Anisotropic x16 LOD (line direction, v)

Percentage Accurate: 76.2% → 75.1%
Time: 12.2s
Alternatives: 10
Speedup: 1.0×

Specification

?
\[\left(\left(\left(\left(\left(\left(1 \leq w \land w \leq 16384\right) \land \left(1 \leq h \land h \leq 16384\right)\right) \land \left(10^{-20} \leq \left|dX.u\right| \land \left|dX.u\right| \leq 10^{+20}\right)\right) \land \left(10^{-20} \leq \left|dX.v\right| \land \left|dX.v\right| \leq 10^{+20}\right)\right) \land \left(10^{-20} \leq \left|dY.u\right| \land \left|dY.u\right| \leq 10^{+20}\right)\right) \land \left(10^{-20} \leq \left|dY.v\right| \land \left|dY.v\right| \leq 10^{+20}\right)\right) \land maxAniso = 16\]
\[\begin{array}{l} \\ \begin{array}{l} t_0 := \left\lfloor h\right\rfloor \cdot dX.v\\ t_1 := \left\lfloor w\right\rfloor \cdot dY.u\\ t_2 := \left\lfloor w\right\rfloor \cdot dX.u\\ t_3 := t\_2 \cdot t\_2 + t\_0 \cdot t\_0\\ t_4 := \left\lfloor h\right\rfloor \cdot dY.v\\ t_5 := t\_1 \cdot t\_1 + t\_4 \cdot t\_4\\ t_6 := \frac{1}{\sqrt{\mathsf{max}\left(t\_3, t\_5\right)}}\\ \mathbf{if}\;t\_3 \geq t\_5:\\ \;\;\;\;t\_6 \cdot t\_0\\ \mathbf{else}:\\ \;\;\;\;t\_6 \cdot t\_4\\ \end{array} \end{array} \]
(FPCore (w h dX.u dX.v dY.u dY.v maxAniso)
 :precision binary32
 (let* ((t_0 (* (floor h) dX.v))
        (t_1 (* (floor w) dY.u))
        (t_2 (* (floor w) dX.u))
        (t_3 (+ (* t_2 t_2) (* t_0 t_0)))
        (t_4 (* (floor h) dY.v))
        (t_5 (+ (* t_1 t_1) (* t_4 t_4)))
        (t_6 (/ 1.0 (sqrt (fmax t_3 t_5)))))
   (if (>= t_3 t_5) (* t_6 t_0) (* t_6 t_4))))
float code(float w, float h, float dX_46_u, float dX_46_v, float dY_46_u, float dY_46_v, float maxAniso) {
	float t_0 = floorf(h) * dX_46_v;
	float t_1 = floorf(w) * dY_46_u;
	float t_2 = floorf(w) * dX_46_u;
	float t_3 = (t_2 * t_2) + (t_0 * t_0);
	float t_4 = floorf(h) * dY_46_v;
	float t_5 = (t_1 * t_1) + (t_4 * t_4);
	float t_6 = 1.0f / sqrtf(fmaxf(t_3, t_5));
	float tmp;
	if (t_3 >= t_5) {
		tmp = t_6 * t_0;
	} else {
		tmp = t_6 * t_4;
	}
	return tmp;
}
function code(w, h, dX_46_u, dX_46_v, dY_46_u, dY_46_v, maxAniso)
	t_0 = Float32(floor(h) * dX_46_v)
	t_1 = Float32(floor(w) * dY_46_u)
	t_2 = Float32(floor(w) * dX_46_u)
	t_3 = Float32(Float32(t_2 * t_2) + Float32(t_0 * t_0))
	t_4 = Float32(floor(h) * dY_46_v)
	t_5 = Float32(Float32(t_1 * t_1) + Float32(t_4 * t_4))
	t_6 = Float32(Float32(1.0) / sqrt(fmax(t_3, t_5)))
	tmp = Float32(0.0)
	if (t_3 >= t_5)
		tmp = Float32(t_6 * t_0);
	else
		tmp = Float32(t_6 * t_4);
	end
	return tmp
end
function tmp_2 = code(w, h, dX_46_u, dX_46_v, dY_46_u, dY_46_v, maxAniso)
	t_0 = floor(h) * dX_46_v;
	t_1 = floor(w) * dY_46_u;
	t_2 = floor(w) * dX_46_u;
	t_3 = (t_2 * t_2) + (t_0 * t_0);
	t_4 = floor(h) * dY_46_v;
	t_5 = (t_1 * t_1) + (t_4 * t_4);
	t_6 = single(1.0) / sqrt(max(t_3, t_5));
	tmp = single(0.0);
	if (t_3 >= t_5)
		tmp = t_6 * t_0;
	else
		tmp = t_6 * t_4;
	end
	tmp_2 = tmp;
end
\begin{array}{l}

\\
\begin{array}{l}
t_0 := \left\lfloor h\right\rfloor  \cdot dX.v\\
t_1 := \left\lfloor w\right\rfloor  \cdot dY.u\\
t_2 := \left\lfloor w\right\rfloor  \cdot dX.u\\
t_3 := t\_2 \cdot t\_2 + t\_0 \cdot t\_0\\
t_4 := \left\lfloor h\right\rfloor  \cdot dY.v\\
t_5 := t\_1 \cdot t\_1 + t\_4 \cdot t\_4\\
t_6 := \frac{1}{\sqrt{\mathsf{max}\left(t\_3, t\_5\right)}}\\
\mathbf{if}\;t\_3 \geq t\_5:\\
\;\;\;\;t\_6 \cdot t\_0\\

\mathbf{else}:\\
\;\;\;\;t\_6 \cdot t\_4\\


\end{array}
\end{array}

Local Percentage Accuracy vs ?

The average percentage accuracy by input value. Horizontal axis shows value of an input variable; the variable is choosen in the title. Vertical axis is accuracy; higher is better. Red represent the original program, while blue represents Herbie's suggestion. These can be toggled with buttons below the plot. The line is an average while dots represent individual samples.

Accuracy vs Speed?

Herbie found 10 alternatives:

AlternativeAccuracySpeedup
The accuracy (vertical axis) and speed (horizontal axis) of each alternatives. Up and to the right is better. The red square shows the initial program, and each blue circle shows an alternative.The line shows the best available speed-accuracy tradeoffs.

Initial Program: 76.2% accurate, 1.0× speedup?

\[\begin{array}{l} \\ \begin{array}{l} t_0 := \left\lfloor h\right\rfloor \cdot dX.v\\ t_1 := \left\lfloor w\right\rfloor \cdot dY.u\\ t_2 := \left\lfloor w\right\rfloor \cdot dX.u\\ t_3 := t\_2 \cdot t\_2 + t\_0 \cdot t\_0\\ t_4 := \left\lfloor h\right\rfloor \cdot dY.v\\ t_5 := t\_1 \cdot t\_1 + t\_4 \cdot t\_4\\ t_6 := \frac{1}{\sqrt{\mathsf{max}\left(t\_3, t\_5\right)}}\\ \mathbf{if}\;t\_3 \geq t\_5:\\ \;\;\;\;t\_6 \cdot t\_0\\ \mathbf{else}:\\ \;\;\;\;t\_6 \cdot t\_4\\ \end{array} \end{array} \]
(FPCore (w h dX.u dX.v dY.u dY.v maxAniso)
 :precision binary32
 (let* ((t_0 (* (floor h) dX.v))
        (t_1 (* (floor w) dY.u))
        (t_2 (* (floor w) dX.u))
        (t_3 (+ (* t_2 t_2) (* t_0 t_0)))
        (t_4 (* (floor h) dY.v))
        (t_5 (+ (* t_1 t_1) (* t_4 t_4)))
        (t_6 (/ 1.0 (sqrt (fmax t_3 t_5)))))
   (if (>= t_3 t_5) (* t_6 t_0) (* t_6 t_4))))
float code(float w, float h, float dX_46_u, float dX_46_v, float dY_46_u, float dY_46_v, float maxAniso) {
	float t_0 = floorf(h) * dX_46_v;
	float t_1 = floorf(w) * dY_46_u;
	float t_2 = floorf(w) * dX_46_u;
	float t_3 = (t_2 * t_2) + (t_0 * t_0);
	float t_4 = floorf(h) * dY_46_v;
	float t_5 = (t_1 * t_1) + (t_4 * t_4);
	float t_6 = 1.0f / sqrtf(fmaxf(t_3, t_5));
	float tmp;
	if (t_3 >= t_5) {
		tmp = t_6 * t_0;
	} else {
		tmp = t_6 * t_4;
	}
	return tmp;
}
function code(w, h, dX_46_u, dX_46_v, dY_46_u, dY_46_v, maxAniso)
	t_0 = Float32(floor(h) * dX_46_v)
	t_1 = Float32(floor(w) * dY_46_u)
	t_2 = Float32(floor(w) * dX_46_u)
	t_3 = Float32(Float32(t_2 * t_2) + Float32(t_0 * t_0))
	t_4 = Float32(floor(h) * dY_46_v)
	t_5 = Float32(Float32(t_1 * t_1) + Float32(t_4 * t_4))
	t_6 = Float32(Float32(1.0) / sqrt(fmax(t_3, t_5)))
	tmp = Float32(0.0)
	if (t_3 >= t_5)
		tmp = Float32(t_6 * t_0);
	else
		tmp = Float32(t_6 * t_4);
	end
	return tmp
end
function tmp_2 = code(w, h, dX_46_u, dX_46_v, dY_46_u, dY_46_v, maxAniso)
	t_0 = floor(h) * dX_46_v;
	t_1 = floor(w) * dY_46_u;
	t_2 = floor(w) * dX_46_u;
	t_3 = (t_2 * t_2) + (t_0 * t_0);
	t_4 = floor(h) * dY_46_v;
	t_5 = (t_1 * t_1) + (t_4 * t_4);
	t_6 = single(1.0) / sqrt(max(t_3, t_5));
	tmp = single(0.0);
	if (t_3 >= t_5)
		tmp = t_6 * t_0;
	else
		tmp = t_6 * t_4;
	end
	tmp_2 = tmp;
end
\begin{array}{l}

\\
\begin{array}{l}
t_0 := \left\lfloor h\right\rfloor  \cdot dX.v\\
t_1 := \left\lfloor w\right\rfloor  \cdot dY.u\\
t_2 := \left\lfloor w\right\rfloor  \cdot dX.u\\
t_3 := t\_2 \cdot t\_2 + t\_0 \cdot t\_0\\
t_4 := \left\lfloor h\right\rfloor  \cdot dY.v\\
t_5 := t\_1 \cdot t\_1 + t\_4 \cdot t\_4\\
t_6 := \frac{1}{\sqrt{\mathsf{max}\left(t\_3, t\_5\right)}}\\
\mathbf{if}\;t\_3 \geq t\_5:\\
\;\;\;\;t\_6 \cdot t\_0\\

\mathbf{else}:\\
\;\;\;\;t\_6 \cdot t\_4\\


\end{array}
\end{array}

Alternative 1: 75.1% accurate, 0.3× speedup?

\[\begin{array}{l} \\ \begin{array}{l} t_0 := \left\lfloor h\right\rfloor \cdot dX.v\\ t_1 := \left\lfloor w\right\rfloor \cdot dX.u\\ t_2 := {t\_1}^{2}\\ t_3 := {t\_0}^{2}\\ t_4 := t\_3 + t\_2\\ t_5 := \left\lfloor w\right\rfloor \cdot dY.u\\ t_6 := {t\_5}^{2}\\ t_7 := t\_1 \cdot t\_1 + t\_0 \cdot t\_0\\ t_8 := \left\lfloor h\right\rfloor \cdot dY.v\\ t_9 := {t\_8}^{2}\\ t_10 := t\_5 \cdot t\_5 + t\_8 \cdot t\_8\\ t_11 := t\_6 + t\_9\\ t_12 := t\_3 \geq t\_11\\ t_13 := \frac{1}{\sqrt{\mathsf{max}\left(t\_7, t\_10\right)}}\\ t_14 := \begin{array}{l} \mathbf{if}\;t\_7 \geq t\_10:\\ \;\;\;\;t\_13 \cdot t\_0\\ \mathbf{else}:\\ \;\;\;\;t\_13 \cdot t\_8\\ \end{array}\\ t_15 := t\_2 + t\_3\\ t_16 := \sqrt{\mathsf{max}\left(t\_15, t\_11\right)}\\ t_17 := \frac{t\_0}{t\_16}\\ \mathbf{if}\;t\_14 \leq -2.000000026702864 \cdot 10^{-10}:\\ \;\;\;\;\begin{array}{l} \mathbf{if}\;t\_12:\\ \;\;\;\;t\_17\\ \mathbf{else}:\\ \;\;\;\;\frac{t\_8}{t\_16}\\ \end{array}\\ \mathbf{elif}\;t\_14 \leq 2.000000026702864 \cdot 10^{-10}:\\ \;\;\;\;\begin{array}{l} \mathbf{if}\;t\_4 \geq t\_6:\\ \;\;\;\;\frac{t\_0}{\sqrt{\mathsf{max}\left(t\_4, e^{\log t\_8 \cdot 2} + t\_6\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{dY.v}{t\_16} \cdot \left\lfloor h\right\rfloor \\ \end{array}\\ \mathbf{elif}\;t\_12:\\ \;\;\;\;t\_17\\ \mathbf{else}:\\ \;\;\;\;\frac{t\_8}{\sqrt{\mathsf{max}\left(t\_15, \left(\left(dY.u \cdot dY.u\right) \cdot \left\lfloor w\right\rfloor \right) \cdot \left\lfloor w\right\rfloor + t\_9\right)}}\\ \end{array} \end{array} \]
(FPCore (w h dX.u dX.v dY.u dY.v maxAniso)
 :precision binary32
 (let* ((t_0 (* (floor h) dX.v))
        (t_1 (* (floor w) dX.u))
        (t_2 (pow t_1 2.0))
        (t_3 (pow t_0 2.0))
        (t_4 (+ t_3 t_2))
        (t_5 (* (floor w) dY.u))
        (t_6 (pow t_5 2.0))
        (t_7 (+ (* t_1 t_1) (* t_0 t_0)))
        (t_8 (* (floor h) dY.v))
        (t_9 (pow t_8 2.0))
        (t_10 (+ (* t_5 t_5) (* t_8 t_8)))
        (t_11 (+ t_6 t_9))
        (t_12 (>= t_3 t_11))
        (t_13 (/ 1.0 (sqrt (fmax t_7 t_10))))
        (t_14 (if (>= t_7 t_10) (* t_13 t_0) (* t_13 t_8)))
        (t_15 (+ t_2 t_3))
        (t_16 (sqrt (fmax t_15 t_11)))
        (t_17 (/ t_0 t_16)))
   (if (<= t_14 -2.000000026702864e-10)
     (if t_12 t_17 (/ t_8 t_16))
     (if (<= t_14 2.000000026702864e-10)
       (if (>= t_4 t_6)
         (/ t_0 (sqrt (fmax t_4 (+ (exp (* (log t_8) 2.0)) t_6))))
         (* (/ dY.v t_16) (floor h)))
       (if t_12
         t_17
         (/
          t_8
          (sqrt
           (fmax t_15 (+ (* (* (* dY.u dY.u) (floor w)) (floor w)) t_9)))))))))
float code(float w, float h, float dX_46_u, float dX_46_v, float dY_46_u, float dY_46_v, float maxAniso) {
	float t_0 = floorf(h) * dX_46_v;
	float t_1 = floorf(w) * dX_46_u;
	float t_2 = powf(t_1, 2.0f);
	float t_3 = powf(t_0, 2.0f);
	float t_4 = t_3 + t_2;
	float t_5 = floorf(w) * dY_46_u;
	float t_6 = powf(t_5, 2.0f);
	float t_7 = (t_1 * t_1) + (t_0 * t_0);
	float t_8 = floorf(h) * dY_46_v;
	float t_9 = powf(t_8, 2.0f);
	float t_10 = (t_5 * t_5) + (t_8 * t_8);
	float t_11 = t_6 + t_9;
	int t_12 = t_3 >= t_11;
	float t_13 = 1.0f / sqrtf(fmaxf(t_7, t_10));
	float tmp;
	if (t_7 >= t_10) {
		tmp = t_13 * t_0;
	} else {
		tmp = t_13 * t_8;
	}
	float t_14 = tmp;
	float t_15 = t_2 + t_3;
	float t_16 = sqrtf(fmaxf(t_15, t_11));
	float t_17 = t_0 / t_16;
	float tmp_2;
	if (t_14 <= -2.000000026702864e-10f) {
		float tmp_3;
		if (t_12) {
			tmp_3 = t_17;
		} else {
			tmp_3 = t_8 / t_16;
		}
		tmp_2 = tmp_3;
	} else if (t_14 <= 2.000000026702864e-10f) {
		float tmp_4;
		if (t_4 >= t_6) {
			tmp_4 = t_0 / sqrtf(fmaxf(t_4, (expf((logf(t_8) * 2.0f)) + t_6)));
		} else {
			tmp_4 = (dY_46_v / t_16) * floorf(h);
		}
		tmp_2 = tmp_4;
	} else if (t_12) {
		tmp_2 = t_17;
	} else {
		tmp_2 = t_8 / sqrtf(fmaxf(t_15, ((((dY_46_u * dY_46_u) * floorf(w)) * floorf(w)) + t_9)));
	}
	return tmp_2;
}
function code(w, h, dX_46_u, dX_46_v, dY_46_u, dY_46_v, maxAniso)
	t_0 = Float32(floor(h) * dX_46_v)
	t_1 = Float32(floor(w) * dX_46_u)
	t_2 = t_1 ^ Float32(2.0)
	t_3 = t_0 ^ Float32(2.0)
	t_4 = Float32(t_3 + t_2)
	t_5 = Float32(floor(w) * dY_46_u)
	t_6 = t_5 ^ Float32(2.0)
	t_7 = Float32(Float32(t_1 * t_1) + Float32(t_0 * t_0))
	t_8 = Float32(floor(h) * dY_46_v)
	t_9 = t_8 ^ Float32(2.0)
	t_10 = Float32(Float32(t_5 * t_5) + Float32(t_8 * t_8))
	t_11 = Float32(t_6 + t_9)
	t_12 = t_3 >= t_11
	t_13 = Float32(Float32(1.0) / sqrt(fmax(t_7, t_10)))
	tmp = Float32(0.0)
	if (t_7 >= t_10)
		tmp = Float32(t_13 * t_0);
	else
		tmp = Float32(t_13 * t_8);
	end
	t_14 = tmp
	t_15 = Float32(t_2 + t_3)
	t_16 = sqrt(fmax(t_15, t_11))
	t_17 = Float32(t_0 / t_16)
	tmp_2 = Float32(0.0)
	if (t_14 <= Float32(-2.000000026702864e-10))
		tmp_3 = Float32(0.0)
		if (t_12)
			tmp_3 = t_17;
		else
			tmp_3 = Float32(t_8 / t_16);
		end
		tmp_2 = tmp_3;
	elseif (t_14 <= Float32(2.000000026702864e-10))
		tmp_4 = Float32(0.0)
		if (t_4 >= t_6)
			tmp_4 = Float32(t_0 / sqrt(fmax(t_4, Float32(exp(Float32(log(t_8) * Float32(2.0))) + t_6))));
		else
			tmp_4 = Float32(Float32(dY_46_v / t_16) * floor(h));
		end
		tmp_2 = tmp_4;
	elseif (t_12)
		tmp_2 = t_17;
	else
		tmp_2 = Float32(t_8 / sqrt(fmax(t_15, Float32(Float32(Float32(Float32(dY_46_u * dY_46_u) * floor(w)) * floor(w)) + t_9))));
	end
	return tmp_2
end
function tmp_6 = code(w, h, dX_46_u, dX_46_v, dY_46_u, dY_46_v, maxAniso)
	t_0 = floor(h) * dX_46_v;
	t_1 = floor(w) * dX_46_u;
	t_2 = t_1 ^ single(2.0);
	t_3 = t_0 ^ single(2.0);
	t_4 = t_3 + t_2;
	t_5 = floor(w) * dY_46_u;
	t_6 = t_5 ^ single(2.0);
	t_7 = (t_1 * t_1) + (t_0 * t_0);
	t_8 = floor(h) * dY_46_v;
	t_9 = t_8 ^ single(2.0);
	t_10 = (t_5 * t_5) + (t_8 * t_8);
	t_11 = t_6 + t_9;
	t_12 = t_3 >= t_11;
	t_13 = single(1.0) / sqrt(max(t_7, t_10));
	tmp = single(0.0);
	if (t_7 >= t_10)
		tmp = t_13 * t_0;
	else
		tmp = t_13 * t_8;
	end
	t_14 = tmp;
	t_15 = t_2 + t_3;
	t_16 = sqrt(max(t_15, t_11));
	t_17 = t_0 / t_16;
	tmp_3 = single(0.0);
	if (t_14 <= single(-2.000000026702864e-10))
		tmp_4 = single(0.0);
		if (t_12)
			tmp_4 = t_17;
		else
			tmp_4 = t_8 / t_16;
		end
		tmp_3 = tmp_4;
	elseif (t_14 <= single(2.000000026702864e-10))
		tmp_5 = single(0.0);
		if (t_4 >= t_6)
			tmp_5 = t_0 / sqrt(max(t_4, (exp((log(t_8) * single(2.0))) + t_6)));
		else
			tmp_5 = (dY_46_v / t_16) * floor(h);
		end
		tmp_3 = tmp_5;
	elseif (t_12)
		tmp_3 = t_17;
	else
		tmp_3 = t_8 / sqrt(max(t_15, ((((dY_46_u * dY_46_u) * floor(w)) * floor(w)) + t_9)));
	end
	tmp_6 = tmp_3;
end
\begin{array}{l}

