Date: | Thursday, April 3rd, 2025 |
---|---|
Commit: | 3b31f129 on chassis-platforms-cleanup |
Seed: | 2025093 |
Parameters: | 256 points for 4 iterations |
Flags: | reduce:regimesreduce:binary-searchreduce:branch-expressionssetup:searchrules:arithmeticrules:polynomialsrules:fractionsrules:exponentsrules:trigonometryrules:hyperbolicrules:numericsrules:specialrules:boolsrules:branchesgenerate:rrgenerate:taylorgenerate:proofs default |
Memory: | 11 531 940.3 MB |
Time bar (total: 2.5hr)
Compiled 1 275 391 to 496 093 computations (61.1% saved)
5.1min | 3 935 899× | 0 | valid |
2.1min | 19 232× | 3 | exit |
1.7min | 450 921× | 1 | valid |
57.9s | 141 577× | 2 | valid |
31.1s | 321 846× | 0 | invalid |
25.5s | 37 248× | 5 | exit |
17.0s | 4 440× | 4 | exit |
11.1s | 15 330× | 3 | valid |
5.8s | 49 961× | 0 | exit |
5.7s | 27 279× | 1 | invalid |
560.0ms | 5 372× | 1 | exit |
508.0ms | 1 490× | 2 | invalid |
77.0ms | 36× | 4 | valid |
ival-mult!
: 1.5min (17.1% of total)adjust
: 48.8s (9.5% of total)ival-exp
: 40.9s (8% of total)ival-div!
: 39.0s (7.6% of total)ival-log
: 37.2s (7.3% of total)ival-pow
: 36.9s (7.2% of total)ival-pow2
: 31.0s (6.1% of total)ival-add!
: 30.4s (5.9% of total)ival-sub!
: 26.0s (5.1% of total)ival-cos
: 23.4s (4.6% of total)ival-sqrt
: 22.5s (4.4% of total)ival-sin
: 20.5s (4% of total)ival-tan
: 14.4s (2.8% of total)ival-neg
: 9.9s (1.9% of total)ival-sinu
: 5.8s (1.1% of total)ival-cosu
: 5.4s (1% of total)ival-fmax
: 4.0s (0.8% of total)ival-fmin
: 3.5s (0.7% of total)ival-hypot
: 3.5s (0.7% of total)ival-fabs
: 3.5s (0.7% of total)ival-expm1
: 2.5s (0.5% of total)ival-asin
: 1.7s (0.3% of total)ival-acos
: 1.7s (0.3% of total)ival-log1p
: 1.5s (0.3% of total)ival-atan2
: 1.4s (0.3% of total)ival-atan
: 1.3s (0.3% of total)ival-sinh
: 967.0ms (0.2% of total)ival-<=
: 925.0ms (0.2% of total)const
: 823.0ms (0.2% of total)ival-and
: 772.0ms (0.2% of total)ival-fmod
: 751.0ms (0.1% of total)ival-<
: 679.0ms (0.1% of total)ival-floor
: 655.0ms (0.1% of total)ival-cbrt
: 557.0ms (0.1% of total)ival-cosh
: 259.0ms (0.1% of total)ival-asinh
: 239.0ms (0% of total)ival-if
: 231.0ms (0% of total)ival-acosh
: 215.0ms (0% of total)ival-tanu
: 205.0ms (0% of total)ival-log2
: 186.0ms (0% of total)ival-atanh
: 126.0ms (0% of total)ival-assert
: 117.0ms (0% of total)ival-tanh
: 104.0ms (0% of total)ival->
: 60.0ms (0% of total)ival->=
: 50.0ms (0% of total)ival-or
: 14.0ms (0% of total)ival-==
: 3.0ms (0% of total)ival-pi
: 0.0ms (0% of total)3 698× | iter-limit |
1 420× | node-limit |
112× | unsound |
19× | saturated |
Compiled 193 407 989 to 5 135 834 computations (97.3% saved)
Operator | Subexpression | Explanation | Count | |
---|---|---|---|---|
-.f64 | #f | cancellation | 8965 | 64 |
sqrt.f64 | #f | oflow-rescue | 8126 | 0 |
log.f64 | #f | sensitivity | 3695 | 5 |
cos.f64 | #f | sensitivity | 3655 | 5 |
+.f64 | #f | cancellation | 3019 | 120 |
sin.f64 | #f | sensitivity | 2370 | 7 |
/.f64 | #f | o/n | 1949 | 0 |
/.f64 | #f | o/o | 1897 | 0 |
-.f64 | #f | nan-rescue | 1483 | 0 |
*.f64 | #f | n*o | 1158 | 0 |
log.f32 | #f | sensitivity | 1144 | 63 |
/.f64 | #f | n/o | 958 | 0 |
/.f64 | #f | u/u | 952 | 0 |
sqrt.f64 | #f | uflow-rescue | 921 | 0 |
+.f64 | #f | nan-rescue | 819 | 0 |
/.f64 | #f | u/n | 768 | 0 |
*.f64 | #f | n*u | 528 | 0 |
acos.f64 | #f | sensitivity | 528 | 8 |
sqrt.f32 | #f | oflow-rescue | 522 | 0 |
pow.f64 | #f | sensitivity | 416 | 55 |
-.f32 | #f | cancellation | 415 | 40 |
tan.f64 | #f | sensitivity | 412 | 1 |
/.f64 | #f | n/u | 362 | 0 |
-.f64 | (-.f64 (*.f64 #s(literal 170000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 binary64) t) #s(literal 170000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 binary64)) | oflow-left | 221 | 0 |
exp.f64 | #f | sensitivity | 198 | 28 |
cos.f32 | #f | sensitivity | 191 | 18 |
cos.f64 | #f | oflow-rescue | 180 | 0 |
tan.f32 | (tan.f32 (+.f32 (*.f32 (*.f32 #s(literal 2 binary32) (PI.f32)) u1) (*.f32 #s(literal 1/2 binary32) (PI.f32)))) | cancellation | 179 | 17 |
pow.f64 | #f | oflow-rescue | 165 | 0 |
*.f64 | #f | o*u | 153 | 0 |
*.f64 | #f | u*o | 148 | 0 |
asin.f64 | (asin.f64 (sqrt.f64 (/.f64 (-.f64 #s(literal 1 binary64) (pow.f64 (/.f64 Om Omc) #s(literal 2 binary64))) (+.f64 #s(literal 1 binary64) (*.f64 #s(literal 2 binary64) (pow.f64 (/.f64 t l) #s(literal 2 binary64))))))) | sensitivity | 135 | 0 |
/.f32 | #f | o/n | 116 | 0 |
cbrt.f64 | #f | oflow-rescue | 104 | 0 |
log.f64 | #f | oflow-rescue | 95 | 0 |
pow.f64 | #f | uflow-rescue | 60 | 0 |
log.f64 | #f | uflow-rescue | 56 | 0 |
cbrt.f64 | #f | uflow-rescue | 39 | 0 |
sin.f64 | #f | oflow-rescue | 34 | 0 |
tan.f64 | (tan.f64 (/.f64 x (*.f64 y #s(literal 2 binary64)))) | oflow-rescue | 31 | 0 |
↳ | (/.f64 x (*.f64 y #s(literal 2 binary64))) | overflow | 31 | |
exp.f32 | #f | sensitivity | 31 | 32 |
/.f32 | #f | u/n | 21 | 0 |
sqrt.f32 | (sqrt.f32 (-.f32 (*.f32 eta eta) (/.f32 (*.f32 sinTheta_O sinTheta_O) (sqrt.f32 (-.f32 #s(literal 1 binary32) (*.f32 sinTheta_O sinTheta_O)))))) | uflow-rescue | 13 | 0 |
↳ | (*.f32 sinTheta_O sinTheta_O) | underflow | 282 | |
↳ | (-.f32 (*.f32 eta eta) (/.f32 (*.f32 sinTheta_O sinTheta_O) (sqrt.f32 (-.f32 #s(literal 1 binary32) (*.f32 sinTheta_O sinTheta_O))))) | underflow | 13 | |
↳ | (/.f32 (*.f32 sinTheta_O sinTheta_O) (sqrt.f32 (-.f32 #s(literal 1 binary32) (*.f32 sinTheta_O sinTheta_O)))) | underflow | 141 | |
↳ | (*.f32 eta eta) | underflow | 13 | |
/.f32 | #f | n/o | 6 | 0 |
/.f32 | #f | o/o | 6 | 0 |
log.f32 | #f | oflow-rescue | 3 | 0 |
*.f32 | (*.f32 (sin.f32 (*.f32 u normAngle)) (/.f32 #s(literal 1 binary32) (sin.f32 normAngle))) | n*u | 2 | 0 |
*.f32 | (*.f32 (sin.f32 (*.f32 u normAngle)) (/.f32 #s(literal 1 binary32) (sin.f32 normAngle))) | u*o | 1 | 0 |
↳ | (*.f32 u normAngle) | underflow | 3 | |
↳ | (sin.f32 (*.f32 u normAngle)) | underflow | 3 | |
↳ | (/.f32 #s(literal 1 binary32) (sin.f32 normAngle)) | overflow | 1 | |
*.f32 | (*.f32 (sin.f32 (*.f32 (-.f32 #s(literal 1 binary32) u) normAngle)) (/.f32 #s(literal 1 binary32) (sin.f32 normAngle))) | n*o | 1 | 0 |
Predicted + | Predicted - | |
---|---|---|
+ | 31329 | 985 |
- | 6374 | 101856 |
Predicted + | Predicted Maybe | Predicted - | |
---|---|---|---|
+ | 31329 | 273 | 712 |
- | 6374 | 420 | 101436 |
number | freq |
---|---|
0 | 102841 |
1 | 31281 |
2 | 4987 |
3 | 651 |
4 | 353 |
5 | 195 |
6 | 55 |
7 | 55 |
8 | 3 |
9 | 1 |
16 | 27 |
17 | 61 |
21 | 34 |
Predicted + | Predicted Maybe | Predicted - | |
---|---|---|---|
+ | 344 | 3 | 2 |
- | 12 | 5 | 183 |
20.6s | 235 148× | 0 | valid |
8.8s | 33 098× | 1 | valid |
5.5s | 11 486× | 2 | valid |
1.1s | 52× | 5 | exit |
1.0s | 1 182× | 3 | valid |
228.0ms | 16× | 4 | valid |
14.0ms | 108× | 1 | exit |
Compiled 9 324 519 to 30 106 computations (99.7% saved)
ival-mult!
