(FPCore (x y) :precision binary64 (let* ((t_0 (- (* x 8.13008) 0.0979996)) (t_1 (- (* y 8.13008) 2.4)) (t_2 (pow (+ 0.0999999 (* y 8.13008)) 2.0)) (t_3 (- (* y 8.13008) 6.35)) (t_4 (- (* x 11.6144) 3.18286)) (t_5 (+ 2.35 (* y 8.13008))) (t_6 (+ 3.5125 (* x 4.47154))) (t_7 (pow (+ 7.725 (* x 8.13008)) 2.0)) (t_8 (- (+ 0.3955 (* x 5.42005)))) (t_9 (+ 4.0 (* y 8.13008))) (t_10 (+ 0.15 (* y 8.13008))) (t_11 (- (+ 5.925 (* x 8.13008)))) (t_12 (+ 3.716 (* x 4.47154))) (t_13 (+ 0.5708 (* x 2.23577))) (t_14 (+ 0.5175 (* x 5.42005))) (t_15 (+ 1.38723 (* x 4.47154))) (t_16 (- (* y 8.13008) 3.05)) (t_17 (+ (+ 1.80223 (* y 1.82927)) (* x 4.47154))) (t_18 (+ 1.12 (* x 8.13008))) (t_19 (- (* y 8.13008) 5.05)) (t_20 (+ 0.750575 (* y 1.21951))) (t_21 (+ 2.95 (* x 8.13008))) (t_22 (+ (* y 2.64228) (* x 4.47154))) (t_23 (- 0.9305 (* x 8.13008))) (t_24 (- (* y 8.13008) 2.575)) (t_25 (+ (* x 2.23577) (* y 4.06504))) (t_26 (+ 1.0405 (* x 2.23577))) (t_27 (- (* x 8.13008) 5.5355)) (t_28 (- (* x 5.42005) 2.2095)) (t_29 (+ 7.98571 (* x 11.6144))) (t_30 (- (+ 5.2 (* x 8.13008)))) (t_31 (+ 2.12 (* y 3.25203))) (t_32 (+ 2.65 (* y 8.13008))) (t_33 (- (+ 8.0 (* x 8.13008)))) (t_34 (- (* y 8.13008) 0.2)) (t_35 (- (* x 5.42005) 3.0345)) (t_36 (- (* x 8.13008) 2.9705)) (t_37 (+ (+ (* y 2.84553) 4.13) (* x 4.47154))) (t_38 (+ 6.275 (* x 8.13008))) (t_39 (- 1.80375 (* y 5.28455))) (t_40 (+ (+ (* y 2.03252) 2.5375) (* x 4.47154))) (t_41 (+ (+ 0.318501 (* y 2.84553)) (* x 4.47154))) (t_42 (+ 5.162 (* x 8.13008))) (t_43 (+ 4.875 (* y 8.13008))) (t_44 (+ (+ 1.89845 (* y 2.60163)) (* x 2.84553))) (t_45 (+ 5.6 (* x 8.13008))) (t_46 (- (* y 8.13008) 4.8)) (t_47 (+ 0.9 (* y 8.13008))) (t_48 (+ 1.43045 (* x 2.84553))) (t_49 (+ (* y 2.84553) (* x 4.47154))) (t_50 (- t_49 4.45138)) (t_51 (+ 0.16015 (* y 1.21951))) (t_52 (+ 6.25 (* x 8.13008))) (t_53 (+ 1.625 (* y 8.13008))) (t_54 (pow t_53 2.0)) (t_55 (sqrt (+ t_54 (pow (+ 5.242 (* x 8.13008)) 2.0)))) (t_56 (- (* x 8.13008) 4.4005)) (t_57 (+ (+ (* y 2.03252) 2.8125) (* x 4.47154))) (t_58 (+ (+ (* y 2.03252) 2.24435) (* x 4.47154))) (t_59 (- (* y 8.13008) 4.15)) (t_60 (+ 0.55 (* y 8.13008))) (t_61 (pow (- 0.685 (* y 8.13008)) 2.0)) (t_62 (+ 4.675 (* y 8.13008))) (t_63 (+ 4.025 (* y 8.13008))) (t_64 (- 0.5935 (* x 8.13008))) (t_65 (+ 1.30723 (* x 4.47154))) (t_66 (- t_65 (* y 2.64228))) (t_67 (+ 1.7375 (* y 8.13008))) (t_68 (- 1.725 (* y 8.13008))) (t_69 (- (+ 2.37 (* x 8.13008)))) (t_70 (+ 3.575 (* x 8.13008))) (t_71 (- (+ 1.45 (* y 8.13008)))) (t_72 (- 3.0345 (* x 5.42005))) (t_73 (- (* x 8.13008) 3.931)) (t_74 (- (* y 8.13008) 3.5)) (t_75 (+ (+ 1.91435 (* y 2.03252)) (* x 4.47154))) (t_76 (pow (- (+ 0.415 (* y 8.13008))) 2.0)) (t_77 (+ (+ 2.09318 (* x 2.23577)) (* y 4.06504))) (t_78 (- (* x 8.13008) 1.958)) (t_79 (+ 2.08 (* x 2.23577))) (t_80 (+ 1.8 (* y 8.13008))) (t_81 (+ 0.120625 (* x 2.23577))) (t_82 (+ 5.75 (* y 8.13008))) (t_83 (+ 5.375 (* x 8.13008))) (t_84 (- t_83)) (t_85 (+ 1.728 (* y 2.19512))) (t_86 (- (* y 0.813008) 0.47)) (t_87 (- 1.82238 t_49)) (t_88 (- t_49 3.84555)) (t_89 (- (* y 8.13008) 6.8)) (t_90 (+ 6.5 (* x 8.13008))) (t_91 (- (* x 8.13008) 4.8855)) (t_92 (+ 3.025 (* x 8.13008))) (t_93 (+ 0.45 (* y 4.06504))) (t_94 (- (* y 0.813008) 0.305)) (t_95 (+ 0.6375 (* y 2.84553))) (t_96 (- t_95 (* x 4.47154))) (t_97 (- (* y 5.28455) 0.37375)) (t_98 (- (* x 8.13008) 6.61401)) (t_99 (+ 0.685 (* y 0.813008))) (t_100 (- (+ 0.550001 (* x 8.13008)))) (t_101 (- 5.425 (* y 8.13008))) (t_102 (- (* y 0.813008) 0.195)) (t_103 (- (* x 8.13008) 1.6205)) (t_104 (pow (- (* y 8.13008) 3.2) 2.0)) (t_105 (+ 1.8578 (* x 2.23577))) (t_106 (+ 1.42 (* x 2.23577))) (t_107 (+ 6.3 (* x 8.13008))) (t_108 (pow t_107 2.0)) (t_109 (+ 5.812 (* x 8.13008))) (t_110 (+ 0.11375 (* x 2.23577))) (t_111 (+ 1.23565 (* y 2.03252))) (t_112 (- (* x 8.13008) 5.401)) (t_113 (+ 0.545 (* x 4.47154))) (t_114 (- (* y 2.84553) t_113)) (t_115 (+ 0.19 (* y 0.813008))) (t_116 (+ 2.42975 (* x 4.47154))) (t_117 (- t_116 (* y 1.82927))) (t_118 (- (* y 8.13008) 2.05)) (t_119 (+ 4.63929 (* x 11.6144))) (t_120 (+ 0.725 (* y 8.13008))) (t_121 (+ (+ 1.35975 (* y 1.82927)) (* x 4.47154))) (t_122 (+ 1.187 (* x 8.13008))) (t_123 (+ 2.55 (* x 8.13008))) (t_124 (- t_123)) (t_125 (+ (* y 3.41463) 5.9037)) (t_126 (- 6.075 (* y 8.13008))) (t_127 (fmax t_3 t_126)) (t_128 (+ 1.132 (* x 8.13008))) (t_129 (- t_128)) (t_130 (+ 2.75 (* y 8.13008))) (t_131 (- t_130)) (t_132 (- (* y 8.13008) 5.9)) (t_133 (+ 1.36071 (* x 11.6144))) (t_134 (- (* y 0.813008) 0.415)) (t_135 (+ 0.465 (* y 0.813008))) (t_136 (- t_70)) (t_137 (+ 1.7935 (* x 4.06504))) (t_138 (- 1.558 (* x 8.13008))) (t_139 (- 5.54551 (* x 8.13008))) (t_140 (pow t_32 2.0)) (t_141 (sqrt (+ t_140 (pow (- (* x 8.13008) 1.323) 2.0)))) (t_142 (- (+ 4.075 (* x 8.13008)))) (t_143 (+ 5.15 (* x 8.13008))) (t_144 (+ 7.25 (* x 8.13008))) (t_145 (+ (+ 1.87595 (* y 2.19512)) (* x 2.84553))) (t_146 (- 4.1025 (* x 8.13008))) (t_147 (- (+ 1.575 (* x 8.13008)))) (t_148 (- t_49 1.6725)) (t_149 (+ 0.5575 (* y 2.03252))) (t_150 (+ 1.65925 (* x 2.23577))) (t_151 (+ 4.021 (* x 4.47154))) (t_152 (- (* y 2.84553) t_151)) (t_153 (- (* y 8.13008) 1.95)) (t_154 (- (* y 8.13008) 3.915)) (t_155 (+ 0.08 (* y 0.813008))) (t_156 (+ 0.395501 (* x 5.42005))) (t_157 (- (* y 8.13008) 4.975)) (t_158 (pow t_157 2.0)) (t_159 (sqrt (+ t_158 (pow (- (* x 8.13008) 5.826) 2.0)))) (t_160 (+ (+ 1.82723 (* y 2.64228)) (* x 4.47154))) (t_161 (- (* y 8.13008) 3.95)) (t_162 (- 3.531 (* x 8.13008))) (t_163 (- (+ 4.975 (* y 8.13008)))) (t_164 (fmax (+ 4.885 (* y 8.13008)) t_163)) (t_165 (+ (+ 1.91443 (* x 2.23577)) (* y 4.06504))) (t_166 (sqrt (+ (pow (- (* x 8.13008) 5.126) 2.0) t_158))) (t_167 (+ 3.7375 (* x 5.42005))) (t_168 (- t_167)) (t_169 (pow (- (* y 8.13008) 0.3) 2.0)) (t_170 (+ 0.597376 (* y 2.03252))) (t_171 (+ 2.932 (* x 8.13008))) (t_172 (- 4.12055 t_49)) (t_173 (+ 2.375 (* x 8.13008))) (t_174 (+ 4.05 (* x 8.13008))) (t_175 (- (* y 8.13008) 2.775)) (t_176 (pow t_175 2.0)) (t_177 (sqrt (+ t_176 (pow (+ 1.395 (* x 8.13008)) 2.0)))) (t_178 (sqrt (+ t_176 (pow (- (* x 8.13008) 3.7975) 2.0)))) (t_179 (+ 4.5 (* x 8.13008))) (t_180 (+ (+ (* x 2.23577) 2.9905) (* y 4.06504))) (t_181 (+ 0.6945 (* x 8.13008))) (t_182 (- (+ 6.6 (* x 8.13008)))) (t_183 (+ 4.2 (* y 8.13008))) (t_184 (+ (+ 2.3425 (* y 2.84553)) (* x 4.47154))) (t_185 (- 4.4855 (* x 8.13008))) (t_186 (+ (+ 1.885 (* x 2.23577)) (* y 4.06504))) (t_187 (+ 3.4575 (* x 4.47154))) (t_188 (- (* x 8.13008) 3.1805)) (t_189 (- 2.4705 (* x 8.13008))) (t_190 (+ 6.8 (* x 8.13008))) (t_191 (- t_190)) (t_192 (- 6.11401 (* x 8.13008))) (t_193 (+ (+ 2.6175 (* y 2.84553)) (* x 4.47154))) (t_194 (+ (+ 2.81935 (* y 2.84553)) (* x 4.47154))) (t_195 (+ (* y 0.813008) 0.880675)) (t_196 (+ 1.3292 (* x 2.84553))) (t_197 (+ (+ (* y 2.03252) 2.521) (* x 4.47154))) (t_198 (+ 5.975 (* y 8.13008))) (t_199 (sqrt (+ (pow (- (+ 4.58486 (* x 8.13008)) (* y 2.32288)) 2.0) t_158))) (t_200 (+ 1.15 (* y 8.13008))) (t_201 (+ 1.5875 (* x 5.42005))) (t_202 (- t_201)) (t_203 (+ 2.775 (* x 8.13008))) (t_204 (- (+ 6.212 (* x 8.13008)))) (t_205 (- 7.50251 (* x 8.13008))) (t_206 (- (* x 8.13008) 2.226)) (t_207 (+ 0.245 (* y 0.813008))) (t_208 (- t_207)) (t_209 (+ 0.6516 (* x 4.47154))) (t_210 (- (* y 1.82927) t_209)) (t_211 (+ 2.8375 (* y 8.13008))) (t_212 (+ 1.12143 (* x 11.6144))) (t_213 (+ 0.475 (* y 8.13008))) (t_214 (sqrt (+ t_108 (pow (- (* y 8.13008) 6.525) 2.0)))) (t_215 (+ 0.267376 (* y 2.03252))) (t_216 (- 5.8 (* y 8.13008))) (t_217 (- 0.36 (* y 0.813008))) (t_218 (pow (- (* y 8.13008) 0.465) 2.0)) (t_219 (+ 0.52 (* y 0.813008))) (t_220 (- t_219)) (t_221 (+ 2.5335 (* x 4.47154))) (t_222 (+ 1.66785 (* x 4.47154))) (t_223 (- 0.25 (* y 0.813008))) (t_224 (+ 1.95355 (* x 5.28455))) (t_225 (+ (* y 2.03252) 2.89638)) (t_226 (- (* x 8.13008) 5.7205)) (t_227 (- (+ 7.35 (* x 8.13008)))) (t_228 (- (* x 4.47154) t_95)) (t_229 (+ 1.12595 (* y 1.21951))) (t_230 (+ 4.07 (* x 8.13008))) (t_231 (- 4.45138 t_49)) (t_232 (+ 0.90565 (* y 2.03252))) (t_233 (- (* y 8.13008) 5.025)) (t_234 (- 2.2095 (* x 5.42005))) (t_235 (+ 3.55 (* y 8.13008))) (t_236 (fmax (+ 3.45 (* y 8.13008)) (- t_235))) (t_237 (fmax t_235 (- (+ 3.65 (* y 8.13008))))) (t_238 (+ (* y 1.82927) 2.5769)) (t_239 (- t_238 (* x 4.47154))) (t_240 (- (* x 4.47154) t_238)) (t_241 (- 6.0955 (* x 8.13008))) (t_242 (+ 6.75 (* x 8.13008))) (t_243 (+ t_25 4.085)) (t_244 (+ 6.95 (* x 11.6144))) (t_245 (- (* y 8.13008) 2.825)) (t_246 (- (+ 2.775 (* y 8.13008)))) (t_247 (- (* y 1.82927) t_15)) (t_248 (+ 0.0499997 (* y 8.13008))) (t_249 (+ (+ (* x 2.23577) 3.49375) (* y 4.06504))) (t_250 (+ 1.81065 (* y 2.84553))) (t_251 (- t_250 (* x 4.47154))) (t_252 (+ 0.712975 (* x 2.23577))) (t_253 (- 3.6 (* y 8.13008))) (t_254 (fmax t_161 t_253)) (t_255 (fmax t_253 t_59)) (t_256 (- (* x 5.42005) 0.951167)) (t_257 (+ 2.67975 (* x 4.47154))) (t_258 (- (* y 2.64228) t_257)) (t_259 (- 4.7 (* y 8.13008))) (t_260 (+ (* y 1.82927) 3.10243)) (t_261 (- t_260 (* x 4.47154))) (t_262 (+ 2.807 (* x 8.13008))) (t_263 (+ (* y 0.813008) 1.89365)) (t_264 (+ 0.135 (* y 0.813008))) (t_265 (pow t_161 2.0)) (t_266 (sqrt (+ t_265 (pow (- (* x 8.13008) 5.5835) 2.0)))) (t_267 (+ (+ 1.05475 (* y 2.64228)) (* x 4.47154))) (t_268 (pow (- (* x 8.13008) 0.695499) 2.0)) (t_269 (pow (- (* y 8.13008) 1.4) 2.0)) (t_270 (- (+ 3.482 (* x 8.13008)))) (t_271 (- (* y 8.13008) 4.775)) (t_272 (+ 4.95 (* y 8.13008))) (t_273 (+ (+ 0.2581 (* y 1.82927)) (* x 4.47154))) (t_274 (- (+ 4.6 (* x 8.13008)))) (t_275 (+ 2.282 (* x 8.13008))) (t_276 (- (* x 8.13008) 6.75101)) (t_277 (- (* y 5.28455) 1.80375)) (t_278 (- (* x 8.13008) 5.1955)) (t_279 (+ (* y 3.25203) 5.1769)) (t_280 (pow t_130 2.0)) (t_281 (- 3.84555 t_49)) (t_282 (- 0.898001 (* x 8.13008))) (t_283 (- (* y 8.13008) 5.7)) (t_284 (+ 1.10808 (* y 1.21951))) (t_285 (- t_41)) (t_286 (- (* y 8.13008) 0.615)) (t_287 (+ 0.3625 (* y 2.84553))) (t_288 (- t_287 (* x 4.47154))) (t_289 (+ (+ 0.03425 (* x 2.23577)) (* y 4.06504))) (t_290 (+ 2.875 (* x 8.13008))) (t_291 (- 1.083 (* x 8.13008))) (t_292 (+ 1.825 (* y 8.13008))) (t_293 (- 6.48101 (* x 8.13008))) (t_294 (+ 7.45 (* x 8.13008))) (t_295 (+ 1.05625 (* y 5.28455))) (t_296 (- (* y 8.13008) 1.475)) (t_297 (- (* x 8.13008) 0.282999)) (t_298 (- 4.881 (* x 8.13008))) (t_299 (- (* y 8.13008) 0.55)) (t_300 (sqrt (+ (pow (+ 5.625 (* x 8.13008)) 2.0) t_158))) (t_301 (- t_300 0.275)) (t_302 (- 2.51875 (* y 5.28455))) (t_303 (+ 3.3 (* x 8.13008))) (t_304 (- (* x 8.13008) 6.408)) (t_305 (- 1.676 (* x 8.13008))) (t_306 (- (* x 8.13008) 3.1225)) (t_307 (+ 4.8125 (* y 8.13008))) (t_308 (- t_113 (* y 2.84553))) (t_309 (+ (+ 1.96935 (* y 2.03252)) (* x 4.47154))) (t_310 (- (* x 5.42005) 1.22783)) (t_311 (+ 6.05 (* x 8.13008))) (t_312 (- 5.1585 (* x 8.13008))) (t_313 (- (+ 0.575 (* y 8.13008)))) (t_314 (pow (- (* y 8.13008) 4.7) 2.0)) (t_315 (+ (+ 1.4516 (* y 1.82927)) (* x 4.47154))) (t_316 (+ 1.1947 (* y 1.21951))) (t_317 (+ 2.73475 (* x 4.47154))) (t_318 (- (* y 2.64228) t_317)) (t_319 (+ (* y 1.82927) 2.5219)) (t_320 (- t_319 (* x 4.47154))) (t_321 (- 3.5305 (* x 8.13008))) (t_322 (+ 3.675 (* x 8.13008))) (t_323 (+ 0.292376 (* y 2.84553))) (t_324 (- t_323 (* x 4.47154))) (t_325 (+ 5.3 (* y 8.13008))) (t_326 (sqrt (+ (pow (+ 1.462 (* x 8.13008)) 2.0) t_158))) (t_327 (- (* x 8.13008) 0.320499)) (t_328 (sqrt (+ t_176 (pow (- (+ 7.16429 (* x 8.13008)) (* y 2.32288)) 2.0)))) (t_329 (- (* x 11.6144) 7.23715)) (t_330 (+ 1.02555 (* y 2.03252))) (t_331 (+ 2.137 (* x 8.13008))) (t_332 (+ 2.4785 (* x 4.47154))) (t_333 (+ 1.77125 (* y 5.28455))) (t_334 (- (* x 8.13008) 6.5305)) (t_335 (+ 6.2 (* y 8.13008))) (t_336 (+ (* y 1.21951) 1.7447)) (t_337 (+ 3.0 (* y 8.13008))) (t_338 (- t_337)) (t_339 (sqrt (+ t_158 (pow (- (* x 8.13008) 6.476) 2.0)))) (t_340 (+ (* y 2.03252) 2.95138)) (t_341 (+ 5.2 (* y 8.13008))) (t_342 (pow t_341 2.0)) (t_343 (- t_341)) (t_344 (fmax t_183 t_343)) (t_345 (+ 0.289485 (* x 2.27642))) (t_346 (- (* x 8.13008) 3.401)) (t_347 (- (* y 8.13008) 6.15)) (t_348 (pow t_347 2.0)) (t_349 (sqrt (+ t_348 (pow (- (* x 8.13008) 2.8955) 2.0)))) (t_350 (fmax t_216 t_347)) (t_351 (+ (* y 1.82927) 3.15743)) (t_352 (- (* x 4.47154) t_351)) (t_353 (+ 1.2994 (* y 3.25203))) (t_354 (+ 3.6525 (* x 4.47154))) (t_355 (- (* y 2.84553) t_354)) (t_356 (sqrt (+ t_176 (pow (+ 4.345 (* x 8.13008)) 2.0)))) (t_357 (- 1.6725 t_49)) (t_358 (sqrt (+ t_54 (pow (- (+ 4.12414 (* x 8.13008)) (* y 2.32288)) 2.0)))) (t_359 (- 0.14 (* y 0.813008))) (t_360 (+ 4.85 (* y 8.13008))) (t_361 (pow t_360 2.0)) (t_362 (sqrt (+ t_361 (pow (- (* x 8.13008) 0.633) 2.0)))) (t_363 (sqrt (+ (pow (+ 0.317 (* x 8.13008)) 2.0) t_361))) (t_364 (+ 1.675 (* x 8.13008))) (t_365 (+ (+ (* x 1.82927) 3.2527) (* y 4.06504))) (t_366 (pow (- 0.6875 (* y 8.13008)) 2.0)) (t_367 (+ 0.300176 (* y 2.23577))) (t_368 (+ (+ 0.590637 (* x 1.82927)) (* y 4.06504))) (t_369 (- 0.195 (* y 0.813008))) (t_370 (+ 2.487 (* x 8.13008))) (t_371 (sqrt (+ (pow t_370 2.0) t_158))) (t_372 (- t_151 (* y 2.84553))) (t_373 (+ (+ 2.216 (* y 2.84553)) (* x 4.47154))) (t_374 (- t_373)) (t_375 (+ 1.9 (* y 8.13008))) (t_376 (pow t_375 2.0)) (t_377 (- t_375)) (t_378 (fmax t_377 t_200)) (t_379 (- 0.3 (* y 8.13008))) (t_380 (fmax t_299 t_379)) (t_381 (- 2.5 (* y 8.13008))) (t_382 (fmax t_381 t_74)) (t_383 (fmax t_245 t_381)) (t_384 (fmax t_381 t_175)) (t_385 (+ 2.6125 (* y 8.13008))) (t_386 (- t_159 0.275)) (t_387 (- 1.65817 (* x 5.42005))) (t_388 (- (* x 8.13008) 5.733)) (t_389 (fmax t_343 t_360)) (t_390 (+ 2.65 (* y 4.06504))) (t_391 (+ 7.12143 (* x 11.6144))) (t_392 (+ (+ (* y 2.03252) 2.466) (* x 4.47154))) (t_393 (+ 0.6375 (* y 8.13008))) (t_394 (- t_393)) (t_395 (pow t_393 2.0)) (t_396 (+ (* x 1.01626) 1.55781)) (t_397 (- 0.208 (* x 8.13008))) (t_398 (sqrt (+ t_54 (pow (- (* x 8.13008) (+ 0.993357 (* y 2.32288))) 2.0)))) (t_399 (+ 2.685 (* y 8.13008))) (t_400 (- (* x 8.13008) 0.150499)) (t_401 (- 3.501 (* x 8.13008))) (t_402 (+ 4.512 (* x 8.13008))) (t_403 (sqrt (+ (pow t_402 2.0) t_280))) (t_404 (- (* y 0.813008) 0.525)) (t_405 (+ (+ (* y 2.03252) 3.665) (* x 4.47154))) (t_406 (pow (- (* y 8.13008) 0.4625) 2.0)) (t_407 (+ 2.24785 (* x 4.47154))) (t_408 (- t_135)) (t_409 (- 0.525 (* y 8.13008))) (t_410 (fmax t_286 t_409)) (t_411 (pow (- (* y 8.13008) 6.5) 2.0)) (t_412 (- 3.875 (* y 8.13008))) (t_413 (+ 0.63 (* y 