(FPCore (x y z t a b) :precision binary64 (+ (+ (+ x (* y z)) (* t a)) (* (* a z) b)))
double code(double x, double y, double z, double t, double a, double b) { return ((x + (y * z)) + (t * a)) + ((a * z) * b); }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t, a, b) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t real(8), intent (in) :: a real(8), intent (in) :: b code = ((x + (y * z)) + (t * a)) + ((a * z) * b) end function
public static double code(double x, double y, double z, double t, double a, double b) { return ((x + (y * z)) + (t * a)) + ((a * z) * b); }
def code(x, y, z, t, a, b): return ((x + (y * z)) + (t * a)) + ((a * z) * b)
function code(x, y, z, t, a, b) return Float64(Float64(Float64(x + Float64(y * z)) + Float64(t * a)) + Float64(Float64(a * z) * b)) end
function tmp = code(x, y, z, t, a, b) tmp = ((x + (y * z)) + (t * a)) + ((a * z) * b); end
code[x_, y_, z_, t_, a_, b_] := N[(N[(N[(x + N[(y * z), $MachinePrecision]), $MachinePrecision] + N[(t * a), $MachinePrecision]), $MachinePrecision] + N[(N[(a * z), $MachinePrecision] * b), $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ \left(\left(x + y \cdot z\right) + t \cdot a\right) + \left(a \cdot z\right) \cdot b \end{array}
Sampling outcomes in binary64 precision:
Herbie found 11 alternatives:
Alternative | Accuracy | Speedup |
---|
(FPCore (x y z t a b) :precision binary64 (+ (+ (+ x (* y z)) (* t a)) (* (* a z) b)))
double code(double x, double y, double z, double t, double a, double b) { return ((x + (y * z)) + (t * a)) + ((a * z) * b); }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t, a, b) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t real(8), intent (in) :: a real(8), intent (in) :: b code = ((x + (y * z)) + (t * a)) + ((a * z) * b) end function
public static double code(double x, double y, double z, double t, double a, double b) { return ((x + (y * z)) + (t * a)) + ((a * z) * b); }
def code(x, y, z, t, a, b): return ((x + (y * z)) + (t * a)) + ((a * z) * b)
function code(x, y, z, t, a, b) return Float64(Float64(Float64(x + Float64(y * z)) + Float64(t * a)) + Float64(Float64(a * z) * b)) end
function tmp = code(x, y, z, t, a, b) tmp = ((x + (y * z)) + (t * a)) + ((a * z) * b); end
code[x_, y_, z_, t_, a_, b_] := N[(N[(N[(x + N[(y * z), $MachinePrecision]), $MachinePrecision] + N[(t * a), $MachinePrecision]), $MachinePrecision] + N[(N[(a * z), $MachinePrecision] * b), $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ \left(\left(x + y \cdot z\right) + t \cdot a\right) + \left(a \cdot z\right) \cdot b \end{array}
(FPCore (x y z t a b) :precision binary64 (let* ((t_1 (+ (+ (+ x (* y z)) (* t a)) (* (* a z) b)))) (if (<= t_1 INFINITY) t_1 (* (fma b a y) z))))
double code(double x, double y, double z, double t, double a, double b) { double t_1 = ((x + (y * z)) + (t * a)) + ((a * z) * b); double tmp; if (t_1 <= ((double) INFINITY)) { tmp = t_1; } else { tmp = fma(b, a, y) * z; } return tmp; }
function code(x, y, z, t, a, b) t_1 = Float64(Float64(Float64(x + Float64(y * z)) + Float64(t * a)) + Float64(Float64(a * z) * b)) tmp = 0.0 if (t_1 <= Inf) tmp = t_1; else tmp = Float64(fma(b, a, y) * z); end return tmp end
