
(FPCore (x y z t a b) :precision binary64 (+ (+ (+ x (* y z)) (* t a)) (* (* a z) b)))
double code(double x, double y, double z, double t, double a, double b) {
return ((x + (y * z)) + (t * a)) + ((a * z) * b);
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t, a, b)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
real(8), intent (in) :: a
real(8), intent (in) :: b
code = ((x + (y * z)) + (t * a)) + ((a * z) * b)
end function
public static double code(double x, double y, double z, double t, double a, double b) {
return ((x + (y * z)) + (t * a)) + ((a * z) * b);
}
def code(x, y, z, t, a, b): return ((x + (y * z)) + (t * a)) + ((a * z) * b)
function code(x, y, z, t, a, b) return Float64(Float64(Float64(x + Float64(y * z)) + Float64(t * a)) + Float64(Float64(a * z) * b)) end
function tmp = code(x, y, z, t, a, b) tmp = ((x + (y * z)) + (t * a)) + ((a * z) * b); end
code[x_, y_, z_, t_, a_, b_] := N[(N[(N[(x + N[(y * z), $MachinePrecision]), $MachinePrecision] + N[(t * a), $MachinePrecision]), $MachinePrecision] + N[(N[(a * z), $MachinePrecision] * b), $MachinePrecision]), $MachinePrecision]
\begin{array}{l}
\\
\left(\left(x + y \cdot z\right) + t \cdot a\right) + \left(a \cdot z\right) \cdot b
\end{array}
Sampling outcomes in binary64 precision:
Herbie found 11 alternatives:
| Alternative | Accuracy | Speedup |
|---|
(FPCore (x y z t a b) :precision binary64 (+ (+ (+ x (* y z)) (* t a)) (* (* a z) b)))
double code(double x, double y, double z, double t, double a, double b) {
return ((x + (y * z)) + (t * a)) + ((a * z) * b);
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t, a, b)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
real(8), intent (in) :: a
real(8), intent (in) :: b
code = ((x + (y * z)) + (t * a)) + ((a * z) * b)
end function
public static double code(double x, double y, double z, double t, double a, double b) {
return ((x + (y * z)) + (t * a)) + ((a * z) * b);
}
def code(x, y, z, t, a, b): return ((x + (y * z)) + (t * a)) + ((a * z) * b)
function code(x, y, z, t, a, b) return Float64(Float64(Float64(x + Float64(y * z)) + Float64(t * a)) + Float64(Float64(a * z) * b)) end
function tmp = code(x, y, z, t, a, b) tmp = ((x + (y * z)) + (t * a)) + ((a * z) * b); end
code[x_, y_, z_, t_, a_, b_] := N[(N[(N[(x + N[(y * z), $MachinePrecision]), $MachinePrecision] + N[(t * a), $MachinePrecision]), $MachinePrecision] + N[(N[(a * z), $MachinePrecision] * b), $MachinePrecision]), $MachinePrecision]
\begin{array}{l}
\\
\left(\left(x + y \cdot z\right) + t \cdot a\right) + \left(a \cdot z\right) \cdot b
\end{array}
(FPCore (x y z t a b) :precision binary64 (let* ((t_1 (+ (+ (+ x (* y z)) (* t a)) (* (* a z) b)))) (if (<= t_1 INFINITY) t_1 (* (fma b a y) z))))
double code(double x, double y, double z, double t, double a, double b) {
double t_1 = ((x + (y * z)) + (t * a)) + ((a * z) * b);
double tmp;
if (t_1 <= ((double) INFINITY)) {
tmp = t_1;
} else {
tmp = fma(b, a, y) * z;
}
return tmp;
}
function code(x, y, z, t, a, b) t_1 = Float64(Float64(Float64(x + Float64(y * z)) + Float64(t * a)) + Float64(Float64(a * z) * b)) tmp = 0.0 if (t_1 <= Inf) tmp = t_1; else tmp = Float64(fma(b, a, y) * z); end return tmp end