: 6.0s (25.3% of total)adjust
: 1.9s (8.1% of total)ival-sin
: 1.7s (7.3% of total)ival-div!
: 1.7s (7.1% of total)ival-add!
: 1.5s (6.2% of total)ival-cos
: 1.4s (6.1% of total)ival-log
: 1.3s (5.5% of total)ival-sub!
: 1.3s (5.3% of total)ival-sqrt
: 860.0ms (3.6% of total)ival-tan
: 847.0ms (3.6% of total)ival-exp
: 842.0ms (3.5% of total)ival-pow2
: 782.0ms (3.3% of total)ival-fmax
: 777.0ms (3.3% of total)ival-pow
: 476.0ms (2% of total)ival-cosu
: 357.0ms (1.5% of total)ival-neg
: 310.0ms (1.3% of total)ival-sinu
: 308.0ms (1.3% of total)ival-fmin
: 266.0ms (1.1% of total)ival-hypot
: 222.0ms (0.9% of total)ival-asin
: 128.0ms (0.5% of total)ival-atan
: 112.0ms (0.5% of total)ival-acos
: 95.0ms (0.4% of total)ival-atan2
: 87.0ms (0.4% of total)ival-log1p
: 86.0ms (0.4% of total)ival-fabs
: 74.0ms (0.3% of total)ival-sinh
: 59.0ms (0.2% of total)ival-floor
: 45.0ms (0.2% of total)ival-cbrt
: 41.0ms (0.2% of total)ival-expm1
: 32.0ms (0.1% of total)ival-fmod
: 29.0ms (0.1% of total)ival-if
: 24.0ms (0.1% of total)ival-cosh
: 13.0ms (0.1% of total)ival-log2
: 12.0ms (0.1% of total)ival-copysign
: 12.0ms (0.1% of total)ival-tanu
: 11.0ms (0% of total)ival-tanh
: 8.0ms (0% of total)ival->=
: 6.0ms (0% of total)const
: 5.0ms (0% of total)ival->
: 3.0ms (0% of total)ival-<
: 1.0ms (0% of total)ival-pi
: 0.0ms (0% of total)12993 calls:
Time | Variable | Point | Expression | |
---|---|---|---|---|
1.7s | t | @ | 0 | ((fabs (+ (* (* ew (sin t)) (cos (atan (/ (/ eh ew) (tan t))))) (* (* eh (cos t)) (sin (atan (/ (/ eh ew) (tan t))))))) (+ (* (* ew (sin t)) (cos (atan (/ (/ eh ew) (tan t))))) (* (* eh (cos t)) (sin (atan (/ (/ eh ew) (tan t)))))) (* (/ (+ (pow (* ew (/ (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t)) eh)) 3) (pow (* (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t))))) (cos t)) 3)) (+ (* (* ew (/ (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t)) eh)) (* ew (/ (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t)) eh))) (- (* (* (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t))))) (cos t)) (* (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t))))) (cos t))) (* (* ew (/ (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t)) eh)) (* (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t))))) (cos t)))))) eh) (/ (+ (pow (* ew (/ (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t)) eh)) 3) (pow (* (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t))))) (cos t)) 3)) (+ (* (* ew (/ (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t)) eh)) (* ew (/ (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t)) eh))) (- (* (* (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t))))) (cos t)) (* (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t))))) (cos t))) (* (* ew (/ (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t)) eh)) (* (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t))))) (cos t)))))) (+ (pow (* ew (/ (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t)) eh)) 3) (pow (* (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t))))) (cos t)) 3)) (pow (* ew (/ (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t)) eh)) 3) (* ew (/ (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t)) eh)) ew (/ (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t)) eh) (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t)) (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (atan (* (/ (cos t) ew) (/ eh (sin t)))) (* (/ (cos t) ew) (/ eh (sin t))) (/ (cos t) ew) (cos t) t (/ eh (sin t)) eh (sin t) 3 (pow (* (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t))))) (cos t)) 3) (* (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t))))) (cos t)) (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t))))) (asinh (* (/ (cos t) ew) (/ eh (sin t)))) (+ (* (* ew (/ (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t)) eh)) (* ew (/ (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t)) eh))) (- (* (* (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t))))) (cos t)) (* (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t))))) (cos t))) (* (* ew (/ (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t)) eh)) (* (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t))))) (cos t))))) (* (* ew (/ (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t)) eh)) (* ew (/ (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t)) eh))) (- (* (* (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t))))) (cos t)) (* (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t))))) (cos t))) (* (* ew (/ (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t)) eh)) (* (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t))))) (cos t)))) (* (* (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t))))) (cos t)) (* (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t))))) (cos t))) (* (* ew (/ (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t)) eh)) (* (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t))))) (cos t))) (fabs (+ (* (* ew (sin t)) (cos (atan (/ (/ eh ew) (tan t))))) (* (* eh (cos t)) (sin (atan (/ (/ eh ew) (tan t))))))) (+ (* (* ew (sin t)) (cos (atan (/ (/ eh ew) (tan t))))) (* (* eh (cos t)) (sin (atan (/ (/ eh ew) (tan t)))))) (* (+ (* ew (/ (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t)) eh)) (* (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t))))) (cos t))) eh) (+ (* ew (/ (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t)) eh)) (* (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t))))) (cos t))) (* ew (+ (* 1/2 (/ (* (cos t) (+ (* -2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (* 2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))))) (* (* ew ew) ew))) (+ (* (/ eh (* ew ew)) (/ (pow (cos t) 2) (sin t))) (/ (+ (* (* (cos t) (- (* 1/2 (+ (* -1 (/ (* eh (* (cos t) (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (+ (* 1/2 (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))) (* 1/2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))))))) (sin t))) (+ (* -1 (/ (* eh (* (cos t) (+ (* 1/2 (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))) (* 1/2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))))) (sin t))) (+ (* 1/3 (+ (* -3 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))) (* 2 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))))) (+ (* 1/3 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))) (/ (* eh (* (cos t) (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))))) (sin t))))))) (* 1/2 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))))) eh) (* (pow ew 4) (* (cos (atan (/ (* eh (cos t)) (* ew (sin t))))) (sin t)))) (* (pow ew 4) eh))))) (+ (* 1/2 (/ (* (cos t) (+ (* -2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (* 2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))))) (* (* ew ew) ew))) (+ (* (/ eh (* ew ew)) (/ (pow (cos t) 2) (sin t))) (/ (+ (* (* (cos t) (- (* 1/2 (+ (* -1 (/ (* eh (* (cos t) (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (+ (* 1/2 (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))) (* 1/2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))))))) (sin t))) (+ (* -1 (/ (* eh (* (cos t) (+ (* 1/2 (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))) (* 1/2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))))) (sin t))) (+ (* 1/3 (+ (* -3 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))) (* 2 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))))) (+ (* 1/3 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))) (/ (* eh (* (cos t) (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))))) (sin t))))))) (* 1/2 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))))) eh) (* (pow ew 4) (* (cos (atan (/ (* eh (cos t)) (* ew (sin t))))) (sin t)))) (* (pow ew 4) eh)))) 1/2 (/ (* (cos t) (+ (* -2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (* 2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))))) (* (* ew ew) ew)) (* (cos t) (+ (* -2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (* 2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))))) (+ (* -2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (* 2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))) -2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)) (pow (* eh (cos t)) 2) (* eh (cos t)) 2 (pow (sin t) 2) (* 2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (* (* ew ew) ew) (* ew ew) (+ (* (/ eh (* ew ew)) (/ (pow (cos t) 2) (sin t))) (/ (+ (* (* (cos t) (- (* 1/2 (+ (* -1 (/ (* eh (* (cos t) (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (+ (* 1/2 (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))) (* 1/2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))))))) (sin t))) (+ (* -1 (/ (* eh (* (cos t) (+ (* 1/2 (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))) (* 1/2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))))) (sin t))) (+ (* 1/3 (+ (* -3 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))) (* 2 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))))) (+ (* 1/3 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))) (/ (* eh (* (cos t) (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))))) (sin t))))))) (* 1/2 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))))) eh) (* (pow ew 4) (* (cos (atan (/ (* eh (cos t)) (* ew (sin t))))) (sin t)))) (* (pow ew 4) eh))) (/ eh (* ew ew)) (/ (pow (cos t) 2) (sin t)) (pow (cos t) 2) (/ (+ (* (* (cos t) (- (* 1/2 (+ (* -1 (/ (* eh (* (cos t) (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (+ (* 1/2 (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))) (* 1/2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))))))) (sin t))) (+ (* -1 (/ (* eh (* (cos t) (+ (* 1/2 (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))) (* 1/2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))))) (sin t))) (+ (* 1/3 (+ (* -3 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))) (* 2 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))))) (+ (* 1/3 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))) (/ (* eh (* (cos t) (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))))) (sin t))))))) (* 1/2 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))))) eh) (* (pow ew 4) (* (cos (atan (/ (* eh (cos t)) (* ew (sin t))))) (sin t)))) (* (pow ew 4) eh)) (+ (* (* (cos t) (- (* 1/2 (+ (* -1 (/ (* eh (* (cos t) (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (+ (* 1/2 (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))) (* 1/2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))))))) (sin t))) (+ (* -1 (/ (* eh (* (cos t) (+ (* 1/2 (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))) (* 1/2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))))) (sin t))) (+ (* 1/3 (+ (* -3 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))) (* 2 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))))) (+ (* 1/3 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))) (/ (* eh (* (cos t) (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))))) (sin t))))))) (* 1/2 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))))) eh) (* (pow ew 4) (* (cos (atan (/ (* eh (cos t)) (* ew (sin t))))) (sin t)))) (* (cos t) (- (* 1/2 (+ (* -1 (/ (* eh (* (cos t) (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (+ (* 1/2 (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))) (* 1/2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))))))) (sin t))) (+ (* -1 (/ (* eh (* (cos t) (+ (* 1/2 (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))) (* 1/2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))))) (sin t))) (+ (* 1/3 (+ (* -3 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))) (* 2 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))))) (+ (* 1/3 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))) (/ (* eh (* (cos t) (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))))) (sin t))))))) (* 1/2 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))))) (- (* 1/2 (+ (* -1 (/ (* eh (* (cos t) (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (+ (* 1/2 (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))) (* 1/2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))))))) (sin t))) (+ (* -1 (/ (* eh (* (cos t) (+ (* 1/2 (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))) (* 1/2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))))) (sin t))) (+ (* 1/3 (+ (* -3 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))) (* 2 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))))) (+ (* 1/3 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))) (/ (* eh (* (cos t) (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))))) (sin t))))))) (* 1/2 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3)))) (* 1/2 (+ (* -1 (/ (* eh (* (cos t) (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (+ (* 1/2 (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))) (* 1/2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))))))) (sin t))) (+ (* -1 (/ (* eh (* (cos t) (+ (* 1/2 (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))) (* 1/2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))))) (sin t))) (+ (* 1/3 (+ (* -3 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))) (* 2 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))))) (+ (* 1/3 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))) (/ (* eh (* (cos t) (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))))) (sin t))))))) (+ (* -1 (/ (* eh (* (cos t) (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (+ (* 1/2 (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))) (* 1/2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))))))) (sin t))) (+ (* -1 (/ (* eh (* (cos t) (+ (* 1/2 (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))) (* 1/2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))))) (sin t))) (+ (* 1/3 (+ (* -3 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))) (* 2 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))))) (+ (* 1/3 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))) (/ (* eh (* (cos t) (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))))) (sin t)))))) -1 (/ (* eh (* (cos t) (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (+ (* 1/2 (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))) (* 1/2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))))))) (sin t)) (* eh (* (cos t) (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (+ (* 1/2 (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))) (* 1/2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))))))) (* (cos t) (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (+ (* 1/2 (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))) (* 1/2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))))) (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (+ (* 1/2 (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))) (* 1/2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))))) (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (+ (* 1/2 (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))) (* 1/2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))) (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (* 1/2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (+ (* -1 (/ (* eh (* (cos t) (+ (* 1/2 (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))) (* 1/2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))))) (sin t))) (+ (* 1/3 (+ (* -3 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))) (* 2 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))))) (+ (* 1/3 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))) (/ (* eh (* (cos t) (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))))) (sin t))))) (/ (* eh (* (cos t) (+ (* 1/2 (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))) (* 1/2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))))) (sin t)) (* eh (* (cos t) (+ (* 1/2 (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))) (* 1/2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))))) (* (cos t) (+ (* 1/2 (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))) (* 1/2 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))))) (+ (* 1/3 (+ (* -3 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))) (* 2 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))))) (+ (* 1/3 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))) (/ (* eh (* (cos t) (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))))) (sin t)))) 1/3 (+ (* -3 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))) (* 2 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3)))) -3 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3)) (pow (* eh (cos t)) 3) (pow (sin t) 3) (* 2 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))) (+ (* 1/3 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))) (/ (* eh (* (cos t) (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))))) (sin t))) (/ (* eh (* (cos t) (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))))) (sin t)) (* eh (* (cos t) (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))))) (* (cos t) (+ (* -1 (/ (pow (* eh (cos t)) 2) (pow (sin t) 2))) (/ (pow (* eh (cos t)) 2) (pow (sin t) 2)))) (* 1/2 (/ (pow (* eh (cos t)) 3) (pow (sin t) 3))) (* (pow ew 4) (* (cos (atan (/ (* eh (cos t)) (* ew (sin t))))) (sin t))) (pow ew 4) 4 (* (cos (atan (/ (* eh (cos t)) (* ew (sin t))))) (sin t)) (cos (atan (/ (* eh (cos t)) (* ew (sin t))))) (atan (/ (* eh (cos t)) (* ew (sin t)))) (/ (* eh (cos t)) (* ew (sin t))) (* ew (sin t)) (* (pow ew 4) eh) (fabs (+ (* (* ew (sin t)) (cos (atan (/ (/ eh ew) (tan t))))) (* (* eh (cos t)) (sin (atan (/ (/ eh ew) (tan t))))))) (+ (* (* ew (sin t)) (cos (atan (/ (/ eh ew) (tan t))))) (* (* eh (cos t)) (sin (atan (/ (/ eh ew) (tan t)))))) (* (/ (+ (pow (/ (* (* (cos t) eh) (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t)))))) ew) 3) (pow (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t)) 3)) (+ (* (/ (* (* (cos t) eh) (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t)))))) ew) (/ (* (* (cos t) eh) (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t)))))) ew)) (- (* (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t)) (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t))) (* (/ (* (* (cos t) eh) (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t)))))) ew) (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t)))))) ew) (/ (+ (pow (/ (* (* (cos t) eh) (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t)))))) ew) 3) (pow (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t)) 3)) (+ (* (/ (* (* (cos t) eh) (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t)))))) ew) (/ (* (* (cos t) eh) (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t)))))) ew)) (- (* (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t)) (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t))) (* (/ (* (* (cos t) eh) (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t)))))) ew) (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t)))))) (+ (pow (/ (* (* (cos t) eh) (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t)))))) ew) 3) (pow (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t)) 3)) (pow (/ (* (* (cos t) eh) (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t)))))) ew) 3) (/ (* (* (cos t) eh) (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t)))))) ew) (* (* (cos t) eh) (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t)))))) (* (cos t) eh) (pow (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t)) 3) (+ (* (/ (* (* (cos t) eh) (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t)))))) ew) (/ (* (* (cos t) eh) (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t)))))) ew)) (- (* (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t)) (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t))) (* (/ (* (* (cos t) eh) (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t)))))) ew) (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t))))) (- (* (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t)) (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t))) (* (/ (* (* (cos t) eh) (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t)))))) ew) (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t)))) (* (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t)) (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t))) (* (/ (* (* (cos t) eh) (tanh (asinh (* (/ (cos t) ew) (/ eh (sin t)))))) ew) (* (cos (atan (* (/ (cos t) ew) (/ eh (sin t))))) (sin t))) (* (sqrt (+ (* (* (cos t) eh) (tanh (asinh (/ (/ eh ew) (tan t))))) (* (* (sin t) ew) (cos (atan (/ (/ eh ew) (tan t))))))) (sqrt (+ (* (* (cos t) eh) (tanh (asinh (/ (/ eh ew) (tan t))))) (* (* (sin t) ew) (cos (atan (/ (/ eh ew) (tan t)))))))) (sqrt (+ (* (* (cos t) eh) (tanh (asinh (/ (/ eh ew) (tan t))))) (* (* (sin t) ew) (cos (atan (/ (/ eh ew) (tan t))))))) (+ (* (* (cos t) eh) (tanh (asinh (/ (/ eh ew) (tan t))))) (* (* (sin t) ew) (cos (atan (/ (/ eh ew) (tan t)))))) (tanh (asinh (/ (/ eh ew) (tan t)))) (asinh (/ (/ eh ew) (tan t))) (/ (/ eh ew) (tan t)) (/ eh ew) (tan t) (* (* (sin t) ew) (cos (atan (/ (/ eh ew) (tan t))))) (* (sin t) ew) (cos (atan (/ (/ eh ew) (tan t)))) (atan (/ (/ eh ew) (tan t))) (sqrt (+ (* (* (cos t) eh) (tanh (asinh (/ (/ eh ew) (tan t))))) (* (* (sin t) ew) (cos (atan (/ (/ eh ew) (tan t))))))) (* (sqrt ew) (sqrt (* (cos (atan (/ (* eh (cos t)) (* ew (sin t))))) (sin t)))) (sqrt ew) (sqrt (* (cos (atan (/ (* eh (cos t)) (* ew (sin t))))) (sin t))) (/ (fabs (- (* (* (* (sin t) ew) (cos (atan (/ (/ eh ew) (tan t))))) (* (* (sin t) ew) (cos (atan (/ (/ eh ew) (tan t)))))) (* (* (* (cos t) eh) (tanh (asinh (/ (/ eh ew) (tan t))))) (* (* (cos t) eh) (tanh (asinh (/ (/ eh ew) (tan t)))))))) (fabs (- (* (* (sin t) ew) (cos (atan (/ (/ eh ew) (tan t))))) (* (* (cos t) eh) (tanh (asinh (/ (/ eh ew) (tan t)))))))) (fabs (- (* (* (* (sin t) ew) (cos (atan (/ (/ eh ew) (tan t))))) (* (* (sin t) ew) (cos (atan (/ (/ eh ew) (tan t)))))) (* (* (* (cos t) eh) (tanh (asinh (/ (/ eh ew) (tan t))))) (* (* (cos t) eh) (tanh (asinh (/ (/ eh ew) (tan t)))))))) (- (* (* (* (sin t) ew) (cos (atan (/ (/ eh ew) (tan t))))) (* (* (sin t) ew) (cos (atan (/ (/ eh ew) (tan t)))))) (* (* (* (cos t) eh) (tanh (asinh (/ (/ eh ew) (tan t))))) (* (* (cos t) eh) (tanh (asinh (/ (/ eh ew) (tan t))))))) (* (* (* (sin t) ew) (cos (atan (/ (/ eh ew) (tan t))))) (* (* (sin t) ew) (cos (atan (/ (/ eh ew) (tan t)))))) (* (* ew ew) (* (* (cos (atan (/ (* eh (cos t)) (* ew (sin t))))) (cos (atan (/ (* eh (cos t)) (* ew (sin t)))))) (pow (sin t) 2))) (* (* (cos (atan (/ (* eh (cos t)) (* ew (sin t))))) (cos (atan (/ (* eh (cos t)) (* ew (sin t)))))) (pow (sin t) 2)) (* (cos (atan (/ (* eh (cos t)) (* ew (sin t))))) (cos (atan (/ (* eh (cos t)) (* ew (sin t)))))) (* (* (* (cos t) eh) (tanh (asinh (/ (/ eh ew) (tan t))))) (* (* (cos t) eh) (tanh (asinh (/ (/ eh ew) (tan t)))))) (* (* (cos t) eh) (tanh (asinh (/ (/ eh ew) (tan t))))) (fabs (- (* (* (sin t) ew) (cos (atan (/ (/ eh ew) (tan t))))) (* (* (cos t) eh) (tanh (asinh (/ (/ eh ew) (tan t))))))) (- (* (* (sin t) ew) (cos (atan (/ (/ eh ew) (tan t))))) (* (* (cos t) eh) (tanh (asinh (/ (/ eh ew) (tan t))))))) |