code[x_, y_, z_, t_, a_, b_] := Block[{t$95$1 = N[(N[(N[(x + N[(y * z), $MachinePrecision]), $MachinePrecision] + N[(t * a), $MachinePrecision]), $MachinePrecision] + N[(N[(a * z), $MachinePrecision] * b), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$1, Infinity], t$95$1, N[(N[(b * a + y), $MachinePrecision] * z), $MachinePrecision]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \left(\left(x + y \cdot z\right) + t \cdot a\right) + \left(a \cdot z\right) \cdot b\\ \mathbf{if}\;t\_1 \leq \infty:\\ \;\;\;\;t\_1\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(b, a, y\right) \cdot z\\ \end{array} \end{array}
if (+.f64 (+.f64 (+.f64 x (*.f64 y z)) (*.f64 t a)) (*.f64 (*.f64 a z) b)) < +inf.0
Initial program 94.7%
if +inf.0 < (+.f64 (+.f64 (+.f64 x (*.f64 y z)) (*.f64 t a)) (*.f64 (*.f64 a z) b))
Initial program 0.0%
Taylor expanded in z around inf
*-commutative
N/A
lower-*.f64
N/A
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
94.4
Applied rewrites94.4%
(FPCore (x y z t a b) :precision binary64 (if (<= a -1.55e+200) (fma a t x) (if (<= a -1.85e-15) (* (* b z) a) (if (<= a 2.5e+75) (fma z y x) (if (<= a 3.8e+212) (fma a t x) (* (* a z) b))))))
double code(double x, double y, double z, double t, double a, double b) { double tmp; if (a <= -1.55e+200) { tmp = fma(a, t, x); } else if (a <= -1.85e-15) { tmp = (b * z) * a; } else if (a <= 2.5e+75) { tmp = fma(z, y, x); } else if (a <= 3.8e+212) { tmp = fma(a, t, x); } else { tmp = (a * z) * b; } return tmp; }
function code(x, y, z, t, a, b) tmp = 0.0 if (a <= -1.55e+200) tmp = fma(a, t, x); elseif (a <= -1.85e-15) tmp = Float64(Float64(b * z) * a); elseif (a <= 2.5e+75) tmp = fma(z, y, x); elseif (a <= 3.8e+212) tmp = fma(a, t, x); else tmp = Float64(Float64(a * z) * b); end return tmp end
code[x_, y_, z_, t_, a_, b_] := If[LessEqual[a, -1.55e+200], N[(a * t + x), $MachinePrecision], If[LessEqual[a, -1.85e-15], N[(N[(b * z), $MachinePrecision] * a), $MachinePrecision], If[LessEqual[a, 2.5e+75], N[(z * y + x), $MachinePrecision], If[LessEqual[a, 3.8e+212], N[(a * t + x), $MachinePrecision], N[(N[(a * z), $MachinePrecision] * b), $MachinePrecision]]]]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;a \leq -1.55 \cdot 10^{+200}:\\ \;\;\;\;\mathsf{fma}\left(a, t, x\right)\\ \mathbf{elif}\;a \leq -1.85 \cdot 10^{-15}:\\ \;\;\;\;\left(b \cdot z\right) \cdot a\\ \mathbf{elif}\;a \leq 2.5 \cdot 10^{+75}:\\ \;\;\;\;\mathsf{fma}\left(z, y, x\right)\\ \mathbf{elif}\;a \leq 3.8 \cdot 10^{+212}:\\ \;\;\;\;\mathsf{fma}\left(a, t, x\right)\\ \mathbf{else}:\\ \;\;\;\;\left(a \cdot z\right) \cdot b\\ \end{array} \end{array}
if a < -1.54999999999999997e200 or 2.5000000000000001e75 < a < 3.79999999999999988e212
Initial program 81.8%
Taylor expanded in z around 0
+-commutative
N/A
lower-fma.f64
69.7
Applied rewrites69.7%
if -1.54999999999999997e200 < a < -1.85000000000000008e-15
Initial program 74.1%
Taylor expanded in b around inf
*-commutative
N/A
lower-*.f64
N/A
lower-*.f64
53.5
Applied rewrites53.5%