0.813008))) (t_414 (- t_413)) (t_415 (- (+ 2.075 (* x 8.13008)))) (t_416 (- (* x 11.6144) 2.67571)) (t_417 (fmax t_83 t_216)) (t_418 (- t_49 1.3975)) (t_419 (- (+ 7.95 (* x 8.13008)))) (t_420 (- (+ 1.675 (* y 8.13008)))) (t_421 (- (* x 8.13008) 6.656)) (t_422 (fmax t_216 t_89)) (t_423 (+ 1.25 (* y 8.13008))) (t_424 (fmax (- (* y 8.13008) 0.95) (- 0.85 (* y 8.13008)))) (t_425 (- (+ 1.142 (* x 8.13008)))) (t_426 (- 5.858 (* x 8.13008))) (t_427 (- t_155)) (t_428 (+ (* y 0.813008) 3.968)) (t_429 (+ 0.025 (* y 0.813008))) (t_430 (+ 0.596601 (* x 4.47154))) (t_431 (- (* y 1.82927) t_430)) (t_432 (- 2.11243 t_22)) (t_433 (- t_160)) (t_434 (- t_209 (* y 1.82927))) (t_435 (- 2.00117 (* x 5.42005))) (t_436 (sqrt (+ (pow (- (+ 0.146856 (* x 8.13008)) (* y 2.32288)) 2.0) t_158))) (t_437 (+ 0.4125 (* y 8.13008))) (t_438 (+ 1.24555 (* y 2.03252))) (t_439 (+ (* y 0.813008) 6.188)) (t_440 (- t_49 2.09738)) (t_441 (+ 0.322376 (* y 2.03252))) (t_442 (+ 4.825 (* x 8.13008))) (t_443 (+ 5.4 (* x 8.13008))) (t_444 (+ (* y 2.19512) (* x 2.84553))) (t_445 (- 6.0305 (* x 8.13008))) (t_446 (+ (* y 1.21951) 1.67444)) (t_447 (+ 3.2375 (* x 4.47154))) (t_448 (- 2.4205 (* x 8.13008))) (t_449 (- t_184)) (t_450 (- 3.001 (* x 8.13008))) (t_451 (+ (+ 1.55693 (* x 2.23577)) (* y 4.06504))) (t_452 (+ (+ 0.6785 (* y 2.03252)) (* x 4.47154))) (t_453 (+ 0.707348 (* x 4.5122))) (t_454 (- (* y 8.13008) 6.075)) (t_455 (fmax t_216 t_454)) (t_456 (pow t_454 2.0)) (t_457 (sqrt (+ t_456 (pow (+ 0.604501 (* x 8.13008)) 2.0)))) (t_458 (sqrt (+ t_456 (pow (- (* x 8.13008) 1.3455) 2.0)))) (t_459 (sqrt (+ t_456 t_268))) (t_460 (sqrt (+ t_456 (pow t_303 2.0)))) (t_461 (sqrt (+ t_456 (pow (- (* x 8.13008) 5.0255) 2.0)))) (t_462 (sqrt (+ t_456 (pow (+ 5.65 (* x 8.13008)) 2.0)))) (t_463 (- 3.9955 (* x 8.13008))) (t_464 (+ 0.150001 (* x 8.13008))) (t_465 (pow t_464 2.0)) (t_466 (+ 3.1 (* y 8.13008))) (t_467 (pow (- (* x 8.13008) 4.1255) 2.0)) (t_468 (sqrt (+ t_456 t_467))) (t_469 (- (* y 8.13008) 0.6875)) (t_470 (fmax t_409 t_469)) (t_471 (+ 1.732 (* x 8.13008))) (t_472 (pow t_283 2.0)) (t_473 (sqrt (+ t_472 t_268))) (t_474 (sqrt (+ t_467 t_472))) (t_475 (+ 1.06718 (* x 2.23577))) (t_476 (- (* x 8.13008) 3.6855)) (t_477 (pow (+ 2.3 (* y 8.13008)) 2.0)) (t_478 (- (* y 2.64228) t_65)) (t_479 (+ 0.986526 (* y 1.21951))) (t_480 (- (* x 8.13008) 8.05251)) (t_481 (+ 3.8 (* x 8.13008))) (t_482 (- 1.22783 (* x 5.42005))) (t_483 (- t_200)) (t_484 (- (* y 8.13008) 1.75)) (t_485 (- (* x 4.47154) t_250)) (t_486 (- (* y 8.13008) 5.25)) (t_487 (- (* y 5.28455) 3.23375)) (t_488 (- t_257 (* y 2.64228))) (t_489 (+ (+ 2.54435 (* y 2.84553)) (* x 4.47154))) (t_490 (- (* x 4.47154) t_260)) (t_491 (+ 0.25 (* y 8.13008))) (t_492 (+ (* x 1.82927) (* y 4.06504))) (t_493 (sqrt (+ t_176 (pow (- (* x 8.13008) 2.8475) 2.0)))) (t_494 (pow t_484 2.0)) (t_495 (sqrt (+ t_494 (pow (- (* x 8.13008) 5.083) 2.0)))) (t_496 (sqrt (+ t_494 (pow (- (* x 8.13008) 5.333) 2.0)))) (t_497 (+ 0.44765 (* x 2.84553))) (t_498 (- t_264)) (t_499 (- (* x 8.13008) 3.021)) (t_500 (pow (- t_437) 2.0)) (t_501 (+ 6.3 (* y 8.13008))) (t_502 (pow t_501 2.0)) (t_503 (- t_501)) (t_504 (+ 0.500551 (* y 2.84553))) (t_505 (- t_504 (* x 4.47154))) (t_506 (sqrt (+ t_456 (pow (- (* x 8.13008) 0.0454988) 2.0)))) (t_507 (+ 1.068 (* x 2.23577))) (t_508 (- (+ 5.9 (* x 8.13008)))) (t_509 (- (+ 0.249501 (* x 8.13008)))) (t_510 (- 4.9855 (* x 8.13008))) (t_511 (+ 2.8935 (* x 4.47154))) (t_512 (- (* y 2.84553) t_511)) (t_513 (sqrt (+ t_176 (pow (- (* x 8.13008) 0.0924997) 2.0)))) (t_514 (sqrt (+ t_7 t_176))) (t_515 (- 0.415 (* y 0.813008))) (t_516 (+ 0.36 (* y 3.25203))) (t_517 (+ 3.35775 (* x 4.5122))) (t_518 (+ 0.263484 (* x 2.27642))) (t_519 (- t_90)) (t_520 (+ 2.64638 (* y 2.84553))) (t_521 (- t_520 (* x 4.47154))) (t_522 (- 2.846 (* x 8.13008))) (t_523 (- 0.305 (* y 0.813008))) (t_524 (- (* x 8.13008) 4.6525)) (t_525 (+ 1.025 (* x 8.13008))) (t_526 (+ 0.7775 (* y 2.03252))) (t_527 (sqrt (+ t_140 (pow (- (* x 8.13008) 1.073) 2.0)))) (t_528 (+ 2.725 (* y 8.13008))) (t_529 (pow t_528 2.0)) (t_530 (sqrt (+ (pow (- (+ 3.35486 (* x 8.13008)) (* y 2.32288)) 2.0) t_529))) (t_531 (sqrt (+ (pow (- (* x 8.13008) 5.2605) 2.0) t_529))) (t_532 (sqrt (+ (pow (- (+ 0.574857 (* x 8.13008)) (* y 2.32288)) 2.0) t_529))) (t_533 (sqrt (+ t_529 (pow (- (* x 8.13008) 5.9605) 2.0)))) (t_534 (- t_533 0.275)) (t_535 (sqrt (+ (pow (- (* x 8.13008) 3.4105) 2.0) t_529))) (t_536 (sqrt (+ (pow (+ 0.177 (* x 8.13008)) 2.0) t_529))) (t_537 (sqrt (+ (pow (- (* x 8.13008) 0.523) 2.0) t_529))) (t_538 (sqrt (+ (pow (+ 5.745 (* x 8.13008)) 2.0) t_529))) (t_539 (- t_538 0.275)) (t_540 (- (* y 8.13008) 6.45)) (t_541 (fmax t_540 (- 6.35 (* y 8.13008)))) (t_542 (+ 4.875 (* x 8.13008))) (t_543 (- 0.951167 (* x 5.42005))) (t_544 (+ 0.575 (* y 0.813008))) (t_545 (- t_544)) (t_546 (sqrt (+ t_176 (pow (- (* x 8.13008) 4.3775) 2.0)))) (t_547 (- 7.35601 (* x 8.13008))) (t_548 (sqrt (+ t_348 (pow (- (* x 8.13008) 2.6455) 2.0)))) (t_549 (+ 6.9 (* x 8.13008))) (t_550 (sqrt (+ (pow t_60 2.0) (pow t_549 2.0)))) (t_551 (+ (* y 2.64228) 3.2069)) (t_552 (- (* x 4.47154) t_551)) (t_553 (- t_551 (* x 4.47154))) (t_554 (- (* x 4.47154) t_287)) (t_555 (- (+ 0.452 (* x 8.13008)))) (t_556 (- (* y 8.13008) 1.65)) (t_557 (+ 2.45 (* y 8.13008))) (t_558 (+ 0.65875 (* x 2.84553))) (t_559 (- (* y 8.13008) 1.725)) (t_560 (+ 3.12857 (* x 11.6144))) (t_561 (- (+ 5.712 (* x 8.13008)))) (t_562 (+ (* y 2.64228) 3.34743)) (t_563 (- t_562 (* x 4.47154))) (t_564 (+ 2.1625 (* x 2.23577))) (t_565 (- (+ 1.67 (* x 8.13008)))) (t_566 (- (* y 1.82927) t_116)) (t_567 (- t_115)) (t_568 (- t_317 (* y 2.64228))) (t_569 (+ 0.96065 (* y 2.03252))) (t_570 (- 6.7 (* y 8.13008))) (t_571 (- t_267)) (t_572 (- (* x 4.47154) t_319)) (t_573 (- (* x 4.47154) t_323)) (t_574 (+ (+ 0.3131 (* y 1.82927)) (* x 4.47154))) (t_575 (- (* y 8.13008) 1.5)) (t_576 (sqrt (+ t_361 (pow (- (* x 8.13008) 0.383) 2.0)))) (t_577 (- 2.725 (* y 8.13008))) (t_578 (fmax (- (* y 8.13008) 2.815) t_577)) (t_579 (+ 4.912 (* x 8.13008))) (t_580 (fmax t_402 (- t_579))) (t_581 (+ 6.45 (* x 8.13008))) (t_582 (- t_581)) (t_583 (+ 3.85 (* y 8.13008))) (t_584 (pow t_583 2.0)) (t_585 (sqrt (+ t_584 (pow t_346 2.0)))) (t_586 (fmax t_466 (- t_583))) (t_587 (pow (- (* y 8.13008) 5.8) 2.0)) (t_588 (fmax t_89 (- 6.05 (* y 8.13008)))) (t_589 (+ 0.552 (* x 8.13008))) (t_590 (sqrt (+ (pow t_589 2.0) t_280))) (t_591 (fmax t_589 (- (+ 0.952 (* x 8.13008))))) (t_592 (- 5.15 (* y 8.13008))) (t_593 (- (* x 5.42005) 1.65817)) (t_594 (- t_354 (* y 2.84553))) (t_595 (- 0.587999 (* x 8.13008))) (t_596 (- (* y 8.13008) 6.05)) (t_597 (- t_193)) (t_598 (- (+ 2.132 (* x 8.13008)))) (t_599 (+ 1.726 (* y 4.87805))) (t_600 (+ 5.95 (* y 8.13008))) (t_601 (pow t_600 2.0)) (t_602 (sqrt (+ t_601 (pow (- (* x 8.13008) 1.508) 2.0)))) (t_603 (- 1.0705 (* x 8.13008))) (t_604 (sqrt (+ t_601 (pow (- (* x 8.13008) 1.258) 2.0)))) (t_605 (- 3.1355 (* x 8.13008))) (t_606 (+ 1.35 (* y 8.13008))) (t_607 (fmax t_377 t_606)) (t_608 (fmax t_423 (- t_606))) (t_609 (- (* x 8.13008) 1.138)) (t_610 (- (* y 5.28455) 2.51875)) (t_611 (- (+ 5.85 (* y 8.13008)))) (t_612 (- (* y 8.13008) 5.015)) (t_613 (- (* y 8.13008) 3.875)) (t_614 (fmax t_253 t_613)) (t_615 (pow t_613 2.0)) (t_616 (sqrt (+ (pow (- (* x 8.13008) 4.7835) 2.0) t_615))) (t_617 (sqrt (+ t_615 (pow (- (* x 8.13008) 0.862999) 2.0)))) (t_618 (sqrt (+ t_615 (pow (- (* x 8.13008) 0.212998) 2.0)))) (t_619 (sqrt (+ t_615 (pow (+ 2.245 (* x 8.13008)) 2.0)))) (t_620 (- t_619 0.275)) (t_621 (sqrt (+ t_615 (pow t_522 2.0)))) (t_622 (sqrt (+ t_615 (pow (- (* x 8.13008) 6.1335) 2.0)))) (t_623 (sqrt (+ t_615 (pow (- (+ 4.72857 (* x 8.13008)) (* y 2.32288)) 2.0)))) (t_624 (+ 0.4066 (* x 4.47154))) (t_625 (- (* y 2.64228) t_624)) (t_626 (- 2.825 (* y 8.13008))) (t_627 (- 5.025 (* y 8.13008))) (t_628 (+ (+ 1.74723 (* y 1.82927)) (* x 4.47154))) (t_629 (- 4.851 (* x 8.13008))) (t_630 (+ 1.065 (* x 4.47154))) (t_631 (- (* x 11.6144) 6.52214)) (t_632 (+ 0.8 (* y 8.13008))) (t_633 (- t_632)) (t_634 (fmax t_491 t_633)) (t_635 (fmax t_34 t_633)) (t_636 (+ (+ 1.5066 (* y 1.82927)) (* x 4.47154))) (t_637 (+ 1.01488 (* y 4.87805))) (t_638 (- (* y 8.13008) 2.85)) (t_639 (pow t_638 2.0)) (t_640 (sqrt (+ t_639 (pow (+ 1.945 (* x 8.13008)) 2.0)))) (t_641 (sqrt (+ t_639 (pow (+ 2.195 (* x 8.13008)) 2.0)))) (t_642 (fmax t_381 t_638)) (t_643 (+ (+ 2.1853 (* x 2.23577)) (* y 4.06504))) (t_644 (+ 0.957 (* x 8.13008))) (t_645 (+ 0.45 (* y 8.13008))) (t_646 (fmax t_633 t_645)) (t_647 (+ 0.0173756 (* y 2.84553))) (t_648 (- t_647 (* x 4.47154))) (t_649 (- 0.47 (* y 0.813008))) (t_650 (- t_333)) (t_651 (+ (+ (* y 2.03252) 2.4825) (* x 4.47154))) (t_652 (- 2.576 (* x 8.13008))) (t_653 (+ 6.325 (* x 8.13008))) (t_654 (pow t_653 2.0)) (t_655 (sqrt (+ t_654 t_158))) (t_656 (sqrt (+ t_654 t_54))) (t_657 (sqrt (+ t_654 t_529))) (t_658 (sqrt (+ t_280 (pow t_91 2.0)))) (t_659 (+ 0.485 (* x 2.23577))) (t_660 (- (* x 8.13008) 3.408)) (t_661 (sqrt (+ (pow t_652 2.0) t_158))) (t_662 (fmax t_377 t_47)) (t_663 (+ 0.606888 (* y 1.21951))) (t_664 (+ 4.1 (* y 8.13008))) (t_665 (pow t_664 2.0)) (t_666 (- t_664)) (t_667 (fmax t_666 t_235)) (t_668 (fmax t_666 (+ 3.75 (* y 8.13008)))) (t_669 (fmax t_466 t_666)) (t_670 (fmax t_666 t_9)) (t_671 (+ 2.25 (* y 8.13008))) (t_672 (sqrt (+ (pow t_671 2.0) (pow t_471 2.0)))) (t_673 (- (* y 0.813008) 0.14)) (t_674 (- t_194)) (t_675 (- (* x 8.13008) 7.531)) (t_676 (sqrt (+ t_465 (pow t_556 2.0)))) (t_677 (sqrt (+ t_615 (pow (+ 0.437001 (* x 8.13008)) 2.0)))) (t_678 (- t_677 0.275)) (t_679 (- (+ 7.3 (* x 8.13008)))) (t_680 (- (* x 8.13008) 6.6455)) (t_681 (+ 1.27381 (* y 4.87805))) (t_682 (- 1.3975 t_49)) (t_683 (- t_528)) (t_684 (- (* y 8.13008) 0.85)) (t_685 (fmax t_379 t_684)) (t_686 (+ (+ (* x 2.23577) 2.30217) (* y 4.06504))) (t_687 (- 1.4 (* y 8.13008))) (t_688 (fmax t_687 t_1)) (t_689 (fmax t_687 t_153)) (t_690 (+ 4.02143 (* x 11.6144))) (t_691 (+ 3.775 (* y 8.13008))) (t_692 (fmax t_666 t_691)) (t_693 (- t_360)) (t_694 (+ 3.771 (* x 4.47154))) (t_695 (pow t_299 2.0)) (t_696 (sqrt (+ t_695 (pow t_364 2.0)))) (t_697 (+ (* y 2.60163) (* x 2.84553))) (t_698 (sqrt (+ t_584 (pow t_109 2.0)))) (t_699 (- t_429)) (t_700 (- (* x 5.42005) 2.7765)) (t_701 (sqrt (+ (pow t_248 2.0) (pow t_73 2.0)))) (t_702 (- 4.908 (* x 8.13008))) (t_703 (+ 1.30055 (* y 2.03252))) (t_704 (- (* x 11.6144) 0.585714)) (t_705 (+ 5.0375 (* y 8.13008))) (t_706 (- (* x 8.13008) 4.0805)) (t_707 (sqrt (+ t_265 (pow (- (* x 8.13008) 5.3335) 2.0)))) (t_708 (- (+ 1.737 (* x 8.13008)))) (t_709 (- (* x 11.6144) 0.743571)) (t_710 (- 2.09738 t_49)) (t_711 (fmax t_606 t_71)) (t_712 (+ (* y 1.21951) 2.17851)) (t_713 (sqrt (+ (pow t_272 2.0) (pow t_78 2.0)))) (t_714 (- (* y 8.13008) 4.6)) (t_715 (fmax t_253 t_714)) (t_716 (sqrt (+ (pow t_714 2.0) (pow t_331 2.0)))) (t_717 (+ 2.2175 (* x 2.23577))) (t_718 (+ 3.1825 (* x 4.47154))) (t_719 (- t_557)) (t_720 (+ 2.457 (* x 8.13008))) (t_721 (- t_720)) (t_722 (- (* y 8.13008) 0.625)) (t_723 (sqrt (+ (pow (- (* x 8.13008) 5.7775) 2.0) t_176))) (t_724 (- t_723 0.275)) (t_725 (- t_37)) (t_726 (sqrt (+ t_456 (pow (- (* x 8.13008) (+ 1.71336 (* y 2.32288))) 2.0)))) (t_727 (+ (+ 0.7335 (* y 2.03252)) (* x 4.47154))) (t_728 (+ 8.97857 (* x 11.6144))) (t_729 (- 0.37375 (* y 5.28455))) (t_730 (+ 2.0 (* y 8.13008))) (t_731 (sqrt (+ (pow (+ 4.517 (* x 8.13008)) 2.0) t_158))) (t_732 (- t_731 0.275)) (t_733 (+ 1.5125 (* y 8.13008))) (t_734 (sqrt (+ (pow (+ 0.0670004 (* x 8.13008)) 2.0) t_361))) (t_735 (- 0.575 (* y 8.13008))) (t_736 (- (* x 8.13008) 6.6385)) (t_737 (- (* x 8.13008) 7.87551)) (t_738 (sqrt (+ t_695 (pow t_737 2.0)))) (t_739 (- (* x 8.13008) 5.9955)) (t_740 (sqrt (+ t_695 (pow t_739 2.0)))) (t_741 (pow (+ 7.025 (* x 8.13008)) 2.0)) (t_742 (- (* x 8.13008) 1.8305)) (t_743 (- t_691)) (t_744 (+ 1.36223 (* x 4.47154))) (t_745 (- t_744 (* y 2.64228))) (t_746 (- (* y 2.64228) t_744)) (t_747 (+ 1.65 (* y 8.13008))) (t_748 (fmax t_47 (- t_747))) (t_749 (pow t_747 2.0)) (t_750 (sqrt (+ t_749 (pow t_400 2.0)))) (t_751 (sqrt (+ t_749 (pow t_736 2.0)))) (t_752 (sqrt (+ (pow (+ 0.354001 (* x 8.13008)) 2.0) t_158))) (t_753 (- t_752 0.275)) (t_754 (sqrt (+ (pow (- (* x 8.13008) 1.951) 2.0) t_158))) (t_755 (- 4.925 (* y 8.13008))) (t_756 (pow t_200 2.0)) (t_757 (sqrt (+ t_756 (pow t_742 2.0)))) (t_758 (- (* y 8.13008) 0.575)) (t_759 (fmax t_379 t_758)) (t_760 (pow t_758 2.0)) (t_761 (sqrt (+ t_760 (pow (+ 4.45 (* x 8.13008)) 2.0)))) (t_762 (sqrt (+ t_760 (pow (- (* x 8.13008) 2.6955) 2.0)))) (t_763 (sqrt (+ t_7 t_760))) (t_764 (- t_763 0.275)) (t_765 (sqrt (+ t_760 (pow (+ 3.15 (* x 8.13008)) 2.0)))) (t_766 (sqrt (+ t_760 (pow (+ 5.1 (* x 8.13008)) 2.0)))) (t_767 (sqrt (+ t_760 (pow (- (* x 8.13008) 2.0455) 2.0)))) (t_768 (- t_767 0.275)) (t_769 (sqrt (+ t_760 (pow t_582 2.0)))) (t_770 (sqrt (+ t_760 (pow (+ 1.3 (* x 8.13008)) 2.0)))) (t_771 (sqrt (+ t_760 (pow (- (* x 8.13008) (+ (* y 2.32288) 6.90979)) 2.0)))) (t_772 (sqrt (+ t_760 (pow (+ 7.075 (* x 8.13008)) 2.0)))) (t_773 (sqrt (+ t_760 (pow (- (* x 8.13008) 3.933) 2.0)))) (t_774 (- t_773 0.275)) (t_775 (sqrt (+ t_176 (pow (- (* x 8.13008) 7.77751) 2.0)))) (t_776 (- (* x 8.13008) 1.183)) (t_777 (+ 2.48625 (* y 5.28455))) (t_778 (- t_777)) (t_779 (fmax t_90 t_182)) (t_780 (+ 3.785 (* y 8.13008))) (t_781 (sqrt (+ (pow (+ 3.207 (* x 8.13008)) 2.0) t_529))) (t_782 (- (* x 8.13008) 0.9705)) (t_783 (- (* y 8.13008) 3.7)) (t_784 (pow t_632 2.0)) (t_785 (- t_21)) (t_786 (fmax t_203 t_785)) (t_787 (+ (+ 1.30475 (* y 1.82927)) (* x 4.47154))) (t_788 (sqrt (+ t_760 (pow (+ 0.6 (* x 8.13008)) 2.0)))) (t_789 (- t_788 0.275)) (t_790 (+ (+ 0.8881 (* y 2.64228)) (* x 4.47154))) (t_791 (- t_790)) (t_792 (- 3.0055 (* x 8.13008))) (t_793 (+ 5.975 (* x 8.13008))) (t_794 (sqrt (+ (pow (- (* x 8.13008) 7.12751) 2.0) t_176))) (t_795 (- t_794 0.275)) (t_796 (fmax t_684 t_735)) (t_797 (+ 0.525 (* y 8.13008))) (t_798 (- t_797)) (t_799 (pow t_797 2.0)) (t_800 (sqrt (+ (pow (+ 1.5495 (* x 8.13008)) 2.0) t_799))) (t_801 (sqrt (+ (pow (- (+ 4.13393 (* x 8.13008)) (* y 2.32288)) 2.0) t_799))) (t_802 (sqrt (+ (pow (- (+ 0.11593 (* x 8.13008)) (* y 2.32288)) 2.0) t_799))) (t_803 (sqrt (+ t_799 (pow (- (* x 8.13008) 4.306) 2.0)))) (t_804 (sqrt (+ (pow (+ 6.525 (* x 8.13008)) 2.0) t_799))) (t_805 (sqrt (+ (pow (+ 0.969501 (* x 8.13008)) 