\\
\begin{array}{l}
t_0 := \left\lfloor h\right\rfloor  \cdot dX.v\\
t_1 := \left\lfloor w\right\rfloor  \cdot dX.u\\
t_2 := {t\_1}^{2}\\
t_3 := {t\_0}^{2}\\
t_4 := t\_3 + t\_2\\
t_5 := \left\lfloor w\right\rfloor  \cdot dY.u\\
t_6 := {t\_5}^{2}\\
t_7 := t\_1 \cdot t\_1 + t\_0 \cdot t\_0\\
t_8 := \left\lfloor h\right\rfloor  \cdot dY.v\\
t_9 := {t\_8}^{2}\\
t_10 := t\_5 \cdot t\_5 + t\_8 \cdot t\_8\\
t_11 := t\_6 + t\_9\\
t_12 := t\_3 \geq t\_11\\
t_13 := \frac{1}{\sqrt{\mathsf{max}\left(t\_7, t\_10\right)}}\\
t_14 := \begin{array}{l}
\mathbf{if}\;t\_7 \geq t\_10:\\
\;\;\;\;t\_13 \cdot t\_0\\

\mathbf{else}:\\
\;\;\;\;t\_13 \cdot t\_8\\


\end{array}\\
t_15 := t\_2 + t\_3\\
t_16 := \sqrt{\mathsf{max}\left(t\_15, t\_11\right)}\\
t_17 := \frac{t\_0}{t\_16}\\
\mathbf{if}\;t\_14 \leq -2.000000026702864 \cdot 10^{-10}:\\
\;\;\;\;\begin{array}{l}
\mathbf{if}\;t\_12:\\
\;\;\;\;t\_17\\

\mathbf{else}:\\
\;\;\;\;\frac{t\_8}{t\_16}\\


\end{array}\\

\mathbf{elif}\;t\_14 \leq 2.000000026702864 \cdot 10^{-10}:\\
\;\;\;\;\begin{array}{l}
\mathbf{if}\;t\_4 \geq t\_6:\\
\;\;\;\;\frac{t\_0}{\sqrt{\mathsf{max}\left(t\_4, e^{\log t\_8 \cdot 2} + t\_6\right)}}\\

\mathbf{else}:\\
\;\;\;\;\frac{dY.v}{t\_16} \cdot \left\lfloor h\right\rfloor \\


\end{array}\\

\mathbf{elif}\;t\_12:\\
\;\;\;\;t\_17\\

\mathbf{else}:\\
\;\;\;\;\frac{t\_8}{\sqrt{\mathsf{max}\left(t\_15, \left(\left(dY.u \cdot dY.u\right) \cdot \left\lfloor w\right\rfloor \right) \cdot \left\lfloor w\right\rfloor  + t\_9\right)}}\\


\end{array}
\end{array}
Derivation
  1. Split input into 3 regimes
  2. if (if (>=.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))) (*.f32 (/.f32 #s(literal 1 binary32) (sqrt.f32 (fmax.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))))) (*.f32 (floor.f32 h) dX.v)) (*.f32 (/.f32 #s(literal 1 binary32) (sqrt.f32 (fmax.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))))) (*.f32 (floor.f32 h) dY.v))) < -2.00000003e-10

    1. Initial program 99.2%

      \[\begin{array}{l} \mathbf{if}\;\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
    2. Add Preprocessing
    3. Taylor expanded in dX.u around 0

      \[\leadsto \begin{array}{l} \mathbf{if}\;\color{blue}{{dX.v}^{2} \cdot {\left(\left\lfloor h\right\rfloor \right)}^{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
    4. Step-by-step derivation
      1. *-commutativeN/A

        \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \right)}^{2} \cdot \color{blue}{{dX.v}^{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
      2. unpow-prod-downN/A

        \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{\color{blue}{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
      3. lift-floor.f32N/A

        \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
      4. lift-*.f32N/A

        \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
      5. lower-pow.f3295.4

        \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{\color{blue}{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
    5. Applied rewrites95.4%

      \[\leadsto \begin{array}{l} \mathbf{if}\;\color{blue}{{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
    6. Applied rewrites95.7%

      \[\leadsto \color{blue}{\begin{array}{l} \color{blue}{\mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ } \end{array}} \]

    if -2.00000003e-10 < (if (>=.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))) (*.f32 (/.f32 #s(literal 1 binary32) (sqrt.f32 (fmax.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))))) (*.f32 (floor.f32 h) dX.v)) (*.f32 (/.f32 #s(literal 1 binary32) (sqrt.f32 (fmax.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))))) (*.f32 (floor.f32 h) dY.v))) < 2.00000003e-10

    1. Initial program 53.1%

      \[\begin{array}{l} \mathbf{if}\;\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
    2. Add Preprocessing
    3. Applied rewrites53.3%

      \[\leadsto \color{blue}{\begin{array}{l} \color{blue}{\mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ } \end{array}} \]
    4. Applied rewrites53.3%

      \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}} \cdot \left\lfloor h\right\rfloor \\ \end{array} \]
    5. Taylor expanded in dY.u around inf

      \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq \color{blue}{{dY.u}^{2} \cdot {\left(\left\lfloor w\right\rfloor \right)}^{2}}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}} \cdot \left\lfloor h\right\rfloor \\ \end{array} \]
    6. Step-by-step derivation
      1. Applied rewrites53.3%

        \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq \color{blue}{{\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}} \cdot \left\lfloor h\right\rfloor \\ \end{array} \]
      2. Step-by-step derivation
        1. lift-pow.f32N/A

          \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, \color{blue}{{\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}} \cdot \left\lfloor h\right\rfloor \\ \end{array} \]
        2. pow-to-expN/A

          \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, \color{blue}{e^{\log \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot 2}} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}} \cdot \left\lfloor h\right\rfloor \\ \end{array} \]
        3. lower-exp.f32N/A

          \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, \color{blue}{e^{\log \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot 2}} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}} \cdot \left\lfloor h\right\rfloor \\ \end{array} \]
        4. lower-*.f32N/A

          \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, e^{\color{blue}{\log \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot 2}} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}} \cdot \left\lfloor h\right\rfloor \\ \end{array} \]
        5. lower-log.f3254.2

          \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, e^{\color{blue}{\log \left(\left\lfloor h\right\rfloor \cdot dY.v\right)} \cdot 2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}} \cdot \left\lfloor h\right\rfloor \\ \end{array} \]
      3. Applied rewrites54.2%

        \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, \color{blue}{e^{\log \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot 2}} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}} \cdot \left\lfloor h\right\rfloor \\ \end{array} \]

      if 2.00000003e-10 < (if (>=.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))) (*.f32 (/.f32 #s(literal 1 binary32) (sqrt.f32 (fmax.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))))) (*.f32 (floor.f32 h) dX.v)) (*.f32 (/.f32 #s(literal 1 binary32) (sqrt.f32 (fmax.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))))) (*.f32 (floor.f32 h) dY.v)))

      1. Initial program 99.2%

        \[\begin{array}{l} \mathbf{if}\;\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
      2. Add Preprocessing
      3. Taylor expanded in dX.u around 0

        \[\leadsto \begin{array}{l} \mathbf{if}\;\color{blue}{{dX.v}^{2} \cdot {\left(\left\lfloor h\right\rfloor \right)}^{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
      4. Step-by-step derivation
        1. *-commutativeN/A

          \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \right)}^{2} \cdot \color{blue}{{dX.v}^{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
        2. unpow-prod-downN/A

          \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{\color{blue}{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
        3. lift-floor.f32N/A

          \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
        4. lift-*.f32N/A

          \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
        5. lower-pow.f3295.8

          \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{\color{blue}{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
      5. Applied rewrites95.8%

        \[\leadsto \begin{array}{l} \mathbf{if}\;\color{blue}{{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
      6. Applied rewrites96.2%

        \[\leadsto \color{blue}{\begin{array}{l} \color{blue}{\mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ } \end{array}} \]
      7. Step-by-step derivation
        1. lift-pow.f32N/A

          \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
        2. pow2N/A

          \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
        3. lift-*.f32N/A

          \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
        4. lift-floor.f32N/A

          \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
        5. associate-*l*N/A

          \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left\lfloor w\right\rfloor \cdot \left(dY.u \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right)\right) + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
        6. *-commutativeN/A

          \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left(dY.u \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right)\right) \cdot \left\lfloor w\right\rfloor + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
        7. lower-*.f32N/A

          \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left(dY.u \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right)\right) \cdot \left\lfloor w\right\rfloor + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
        8. lift-*.f32N/A

          \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left(dY.u \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right)\right) \cdot \left\lfloor w\right\rfloor + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
        9. lift-floor.f32N/A

          \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left(dY.u \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right)\right) \cdot \left\lfloor w\right\rfloor + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
        10. *-commutativeN/A

          \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left(dY.u \cdot \left(dY.u \cdot \left\lfloor w\right\rfloor \right)\right) \cdot \left\lfloor w\right\rfloor + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
        11. associate-*r*N/A

          \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left(\left(dY.u \cdot dY.u\right) \cdot \left\lfloor w\right\rfloor \right) \cdot \left\lfloor w\right\rfloor + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
        12. unpow2N/A

          \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left({dY.u}^{2} \cdot \left\lfloor w\right\rfloor \right) \cdot \left\lfloor w\right\rfloor + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
        13. lower-*.f32N/A

          \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left({dY.u}^{2} \cdot \left\lfloor w\right\rfloor \right) \cdot \left\lfloor w\right\rfloor + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
        14. unpow2N/A

          \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left(\left(dY.u \cdot dY.u\right) \cdot \left\lfloor w\right\rfloor \right) \cdot \left\lfloor w\right\rfloor + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
        15. lower-*.f32N/A

          \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left(\left(dY.u \cdot dY.u\right) \cdot \left\lfloor w\right\rfloor \right) \cdot \left\lfloor w\right\rfloor + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
        16. lift-floor.f32N/A

          \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left(\left(dY.u \cdot dY.u\right) \cdot \left\lfloor w\right\rfloor \right) \cdot \left\lfloor w\right\rfloor + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
        17. lift-floor.f3296.2

          \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left(\left(dY.u \cdot dY.u\right) \cdot \left\lfloor w\right\rfloor \right) \cdot \left\lfloor w\right\rfloor + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
      8. Applied rewrites96.2%

        \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left(\left(dY.u \cdot dY.u\right) \cdot \left\lfloor w\right\rfloor \right) \cdot \left\lfloor w\right\rfloor + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
    7. Recombined 3 regimes into one program.
    8. Add Preprocessing

    Alternative 2: 75.5% accurate, 0.3× speedup?

    \[\begin{array}{l} \\ \begin{array}{l} t_0 := \left\lfloor h\right\rfloor \cdot dX.v\\ t_1 := \left\lfloor w\right\rfloor \cdot dX.u\\ t_2 := {t\_1}^{2}\\ t_3 := {t\_0}^{2}\\ t_4 := t\_3 + t\_2\\ t_5 := \left\lfloor w\right\rfloor \cdot dY.u\\ t_6 := {t\_5}^{2}\\ t_7 := t\_1 \cdot t\_1 + t\_0 \cdot t\_0\\ t_8 := \left\lfloor h\right\rfloor \cdot dY.v\\ t_9 := {t\_8}^{2}\\ t_10 := t\_5 \cdot t\_5 + t\_8 \cdot t\_8\\ t_11 := t\_6 + t\_9\\ t_12 := t\_3 \geq t\_11\\ t_13 := \sqrt{\mathsf{max}\left(t\_4, t\_9 + t\_6\right)}\\ t_14 := \frac{1}{\sqrt{\mathsf{max}\left(t\_7, t\_10\right)}}\\ t_15 := \begin{array}{l} \mathbf{if}\;t\_7 \geq t\_10:\\ \;\;\;\;t\_14 \cdot t\_0\\ \mathbf{else}:\\ \;\;\;\;t\_14 \cdot t\_8\\ \end{array}\\ t_16 := t\_2 + t\_3\\ t_17 := \sqrt{\mathsf{max}\left(t\_16, t\_11\right)}\\ t_18 := \frac{t\_0}{t\_17}\\ \mathbf{if}\;t\_15 \leq -0.9999998807907104:\\ \;\;\;\;\begin{array}{l} \mathbf{if}\;t\_12:\\ \;\;\;\;t\_18\\ \mathbf{else}:\\ \;\;\;\;\frac{t\_8}{t\_17}\\ \end{array}\\ \mathbf{elif}\;t\_15 \leq 2.000000026702864 \cdot 10^{-10}:\\ \;\;\;\;\begin{array}{l} \mathbf{if}\;t\_4 \geq t\_6:\\ \;\;\;\;\frac{t\_0}{t\_13}\\ \mathbf{else}:\\ \;\;\;\;\frac{t\_8}{t\_13}\\ \end{array}\\ \mathbf{elif}\;t\_12:\\ \;\;\;\;t\_18\\ \mathbf{else}:\\ \;\;\;\;\frac{t\_8}{\sqrt{\mathsf{max}\left(t\_16, \left(\left(dY.u \cdot dY.u\right) \cdot \left\lfloor w\right\rfloor \right) \cdot \left\lfloor w\right\rfloor + t\_9\right)}}\\ \end{array} \end{array} \]
    (FPCore (w h dX.u dX.v dY.u dY.v maxAniso)
     :precision binary32
     (let* ((t_0 (* (floor h) dX.v))
            (t_1 (* (floor w) dX.u))
            (t_2 (pow t_1 2.0))
            (t_3 (pow t_0 2.0))
            (t_4 (+ t_3 t_2))
            (t_5 (* (floor w) dY.u))
            (t_6 (pow t_5 2.0))
            (t_7 (+ (* t_1 t_1) (* t_0 t_0)))
            (t_8 (* (floor h) dY.v))
            (t_9 (pow t_8 2.0))
            (t_10 (+ (* t_5 t_5) (* t_8 t_8)))
            (t_11 (+ t_6 t_9))
            (t_12 (>= t_3 t_11))
            (t_13 (sqrt (fmax t_4 (+ t_9 t_6))))
            (t_14 (/ 1.0 (sqrt (fmax t_7 t_10))))
            (t_15 (if (>= t_7 t_10) (* t_14 t_0) (* t_14 t_8)))
            (t_16 (+ t_2 t_3))
            (t_17 (sqrt (fmax t_16 t_11)))
            (t_18 (/ t_0 t_17)))
       (if (<= t_15 -0.9999998807907104)
         (if t_12 t_18 (/ t_8 t_17))
         (if (<= t_15 2.000000026702864e-10)
           (if (>= t_4 t_6) (/ t_0 t_13) (/ t_8 t_13))
           (if t_12
             t_18
             (/
              t_8
              (sqrt
               (fmax t_16 (+ (* (* (* dY.u dY.u) (floor w)) (floor w)) t_9)))))))))
    float code(float w, float h, float dX_46_u, float dX_46_v, float dY_46_u, float dY_46_v, float maxAniso) {
    	float t_0 = floorf(h) * dX_46_v;
    	float t_1 = floorf(w) * dX_46_u;
    	float t_2 = powf(t_1, 2.0f);
    	float t_3 = powf(t_0, 2.0f);
    	float t_4 = t_3 + t_2;
    	float t_5 = floorf(w) * dY_46_u;
    	float t_6 = powf(t_5, 2.0f);
    	float t_7 = (t_1 * t_1) + (t_0 * t_0);
    	float t_8 = floorf(h) * dY_46_v;
    	float t_9 = powf(t_8, 2.0f);
    	float t_10 = (t_5 * t_5) + (t_8 * t_8);
    	float t_11 = t_6 + t_9;
    	int t_12 = t_3 >= t_11;
    	float t_13 = sqrtf(fmaxf(t_4, (t_9 + t_6)));
    	float t_14 = 1.0f / sqrtf(fmaxf(t_7, t_10));
    	float tmp;
    	if (t_7 >= t_10) {
    		tmp = t_14 * t_0;
    	} else {
    		tmp = t_14 * t_8;
    	}
    	float t_15 = tmp;
    	float t_16 = t_2 + t_3;
    	float t_17 = sqrtf(fmaxf(t_16, t_11));
    	float t_18 = t_0 / t_17;
    	float tmp_2;
    	if (t_15 <= -0.9999998807907104f) {
    		float tmp_3;
    		if (t_12) {
    			tmp_3 = t_18;
    		} else {
    			tmp_3 = t_8 / t_17;
    		}
    		tmp_2 = tmp_3;
    	} else if (t_15 <= 2.000000026702864e-10f) {
    		float tmp_4;
    		if (t_4 >= t_6) {
    			tmp_4 = t_0 / t_13;
    		} else {
    			tmp_4 = t_8 / t_13;
    		}
    		tmp_2 = tmp_4;
    	} else if (t_12) {
    		tmp_2 = t_18;
    	} else {
    		tmp_2 = t_8 / sqrtf(fmaxf(t_16, ((((dY_46_u * dY_46_u) * floorf(w)) * floorf(w)) + t_9)));
    	}
    	return tmp_2;
    }
    