if -1.85000000000000008e-15 < a < 2.5000000000000001e75
Initial program 98.5%
Taylor expanded in a around 0
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
74.3
Applied rewrites74.3%
if 3.79999999999999988e212 < a
Initial program 68.7%
Taylor expanded in b around inf
*-commutative
N/A
lower-*.f64
N/A
lower-*.f64
62.1
Applied rewrites62.1%
lift-*.f64
N/A
lift-*.f64
N/A
*-commutative
N/A
*-commutative
N/A
associate-*l*
N/A
lower-*.f64
N/A
lower-*.f64
65.6
Applied rewrites65.6%
(FPCore (x y z t a b) :precision binary64 (let* ((t_1 (* (* a z) b))) (if (<= a -1.55e+200) (fma a t x) (if (<= a -1.85e-15) t_1 (if (<= a 2.5e+75) (fma z y x) (if (<= a 3.8e+212) (fma a t x) t_1))))))
double code(double x, double y, double z, double t, double a, double b) { double t_1 = (a * z) * b; double tmp; if (a <= -1.55e+200) { tmp = fma(a, t, x); } else if (a <= -1.85e-15) { tmp = t_1; } else if (a <= 2.5e+75) { tmp = fma(z, y, x); } else if (a <= 3.8e+212) { tmp = fma(a, t, x); } else { tmp = t_1; } return tmp; }
function code(x, y, z, t, a, b) t_1 = Float64(Float64(a * z) * b) tmp = 0.0 if (a <= -1.55e+200) tmp = fma(a, t, x); elseif (a <= -1.85e-15) tmp = t_1; elseif (a <= 2.5e+75) tmp = fma(z, y, x); elseif (a <= 3.8e+212) tmp = fma(a, t, x); else tmp = t_1; end return tmp end
code[x_, y_, z_, t_, a_, b_] := Block[{t$95$1 = N[(N[(a * z), $MachinePrecision] * b), $MachinePrecision]}, If[LessEqual[a, -1.55e+200], N[(a * t + x), $MachinePrecision], If[LessEqual[a, -1.85e-15], t$95$1, If[LessEqual[a, 2.5e+75], N[(z * y + x), $MachinePrecision], If[LessEqual[a, 3.8e+212], N[(a * t + x), $MachinePrecision], t$95$1]]]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \left(a \cdot z\right) \cdot b\\ \mathbf{if}\;a \leq -1.55 \cdot 10^{+200}:\\ \;\;\;\;\mathsf{fma}\left(a, t, x\right)\\ \mathbf{elif}\;a \leq -1.85 \cdot 10^{-15}:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;a \leq 2.5 \cdot 10^{+75}:\\ \;\;\;\;\mathsf{fma}\left(z, y, x\right)\\ \mathbf{elif}\;a \leq 3.8 \cdot 10^{+212}:\\ \;\;\;\;\mathsf{fma}\left(a, t, x\right)\\ \mathbf{else}:\\ \;\;\;\;t\_1\\ \end{array} \end{array}
if a < -1.54999999999999997e200 or 2.5000000000000001e75 < a < 3.79999999999999988e212
Initial program 81.8%
Taylor expanded in z around 0
+-commutative
N/A
lower-fma.f64
69.7
Applied rewrites69.7%
if -1.54999999999999997e200 < a < -1.85000000000000008e-15 or 3.79999999999999988e212 < a
Initial program 72.1%
Taylor expanded in b around inf
*-commutative
N/A
lower-*.f64
N/A
lower-*.f64
56.7
Applied rewrites56.7%
lift-*.f64
N/A
lift-*.f64
N/A
*-commutative
N/A
*-commutative
N/A
associate-*l*
N/A
lower-*.f64
N/A
lower-*.f64
57.7
Applied rewrites57.7%
if -1.85000000000000008e-15 < a < 2.5000000000000001e75
Initial program 98.5%
Taylor expanded in a around 0
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
74.3
Applied rewrites74.3%
(FPCore (x y z t a b) :precision binary64 (if (or (<= b -3.9e+95) (not (<= b 8.2e+67))) (fma (fma b z t) a x) (fma a t (fma z y x))))
double code(double x, double y, double z, double t, double a, double b) { double tmp; if ((b <= -3.9e+95) || !(b <= 8.2e+67)) { tmp = fma(fma(b, z, t), a, x); } else { tmp = fma(a, t, fma(z, y, x)); } return tmp; }
