf{PI}\left(\right)}^{2}\right), 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  5. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\mathsf{PI}\left(\right)}^{2}\right), 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  6. lower-pow.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\mathsf{PI}\left(\right)}^{2}\right), 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  7. lower-PI.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\pi}^{2}\right), 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  8. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\pi}^{2}\right), 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                6. Applied rewrites86.1%

                  \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\pi}^{2}\right), 2 \cdot \left(yi \cdot \pi\right)\right)\right) \]

                if 0.0350000001 < uy

                1. Initial program 98.9%

                  \[\left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
                2. Applied rewrites99.0%

                  \[\leadsto \color{blue}{\mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\pi \cdot \left(uy + uy\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right)} \]
                3. Step-by-step derivation
                  1. lift-cos.f32N/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \color{blue}{\cos \left(\pi \cdot \left(uy + uy\right)\right)}, \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  2. cos-neg-revN/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \color{blue}{\cos \left(\mathsf{neg}\left(\pi \cdot \left(uy + uy\right)\right)\right)}, \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  3. lift-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\mathsf{neg}\left(\color{blue}{\pi \cdot \left(uy + uy\right)}\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  4. *-commutativeN/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\mathsf{neg}\left(\color{blue}{\left(uy + uy\right) \cdot \pi}\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  5. lift-+.f32N/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\mathsf{neg}\left(\color{blue}{\left(uy + uy\right)} \cdot \pi\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  6. count-2N/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\mathsf{neg}\left(\color{blue}{\left(2 \cdot uy\right)} \cdot \pi\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  7. *-commutativeN/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\mathsf{neg}\left(\color{blue}{\left(uy \cdot 2\right)} \cdot \pi\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  8. lift-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\mathsf{neg}\left(\color{blue}{\left(uy \cdot 2\right)} \cdot \pi\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  9. lift-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\mathsf{neg}\left(\color{blue}{\left(uy \cdot 2\right) \cdot \pi}\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  10. sin-+PI/2-revN/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \color{blue}{\sin \left(\left(\mathsf{neg}\left(\left(uy \cdot 2\right) \cdot \pi\right)\right) + \frac{\mathsf{PI}\left(\right)}{2}\right)}, \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  11. lower-sin.f32N/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \color{blue}{\sin \left(\left(\mathsf{neg}\left(\left(uy \cdot 2\right) \cdot \pi\right)\right) + \frac{\mathsf{PI}\left(\right)}{2}\right)}, \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  12. lift-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(uy \cdot 2\right) \cdot \pi}\right)\right) + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  13. lift-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(uy \cdot 2\right)} \cdot \pi\right)\right) + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  14. *-commutativeN/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(2 \cdot uy\right)} \cdot \pi\right)\right) + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  15. count-2N/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(uy + uy\right)} \cdot \pi\right)\right) + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  16. lift-+.f32N/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(uy + uy\right)} \cdot \pi\right)\right) + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  17. distribute-lft-neg-inN/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\color{blue}{\left(\mathsf{neg}\left(\left(uy + uy\right)\right)\right) \cdot \pi} + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  18. lift-+.f32N/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\left(\mathsf{neg}\left(\color{blue}{\left(uy + uy\right)}\right)\right) \cdot \pi + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  19. count-2N/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\left(\mathsf{neg}\left(\color{blue}{2 \cdot uy}\right)\right) \cdot \pi + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  20. distribute-lft-neg-outN/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\color{blue}{\left(\left(\mathsf{neg}\left(2\right)\right) \cdot uy\right)} \cdot \pi + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  21. metadata-evalN/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \left(\left(\color{blue}{-2} \cdot uy\right) \cdot \pi + \frac{\mathsf{PI}\left(\right)}{2}\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                  22. lower-fma.f32N/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \sin \color{blue}{\left(\mathsf{fma}\left(-2 \cdot uy, \pi, \frac{\mathsf{PI}\left(\right)}{2}\right)\right)}, \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                4. Applied rewrites99.1%

                  \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \color{blue}{\sin \left(\mathsf{fma}\left(-2 \cdot uy, \pi, \pi \cdot 0.5\right)\right)}, \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right) \]
                5. Taylor expanded in xi around 0

                  \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \color{blue}{maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right)}\right) \]
                6. Step-by-step derivation
                  1. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), maxCos \cdot \color{blue}{\left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right)}\right) \]
                  2. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), maxCos \cdot \left(ux \cdot \color{blue}{\left(zi \cdot \left(1 - ux\right)\right)}\right)\right) \]
                  3. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), maxCos \cdot \left(ux \cdot \left(zi \cdot \color{blue}{\left(1 - ux\right)}\right)\right)\right) \]
                  4. lower--.f3244.1%

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - \color{blue}{ux}\right)\right)\right)\right) \]
                7. Applied rewrites44.1%

                  \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \color{blue}{maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right)}\right) \]
                8. Taylor expanded in ux around 0

                  \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \color{blue}{maxCos}, ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right)\right) \]
                9. Step-by-step derivation
                  1. Applied rewrites44.1%

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \color{blue}{maxCos}, ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right)\right) \]
                10. Recombined 2 regimes into one program.
                11. Add Preprocessing

                Alternative 12: 88.5% accurate, 1.8× speedup?