    function code(w, h, dX_46_u, dX_46_v, dY_46_u, dY_46_v, maxAniso)
    	t_0 = Float32(floor(h) * dX_46_v)
    	t_1 = Float32(floor(w) * dX_46_u)
    	t_2 = t_1 ^ Float32(2.0)
    	t_3 = t_0 ^ Float32(2.0)
    	t_4 = Float32(t_3 + t_2)
    	t_5 = Float32(floor(w) * dY_46_u)
    	t_6 = t_5 ^ Float32(2.0)
    	t_7 = Float32(Float32(t_1 * t_1) + Float32(t_0 * t_0))
    	t_8 = Float32(floor(h) * dY_46_v)
    	t_9 = t_8 ^ Float32(2.0)
    	t_10 = Float32(Float32(t_5 * t_5) + Float32(t_8 * t_8))
    	t_11 = Float32(t_6 + t_9)
    	t_12 = t_3 >= t_11
    	t_13 = sqrt(fmax(t_4, Float32(t_9 + t_6)))
    	t_14 = Float32(Float32(1.0) / sqrt(fmax(t_7, t_10)))
    	tmp = Float32(0.0)
    	if (t_7 >= t_10)
    		tmp = Float32(t_14 * t_0);
    	else
    		tmp = Float32(t_14 * t_8);
    	end
    	t_15 = tmp
    	t_16 = Float32(t_2 + t_3)
    	t_17 = sqrt(fmax(t_16, t_11))
    	t_18 = Float32(t_0 / t_17)
    	tmp_2 = Float32(0.0)
    	if (t_15 <= Float32(-0.9999998807907104))
    		tmp_3 = Float32(0.0)
    		if (t_12)
    			tmp_3 = t_18;
    		else
    			tmp_3 = Float32(t_8 / t_17);
    		end
    		tmp_2 = tmp_3;
    	elseif (t_15 <= Float32(2.000000026702864e-10))
    		tmp_4 = Float32(0.0)
    		if (t_4 >= t_6)
    			tmp_4 = Float32(t_0 / t_13);
    		else
    			tmp_4 = Float32(t_8 / t_13);
    		end
    		tmp_2 = tmp_4;
    	elseif (t_12)
    		tmp_2 = t_18;
    	else
    		tmp_2 = Float32(t_8 / sqrt(fmax(t_16, Float32(Float32(Float32(Float32(dY_46_u * dY_46_u) * floor(w)) * floor(w)) + t_9))));
    	end
    	return tmp_2
    end
    
    function tmp_6 = code(w, h, dX_46_u, dX_46_v, dY_46_u, dY_46_v, maxAniso)
    	t_0 = floor(h) * dX_46_v;
    	t_1 = floor(w) * dX_46_u;
    	t_2 = t_1 ^ single(2.0);
    	t_3 = t_0 ^ single(2.0);
    	t_4 = t_3 + t_2;
    	t_5 = floor(w) * dY_46_u;
    	t_6 = t_5 ^ single(2.0);
    	t_7 = (t_1 * t_1) + (t_0 * t_0);
    	t_8 = floor(h) * dY_46_v;
    	t_9 = t_8 ^ single(2.0);
    	t_10 = (t_5 * t_5) + (t_8 * t_8);
    	t_11 = t_6 + t_9;
    	t_12 = t_3 >= t_11;
    	t_13 = sqrt(max(t_4, (t_9 + t_6)));
    	t_14 = single(1.0) / sqrt(max(t_7, t_10));
    	tmp = single(0.0);
    	if (t_7 >= t_10)
    		tmp = t_14 * t_0;
    	else
    		tmp = t_14 * t_8;
    	end
    	t_15 = tmp;
    	t_16 = t_2 + t_3;
    	t_17 = sqrt(max(t_16, t_11));
    	t_18 = t_0 / t_17;
    	tmp_3 = single(0.0);
    	if (t_15 <= single(-0.9999998807907104))
    		tmp_4 = single(0.0);
    		if (t_12)
    			tmp_4 = t_18;
    		else
    			tmp_4 = t_8 / t_17;
    		end
    		tmp_3 = tmp_4;
    	elseif (t_15 <= single(2.000000026702864e-10))
    		tmp_5 = single(0.0);
    		if (t_4 >= t_6)
    			tmp_5 = t_0 / t_13;
    		else
    			tmp_5 = t_8 / t_13;
    		end
    		tmp_3 = tmp_5;
    	elseif (t_12)
    		tmp_3 = t_18;
    	else
    		tmp_3 = t_8 / sqrt(max(t_16, ((((dY_46_u * dY_46_u) * floor(w)) * floor(w)) + t_9)));
    	end
    	tmp_6 = tmp_3;
    end
    
    \begin{array}{l}
    
    \\
    \begin{array}{l}
    t_0 := \left\lfloor h\right\rfloor  \cdot dX.v\\
    t_1 := \left\lfloor w\right\rfloor  \cdot dX.u\\
    t_2 := {t\_1}^{2}\\
    t_3 := {t\_0}^{2}\\
    t_4 := t\_3 + t\_2\\
    t_5 := \left\lfloor w\right\rfloor  \cdot dY.u\\
    t_6 := {t\_5}^{2}\\
    t_7 := t\_1 \cdot t\_1 + t\_0 \cdot t\_0\\
    t_8 := \left\lfloor h\right\rfloor  \cdot dY.v\\
    t_9 := {t\_8}^{2}\\
    t_10 := t\_5 \cdot t\_5 + t\_8 \cdot t\_8\\
    t_11 := t\_6 + t\_9\\
    t_12 := t\_3 \geq t\_11\\
    t_13 := \sqrt{\mathsf{max}\left(t\_4, t\_9 + t\_6\right)}\\
    t_14 := \frac{1}{\sqrt{\mathsf{max}\left(t\_7, t\_10\right)}}\\
    t_15 := \begin{array}{l}
    \mathbf{if}\;t\_7 \geq t\_10:\\
    \;\;\;\;t\_14 \cdot t\_0\\
    
    \mathbf{else}:\\
    \;\;\;\;t\_14 \cdot t\_8\\
    
    
    \end{array}\\
    t_16 := t\_2 + t\_3\\
    t_17 := \sqrt{\mathsf{max}\left(t\_16, t\_11\right)}\\
    t_18 := \frac{t\_0}{t\_17}\\
    \mathbf{if}\;t\_15 \leq -0.9999998807907104:\\
    \;\;\;\;\begin{array}{l}
    \mathbf{if}\;t\_12:\\
    \;\;\;\;t\_18\\
    
    \mathbf{else}:\\
    \;\;\;\;\frac{t\_8}{t\_17}\\
    
    
    \end{array}\\
    
    \mathbf{elif}\;t\_15 \leq 2.000000026702864 \cdot 10^{-10}:\\
    \;\;\;\;\begin{array}{l}
    \mathbf{if}\;t\_4 \geq t\_6:\\
    \;\;\;\;\frac{t\_0}{t\_13}\\
    
    \mathbf{else}:\\
    \;\;\;\;\frac{t\_8}{t\_13}\\
    
    
    \end{array}\\
    
    \mathbf{elif}\;t\_12:\\
    \;\;\;\;t\_18\\
    
    \mathbf{else}:\\
    \;\;\;\;\frac{t\_8}{\sqrt{\mathsf{max}\left(t\_16, \left(\left(dY.u \cdot dY.u\right) \cdot \left\lfloor w\right\rfloor \right) \cdot \left\lfloor w\right\rfloor  + t\_9\right)}}\\
    
    
    \end{array}
    \end{array}
    
    Derivation
    1. Split input into 3 regimes
    2. if (if (>=.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))) (*.f32 (/.f32 #s(literal 1 binary32) (sqrt.f32 (fmax.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))))) (*.f32 (floor.f32 h) dX.v)) (*.f32 (/.f32 #s(literal 1 binary32) (sqrt.f32 (fmax.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))))) (*.f32 (floor.f32 h) dY.v))) < -0.999999881

      1. Initial program 99.6%

        \[\begin{array}{l} \mathbf{if}\;\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
      2. Add Preprocessing
      3. Taylor expanded in dX.u around 0

        \[\leadsto \begin{array}{l} \mathbf{if}\;\color{blue}{{dX.v}^{2} \cdot {\left(\left\lfloor h\right\rfloor \right)}^{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
      4. Step-by-step derivation
        1. *-commutativeN/A

          \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \right)}^{2} \cdot \color{blue}{{dX.v}^{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
        2. unpow-prod-downN/A

          \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{\color{blue}{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
        3. lift-floor.f32N/A

          \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
        4. lift-*.f32N/A

          \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
        5. lower-pow.f3299.6

          \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{\color{blue}{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
      5. Applied rewrites99.6%

        \[\leadsto \begin{array}{l} \mathbf{if}\;\color{blue}{{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
      6. Applied rewrites100.0%

        \[\leadsto \color{blue}{\begin{array}{l} \color{blue}{\mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ } \end{array}} \]

      if -0.999999881 < (if (>=.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))) (*.f32 (/.f32 #s(literal 1 binary32) (sqrt.f32 (fmax.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))))) (*.f32 (floor.f32 h) dX.v)) (*.f32 (/.f32 #s(literal 1 binary32) (sqrt.f32 (fmax.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))))) (*.f32 (floor.f32 h) dY.v))) < 2.00000003e-10

      1. Initial program 60.1%

        \[\begin{array}{l} \mathbf{if}\;\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
      2. Add Preprocessing
      3. Applied rewrites60.2%

        \[\leadsto \color{blue}{\begin{array}{l} \color{blue}{\mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ } \end{array}} \]
      4. Taylor expanded in dY.u around inf

        \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq \color{blue}{{dY.u}^{2} \cdot {\left(\left\lfloor w\right\rfloor \right)}^{2}}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \end{array} \]
      5. Step-by-step derivation
        1. Applied rewrites60.0%

          \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq \color{blue}{{\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \end{array} \]

        if 2.00000003e-10 < (if (>=.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))) (*.f32 (/.f32 #s(literal 1 binary32) (sqrt.f32 (fmax.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))))) (*.f32 (floor.f32 h) dX.v)) (*.f32 (/.f32 #s(literal 1 binary32) (sqrt.f32 (fmax.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))))) (*.f32 (floor.f32 h) dY.v)))

        1. Initial program 99.2%

          \[\begin{array}{l} \mathbf{if}\;\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
        2. Add Preprocessing
        3. Taylor expanded in dX.u around 0

          \[\leadsto \begin{array}{l} \mathbf{if}\;\color{blue}{{dX.v}^{2} \cdot {\left(\left\lfloor h\right\rfloor \right)}^{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
        4. Step-by-step derivation
          1. *-commutativeN/A

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \right)}^{2} \cdot \color{blue}{{dX.v}^{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
          2. unpow-prod-downN/A

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{\color{blue}{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
          3. lift-floor.f32N/A

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
          4. lift-*.f32N/A

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
          5. lower-pow.f3295.8

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{\color{blue}{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
        5. Applied rewrites95.8%

          \[\leadsto \begin{array}{l} \mathbf{if}\;\color{blue}{{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
        6. Applied rewrites96.2%

          \[\leadsto \color{blue}{\begin{array}{l} \color{blue}{\mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ } \end{array}} \]
        7. Step-by-step derivation
          1. lift-pow.f32N/A

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
          2. pow2N/A

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
          3. lift-*.f32N/A

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
          4. lift-floor.f32N/A

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
          5. associate-*l*N/A

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left\lfloor w\right\rfloor \cdot \left(dY.u \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right)\right) + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
          6. *-commutativeN/A

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left(dY.u \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right)\right) \cdot \left\lfloor w\right\rfloor + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
          7. lower-*.f32N/A

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left(dY.u \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right)\right) \cdot \left\lfloor w\right\rfloor + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
          8. lift-*.f32N/A

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left(dY.u \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right)\right) \cdot \left\lfloor w\right\rfloor + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
          9. lift-floor.f32N/A

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left(dY.u \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right)\right) \cdot \left\lfloor w\right\rfloor + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
          10. *-commutativeN/A

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left(dY.u \cdot \left(dY.u \cdot \left\lfloor w\right\rfloor \right)\right) \cdot \left\lfloor w\right\rfloor + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
          11. associate-*r*N/A

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left(\left(dY.u \cdot dY.u\right) \cdot \left\lfloor w\right\rfloor \right) \cdot \left\lfloor w\right\rfloor + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
          12. unpow2N/A

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left({dY.u}^{2} \cdot \left\lfloor w\right\rfloor \right) \cdot \left\lfloor w\right\rfloor + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
          13. lower-*.f32N/A

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left({dY.u}^{2} \cdot \left\lfloor w\right\rfloor \right) \cdot \left\lfloor w\right\rfloor + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
          14. unpow2N/A

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left(\left(dY.u \cdot dY.u\right) \cdot \left\lfloor w\right\rfloor \right) \cdot \left\lfloor w\right\rfloor + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
          15. lower-*.f32N/A

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left(\left(dY.u \cdot dY.u\right) \cdot \left\lfloor w\right\rfloor \right) \cdot \left\lfloor w\right\rfloor + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
          16. lift-floor.f32N/A

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left(\left(dY.u \cdot dY.u\right) \cdot \left\lfloor w\right\rfloor \right) \cdot \left\lfloor w\right\rfloor + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
          17. lift-floor.f3296.2

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left(\left(dY.u \cdot dY.u\right) \cdot \left\lfloor w\right\rfloor \right) \cdot \left\lfloor w\right\rfloor + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
        8. Applied rewrites96.2%

          \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left(\left(dY.u \cdot dY.u\right) \cdot \left\lfloor w\right\rfloor \right) \cdot \left\lfloor w\right\rfloor + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
      6. Recombined 3 regimes into one program.
      7. Add Preprocessing

      Alternative 3: 76.3% accurate, 0.3× speedup?