function code(x, y, z, t, a, b) tmp = 0.0 if ((b <= -3.9e+95) || !(b <= 8.2e+67)) tmp = fma(fma(b, z, t), a, x); else tmp = fma(a, t, fma(z, y, x)); end return tmp end
code[x_, y_, z_, t_, a_, b_] := If[Or[LessEqual[b, -3.9e+95], N[Not[LessEqual[b, 8.2e+67]], $MachinePrecision]], N[(N[(b * z + t), $MachinePrecision] * a + x), $MachinePrecision], N[(a * t + N[(z * y + x), $MachinePrecision]), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;b \leq -3.9 \cdot 10^{+95} \lor \neg \left(b \leq 8.2 \cdot 10^{+67}\right):\\ \;\;\;\;\mathsf{fma}\left(\mathsf{fma}\left(b, z, t\right), a, x\right)\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(a, t, \mathsf{fma}\left(z, y, x\right)\right)\\ \end{array} \end{array}
if b < -3.8999999999999997e95 or 8.19999999999999959e67 < b
Initial program 88.1%
Taylor expanded in y around 0
distribute-lft-in
N/A
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
N/A
+-commutative
N/A
lower-fma.f64
87.5
Applied rewrites87.5%
if -3.8999999999999997e95 < b < 8.19999999999999959e67
Initial program 88.0%
Taylor expanded in b around 0
+-commutative
N/A
*-commutative
N/A
lift-*.f64
N/A
associate-+l+
N/A
+-commutative
N/A
lift-*.f64
N/A
*-commutative
N/A
lower-fma.f64
N/A
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
88.8
Applied rewrites88.8%
Final simplification88.3%
(FPCore (x y z t a b) :precision binary64 (if (<= b -9.8e+141) (fma (* a z) b x) (if (<= b 4.8e+134) (fma a t (fma z y x)) (* (fma b a y) z))))
double code(double x, double y, double z, double t, double a, double b) { double tmp; if (b <= -9.8e+141) { tmp = fma((a * z), b, x); } else if (b <= 4.8e+134) { tmp = fma(a, t, fma(z, y, x)); } else { tmp = fma(b, a, y) * z; } return tmp; }
function code(x, y, z, t, a, b) tmp = 0.0 if (b <= -9.8e+141) tmp = fma(Float64(a * z), b, x); elseif (b <= 4.8e+134) tmp = fma(a, t, fma(z, y, x)); else tmp = Float64(fma(b, a, y) * z); end return tmp end
code[x_, y_, z_, t_, a_, b_] := If[LessEqual[b, -9.8e+141], N[(N[(a * z), $MachinePrecision] * b + x), $MachinePrecision], If[LessEqual[b, 4.8e+134], N[(a * t + N[(z * y + x), $MachinePrecision]), $MachinePrecision], N[(N[(b * a + y), $MachinePrecision] * z), $MachinePrecision]]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;b \leq -9.8 \cdot 10^{+141}:\\ \;\;\;\;\mathsf{fma}\left(a \cdot z, b, x\right)\\ \mathbf{elif}\;b \leq 4.8 \cdot 10^{+134}:\\ \;\;\;\;\mathsf{fma}\left(a, t, \mathsf{fma}\left(z, y, x\right)\right)\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(b, a, y\right) \cdot z\\ \end{array} \end{array}
if b < -9.8000000000000002e141
Initial program 87.7%
Taylor expanded in x around inf
Applied rewrites80.9%
lift-+.f64
N/A
lift-*.f64
N/A
lift-*.f64
N/A
+-commutative
N/A
lower-fma.f64
N/A
lift-*.f64
80.9
Applied rewrites80.9%
if -9.8000000000000002e141 < b < 4.80000000000000011e134
Initial program 88.8%
Taylor expanded in b around 0
+-commutative
N/A
*-commutative
N/A
lift-*.f64
N/A
associate-+l+
N/A
+-commutative
N/A
lift-*.f64
N/A
*-commutative