                \[\begin{array}{l} t_0 := ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\\ \mathbf{if}\;uy \leq 0.03500000014901161:\\ \;\;\;\;\mathsf{fma}\left(maxCos, t\_0, xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\pi}^{2}\right), 2 \cdot \left(yi \cdot \pi\right)\right)\right)\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), maxCos \cdot t\_0\right)\\ \end{array} \]
                (FPCore (xi yi zi ux uy maxCos)
                  :precision binary32
                  (let* ((t_0 (* ux (* zi (- 1.0 ux)))))
                  (if (<= uy 0.03500000014901161)
                    (fma
                     maxCos
                     t_0
                     (+
                      xi
                      (* uy (fma -2.0 (* uy (* xi (pow PI 2.0))) (* 2.0 (* yi PI))))))
                    (fma
                     (*
                      yi
                      (sqrt
                       (fma
                        (* (* (- ux 1.0) (* maxCos ux)) (* maxCos (- 1.0 ux)))
                        ux
                        1.0)))
                     (sin (* PI (+ uy uy)))
                     (* maxCos t_0)))))
                float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
                	float t_0 = ux * (zi * (1.0f - ux));
                	float tmp;
                	if (uy <= 0.03500000014901161f) {
                		tmp = fmaf(maxCos, t_0, (xi + (uy * fmaf(-2.0f, (uy * (xi * powf(((float) M_PI), 2.0f))), (2.0f * (yi * ((float) M_PI)))))));
                	} else {
                		tmp = fmaf((yi * sqrtf(fmaf((((ux - 1.0f) * (maxCos * ux)) * (maxCos * (1.0f - ux))), ux, 1.0f))), sinf((((float) M_PI) * (uy + uy))), (maxCos * t_0));
                	}
                	return tmp;
                }
                
                function code(xi, yi, zi, ux, uy, maxCos)
                	t_0 = Float32(ux * Float32(zi * Float32(Float32(1.0) - ux)))
                	tmp = Float32(0.0)
                	if (uy <= Float32(0.03500000014901161))
                		tmp = fma(maxCos, t_0, Float32(xi + Float32(uy * fma(Float32(-2.0), Float32(uy * Float32(xi * (Float32(pi) ^ Float32(2.0)))), Float32(Float32(2.0) * Float32(yi * Float32(pi)))))));
                	else
                		tmp = fma(Float32(yi * sqrt(fma(Float32(Float32(Float32(ux - Float32(1.0)) * Float32(maxCos * ux)) * Float32(maxCos * Float32(Float32(1.0) - ux))), ux, Float32(1.0)))), sin(Float32(Float32(pi) * Float32(uy + uy))), Float32(maxCos * t_0));
                	end
                	return tmp
                end
                
                \begin{array}{l}
                t_0 := ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\\
                \mathbf{if}\;uy \leq 0.03500000014901161:\\
                \;\;\;\;\mathsf{fma}\left(maxCos, t\_0, xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\pi}^{2}\right), 2 \cdot \left(yi \cdot \pi\right)\right)\right)\\
                
                \mathbf{else}:\\
                \;\;\;\;\mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), maxCos \cdot t\_0\right)\\
                
                
                \end{array}
                
                Derivation
                1. Split input into 2 regimes
                2. if uy < 0.0350000001

                  1. Initial program 98.9%

                    \[\left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
                  2. Taylor expanded in uy around 0

                    \[\leadsto \color{blue}{maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right) + \left(uy \cdot \left(-2 \cdot \left(uy \cdot \left(xi \cdot \left({\pi}^{2} \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right)\right) + 2 \cdot \left(yi \cdot \left(\pi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right)\right) + xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)} \]
                  3. Applied rewrites86.3%

                    \[\leadsto \color{blue}{\mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), \mathsf{fma}\left(uy, \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot \left({\pi}^{2} \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right), 2 \cdot \left(yi \cdot \left(\pi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right)\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right)} \]
                  4. Taylor expanded in ux around 0

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \left(-2 \cdot \left(uy \cdot \left(xi \cdot {\pi}^{2}\right)\right) + 2 \cdot \left(yi \cdot \pi\right)\right)\right) \]
                  5. Step-by-step derivation
                    1. lower-+.f32N/A

                      \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \left(-2 \cdot \left(uy \cdot \left(xi \cdot {\mathsf{PI}\left(\right)}^{2}\right)\right) + 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                    2. lower-*.f32N/A

                      \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \left(-2 \cdot \left(uy \cdot \left(xi \cdot {\mathsf{PI}\left(\right)}^{2}\right)\right) + 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                    3. lower-fma.f32N/A

                      \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\mathsf{PI}\left(\right)}^{2}\right), 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                    4. lower-*.f32N/A

                      \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\mathsf{PI}\left(\right)}^{2}\right), 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                    5. lower-*.f32N/A

                      \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\mathsf{PI}\left(\right)}^{2}\right), 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                    6. lower-pow.f32N/A

                      \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\mathsf{PI}\left(\right)}^{2}\right), 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                    7. lower-PI.f32N/A

                      \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\pi}^{2}\right), 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                    8. lower-*.f32N/A

                      \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\pi}^{2}\right), 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  6. Applied rewrites86.1%

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\pi}^{2}\right), 2 \cdot \left(yi \cdot \pi\right)\right)\right) \]

                  if 0.0350000001 < uy

                  1. Initial program 98.9%

                    \[\left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
                  2. Applied rewrites99.0%

                    \[\leadsto \color{blue}{\mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \mathsf{fma}\left(xi \cdot \cos \left(\pi \cdot \left(uy + uy\right)\right), \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, zi \cdot \left(\left(maxCos \cdot \left(1 - ux\right)\right) \cdot ux\right)\right)\right)} \]
                  3. Taylor expanded in xi around 0

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \color{blue}{maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right)}\right) \]
                  4. Step-by-step derivation
                    1. lower-*.f32N/A

                      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), maxCos \cdot \color{blue}{\left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right)}\right) \]
                    2. lower-*.f32N/A

                      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), maxCos \cdot \left(ux \cdot \color{blue}{\left(zi \cdot \left(1 - ux\right)\right)}\right)\right) \]
                    3. lower-*.f32N/A

                      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), maxCos \cdot \left(ux \cdot \left(zi \cdot \color{blue}{\left(1 - ux\right)}\right)\right)\right) \]
                    4. lower--.f3244.1%

                      \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - \color{blue}{ux}\right)\right)\right)\right) \]
                  5. Applied rewrites44.1%

                    \[\leadsto \mathsf{fma}\left(yi \cdot \sqrt{\mathsf{fma}\left(\left(\left(ux - 1\right) \cdot \left(maxCos \cdot ux\right)\right) \cdot \left(maxCos \cdot \left(1 - ux\right)\right), ux, 1\right)}, \sin \left(\pi \cdot \left(uy + uy\right)\right), \color{blue}{maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right)}\right) \]
                3. Recombined 2 regimes into one program.
                4. Add Preprocessing

                Alternative 13: 86.1% accurate, 2.9× speedup?