      \[\begin{array}{l} \\ \begin{array}{l} t_0 := \left\lfloor h\right\rfloor \cdot dX.v\\ t_1 := \left\lfloor w\right\rfloor \cdot dX.u\\ t_2 := {t\_1}^{2}\\ t_3 := {t\_0}^{2}\\ t_4 := t\_3 + t\_2\\ t_5 := \left\lfloor w\right\rfloor \cdot dY.u\\ t_6 := {t\_5}^{2}\\ t_7 := t\_1 \cdot t\_1 + t\_0 \cdot t\_0\\ t_8 := \left\lfloor h\right\rfloor \cdot dY.v\\ t_9 := {t\_8}^{2}\\ t_10 := t\_5 \cdot t\_5 + t\_8 \cdot t\_8\\ t_11 := \frac{1}{\sqrt{\mathsf{max}\left(t\_7, t\_10\right)}}\\ t_12 := t\_6 + t\_9\\ t_13 := \sqrt{\mathsf{max}\left(t\_2 + t\_3, t\_12\right)}\\ t_14 := \begin{array}{l} \mathbf{if}\;t\_3 \geq t\_12:\\ \;\;\;\;\frac{t\_0}{t\_13}\\ \mathbf{else}:\\ \;\;\;\;\frac{t\_8}{t\_13}\\ \end{array}\\ t_15 := \begin{array}{l} \mathbf{if}\;t\_7 \geq t\_10:\\ \;\;\;\;t\_11 \cdot t\_0\\ \mathbf{else}:\\ \;\;\;\;t\_11 \cdot t\_8\\ \end{array}\\ \mathbf{if}\;t\_15 \leq -0.9999998807907104:\\ \;\;\;\;t\_14\\ \mathbf{elif}\;t\_15 \leq 0.9990000128746033:\\ \;\;\;\;\begin{array}{l} \mathbf{if}\;t\_4 \geq t\_6:\\ \;\;\;\;\frac{t\_0}{\sqrt{\mathsf{max}\left(t\_4, t\_9 + t\_6\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{t\_8}{\sqrt{\mathsf{max}\left(t\_4, \mathsf{fma}\left(t\_8, t\_8, t\_6\right)\right)}}\\ \end{array}\\ \mathbf{else}:\\ \;\;\;\;t\_14\\ \end{array} \end{array} \]
      (FPCore (w h dX.u dX.v dY.u dY.v maxAniso)
       :precision binary32
       (let* ((t_0 (* (floor h) dX.v))
              (t_1 (* (floor w) dX.u))
              (t_2 (pow t_1 2.0))
              (t_3 (pow t_0 2.0))
              (t_4 (+ t_3 t_2))
              (t_5 (* (floor w) dY.u))
              (t_6 (pow t_5 2.0))
              (t_7 (+ (* t_1 t_1) (* t_0 t_0)))
              (t_8 (* (floor h) dY.v))
              (t_9 (pow t_8 2.0))
              (t_10 (+ (* t_5 t_5) (* t_8 t_8)))
              (t_11 (/ 1.0 (sqrt (fmax t_7 t_10))))
              (t_12 (+ t_6 t_9))
              (t_13 (sqrt (fmax (+ t_2 t_3) t_12)))
              (t_14 (if (>= t_3 t_12) (/ t_0 t_13) (/ t_8 t_13)))
              (t_15 (if (>= t_7 t_10) (* t_11 t_0) (* t_11 t_8))))
         (if (<= t_15 -0.9999998807907104)
           t_14
           (if (<= t_15 0.9990000128746033)
             (if (>= t_4 t_6)
               (/ t_0 (sqrt (fmax t_4 (+ t_9 t_6))))
               (/ t_8 (sqrt (fmax t_4 (fma t_8 t_8 t_6)))))
             t_14))))
      float code(float w, float h, float dX_46_u, float dX_46_v, float dY_46_u, float dY_46_v, float maxAniso) {
      	float t_0 = floorf(h) * dX_46_v;
      	float t_1 = floorf(w) * dX_46_u;
      	float t_2 = powf(t_1, 2.0f);
      	float t_3 = powf(t_0, 2.0f);
      	float t_4 = t_3 + t_2;
      	float t_5 = floorf(w) * dY_46_u;
      	float t_6 = powf(t_5, 2.0f);
      	float t_7 = (t_1 * t_1) + (t_0 * t_0);
      	float t_8 = floorf(h) * dY_46_v;
      	float t_9 = powf(t_8, 2.0f);
      	float t_10 = (t_5 * t_5) + (t_8 * t_8);
      	float t_11 = 1.0f / sqrtf(fmaxf(t_7, t_10));
      	float t_12 = t_6 + t_9;
      	float t_13 = sqrtf(fmaxf((t_2 + t_3), t_12));
      	float tmp;
      	if (t_3 >= t_12) {
      		tmp = t_0 / t_13;
      	} else {
      		tmp = t_8 / t_13;
      	}
      	float t_14 = tmp;
      	float tmp_1;
      	if (t_7 >= t_10) {
      		tmp_1 = t_11 * t_0;
      	} else {
      		tmp_1 = t_11 * t_8;
      	}
      	float t_15 = tmp_1;
      	float tmp_2;
      	if (t_15 <= -0.9999998807907104f) {
      		tmp_2 = t_14;
      	} else if (t_15 <= 0.9990000128746033f) {
      		float tmp_3;
      		if (t_4 >= t_6) {
      			tmp_3 = t_0 / sqrtf(fmaxf(t_4, (t_9 + t_6)));
      		} else {
      			tmp_3 = t_8 / sqrtf(fmaxf(t_4, fmaf(t_8, t_8, t_6)));
      		}
      		tmp_2 = tmp_3;
      	} else {
      		tmp_2 = t_14;
      	}
      	return tmp_2;
      }
      
      function code(w, h, dX_46_u, dX_46_v, dY_46_u, dY_46_v, maxAniso)
      	t_0 = Float32(floor(h) * dX_46_v)
      	t_1 = Float32(floor(w) * dX_46_u)
      	t_2 = t_1 ^ Float32(2.0)
      	t_3 = t_0 ^ Float32(2.0)
      	t_4 = Float32(t_3 + t_2)
      	t_5 = Float32(floor(w) * dY_46_u)
      	t_6 = t_5 ^ Float32(2.0)
      	t_7 = Float32(Float32(t_1 * t_1) + Float32(t_0 * t_0))
      	t_8 = Float32(floor(h) * dY_46_v)
      	t_9 = t_8 ^ Float32(2.0)
      	t_10 = Float32(Float32(t_5 * t_5) + Float32(t_8 * t_8))
      	t_11 = Float32(Float32(1.0) / sqrt(fmax(t_7, t_10)))
      	t_12 = Float32(t_6 + t_9)
      	t_13 = sqrt(fmax(Float32(t_2 + t_3), t_12))
      	tmp = Float32(0.0)
      	if (t_3 >= t_12)
      		tmp = Float32(t_0 / t_13);
      	else
      		tmp = Float32(t_8 / t_13);
      	end
      	t_14 = tmp
      	tmp_1 = Float32(0.0)
      	if (t_7 >= t_10)
      		tmp_1 = Float32(t_11 * t_0);
      	else
      		tmp_1 = Float32(t_11 * t_8);
      	end
      	t_15 = tmp_1
      	tmp_2 = Float32(0.0)
      	if (t_15 <= Float32(-0.9999998807907104))
      		tmp_2 = t_14;
      	elseif (t_15 <= Float32(0.9990000128746033))
      		tmp_3 = Float32(0.0)
      		if (t_4 >= t_6)
      			tmp_3 = Float32(t_0 / sqrt(fmax(t_4, Float32(t_9 + t_6))));
      		else
      			tmp_3 = Float32(t_8 / sqrt(fmax(t_4, fma(t_8, t_8, t_6))));
      		end
      		tmp_2 = tmp_3;
      	else
      		tmp_2 = t_14;
      	end
      	return tmp_2
      end
      
      \begin{array}{l}
      
      \\
      \begin{array}{l}
      t_0 := \left\lfloor h\right\rfloor  \cdot dX.v\\
      t_1 := \left\lfloor w\right\rfloor  \cdot dX.u\\
      t_2 := {t\_1}^{2}\\
      t_3 := {t\_0}^{2}\\
      t_4 := t\_3 + t\_2\\
      t_5 := \left\lfloor w\right\rfloor  \cdot dY.u\\
      t_6 := {t\_5}^{2}\\
      t_7 := t\_1 \cdot t\_1 + t\_0 \cdot t\_0\\
      t_8 := \left\lfloor h\right\rfloor  \cdot dY.v\\
      t_9 := {t\_8}^{2}\\
      t_10 := t\_5 \cdot t\_5 + t\_8 \cdot t\_8\\
      t_11 := \frac{1}{\sqrt{\mathsf{max}\left(t\_7, t\_10\right)}}\\
      t_12 := t\_6 + t\_9\\
      t_13 := \sqrt{\mathsf{max}\left(t\_2 + t\_3, t\_12\right)}\\
      t_14 := \begin{array}{l}
      \mathbf{if}\;t\_3 \geq t\_12:\\
      \;\;\;\;\frac{t\_0}{t\_13}\\
      
      \mathbf{else}:\\
      \;\;\;\;\frac{t\_8}{t\_13}\\
      
      
      \end{array}\\
      t_15 := \begin{array}{l}
      \mathbf{if}\;t\_7 \geq t\_10:\\
      \;\;\;\;t\_11 \cdot t\_0\\
      
      \mathbf{else}:\\
      \;\;\;\;t\_11 \cdot t\_8\\
      
      
      \end{array}\\
      \mathbf{if}\;t\_15 \leq -0.9999998807907104:\\
      \;\;\;\;t\_14\\
      
      \mathbf{elif}\;t\_15 \leq 0.9990000128746033:\\
      \;\;\;\;\begin{array}{l}
      \mathbf{if}\;t\_4 \geq t\_6:\\
      \;\;\;\;\frac{t\_0}{\sqrt{\mathsf{max}\left(t\_4, t\_9 + t\_6\right)}}\\
      
      \mathbf{else}:\\
      \;\;\;\;\frac{t\_8}{\sqrt{\mathsf{max}\left(t\_4, \mathsf{fma}\left(t\_8, t\_8, t\_6\right)\right)}}\\
      
      
      \end{array}\\
      
      \mathbf{else}:\\
      \;\;\;\;t\_14\\
      
      
      \end{array}
      \end{array}
      
      Derivation
      1. Split input into 2 regimes
      2. if (if (>=.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))) (*.f32 (/.f32 #s(literal 1 binary32) (sqrt.f32 (fmax.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))))) (*.f32 (floor.f32 h) dX.v)) (*.f32 (/.f32 #s(literal 1 binary32) (sqrt.f32 (fmax.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))))) (*.f32 (floor.f32 h) dY.v))) < -0.999999881 or 0.999000013 < (if (>=.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))) (*.f32 (/.f32 #s(literal 1 binary32) (sqrt.f32 (fmax.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))))) (*.f32 (floor.f32 h) dX.v)) (*.f32 (/.f32 #s(literal 1 binary32) (sqrt.f32 (fmax.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))))) (*.f32 (floor.f32 h) dY.v)))

        1. Initial program 99.5%

          \[\begin{array}{l} \mathbf{if}\;\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
        2. Add Preprocessing
        3. Taylor expanded in dX.u around 0

          \[\leadsto \begin{array}{l} \mathbf{if}\;\color{blue}{{dX.v}^{2} \cdot {\left(\left\lfloor h\right\rfloor \right)}^{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
        4. Step-by-step derivation
          1. *-commutativeN/A

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \right)}^{2} \cdot \color{blue}{{dX.v}^{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
          2. unpow-prod-downN/A

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{\color{blue}{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
          3. lift-floor.f32N/A

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
          4. lift-*.f32N/A

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
          5. lower-pow.f3299.5

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{\color{blue}{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
        5. Applied rewrites99.5%

          \[\leadsto \begin{array}{l} \mathbf{if}\;\color{blue}{{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
        6. Applied rewrites99.9%

          \[\leadsto \color{blue}{\begin{array}{l} \color{blue}{\mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ } \end{array}} \]

        if -0.999999881 < (if (>=.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))) (*.f32 (/.f32 #s(literal 1 binary32) (sqrt.f32 (fmax.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))))) (*.f32 (floor.f32 h) dX.v)) (*.f32 (/.f32 #s(literal 1 binary32) (sqrt.f32 (fmax.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))))) (*.f32 (floor.f32 h) dY.v))) < 0.999000013

        1. Initial program 64.4%

          \[\begin{array}{l} \mathbf{if}\;\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
        2. Add Preprocessing
        3. Applied rewrites64.6%

          \[\leadsto \color{blue}{\begin{array}{l} \color{blue}{\mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ } \end{array}} \]
        4. Step-by-step derivation
          1. lift-+.f32N/A

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot \color{blue}{dY.v}}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \end{array} \]
          2. lift-pow.f32N/A

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \end{array} \]
          3. pow2N/A

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right) + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \end{array} \]
          4. lift-pow.f32N/A

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right) + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \end{array} \]
          5. pow2N/A

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right) + \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right)\right)}}\\ \end{array} \]
          6. lift-*.f32N/A

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right) + \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right)\right)}}\\ \end{array} \]
          7. lower-fma.f3264.6

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot \color{blue}{dY.v}}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, \mathsf{fma}\left(\left\lfloor h\right\rfloor \cdot dY.v, \left\lfloor h\right\rfloor \cdot dY.v, \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right)\right)\right)}}\\ \end{array} \]
          8. lift-*.f32N/A

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, \mathsf{fma}\left(\left\lfloor h\right\rfloor \cdot dY.v, \left\lfloor h\right\rfloor \cdot dY.v, \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right)\right)\right)}}\\ \end{array} \]
          9. pow2N/A

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, \mathsf{fma}\left(\left\lfloor h\right\rfloor \cdot dY.v, \left\lfloor h\right\rfloor \cdot dY.v, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)\right)}}\\ \end{array} \]
          10. lift-pow.f3264.6

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, \mathsf{fma}\left(\left\lfloor h\right\rfloor \cdot dY.v, \left\lfloor h\right\rfloor \cdot dY.v, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)\right)}}\\ \end{array} \]
        5. Applied rewrites64.6%

          \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot \color{blue}{dY.v}}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, \mathsf{fma}\left(\left\lfloor h\right\rfloor \cdot dY.v, \left\lfloor h\right\rfloor \cdot dY.v, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)\right)}}\\ \end{array} \]
        6. Taylor expanded in dY.u around inf

          \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq \color{blue}{{dY.u}^{2} \cdot {\left(\left\lfloor w\right\rfloor \right)}^{2}}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, \mathsf{fma}\left(\left\lfloor h\right\rfloor \cdot dY.v, \left\lfloor h\right\rfloor \cdot dY.v, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)\right)}}\\ \end{array} \]
        7. Step-by-step derivation
          1. Applied rewrites64.4%

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq \color{blue}{{\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, \mathsf{fma}\left(\left\lfloor h\right\rfloor \cdot dY.v, \left\lfloor h\right\rfloor \cdot dY.v, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)\right)}}\\ \end{array} \]
        8. Recombined 2 regimes into one program.
        9. Add Preprocessing

        Alternative 4: 76.2% accurate, 0.3× speedup?

        \[\begin{array}{l} \\ \begin{array}{l} t_0 := \left\lfloor h\right\rfloor \cdot dX.v\\ t_1 := \left\lfloor w\right\rfloor \cdot dX.u\\ t_2 := {t\_1}^{2}\\ t_3 := {t\_0}^{2}\\ t_4 := t\_3 + t\_2\\ t_5 := \left\lfloor w\right\rfloor \cdot dY.u\\ t_6 := {t\_5}^{2}\\ t_7 := t\_1 \cdot t\_1 + t\_0 \cdot t\_0\\ t_8 := \left\lfloor h\right\rfloor \cdot dY.v\\ t_9 := {t\_8}^{2}\\ t_10 := t\_5 \cdot t\_5 + t\_8 \cdot t\_8\\ t_11 := t\_6 + t\_9\\ t_12 := t\_3 \geq t\_11\\ t_13 := \sqrt{\mathsf{max}\left(t\_4, t\_9 + t\_6\right)}\\ t_14 := \frac{1}{\sqrt{\mathsf{max}\left(t\_7, t\_10\right)}}\\ t_15 := \begin{array}{l} \mathbf{if}\;t\_7 \geq t\_10:\\ \;\;\;\;t\_14 \cdot t\_0\\ \mathbf{else}:\\ \;\;\;\;t\_14 \cdot t\_8\\ \end{array}\\ t_16 := t\_2 + t\_3\\ t_17 := \sqrt{\mathsf{max}\left(t\_16, t\_11\right)}\\ t_18 := \frac{t\_0}{t\_17}\\ \mathbf{if}\;t\_15 \leq -0.9999998807907104:\\ \;\;\;\;\begin{array}{l} \mathbf{if}\;t\_12:\\ \;\;\;\;t\_18\\ \mathbf{else}:\\ \;\;\;\;\frac{t\_8}{t\_17}\\ \end{array}\\ \mathbf{elif}\;t\_15 \leq 4.0499999158782884 \cdot 10^{-5}:\\ \;\;\;\;\begin{array}{l} \mathbf{if}\;t\_4 \geq t\_6:\\ \;\;\;\;\frac{t\_0}{t\_13}\\ \mathbf{else}:\\ \;\;\;\;\frac{t\_8}{t\_13}\\ \end{array}\\ \mathbf{elif}\;t\_12:\\ \;\;\;\;t\_18\\ \mathbf{else}:\\ \;\;\;\;\frac{t\_8}{\sqrt{\mathsf{max}\left(t\_16, \left({\left(\left\lfloor w\right\rfloor \right)}^{2} \cdot dY.u\right) \cdot dY.u + t\_9\right)}}\\ \end{array} \end{array} \]
        (FPCore (w h dX.u dX.v dY.u dY.v maxAniso)
         :precision binary32
         (let* ((t_0 (* (floor h) dX.v))
                (t_1 (* (floor w) dX.u))
                (t_2 (pow t_1 2.0))
                (t_3 (pow t_0 2.0))
                (t_4 (+ t_3 t_2))
                (t_5 (* (floor w) dY.u))
                (t_6 (pow t_5 2.0))
                (t_7 (+ (* t_1 t_1) (* t_0 t_0)))
                (t_8 (* (floor h) dY.v))
                (t_9 (pow t_8 2.0))
                (t_10 (+ (* t_5 t_5) (* t_8 t_8)))
                (t_11 (+ t_6 t_9))
                (t_12 (>= t_3 t_11))
                (t_13 (sqrt (fmax t_4 (+ t_9 t_6))))
                (t_14 (/ 1.0 (sqrt (fmax t_7 t_10))))
                (t_15 (if (>= t_7 t_10) (* t_14 t_0) (* t_14 t_8)))
                (t_16 (+ t_2 t_3))
                (t_17 (sqrt (fmax t_16 t_11)))
                (t_18 (/ t_0 t_17)))
           (if (<= t_15 -0.9999998807907104)
             (if t_12 t_18 (/ t_8 t_17))
             (if (<= t_15 4.0499999158782884e-5)
               (if (>= t_4 t_6) (/ t_0 t_13) (/ t_8 t_13))
               (if t_12
                 t_18
                 (/
                  t_8
                  (sqrt
                   (fmax t_16 (+ (* (* (pow (floor w) 2.0) dY.u) dY.u) t_9)))))))))
        float code(float w, float h, float dX_46_u, float dX_46_v, float dY_46_u, float dY_46_v, float maxAniso) {
        	float t_0 = floorf(h) * dX_46_v;
        	float t_1 = floorf(w) * dX_46_u;
        	float t_2 = powf(t_1, 2.0f);
        	float t_3 = powf(t_0, 2.0f);
        	float t_4 = t_3 + t_2;
        	float t_5 = floorf(w) * dY_46_u;
        	float t_6 = powf(t_5, 2.0f);
        	float t_7 = (t_1 * t_1) + (t_0 * t_0);
        	float t_8 = floorf(h) * dY_46_v;
        	float t_9 = powf(t_8, 2.0f);
        	float t_10 = (t_5 * t_5) + (t_8 * t_8);
        	float t_11 = t_6 + t_9;
        	int t_12 = t_3 >= t_11;
        	float t_13 = sqrtf(fmaxf(t_4, (t_9 + t_6)));
        	float t_14 = 1.0f / sqrtf(fmaxf(t_7, t_10));
        	float tmp;
        	if (t_7 >= t_10) {
        		tmp = t_14 * t_0;
        	} else {
        		tmp = t_14 * t_8;
        	}
        	float t_15 = tmp;
        	float t_16 = t_2 + t_3;
        	float t_17 = sqrtf(fmaxf(t_16, t_11));
        	float t_18 = t_0 / t_17;
        	float tmp_2;
        	if (t_15 <= -0.9999998807907104f) {
        		float tmp_3;
        		if (t_12) {
        			tmp_3 = t_18;
        		} else {
        			tmp_3 = t_8 / t_17;
        		}
        		tmp_2 = tmp_3;
        	} else if (t_15 <= 4.0499999158782884e-5f) {
        		float tmp_4;
        		if (t_4 >= t_6) {
        			tmp_4 = t_0 / t_13;
        		} else {
        			tmp_4 = t_8 / t_13;
        		}
        		tmp_2 = tmp_4;
        	} else if (t_12) {
        		tmp_2 = t_18;
        	} else {
        		tmp_2 = t_8 / sqrtf(fmaxf(t_16, (((powf(floorf(w), 2.0f) * dY_46_u) * dY_46_u) + t_9)));
        	}
        	return tmp_2;
        }
        