code[x_, y_, z_, t_, a_, b_] := Block[{t$95$1 = N[(N[(N[(x + N[(y * z), $MachinePrecision]), $MachinePrecision] + N[(t * a), $MachinePrecision]), $MachinePrecision] + N[(N[(a * z), $MachinePrecision] * b), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$1, Infinity], t$95$1, N[(N[(b * a + y), $MachinePrecision] * z), $MachinePrecision]]]
\begin{array}{l}
\\
\begin{array}{l}
t_1 := \left(\left(x + y \cdot z\right) + t \cdot a\right) + \left(a \cdot z\right) \cdot b\\
\mathbf{if}\;t\_1 \leq \infty:\\
\;\;\;\;t\_1\\
\mathbf{else}:\\
\;\;\;\;\mathsf{fma}\left(b, a, y\right) \cdot z\\
\end{array}
\end{array}
if (+.f64 (+.f64 (+.f64 x (*.f64 y z)) (*.f64 t a)) (*.f64 (*.f64 a z) b)) < +inf.0Initial program 94.7%
if +inf.0 < (+.f64 (+.f64 (+.f64 x (*.f64 y z)) (*.f64 t a)) (*.f64 (*.f64 a z) b)) Initial program 0.0%
Taylor expanded in z around inf
*-commutativeN/A
lower-*.f64N/A
+-commutativeN/A
*-commutativeN/A
lower-fma.f6494.4
Applied rewrites94.4%
(FPCore (x y z t a b)
:precision binary64
(if (<= a -1.55e+200)
(fma a t x)
(if (<= a -1.85e-15)
(* (* b z) a)
(if (<= a 2.5e+75)
(fma z y x)
(if (<= a 3.8e+212) (fma a t x) (* (* a z) b))))))
double code(double x, double y, double z, double t, double a, double b) {
double tmp;
if (a <= -1.55e+200) {
tmp = fma(a, t, x);
} else if (a <= -1.85e-15) {
tmp = (b * z) * a;
} else if (a <= 2.5e+75) {
tmp = fma(z, y, x);
} else if (a <= 3.8e+212) {
tmp = fma(a, t, x);
} else {
tmp = (a * z) * b;
}
return tmp;
}
function code(x, y, z, t, a, b) tmp = 0.0 if (a <= -1.55e+200) tmp = fma(a, t, x); elseif (a <= -1.85e-15) tmp = Float64(Float64(b * z) * a); elseif (a <= 2.5e+75) tmp = fma(z, y, x); elseif (a <= 3.8e+212) tmp = fma(a, t, x); else tmp = Float64(Float64(a * z) * b); end return tmp end
code[x_, y_, z_, t_, a_, b_] := If[LessEqual[a, -1.55e+200], N[(a * t + x), $MachinePrecision], If[LessEqual[a, -1.85e-15], N[(N[(b * z), $MachinePrecision] * a), $MachinePrecision], If[LessEqual[a, 2.5e+75], N[(z * y + x), $MachinePrecision], If[LessEqual[a, 3.8e+212], N[(a * t + x), $MachinePrecision], N[(N[(a * z), $MachinePrecision] * b), $MachinePrecision]]]]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;a \leq -1.55 \cdot 10^{+200}:\\
\;\;\;\;\mathsf{fma}\left(a, t, x\right)\\
\mathbf{elif}\;a \leq -1.85 \cdot 10^{-15}:\\
\;\;\;\;\left(b \cdot z\right) \cdot a\\
\mathbf{elif}\;a \leq 2.5 \cdot 10^{+75}:\\
\;\;\;\;\mathsf{fma}\left(z, y, x\right)\\
\mathbf{elif}\;a \leq 3.8 \cdot 10^{+212}:\\
\;\;\;\;\mathsf{fma}\left(a, t, x\right)\\
\mathbf{else}:\\
\;\;\;\;\left(a \cdot z\right) \cdot b\\
\end{array}
\end{array}
if a < -1.54999999999999997e200 or 2.5000000000000001e75 < a < 3.79999999999999988e212Initial program 81.8%
Taylor expanded in z around 0
+-commutativeN/A
lower-fma.f6469.7
Applied rewrites69.7%
if -1.54999999999999997e200 < a < -1.85000000000000008e-15Initial program 74.1%
Taylor expanded in b around inf
*-commutativeN/A
lower-*.f64N/A
lower-*.f6453.5