                \[\mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\pi}^{2}\right), 2 \cdot \left(yi \cdot \pi\right)\right)\right) \]
                (FPCore (xi yi zi ux uy maxCos)
                  :precision binary32
                  (fma
                 maxCos
                 (* ux (* zi (- 1.0 ux)))
                 (+
                  xi
                  (* uy (fma -2.0 (* uy (* xi (pow PI 2.0))) (* 2.0 (* yi PI)))))))
                float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
                	return fmaf(maxCos, (ux * (zi * (1.0f - ux))), (xi + (uy * fmaf(-2.0f, (uy * (xi * powf(((float) M_PI), 2.0f))), (2.0f * (yi * ((float) M_PI)))))));
                }
                
                function code(xi, yi, zi, ux, uy, maxCos)
                	return fma(maxCos, Float32(ux * Float32(zi * Float32(Float32(1.0) - ux))), Float32(xi + Float32(uy * fma(Float32(-2.0), Float32(uy * Float32(xi * (Float32(pi) ^ Float32(2.0)))), Float32(Float32(2.0) * Float32(yi * Float32(pi)))))))
                end
                
                \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\pi}^{2}\right), 2 \cdot \left(yi \cdot \pi\right)\right)\right)
                
                Derivation
                1. Initial program 98.9%

                  \[\left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
                2. Taylor expanded in uy around 0

                  \[\leadsto \color{blue}{maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right) + \left(uy \cdot \left(-2 \cdot \left(uy \cdot \left(xi \cdot \left({\pi}^{2} \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right)\right) + 2 \cdot \left(yi \cdot \left(\pi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right)\right) + xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)} \]
                3. Applied rewrites86.3%

                  \[\leadsto \color{blue}{\mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), \mathsf{fma}\left(uy, \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot \left({\pi}^{2} \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right), 2 \cdot \left(yi \cdot \left(\pi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right)\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right)} \]
                4. Taylor expanded in ux around 0

                  \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \left(-2 \cdot \left(uy \cdot \left(xi \cdot {\pi}^{2}\right)\right) + 2 \cdot \left(yi \cdot \pi\right)\right)\right) \]
                5. Step-by-step derivation
                  1. lower-+.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \left(-2 \cdot \left(uy \cdot \left(xi \cdot {\mathsf{PI}\left(\right)}^{2}\right)\right) + 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  2. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \left(-2 \cdot \left(uy \cdot \left(xi \cdot {\mathsf{PI}\left(\right)}^{2}\right)\right) + 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  3. lower-fma.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\mathsf{PI}\left(\right)}^{2}\right), 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  4. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\mathsf{PI}\left(\right)}^{2}\right), 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  5. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\mathsf{PI}\left(\right)}^{2}\right), 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  6. lower-pow.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\mathsf{PI}\left(\right)}^{2}\right), 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  7. lower-PI.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\pi}^{2}\right), 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  8. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\pi}^{2}\right), 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                6. Applied rewrites86.1%

                  \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi + uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\pi}^{2}\right), 2 \cdot \left(yi \cdot \pi\right)\right)\right) \]
                7. Add Preprocessing

                Alternative 14: 83.4% accurate, 3.3× speedup?

                \[xi + \mathsf{fma}\left(maxCos, ux \cdot zi, uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\pi}^{2}\right), 2 \cdot \left(yi \cdot \pi\right)\right)\right) \]
                (FPCore (xi yi zi ux uy maxCos)
                  :precision binary32
                  (+
                 xi
                 (fma
                  maxCos
                  (* ux zi)
                  (* uy (fma -2.0 (* uy (* xi (pow PI 2.0))) (* 2.0 (* yi PI)))))))
                float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
                	return xi + fmaf(maxCos, (ux * zi), (uy * fmaf(-2.0f, (uy * (xi * powf(((float) M_PI), 2.0f))), (2.0f * (yi * ((float) M_PI))))));
                }
                
                function code(xi, yi, zi, ux, uy, maxCos)
                	return Float32(xi + fma(maxCos, Float32(ux * zi), Float32(uy * fma(Float32(-2.0), Float32(uy * Float32(xi * (Float32(pi) ^ Float32(2.0)))), Float32(Float32(2.0) * Float32(yi * Float32(pi)))))))
                end
                
                xi + \mathsf{fma}\left(maxCos, ux \cdot zi, uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\pi}^{2}\right), 2 \cdot \left(yi \cdot \pi\right)\right)\right)
                
                Derivation
                1. Initial program 98.9%

                  \[\left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
                2. Taylor expanded in uy around 0

                  \[\leadsto \color{blue}{maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right) + \left(uy \cdot \left(-2 \cdot \left(uy \cdot \left(xi \cdot \left({\pi}^{2} \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right)\right) + 2 \cdot \left(yi \cdot \left(\pi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right)\right) + xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)} \]
                3. Applied rewrites86.3%

                  \[\leadsto \color{blue}{\mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), \mathsf{fma}\left(uy, \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot \left({\pi}^{2} \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right), 2 \cdot \left(yi \cdot \left(\pi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right)\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right)} \]
                4. Taylor expanded in ux around 0

                  \[\leadsto xi + \color{blue}{\left(maxCos \cdot \left(ux \cdot zi\right) + uy \cdot \left(-2 \cdot \left(uy \cdot \left(xi \cdot {\pi}^{2}\right)\right) + 2 \cdot \left(yi \cdot \pi\right)\right)\right)} \]
                5. Step-by-step derivation
                  1. lower-+.f32N/A

                    \[\leadsto xi + \left(maxCos \cdot \left(ux \cdot zi\right) + \color{blue}{uy \cdot \left(-2 \cdot \left(uy \cdot \left(xi \cdot {\mathsf{PI}\left(\right)}^{2}\right)\right) + 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)}\right) \]
                  2. lower-fma.f32N/A

                    \[\leadsto xi + \mathsf{fma}\left(maxCos, ux \cdot \color{blue}{zi}, uy \cdot \left(-2 \cdot \left(uy \cdot \left(xi \cdot {\mathsf{PI}\left(\right)}^{2}\right)\right) + 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  3. lower-*.f32N/A