N/A
lower-fma.f64
N/A
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
88.4
Applied rewrites88.4%
if 4.80000000000000011e134 < b
Initial program 85.0%
Taylor expanded in z around inf
*-commutative
N/A
lower-*.f64
N/A
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
82.1
Applied rewrites82.1%
(FPCore (x y z t a b) :precision binary64 (if (or (<= z -8.5e+17) (not (<= z 1.6e-68))) (* (fma b a y) z) (fma a t x)))
double code(double x, double y, double z, double t, double a, double b) { double tmp; if ((z <= -8.5e+17) || !(z <= 1.6e-68)) { tmp = fma(b, a, y) * z; } else { tmp = fma(a, t, x); } return tmp; }
function code(x, y, z, t, a, b) tmp = 0.0 if ((z <= -8.5e+17) || !(z <= 1.6e-68)) tmp = Float64(fma(b, a, y) * z); else tmp = fma(a, t, x); end return tmp end
code[x_, y_, z_, t_, a_, b_] := If[Or[LessEqual[z, -8.5e+17], N[Not[LessEqual[z, 1.6e-68]], $MachinePrecision]], N[(N[(b * a + y), $MachinePrecision] * z), $MachinePrecision], N[(a * t + x), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;z \leq -8.5 \cdot 10^{+17} \lor \neg \left(z \leq 1.6 \cdot 10^{-68}\right):\\ \;\;\;\;\mathsf{fma}\left(b, a, y\right) \cdot z\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(a, t, x\right)\\ \end{array} \end{array}
if z < -8.5e17 or 1.5999999999999999e-68 < z
Initial program 81.3%
Taylor expanded in z around inf
*-commutative
N/A
lower-*.f64
N/A
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
82.5
Applied rewrites82.5%
if -8.5e17 < z < 1.5999999999999999e-68
Initial program 98.1%
Taylor expanded in z around 0
+-commutative
N/A
lower-fma.f64
82.6
Applied rewrites82.6%
Final simplification82.5%
(FPCore (x y z t a b) :precision binary64 (if (<= z -8.5e+17) (* z y) (if (<= z 7.5e-218) x (if (<= z 1.6e-68) (* a t) (* z y)))))
double code(double x, double y, double z, double t, double a, double b) { double tmp; if (z <= -8.5e+17) { tmp = z * y; } else if (z <= 7.5e-218) { tmp = x; } else if (z <= 1.6e-68) { tmp = a * t; } else { tmp = z * y; } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t, a, b) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t real(8), intent (in) :: a real(8), intent (in) :: b real(8) :: tmp if (z <= (-8.5d+17)) then tmp = z * y else if (z <= 7.5d-218) then tmp = x else if (z <= 1.6d-68) then tmp = a * t else tmp = z * y end if code = tmp end function
public static double code(double x, double y, double z, double t, double a, double b) { double tmp; if (z <= -8.5e+17) { tmp = z * y; } else if (z <= 7.5e-218) { tmp = x; } else if (z <= 1.6e-68) { tmp = a * t; } else { tmp = z * y; } return tmp; }
def code(x, y, z, t, a, b): tmp = 0 if z <= -8.5e+17: tmp = z * y elif z <= 7.5e-218: tmp = x elif z <= 1.6e-68: tmp = a * t else: tmp = z * y return tmp
function code(x, y, z, t, a, b) tmp = 0.0 if (z <= -8.5e+17) tmp = Float64(z * y); elseif (z <= 7.5e-218) tmp = x; elseif (z <= 1.6e-68) tmp = Float64(a * t); else tmp = Float64(z * y); end return tmp end