Applied rewrites53.5%
if -1.85000000000000008e-15 < a < 2.5000000000000001e75Initial program 98.5%
Taylor expanded in a around 0
+-commutativeN/A
*-commutativeN/A
lower-fma.f6474.3
Applied rewrites74.3%
if 3.79999999999999988e212 < a Initial program 68.7%
Taylor expanded in b around inf
*-commutativeN/A
lower-*.f64N/A
lower-*.f6462.1
Applied rewrites62.1%
lift-*.f64N/A
lift-*.f64N/A
*-commutativeN/A
*-commutativeN/A
associate-*l*N/A
lower-*.f64N/A
lower-*.f6465.6
Applied rewrites65.6%
(FPCore (x y z t a b)
:precision binary64
(let* ((t_1 (* (* a z) b)))
(if (<= a -1.55e+200)
(fma a t x)
(if (<= a -1.85e-15)
t_1
(if (<= a 2.5e+75) (fma z y x) (if (<= a 3.8e+212) (fma a t x) t_1))))))
double code(double x, double y, double z, double t, double a, double b) {
double t_1 = (a * z) * b;
double tmp;
if (a <= -1.55e+200) {
tmp = fma(a, t, x);
} else if (a <= -1.85e-15) {
tmp = t_1;
} else if (a <= 2.5e+75) {
tmp = fma(z, y, x);
} else if (a <= 3.8e+212) {
tmp = fma(a, t, x);
} else {
tmp = t_1;
}
return tmp;
}
function code(x, y, z, t, a, b) t_1 = Float64(Float64(a * z) * b) tmp = 0.0 if (a <= -1.55e+200) tmp = fma(a, t, x); elseif (a <= -1.85e-15) tmp = t_1; elseif (a <= 2.5e+75) tmp = fma(z, y, x); elseif (a <= 3.8e+212) tmp = fma(a, t, x); else tmp = t_1; end return tmp end
code[x_, y_, z_, t_, a_, b_] := Block[{t$95$1 = N[(N[(a * z), $MachinePrecision] * b), $MachinePrecision]}, If[LessEqual[a, -1.55e+200], N[(a * t + x), $MachinePrecision], If[LessEqual[a, -1.85e-15], t$95$1, If[LessEqual[a, 2.5e+75], N[(z * y + x), $MachinePrecision], If[LessEqual[a, 3.8e+212], N[(a * t + x), $MachinePrecision], t$95$1]]]]]
\begin{array}{l}
\\
\begin{array}{l}
t_1 := \left(a \cdot z\right) \cdot b\\
\mathbf{if}\;a \leq -1.55 \cdot 10^{+200}:\\
\;\;\;\;\mathsf{fma}\left(a, t, x\right)\\
\mathbf{elif}\;a \leq -1.85 \cdot 10^{-15}:\\
\;\;\;\;t\_1\\
\mathbf{elif}\;a \leq 2.5 \cdot 10^{+75}:\\
\;\;\;\;\mathsf{fma}\left(z, y, x\right)\\
\mathbf{elif}\;a \leq 3.8 \cdot 10^{+212}:\\
\;\;\;\;\mathsf{fma}\left(a, t, x\right)\\
\mathbf{else}:\\
\;\;\;\;t\_1\\
\end{array}
\end{array}
if a < -1.54999999999999997e200 or 2.5000000000000001e75 < a < 3.79999999999999988e212Initial program 81.8%
Taylor expanded in z around 0
+-commutativeN/A
lower-fma.f6469.7
Applied rewrites69.7%
if -1.54999999999999997e200 < a < -1.85000000000000008e-15 or 3.79999999999999988e212 < a Initial program 72.1%
Taylor expanded in b around inf
*-commutativeN/A
lower-*.f64N/A
lower-*.f6456.7
Applied rewrites56.7%
lift-*.f64N/A
lift-*.f64N/A
*-commutativeN/A
*-commutativeN/A
associate-*l*N/A
lower-*.f64N/A
lower-*.f6457.7
Applied rewrites57.7%
if -1.85000000000000008e-15 < a < 2.5000000000000001e75Initial program 98.5%
Taylor expanded in a around 0
+-commutativeN/A
*-commutativeN/A
lower-fma.f6474.3
Applied rewrites74.3%
(FPCore (x y z t a b) :precision binary64 (if (or (<= b -3.9e+95) (not (<= b 8.2e+67))) (fma (fma b z t) a x) (fma a t (fma z y x))))
double code(double x, double y, double z, double t, double a, double b) {
double tmp;
if ((b <= -3.9e+95) || !(b <= 8.2e+67)) {