                    \[\leadsto xi + \mathsf{fma}\left(maxCos, ux \cdot zi, uy \cdot \left(-2 \cdot \left(uy \cdot \left(xi \cdot {\mathsf{PI}\left(\right)}^{2}\right)\right) + 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  4. lower-*.f32N/A

                    \[\leadsto xi + \mathsf{fma}\left(maxCos, ux \cdot zi, uy \cdot \left(-2 \cdot \left(uy \cdot \left(xi \cdot {\mathsf{PI}\left(\right)}^{2}\right)\right) + 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  5. lower-fma.f32N/A

                    \[\leadsto xi + \mathsf{fma}\left(maxCos, ux \cdot zi, uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\mathsf{PI}\left(\right)}^{2}\right), 2 \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                6. Applied rewrites83.4%

                  \[\leadsto xi + \color{blue}{\mathsf{fma}\left(maxCos, ux \cdot zi, uy \cdot \mathsf{fma}\left(-2, uy \cdot \left(xi \cdot {\pi}^{2}\right), 2 \cdot \left(yi \cdot \pi\right)\right)\right)} \]
                7. Add Preprocessing

                Alternative 15: 81.9% accurate, 6.1× speedup?

                \[xi + \mathsf{fma}\left(2, uy \cdot \left(yi \cdot \pi\right), maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right)\right) \]
                (FPCore (xi yi zi ux uy maxCos)
                  :precision binary32
                  (+ xi (fma 2.0 (* uy (* yi PI)) (* maxCos (* ux (* zi (- 1.0 ux)))))))
                float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
                	return xi + fmaf(2.0f, (uy * (yi * ((float) M_PI))), (maxCos * (ux * (zi * (1.0f - ux)))));
                }
                
                function code(xi, yi, zi, ux, uy, maxCos)
                	return Float32(xi + fma(Float32(2.0), Float32(uy * Float32(yi * Float32(pi))), Float32(maxCos * Float32(ux * Float32(zi * Float32(Float32(1.0) - ux))))))
                end
                
                xi + \mathsf{fma}\left(2, uy \cdot \left(yi \cdot \pi\right), maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right)\right)
                
                Derivation
                1. Initial program 98.9%

                  \[\left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
                2. Taylor expanded in uy around 0

                  \[\leadsto \color{blue}{2 \cdot \left(uy \cdot \left(yi \cdot \left(\pi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right)\right) + \left(maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right) + xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)} \]
                3. Step-by-step derivation
                  1. lower-fma.f32N/A

                    \[\leadsto \mathsf{fma}\left(2, \color{blue}{uy \cdot \left(yi \cdot \left(\mathsf{PI}\left(\right) \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right)}, maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right) + xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                4. Applied rewrites82.1%

                  \[\leadsto \color{blue}{\mathsf{fma}\left(2, uy \cdot \left(yi \cdot \left(\pi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right), \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right)} \]
                5. Taylor expanded in maxCos around 0

                  \[\leadsto xi + \color{blue}{\left(2 \cdot \left(uy \cdot \left(yi \cdot \pi\right)\right) + maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right)\right)} \]
                6. Step-by-step derivation
                  1. lower-+.f32N/A

                    \[\leadsto xi + \left(2 \cdot \left(uy \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right) + \color{blue}{maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right)}\right) \]
                  2. lower-fma.f32N/A

                    \[\leadsto xi + \mathsf{fma}\left(2, uy \cdot \color{blue}{\left(yi \cdot \mathsf{PI}\left(\right)\right)}, maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right)\right) \]
                  3. lower-*.f32N/A

                    \[\leadsto xi + \mathsf{fma}\left(2, uy \cdot \left(yi \cdot \color{blue}{\mathsf{PI}\left(\right)}\right), maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right)\right) \]
                  4. lower-*.f32N/A

                    \[\leadsto xi + \mathsf{fma}\left(2, uy \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right), maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right)\right) \]
                  5. lower-PI.f32N/A

                    \[\leadsto xi + \mathsf{fma}\left(2, uy \cdot \left(yi \cdot \pi\right), maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right)\right) \]
                  6. lower-*.f32N/A

                    \[\leadsto xi + \mathsf{fma}\left(2, uy \cdot \left(yi \cdot \pi\right), maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right)\right) \]
                  7. lower-*.f32N/A

                    \[\leadsto xi + \mathsf{fma}\left(2, uy \cdot \left(yi \cdot \pi\right), maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right)\right) \]
                  8. lower-*.f32N/A

                    \[\leadsto xi + \mathsf{fma}\left(2, uy \cdot \left(yi \cdot \pi\right), maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right)\right) \]
                  9. lower--.f3281.9%

                    \[\leadsto xi + \mathsf{fma}\left(2, uy \cdot \left(yi \cdot \pi\right), maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right)\right) \]
                7. Applied rewrites81.9%

                  \[\leadsto xi + \color{blue}{\mathsf{fma}\left(2, uy \cdot \left(yi \cdot \pi\right), maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right)\right)} \]
                8. Add Preprocessing

                Alternative 16: 81.9% accurate, 6.1× speedup?

                \[\mathsf{fma}\left(\left(\left(1 - ux\right) \cdot ux\right) \cdot maxCos, zi, xi + 2 \cdot \left(uy \cdot \left(yi \cdot \pi\right)\right)\right) \]
                (FPCore (xi yi zi ux uy maxCos)
                  :precision binary32
                  (fma (* (* (- 1.0 ux) ux) maxCos) zi (+ xi (* 2.0 (* uy (* yi PI))))))
                float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
                	return fmaf((((1.0f - ux) * ux) * maxCos), zi, (xi + (2.0f * (uy * (yi * ((float) M_PI))))));
                }
                
                function code(xi, yi, zi, ux, uy, maxCos)
                	return fma(Float32(Float32(Float32(Float32(1.0) - ux) * ux) * maxCos), zi, Float32(xi + Float32(Float32(2.0) * Float32(uy * Float32(yi * Float32(pi))))))
                end
                
                \mathsf{fma}\left(\left(\left(1 - ux\right) \cdot ux\right) \cdot maxCos, zi, xi + 2 \cdot \left(uy \cdot \left(yi \cdot \pi\right)\right)\right)
                