2.0) t_799))) (t_806 (fmax t_503 t_600)) (t_807 (+ 3.6 (* x 8.13008))) (t_808 (- t_49 1.82238)) (t_809 (- t_511 (* y 2.84553))) (t_810 (- (+ 1.2445 (* x 8.13008)))) (t_811 (+ 0.737225 (* x 2.27642))) (t_812 (- (* x 4.47154) t_520)) (t_813 (+ 4.925 (* x 8.13008))) (t_814 (- (* x 8.13008) 2.751)) (t_815 (sqrt (+ t_615 (pow (- (* x 8.13008) 2.221) 2.0)))) (t_816 (- t_815 0.275)) (t_817 (+ 1.7272 (* y 3.41463))) (t_818 (+ 0.54 (* y 2.19512))) (t_819 (+ 1.53565 (* y 2.84553))) (t_820 (- t_819 (* x 4.47154))) (t_821 (- (+ 4.62 (* x 8.13008)))) (t_822 (- 3.233 (* x 8.13008))) (t_823 (sqrt (+ t_54 (pow t_188 2.0)))) (t_824 (- (+ 0.492001 (* x 8.13008)))) (t_825 (+ 3.825 (* y 8.13008))) (t_826 (pow t_825 2.0)) (t_827 (sqrt (+ t_826 (pow (- (* x 8.13008) 3.776) 2.0)))) (t_828 (sqrt (+ t_826 (pow (- (* x 8.13008) 1.468) 2.0)))) (t_829 (- t_828 0.275)) (t_830 (sqrt (+ t_826 (pow (+ 5.437 (* x 8.13008)) 2.0)))) (t_831 (sqrt (+ t_826 (pow (- (* x 8.13008) 0.167999) 2.0)))) (t_832 (sqrt (+ t_826 (pow (- (+ 5.97857 (* x 8.13008)) (* y 2.32288)) 2.0)))) (t_833 (sqrt (+ t_826 (pow t_293 2.0)))) (t_834 (sqrt (+ t_826 (pow (- (* x 8.13008) (+ (* y 2.32288) 5.57243)) 2.0)))) (t_835 (sqrt (+ t_826 (pow (- (+ 2.66557 (* x 8.13008)) (* y 2.32288)) 2.0)))) (t_836 (sqrt (+ t_826 (pow (+ 3.082 (* x 8.13008)) 2.0)))) (t_837 (- t_831 0.275)) (t_838 (sqrt (+ t_826 (pow (+ 0.482 (* x 8.13008)) 2.0)))) (t_839 (- t_838 0.275)) (t_840 (sqrt (+ t_826 (pow (- (* x 8.13008) 0.818) 2.0)))) (t_841 (sqrt (+ t_826 (pow t_547 2.0)))) (t_842 (sqrt (+ t_826 t_7))) (t_843 (- t_842 0.275)) (t_844 (+ 2.675 (* y 8.13008))) (t_845 (- t_844)) (t_846 (+ 1.44223 (* x 4.47154))) (t_847 (- t_846 (* y 1.82927))) (t_848 (- (* y 1.82927) t_846)) (t_849 (- (* x 8.13008) 5.431)) (t_850 (- 3.825 (* y 8.13008))) (t_851 (fmax t_850 t_154)) (t_852 (+ (* y 1.21951) 1.23609)) (t_853 (+ 1.18065 (* y 2.03252))) (t_854 (- (* x 4.47154) t_562)) (t_855 (+ 2.48475 (* x 4.47154))) (t_856 (- t_855 (* y 1.82927))) (t_857 (- (* y 1.82927) t_855)) (t_858 (- t_489)) (t_859 (- (+ 3.357 (* x 8.13008)))) (t_860 (+ (+ 1.6416 (* y 2.64228)) (* x 4.47154))) (t_861 (- t_860)) (t_862 (+ (* y 2.64228) 3.29243)) (t_863 (- (* x 4.47154) t_862)) (t_864 (- t_862 (* x 4.47154))) (t_865 (+ 1.00286 (* x 11.6144))) (t_866 (- (* x 5.42005) 2.00117)) (t_867 (- (* x 4.47154) t_819)) (t_868 (+ (* x 1.01626) 2.92488)) (t_869 (+ (* y 1.82927) (* x 4.47154))) (t_870 (sqrt (+ t_456 t_108))) (t_871 (- (* x 8.13008) 1.3305)) (t_872 (sqrt (+ t_756 (pow t_871 2.0)))) (t_873 (+ (* y 2.64228) 3.1519)) (t_874 (- (* x 4.47154) t_873)) (t_875 (- t_873 (* x 4.47154))) (t_876 (sqrt (+ t_54 (pow (- (* x 8.13008) 3.8055) 2.0)))) (t_877 (+ 0.571825 (* y 1.21951))) (t_878 (+ 4.55 (* y 8.13008))) (t_879 (- 0.525 (* y 0.813008))) (t_880 (+ 5.275 (* x 8.13008))) (t_881 (- t_880)) (t_882 (fmax t_666 t_825)) (t_883 (sqrt (+ t_826 (pow t_129 2.0)))) (t_884 (+ 4.7 (* x 8.13008))) (t_885 (+ 4.925 (* y 8.13008))) (t_886 (pow t_885 2.0)) (t_887 (sqrt (+ t_886 (pow (+ 0.867001 (* x 8.13008)) 2.0)))) (t_888 (sqrt (+ t_886 (pow (- (* x 8.13008) 4.2705) 2.0)))) (t_889 (sqrt (+ t_886 (pow (- (* x 8.13008) 4.9205) 2.0)))) (t_890 (sqrt (+ t_886 (pow (+ 1.767 (* x 8.13008)) 2.0)))) (t_891 (sqrt (+ t_886 (pow (- (* x 8.13008) 3.6205) 2.0)))) (t_892 (sqrt (+ t_886 (pow t_776 2.0)))) (t_893 (- t_892 0.275)) (t_894 (sqrt (+ t_886 (pow t_813 2.0)))) (t_895 (- t_894 0.275)) (t_896 (sqrt (+ t_886 (pow t_139 2.0)))) (t_897 (sqrt (+ t_886 (pow t_70 2.0)))) (t_898 (- t_897 0.275)) (t_899 (- t_825)) (t_900 (- 6.201 (* x 8.13008))) (t_901 (- 0.4625 (* y 8.13008))) (t_902 (fmax t_722 t_901)) (t_903 (- 4.6455 (* x 8.13008))) (t_904 (- (* x 8.13008) 5.558)) (t_905 (+ 4.65 (* y 8.13008))) (t_906 (fmax t_905 (- t_885))) (t_907 (fmax t_343 t_905)) (t_908 (fmax t_666 t_583)) (t_909 (+ 3.497 (* x 8.13008))) (t_910 (sqrt (+ t_176 (pow (+ 4.995 (* x 8.13008)) 2.0)))) (t_911 (- t_910 0.275)) (t_912 (+ (* y 2.03252) (* x 4.47154))) (t_913 (fmax t_343 t_885)) (t_914 (+ (+ (* x 2.23577) 3.865) (* y 4.06504))) (t_915 (fmax t_3 (- 5.7 (* y 8.13008)))) (t_916 (pow t_596 2.0)) (t_917 (sqrt (+ t_916 (pow t_542 2.0)))) (t_918 (sqrt (+ t_916 (pow t_322 2.0)))) (t_919 (- t_55 0.275)) (t_920 (+ (+ (* y 2.03252) 2.7575) (* x 4.47154))) (t_921 (+ (+ (* y 2.03252) 2.18935) (* x 4.47154))) (t_922 (+ 0.5025 (* y 2.03252))) (t_923 (+ 2.662 (* x 8.13008))) (t_924 (- t_923)) (t_925 (pow (- (* y 8.13008) 3.6) 2.0)) (t_926 (- t_491)) (t_927 (pow (- (* y 8.13008) 1.675) 2.0)) (t_928 (sqrt (+ (pow (- (* x 8.13008) 6.133) 2.0) t_927))) (t_929 (sqrt (+ t_927 (pow t_124 2.0)))) (t_930 (sqrt (+ t_927 (pow (- (* x 8.13008) 0.224999) 2.0)))) (t_931 (sqrt (+ t_927 (pow (- (* x 8.13008) 2.775) 2.0)))) (t_932 (sqrt (+ (pow (+ 6.375 (* x 8.13008)) 2.0) t_927))) (t_933 (sqrt (+ t_741 t_927))) (t_934 (sqrt (+ t_927 (pow (+ 1.9 (* x 8.13008)) 2.0)))) (t_935 (sqrt (+ t_927 (pow (- (* x 8.13008) 6.783) 2.0)))) (t_936 (- t_935 0.275)) (t_937 (- (+ 3.425 (* x 8.13008)))) (t_938 (+ (* x 1.01626) 1.13813)) (t_939 (- (* y 8.13008) 1.3)) (t_940 (fmax t_939 t_379)) (t_941 (fmax t_939 (- 0.55 (* y 8.13008)))) (t_942 (sqrt (+ t_760 (pow (- (* x 8.13008) 6.3705) 2.0)))) (t_943 (- t_14)) (t_944 (+ 0.592 (* x 8.13008))) (t_945 (sqrt (+ t_760 (pow t_481 2.0)))) (t_946 (- 6.2385 (* x 8.13008))) (t_947 (- 7.47551 (* x 8.13008))) (t_948 (- 5.5955 (* x 8.13008))) (t_949 (pow t_645 2.0)) (t_950 (sqrt (+ t_949 (pow (- (* x 8.13008) 0.7685) 2.0)))) (t_951 (sqrt (+ t_949 (pow (- (* x 8.13008) 1.0185) 2.0)))) (t_952 (- (+ 0.267001 (* x 8.13008)))) (t_953 (- 1.4305 (* x 8.13008))) (t_954 (sqrt (+ t_826 (pow (- (* x 8.13008) 5.156) 2.0)))) (t_955 (- 2.7765 (* x 5.42005))) (t_956 (- t_15 (* y 1.82927))) (t_957 (- (+ 2.887 (* x 8.13008)))) (t_958 (fmax t_381 t_16)) (t_959 (- t_622 0.275)) (t_960 (- t_624 (* y 2.64228))) (t_961 (+ 1.01 (* x 4.47154))) (t_962 (sqrt (+ t_826 (pow t_721 2.0)))) (t_963 (+ 0.461601 (* x 4.47154))) (t_964 (- t_963 (* y 2.64228))) (t_965 (- (* y 2.64228) t_963)) (t_966 (- t_351 (* x 4.47154))) (t_967 (- 3.23375 (* y 5.28455))) (t_968 (- 2.5725 (* x 8.13008))) (t_969 (+ 3.20125 (* y 5.28455))) (t_970 (- t_969)) (t_971 (- (+ 3.875 (* y 8.13008)))) (t_972 (fmax t_780 t_971)) (t_973 (+ 0.775551 (* y 2.84553))) (t_974 (- (* x 4.47154) t_973)) (t_975 (- t_973 (* x 4.47154))) (t_976 (- 2.775 (* y 8.13008))) (t_977 (- (* x 11.6144) 5.05)) (t_978 (- t_22 2.11243)) (t_979 (* (+ x y) 4.06504)) (t_980 (+ 2.4935 t_979)) (t_981 (+ 0.0709989 t_979)) (t_982 (pow (+ 0.635 (* y 8.13008)) 2.0)) (t_983 (+ 1.55 (* y 8.13008))) (t_984 (pow t_983 2.0)) (t_985 (sqrt (+ t_984 (pow (+ 2.712 (* x 8.13008)) 2.0)))) (t_986 (sqrt (+ t_984 (pow (+ 2.462 (* x 8.13008)) 2.0)))) (t_987 (fmax t_377 t_983)) (t_988 (pow (+ 6.025 (* y 8.13008)) 2.0)) (t_989 (sqrt (+ t_988 (pow (- (* x 8.13008) 4.683) 2.0)))) (t_990 (sqrt (+ (pow (+ 1.842 (* x 8.13008)) 2.0) t_988))) (t_991 (sqrt (+ t_988 (pow (- (* x 8.13008) 0.00799847) 2.0)))) (t_992 (sqrt (+ (pow t_785 2.0) t_988))) (t_993 (sqrt (+ t_988 (pow t_660 2.0)))) (t_994 (sqrt (+ t_988 (pow (- (* x 8.13008) 4.033) 2.0)))) (t_995 (+ 0.542376 (* y 2.03252))) (t_996 (pow t_337 2.0)) (t_997 (- 4.975 (* y 8.13008))) (t_998 (- t_49 4.12055)) (t_999 (- (+ 0.229501 (* x 8.13008)))) (t_1000 (sqrt (+ t_741 t_176))) (t_1001 (- t_1000 0.275)) (t_1002 (sqrt (+ t_615 (pow (+ 4.325 (* x 8.13008)) 2.0)))) (t_1003 (- (* x 4.47154) t_647)) (t_1004 (- (+ 4.1 (* x 8.13008)))) (t_1005 (- (* x 4.47154) t_504)) (t_1006 (- (* x 8.13008) 4.051)) (t_1007 (+ (+ 0.5925 (* x 2.23577)) (* y 4.06504))) (t_1008 (+ 3.3775 (* x 4.47154))) (t_1009 (- t_1008 (* y 2.84553))) (t_1010 (- (* y 2.84553) t_1008)) (t_1011 (- (* y 0.813008) 0.36)) (t_1012 (fmax t_379 t_722)) (t_1013 (+ (+ (* y 2.03252) 3.61) (* x 4.47154))) (t_1014 (* (+ x y) 2.23577)) (t_1015 (+ 0.570488 t_1014)) (t_1016 (+ t_1014 2.48875)) (t_1017 (- 0.625 (* y 8.13008))) (t_1018 (- (* y 0.813008) 0.25)) (t_1019 (+ (* y 1.21951) 1.30319)) (t_1020 (- (* x 8.13008) 4.5455)) (t_1021 (+ 0.8325 (* y 2.03252))) (t_1022 (fmax t_216 t_3))) (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmax (fmax (fmax (fmax (fmax t_21 (- t_322)) (- 0.175 t_992)) (- t_992 0.275)) t_325) t_503) (fmax (fmax (fmax (+ 4.025 (* x 8.13008)) (- (+ 4.125 (* x 8.13008)))) t_325) t_503)) (fmax (fmax (fmax (+ 4.275 (* x 8.13008)) (- (+ 4.375 (* x 8.13008)))) t_325) t_503)) (fmax (fmax (fmax (+ 5.5 (* y 8.13008)) (- t_82)) t_179) t_274)) (fmax (fmax (fmax (- (+ 5.4 (* y 8.13008))) t_884) t_30) t_325)) (fmax (fmax (fmax t_884 t_30) t_335) t_503)) (fmax (fmax (fmax (+ 4.9 (* x 8.13008)) (- (+ 5.0 (* x 8.13008)))) t_325) t_503)) (fmax (fmax t_344 (- 5.7205 (* x 8.13008))) (- (* x 8.13008) 5.8205))) (fmax (fmax (fmax t_905 (- (+ 4.75 (* y 8.13008)))) t_139) t_226)) (fmax (fmax (fmax t_343 t_139) t_226) (+ 5.1 (* y 8.13008)))) (fmax (fmax t_820 (- (* x 4.47154) t_232)) t_545)) (fmax (fmax (- t_58) t_194) t_414)) (fmax (fmax t_58 t_674) t_413)) (fmax (fmax t_674 t_921) t_544)) (fmax (fmax t_194 (- t_921)) t_545)) (fmax (- 0.175 t_990) (- t_990 0.275))) (fmax (fmax (fmax (+ 2.475 (* x 8.13008)) (- (+ 2.575 (* x 8.13008)))) t_82) t_503)) (fmax (fmax (fmax (fmax (fmax t_560 (- (+ 3.67857 (* x 11.6144)))) (- 0.45 (sqrt (+ t_502 (pow (+ 3.91072 (* x 14.518)) 2.0))))) (- (sqrt (+ t_502 (pow t_560 2.0))) 0.55)) t_82) t_503)) (fmax (fmax (fmax (- t_203) (+ 2.675 (* x 8.13008))) t_325) t_503)) (fmax (fmax t_786 t_82) t_611)) (fmax (fmax t_786 t_335) t_503)) (fmax (- (fmin (- (sqrt (+ (pow (- 1.33245 (* x 3.61337)) 2.0) (pow (- (+ 4.815 (* y 8.13008))) 2.0))) 0.0625) (fmax (fmax (fmax t_163 t_307) t_435) (- (* x 5.42005) 2.16367)))) (- (sqrt (+ (pow (- t_307) 2.0) (pow t_435 2.0))) 0.1625))) (fmax (- (fmin (fmax (fmax (fmax (- t_705) t_866) (- 1.83867 (* x 5.42005))) t_43) (- (sqrt (+ (pow (+ 5.035 (* y 8.13008)) 2.0) (pow (- (* x 3.61337) 1.33578) 2.0))) 0.0625))) (- (sqrt (+ (pow t_705 2.0) (pow t_866 2.0))) 0.1625))) (fmax (fmax (fmax t_183 (- t_272)) (- (* x 8.13008) 1.808)) (- 1.708 (* x 8.13008)))) (fmax (fmax (fmax t_878 (- t_905)) t_78) t_138)) (fmax (fmax (fmax (fmax (fmax t_343 t_272) t_78) t_138) (- 0.15 t_713)) (- t_713 0.25))) (fmax (fmax (fmax (fmax t_344 (- 4.8205 (* x 8.13008))) (- (* x 8.13008) 5.5455)) (- 0.175 t_896)) (- t_896 0.275))) (fmax (fmax (fmax t_343 t_43) t_278) (- 5.0955 (* x 8.13008)))) (fmax (fmax t_907 (- (* x 8.13008) 4.7455)) t_903)) (fmax (fmax (fmax (fmax (fmax t_905 t_278) t_903) (- t_43)) (- 0.175 t_889)) (- t_889 0.275))) (fmax (fmax t_907 t_1020) (- 4.4455 (* x 8.13008)))) (fmax (fmax t_906 (- (* x 8.13008) 4.0955)) t_463)) (fmax (fmax (fmax (fmax t_913 t_1020) t_463) (- 0.175 t_888)) (- t_888 0.275))) (fmax (- 0.175 t_891) (- t_891 0.275))) (fmax (fmax (fmax t_343 (+ 0.142001 (* x 8.13008))) (- (+ 0.242001 (* x 8.13008)))) t_360)) (fmax (fmax (fmax t_343 (+ 0.392001 (* x 8.13008))) t_824) t_62)) (fmax (fmax (fmax (fmax t_878 t_824) (- (* x 8.13008) 0.157999)) (fmin (fmax (- 0.075 t_734) (- t_734 0.175)) (fmax (- 0.075 t_363) (- t_363 0.175)))) t_693)) (fmax (fmax t_907 t_944) (- (+ 0.692001 (* x 8.13008))))) (fmax (fmax t_906 (+ 1.042 (* x 8.13008))) t_425)) (fmax (fmax (fmax (fmax t_913 t_944) t_425) (- 0.175 t_887)) (- t_887 0.275))) (fmax (fmax t_344 (+ 1.267 (* x 8.13008))) (- (+ 1.367 (* x 8.13008))))) (fmax (fmax (fmax t_905 (- (+ 5.575 (* y 8.13008)))) (+ 1.942 (* x 8.13008))) (- (+ 2.042 (* x 8.13008))))) (fmax t_893 (fmin (fmax (fmax t_164 (- (* x 8.13008) 1.458)) (- 0.958001 (* x 8.13008))) (fmax (fmax t_893 (- (fmin (fmax (fmax t_969 (- (* x 2.23577) t_316)) (- t_643)) (fmax (fmax t_643 (- t_316 (* x 2.23577))) t_970)))) (- 0.175 t_892))))) (fmax (fmax t_389 (- (* x 8.13008) 0.808001)) (- 0.708 (* x 8.13008)))) (fmax (fmax t_389 (- (* x 8.13008) 0.558001)) (- 0.458 (* x 8.13008)))) (fmax (fmax (fmax t_343 t_62) (- (* x 8.13008) 0.308001)) t_397)) (fmax (fmax (fmax (fmax t_878 t_397) t_693) (- (* x 8.13008) 0.858)) (fmin (fmax (- 0.075 t_362) (- t_362 0.175)) (fmax (- 0.075 t_576) (- t_576 0.175))))) (fmax (fmax t_389 (- (* x 8.13008) 0.108)) (- 0.00799942 (* x 8.13008)))) (fmax (- 0.175 t_890) (- t_890 0.275))) (fmax (fmax t_37 t_220) (- t_405))) (fmax (fmax t_725 t_219) t_405)) (fmax (fmax t_725 t_1013) t_135)) (fmax (fmax t_37 (- t_1013)) t_408)) (fmax t_895 (fmin (fmax (fmax t_164 (+ 4.65 (* x 8.13008))) (- t_143)) (fmax (fmax t_895 (- (fmin (fmax (fmax t_969 (- t_659 (* y 1.21951))) (- t_914)) (fmax (fmax t_970 t_914) (- (* y 1.21951) t_659))))) (- 0.175 t_894))))) (fmax (fmax t_669 (- 7.531 (* x 8.13008))) (- (* x 8.13008) 7.631))) (fmax (fmax t_237 t_547) t_675)) (fmax (fmax (fmax t_666 t_547) t_675) t_9)) (fmax (fmax (fmax (fmax t_669 (- 6.631 (* x 8.13008))) (- (* x 8.13008) 7.356)) (- 0.175 t_841)) (- t_841 0.275))) (fmax (fmax t_907 (+ 3.1 (* x 8.13008))) (- (+ 3.2 (* x 8.13008))))) (fmax (fmax (fmax (fmax t_907 t_690) (- (+ 4.57143 (* x 11.6144)))) (- 0.45 (sqrt (+ t_342 (pow (+ 5.02679 (* x 14.518)) 2.0))))) (- (sqrt (+ t_342 (pow t_690 2.0))) 0.55))) (fmax t_898 (fmin (fmax (fmax t_164 t_303) (- t_481)) (fmax (fmax t_898 (- (fmin (fmax (fmax t_969 (- t_110 (* y 1.21951))) (- t_249)) (fmax (fmax t_970 t_249) (- (* y 1.21951) t_110))))) (- 0.175 t_897))))) (fmax (fmax t_220 (- t_961 (* y 2.03252))) t_114)) (fmax (fmax t_219 t_308) (- (* y 2.03252) t_961))) (fmax (fmax t_308 t_135) (- (* y 2.03252) t_630))) (fmax (fmax t_114 (- t_630 (* y 2.03252))) t_408)) (- (sqrt (+ (pow (+ 6.225 (* y 8.13008)) 2.0) (pow t_388 2.0))) 0.075)) (fmax (fmax (fmax (fmax (- (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmax (fmax t_390 (- (* x 4.06504) 2.829)) (- t_981)) (fmax (fmax t_981 (- 2.829 (* x 4.06504))) (- t_390))) (fmax (fmax (- (* x 8.13008) t_439) (- (+ (+ 0.0706995 (* y 2.60163)) (* x 2.84553)))) (- t_125 (* x 5.28455)))) (fmax (fmax (- (* x 5.28455) t_125) (+ (+ 0.0706992 (* y 2.60163)) (* x 2.84553))) (- t_439 (* x 8.13008)))) (fmax (fmax (- t_85) (- 1.8053 (* x 2.84553))) (- t_444 0.171801))) (fmax (fmax t_85 (- 0.171801 t_444)) (- (* x 2.84553) 1.8053))) (fmax (fmax t_31 (- (* x 4.47154) t_279)) (- 2.8369 (* x 4.47154)))) (fmax (fmax (- (* x 4.47154) 2.8369) (- t_279 (* x 4.47154))) (- t_31)))) t_325) t_503) t_904) (- 5.058 (* x 8.13008)))) (fmax (- 0.175 t_989) (- t_989 0.275))) (fmax (- 0.175 t_994) (- t_994 0.275))) (fmax (fmax (fmax (- (* x 8.13008) 3.233) (- 3.133 (* x 8.13008))) t_325) t_503)) (fmax (fmax (fmax t_82 t_611) t_660) t_822)) (fmax (fmax (fmax t_660 t_822) t_335) t_503)) (fmax (fmax (fmax (fmax (fmax (- (* x 8.13008) 4.133) (- 3.408 (* x 8.13008))) (- 0.175 t_993)) (- t_993 0.275)) t_325) t_503)) (fmax (fmax (- t_99) t_240) t_553)) (fmax (fmax t_99 t_552) t_239)) (fmax (fmax (fmax (fmax t_291 (+ 5.65 (* y 8.13008))) (- t_600)) (- (* x 8.13008) 1.733)) (fmin (fmax (- 0.075 t_602) (- t_602 0.175)) (fmax (- 0.075 t_604) (- t_604 0.175))))) (fmax (fmax (fmax t_503 t_198) t_297) (- 0.182999 (* x 8.13008)))) (fmax (fmax (fmax t_82 t_503) (+ 0.167001 (* x 8.13008))) t_952)) (fmax (fmax (fmax (fmax (fmax t_82 t_297) t_952) (- t_198)) (- 0.175 t_991)) (- t_991 0.275))) (fmax (fmax (- (* x 4.47154) t_111) t_251) t_414)) (fmax (fmax t_485 (- t_111 (* x 4.47154))) t_413)) (fmax (fmax t_485 (- t_853 (* x 4.47154))) t_544)) (fmax (fmax t_251 (- (* x 4.47154) t_853)) t_545)) (fmax (fmax (- t_309) t_489) t_414)) (fmax (fmax t_309 t_858) t_413)) (fmax (fmax t_858 t_75) t_544)) (fmax (fmax t_489 (- t_75)) t_545)) (fmax (fmax (- (* x 4.47154) t_569) t_820) t_414)) (fmax (fmax t_867 (- t_569 (* x 4.47154))) t_413)) (fmax (fmax t_867 (- t_232 (* x 4.47154))) t_544)) (fmax (fmax t_552 t_413) t_320)) (fmax (fmax t_553 t_572) t_414)) (fmax (fmax t_240 t_414) t_875)) (fmax (fmax t_239 t_413) t_874)) (fmax (fmax t_320 t_874) t_544)) (fmax (fmax t_572 t_875) t_545)) (fmax (fmax t_414 (- t_574)) t_790)) (fmax (fmax t_413 t_574) t_791)) (fmax (fmax t_544 t_791) t_273)) (fmax (fmax t_545 t_790) (- t_273))) (fmax (fmax t_806 (- (* x 8.13008) 1.683)) (- 1.583 (* x 8.13008)))) (fmax (fmax t_806 (- (* x 8.13008) 1.433)) (- 1.333 (* x 8.13008)))) (fmax (fmax (fmax t_503 (+ 5.775 (* y 8.13008))) t_776) t_291)) (fmax (fmax (fmax t_32 (- (* x 8.13008) 1.498)) (- 1.398 (* x 8.13008))) t_338)) (fmax (fmax (fmax t_32 (- (* x 8.13008) 1.248)) (- 1.148 (* x 8.13008))) t_338)) (fmax (fmax (fmax (+ 2.475 (* y 8.13008)) (- (* x 8.13008) 0.998001)) t_282) t_338)) (fmax (fmax (fmax (fmax t_282 (- t_32)) (- (* x 8.13008) 1.548)) (fmin (fmax (- 0.075 t_141) (- t_141 0.175)) (fmax (- 0.075 t_527) (- t_527 0.175)))) t_5)) (fmax (- 0.175 t_537) (- t_537 0.275))) (fmax (fmax (fmax t_0 (- (+ 0.00200015 (* x 8.13008)))) t_338) t_528)) (fmax (fmax (fmax (+ 0.352 (* x 8.13008)) t_555) t_338) t_730)) (fmax (fmax (fmax (fmax (fmax t_0 t_555) (- 0.175 t_536)) (- t_536 0.275)) t_557) t_683)) (fmax (fmax (fmax (fmax (fmax (- 0.175 t_535) (- t_535 0.275)) t_557) t_476) t_605) t_845)) (fmax (fmax (fmax (- (* x 8.13008) 3.0105) (- 2.9105 (* x 8.13008))) t_338) t_557)) (- (sqrt (+ t_477 (pow (- (* x 8.13008) 2.9605) 2.0))) 0.075)) (fmax (- (fmin (fmax (fmax (fmax t_246 t_385) t_482) (- (* x 5.42005) 1.39033)) (- (sqrt (+ (pow (- (+ 2.615 (* y 8.13008))) 2.0) (pow (- 0.81689 (* x 3.61337)) 2.0))) 0.0625))) (- (sqrt (+ (pow (- t_385) 2.0) (pow t_482 2.0))) 0.1625))) (fmax (- (fmin (fmax (fmax (fmax (- t_211) t_310) (- 1.06533 (* x 5.42005))) t_844) (- (sqrt (+ (pow (+ 2.835 (* y 8.13008)) 2.0) (pow (- (* x 3.61337) 0.820223) 2.0))) 0.0625))) (- (sqrt (+ (pow t_211 2.0) (pow t_310 2.0))) 0.1625))) (fmax (fmax (fmax (fmax (fmax (- 0.175 t_781) (- t_781 0.275)) t_171) t_270) t_557) t_845)) (fmax (fmax (fmax (+ 3.607 (* x 8.13008)) (- (+ 3.707 (* x 8.13008)))) t_338) t_557)) (- (sqrt (+ t_477 (pow (+ 3.657 (* x 8.13008)) 2.0))) 0.075)) (fmax (fmax (fmax t_32 (+ 3.852 (* x 8.13008))) (- (+ 3.952 (* x 8.13008)))) t_338)) (fmax (- 0.175 t_530) (- t_530 0.275))) (fmax (fmax (fmax (+ 4.662 (* x 8.13008)) (- (+ 4.762 (* x 8.13008)))) t_730) t_131)) (fmax (fmax t_580 t_5) t_719)) (fmax (fmax (fmax (fmax t_580 (- 0.15 t_403)) (- t_403 0.25)) t_338) t_130)) (fmax (fmax (fmax (+ 5.27 (* x 8.13008)) (- (+ 5.37 (* x 8.13008)))) t_338) t_557)) (fmax (fmax (fmax (+ 0.702 (* x 8.13008)) (- (+ 0.802 (* x 8.13008)))) t_730) t_131)) (fmax (fmax t_591 t_5) t_719)) (fmax (fmax (fmax (fmax t_591 (- 0.15 t_590)) (- t_590 0.25)) t_338) t_130)) (fmax (fmax (fmax t_32 (+ 1.072 (* x 8.13008))) (- (+ 1.172 (* x 8.13008)))) t_338)) (fmax (- 0.175 t_532) (- t_532 0.275))) (fmax (fmax (fmax t_671 (+ 1.882 (* x 8.13008))) (- (+ 1.982 (* x 8.13008)))) t_338)) (fmax (fmax (fmax (- (+ 2.55 (* y 8.13008))) t_471) t_598) t_557)) (fmax (fmax (fmax (fmax (fmax t_471 t_598) (- t_671)) (- 0.15 t_672)) (- t_672 0.25)) t_730)) (fmax (fmax (fmax t_171 (- (+ 3.032 (* x 8.13008)))) t_338) t_844)) (fmax (fmax (fmax (+ 3.382 (* x 8.13008)) t_270) t_338) t_557)) (fmax (fmax t_608 t_736) t_946)) (fmax (fmax (fmax (fmax (fmax t_736 t_946) t_377) (- 0.15 t_751)) (- t_751 0.25)) t_747)) (fmax (fmax t_607 (- (* x 8.13008) 6.1135)) (- 6.0135 (* x 8.13008)))) (- (sqrt (+ (pow (+ 1.2 (* y 8.13008)) 2.0) (pow (- (* x 8.13008) 6.0635) 2.0))) 0.075)) (fmax (fmax t_208 t_352) t_563)) (fmax (fmax t_207 t_854) t_966)) (fmax (fmax t_854 t_115) t_261)) (fmax (fmax t_563 t_490) t_567)) (fmax (fmax t_352 t_567) t_864)) (fmax (fmax t_966 t_115) t_863)) (fmax (fmax t_261 t_863) t_264)) (fmax (fmax t_490 t_864) t_498)) (fmax (fmax t_567 (- 2.24743 t_869)) t_978)) (fmax (fmax (fmax (fmax (fmax t_391 (- (+ 7.67143 (* x 11.6144)))) (- 0.45 (sqrt (+ t_996 (pow (+ 8.90179 (* x 14.518)) 2.0))))) (- (sqrt (+ t_996 (pow t_391 2.0))) 0.55)) t_338) t_557)) (fmax t_539 (fmin (fmax (fmax (fmax (+ 5.47 (* x 8.13008)) (- (+ 5.97 (* x 8.13008)))) t_399) t_246) (fmax (fmax t_539 (- (fmin (fmax (fmax (- t_26 (* y 1.21951)) (- t_180)) t_333) (fmax (fmax t_180 (- (* y 1.21951) t_26)) t_650)))) (- 0.175 t_538))))) (fmax (fmax (- (fmin (fmax (fmax (- (* y 2.23577) (+ 1.02163 (* x 2.27642))) t_517) (- t_1016)) (fmax (fmax t_1016 (- t_517)) (- (+ 1.02162 (* x 2.27642)) (* y 2.23577))))) (- 0.175 t_657)) (- t_657 0.275))) (fmax (fmax t_748 (- (* x 8.13008) 6.4885)) (- 6.3885 (* x 8.13008)))) (fmax (fmax (fmax (fmax t_662 (- 0.175 t_823)) (- t_823 0.275)) (- (* x 8.13008) 3.9055)) (- 3.1805 (* x 8.13008)))) (fmax (fmax (fmax (fmax (fmax (- (fmin (fmax (fmax (- (* x 2.84553) t_195) (- t_368)) (- t_681 (* x 1.01626))) (fmax (fmax t_368 (- (* x 1.01626) t_681)) (- t_195 (* x 2.84553))))) t_292) (- (+ 2.05 (* y 8.13008)))) (- (* x 8.13008) 2.0805)) (- 1.9305 (* x 8.13008))) (- (sqrt (+ (pow (+ 0.608333 (* y 2.71003)) 2.0) (pow (- (* x 8.13008) 2.0055) 2.0))) 0.075))) (- (sqrt (+ (pow t_292 2.0) (pow (- (* x 8.13008) 2.0305) 2.0))) 0.075)) (fmax (fmax t_378 (- (* x 8.13008) 1.6805)) (- 1.5805 (* x 8.13008)))) (fmax (fmax (fmax t_606 t_742) t_953) t_71)) (fmax (fmax (fmax (fmax (fmax t_47 t_742) t_953) t_483) (- 0.15 t_757)) (- t_757 0.25))) (fmax (fmax t_378 (- (* x 8.13008) 1.1805)) (- 1.0805 (* x 8.13008)))) (fmax (fmax t_115 t_432) (- t_869 2.24743))) (fmax (fmax t_264 t_432) (- t_869 2.30243))) (fmax (fmax t_498 t_978) (- 2.30243 t_869))) (fmax (fmax t_607 (- (* x 8.13008) 4.2805)) (- 4.1805 (* x 8.13008)))) (fmax (fmax (fmax (fmax t_607 t_631) (- 5.97215 (* x 11.6144))) (- 0.45 (sqrt (+ t_376 (pow (- (* x 14.518) 8.15268) 2.0))))) (- (sqrt (+ t_376 (pow t_631 2.0))) 0.55))) (fmax (fmax t_607 t_706) (- 3.9805 (* x 8.13008)))) (fmax (fmax (fmax t_606 (- t_53)) (- (* x 