tmp = fma(fma(b, z, t), a, x);
} else {
tmp = fma(a, t, fma(z, y, x));
}
return tmp;
}
function code(x, y, z, t, a, b) tmp = 0.0 if ((b <= -3.9e+95) || !(b <= 8.2e+67)) tmp = fma(fma(b, z, t), a, x); else tmp = fma(a, t, fma(z, y, x)); end return tmp end
code[x_, y_, z_, t_, a_, b_] := If[Or[LessEqual[b, -3.9e+95], N[Not[LessEqual[b, 8.2e+67]], $MachinePrecision]], N[(N[(b * z + t), $MachinePrecision] * a + x), $MachinePrecision], N[(a * t + N[(z * y + x), $MachinePrecision]), $MachinePrecision]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;b \leq -3.9 \cdot 10^{+95} \lor \neg \left(b \leq 8.2 \cdot 10^{+67}\right):\\
\;\;\;\;\mathsf{fma}\left(\mathsf{fma}\left(b, z, t\right), a, x\right)\\
\mathbf{else}:\\
\;\;\;\;\mathsf{fma}\left(a, t, \mathsf{fma}\left(z, y, x\right)\right)\\
\end{array}
\end{array}
if b < -3.8999999999999997e95 or 8.19999999999999959e67 < b Initial program 88.1%
Taylor expanded in y around 0
distribute-lft-inN/A
+-commutativeN/A
*-commutativeN/A
lower-fma.f64N/A
+-commutativeN/A
lower-fma.f6487.5
Applied rewrites87.5%
if -3.8999999999999997e95 < b < 8.19999999999999959e67Initial program 88.0%
Taylor expanded in b around 0
+-commutativeN/A
*-commutativeN/A
lift-*.f64N/A
associate-+l+N/A
+-commutativeN/A
lift-*.f64N/A
*-commutativeN/A
lower-fma.f64N/A
+-commutativeN/A
*-commutativeN/A
lower-fma.f6488.8
Applied rewrites88.8%
Final simplification88.3%
(FPCore (x y z t a b) :precision binary64 (if (<= b -9.8e+141) (fma (* a z) b x) (if (<= b 4.8e+134) (fma a t (fma z y x)) (* (fma b a y) z))))
double code(double x, double y, double z, double t, double a, double b) {
double tmp;
if (b <= -9.8e+141) {
tmp = fma((a * z), b, x);
} else if (b <= 4.8e+134) {
tmp = fma(a, t, fma(z, y, x));
} else {
tmp = fma(b, a, y) * z;
}
return tmp;
}
function code(x, y, z, t, a, b) tmp = 0.0 if (b <= -9.8e+141) tmp = fma(Float64(a * z), b, x); elseif (b <= 4.8e+134) tmp = fma(a, t, fma(z, y, x)); else tmp = Float64(fma(b, a, y) * z); end return tmp end
code[x_, y_, z_, t_, a_, b_] := If[LessEqual[b, -9.8e+141], N[(N[(a * z), $MachinePrecision] * b + x), $MachinePrecision], If[LessEqual[b, 4.8e+134], N[(a * t + N[(z * y + x), $MachinePrecision]), $MachinePrecision], N[(N[(b * a + y), $MachinePrecision] * z), $MachinePrecision]]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;b \leq -9.8 \cdot 10^{+141}:\\
\;\;\;\;\mathsf{fma}\left(a \cdot z, b, x\right)\\
\mathbf{elif}\;b \leq 4.8 \cdot 10^{+134}:\\
\;\;\;\;\mathsf{fma}\left(a, t, \mathsf{fma}\left(z, y, x\right)\right)\\
\mathbf{else}:\\
\;\;\;\;\mathsf{fma}\left(b, a, y\right) \cdot z\\
\end{array}
\end{array}
if b < -9.8000000000000002e141Initial program 87.7%
Taylor expanded in x around inf
Applied rewrites80.9%
lift-+.f64N/A
lift-*.f64N/A
lift-*.f64N/A
+-commutativeN/A
lower-fma.f64N/A
lift-*.f6480.9
Applied rewrites80.9%
if -9.8000000000000002e141 < b < 4.80000000000000011e134Initial program 88.8%
Taylor expanded in b around 0
+-commutativeN/A
*-commutativeN/A
lift-*.f64N/A
associate-+l+N/A
+-commutativeN/A
lift-*.f64N/A
*-commutativeN/A
lower-fma.f64N/A
+-commutativeN/A