                Derivation
                1. Initial program 98.9%

                  \[\left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
                2. Taylor expanded in uy around 0

                  \[\leadsto \color{blue}{2 \cdot \left(uy \cdot \left(yi \cdot \left(\pi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right)\right) + \left(maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right) + xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)} \]
                3. Step-by-step derivation
                  1. lower-fma.f32N/A

                    \[\leadsto \mathsf{fma}\left(2, \color{blue}{uy \cdot \left(yi \cdot \left(\mathsf{PI}\left(\right) \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right)}, maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right) + xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                4. Applied rewrites82.1%

                  \[\leadsto \color{blue}{\mathsf{fma}\left(2, uy \cdot \left(yi \cdot \left(\pi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right), \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right)} \]
                5. Applied rewrites82.1%

                  \[\leadsto \mathsf{fma}\left(\left(\left(1 - ux\right) \cdot ux\right) \cdot maxCos, \color{blue}{zi}, \mathsf{fma}\left(\sqrt{\mathsf{fma}\left(\left(\left(\left(1 - ux\right) \cdot ux\right) \cdot maxCos\right) \cdot \left(maxCos \cdot \left(ux - 1\right)\right), ux, 1\right)}, xi, \left(\left(uy + uy\right) \cdot \left(\pi \cdot yi\right)\right) \cdot \sqrt{\mathsf{fma}\left(\left(\left(\left(1 - ux\right) \cdot ux\right) \cdot maxCos\right) \cdot \left(maxCos \cdot \left(ux - 1\right)\right), ux, 1\right)}\right)\right) \]
                6. Taylor expanded in ux around 0

                  \[\leadsto \mathsf{fma}\left(\left(\left(1 - ux\right) \cdot ux\right) \cdot maxCos, zi, xi + 2 \cdot \left(uy \cdot \left(yi \cdot \pi\right)\right)\right) \]
                7. Step-by-step derivation
                  1. lower-+.f32N/A

                    \[\leadsto \mathsf{fma}\left(\left(\left(1 - ux\right) \cdot ux\right) \cdot maxCos, zi, xi + 2 \cdot \left(uy \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  2. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(\left(\left(1 - ux\right) \cdot ux\right) \cdot maxCos, zi, xi + 2 \cdot \left(uy \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  3. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(\left(\left(1 - ux\right) \cdot ux\right) \cdot maxCos, zi, xi + 2 \cdot \left(uy \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  4. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(\left(\left(1 - ux\right) \cdot ux\right) \cdot maxCos, zi, xi + 2 \cdot \left(uy \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)\right) \]
                  5. lower-PI.f3281.9%

                    \[\leadsto \mathsf{fma}\left(\left(\left(1 - ux\right) \cdot ux\right) \cdot maxCos, zi, xi + 2 \cdot \left(uy \cdot \left(yi \cdot \pi\right)\right)\right) \]
                8. Applied rewrites81.9%

                  \[\leadsto \mathsf{fma}\left(\left(\left(1 - ux\right) \cdot ux\right) \cdot maxCos, zi, xi + 2 \cdot \left(uy \cdot \left(yi \cdot \pi\right)\right)\right) \]
                9. Add Preprocessing

                Alternative 17: 79.3% accurate, 7.7× speedup?

                \[xi + \mathsf{fma}\left(2, uy \cdot \left(yi \cdot \pi\right), maxCos \cdot \left(ux \cdot zi\right)\right) \]
                (FPCore (xi yi zi ux uy maxCos)
                  :precision binary32
                  (+ xi (fma 2.0 (* uy (* yi PI)) (* maxCos (* ux zi)))))
                float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
                	return xi + fmaf(2.0f, (uy * (yi * ((float) M_PI))), (maxCos * (ux * zi)));
                }
                
                function code(xi, yi, zi, ux, uy, maxCos)
                	return Float32(xi + fma(Float32(2.0), Float32(uy * Float32(yi * Float32(pi))), Float32(maxCos * Float32(ux * zi))))
                end
                
                xi + \mathsf{fma}\left(2, uy \cdot \left(yi \cdot \pi\right), maxCos \cdot \left(ux \cdot zi\right)\right)
                
                Derivation
                1. Initial program 98.9%

                  \[\left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
                2. Taylor expanded in uy around 0

                  \[\leadsto \color{blue}{2 \cdot \left(uy \cdot \left(yi \cdot \left(\pi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right)\right) + \left(maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right) + xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)} \]
                3. Step-by-step derivation
                  1. lower-fma.f32N/A

                    \[\leadsto \mathsf{fma}\left(2, \color{blue}{uy \cdot \left(yi \cdot \left(\mathsf{PI}\left(\right) \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right)}, maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right) + xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                4. Applied rewrites82.1%

                  \[\leadsto \color{blue}{\mathsf{fma}\left(2, uy \cdot \left(yi \cdot \left(\pi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right), \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right)} \]
                5. Taylor expanded in ux around 0

                  \[\leadsto xi + \color{blue}{\left(2 \cdot \left(uy \cdot \left(yi \cdot \pi\right)\right) + maxCos \cdot \left(ux \cdot zi\right)\right)} \]
                6. Step-by-step derivation
                  1. lower-+.f32N/A

                    \[\leadsto xi + \left(2 \cdot \left(uy \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right) + \color{blue}{maxCos \cdot \left(ux \cdot zi\right)}\right) \]
                  2. lower-fma.f32N/A

                    \[\leadsto xi + \mathsf{fma}\left(2, uy \cdot \color{blue}{\left(yi \cdot \mathsf{PI}\left(\right)\right)}, maxCos \cdot \left(ux \cdot zi\right)\right) \]
                  3. lower-*.f32N/A

                    \[\leadsto xi + \mathsf{fma}\left(2, uy \cdot \left(yi \cdot \color{blue}{\mathsf{PI}\left(\right)}\right), maxCos \cdot \left(ux \cdot zi\right)\right) \]
                  4. lower-*.f32N/A