function tmp_2 = code(x, y, z, t, a, b) tmp = 0.0; if (z <= -8.5e+17) tmp = z * y; elseif (z <= 7.5e-218) tmp = x; elseif (z <= 1.6e-68) tmp = a * t; else tmp = z * y; end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_] := If[LessEqual[z, -8.5e+17], N[(z * y), $MachinePrecision], If[LessEqual[z, 7.5e-218], x, If[LessEqual[z, 1.6e-68], N[(a * t), $MachinePrecision], N[(z * y), $MachinePrecision]]]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;z \leq -8.5 \cdot 10^{+17}:\\ \;\;\;\;z \cdot y\\ \mathbf{elif}\;z \leq 7.5 \cdot 10^{-218}:\\ \;\;\;\;x\\ \mathbf{elif}\;z \leq 1.6 \cdot 10^{-68}:\\ \;\;\;\;a \cdot t\\ \mathbf{else}:\\ \;\;\;\;z \cdot y\\ \end{array} \end{array}
if z < -8.5e17 or 1.5999999999999999e-68 < z
Initial program 81.3%
Taylor expanded in y around inf
*-commutative
N/A
lower-*.f64
44.9
Applied rewrites44.9%
if -8.5e17 < z < 7.50000000000000011e-218
Initial program 98.6%
Taylor expanded in x around inf
Applied rewrites47.8%
if 7.50000000000000011e-218 < z < 1.5999999999999999e-68
Initial program 97.0%
Taylor expanded in t around inf
lower-*.f64
47.8
Applied rewrites47.8%
(FPCore (x y z t a b) :precision binary64 (if (or (<= z -2.3e-45) (not (<= z 2.2e-69))) (fma z y x) (fma a t x)))
double code(double x, double y, double z, double t, double a, double b) { double tmp; if ((z <= -2.3e-45) || !(z <= 2.2e-69)) { tmp = fma(z, y, x); } else { tmp = fma(a, t, x); } return tmp; }
function code(x, y, z, t, a, b) tmp = 0.0 if ((z <= -2.3e-45) || !(z <= 2.2e-69)) tmp = fma(z, y, x); else tmp = fma(a, t, x); end return tmp end
code[x_, y_, z_, t_, a_, b_] := If[Or[LessEqual[z, -2.3e-45], N[Not[LessEqual[z, 2.2e-69]], $MachinePrecision]], N[(z * y + x), $MachinePrecision], N[(a * t + x), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;z \leq -2.3 \cdot 10^{-45} \lor \neg \left(z \leq 2.2 \cdot 10^{-69}\right):\\ \;\;\;\;\mathsf{fma}\left(z, y, x\right)\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(a, t, x\right)\\ \end{array} \end{array}
if z < -2.29999999999999992e-45 or 2.2e-69 < z
Initial program 81.9%
Taylor expanded in a around 0
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
53.9
Applied rewrites53.9%
if -2.29999999999999992e-45 < z < 2.2e-69
Initial program 98.9%
Taylor expanded in z around 0
+-commutative
N/A
lower-fma.f64
84.8
Applied rewrites84.8%
Final simplification65.1%
(FPCore (x y z t a b) :precision binary64 (if (or (<= z -2.6e+96) (not (<= z 1.05e-26))) (* z y) (fma a t x)))
double code(double x, double y, double z, double t, double a, double b) { double tmp; if ((z <= -2.6e+96) || !(z <= 1.05e-26)) { tmp = z * y; } else { tmp = fma(a, t, x); } return tmp; }
function code(x, y, z, t, a, b) tmp = 0.0 if ((z <= -2.6e+96) || !(z <= 1.05e-26)) tmp = Float64(z * y); else tmp = fma(a, t, x); end return tmp end
code[x_, y_, z_, t_, a_, b_] := If[Or[LessEqual[z, -2.6e+96], N[Not[LessEqual[z, 1.05e-26]], $MachinePrecision]], N[(z * y), $MachinePrecision], N[(a * t + x), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;z \leq -2.6 \cdot 10^{+96} \lor \neg \left(z \leq 1.05 \cdot 10^{-26}\right):\\ \;\;\;\;z \cdot y\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(a, t, x\right)\\ \end{array} \end{array}
if z < -2.6e96 or 1.05000000000000004e-26 < z