*-commutativeN/A
lower-fma.f6488.4
Applied rewrites88.4%
if 4.80000000000000011e134 < b Initial program 85.0%
Taylor expanded in z around inf
*-commutativeN/A
lower-*.f64N/A
+-commutativeN/A
*-commutativeN/A
lower-fma.f6482.1
Applied rewrites82.1%
(FPCore (x y z t a b) :precision binary64 (if (or (<= z -8.5e+17) (not (<= z 1.6e-68))) (* (fma b a y) z) (fma a t x)))
double code(double x, double y, double z, double t, double a, double b) {
double tmp;
if ((z <= -8.5e+17) || !(z <= 1.6e-68)) {
tmp = fma(b, a, y) * z;
} else {
tmp = fma(a, t, x);
}
return tmp;
}
function code(x, y, z, t, a, b) tmp = 0.0 if ((z <= -8.5e+17) || !(z <= 1.6e-68)) tmp = Float64(fma(b, a, y) * z); else tmp = fma(a, t, x); end return tmp end
code[x_, y_, z_, t_, a_, b_] := If[Or[LessEqual[z, -8.5e+17], N[Not[LessEqual[z, 1.6e-68]], $MachinePrecision]], N[(N[(b * a + y), $MachinePrecision] * z), $MachinePrecision], N[(a * t + x), $MachinePrecision]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;z \leq -8.5 \cdot 10^{+17} \lor \neg \left(z \leq 1.6 \cdot 10^{-68}\right):\\
\;\;\;\;\mathsf{fma}\left(b, a, y\right) \cdot z\\
\mathbf{else}:\\
\;\;\;\;\mathsf{fma}\left(a, t, x\right)\\
\end{array}
\end{array}
if z < -8.5e17 or 1.5999999999999999e-68 < z Initial program 81.3%
Taylor expanded in z around inf
*-commutativeN/A
lower-*.f64N/A
+-commutativeN/A
*-commutativeN/A
lower-fma.f6482.5
Applied rewrites82.5%
if -8.5e17 < z < 1.5999999999999999e-68Initial program 98.1%
Taylor expanded in z around 0
+-commutativeN/A
lower-fma.f6482.6
Applied rewrites82.6%
Final simplification82.5%
(FPCore (x y z t a b) :precision binary64 (if (<= z -8.5e+17) (* z y) (if (<= z 7.5e-218) x (if (<= z 1.6e-68) (* a t) (* z y)))))
double code(double x, double y, double z, double t, double a, double b) {
double tmp;
if (z <= -8.5e+17) {
tmp = z * y;
} else if (z <= 7.5e-218) {
tmp = x;
} else if (z <= 1.6e-68) {
tmp = a * t;
} else {
tmp = z * y;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t, a, b)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
real(8), intent (in) :: a
real(8), intent (in) :: b
real(8) :: tmp
if (z <= (-8.5d+17)) then
tmp = z * y
else if (z <= 7.5d-218) then
tmp = x
else if (z <= 1.6d-68) then
tmp = a * t
else
tmp = z * y
end if
code = tmp
end function
public static double code(double x, double y, double z, double t, double a, double b) {
double tmp;
if (z <= -8.5e+17) {
tmp = z * y;
} else if (z <= 7.5e-218) {
tmp = x;
} else if (z <= 1.6e-68) {
tmp = a * t;
} else {
tmp = z * y;
}
return tmp;
}
def code(x, y, z, t, a, b): tmp = 0 if z <= -8.5e+17: tmp = z * y elif z <= 7.5e-218: tmp = x elif z <= 1.6e-68: tmp = a * t else: tmp = z * y return tmp
function code(x, y, z, t, a, b) tmp = 0.0 if (z <= -8.5e+17) tmp = Float64(z * y); elseif (z <= 7.5e-218) tmp = x; elseif (z <= 1.6e-68) tmp = Float64(a * t); else tmp = Float64(z * y); end return tmp end