                    \[\leadsto xi + \mathsf{fma}\left(2, uy \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right), maxCos \cdot \left(ux \cdot zi\right)\right) \]
                  5. lower-PI.f32N/A

                    \[\leadsto xi + \mathsf{fma}\left(2, uy \cdot \left(yi \cdot \pi\right), maxCos \cdot \left(ux \cdot zi\right)\right) \]
                  6. lower-*.f32N/A

                    \[\leadsto xi + \mathsf{fma}\left(2, uy \cdot \left(yi \cdot \pi\right), maxCos \cdot \left(ux \cdot zi\right)\right) \]
                  7. lower-*.f3279.3%

                    \[\leadsto xi + \mathsf{fma}\left(2, uy \cdot \left(yi \cdot \pi\right), maxCos \cdot \left(ux \cdot zi\right)\right) \]
                7. Applied rewrites79.3%

                  \[\leadsto xi + \color{blue}{\mathsf{fma}\left(2, uy \cdot \left(yi \cdot \pi\right), maxCos \cdot \left(ux \cdot zi\right)\right)} \]
                8. Add Preprocessing

                Alternative 18: 74.5% accurate, 12.7× speedup?

                \[xi + 2 \cdot \left(uy \cdot \left(yi \cdot \pi\right)\right) \]
                (FPCore (xi yi zi ux uy maxCos)
                  :precision binary32
                  (+ xi (* 2.0 (* uy (* yi PI)))))
                float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
                	return xi + (2.0f * (uy * (yi * ((float) M_PI))));
                }
                
                function code(xi, yi, zi, ux, uy, maxCos)
                	return Float32(xi + Float32(Float32(2.0) * Float32(uy * Float32(yi * Float32(pi)))))
                end
                
                function tmp = code(xi, yi, zi, ux, uy, maxCos)
                	tmp = xi + (single(2.0) * (uy * (yi * single(pi))));
                end
                
                xi + 2 \cdot \left(uy \cdot \left(yi \cdot \pi\right)\right)
                
                Derivation
                1. Initial program 98.9%

                  \[\left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
                2. Taylor expanded in uy around 0

                  \[\leadsto \color{blue}{2 \cdot \left(uy \cdot \left(yi \cdot \left(\pi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right)\right) + \left(maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right) + xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)} \]
                3. Step-by-step derivation
                  1. lower-fma.f32N/A

                    \[\leadsto \mathsf{fma}\left(2, \color{blue}{uy \cdot \left(yi \cdot \left(\mathsf{PI}\left(\right) \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right)}, maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right) + xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                4. Applied rewrites82.1%

                  \[\leadsto \color{blue}{\mathsf{fma}\left(2, uy \cdot \left(yi \cdot \left(\pi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right), \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)\right)} \]
                5. Taylor expanded in ux around 0

                  \[\leadsto xi + \color{blue}{2 \cdot \left(uy \cdot \left(yi \cdot \pi\right)\right)} \]
                6. Step-by-step derivation
                  1. lower-+.f32N/A

                    \[\leadsto xi + 2 \cdot \color{blue}{\left(uy \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right)} \]
                  2. lower-*.f32N/A

                    \[\leadsto xi + 2 \cdot \left(uy \cdot \color{blue}{\left(yi \cdot \mathsf{PI}\left(\right)\right)}\right) \]
                  3. lower-*.f32N/A

                    \[\leadsto xi + 2 \cdot \left(uy \cdot \left(yi \cdot \color{blue}{\mathsf{PI}\left(\right)}\right)\right) \]
                  4. lower-*.f32N/A

                    \[\leadsto xi + 2 \cdot \left(uy \cdot \left(yi \cdot \mathsf{PI}\left(\right)\right)\right) \]
                  5. lower-PI.f3274.5%

                    \[\leadsto xi + 2 \cdot \left(uy \cdot \left(yi \cdot \pi\right)\right) \]
                7. Applied rewrites74.5%

                  \[\leadsto xi + \color{blue}{2 \cdot \left(uy \cdot \left(yi \cdot \pi\right)\right)} \]
                8. Add Preprocessing

                Alternative 19: 50.2% accurate, 17.7× speedup?

                \[\mathsf{fma}\left(maxCos \cdot ux, zi, xi\right) \]
                (FPCore (xi yi zi ux uy maxCos)
                  :precision binary32
                  (fma (* maxCos ux) zi xi))
                float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
                	return fmaf((maxCos * ux), zi, xi);
                }
                
                function code(xi, yi, zi, ux, uy, maxCos)
                	return fma(Float32(maxCos * ux), zi, xi)
                end
                
                \mathsf{fma}\left(maxCos \cdot ux, zi, xi\right)
                
                Derivation
                1. Initial program 98.9%

                  \[\left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
                2. Taylor expanded in uy around 0

                  \[\leadsto \color{blue}{maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right) + xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}} \]
                3. Step-by-step derivation
                  1. lower-fma.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, \color{blue}{ux \cdot \left(zi \cdot \left(1 - ux\right)\right)}, xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                  2. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \color{blue}{\left(zi \cdot \left(1 - ux\right)\right)}, xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                  3. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \color{blue}{\left(1 - ux\right)}\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                  4. lower--.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - \color{blue}{ux}\right)\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                  5. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                  6. lower-sqrt.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                  7. lower--.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                4. Applied rewrites52.3%

                  \[\leadsto \color{blue}{\mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)} \]
                5. Taylor expanded in ux around 0

                  \[\leadsto xi + \color{blue}{maxCos \cdot \left(ux \cdot zi\right)} \]
                6. Step-by-step derivation
                  1. lower-+.f32N/A

                    \[\leadsto xi + maxCos \cdot \color{blue}{\left(ux \cdot zi\right)} \]
                  2. lower-*.f32N/A

                    \[\leadsto xi + maxCos \cdot \left(ux \cdot \color{blue}{zi}\right) \]
                  3. lower-*.f3250.2%

                    \[\leadsto xi + maxCos \cdot \left(ux \cdot zi\right) \]
                7. Applied rewrites50.2%

                  \[\leadsto xi + \color{blue}{maxCos \cdot \left(ux \cdot zi\right)} \]
                8. Step-by-step derivation
                  1. lift-+.f32N/A