Initial program 77.9%
Taylor expanded in y around inf
*-commutative
N/A
lower-*.f64
48.8
Applied rewrites48.8%
if -2.6e96 < z < 1.05000000000000004e-26
Initial program 97.1%
Taylor expanded in z around 0
+-commutative
N/A
lower-fma.f64
70.6
Applied rewrites70.6%
Final simplification60.3%
(FPCore (x y z t a b) :precision binary64 (if (or (<= a -2.25e-48) (not (<= a 1.18e-60))) (* a t) x))
double code(double x, double y, double z, double t, double a, double b) { double tmp; if ((a <= -2.25e-48) || !(a <= 1.18e-60)) { tmp = a * t; } else { tmp = x; } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t, a, b) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t real(8), intent (in) :: a real(8), intent (in) :: b real(8) :: tmp if ((a <= (-2.25d-48)) .or. (.not. (a <= 1.18d-60))) then tmp = a * t else tmp = x end if code = tmp end function
public static double code(double x, double y, double z, double t, double a, double b) { double tmp; if ((a <= -2.25e-48) || !(a <= 1.18e-60)) { tmp = a * t; } else { tmp = x; } return tmp; }
def code(x, y, z, t, a, b): tmp = 0 if (a <= -2.25e-48) or not (a <= 1.18e-60): tmp = a * t else: tmp = x return tmp
function code(x, y, z, t, a, b) tmp = 0.0 if ((a <= -2.25e-48) || !(a <= 1.18e-60)) tmp = Float64(a * t); else tmp = x; end return tmp end
function tmp_2 = code(x, y, z, t, a, b) tmp = 0.0; if ((a <= -2.25e-48) || ~((a <= 1.18e-60))) tmp = a * t; else tmp = x; end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_] := If[Or[LessEqual[a, -2.25e-48], N[Not[LessEqual[a, 1.18e-60]], $MachinePrecision]], N[(a * t), $MachinePrecision], x]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;a \leq -2.25 \cdot 10^{-48} \lor \neg \left(a \leq 1.18 \cdot 10^{-60}\right):\\ \;\;\;\;a \cdot t\\ \mathbf{else}:\\ \;\;\;\;x\\ \end{array} \end{array}
if a < -2.24999999999999994e-48 or 1.17999999999999994e-60 < a
Initial program 81.1%
Taylor expanded in t around inf
lower-*.f64
39.9
Applied rewrites39.9%
if -2.24999999999999994e-48 < a < 1.17999999999999994e-60
Initial program 98.1%
Taylor expanded in x around inf
Applied rewrites39.2%
Final simplification39.7%
(FPCore (x y z t a b) :precision binary64 x)
double code(double x, double y, double z, double t, double a, double b) { return x; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t, a, b) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t real(8), intent (in) :: a real(8), intent (in) :: b code = x end function
public static double code(double x, double y, double z, double t, double a, double b) { return x; }
def code(x, y, z, t, a, b): return x
function code(x, y, z, t, a, b) return x end
function tmp = code(x, y, z, t, a, b) tmp = x; end
code[x_, y_, z_, t_, a_, b_] := x
\begin{array}{l} \\ x \end{array}
Initial program 88.1%
Taylor expanded in x around inf
Applied rewrites23.3%
(FPCore (x y z t a b) :precision binary64 (let* ((t_1 (+ (* z (+ (* b a) y)) (+ x (* t a))))) (if (< z -11820553527347888000.0) t_1 (if (< z 4.7589743188364287e-122) (+ (* (+ (* b z) t) a) (+ (* z y) x)) t_1))))