        function code(w, h, dX_46_u, dX_46_v, dY_46_u, dY_46_v, maxAniso)
        	t_0 = Float32(floor(h) * dX_46_v)
        	t_1 = Float32(floor(w) * dX_46_u)
        	t_2 = t_1 ^ Float32(2.0)
        	t_3 = t_0 ^ Float32(2.0)
        	t_4 = Float32(t_3 + t_2)
        	t_5 = Float32(floor(w) * dY_46_u)
        	t_6 = t_5 ^ Float32(2.0)
        	t_7 = Float32(Float32(t_1 * t_1) + Float32(t_0 * t_0))
        	t_8 = Float32(floor(h) * dY_46_v)
        	t_9 = t_8 ^ Float32(2.0)
        	t_10 = Float32(Float32(t_5 * t_5) + Float32(t_8 * t_8))
        	t_11 = Float32(t_6 + t_9)
        	t_12 = t_3 >= t_11
        	t_13 = sqrt(fmax(t_4, Float32(t_9 + t_6)))
        	t_14 = Float32(Float32(1.0) / sqrt(fmax(t_7, t_10)))
        	tmp = Float32(0.0)
        	if (t_7 >= t_10)
        		tmp = Float32(t_14 * t_0);
        	else
        		tmp = Float32(t_14 * t_8);
        	end
        	t_15 = tmp
        	t_16 = Float32(t_2 + t_3)
        	t_17 = sqrt(fmax(t_16, t_11))
        	t_18 = Float32(t_0 / t_17)
        	tmp_2 = Float32(0.0)
        	if (t_15 <= Float32(-0.9999998807907104))
        		tmp_3 = Float32(0.0)
        		if (t_12)
        			tmp_3 = t_18;
        		else
        			tmp_3 = Float32(t_8 / t_17);
        		end
        		tmp_2 = tmp_3;
        	elseif (t_15 <= Float32(4.0499999158782884e-5))
        		tmp_4 = Float32(0.0)
        		if (t_4 >= t_6)
        			tmp_4 = Float32(t_0 / t_13);
        		else
        			tmp_4 = Float32(t_8 / t_13);
        		end
        		tmp_2 = tmp_4;
        	elseif (t_12)
        		tmp_2 = t_18;
        	else
        		tmp_2 = Float32(t_8 / sqrt(fmax(t_16, Float32(Float32(Float32((floor(w) ^ Float32(2.0)) * dY_46_u) * dY_46_u) + t_9))));
        	end
        	return tmp_2
        end
        
        function tmp_6 = code(w, h, dX_46_u, dX_46_v, dY_46_u, dY_46_v, maxAniso)
        	t_0 = floor(h) * dX_46_v;
        	t_1 = floor(w) * dX_46_u;
        	t_2 = t_1 ^ single(2.0);
        	t_3 = t_0 ^ single(2.0);
        	t_4 = t_3 + t_2;
        	t_5 = floor(w) * dY_46_u;
        	t_6 = t_5 ^ single(2.0);
        	t_7 = (t_1 * t_1) + (t_0 * t_0);
        	t_8 = floor(h) * dY_46_v;
        	t_9 = t_8 ^ single(2.0);
        	t_10 = (t_5 * t_5) + (t_8 * t_8);
        	t_11 = t_6 + t_9;
        	t_12 = t_3 >= t_11;
        	t_13 = sqrt(max(t_4, (t_9 + t_6)));
        	t_14 = single(1.0) / sqrt(max(t_7, t_10));
        	tmp = single(0.0);
        	if (t_7 >= t_10)
        		tmp = t_14 * t_0;
        	else
        		tmp = t_14 * t_8;
        	end
        	t_15 = tmp;
        	t_16 = t_2 + t_3;
        	t_17 = sqrt(max(t_16, t_11));
        	t_18 = t_0 / t_17;
        	tmp_3 = single(0.0);
        	if (t_15 <= single(-0.9999998807907104))
        		tmp_4 = single(0.0);
        		if (t_12)
        			tmp_4 = t_18;
        		else
        			tmp_4 = t_8 / t_17;
        		end
        		tmp_3 = tmp_4;
        	elseif (t_15 <= single(4.0499999158782884e-5))
        		tmp_5 = single(0.0);
        		if (t_4 >= t_6)
        			tmp_5 = t_0 / t_13;
        		else
        			tmp_5 = t_8 / t_13;
        		end
        		tmp_3 = tmp_5;
        	elseif (t_12)
        		tmp_3 = t_18;
        	else
        		tmp_3 = t_8 / sqrt(max(t_16, ((((floor(w) ^ single(2.0)) * dY_46_u) * dY_46_u) + t_9)));
        	end
        	tmp_6 = tmp_3;
        end
        
        \begin{array}{l}
        
        \\
        \begin{array}{l}
        t_0 := \left\lfloor h\right\rfloor  \cdot dX.v\\
        t_1 := \left\lfloor w\right\rfloor  \cdot dX.u\\
        t_2 := {t\_1}^{2}\\
        t_3 := {t\_0}^{2}\\
        t_4 := t\_3 + t\_2\\
        t_5 := \left\lfloor w\right\rfloor  \cdot dY.u\\
        t_6 := {t\_5}^{2}\\
        t_7 := t\_1 \cdot t\_1 + t\_0 \cdot t\_0\\
        t_8 := \left\lfloor h\right\rfloor  \cdot dY.v\\
        t_9 := {t\_8}^{2}\\
        t_10 := t\_5 \cdot t\_5 + t\_8 \cdot t\_8\\
        t_11 := t\_6 + t\_9\\
        t_12 := t\_3 \geq t\_11\\
        t_13 := \sqrt{\mathsf{max}\left(t\_4, t\_9 + t\_6\right)}\\
        t_14 := \frac{1}{\sqrt{\mathsf{max}\left(t\_7, t\_10\right)}}\\
        t_15 := \begin{array}{l}
        \mathbf{if}\;t\_7 \geq t\_10:\\
        \;\;\;\;t\_14 \cdot t\_0\\
        
        \mathbf{else}:\\
        \;\;\;\;t\_14 \cdot t\_8\\
        
        
        \end{array}\\
        t_16 := t\_2 + t\_3\\
        t_17 := \sqrt{\mathsf{max}\left(t\_16, t\_11\right)}\\
        t_18 := \frac{t\_0}{t\_17}\\
        \mathbf{if}\;t\_15 \leq -0.9999998807907104:\\
        \;\;\;\;\begin{array}{l}
        \mathbf{if}\;t\_12:\\
        \;\;\;\;t\_18\\
        
        \mathbf{else}:\\
        \;\;\;\;\frac{t\_8}{t\_17}\\
        
        
        \end{array}\\
        
        \mathbf{elif}\;t\_15 \leq 4.0499999158782884 \cdot 10^{-5}:\\
        \;\;\;\;\begin{array}{l}
        \mathbf{if}\;t\_4 \geq t\_6:\\
        \;\;\;\;\frac{t\_0}{t\_13}\\
        
        \mathbf{else}:\\
        \;\;\;\;\frac{t\_8}{t\_13}\\
        
        
        \end{array}\\
        
        \mathbf{elif}\;t\_12:\\
        \;\;\;\;t\_18\\
        
        \mathbf{else}:\\
        \;\;\;\;\frac{t\_8}{\sqrt{\mathsf{max}\left(t\_16, \left({\left(\left\lfloor w\right\rfloor \right)}^{2} \cdot dY.u\right) \cdot dY.u + t\_9\right)}}\\
        
        
        \end{array}
        \end{array}
        
        Derivation
        1. Split input into 3 regimes
        2. if (if (>=.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))) (*.f32 (/.f32 #s(literal 1 binary32) (sqrt.f32 (fmax.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))))) (*.f32 (floor.f32 h) dX.v)) (*.f32 (/.f32 #s(literal 1 binary32) (sqrt.f32 (fmax.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))))) (*.f32 (floor.f32 h) dY.v))) < -0.999999881

          1. Initial program 99.6%

            \[\begin{array}{l} \mathbf{if}\;\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
          2. Add Preprocessing
          3. Taylor expanded in dX.u around 0

            \[\leadsto \begin{array}{l} \mathbf{if}\;\color{blue}{{dX.v}^{2} \cdot {\left(\left\lfloor h\right\rfloor \right)}^{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
          4. Step-by-step derivation
            1. *-commutativeN/A

              \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \right)}^{2} \cdot \color{blue}{{dX.v}^{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
            2. unpow-prod-downN/A

              \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{\color{blue}{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
            3. lift-floor.f32N/A

              \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
            4. lift-*.f32N/A

              \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
            5. lower-pow.f3299.6

              \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{\color{blue}{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
          5. Applied rewrites99.6%

            \[\leadsto \begin{array}{l} \mathbf{if}\;\color{blue}{{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
          6. Applied rewrites100.0%

            \[\leadsto \color{blue}{\begin{array}{l} \color{blue}{\mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ } \end{array}} \]

          if -0.999999881 < (if (>=.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))) (*.f32 (/.f32 #s(literal 1 binary32) (sqrt.f32 (fmax.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))))) (*.f32 (floor.f32 h) dX.v)) (*.f32 (/.f32 #s(literal 1 binary32) (sqrt.f32 (fmax.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))))) (*.f32 (floor.f32 h) dY.v))) < 4.04999992e-5

          1. Initial program 62.2%

            \[\begin{array}{l} \mathbf{if}\;\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
          2. Add Preprocessing
          3. Applied rewrites62.4%

            \[\leadsto \color{blue}{\begin{array}{l} \color{blue}{\mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ } \end{array}} \]
          4. Taylor expanded in dY.u around inf

            \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq \color{blue}{{dY.u}^{2} \cdot {\left(\left\lfloor w\right\rfloor \right)}^{2}}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \end{array} \]
          5. Step-by-step derivation
            1. Applied rewrites62.2%

              \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq \color{blue}{{\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \end{array} \]

            if 4.04999992e-5 < (if (>=.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))) (*.f32 (/.f32 #s(literal 1 binary32) (sqrt.f32 (fmax.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))))) (*.f32 (floor.f32 h) dX.v)) (*.f32 (/.f32 #s(literal 1 binary32) (sqrt.f32 (fmax.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))))) (*.f32 (floor.f32 h) dY.v)))

            1. Initial program 99.3%

              \[\begin{array}{l} \mathbf{if}\;\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
            2. Add Preprocessing
            3. Taylor expanded in dX.u around 0

              \[\leadsto \begin{array}{l} \mathbf{if}\;\color{blue}{{dX.v}^{2} \cdot {\left(\left\lfloor h\right\rfloor \right)}^{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
            4. Step-by-step derivation
              1. *-commutativeN/A

                \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \right)}^{2} \cdot \color{blue}{{dX.v}^{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
              2. unpow-prod-downN/A

                \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{\color{blue}{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
              3. lift-floor.f32N/A

                \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
              4. lift-*.f32N/A

                \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
              5. lower-pow.f3298.6

                \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{\color{blue}{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
            5. Applied rewrites98.6%

              \[\leadsto \begin{array}{l} \mathbf{if}\;\color{blue}{{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
            6. Applied rewrites99.0%

              \[\leadsto \color{blue}{\begin{array}{l} \color{blue}{\mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ } \end{array}} \]
            7. Step-by-step derivation
              1. lift-pow.f32N/A

                \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
              2. lift-*.f32N/A

                \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
              3. lift-floor.f32N/A

                \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
              4. unpow-prod-downN/A

                \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \right)}^{2} \cdot {dY.u}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
              5. unpow2N/A

                \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \right)}^{2} \cdot \left(dY.u \cdot dY.u\right) + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
              6. associate-*r*N/A

                \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left({\left(\left\lfloor w\right\rfloor \right)}^{2} \cdot dY.u\right) \cdot dY.u + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
              7. lower-*.f32N/A

                \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left({\left(\left\lfloor w\right\rfloor \right)}^{2} \cdot dY.u\right) \cdot dY.u + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
              8. lower-*.f32N/A

                \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left({\left(\left\lfloor w\right\rfloor \right)}^{2} \cdot dY.u\right) \cdot dY.u + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
              9. lower-pow.f32N/A

                \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left({\left(\left\lfloor w\right\rfloor \right)}^{2} \cdot dY.u\right) \cdot dY.u + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
              10. lift-floor.f3299.0

                \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left({\left(\left\lfloor w\right\rfloor \right)}^{2} \cdot dY.u\right) \cdot dY.u + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
            8. Applied rewrites99.0%

              \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, \left({\left(\left\lfloor w\right\rfloor \right)}^{2} \cdot dY.u\right) \cdot dY.u + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \end{array} \]
          6. Recombined 3 regimes into one program.
          7. Add Preprocessing

          Alternative 5: 75.5% accurate, 0.3× speedup?