                    \[\leadsto xi + maxCos \cdot \color{blue}{\left(ux \cdot zi\right)} \]
                  2. +-commutativeN/A

                    \[\leadsto maxCos \cdot \left(ux \cdot zi\right) + xi \]
                  3. lift-*.f32N/A

                    \[\leadsto maxCos \cdot \left(ux \cdot zi\right) + xi \]
                  4. lift-*.f32N/A

                    \[\leadsto maxCos \cdot \left(ux \cdot zi\right) + xi \]
                  5. associate-*r*N/A

                    \[\leadsto \left(maxCos \cdot ux\right) \cdot zi + xi \]
                  6. lift-*.f32N/A

                    \[\leadsto \left(maxCos \cdot ux\right) \cdot zi + xi \]
                  7. lower-fma.f3250.2%

                    \[\leadsto \mathsf{fma}\left(maxCos \cdot ux, zi, xi\right) \]
                9. Applied rewrites50.2%

                  \[\leadsto \mathsf{fma}\left(maxCos \cdot ux, zi, xi\right) \]
                10. Add Preprocessing

                Alternative 20: 11.9% accurate, 22.8× speedup?

                \[\left(maxCos \cdot ux\right) \cdot zi \]
                (FPCore (xi yi zi ux uy maxCos)
                  :precision binary32
                  (* (* maxCos ux) zi))
                float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
                	return (maxCos * ux) * zi;
                }
                
                module fmin_fmax_functions
                    implicit none
                    private
                    public fmax
                    public fmin
                
                    interface fmax
                        module procedure fmax88
                        module procedure fmax44
                        module procedure fmax84
                        module procedure fmax48
                    end interface
                    interface fmin
                        module procedure fmin88
                        module procedure fmin44
                        module procedure fmin84
                        module procedure fmin48
                    end interface
                contains
                    real(8) function fmax88(x, y) result (res)
                        real(8), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                    end function
                    real(4) function fmax44(x, y) result (res)
                        real(4), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                    end function
                    real(8) function fmax84(x, y) result(res)
                        real(8), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                    end function
                    real(8) function fmax48(x, y) result(res)
                        real(4), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                    end function
                    real(8) function fmin88(x, y) result (res)
                        real(8), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                    end function
                    real(4) function fmin44(x, y) result (res)
                        real(4), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                    end function
                    real(8) function fmin84(x, y) result(res)
                        real(8), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                    end function
                    real(8) function fmin48(x, y) result(res)
                        real(4), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                    end function
                end module
                
                real(4) function code(xi, yi, zi, ux, uy, maxcos)
                use fmin_fmax_functions
                    real(4), intent (in) :: xi
                    real(4), intent (in) :: yi
                    real(4), intent (in) :: zi
                    real(4), intent (in) :: ux
                    real(4), intent (in) :: uy
                    real(4), intent (in) :: maxcos
                    code = (maxcos * ux) * zi
                end function
                
                function code(xi, yi, zi, ux, uy, maxCos)
                	return Float32(Float32(maxCos * ux) * zi)
                end
                
                function tmp = code(xi, yi, zi, ux, uy, maxCos)
                	tmp = (maxCos * ux) * zi;
                end
                
                \left(maxCos \cdot ux\right) \cdot zi
                
                Derivation
                1. Initial program 98.9%

                  \[\left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
                2. Taylor expanded in uy around 0

                  \[\leadsto \color{blue}{maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right) + xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}} \]
                3. Step-by-step derivation
                  1. lower-fma.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, \color{blue}{ux \cdot \left(zi \cdot \left(1 - ux\right)\right)}, xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                  2. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \color{blue}{\left(zi \cdot \left(1 - ux\right)\right)}, xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                  3. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \color{blue}{\left(1 - ux\right)}\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                  4. lower--.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - \color{blue}{ux}\right)\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                  5. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                  6. lower-sqrt.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                  7. lower--.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                4. Applied rewrites52.3%

                  \[\leadsto \color{blue}{\mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)} \]
                5. Taylor expanded in ux around 0

                  \[\leadsto xi + \color{blue}{maxCos \cdot \left(ux \cdot zi\right)} \]
                6. Step-by-step derivation
                  1. lower-+.f32N/A

                    \[\leadsto xi + maxCos \cdot \color{blue}{\left(ux \cdot zi\right)} \]
                  2. lower-*.f32N/A

                    \[\leadsto xi + maxCos \cdot \left(ux \cdot \color{blue}{zi}\right) \]
                  3. lower-*.f3250.2%

                    \[\leadsto xi + maxCos \cdot \left(ux \cdot zi\right) \]
                7. Applied rewrites50.2%

                  \[\leadsto xi + \color{blue}{maxCos \cdot \left(ux \cdot zi\right)} \]
                8. Taylor expanded in xi around 0

                  \[\leadsto maxCos \cdot \left(ux \cdot \color{blue}{zi}\right) \]
                9. Step-by-step derivation
                  1. lower-*.f32N/A

                    \[\leadsto maxCos \cdot \left(ux \cdot zi\right) \]
                  2. lower-*.f3211.9%

                    \[\leadsto maxCos \cdot \left(ux \cdot zi\right) \]
                10. Applied rewrites11.9%

                  \[\leadsto maxCos \cdot \left(ux \cdot \color{blue}{zi}\right) \]
                11. Step-by-step derivation
                  1. lift-*.f32N/A

                    \[\leadsto maxCos \cdot \left(ux \cdot zi\right) \]
                  2. lift-*.f32N/A

                    \[\leadsto maxCos \cdot \left(ux \cdot zi\right) \]
                  3. associate-*r*N/A

                    \[\leadsto \left(maxCos \cdot ux\right) \cdot zi \]
                  4. lift-*.f32N/A

                    \[\leadsto \left(maxCos \cdot ux\right) \cdot zi \]
                  5. lower-*.f3211.9%

                    \[\leadsto \left(maxCos \cdot ux\right) \cdot zi \]
                12. Applied rewrites11.9%

                  \[\leadsto \left(maxCos \cdot ux\right) \cdot zi \]
                13. Add Preprocessing

                Alternative 21: 11.9% accurate, 22.8× speedup?