function tmp_2 = code(x, y, z, t, a, b) tmp = 0.0; if (z <= -8.5e+17) tmp = z * y; elseif (z <= 7.5e-218) tmp = x; elseif (z <= 1.6e-68) tmp = a * t; else tmp = z * y; end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_] := If[LessEqual[z, -8.5e+17], N[(z * y), $MachinePrecision], If[LessEqual[z, 7.5e-218], x, If[LessEqual[z, 1.6e-68], N[(a * t), $MachinePrecision], N[(z * y), $MachinePrecision]]]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;z \leq -8.5 \cdot 10^{+17}:\\
\;\;\;\;z \cdot y\\
\mathbf{elif}\;z \leq 7.5 \cdot 10^{-218}:\\
\;\;\;\;x\\
\mathbf{elif}\;z \leq 1.6 \cdot 10^{-68}:\\
\;\;\;\;a \cdot t\\
\mathbf{else}:\\
\;\;\;\;z \cdot y\\
\end{array}
\end{array}
if z < -8.5e17 or 1.5999999999999999e-68 < z Initial program 81.3%
Taylor expanded in y around inf
*-commutativeN/A
lower-*.f6444.9
Applied rewrites44.9%
if -8.5e17 < z < 7.50000000000000011e-218Initial program 98.6%
Taylor expanded in x around inf
Applied rewrites47.8%
if 7.50000000000000011e-218 < z < 1.5999999999999999e-68Initial program 97.0%
Taylor expanded in t around inf
lower-*.f6447.8
Applied rewrites47.8%
(FPCore (x y z t a b) :precision binary64 (if (or (<= z -2.3e-45) (not (<= z 2.2e-69))) (fma z y x) (fma a t x)))
double code(double x, double y, double z, double t, double a, double b) {
double tmp;
if ((z <= -2.3e-45) || !(z <= 2.2e-69)) {
tmp = fma(z, y, x);
} else {
tmp = fma(a, t, x);
}
return tmp;
}
function code(x, y, z, t, a, b) tmp = 0.0 if ((z <= -2.3e-45) || !(z <= 2.2e-69)) tmp = fma(z, y, x); else tmp = fma(a, t, x); end return tmp end
code[x_, y_, z_, t_, a_, b_] := If[Or[LessEqual[z, -2.3e-45], N[Not[LessEqual[z, 2.2e-69]], $MachinePrecision]], N[(z * y + x), $MachinePrecision], N[(a * t + x), $MachinePrecision]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;z \leq -2.3 \cdot 10^{-45} \lor \neg \left(z \leq 2.2 \cdot 10^{-69}\right):\\
\;\;\;\;\mathsf{fma}\left(z, y, x\right)\\
\mathbf{else}:\\
\;\;\;\;\mathsf{fma}\left(a, t, x\right)\\
\end{array}
\end{array}
if z < -2.29999999999999992e-45 or 2.2e-69 < z Initial program 81.9%
Taylor expanded in a around 0
+-commutativeN/A
*-commutativeN/A
lower-fma.f6453.9
Applied rewrites53.9%
if -2.29999999999999992e-45 < z < 2.2e-69Initial program 98.9%
Taylor expanded in z around 0
+-commutativeN/A
lower-fma.f6484.8
Applied rewrites84.8%
Final simplification65.1%
(FPCore (x y z t a b) :precision binary64 (if (or (<= z -2.6e+96) (not (<= z 1.05e-26))) (* z y) (fma a t x)))
double code(double x, double y, double z, double t, double a, double b) {
double tmp;
if ((z <= -2.6e+96) || !(z <= 1.05e-26)) {
tmp = z * y;
} else {
tmp = fma(a, t, x);
}
return tmp;
}
function code(x, y, z, t, a, b) tmp = 0.0 if ((z <= -2.6e+96) || !(z <= 1.05e-26)) tmp = Float64(z * y); else tmp = fma(a, t, x); end return tmp end
code[x_, y_, z_, t_, a_, b_] := If[Or[LessEqual[z, -2.6e+96], N[Not[LessEqual[z, 1.05e-26]], $MachinePrecision]], N[(z * y), $MachinePrecision], N[(a * t + x), $MachinePrecision]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;z \leq -2.6 \cdot 10^{+96} \lor \neg \left(z \leq 1.05 \cdot 10^{-26}\right):\\
\;\;\;\;z \cdot y\\
\mathbf{else}:\\
\;\;\;\;\mathsf{fma}\left(a, t, x\right)\\
\end{array}
\end{array}
if z < -2.6e96 or 1.05000000000000004e-26 < z Initial program 77.9%