1.4s | s | @ | 0 | ((* (neg s) (log (- (/ 1 (/ (+ (pow (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) 3) (pow (/ 1 (+ (exp (/ (PI) s)) 1)) 3)) (+ (* (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u)) (- (* (/ 1 (+ (exp (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) (* (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1))))))) 1))) (neg s) s (log (- (/ 1 (/ (+ (pow (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) 3) (pow (/ 1 (+ (exp (/ (PI) s)) 1)) 3)) (+ (* (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u)) (- (* (/ 1 (+ (exp (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) (* (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1))))))) 1)) (- (/ 1 (/ (+ (pow (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) 3) (pow (/ 1 (+ (exp (/ (PI) s)) 1)) 3)) (+ (* (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u)) (- (* (/ 1 (+ (exp (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) (* (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1))))))) 1) (/ 1 (/ (+ (pow (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) 3) (pow (/ 1 (+ (exp (/ (PI) s)) 1)) 3)) (+ (* (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u)) (- (* (/ 1 (+ (exp (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) (* (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1))))))) 1 (/ (+ (pow (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) 3) (pow (/ 1 (+ (exp (/ (PI) s)) 1)) 3)) (+ (* (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u)) (- (* (/ 1 (+ (exp (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) (* (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))))) (+ (pow (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) 3) (pow (/ 1 (+ (exp (/ (PI) s)) 1)) 3)) (pow (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) 3) (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (+ (pow (exp -1) (/ (PI) s)) 1) (pow (exp -1) (/ (PI) s)) (exp -1) -1 (/ (PI) s) (PI) (/ 1 (+ (exp (/ (PI) s)) 1)) (+ (exp (/ (PI) s)) 1) (exp (/ (PI) s)) u 3 (pow (/ 1 (+ (exp (/ (PI) s)) 1)) 3) (+ (* (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u)) (- (* (/ 1 (+ (exp (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) (* (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1))))) (* (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u)) (- (* (/ 1 (+ (exp (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) (* (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) (* (/ 1 (+ (exp (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) (* (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1))) (log (pow (- (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) 1) (* -1 s))) (pow (- (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) 1) (* -1 s)) (- (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) 1) (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1))) (* -1 s) (* (neg s) (log (- (exp (* (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) -1)) 1))) (log (- (exp (* (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) -1)) 1)) (- (exp (* (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) -1)) 1) (* (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) -1) (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) (* (neg s) (log (/ (- (pow (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) 3) 1) (+ (* (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1))))) (+ 1 (* (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) 1)))))) (log (/ (- (pow (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) 3) 1) (+ (* (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1))))) (+ 1 (* (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) 1))))) (/ (- (pow (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) 3) 1) (+ (* (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1))))) (+ 1 (* (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) 1)))) (- (pow (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) 3) 1) (pow (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) 3) (+ (* (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1))))) (+ 1 (* (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) 1))) (* (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1))))) (+ 1 (* (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) 1)) (* (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) 1) (* (neg s) (- (log (- (* (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1))))) 1)) (log (+ (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) 1)))) (- (log (- (* (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1))))) 1)) (log (+ (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) 1))) (log (- (* (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1))))) 1)) (- (* (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1))))) 1) (log (+ (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) 1)) (+ (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) 1)) |
988.0ms | lambda1 | @ | 0 | ((+ lambda1 (atan2 (* (cos phi2) (- (* (sin lambda1) (cos lambda2)) (* (cos lambda1) (sin lambda2)))) (+ (cos phi1) (* (cos phi2) (+ (* (cos lambda1) (cos lambda2)) (* (sin lambda1) (sin lambda2))))))) lambda1 (atan2 (* (cos phi2) (- (* (sin lambda1) (cos lambda2)) (* (cos lambda1) (sin lambda2)))) (+ (cos phi1) (* (cos phi2) (+ (* (cos lambda1) (cos lambda2)) (* (sin lambda1) (sin lambda2)))))) (* (cos phi2) (- (* (sin lambda1) (cos lambda2)) (* (cos lambda1) (sin lambda2)))) (cos phi2) phi2 (- (* (sin lambda1) (cos lambda2)) (* (cos lambda1) (sin lambda2))) (* (sin lambda1) (cos lambda2)) (sin lambda1) (cos lambda2) lambda2 (* (cos lambda1) (sin lambda2)) (cos lambda1) (sin lambda2) (+ (cos phi1) (* (cos phi2) (+ (* (cos lambda1) (cos lambda2)) (* (sin lambda1) (sin lambda2))))) (cos phi1) phi1 (* (cos phi2) (+ (* (cos lambda1) (cos lambda2)) (* (sin lambda1) (sin lambda2)))) (+ (* (cos lambda1) (cos lambda2)) (* (sin lambda1) (sin lambda2))) (* (sin lambda1) (sin lambda2)) (+ lambda1 (atan2 (* (cos phi2) (sin (- lambda1 lambda2))) (+ (cos phi1) (* (cos phi2) (+ (* (sin (- lambda1 lambda2)) (cos (/ (PI) 2))) (* (cos (- lambda1 lambda2)) (sin (/ (PI) 2)))))))) (atan2 (* (cos phi2) (sin (- lambda1 lambda2))) (+ (cos phi1) (* (cos phi2) (+ (* (sin (- lambda1 lambda2)) (cos (/ (PI) 2))) (* (cos (- lambda1 lambda2)) (sin (/ (PI) 2))))))) (* (cos phi2) (sin (- lambda1 lambda2))) (sin (- lambda1 lambda2)) (- lambda1 lambda2) (+ (cos phi1) (* (cos phi2) (+ (* (sin (- lambda1 lambda2)) (cos (/ (PI) 2))) (* (cos (- lambda1 lambda2)) (sin (/ (PI) 2)))))) (* (cos phi2) (+ (* (sin (- lambda1 lambda2)) (cos (/ (PI) 2))) (* (cos (- lambda1 lambda2)) (sin (/ (PI) 2))))) (+ (* (sin (- lambda1 lambda2)) (cos (/ (PI) 2))) (* (cos (- lambda1 lambda2)) (sin (/ (PI) 2)))) (cos (/ (PI) 2)) (/ (PI) 2) (PI) 2 (* (cos (- lambda1 lambda2)) (sin (/ (PI) 2))) (cos (- lambda1 lambda2)) (sin (/ (PI) 2)) (+ lambda1 (atan2 (* (cos phi2) (sin (- lambda1 lambda2))) (+ (/ (pow (cos phi1) 3) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))) (/ (pow (* (cos (- lambda1 lambda2)) (cos phi2)) 3) (/ (+ (pow (pow (cos phi1) 2) 3) (pow (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))) 3)) (+ (* (pow (cos phi1) 2) (pow (cos phi1) 2)) (- (* (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2))))) (* (pow (cos phi1) 2) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))))))))) (atan2 (* (cos phi2) (sin (- lambda1 lambda2))) (+ (/ (pow (cos phi1) 3) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))) (/ (pow (* (cos (- lambda1 lambda2)) (cos phi2)) 3) (/ (+ (pow (pow (cos phi1) 2) 3) (pow (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))) 3)) (+ (* (pow (cos phi1) 2) (pow (cos phi1) 2)) (- (* (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2))))) (* (pow (cos phi1) 2) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2))))))))))) (+ (/ (pow (cos phi1) 3) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))) (/ (pow (* (cos (- lambda1 lambda2)) (cos phi2)) 3) (/ (+ (pow (pow (cos phi1) 2) 3) (pow (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))) 3)) (+ (* (pow (cos phi1) 2) (pow (cos phi1) 2)) (- (* (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2))))) (* (pow (cos phi1) 2) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))))))) (/ (pow (cos phi1) 3) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))) (pow (cos phi1) 3) 3 (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2))))) (neg (cos phi1)) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))) (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2))) (/ (pow (* (cos (- lambda1 lambda2)) (cos phi2)) 3) (/ (+ (pow (pow (cos phi1) 2) 3) (pow (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))) 3)) (+ (* (pow (cos phi1) 2) (pow (cos phi1) 2)) (- (* (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2))))) (* (pow (cos phi1) 2) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2))))))))) (pow (* (cos (- lambda1 lambda2)) (cos phi2)) 3) (/ (+ (pow (pow (cos phi1) 2) 3) (pow (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))) 3)) (+ (* (pow (cos phi1) 2) (pow (cos phi1) 2)) (- (* (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2))))) (* (pow (cos phi1) 2) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))))) (+ (pow (pow (cos phi1) 2) 3) (pow (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))) 3)) (pow (pow (cos phi1) 2) 3) (pow (cos phi1) 2) (pow (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))) 3) (+ (* (pow (cos phi1) 2) (pow (cos phi1) 2)) (- (* (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2))))) (* (pow (cos phi1) 2) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2))))))) (- (* (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2))))) (* (pow (cos phi1) 2) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))) (* (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2))))) (* (pow (cos phi1) 2) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2))))) (+ lambda1 (atan2 (* (cos phi2) (sin (- lambda1 lambda2))) (/ (+ (pow (/ (pow (cos phi1) 3) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))) 3) (pow (/ (* (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos (- lambda1 lambda2)) (cos phi2))) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))) 3)) (+ (* (/ (pow (cos phi1) 3) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))) (/ (pow (cos phi1) 3) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2))))))) (- (* (/ (* (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos (- lambda1 lambda2)) (cos phi2))) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))) (/ (* (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos (- lambda1 lambda2)) (cos phi2))) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2))))))) (* (/ (pow (cos phi1) 3) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))) (/ (* (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos (- lambda1 lambda2)) (cos phi2))) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))))))))) (atan2 (* (cos phi2) (sin (- lambda1 lambda2))) (/ (+ (pow (/ (pow (cos phi1) 3) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))) 3) (pow (/ (* (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos (- lambda1 lambda2)) (cos phi2))) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))) 3)) (+ (* (/ (pow (cos phi1) 3) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))) (/ (pow (cos phi1) 3) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2))))))) (- (* (/ (* (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos (- lambda1 lambda2)) (cos phi2))) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))) (/ (* (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos (- lambda1 lambda2)) (cos phi2))) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2))))))) (* (/ (pow (cos phi1) 3) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))) (/ (* (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos (- lambda1 lambda2)) (cos phi2))) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2))))))))))) (/ (+ (pow (/ (pow (cos phi1) 3) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))) 3) (pow (/ (* (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos (- lambda1 lambda2)) (cos phi2))) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))) 3)) (+ (* (/ (pow (cos phi1) 3) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))) (/ (pow (cos phi1) 3) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2))))))) (- (* (/ (* (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos (- lambda1 lambda2)) (cos phi2))) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))) (/ (* (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos (- lambda1 lambda2)) (cos phi2))) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2))))))) (* (/ (pow (cos phi1) 3) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))) (/ (* (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos (- lambda1 lambda2)) (cos phi2))) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))))))) (+ (pow (/ (pow (cos phi1) 3) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))) 3) (pow (/ (* (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos (- lambda1 lambda2)) (cos phi2))) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))) 3)) (pow (/ (pow (cos phi1) 3) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))) 3) (pow (/ (* (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos (- lambda1 lambda2)) (cos phi2))) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))) 3) (/ (* (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos (- lambda1 lambda2)) (cos phi2))) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))) (* (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos (- lambda1 lambda2)) (cos phi2))) (+ (* (/ (pow (cos phi1) 3) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))) (/ (pow (cos phi1) 3) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2))))))) (- (* (/ (* (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos (- lambda1 lambda2)) (cos phi2))) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))) (/ (* (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos (- lambda1 lambda2)) (cos phi2))) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2))))))) (* (/ (pow (cos phi1) 3) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))) (/ (* (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos (- lambda1 lambda2)) (cos phi2))) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2))))))))) (* (/ (pow (cos phi1) 3) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))) (/ (pow (cos phi1) 3) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2))))))) (- (* (/ (* (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos (- lambda1 lambda2)) (cos phi2))) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))) (/ (* (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos (- lambda1 lambda2)) (cos phi2))) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2))))))) (* (/ (pow (cos phi1) 3) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))) (/ (* (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos (- lambda1 lambda2)) (cos phi2))) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))))) (* (/ (* (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos (- lambda1 lambda2)) (cos phi2))) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))) (/ (* (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos (- lambda1 lambda2)) (cos phi2))) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2))))))) (* (/ (pow (cos phi1) 3) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2)))))) (/ (* (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos (- lambda1 lambda2)) (cos phi2))) (+ (* (neg (cos phi1)) (neg (cos phi1))) (- (* (* (cos (- lambda1 lambda2)) (cos phi2)) (* (cos (- lambda1 lambda2)) (cos phi2))) (* (cos phi1) (* (cos (- lambda1 lambda2)) (cos phi2))))))) (- (/ (* lambda1 lambda1) (- lambda1 (atan2 (* (sin (- lambda1 lambda2)) (cos phi2)) (+ (* (cos (- lambda1 lambda2)) (cos phi2)) (cos phi1))))) (/ (* (atan2 (* (sin (- lambda1 lambda2)) (cos phi2)) (+ (* (cos (- lambda1 lambda2)) (cos phi2)) (cos phi1))) (atan2 (* (sin (- lambda1 lambda2)) (cos phi2)) (+ (* (cos (- lambda1 lambda2)) (cos phi2)) (cos phi1)))) (- lambda1 (atan2 (* (sin (- lambda1 lambda2)) (cos phi2)) (+ (* (cos (- lambda1 lambda2)) (cos phi2)) (cos phi1)))))) (/ (* lambda1 lambda1) (- lambda1 (atan2 (* (sin (- lambda1 lambda2)) (cos phi2)) (+ (* (cos (- lambda1 lambda2)) (cos phi2)) (cos phi1))))) (* lambda1 lambda1) (- lambda1 (atan2 (* (sin (- lambda1 lambda2)) (cos phi2)) (+ (* (cos (- lambda1 lambda2)) (cos phi2)) (cos phi1)))) (atan2 (* (sin (- lambda1 lambda2)) (cos phi2)) (+ (* (cos (- lambda1 lambda2)) (cos phi2)) (cos phi1))) (* (sin (- lambda1 lambda2)) (cos phi2)) (+ (* (cos (- lambda1 lambda2)) (cos phi2)) (cos phi1)) (/ (* (atan2 (* (sin (- lambda1 lambda2)) (cos phi2)) (+ (* (cos (- lambda1 lambda2)) (cos phi2)) (cos phi1))) (atan2 (* (sin (- lambda1 lambda2)) (cos phi2)) (+ (* (cos (- lambda1 lambda2)) (cos phi2)) (cos phi1)))) (- lambda1 (atan2 (* (sin (- lambda1 lambda2)) (cos phi2)) (+ (* (cos (- lambda1 lambda2)) (cos phi2)) (cos phi1))))) (* (atan2 (* (sin (- lambda1 lambda2)) (cos phi2)) (+ (* (cos (- lambda1 lambda2)) (cos phi2)) (cos phi1))) (atan2 (* (sin (- lambda1 lambda2)) (cos phi2)) (+ (* (cos (- lambda1 lambda2)) (cos phi2)) (cos phi1))))) |
963.0ms | c | @ | 0 | ((/ (+ (neg b) (sqrt (- (* b b) (* (* 3 a) c)))) (* 3 a)) (+ (* (+ (* (+ (* (* a (/ (* (/ (pow c 4) (pow b 6)) 405/64) b)) -1/6) (/ (* -9/16 (* (* c c) c)) (pow b 5))) a) (/ (* -3/8 (* c c)) (pow b 3))) a) (* (/ c b) -1/2)) (+ (* (+ (* (* a (/ (* (/ (pow c 4) (pow b 6)) 405/64) b)) -1/6) (/ (* -9/16 (* (* c c) c)) (pow b 5))) a) (/ (* -3/8 (* c c)) (pow b 3))) (+ (* (* a (/ (* (/ (pow c 4) (pow b 6)) 405/64) b)) -1/6) (/ (* -9/16 (* (* c c) c)) (pow b 5))) (* a (/ (* (/ (pow c 4) (pow b 6)) 405/64) b)) a (/ (* (/ (pow c 4) (pow b 6)) 405/64) b) (* (/ (pow c 4) (pow b 6)) 405/64) (/ (pow c 4) (pow b 6)) (pow c 4) c 4 (pow b 6) b 6 405/64 -1/6 (/ (* -9/16 (* (* c c) c)) (pow b 5)) (* -9/16 (* (* c c) c)) -9/16 (* (* c c) c) (* c c) (pow b 5) 5 (/ (* -3/8 (* c c)) (pow b 3)) (* -3/8 (* c c)) -3/8 (pow b 3) 3 (* (/ c b) -1/2) (/ c b) -1/2 (/ (+ (neg b) (sqrt (- (* b b) (* (* 3 a) c)))) (* 3 a)) (* (+ (* (+ (* (+ (* (* (/ c a) (/ (* (/ (pow a 4) (pow b 6)) 405/64) b)) -1/6) (/ (* -9/16 (* a a)) (pow b 5))) c) (* (/ a (pow b 3)) -3/8)) c) (* -1/2 (pow b -1))) c) (+ (* (+ (* (+ (* (* (/ c a) (/ (* (/ (pow a 4) (pow b 6)) 405/64) b)) -1/6) (/ (* -9/16 (* a a)) (pow b 5))) c) (* (/ a (pow b 3)) -3/8)) c) (* -1/2 (pow b -1))) (+ (* (+ (* (* (/ c a) (/ (* (/ (pow a 4) (pow b 6)) 405/64) b)) -1/6) (/ (* -9/16 (* a a)) (pow b 5))) c) (* (/ a (pow b 3)) -3/8)) (+ (* (* (/ c a) (/ (* (/ (pow a 4) (pow b 6)) 405/64) b)) -1/6) (/ (* -9/16 (* a a)) (pow b 5))) (* (/ c a) (/ (* (/ (pow a 4) (pow b 6)) 405/64) b)) (/ c a) (/ (* (/ (pow a 4) (pow b 6)) 405/64) b) (* (/ (pow a 4) (pow b 6)) 405/64) (/ (pow a 4) (pow b 6)) (pow a 4) (/ (* -9/16 (* a a)) (pow b 5)) (* -9/16 (* a a)) (* a a) (* (/ a (pow b 3)) -3/8) (/ a (pow b 3)) (* -1/2 (pow b -1)) (pow b -1) -1 (+ (/ (* -1 b) (* a 3)) (/ (pow (+ (* (pow b 1) (pow b 1)) (* -3 (* c a))) 1/2) (* a 3))) (/ (* -1 b) (* a 3)) (* -1 b) (* a 3) (/ (pow (+ (* (pow b 1) (pow b 1)) (* -3 (* c a))) 1/2) (* a 3)) (pow (+ (* (pow b 1) (pow b 1)) (* -3 (* c a))) 1/2) (+ (* (pow b 1) (pow b 1)) (* -3 (* c a))) (pow b 1) 1 (* -3 (* c a)) -3 (* c a) 1/2 (/ (+ (neg b) (sqrt (- (* b b) (* (* 3 a) c)))) (* 3 a)) (+ (neg b) (sqrt (- (* b b) (* (* 3 a) c)))) (/ (+ (* (/ (pow (* c a) 3) (pow b 4)) -27/16) (+ (+ (* (* -3/2 a) c) (/ (* -9/8 (pow (* c a) 2)) (* b b))) (/ (* -1/2 (* (pow (* c a) 4) 405/64)) (pow b 6)))) b) (+ (* (/ (pow (* c a) 3) (pow b 4)) -27/16) (+ (+ (* (* -3/2 a) c) (/ (* -9/8 (pow (* c a) 2)) (* b b))) (/ (* -1/2 (* (pow (* c a) 4) 405/64)) (pow b 6)))) (/ (pow (* c a) 3) (pow b 4)) (pow (* c a) 3) (pow b 4) -27/16 (+ (+ (* (* -3/2 a) c) (/ (* -9/8 (pow (* c a) 2)) (* b b))) (/ (* -1/2 (* (pow (* c a) 4) 405/64)) (pow b 6))) (+ (* (* -3/2 a) c) (/ (* -9/8 (pow (* c a) 2)) (* b b))) (* -3/2 a) -3/2 (/ (* -9/8 (pow (* c a) 2)) (* b b)) (* -9/8 (pow (* c a) 2)) -9/8 (pow (* c a) 2) 2 (* b b) (/ (* -1/2 (* (pow (* c a) 4) 405/64)) (pow b 6)) (* -1/2 (* (pow (* c a) 4) 405/64)) (* (pow (* c a) 4) 405/64) (pow (* c a) 4) (* 3 a) (/ (/ (- (* b b) (* (pow (+ (* (pow b 1) (pow b 1)) (* -3 (* c a))) 1/2) (pow (+ (* (pow b 1) (pow b 1)) (* -3 (* c a))) 1/2))) (- (* -1 b) (pow (+ (* (pow b 1) (pow b 1)) (* -3 (* c a))) 1/2))) (* 3 a)) (/ (- (* b b) (* (pow (+ (* (pow b 1) (pow b 1)) (* -3 (* c a))) 1/2) (pow (+ (* (pow b 1) (pow b 1)) (* -3 (* c a))) 1/2))) (- (* -1 b) (pow (+ (* (pow b 1) (pow b 1)) (* -3 (* c a))) 1/2))) (- (* b b) (* (pow (+ (* (pow b 1) (pow b 1)) (* -3 (* c a))) 1/2) (pow (+ (* (pow b 1) (pow b 1)) (* -3 (* c a))) 1/2))) (* (pow (+ (* (pow b 1) (pow b 1)) (* -3 (* c a))) 1/2) (pow (+ (* (pow b 1) (pow b 1)) (* -3 (* c a))) 1/2)) (- (* -1 b) (pow (+ (* (pow b 1) (pow b 1)) (* -3 (* c a))) 1/2))) |
920.0ms | s | @ | -inf | ((* (neg s) (log (/ (- (pow (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) 3) 1) (+ (* (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1))))) (+ 1 (* (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) 1)))))) (neg s) s (log (/ (- (pow (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) 3) 1) (+ (* (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1))))) (+ 1 (* (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) 1))))) (/ (- (pow (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) 3) 1) (+ (* (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1))))) (+ 1 (* (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) 1)))) (/ (- (pow (+ (* u (- (/ 1 (+ 1 (pow (exp -1) (/ (PI) s)))) (/ 1 (+ 1 (exp (/ (PI) s)))))) (/ 1 (+ 1 (exp (/ (PI) s))))) -3) 1) (+ 1 (+ (/ 1 (+ (* u (- (/ 1 (+ 1 (pow (exp -1) (/ (PI) s)))) (/ 1 (+ 1 (exp (/ (PI) s)))))) (/ 1 (+ 1 (exp (/ (PI) s)))))) (pow (+ (* u (- (/ 1 (+ 1 (pow (exp -1) (/ (PI) s)))) (/ 1 (+ 1 (exp (/ (PI) s)))))) (/ 1 (+ 1 (exp (/ (PI) s))))) -2)))) (- (pow (+ (* u (- (/ 1 (+ 1 (pow (exp -1) (/ (PI) s)))) (/ 1 (+ 1 (exp (/ (PI) s)))))) (/ 1 (+ 1 (exp (/ (PI) s))))) -3) 1) (pow (+ (* u (- (/ 1 (+ 1 (pow (exp -1) (/ (PI) s)))) (/ 1 (+ 1 (exp (/ (PI) s)))))) (/ 1 (+ 1 (exp (/ (PI) s))))) -3) (/ 1 (* (* (* u u) u) (* (* (- (/ 1 (+ 1 (pow (exp -1) (/ (PI) s)))) (/ 1 (+ 1 (exp (/ (PI) s))))) (- (/ 1 (+ 1 (pow (exp -1) (/ (PI) s)))) (/ 1 (+ 1 (exp (/ (PI) s)))))) (- (/ 1 (+ 1 (pow (exp -1) (/ (PI) s)))) (/ 1 (+ 1 (exp (/ (PI) s)))))))) 1 (* (* (* u u) u) (* (* (- (/ 1 (+ 1 (pow (exp -1) (/ (PI) s)))) (/ 1 (+ 1 (exp (/ (PI) s))))) (- (/ 1 (+ 1 (pow (exp -1) (/ (PI) s)))) (/ 1 (+ 1 (exp (/ (PI) s)))))) (- (/ 1 (+ 1 (pow (exp -1) (/ (PI) s)))) (/ 1 (+ 1 (exp (/ (PI) s))))))) (* (* u u) u) (* u u) u (* (* (- (/ 1 (+ 1 (pow (exp -1) (/ (PI) s)))) (/ 1 (+ 1 (exp (/ (PI) s))))) (- (/ 1 (+ 1 (pow (exp -1) (/ (PI) s)))) (/ 1 (+ 1 (exp (/ (PI) s)))))) (- (/ 1 (+ 1 (pow (exp -1) (/ (PI) s)))) (/ 1 (+ 1 (exp (/ (PI) s)))))) (* (- (/ 1 (+ 1 (pow (exp -1) (/ (PI) s)))) (/ 1 (+ 1 (exp (/ (PI) s))))) (- (/ 1 (+ 1 (pow (exp -1) (/ (PI) s)))) (/ 1 (+ 1 (exp (/ (PI) s)))))) (- (/ 1 (+ 1 (pow (exp -1) (/ (PI) s)))) (/ 1 (+ 1 (exp (/ (PI) s))))) (/ 1 (+ 1 (pow (exp -1) (/ (PI) s)))) (+ 1 (pow (exp -1) (/ (PI) s))) (pow (exp -1) (/ (PI) s)) (exp -1) -1 (/ (PI) s) (PI) (/ 1 (+ 1 (exp (/ (PI) s)))) (+ 1 (exp (/ (PI) s))) (exp (/ (PI) s)) (+ 1 (+ (/ 1 (+ (* u (- (/ 1 (+ 1 (pow (exp -1) (/ (PI) s)))) (/ 1 (+ 1 (exp (/ (PI) s)))))) (/ 1 (+ 1 (exp (/ (PI) s)))))) (pow (+ (* u (- (/ 1 (+ 1 (pow (exp -1) (/ (PI) s)))) (/ 1 (+ 1 (exp (/ (PI) s)))))) (/ 1 (+ 1 (exp (/ (PI) s))))) -2))) (+ (/ 1 (+ (* u (- (/ 1 (+ 1 (pow (exp -1) (/ (PI) s)))) (/ 1 (+ 1 (exp (/ (PI) s)))))) (/ 1 (+ 1 (exp (/ (PI) s)))))) (pow (+ (* u (- (/ 1 (+ 1 (pow (exp -1) (/ (PI) s)))) (/ 1 (+ 1 (exp (/ (PI) s)))))) (/ 1 (+ 1 (exp (/ (PI) s))))) -2)) (/ 1 (+ (* u (- (/ 1 (+ 1 (pow (exp -1) (/ (PI) s)))) (/ 1 (+ 1 (exp (/ (PI) s)))))) (/ 1 (+ 1 (exp (/ (PI) s)))))) (+ (* u (- (/ 1 (+ 1 (pow (exp -1) (/ (PI) s)))) (/ 1 (+ 1 (exp (/ (PI) s)))))) (/ 1 (+ 1 (exp (/ (PI) s))))) (pow (+ (* u (- (/ 1 (+ 1 (pow (exp -1) (/ (PI) s)))) (/ 1 (+ 1 (exp (/ (PI) s)))))) (/ 1 (+ 1 (exp (/ (PI) s))))) -2) -2 (* (neg s) (log (/ (- (pow (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) 3) 1) (+ (* (pow (exp (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1))))) -1) (exp (* (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) -1))) (+ 1 (* (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) 1)))))) (log (/ (- (pow (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) 3) 1) (+ (* (pow (exp (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1))))) -1) (exp (* (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) -1))) (+ 1 (* (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) 1))))) (/ (- (pow (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) 3) 1) (+ (* (pow (exp (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1))))) -1) (exp (* (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) -1))) (+ 1 (* (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) 1)))) (- (pow (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) 3) 1) (pow (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) 3) (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1))) (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (+ (pow (exp -1) (/ (PI) s)) 1) (/ 1 (+ (exp (/ (PI) s)) 1)) (+ (exp (/ (PI) s)) 1) 3 (+ (* (pow (exp (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1))))) -1) (exp (* (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) -1))) (+ 1 (* (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) 1))) (* (pow (exp (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1))))) -1) (exp (* (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) -1))) (pow (exp (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1))))) -1) (exp (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1))))) (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) (exp (* (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) -1)) (* (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) -1) (+ 1 (* (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) 1)) (* (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) 1) (* (neg s) (- (log (- (* (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) (+ (cosh (* (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) -1)) (sinh (* (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) -1)))) 1)) (log (+ (exp (* (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) -1)) 1)))) (- (log (- (* (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) (+ (cosh (* (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) -1)) (sinh (* (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) -1)))) 1)) (log (+ (exp (* (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) -1)) 1))) (log (- (* (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) (+ (cosh (* (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) -1)) (sinh (* (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) -1)))) 1)) (- (* (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) (+ (cosh (* (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) -1)) (sinh (* (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) -1)))) 1) (* (/ 1 (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) (+ (cosh (* (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) -1)) (sinh (* (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) -1)))) (+ (cosh (* (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) -1)) (sinh (* (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) -1))) (cosh (* (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) -1)) (sinh (* (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) -1)) (log (+ (exp (* (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) -1)) 1)) (+ (exp (* (log (+ (* (- (/ 1 (+ (pow (exp -1) (/ (PI) s)) 1)) (/ 1 (+ (exp (/ (PI) s)) 1))) u) (/ 1 (+ (exp (/ (PI) s)) 1)))) -1)) 1)) |
554× | search |
2× | random |
Probability | Valid | Unknown | Precondition | Infinite | Domain | Can't | Iter |
---|---|---|---|---|---|---|---|
0% | 0% | 84.7% | 15.3% | 0% | 0% | 0% | 0 |
39.5% | 33.4% | 51.2% | 15.3% | 0% | 0% | 0% | 1 |
45.4% | 38.1% | 45.8% | 15.3% | 0% | 0.8% | 0% | 2 |
53.9% | 44.1% | 37.8% | 15.3% | 0% | 2.8% | 0% | 3 |
60.6% | 49.1% | 31.9% | 15.3% | 0% | 3.7% | 0% | 4 |
66.9% | 53.9% | 26.6% | 15.3% | 0% | 4.2% | 0% | 5 |
70.9% | 56.8% | 23.3% | 15.3% | 0% | 4.6% | 0% | 6 |
74.9% | 59.5% | 20% | 15.3% | 0% | 5.2% | 0% | 7 |
76.9% | 60.9% | 18.3% | 15.3% | 0% | 5.6% | 0% | 8 |
79.6% | 62.7% | 16.1% | 15.3% | 0% | 5.9% | 0% | 9 |
81.1% | 63.7% | 14.8% | 15.3% | 0% | 6.2% | 0% | 10 |
83.4% | 65.4% | 13% | 15.3% | 0% | 6.3% | 0% | 11 |
84.5% | 66.1% | 12.1% | 15.3% | 0% | 6.5% | 0% | 12 |
Compiled 60 013 to 16 996 computations (71.7% saved)
405× | node-limit |
144× | saturated |
Compiled 757 360 to 244 988 computations (67.7% saved)
401× | done |
121× | fuel |
Compiled 167 163 to 28 330 computations (83.1% saved)
1 110 calls:
2.4s | c |
2.4s | x |
1.7s | y |
1.2s | z |
1.0s | a |
Compiled 51 783 to 57 708 computations (-11.4% saved)
879× | binary-search |
390× | left-value |
760× | narrow-enough |
119× | predicate-same |
5.0s | 60 386× | 0 | valid |
1.9s | 6 687× | 1 | valid |
545.0ms | 6 506× | 0 | invalid |
490.0ms | 1 449× | 2 | valid |
39.0ms | 118× | 3 | valid |
16.0ms | 95× | 1 | invalid |
3.0ms | 11× | 2 | invalid |
0.0ms | 5× | 0 | exit |
Compiled 660 748 to 383 329 computations (42% saved)
ival-mult!
: 1.4s (26.5% of total)ival-cos
: 583.0ms (10.7% of total)ival-div!
: 517.0ms (9.5% of total)ival-sin
: 487.0ms (8.9% of total)ival-add!
: 363.0ms (6.7% of total)adjust
: 312.0ms (5.7% of total)ival-sub!
: 286.0ms (5.3% of total)ival-pow
: 284.0ms (5.2% of total)ival-pow2
: 247.0ms (4.5% of total)ival-sqrt
: 236.0ms (4.3% of total)ival-log
: 156.0ms (2.9% of total)ival-exp
: 119.0ms (2.2% of total)ival-hypot
: 84.0ms (1.5% of total)ival-neg
: 66.0ms (1.2% of total)ival-atan2
: 50.0ms (0.9% of total)ival-tan
: 46.0ms (0.8% of total)ival-fmod
: 36.0ms (0.7% of total)ival-sinu
: 34.0ms (0.6% of total)ival-cosu
: 27.0ms (0.5% of total)ival-atan
: 17.0ms (0.3% of total)ival-fabs
: 14.0ms (0.3% of total)ival-tanu
: 9.0ms (0.2% of total)ival-cbrt
: 7.0ms (0.1% of total)ival-fmax
: 4.0ms (0.1% of total)ival-cosh
: 4.0ms (0.1% of total)ival-if
: 4.0ms (0.1% of total)ival-log1p
: 3.0ms (0.1% of total)ival->=
: 3.0ms (0.1% of total)ival-sinh
: 2.0ms (0% of total)const
: 0.0ms (0% of total)Loading profile data...