          \[\begin{array}{l} \\ \begin{array}{l} t_0 := \left\lfloor h\right\rfloor \cdot dX.v\\ t_1 := \left\lfloor w\right\rfloor \cdot dX.u\\ t_2 := {t\_1}^{2}\\ t_3 := {t\_0}^{2}\\ t_4 := t\_3 + t\_2\\ t_5 := \left\lfloor w\right\rfloor \cdot dY.u\\ t_6 := {t\_5}^{2}\\ t_7 := t\_1 \cdot t\_1 + t\_0 \cdot t\_0\\ t_8 := \left\lfloor h\right\rfloor \cdot dY.v\\ t_9 := {t\_8}^{2}\\ t_10 := t\_5 \cdot t\_5 + t\_8 \cdot t\_8\\ t_11 := \frac{1}{\sqrt{\mathsf{max}\left(t\_7, t\_10\right)}}\\ t_12 := t\_6 + t\_9\\ t_13 := \sqrt{\mathsf{max}\left(t\_2 + t\_3, t\_12\right)}\\ t_14 := \begin{array}{l} \mathbf{if}\;t\_3 \geq t\_12:\\ \;\;\;\;\frac{t\_0}{t\_13}\\ \mathbf{else}:\\ \;\;\;\;\frac{t\_8}{t\_13}\\ \end{array}\\ t_15 := \sqrt{\mathsf{max}\left(t\_4, t\_9 + t\_6\right)}\\ t_16 := \begin{array}{l} \mathbf{if}\;t\_7 \geq t\_10:\\ \;\;\;\;t\_11 \cdot t\_0\\ \mathbf{else}:\\ \;\;\;\;t\_11 \cdot t\_8\\ \end{array}\\ \mathbf{if}\;t\_16 \leq -0.9999998807907104:\\ \;\;\;\;t\_14\\ \mathbf{elif}\;t\_16 \leq 2.000000026702864 \cdot 10^{-10}:\\ \;\;\;\;\begin{array}{l} \mathbf{if}\;t\_4 \geq t\_6:\\ \;\;\;\;\frac{t\_0}{t\_15}\\ \mathbf{else}:\\ \;\;\;\;\frac{t\_8}{t\_15}\\ \end{array}\\ \mathbf{else}:\\ \;\;\;\;t\_14\\ \end{array} \end{array} \]
          (FPCore (w h dX.u dX.v dY.u dY.v maxAniso)
           :precision binary32
           (let* ((t_0 (* (floor h) dX.v))
                  (t_1 (* (floor w) dX.u))
                  (t_2 (pow t_1 2.0))
                  (t_3 (pow t_0 2.0))
                  (t_4 (+ t_3 t_2))
                  (t_5 (* (floor w) dY.u))
                  (t_6 (pow t_5 2.0))
                  (t_7 (+ (* t_1 t_1) (* t_0 t_0)))
                  (t_8 (* (floor h) dY.v))
                  (t_9 (pow t_8 2.0))
                  (t_10 (+ (* t_5 t_5) (* t_8 t_8)))
                  (t_11 (/ 1.0 (sqrt (fmax t_7 t_10))))
                  (t_12 (+ t_6 t_9))
                  (t_13 (sqrt (fmax (+ t_2 t_3) t_12)))
                  (t_14 (if (>= t_3 t_12) (/ t_0 t_13) (/ t_8 t_13)))
                  (t_15 (sqrt (fmax t_4 (+ t_9 t_6))))
                  (t_16 (if (>= t_7 t_10) (* t_11 t_0) (* t_11 t_8))))
             (if (<= t_16 -0.9999998807907104)
               t_14
               (if (<= t_16 2.000000026702864e-10)
                 (if (>= t_4 t_6) (/ t_0 t_15) (/ t_8 t_15))
                 t_14))))
          float code(float w, float h, float dX_46_u, float dX_46_v, float dY_46_u, float dY_46_v, float maxAniso) {
          	float t_0 = floorf(h) * dX_46_v;
          	float t_1 = floorf(w) * dX_46_u;
          	float t_2 = powf(t_1, 2.0f);
          	float t_3 = powf(t_0, 2.0f);
          	float t_4 = t_3 + t_2;
          	float t_5 = floorf(w) * dY_46_u;
          	float t_6 = powf(t_5, 2.0f);
          	float t_7 = (t_1 * t_1) + (t_0 * t_0);
          	float t_8 = floorf(h) * dY_46_v;
          	float t_9 = powf(t_8, 2.0f);
          	float t_10 = (t_5 * t_5) + (t_8 * t_8);
          	float t_11 = 1.0f / sqrtf(fmaxf(t_7, t_10));
          	float t_12 = t_6 + t_9;
          	float t_13 = sqrtf(fmaxf((t_2 + t_3), t_12));
          	float tmp;
          	if (t_3 >= t_12) {
          		tmp = t_0 / t_13;
          	} else {
          		tmp = t_8 / t_13;
          	}
          	float t_14 = tmp;
          	float t_15 = sqrtf(fmaxf(t_4, (t_9 + t_6)));
          	float tmp_1;
          	if (t_7 >= t_10) {
          		tmp_1 = t_11 * t_0;
          	} else {
          		tmp_1 = t_11 * t_8;
          	}
          	float t_16 = tmp_1;
          	float tmp_2;
          	if (t_16 <= -0.9999998807907104f) {
          		tmp_2 = t_14;
          	} else if (t_16 <= 2.000000026702864e-10f) {
          		float tmp_3;
          		if (t_4 >= t_6) {
          			tmp_3 = t_0 / t_15;
          		} else {
          			tmp_3 = t_8 / t_15;
          		}
          		tmp_2 = tmp_3;
          	} else {
          		tmp_2 = t_14;
          	}
          	return tmp_2;
          }
          
          function code(w, h, dX_46_u, dX_46_v, dY_46_u, dY_46_v, maxAniso)
          	t_0 = Float32(floor(h) * dX_46_v)
          	t_1 = Float32(floor(w) * dX_46_u)
          	t_2 = t_1 ^ Float32(2.0)
          	t_3 = t_0 ^ Float32(2.0)
          	t_4 = Float32(t_3 + t_2)
          	t_5 = Float32(floor(w) * dY_46_u)
          	t_6 = t_5 ^ Float32(2.0)
          	t_7 = Float32(Float32(t_1 * t_1) + Float32(t_0 * t_0))
          	t_8 = Float32(floor(h) * dY_46_v)
          	t_9 = t_8 ^ Float32(2.0)
          	t_10 = Float32(Float32(t_5 * t_5) + Float32(t_8 * t_8))
          	t_11 = Float32(Float32(1.0) / sqrt(fmax(t_7, t_10)))
          	t_12 = Float32(t_6 + t_9)
          	t_13 = sqrt(fmax(Float32(t_2 + t_3), t_12))
          	tmp = Float32(0.0)
          	if (t_3 >= t_12)
          		tmp = Float32(t_0 / t_13);
          	else
          		tmp = Float32(t_8 / t_13);
          	end
          	t_14 = tmp
          	t_15 = sqrt(fmax(t_4, Float32(t_9 + t_6)))
          	tmp_1 = Float32(0.0)
          	if (t_7 >= t_10)
          		tmp_1 = Float32(t_11 * t_0);
          	else
          		tmp_1 = Float32(t_11 * t_8);
          	end
          	t_16 = tmp_1
          	tmp_2 = Float32(0.0)
          	if (t_16 <= Float32(-0.9999998807907104))
          		tmp_2 = t_14;
          	elseif (t_16 <= Float32(2.000000026702864e-10))
          		tmp_3 = Float32(0.0)
          		if (t_4 >= t_6)
          			tmp_3 = Float32(t_0 / t_15);
          		else
          			tmp_3 = Float32(t_8 / t_15);
          		end
          		tmp_2 = tmp_3;
          	else
          		tmp_2 = t_14;
          	end
          	return tmp_2
          end
          
          function tmp_5 = code(w, h, dX_46_u, dX_46_v, dY_46_u, dY_46_v, maxAniso)
          	t_0 = floor(h) * dX_46_v;
          	t_1 = floor(w) * dX_46_u;
          	t_2 = t_1 ^ single(2.0);
          	t_3 = t_0 ^ single(2.0);
          	t_4 = t_3 + t_2;
          	t_5 = floor(w) * dY_46_u;
          	t_6 = t_5 ^ single(2.0);
          	t_7 = (t_1 * t_1) + (t_0 * t_0);
          	t_8 = floor(h) * dY_46_v;
          	t_9 = t_8 ^ single(2.0);
          	t_10 = (t_5 * t_5) + (t_8 * t_8);
          	t_11 = single(1.0) / sqrt(max(t_7, t_10));
          	t_12 = t_6 + t_9;
          	t_13 = sqrt(max((t_2 + t_3), t_12));
          	tmp = single(0.0);
          	if (t_3 >= t_12)
          		tmp = t_0 / t_13;
          	else
          		tmp = t_8 / t_13;
          	end
          	t_14 = tmp;
          	t_15 = sqrt(max(t_4, (t_9 + t_6)));
          	tmp_2 = single(0.0);
          	if (t_7 >= t_10)
          		tmp_2 = t_11 * t_0;
          	else
          		tmp_2 = t_11 * t_8;
          	end
          	t_16 = tmp_2;
          	tmp_3 = single(0.0);
          	if (t_16 <= single(-0.9999998807907104))
          		tmp_3 = t_14;
          	elseif (t_16 <= single(2.000000026702864e-10))
          		tmp_4 = single(0.0);
          		if (t_4 >= t_6)
          			tmp_4 = t_0 / t_15;
          		else
          			tmp_4 = t_8 / t_15;
          		end
          		tmp_3 = tmp_4;
          	else
          		tmp_3 = t_14;
          	end
          	tmp_5 = tmp_3;
          end
          
          \begin{array}{l}
          
          \\
          \begin{array}{l}
          t_0 := \left\lfloor h\right\rfloor  \cdot dX.v\\
          t_1 := \left\lfloor w\right\rfloor  \cdot dX.u\\
          t_2 := {t\_1}^{2}\\
          t_3 := {t\_0}^{2}\\
          t_4 := t\_3 + t\_2\\
          t_5 := \left\lfloor w\right\rfloor  \cdot dY.u\\
          t_6 := {t\_5}^{2}\\
          t_7 := t\_1 \cdot t\_1 + t\_0 \cdot t\_0\\
          t_8 := \left\lfloor h\right\rfloor  \cdot dY.v\\
          t_9 := {t\_8}^{2}\\
          t_10 := t\_5 \cdot t\_5 + t\_8 \cdot t\_8\\
          t_11 := \frac{1}{\sqrt{\mathsf{max}\left(t\_7, t\_10\right)}}\\
          t_12 := t\_6 + t\_9\\
          t_13 := \sqrt{\mathsf{max}\left(t\_2 + t\_3, t\_12\right)}\\
          t_14 := \begin{array}{l}
          \mathbf{if}\;t\_3 \geq t\_12:\\
          \;\;\;\;\frac{t\_0}{t\_13}\\
          
          \mathbf{else}:\\
          \;\;\;\;\frac{t\_8}{t\_13}\\
          
          
          \end{array}\\
          t_15 := \sqrt{\mathsf{max}\left(t\_4, t\_9 + t\_6\right)}\\
          t_16 := \begin{array}{l}
          \mathbf{if}\;t\_7 \geq t\_10:\\
          \;\;\;\;t\_11 \cdot t\_0\\
          
          \mathbf{else}:\\
          \;\;\;\;t\_11 \cdot t\_8\\
          
          
          \end{array}\\
          \mathbf{if}\;t\_16 \leq -0.9999998807907104:\\
          \;\;\;\;t\_14\\
          
          \mathbf{elif}\;t\_16 \leq 2.000000026702864 \cdot 10^{-10}:\\
          \;\;\;\;\begin{array}{l}
          \mathbf{if}\;t\_4 \geq t\_6:\\
          \;\;\;\;\frac{t\_0}{t\_15}\\
          
          \mathbf{else}:\\
          \;\;\;\;\frac{t\_8}{t\_15}\\
          
          
          \end{array}\\
          
          \mathbf{else}:\\
          \;\;\;\;t\_14\\
          
          
          \end{array}
          \end{array}
          
          Derivation
          1. Split input into 2 regimes
          2. if (if (>=.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))) (*.f32 (/.f32 #s(literal 1 binary32) (sqrt.f32 (fmax.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))))) (*.f32 (floor.f32 h) dX.v)) (*.f32 (/.f32 #s(literal 1 binary32) (sqrt.f32 (fmax.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))))) (*.f32 (floor.f32 h) dY.v))) < -0.999999881 or 2.00000003e-10 < (if (>=.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))) (*.f32 (/.f32 #s(literal 1 binary32) (sqrt.f32 (fmax.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))))) (*.f32 (floor.f32 h) dX.v)) (*.f32 (/.f32 #s(literal 1 binary32) (sqrt.f32 (fmax.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))))) (*.f32 (floor.f32 h) dY.v)))

            1. Initial program 99.3%

              \[\begin{array}{l} \mathbf{if}\;\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
            2. Add Preprocessing
            3. Taylor expanded in dX.u around 0

              \[\leadsto \begin{array}{l} \mathbf{if}\;\color{blue}{{dX.v}^{2} \cdot {\left(\left\lfloor h\right\rfloor \right)}^{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
            4. Step-by-step derivation
              1. *-commutativeN/A

                \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \right)}^{2} \cdot \color{blue}{{dX.v}^{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
              2. unpow-prod-downN/A

                \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{\color{blue}{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
              3. lift-floor.f32N/A

                \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
              4. lift-*.f32N/A

                \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
              5. lower-pow.f3297.3

                \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{\color{blue}{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
            5. Applied rewrites97.3%

              \[\leadsto \begin{array}{l} \mathbf{if}\;\color{blue}{{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
            6. Applied rewrites97.6%

              \[\leadsto \color{blue}{\begin{array}{l} \color{blue}{\mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ } \end{array}} \]

            if -0.999999881 < (if (>=.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))) (*.f32 (/.f32 #s(literal 1 binary32) (sqrt.f32 (fmax.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))))) (*.f32 (floor.f32 h) dX.v)) (*.f32 (/.f32 #s(literal 1 binary32) (sqrt.f32 (fmax.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))))) (*.f32 (floor.f32 h) dY.v))) < 2.00000003e-10

            1. Initial program 60.1%

              \[\begin{array}{l} \mathbf{if}\;\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
            2. Add Preprocessing
            3. Applied rewrites60.2%

              \[\leadsto \color{blue}{\begin{array}{l} \color{blue}{\mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ } \end{array}} \]
            4. Taylor expanded in dY.u around inf

              \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq \color{blue}{{dY.u}^{2} \cdot {\left(\left\lfloor w\right\rfloor \right)}^{2}}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \end{array} \]
            5. Step-by-step derivation
              1. Applied rewrites60.0%

                \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq \color{blue}{{\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \end{array} \]
            6. Recombined 2 regimes into one program.
            7. Add Preprocessing

            Alternative 6: 75.5% accurate, 0.3× speedup?

            \[\begin{array}{l} \\ \begin{array}{l} t_0 := \left\lfloor h\right\rfloor \cdot dX.v\\ t_1 := \left\lfloor w\right\rfloor \cdot dX.u\\ t_2 := {t\_1}^{2}\\ t_3 := {t\_0}^{2}\\ t_4 := t\_3 + t\_2\\ t_5 := \left\lfloor w\right\rfloor \cdot dY.u\\ t_6 := {t\_5}^{2}\\ t_7 := t\_1 \cdot t\_1 + t\_0 \cdot t\_0\\ t_8 := \left\lfloor h\right\rfloor \cdot dY.v\\ t_9 := {t\_8}^{2}\\ t_10 := t\_5 \cdot t\_5 + t\_8 \cdot t\_8\\ t_11 := \frac{1}{\sqrt{\mathsf{max}\left(t\_7, t\_10\right)}}\\ t_12 := t\_6 + t\_9\\ t_13 := \sqrt{\mathsf{max}\left(t\_2 + t\_3, t\_12\right)}\\ t_14 := \begin{array}{l} \mathbf{if}\;t\_3 \geq t\_12:\\ \;\;\;\;\frac{t\_0}{t\_13}\\ \mathbf{else}:\\ \;\;\;\;\frac{t\_8}{t\_13}\\ \end{array}\\ t_15 := \begin{array}{l} \mathbf{if}\;t\_7 \geq t\_10:\\ \;\;\;\;t\_11 \cdot t\_0\\ \mathbf{else}:\\ \;\;\;\;t\_11 \cdot t\_8\\ \end{array}\\ \mathbf{if}\;t\_15 \leq -2.000000026702864 \cdot 10^{-10}:\\ \;\;\;\;t\_14\\ \mathbf{elif}\;t\_15 \leq 0.9990000128746033:\\ \;\;\;\;\begin{array}{l} \mathbf{if}\;t\_4 \geq t\_6:\\ \;\;\;\;\frac{t\_0}{\sqrt{\mathsf{max}\left(t\_4, t\_9 + t\_6\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{dY.v}{t\_13} \cdot \left\lfloor h\right\rfloor \\ \end{array}\\ \mathbf{else}:\\ \;\;\;\;t\_14\\ \end{array} \end{array} \]
            (FPCore (w h dX.u dX.v dY.u dY.v maxAniso)
             :precision binary32
             (let* ((t_0 (* (floor h) dX.v))
                    (t_1 (* (floor w) dX.u))
                    (t_2 (pow t_1 2.0))
                    (t_3 (pow t_0 2.0))
                    (t_4 (+ t_3 t_2))
                    (t_5 (* (floor w) dY.u))
                    (t_6 (pow t_5 2.0))
                    (t_7 (+ (* t_1 t_1) (* t_0 t_0)))
                    (t_8 (* (floor h) dY.v))
                    (t_9 (pow t_8 2.0))
                    (t_10 (+ (* t_5 t_5) (* t_8 t_8)))
                    (t_11 (/ 1.0 (sqrt (fmax t_7 t_10))))
                    (t_12 (+ t_6 t_9))
                    (t_13 (sqrt (fmax (+ t_2 t_3) t_12)))
                    (t_14 (if (>= t_3 t_12) (/ t_0 t_13) (/ t_8 t_13)))
                    (t_15 (if (>= t_7 t_10) (* t_11 t_0) (* t_11 t_8))))
               (if (<= t_15 -2.000000026702864e-10)
                 t_14
                 (if (<= t_15 0.9990000128746033)
                   (if (>= t_4 t_6)
                     (/ t_0 (sqrt (fmax t_4 (+ t_9 t_6))))
                     (* (/ dY.v t_13) (floor h)))
                   t_14))))
            float code(float w, float h, float dX_46_u, float dX_46_v, float dY_46_u, float dY_46_v, float maxAniso) {
            	float t_0 = floorf(h) * dX_46_v;
            	float t_1 = floorf(w) * dX_46_u;
            	float t_2 = powf(t_1, 2.0f);
            	float t_3 = powf(t_0, 2.0f);
            	float t_4 = t_3 + t_2;
            	float t_5 = floorf(w) * dY_46_u;
            	float t_6 = powf(t_5, 2.0f);
            	float t_7 = (t_1 * t_1) + (t_0 * t_0);
            	float t_8 = floorf(h) * dY_46_v;
            	float t_9 = powf(t_8, 2.0f);
            	float t_10 = (t_5 * t_5) + (t_8 * t_8);
            	float t_11 = 1.0f / sqrtf(fmaxf(t_7, t_10));
            	float t_12 = t_6 + t_9;
            	float t_13 = sqrtf(fmaxf((t_2 + t_3), t_12));
            	float tmp;
            	if (t_3 >= t_12) {
            		tmp = t_0 / t_13;
            	} else {
            		tmp = t_8 / t_13;
            	}
            	float t_14 = tmp;
            	float tmp_1;
            	if (t_7 >= t_10) {
            		tmp_1 = t_11 * t_0;
            	} else {
            		tmp_1 = t_11 * t_8;
            	}
            	float t_15 = tmp_1;
            	float tmp_2;
            	if (t_15 <= -2.000000026702864e-10f) {
            		tmp_2 = t_14;
            	} else if (t_15 <= 0.9990000128746033f) {
            		float tmp_3;
            		if (t_4 >= t_6) {
            			tmp_3 = t_0 / sqrtf(fmaxf(t_4, (t_9 + t_6)));
            		} else {
            			tmp_3 = (dY_46_v / t_13) * floorf(h);
            		}
            		tmp_2 = tmp_3;
            	} else {
            		tmp_2 = t_14;
            	}
            	return tmp_2;
            }
            