Taylor expanded in y around inf
*-commutativeN/A
lower-*.f6448.8
Applied rewrites48.8%
if -2.6e96 < z < 1.05000000000000004e-26Initial program 97.1%
Taylor expanded in z around 0
+-commutativeN/A
lower-fma.f6470.6
Applied rewrites70.6%
Final simplification60.3%
(FPCore (x y z t a b) :precision binary64 (if (or (<= a -2.25e-48) (not (<= a 1.18e-60))) (* a t) x))
double code(double x, double y, double z, double t, double a, double b) {
double tmp;
if ((a <= -2.25e-48) || !(a <= 1.18e-60)) {
tmp = a * t;
} else {
tmp = x;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t, a, b)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
real(8), intent (in) :: a
real(8), intent (in) :: b
real(8) :: tmp
if ((a <= (-2.25d-48)) .or. (.not. (a <= 1.18d-60))) then
tmp = a * t
else
tmp = x
end if
code = tmp
end function
public static double code(double x, double y, double z, double t, double a, double b) {
double tmp;
if ((a <= -2.25e-48) || !(a <= 1.18e-60)) {
tmp = a * t;
} else {
tmp = x;
}
return tmp;
}
def code(x, y, z, t, a, b): tmp = 0 if (a <= -2.25e-48) or not (a <= 1.18e-60): tmp = a * t else: tmp = x return tmp
function code(x, y, z, t, a, b) tmp = 0.0 if ((a <= -2.25e-48) || !(a <= 1.18e-60)) tmp = Float64(a * t); else tmp = x; end return tmp end
function tmp_2 = code(x, y, z, t, a, b) tmp = 0.0; if ((a <= -2.25e-48) || ~((a <= 1.18e-60))) tmp = a * t; else tmp = x; end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_] := If[Or[LessEqual[a, -2.25e-48], N[Not[LessEqual[a, 1.18e-60]], $MachinePrecision]], N[(a * t), $MachinePrecision], x]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;a \leq -2.25 \cdot 10^{-48} \lor \neg \left(a \leq 1.18 \cdot 10^{-60}\right):\\
\;\;\;\;a \cdot t\\
\mathbf{else}:\\
\;\;\;\;x\\
\end{array}
\end{array}
if a < -2.24999999999999994e-48 or 1.17999999999999994e-60 < a Initial program 81.1%
Taylor expanded in t around inf
lower-*.f6439.9
Applied rewrites39.9%
if -2.24999999999999994e-48 < a < 1.17999999999999994e-60Initial program 98.1%
Taylor expanded in x around inf
Applied rewrites39.2%
Final simplification39.7%
(FPCore (x y z t a b) :precision binary64 x)
double code(double x, double y, double z, double t, double a, double b) {
return x;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t, a, b)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
real(8), intent (in) :: a
real(8), intent (in) :: b
code = x
end function
public static double code(double x, double y, double z, double t, double a, double b) {
return x;
}
def code(x, y, z, t, a, b): return x
function code(x, y, z, t, a, b) return x end
function tmp = code(x, y, z, t, a, b) tmp = x; end
code[x_, y_, z_, t_, a_, b_] := x
\begin{array}{l}
\\
x
\end{array}
Initial program 88.1%
Taylor expanded in x around inf
Applied rewrites23.3%
(FPCore (x y z t a b)
:precision binary64
(let* ((t_1 (+ (* z (+ (* b a) y)) (+ x (* t a)))))
(if (< z -11820553527347888000.0)
t_1
(if (< z 4.7589743188364287e-122)
(+ (* (+ (* b z) t) a) (+ (* z y) x))
t_1))))
double code(double x, double y, double z, double t, double a, double b) {