                \[maxCos \cdot \left(ux \cdot zi\right) \]
                (FPCore (xi yi zi ux uy maxCos)
                  :precision binary32
                  (* maxCos (* ux zi)))
                float code(float xi, float yi, float zi, float ux, float uy, float maxCos) {
                	return maxCos * (ux * zi);
                }
                
                module fmin_fmax_functions
                    implicit none
                    private
                    public fmax
                    public fmin
                
                    interface fmax
                        module procedure fmax88
                        module procedure fmax44
                        module procedure fmax84
                        module procedure fmax48
                    end interface
                    interface fmin
                        module procedure fmin88
                        module procedure fmin44
                        module procedure fmin84
                        module procedure fmin48
                    end interface
                contains
                    real(8) function fmax88(x, y) result (res)
                        real(8), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                    end function
                    real(4) function fmax44(x, y) result (res)
                        real(4), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                    end function
                    real(8) function fmax84(x, y) result(res)
                        real(8), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                    end function
                    real(8) function fmax48(x, y) result(res)
                        real(4), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                    end function
                    real(8) function fmin88(x, y) result (res)
                        real(8), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                    end function
                    real(4) function fmin44(x, y) result (res)
                        real(4), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                    end function
                    real(8) function fmin84(x, y) result(res)
                        real(8), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                    end function
                    real(8) function fmin48(x, y) result(res)
                        real(4), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                    end function
                end module
                
                real(4) function code(xi, yi, zi, ux, uy, maxcos)
                use fmin_fmax_functions
                    real(4), intent (in) :: xi
                    real(4), intent (in) :: yi
                    real(4), intent (in) :: zi
                    real(4), intent (in) :: ux
                    real(4), intent (in) :: uy
                    real(4), intent (in) :: maxcos
                    code = maxcos * (ux * zi)
                end function
                
                function code(xi, yi, zi, ux, uy, maxCos)
                	return Float32(maxCos * Float32(ux * zi))
                end
                
                function tmp = code(xi, yi, zi, ux, uy, maxCos)
                	tmp = maxCos * (ux * zi);
                end
                
                maxCos \cdot \left(ux \cdot zi\right)
                
                Derivation
                1. Initial program 98.9%

                  \[\left(\left(\cos \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot xi + \left(\sin \left(\left(uy \cdot 2\right) \cdot \pi\right) \cdot \sqrt{1 - \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right)}\right) \cdot yi\right) + \left(\left(\left(1 - ux\right) \cdot maxCos\right) \cdot ux\right) \cdot zi \]
                2. Taylor expanded in uy around 0

                  \[\leadsto \color{blue}{maxCos \cdot \left(ux \cdot \left(zi \cdot \left(1 - ux\right)\right)\right) + xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}} \]
                3. Step-by-step derivation
                  1. lower-fma.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, \color{blue}{ux \cdot \left(zi \cdot \left(1 - ux\right)\right)}, xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                  2. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \color{blue}{\left(zi \cdot \left(1 - ux\right)\right)}, xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                  3. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \color{blue}{\left(1 - ux\right)}\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                  4. lower--.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - \color{blue}{ux}\right)\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                  5. lower-*.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                  6. lower-sqrt.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                  7. lower--.f32N/A

                    \[\leadsto \mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right) \]
                4. Applied rewrites52.3%

                  \[\leadsto \color{blue}{\mathsf{fma}\left(maxCos, ux \cdot \left(zi \cdot \left(1 - ux\right)\right), xi \cdot \sqrt{1 - {maxCos}^{2} \cdot \left({ux}^{2} \cdot {\left(1 - ux\right)}^{2}\right)}\right)} \]
                5. Taylor expanded in ux around 0

                  \[\leadsto xi + \color{blue}{maxCos \cdot \left(ux \cdot zi\right)} \]
                6. Step-by-step derivation
                  1. lower-+.f32N/A

                    \[\leadsto xi + maxCos \cdot \color{blue}{\left(ux \cdot zi\right)} \]
                  2. lower-*.f32N/A

                    \[\leadsto xi + maxCos \cdot \left(ux \cdot \color{blue}{zi}\right) \]
                  3. lower-*.f3250.2%

                    \[\leadsto xi + maxCos \cdot \left(ux \cdot zi\right) \]
                7. Applied rewrites50.2%

                  \[\leadsto xi + \color{blue}{maxCos \cdot \left(ux \cdot zi\right)} \]
                8. Taylor expanded in xi around 0

                  \[\leadsto maxCos \cdot \left(ux \cdot \color{blue}{zi}\right) \]
                9. Step-by-step derivation
                  1. lower-*.f32N/A

                    \[\leadsto maxCos \cdot \left(ux \cdot zi\right) \]
                  2. lower-*.f3211.9%

                    \[\leadsto maxCos \cdot \left(ux \cdot zi\right) \]
                10. Applied rewrites11.9%

                  \[\leadsto maxCos \cdot \left(ux \cdot \color{blue}{zi}\right) \]
                11. Add Preprocessing

                Reproduce

                ?
                herbie shell --seed 2025227 
                (FPCore (xi yi zi ux uy maxCos)
                  :name "UniformSampleCone 2"
                  :precision binary32
                  :pre (and (and (and (and (and (and (<= -10000.0 xi) (<= xi 10000.0)) (and (<= -10000.0 yi) (<= yi 10000.0))) (and (<= -10000.0 zi) (<= zi 10000.0))) (and (<= 2.328306437e-10 ux) (<= ux 1.0))) (and (<= 2.328306437e-10 uy) (<= uy 1.0))) (and (<= 0.0 maxCos) (<= maxCos 1.0)))
                  (+ (+ (* (* (cos (* (* uy 2.0) PI)) (sqrt (- 1.0 (* (* (* (- 1.0 ux) maxCos) ux) (* (* (- 1.0 ux) maxCos) ux))))) xi) (* (* (sin (* (* uy 2.0) PI)) (sqrt (- 1.0 (* (* (* (- 1.0 ux) maxCos) ux) (* (* (- 1.0 ux) maxCos) ux))))) yi)) (* (* (* (- 1.0 ux) maxCos) ux) zi)))