            function code(w, h, dX_46_u, dX_46_v, dY_46_u, dY_46_v, maxAniso)
            	t_0 = Float32(floor(h) * dX_46_v)
            	t_1 = Float32(floor(w) * dX_46_u)
            	t_2 = t_1 ^ Float32(2.0)
            	t_3 = t_0 ^ Float32(2.0)
            	t_4 = Float32(t_3 + t_2)
            	t_5 = Float32(floor(w) * dY_46_u)
            	t_6 = t_5 ^ Float32(2.0)
            	t_7 = Float32(Float32(t_1 * t_1) + Float32(t_0 * t_0))
            	t_8 = Float32(floor(h) * dY_46_v)
            	t_9 = t_8 ^ Float32(2.0)
            	t_10 = Float32(Float32(t_5 * t_5) + Float32(t_8 * t_8))
            	t_11 = Float32(Float32(1.0) / sqrt(fmax(t_7, t_10)))
            	t_12 = Float32(t_6 + t_9)
            	t_13 = sqrt(fmax(Float32(t_2 + t_3), t_12))
            	tmp = Float32(0.0)
            	if (t_3 >= t_12)
            		tmp = Float32(t_0 / t_13);
            	else
            		tmp = Float32(t_8 / t_13);
            	end
            	t_14 = tmp
            	tmp_1 = Float32(0.0)
            	if (t_7 >= t_10)
            		tmp_1 = Float32(t_11 * t_0);
            	else
            		tmp_1 = Float32(t_11 * t_8);
            	end
            	t_15 = tmp_1
            	tmp_2 = Float32(0.0)
            	if (t_15 <= Float32(-2.000000026702864e-10))
            		tmp_2 = t_14;
            	elseif (t_15 <= Float32(0.9990000128746033))
            		tmp_3 = Float32(0.0)
            		if (t_4 >= t_6)
            			tmp_3 = Float32(t_0 / sqrt(fmax(t_4, Float32(t_9 + t_6))));
            		else
            			tmp_3 = Float32(Float32(dY_46_v / t_13) * floor(h));
            		end
            		tmp_2 = tmp_3;
            	else
            		tmp_2 = t_14;
            	end
            	return tmp_2
            end
            
            function tmp_5 = code(w, h, dX_46_u, dX_46_v, dY_46_u, dY_46_v, maxAniso)
            	t_0 = floor(h) * dX_46_v;
            	t_1 = floor(w) * dX_46_u;
            	t_2 = t_1 ^ single(2.0);
            	t_3 = t_0 ^ single(2.0);
            	t_4 = t_3 + t_2;
            	t_5 = floor(w) * dY_46_u;
            	t_6 = t_5 ^ single(2.0);
            	t_7 = (t_1 * t_1) + (t_0 * t_0);
            	t_8 = floor(h) * dY_46_v;
            	t_9 = t_8 ^ single(2.0);
            	t_10 = (t_5 * t_5) + (t_8 * t_8);
            	t_11 = single(1.0) / sqrt(max(t_7, t_10));
            	t_12 = t_6 + t_9;
            	t_13 = sqrt(max((t_2 + t_3), t_12));
            	tmp = single(0.0);
            	if (t_3 >= t_12)
            		tmp = t_0 / t_13;
            	else
            		tmp = t_8 / t_13;
            	end
            	t_14 = tmp;
            	tmp_2 = single(0.0);
            	if (t_7 >= t_10)
            		tmp_2 = t_11 * t_0;
            	else
            		tmp_2 = t_11 * t_8;
            	end
            	t_15 = tmp_2;
            	tmp_3 = single(0.0);
            	if (t_15 <= single(-2.000000026702864e-10))
            		tmp_3 = t_14;
            	elseif (t_15 <= single(0.9990000128746033))
            		tmp_4 = single(0.0);
            		if (t_4 >= t_6)
            			tmp_4 = t_0 / sqrt(max(t_4, (t_9 + t_6)));
            		else
            			tmp_4 = (dY_46_v / t_13) * floor(h);
            		end
            		tmp_3 = tmp_4;
            	else
            		tmp_3 = t_14;
            	end
            	tmp_5 = tmp_3;
            end
            
            \begin{array}{l}
            
            \\
            \begin{array}{l}
            t_0 := \left\lfloor h\right\rfloor  \cdot dX.v\\
            t_1 := \left\lfloor w\right\rfloor  \cdot dX.u\\
            t_2 := {t\_1}^{2}\\
            t_3 := {t\_0}^{2}\\
            t_4 := t\_3 + t\_2\\
            t_5 := \left\lfloor w\right\rfloor  \cdot dY.u\\
            t_6 := {t\_5}^{2}\\
            t_7 := t\_1 \cdot t\_1 + t\_0 \cdot t\_0\\
            t_8 := \left\lfloor h\right\rfloor  \cdot dY.v\\
            t_9 := {t\_8}^{2}\\
            t_10 := t\_5 \cdot t\_5 + t\_8 \cdot t\_8\\
            t_11 := \frac{1}{\sqrt{\mathsf{max}\left(t\_7, t\_10\right)}}\\
            t_12 := t\_6 + t\_9\\
            t_13 := \sqrt{\mathsf{max}\left(t\_2 + t\_3, t\_12\right)}\\
            t_14 := \begin{array}{l}
            \mathbf{if}\;t\_3 \geq t\_12:\\
            \;\;\;\;\frac{t\_0}{t\_13}\\
            
            \mathbf{else}:\\
            \;\;\;\;\frac{t\_8}{t\_13}\\
            
            
            \end{array}\\
            t_15 := \begin{array}{l}
            \mathbf{if}\;t\_7 \geq t\_10:\\
            \;\;\;\;t\_11 \cdot t\_0\\
            
            \mathbf{else}:\\
            \;\;\;\;t\_11 \cdot t\_8\\
            
            
            \end{array}\\
            \mathbf{if}\;t\_15 \leq -2.000000026702864 \cdot 10^{-10}:\\
            \;\;\;\;t\_14\\
            
            \mathbf{elif}\;t\_15 \leq 0.9990000128746033:\\
            \;\;\;\;\begin{array}{l}
            \mathbf{if}\;t\_4 \geq t\_6:\\
            \;\;\;\;\frac{t\_0}{\sqrt{\mathsf{max}\left(t\_4, t\_9 + t\_6\right)}}\\
            
            \mathbf{else}:\\
            \;\;\;\;\frac{dY.v}{t\_13} \cdot \left\lfloor h\right\rfloor \\
            
            
            \end{array}\\
            
            \mathbf{else}:\\
            \;\;\;\;t\_14\\
            
            
            \end{array}
            \end{array}
            
            Derivation
            1. Split input into 2 regimes
            2. if (if (>=.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))) (*.f32 (/.f32 #s(literal 1 binary32) (sqrt.f32 (fmax.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))))) (*.f32 (floor.f32 h) dX.v)) (*.f32 (/.f32 #s(literal 1 binary32) (sqrt.f32 (fmax.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))))) (*.f32 (floor.f32 h) dY.v))) < -2.00000003e-10 or 0.999000013 < (if (>=.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))) (*.f32 (/.f32 #s(literal 1 binary32) (sqrt.f32 (fmax.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))))) (*.f32 (floor.f32 h) dX.v)) (*.f32 (/.f32 #s(literal 1 binary32) (sqrt.f32 (fmax.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))))) (*.f32 (floor.f32 h) dY.v)))

              1. Initial program 99.3%

                \[\begin{array}{l} \mathbf{if}\;\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
              2. Add Preprocessing
              3. Taylor expanded in dX.u around 0

                \[\leadsto \begin{array}{l} \mathbf{if}\;\color{blue}{{dX.v}^{2} \cdot {\left(\left\lfloor h\right\rfloor \right)}^{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
              4. Step-by-step derivation
                1. *-commutativeN/A

                  \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \right)}^{2} \cdot \color{blue}{{dX.v}^{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
                2. unpow-prod-downN/A

                  \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{\color{blue}{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
                3. lift-floor.f32N/A

                  \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
                4. lift-*.f32N/A

                  \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
                5. lower-pow.f3297.1

                  \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{\color{blue}{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
              5. Applied rewrites97.1%

                \[\leadsto \begin{array}{l} \mathbf{if}\;\color{blue}{{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
              6. Applied rewrites97.5%

                \[\leadsto \color{blue}{\begin{array}{l} \color{blue}{\mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ } \end{array}} \]

              if -2.00000003e-10 < (if (>=.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))) (*.f32 (/.f32 #s(literal 1 binary32) (sqrt.f32 (fmax.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))))) (*.f32 (floor.f32 h) dX.v)) (*.f32 (/.f32 #s(literal 1 binary32) (sqrt.f32 (fmax.f32 (+.f32 (*.f32 (*.f32 (floor.f32 w) dX.u) (*.f32 (floor.f32 w) dX.u)) (*.f32 (*.f32 (floor.f32 h) dX.v) (*.f32 (floor.f32 h) dX.v))) (+.f32 (*.f32 (*.f32 (floor.f32 w) dY.u) (*.f32 (floor.f32 w) dY.u)) (*.f32 (*.f32 (floor.f32 h) dY.v) (*.f32 (floor.f32 h) dY.v)))))) (*.f32 (floor.f32 h) dY.v))) < 0.999000013

              1. Initial program 59.1%

                \[\begin{array}{l} \mathbf{if}\;\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
              2. Add Preprocessing
              3. Applied rewrites59.2%

                \[\leadsto \color{blue}{\begin{array}{l} \color{blue}{\mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ } \end{array}} \]
              4. Applied rewrites59.2%

                \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}} \cdot \left\lfloor h\right\rfloor \\ \end{array} \]
              5. Taylor expanded in dY.u around inf

                \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq \color{blue}{{dY.u}^{2} \cdot {\left(\left\lfloor w\right\rfloor \right)}^{2}}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}} \cdot \left\lfloor h\right\rfloor \\ \end{array} \]
              6. Step-by-step derivation
                1. Applied rewrites59.2%

                  \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq \color{blue}{{\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}} \cdot \left\lfloor h\right\rfloor \\ \end{array} \]
              7. Recombined 2 regimes into one program.
              8. Add Preprocessing

              Alternative 7: 76.4% accurate, 1.0× speedup?

              \[\begin{array}{l} \\ \begin{array}{l} t_0 := \left\lfloor h\right\rfloor \cdot dY.v\\ t_1 := \left\lfloor h\right\rfloor \cdot dX.v\\ t_2 := {t\_1}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}\\ t_3 := {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\\ t_4 := {t\_0}^{2} + t\_3\\ \mathbf{if}\;t\_2 \geq t\_4:\\ \;\;\;\;\frac{t\_1}{\sqrt{\mathsf{max}\left(t\_2, t\_4\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{t\_0}{\sqrt{\mathsf{max}\left(t\_2, \mathsf{fma}\left(t\_0, t\_0, t\_3\right)\right)}}\\ \end{array} \end{array} \]
              (FPCore (w h dX.u dX.v dY.u dY.v maxAniso)
               :precision binary32
               (let* ((t_0 (* (floor h) dY.v))
                      (t_1 (* (floor h) dX.v))
                      (t_2 (+ (pow t_1 2.0) (pow (* (floor w) dX.u) 2.0)))
                      (t_3 (pow (* (floor w) dY.u) 2.0))
                      (t_4 (+ (pow t_0 2.0) t_3)))
                 (if (>= t_2 t_4)
                   (/ t_1 (sqrt (fmax t_2 t_4)))
                   (/ t_0 (sqrt (fmax t_2 (fma t_0 t_0 t_3)))))))
              float code(float w, float h, float dX_46_u, float dX_46_v, float dY_46_u, float dY_46_v, float maxAniso) {
              	float t_0 = floorf(h) * dY_46_v;
              	float t_1 = floorf(h) * dX_46_v;
              	float t_2 = powf(t_1, 2.0f) + powf((floorf(w) * dX_46_u), 2.0f);
              	float t_3 = powf((floorf(w) * dY_46_u), 2.0f);
              	float t_4 = powf(t_0, 2.0f) + t_3;
              	float tmp;
              	if (t_2 >= t_4) {
              		tmp = t_1 / sqrtf(fmaxf(t_2, t_4));
              	} else {
              		tmp = t_0 / sqrtf(fmaxf(t_2, fmaf(t_0, t_0, t_3)));
              	}
              	return tmp;
              }
              
              function code(w, h, dX_46_u, dX_46_v, dY_46_u, dY_46_v, maxAniso)
              	t_0 = Float32(floor(h) * dY_46_v)
              	t_1 = Float32(floor(h) * dX_46_v)
              	t_2 = Float32((t_1 ^ Float32(2.0)) + (Float32(floor(w) * dX_46_u) ^ Float32(2.0)))
              	t_3 = Float32(floor(w) * dY_46_u) ^ Float32(2.0)
              	t_4 = Float32((t_0 ^ Float32(2.0)) + t_3)
              	tmp = Float32(0.0)
              	if (t_2 >= t_4)
              		tmp = Float32(t_1 / sqrt(fmax(t_2, t_4)));
              	else
              		tmp = Float32(t_0 / sqrt(fmax(t_2, fma(t_0, t_0, t_3))));
              	end
              	return tmp
              end
              
              \begin{array}{l}
              
              \\
              \begin{array}{l}
              t_0 := \left\lfloor h\right\rfloor  \cdot dY.v\\
              t_1 := \left\lfloor h\right\rfloor  \cdot dX.v\\
              t_2 := {t\_1}^{2} + {\left(\left\lfloor w\right\rfloor  \cdot dX.u\right)}^{2}\\
              t_3 := {\left(\left\lfloor w\right\rfloor  \cdot dY.u\right)}^{2}\\
              t_4 := {t\_0}^{2} + t\_3\\
              \mathbf{if}\;t\_2 \geq t\_4:\\
              \;\;\;\;\frac{t\_1}{\sqrt{\mathsf{max}\left(t\_2, t\_4\right)}}\\
              
              \mathbf{else}:\\
              \;\;\;\;\frac{t\_0}{\sqrt{\mathsf{max}\left(t\_2, \mathsf{fma}\left(t\_0, t\_0, t\_3\right)\right)}}\\
              
              
              \end{array}
              \end{array}
              
              Derivation
              1. Initial program 76.2%

                \[\begin{array}{l} \mathbf{if}\;\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
              2. Add Preprocessing
              3. Applied rewrites76.4%

                \[\leadsto \color{blue}{\begin{array}{l} \color{blue}{\mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ } \end{array}} \]
              4. Step-by-step derivation
                1. lift-+.f32N/A

                  \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot \color{blue}{dY.v}}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \end{array} \]
                2. lift-pow.f32N/A

                  \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \end{array} \]
                3. pow2N/A

                  \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right) + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \end{array} \]
                4. lift-pow.f32N/A

                  \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right) + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \end{array} \]
                5. pow2N/A

                  \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right) + \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right)\right)}}\\ \end{array} \]
                6. lift-*.f32N/A

                  \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right) + \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right)\right)}}\\ \end{array} \]
                7. lower-fma.f3276.4

                  \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot \color{blue}{dY.v}}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, \mathsf{fma}\left(\left\lfloor h\right\rfloor \cdot dY.v, \left\lfloor h\right\rfloor \cdot dY.v, \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right)\right)\right)}}\\ \end{array} \]
                8. lift-*.f32N/A

                  \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, \mathsf{fma}\left(\left\lfloor h\right\rfloor \cdot dY.v, \left\lfloor h\right\rfloor \cdot dY.v, \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right)\right)\right)}}\\ \end{array} \]
                9. pow2N/A

                  \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, \mathsf{fma}\left(\left\lfloor h\right\rfloor \cdot dY.v, \left\lfloor h\right\rfloor \cdot dY.v, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)\right)}}\\ \end{array} \]
                10. lift-pow.f3276.4

                  \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, \mathsf{fma}\left(\left\lfloor h\right\rfloor \cdot dY.v, \left\lfloor h\right\rfloor \cdot dY.v, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)\right)}}\\ \end{array} \]
              5. Applied rewrites76.4%

                \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot \color{blue}{dY.v}}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, \mathsf{fma}\left(\left\lfloor h\right\rfloor \cdot dY.v, \left\lfloor h\right\rfloor \cdot dY.v, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)\right)}}\\ \end{array} \]
              6. Add Preprocessing

              Alternative 8: 76.4% accurate, 1.0× speedup?