double t_1 = (z * ((b * a) + y)) + (x + (t * a));
double tmp;
if (z < -11820553527347888000.0) {
tmp = t_1;
} else if (z < 4.7589743188364287e-122) {
tmp = (((b * z) + t) * a) + ((z * y) + x);
} else {
tmp = t_1;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t, a, b)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
real(8), intent (in) :: a
real(8), intent (in) :: b
real(8) :: t_1
real(8) :: tmp
t_1 = (z * ((b * a) + y)) + (x + (t * a))
if (z < (-11820553527347888000.0d0)) then
tmp = t_1
else if (z < 4.7589743188364287d-122) then
tmp = (((b * z) + t) * a) + ((z * y) + x)
else
tmp = t_1
end if
code = tmp
end function
public static double code(double x, double y, double z, double t, double a, double b) {
double t_1 = (z * ((b * a) + y)) + (x + (t * a));
double tmp;
if (z < -11820553527347888000.0) {
tmp = t_1;
} else if (z < 4.7589743188364287e-122) {
tmp = (((b * z) + t) * a) + ((z * y) + x);
} else {
tmp = t_1;
}
return tmp;
}
def code(x, y, z, t, a, b): t_1 = (z * ((b * a) + y)) + (x + (t * a)) tmp = 0 if z < -11820553527347888000.0: tmp = t_1 elif z < 4.7589743188364287e-122: tmp = (((b * z) + t) * a) + ((z * y) + x) else: tmp = t_1 return tmp
function code(x, y, z, t, a, b) t_1 = Float64(Float64(z * Float64(Float64(b * a) + y)) + Float64(x + Float64(t * a))) tmp = 0.0 if (z < -11820553527347888000.0) tmp = t_1; elseif (z < 4.7589743188364287e-122) tmp = Float64(Float64(Float64(Float64(b * z) + t) * a) + Float64(Float64(z * y) + x)); else tmp = t_1; end return tmp end
function tmp_2 = code(x, y, z, t, a, b) t_1 = (z * ((b * a) + y)) + (x + (t * a)); tmp = 0.0; if (z < -11820553527347888000.0) tmp = t_1; elseif (z < 4.7589743188364287e-122) tmp = (((b * z) + t) * a) + ((z * y) + x); else tmp = t_1; end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_] := Block[{t$95$1 = N[(N[(z * N[(N[(b * a), $MachinePrecision] + y), $MachinePrecision]), $MachinePrecision] + N[(x + N[(t * a), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[Less[z, -11820553527347888000.0], t$95$1, If[Less[z, 4.7589743188364287e-122], N[(N[(N[(N[(b * z), $MachinePrecision] + t), $MachinePrecision] * a), $MachinePrecision] + N[(N[(z * y), $MachinePrecision] + x), $MachinePrecision]), $MachinePrecision], t$95$1]]]
\begin{array}{l}
\\
\begin{array}{l}
t_1 := z \cdot \left(b \cdot a + y\right) + \left(x + t \cdot a\right)\\
\mathbf{if}\;z < -11820553527347888000:\\
\;\;\;\;t\_1\\
\mathbf{elif}\;z < 4.7589743188364287 \cdot 10^{-122}:\\
\;\;\;\;\left(b \cdot z + t\right) \cdot a + \left(z \cdot y + x\right)\\
\mathbf{else}:\\
\;\;\;\;t\_1\\
\end{array}
\end{array}
herbie shell --seed 2025079
(FPCore (x y z t a b)
:name "Graphics.Rasterific.CubicBezier:cachedBezierAt from Rasterific-0.6.1"
:precision binary64
:alt
(! :herbie-platform default (if (< z -11820553527347888000) (+ (* z (+ (* b a) y)) (+ x (* t a))) (if (< z 47589743188364287/1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000) (+ (* (+ (* b z) t) a) (+ (* z y) x)) (+ (* z (+ (* b a) y)) (+ x (* t a))))))
(+ (+ (+ x (* y z)) (* t a)) (* (* a z) b)))