
(FPCore re_sqr (re im) :precision binary64 (- (* re re) (* im im)))
double re_sqr(double re, double im) {
return (re * re) - (im * im);
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function re_sqr(re, im)
use fmin_fmax_functions
real(8), intent (in) :: re
real(8), intent (in) :: im
re_sqr = (re * re) - (im * im)
end function
public static double re_sqr(double re, double im) {
return (re * re) - (im * im);
}
def re_sqr(re, im): return (re * re) - (im * im)
function re_sqr(re, im) return Float64(Float64(re * re) - Float64(im * im)) end
function tmp = re_sqr(re, im) tmp = (re * re) - (im * im); end
re$95$sqr[re_, im_] := N[(N[(re * re), $MachinePrecision] - N[(im * im), $MachinePrecision]), $MachinePrecision]
\begin{array}{l}
\\
re \cdot re - im \cdot im
\end{array}
Sampling outcomes in binary64 precision:
Herbie found 3 alternatives:
| Alternative | Accuracy | Speedup |
|---|
(FPCore re_sqr (re im) :precision binary64 (- (* re re) (* im im)))
double re_sqr(double re, double im) {
return (re * re) - (im * im);
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function re_sqr(re, im)
use fmin_fmax_functions
real(8), intent (in) :: re
real(8), intent (in) :: im
re_sqr = (re * re) - (im * im)
end function
public static double re_sqr(double re, double im) {
return (re * re) - (im * im);
}
def re_sqr(re, im): return (re * re) - (im * im)
function re_sqr(re, im) return Float64(Float64(re * re) - Float64(im * im)) end
function tmp = re_sqr(re, im) tmp = (re * re) - (im * im); end
re$95$sqr[re_, im_] := N[(N[(re * re), $MachinePrecision] - N[(im * im), $MachinePrecision]), $MachinePrecision]
\begin{array}{l}
\\
re \cdot re - im \cdot im
\end{array}
(FPCore re_sqr (re im) :precision binary64 (* (- re im) (+ im re)))
double re_sqr(double re, double im) {
return (re - im) * (im + re);
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function re_sqr(re, im)
use fmin_fmax_functions
real(8), intent (in) :: re
real(8), intent (in) :: im
re_sqr = (re - im) * (im + re)
end function
public static double re_sqr(double re, double im) {
return (re - im) * (im + re);
}
def re_sqr(re, im): return (re - im) * (im + re)
function re_sqr(re, im) return Float64(Float64(re - im) * Float64(im + re)) end
function tmp = re_sqr(re, im) tmp = (re - im) * (im + re); end
re$95$sqr[re_, im_] := N[(N[(re - im), $MachinePrecision] * N[(im + re), $MachinePrecision]), $MachinePrecision]
\begin{array}{l}
\\
\left(re - im\right) \cdot \left(im + re\right)
\end{array}
Initial program 93.7%
lift--.f64N/A
lift-*.f64N/A
lift-*.f64N/A
difference-of-squaresN/A
*-commutativeN/A
lower-*.f64N/A
lower--.f64N/A
+-commutativeN/A
lower-+.f64100.0
Applied rewrites100.0%
(FPCore re_sqr (re im) :precision binary64 (if (<= (- (* re re) (* im im)) -5e-315) (* (- im) im) (* re re)))
double re_sqr(double re, double im) {
double tmp;
if (((re * re) - (im * im)) <= -5e-315) {
tmp = -im * im;
} else {
tmp = re * re;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function re_sqr(re, im)
use fmin_fmax_functions
real(8), intent (in) :: re
real(8), intent (in) :: im
real(8) :: tmp
if (((re * re) - (im * im)) <= (-5d-315)) then
tmp = -im * im
else
tmp = re * re
end if
re_sqr = tmp
end function
public static double re_sqr(double re, double im) {
double tmp;
if (((re * re) - (im * im)) <= -5e-315) {
tmp = -im * im;
} else {
tmp = re * re;
}
return tmp;
}
def re_sqr(re, im): tmp = 0 if ((re * re) - (im * im)) <= -5e-315: tmp = -im * im else: tmp = re * re return tmp
function re_sqr(re, im) tmp = 0.0 if (Float64(Float64(re * re) - Float64(im * im)) <= -5e-315) tmp = Float64(Float64(-im) * im); else tmp = Float64(re * re); end return tmp end
function tmp_2 = re_sqr(re, im) tmp = 0.0; if (((re * re) - (im * im)) <= -5e-315) tmp = -im * im; else tmp = re * re; end tmp_2 = tmp; end
re$95$sqr[re_, im_] := If[LessEqual[N[(N[(re * re), $MachinePrecision] - N[(im * im), $MachinePrecision]), $MachinePrecision], -5e-315], N[((-im) * im), $MachinePrecision], N[(re * re), $MachinePrecision]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;re \cdot re - im \cdot im \leq -5 \cdot 10^{-315}:\\
\;\;\;\;\left(-im\right) \cdot im\\
\mathbf{else}:\\
\;\;\;\;re \cdot re\\
\end{array}
\end{array}
if (-.f64 (*.f64 re re) (*.f64 im im)) < -5.0000000023e-315Initial program 100.0%
Taylor expanded in re around 0
mul-1-negN/A
pow2N/A
distribute-lft-neg-inN/A
lower-*.f64N/A
lower-neg.f6499.6
Applied rewrites99.6%
if -5.0000000023e-315 < (-.f64 (*.f64 re re) (*.f64 im im)) Initial program 88.4%
Taylor expanded in re around inf
pow2N/A
lift-*.f6495.0
Applied rewrites95.0%
(FPCore re_sqr (re im) :precision binary64 (* re re))
double re_sqr(double re, double im) {
return re * re;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function re_sqr(re, im)
use fmin_fmax_functions
real(8), intent (in) :: re
real(8), intent (in) :: im
re_sqr = re * re
end function
public static double re_sqr(double re, double im) {
return re * re;
}
def re_sqr(re, im): return re * re
function re_sqr(re, im) return Float64(re * re) end
function tmp = re_sqr(re, im) tmp = re * re; end
re$95$sqr[re_, im_] := N[(re * re), $MachinePrecision]
\begin{array}{l}
\\
re \cdot re
\end{array}
Initial program 93.7%
Taylor expanded in re around inf
pow2N/A
lift-*.f6452.4
Applied rewrites52.4%
herbie shell --seed 2025073
(FPCore re_sqr (re im)
:name "math.square on complex, real part"
:precision binary64
(- (* re re) (* im im)))