double code(double x, double y, double z, double t, double a, double b) { double t_1 = (z * ((b * a) + y)) + (x + (t * a)); double tmp; if (z < -11820553527347888000.0) { tmp = t_1; } else if (z < 4.7589743188364287e-122) { tmp = (((b * z) + t) * a) + ((z * y) + x); } else { tmp = t_1; } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t, a, b) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t real(8), intent (in) :: a real(8), intent (in) :: b real(8) :: t_1 real(8) :: tmp t_1 = (z * ((b * a) + y)) + (x + (t * a)) if (z < (-11820553527347888000.0d0)) then tmp = t_1 else if (z < 4.7589743188364287d-122) then tmp = (((b * z) + t) * a) + ((z * y) + x) else tmp = t_1 end if code = tmp end function
public static double code(double x, double y, double z, double t, double a, double b) { double t_1 = (z * ((b * a) + y)) + (x + (t * a)); double tmp; if (z < -11820553527347888000.0) { tmp = t_1; } else if (z < 4.7589743188364287e-122) { tmp = (((b * z) + t) * a) + ((z * y) + x); } else { tmp = t_1; } return tmp; }
def code(x, y, z, t, a, b): t_1 = (z * ((b * a) + y)) + (x + (t * a)) tmp = 0 if z < -11820553527347888000.0: tmp = t_1 elif z < 4.7589743188364287e-122: tmp = (((b * z) + t) * a) + ((z * y) + x) else: tmp = t_1 return tmp
function code(x, y, z, t, a, b) t_1 = Float64(Float64(z * Float64(Float64(b * a) + y)) + Float64(x + Float64(t * a))) tmp = 0.0 if (z < -11820553527347888000.0) tmp = t_1; elseif (z < 4.7589743188364287e-122) tmp = Float64(Float64(Float64(Float64(b * z) + t) * a) + Float64(Float64(z * y) + x)); else tmp = t_1; end return tmp end
function tmp_2 = code(x, y, z, t, a, b) t_1 = (z * ((b * a) + y)) + (x + (t * a)); tmp = 0.0; if (z < -11820553527347888000.0) tmp = t_1; elseif (z < 4.7589743188364287e-122) tmp = (((b * z) + t) * a) + ((z * y) + x); else tmp = t_1; end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_] := Block[{t$95$1 = N[(N[(z * N[(N[(b * a), $MachinePrecision] + y), $MachinePrecision]), $MachinePrecision] + N[(x + N[(t * a), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[Less[z, -11820553527347888000.0], t$95$1, If[Less[z, 4.7589743188364287e-122], N[(N[(N[(N[(b * z), $MachinePrecision] + t), $MachinePrecision] * a), $MachinePrecision] + N[(N[(z * y), $MachinePrecision] + x), $MachinePrecision]), $MachinePrecision], t$95$1]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := z \cdot \left(b \cdot a + y\right) + \left(x + t \cdot a\right)\\ \mathbf{if}\;z < -11820553527347888000:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;z < 4.7589743188364287 \cdot 10^{-122}:\\ \;\;\;\;\left(b \cdot z + t\right) \cdot a + \left(z \cdot y + x\right)\\ \mathbf{else}:\\ \;\;\;\;t\_1\\ \end{array} \end{array}
herbie shell --seed 2025079
(FPCore (x y z t a b)
:name "Graphics.Rasterific.CubicBezier:cachedBezierAt from Rasterific-0.6.1"
:precision binary64
:alt
(! :herbie-platform default (if (< z -11820553527347888000) (+ (* z (+ (* b a) y)) (+ x (* t a))) (if (< z 47589743188364287/1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000) (+ (* (+ (* b z) t) a) (+ (* z y) x)) (+ (* z (+ (* b a) y)) (+ x (* t a))))))
(+ (+ (+ x (* y z)) (* t a)) (* (* a z) b)))