              \[\begin{array}{l} \\ \begin{array}{l} t_0 := \left\lfloor h\right\rfloor \cdot dY.v\\ t_1 := {t\_0}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\\ t_2 := \left\lfloor h\right\rfloor \cdot dX.v\\ t_3 := {t\_2}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}\\ t_4 := \sqrt{\mathsf{max}\left(t\_3, t\_1\right)}\\ \mathbf{if}\;t\_3 \geq t\_1:\\ \;\;\;\;\frac{t\_2}{t\_4}\\ \mathbf{else}:\\ \;\;\;\;\frac{t\_0}{t\_4}\\ \end{array} \end{array} \]
              (FPCore (w h dX.u dX.v dY.u dY.v maxAniso)
               :precision binary32
               (let* ((t_0 (* (floor h) dY.v))
                      (t_1 (+ (pow t_0 2.0) (pow (* (floor w) dY.u) 2.0)))
                      (t_2 (* (floor h) dX.v))
                      (t_3 (+ (pow t_2 2.0) (pow (* (floor w) dX.u) 2.0)))
                      (t_4 (sqrt (fmax t_3 t_1))))
                 (if (>= t_3 t_1) (/ t_2 t_4) (/ t_0 t_4))))
              float code(float w, float h, float dX_46_u, float dX_46_v, float dY_46_u, float dY_46_v, float maxAniso) {
              	float t_0 = floorf(h) * dY_46_v;
              	float t_1 = powf(t_0, 2.0f) + powf((floorf(w) * dY_46_u), 2.0f);
              	float t_2 = floorf(h) * dX_46_v;
              	float t_3 = powf(t_2, 2.0f) + powf((floorf(w) * dX_46_u), 2.0f);
              	float t_4 = sqrtf(fmaxf(t_3, t_1));
              	float tmp;
              	if (t_3 >= t_1) {
              		tmp = t_2 / t_4;
              	} else {
              		tmp = t_0 / t_4;
              	}
              	return tmp;
              }
              
              function code(w, h, dX_46_u, dX_46_v, dY_46_u, dY_46_v, maxAniso)
              	t_0 = Float32(floor(h) * dY_46_v)
              	t_1 = Float32((t_0 ^ Float32(2.0)) + (Float32(floor(w) * dY_46_u) ^ Float32(2.0)))
              	t_2 = Float32(floor(h) * dX_46_v)
              	t_3 = Float32((t_2 ^ Float32(2.0)) + (Float32(floor(w) * dX_46_u) ^ Float32(2.0)))
              	t_4 = sqrt(fmax(t_3, t_1))
              	tmp = Float32(0.0)
              	if (t_3 >= t_1)
              		tmp = Float32(t_2 / t_4);
              	else
              		tmp = Float32(t_0 / t_4);
              	end
              	return tmp
              end
              
              function tmp_2 = code(w, h, dX_46_u, dX_46_v, dY_46_u, dY_46_v, maxAniso)
              	t_0 = floor(h) * dY_46_v;
              	t_1 = (t_0 ^ single(2.0)) + ((floor(w) * dY_46_u) ^ single(2.0));
              	t_2 = floor(h) * dX_46_v;
              	t_3 = (t_2 ^ single(2.0)) + ((floor(w) * dX_46_u) ^ single(2.0));
              	t_4 = sqrt(max(t_3, t_1));
              	tmp = single(0.0);
              	if (t_3 >= t_1)
              		tmp = t_2 / t_4;
              	else
              		tmp = t_0 / t_4;
              	end
              	tmp_2 = tmp;
              end
              
              \begin{array}{l}
              
              \\
              \begin{array}{l}
              t_0 := \left\lfloor h\right\rfloor  \cdot dY.v\\
              t_1 := {t\_0}^{2} + {\left(\left\lfloor w\right\rfloor  \cdot dY.u\right)}^{2}\\
              t_2 := \left\lfloor h\right\rfloor  \cdot dX.v\\
              t_3 := {t\_2}^{2} + {\left(\left\lfloor w\right\rfloor  \cdot dX.u\right)}^{2}\\
              t_4 := \sqrt{\mathsf{max}\left(t\_3, t\_1\right)}\\
              \mathbf{if}\;t\_3 \geq t\_1:\\
              \;\;\;\;\frac{t\_2}{t\_4}\\
              
              \mathbf{else}:\\
              \;\;\;\;\frac{t\_0}{t\_4}\\
              
              
              \end{array}
              \end{array}
              
              Derivation
              1. Initial program 76.2%

                \[\begin{array}{l} \mathbf{if}\;\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
              2. Add Preprocessing
              3. Applied rewrites76.4%

                \[\leadsto \color{blue}{\begin{array}{l} \color{blue}{\mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ } \end{array}} \]
              4. Add Preprocessing

              Alternative 9: 76.3% accurate, 1.0× speedup?

              \[\begin{array}{l} \\ \begin{array}{l} t_0 := {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}\\ t_1 := \left\lfloor h\right\rfloor \cdot dY.v\\ t_2 := {t\_1}^{2}\\ t_3 := {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}\\ t_4 := t\_3 + t\_0\\ t_5 := {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\\ t_6 := t\_2 + t\_5\\ \mathbf{if}\;t\_4 \geq t\_6:\\ \;\;\;\;\frac{dX.v}{\sqrt{\mathsf{max}\left(t\_0 + t\_3, t\_5 + t\_2\right)}} \cdot \left\lfloor h\right\rfloor \\ \mathbf{else}:\\ \;\;\;\;\frac{t\_1}{\sqrt{\mathsf{max}\left(t\_4, t\_6\right)}}\\ \end{array} \end{array} \]
              (FPCore (w h dX.u dX.v dY.u dY.v maxAniso)
               :precision binary32
               (let* ((t_0 (pow (* (floor w) dX.u) 2.0))
                      (t_1 (* (floor h) dY.v))
                      (t_2 (pow t_1 2.0))
                      (t_3 (pow (* (floor h) dX.v) 2.0))
                      (t_4 (+ t_3 t_0))
                      (t_5 (pow (* (floor w) dY.u) 2.0))
                      (t_6 (+ t_2 t_5)))
                 (if (>= t_4 t_6)
                   (* (/ dX.v (sqrt (fmax (+ t_0 t_3) (+ t_5 t_2)))) (floor h))
                   (/ t_1 (sqrt (fmax t_4 t_6))))))
              float code(float w, float h, float dX_46_u, float dX_46_v, float dY_46_u, float dY_46_v, float maxAniso) {
              	float t_0 = powf((floorf(w) * dX_46_u), 2.0f);
              	float t_1 = floorf(h) * dY_46_v;
              	float t_2 = powf(t_1, 2.0f);
              	float t_3 = powf((floorf(h) * dX_46_v), 2.0f);
              	float t_4 = t_3 + t_0;
              	float t_5 = powf((floorf(w) * dY_46_u), 2.0f);
              	float t_6 = t_2 + t_5;
              	float tmp;
              	if (t_4 >= t_6) {
              		tmp = (dX_46_v / sqrtf(fmaxf((t_0 + t_3), (t_5 + t_2)))) * floorf(h);
              	} else {
              		tmp = t_1 / sqrtf(fmaxf(t_4, t_6));
              	}
              	return tmp;
              }
              
              function code(w, h, dX_46_u, dX_46_v, dY_46_u, dY_46_v, maxAniso)
              	t_0 = Float32(floor(w) * dX_46_u) ^ Float32(2.0)
              	t_1 = Float32(floor(h) * dY_46_v)
              	t_2 = t_1 ^ Float32(2.0)
              	t_3 = Float32(floor(h) * dX_46_v) ^ Float32(2.0)
              	t_4 = Float32(t_3 + t_0)
              	t_5 = Float32(floor(w) * dY_46_u) ^ Float32(2.0)
              	t_6 = Float32(t_2 + t_5)
              	tmp = Float32(0.0)
              	if (t_4 >= t_6)
              		tmp = Float32(Float32(dX_46_v / sqrt(fmax(Float32(t_0 + t_3), Float32(t_5 + t_2)))) * floor(h));
              	else
              		tmp = Float32(t_1 / sqrt(fmax(t_4, t_6)));
              	end
              	return tmp
              end
              
              function tmp_2 = code(w, h, dX_46_u, dX_46_v, dY_46_u, dY_46_v, maxAniso)
              	t_0 = (floor(w) * dX_46_u) ^ single(2.0);
              	t_1 = floor(h) * dY_46_v;
              	t_2 = t_1 ^ single(2.0);
              	t_3 = (floor(h) * dX_46_v) ^ single(2.0);
              	t_4 = t_3 + t_0;
              	t_5 = (floor(w) * dY_46_u) ^ single(2.0);
              	t_6 = t_2 + t_5;
              	tmp = single(0.0);
              	if (t_4 >= t_6)
              		tmp = (dX_46_v / sqrt(max((t_0 + t_3), (t_5 + t_2)))) * floor(h);
              	else
              		tmp = t_1 / sqrt(max(t_4, t_6));
              	end
              	tmp_2 = tmp;
              end
              
              \begin{array}{l}
              
              \\
              \begin{array}{l}
              t_0 := {\left(\left\lfloor w\right\rfloor  \cdot dX.u\right)}^{2}\\
              t_1 := \left\lfloor h\right\rfloor  \cdot dY.v\\
              t_2 := {t\_1}^{2}\\
              t_3 := {\left(\left\lfloor h\right\rfloor  \cdot dX.v\right)}^{2}\\
              t_4 := t\_3 + t\_0\\
              t_5 := {\left(\left\lfloor w\right\rfloor  \cdot dY.u\right)}^{2}\\
              t_6 := t\_2 + t\_5\\
              \mathbf{if}\;t\_4 \geq t\_6:\\
              \;\;\;\;\frac{dX.v}{\sqrt{\mathsf{max}\left(t\_0 + t\_3, t\_5 + t\_2\right)}} \cdot \left\lfloor h\right\rfloor \\
              
              \mathbf{else}:\\
              \;\;\;\;\frac{t\_1}{\sqrt{\mathsf{max}\left(t\_4, t\_6\right)}}\\
              
              
              \end{array}
              \end{array}
              
              Derivation
              1. Initial program 76.2%

                \[\begin{array}{l} \mathbf{if}\;\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
              2. Add Preprocessing
              3. Applied rewrites76.4%

                \[\leadsto \color{blue}{\begin{array}{l} \color{blue}{\mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ } \end{array}} \]
              4. Applied rewrites76.3%

                \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} \geq {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}:\\ \;\;\;\;\color{blue}{\frac{dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}} \cdot \left\lfloor h\right\rfloor }\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2}, {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2} + {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2}\right)}}\\ \end{array} \]
              5. Add Preprocessing

              Alternative 10: 65.5% accurate, 1.2× speedup?

              \[\begin{array}{l} \\ \begin{array}{l} t_0 := \left\lfloor h\right\rfloor \cdot dY.v\\ t_1 := \left\lfloor h\right\rfloor \cdot dX.v\\ t_2 := {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {t\_0}^{2}\\ t_3 := {t\_1}^{2}\\ t_4 := \sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + t\_3, t\_2\right)}\\ \mathbf{if}\;t\_3 \geq t\_2:\\ \;\;\;\;\frac{t\_1}{t\_4}\\ \mathbf{else}:\\ \;\;\;\;\frac{t\_0}{t\_4}\\ \end{array} \end{array} \]
              (FPCore (w h dX.u dX.v dY.u dY.v maxAniso)
               :precision binary32
               (let* ((t_0 (* (floor h) dY.v))
                      (t_1 (* (floor h) dX.v))
                      (t_2 (+ (pow (* (floor w) dY.u) 2.0) (pow t_0 2.0)))
                      (t_3 (pow t_1 2.0))
                      (t_4 (sqrt (fmax (+ (pow (* (floor w) dX.u) 2.0) t_3) t_2))))
                 (if (>= t_3 t_2) (/ t_1 t_4) (/ t_0 t_4))))
              float code(float w, float h, float dX_46_u, float dX_46_v, float dY_46_u, float dY_46_v, float maxAniso) {
              	float t_0 = floorf(h) * dY_46_v;
              	float t_1 = floorf(h) * dX_46_v;
              	float t_2 = powf((floorf(w) * dY_46_u), 2.0f) + powf(t_0, 2.0f);
              	float t_3 = powf(t_1, 2.0f);
              	float t_4 = sqrtf(fmaxf((powf((floorf(w) * dX_46_u), 2.0f) + t_3), t_2));
              	float tmp;
              	if (t_3 >= t_2) {
              		tmp = t_1 / t_4;
              	} else {
              		tmp = t_0 / t_4;
              	}
              	return tmp;
              }
              
              function code(w, h, dX_46_u, dX_46_v, dY_46_u, dY_46_v, maxAniso)
              	t_0 = Float32(floor(h) * dY_46_v)
              	t_1 = Float32(floor(h) * dX_46_v)
              	t_2 = Float32((Float32(floor(w) * dY_46_u) ^ Float32(2.0)) + (t_0 ^ Float32(2.0)))
              	t_3 = t_1 ^ Float32(2.0)
              	t_4 = sqrt(fmax(Float32((Float32(floor(w) * dX_46_u) ^ Float32(2.0)) + t_3), t_2))
              	tmp = Float32(0.0)
              	if (t_3 >= t_2)
              		tmp = Float32(t_1 / t_4);
              	else
              		tmp = Float32(t_0 / t_4);
              	end
              	return tmp
              end
              
              function tmp_2 = code(w, h, dX_46_u, dX_46_v, dY_46_u, dY_46_v, maxAniso)
              	t_0 = floor(h) * dY_46_v;
              	t_1 = floor(h) * dX_46_v;
              	t_2 = ((floor(w) * dY_46_u) ^ single(2.0)) + (t_0 ^ single(2.0));
              	t_3 = t_1 ^ single(2.0);
              	t_4 = sqrt(max((((floor(w) * dX_46_u) ^ single(2.0)) + t_3), t_2));
              	tmp = single(0.0);
              	if (t_3 >= t_2)
              		tmp = t_1 / t_4;
              	else
              		tmp = t_0 / t_4;
              	end
              	tmp_2 = tmp;
              end
              
              \begin{array}{l}
              
              \\
              \begin{array}{l}
              t_0 := \left\lfloor h\right\rfloor  \cdot dY.v\\
              t_1 := \left\lfloor h\right\rfloor  \cdot dX.v\\
              t_2 := {\left(\left\lfloor w\right\rfloor  \cdot dY.u\right)}^{2} + {t\_0}^{2}\\
              t_3 := {t\_1}^{2}\\
              t_4 := \sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor  \cdot dX.u\right)}^{2} + t\_3, t\_2\right)}\\
              \mathbf{if}\;t\_3 \geq t\_2:\\
              \;\;\;\;\frac{t\_1}{t\_4}\\
              
              \mathbf{else}:\\
              \;\;\;\;\frac{t\_0}{t\_4}\\
              
              
              \end{array}
              \end{array}
              
              Derivation
              1. Initial program 76.2%

                \[\begin{array}{l} \mathbf{if}\;\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
              2. Add Preprocessing
              3. Taylor expanded in dX.u around 0

                \[\leadsto \begin{array}{l} \mathbf{if}\;\color{blue}{{dX.v}^{2} \cdot {\left(\left\lfloor h\right\rfloor \right)}^{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
              4. Step-by-step derivation
                1. *-commutativeN/A

                  \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \right)}^{2} \cdot \color{blue}{{dX.v}^{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
                2. unpow-prod-downN/A

                  \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{\color{blue}{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
                3. lift-floor.f32N/A

                  \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
                4. lift-*.f32N/A

                  \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
                5. lower-pow.f3265.3

                  \[\leadsto \begin{array}{l} \mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{\color{blue}{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
              5. Applied rewrites65.3%

                \[\leadsto \begin{array}{l} \mathbf{if}\;\color{blue}{{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}} \geq \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right):\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{1}{\sqrt{\mathsf{max}\left(\left(\left\lfloor w\right\rfloor \cdot dX.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dX.u\right) + \left(\left\lfloor h\right\rfloor \cdot dX.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dX.v\right), \left(\left\lfloor w\right\rfloor \cdot dY.u\right) \cdot \left(\left\lfloor w\right\rfloor \cdot dY.u\right) + \left(\left\lfloor h\right\rfloor \cdot dY.v\right) \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\right)}} \cdot \left(\left\lfloor h\right\rfloor \cdot dY.v\right)\\ \end{array} \]
              6. Applied rewrites65.5%

                \[\leadsto \color{blue}{\begin{array}{l} \color{blue}{\mathbf{if}\;{\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2} \geq {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dX.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ \mathbf{else}:\\ \;\;\;\;\frac{\left\lfloor h\right\rfloor \cdot dY.v}{\sqrt{\mathsf{max}\left({\left(\left\lfloor w\right\rfloor \cdot dX.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dX.v\right)}^{2}, {\left(\left\lfloor w\right\rfloor \cdot dY.u\right)}^{2} + {\left(\left\lfloor h\right\rfloor \cdot dY.v\right)}^{2}\right)}}\\ } \end{array}} \]
              7. Add Preprocessing

              Reproduce

              ?
              herbie shell --seed 2025089 
              (FPCore (w h dX.u dX.v dY.u dY.v maxAniso)
                :name "Anisotropic x16 LOD (line direction, v)"
                :precision binary32
                :pre (and (and (and (and (and (and (and (<= 1.0 w) (<= w 16384.0)) (and (<= 1.0 h) (<= h 16384.0))) (and (<= 1e-20 (fabs dX.u)) (<= (fabs dX.u) 1e+20))) (and (<= 1e-20 (fabs dX.v)) (<= (fabs dX.v) 1e+20))) (and (<= 1e-20 (fabs dY.u)) (<= (fabs dY.u) 1e+20))) (and (<= 1e-20 (fabs dY.v)) (<= (fabs dY.v) 1e+20))) (== maxAniso 16.0))
                (if (>= (+ (* (* (floor w) dX.u) (* (floor w) dX.u)) (* (* (floor h) dX.v) (* (floor h) dX.v))) (+ (* (* (floor w) dY.u) (* (floor w) dY.u)) (* (* (floor h) dY.v) (* (floor h) dY.v)))) (* (/ 1.0 (sqrt (fmax (+ (* (* (floor w) dX.u) (* (floor w) dX.u)) (* (* (floor h) dX.v) (* (floor h) dX.v))) (+ (* (* (floor w) dY.u) (* (floor w) dY.u)) (* (* (floor h) dY.v) (* (floor h) dY.v)))))) (* (floor h) dX.v)) (* (/ 1.0 (sqrt (fmax (+ (* (* (floor w) dX.u) (* (floor w) dX.u)) (* (* (floor h) dX.v) (* (floor h) dX.v))) (+ (* (* (floor w) dY.u) (* (floor w) dY.u)) (* (* (floor h) dY.v) (* (floor h) dY.v)))))) (* (floor h) dY.v))))