8.13008) 3.6305)) t_321)) (fmax (fmax (fmax (fmax (fmax t_377 t_706) t_321) t_53) (- 0.175 t_876)) (- t_876 0.275))) (fmax (fmax t_662 (- (* x 8.13008) 3.0055)) (- 2.9055 (* x 8.13008)))) (fmax (fmax t_711 t_188) t_792)) (fmax (fmax (fmax t_377 t_188) t_792) t_80)) (fmax (- 0.175 t_834) (- t_834 0.275))) (fmax (fmax t_882 t_1006) (- 3.951 (* x 8.13008)))) (fmax (fmax t_669 (- (* x 8.13008) 3.601)) t_401)) (fmax (fmax (fmax (fmax (fmax t_235 t_1006) t_401) t_899) (- 0.175 t_827)) (- t_827 0.275))) (fmax (fmax t_586 (- (* x 8.13008) 3.251)) (- 3.151 (* x 8.13008)))) (fmax (fmax t_236 t_346) t_450)) (fmax (fmax (fmax (fmax t_908 t_346) t_450) (- 0.15 t_585)) (- t_585 0.25))) (fmax (fmax t_667 (- (* x 8.13008) 1.943)) (- 1.843 (* x 8.13008)))) (fmax (fmax (fmax (fmax t_667 t_4) (- 2.63286 (* x 11.6144))) (- 0.45 (sqrt (+ t_665 (pow (- (* x 14.518) 3.97857) 2.0))))) (- (sqrt (+ t_665 (pow t_4 2.0))) 0.55))) (fmax (fmax t_667 (- (* x 8.13008) 6.981)) (- 6.881 (* x 8.13008)))) (- (sqrt (+ (pow (+ 3.4 (* y 8.13008)) 2.0) (pow (- (* x 8.13008) 6.931) 2.0))) 0.075)) (fmax (fmax t_669 (- 6.656 (* x 8.13008))) (- (* x 8.13008) 6.756))) (fmax (fmax t_237 t_293) t_421)) (fmax (fmax t_670 t_293) t_421)) (fmax (fmax (fmax (fmax t_669 (- 5.756 (* x 8.13008))) (- (* x 8.13008) 6.481)) (- 0.175 t_833)) (- t_833 0.275))) (fmax (fmax t_692 t_849) (- 5.331 (* x 8.13008)))) (fmax (fmax t_667 (- (* x 8.13008) 4.981)) t_298)) (fmax (fmax (fmax (fmax (fmax t_235 t_849) t_298) t_743) (- 0.175 t_954)) (- t_954 0.275))) (fmax (fmax t_668 (- (* x 8.13008) 4.761)) (- 4.661 (* x 8.13008)))) (fmax (fmin (fmax (fmax (- 0.175 t_831) t_837) (- (fmin (fmax (fmax t_777 (- (* x 2.23577) t_20)) (- t_165)) (fmax (fmax t_778 t_165) (- t_20 (* x 2.23577)))))) (fmax (fmax t_972 (- (* x 8.13008) 0.443)) (- (+ 0.0570004 (* x 8.13008))))) t_837)) (fmax t_839 (fmin (fmax (fmax (fmax (+ 0.207 (* x 8.13008)) (- (+ 0.707 (* x 8.13008)))) t_780) t_971) (fmax (fmax t_839 (- (fmin (fmax (fmax (- (* x 2.23577) t_877) (- t_77)) t_777) (fmax (fmax t_77 (- t_877 (* x 2.23577))) t_778)))) (- 0.175 t_838))))) (fmax (fmax t_669 (- t_644)) (+ 0.857 (* x 8.13008)))) (fmax (fmax t_237 t_129) t_644)) (fmax (fmax t_670 t_129) t_644)) (fmax (fmax (fmax (fmax t_669 (- (+ 1.857 (* x 8.13008)))) t_128) (- 0.175 t_883)) (- t_883 0.275))) (fmax (fmax t_669 (- t_275)) (+ 2.182 (* x 8.13008)))) (fmax (fmax t_237 t_275) t_721)) (fmax (fmax t_670 t_275) t_721)) (fmax t_829 (fmin (fmax (fmax t_972 (- (* x 8.13008) 1.743)) (- 1.243 (* x 8.13008))) (fmax (fmax t_829 (- (fmin (fmax (fmax t_777 (- (* x 2.23577) t_284)) (- t_451)) (fmax (fmax t_451 (- t_284 (* x 2.23577))) t_778)))) (- 0.175 t_828))))) (fmax (fmax (fmax t_235 (- (+ 4.475 (* y 8.13008)))) (- (* x 8.13008) 0.643001)) (- 0.543 (* x 8.13008)))) (fmax (- 0.175 t_840) (- t_840 0.275))) (fmax (fmax (fmax (fmax (fmax (- (sqrt (+ (pow (+ 4.937 (* x 8.13008)) 2.0) (pow (+ 1.34167 (* y 2.71003)) 2.0))) 0.075) (- (fmin (fmax (fmax (- t_196 (* y 0.813008)) (- t_365)) (- t_599 (* x 1.01626))) (fmax (fmax (- (* x 1.01626) t_599) t_365) (- (* y 0.813008) t_196))))) t_63) (- (+ 4.25 (* y 8.13008)))) (+ 4.862 (* x 8.13008))) (- (+ 5.012 (* x 8.13008))))) (- (sqrt (+ (pow t_63 2.0) (pow t_579 2.0))) 0.075)) (fmax (fmax t_882 t_42) (- (+ 5.262 (* x 8.13008))))) (fmax (fmax t_669 (+ 5.612 (* x 8.13008))) t_561)) (fmax (fmax (fmax (fmax (fmax t_235 t_899) t_42) t_561) (- 0.175 t_830)) (- t_830 0.275))) (fmax (fmax t_586 (+ 5.962 (* x 8.13008))) (- (+ 6.062 (* x 8.13008))))) (fmax (fmax t_236 t_109) t_204)) (fmax (fmax (fmax (fmax t_908 t_109) t_204) (- 0.15 t_698)) (- t_698 0.25))) (fmax (fmax t_667 (+ 6.57 (* x 8.13008))) (- (+ 6.67 (* x 8.13008))))) (fmax (fmax (fmax (fmax t_669 t_720) (- (+ 3.182 (* x 8.13008)))) (- 0.175 t_962)) (- t_962 0.275))) (fmax (fmax t_692 t_262) (- (+ 2.907 (* x 8.13008))))) (fmax (fmax t_667 (+ 3.257 (* x 8.13008))) t_859)) (fmax (fmax (fmax (fmax (fmax t_235 t_743) t_262) t_859) (- 0.175 t_836)) (- t_836 0.275))) (fmax (fmax t_668 (+ 3.477 (* x 8.13008))) (- (+ 3.577 (* x 8.13008))))) (fmax (- 0.175 t_835) (- t_835 0.275))) (fmax (fmin (fmax (fmax t_534 (- (fmin (fmax (fmax t_333 (- (* x 2.23577) t_712)) (- 0.228514 t_25)) (fmax (fmax (- t_25 0.228514) (- t_712 (* x 2.23577))) t_650)))) (- 0.175 t_533)) (fmax (fmax (fmax t_399 t_246) (- (* x 8.13008) 6.23551)) (- 5.73551 (* x 8.13008)))) t_534)) (fmax (fmax (fmax t_338 t_27) (- 5.4355 (* x 8.13008))) t_528)) (fmax (fmax (fmax t_338 t_730) (- (* x 8.13008) 5.0855)) t_510)) (fmax (fmax (fmax (fmax (fmax t_27 t_510) t_557) t_683) (- 0.175 t_531)) (- t_531 0.275))) (fmax (fmax (fmax t_730 t_131) (- (* x 8.13008) 4.7355)) (- 4.6355 (* x 8.13008)))) (fmax (fmax (fmax t_5 t_719) t_91) t_185)) (fmax (fmax (fmax (fmax (fmax t_338 t_130) t_91) t_185) (- 0.15 t_658)) (- t_658 0.25))) (fmax (fmax (fmax t_338 t_844) t_476) (- 3.5855 (* x 8.13008)))) (fmax (fmax (fmax t_338 t_557) (- (* x 8.13008) 3.2355)) t_605)) (fmax (fmax (fmax (fmax t_667 t_728) (- (+ 9.52857 (* x 11.6144)))) (- 0.45 (sqrt (+ t_665 (pow (+ 11.2232 (* x 14.518)) 2.0))))) (- (sqrt (+ t_665 (pow t_728 2.0))) 0.55))) (fmax (fmax t_668 (+ 6.79 (* x 8.13008))) (- (+ 6.89 (* x 8.13008))))) (fmax (- 0.175 t_832) (- t_832 0.275))) (fmax t_843 (fmin (fmax (fmax t_972 t_294) t_419) (fmax (fmax t_843 (- (fmin (fmax (fmax t_777 (- t_106 (* y 1.21951))) (- t_243)) (fmax (fmax t_778 t_243) (- (* y 1.21951) t_106))))) (- 0.175 t_842))))) (fmax (fmax t_848 t_66) t_155)) (fmax (fmax t_847 t_427) t_478)) (fmax (fmax t_427 t_746) t_956)) (fmax (fmax t_155 t_745) t_247)) (fmax (fmax t_848 t_745) t_429)) (fmax (fmax t_847 t_746) t_699)) (fmax (fmax t_427 (- t_17)) t_160)) (fmax (fmax t_155 t_17) t_433)) (fmax (fmax t_429 t_433) t_628)) (fmax (fmax t_699 t_160) (- t_628))) (fmax (fmax (fmax (+ 3.5325 (* x 8.13008)) (- (+ 3.6325 (* x 8.13008)))) t_491) t_633)) (fmax (fmax (fmax (fmax (fmax t_119 (- (+ 5.18929 (* x 11.6144)))) (- 0.45 (sqrt (+ (pow (+ 5.79911 (* x 14.518)) 2.0) t_784)))) (- (sqrt (+ (pow t_119 2.0) t_784)) 0.55)) t_491) t_633)) (fmax (fmax (fmax (+ 3.7575 (* x 8.13008)) (- (+ 3.8575 (* x 8.13008)))) t_491) t_633)) (- (sqrt (+ (pow (+ 3.8075 (* x 8.13008)) 2.0) t_2)) 0.075)) (fmax (fmax (fmax (+ 4.0025 (* x 8.13008)) (- (+ 4.1025 (* x 8.13008)))) t_633) t_645)) (fmax (fmax (fmax (- (* x 8.13008) 0.0154991) (- (+ 0.084501 (* x 8.13008)))) t_633) t_645)) (fmax (- 0.175 t_802) (- t_802 0.275))) (fmax (fmax (fmax t_181 (- (+ 0.794501 (* x 8.13008)))) t_797) t_633)) (fmax (fmax (fmax (+ 1.1445 (* x 8.13008)) t_810) t_34) t_633)) (fmax (fmax (fmax (fmax (fmax t_181 t_810) t_798) (- 0.175 t_805)) (- t_805 0.275)) t_491)) (fmax (fmax (- (fmin (fmax (fmax (- (* y 2.23577) t_345) t_453) (- t_1015)) (fmax (fmax t_1015 (- t_453)) (- t_345 (* y 2.23577))))) (- 0.175 t_800)) (- t_800 0.275))) (fmax (fmax t_498 t_956) t_478)) (fmax (fmax t_264 t_66) t_247)) (fmax (fmax (fmax (fmax (fmax t_798 t_52) t_191) (- 0.175 t_804)) (- t_804 0.275)) t_491)) (fmax (fmax (fmax (- t_60) (+ 7.05 (* x 8.13008))) (- (+ 7.15 (* x 8.13008)))) t_34)) (fmax (fmax (fmax t_549 t_679) t_926) t_10)) (fmax (fmax (fmax (fmax (fmax t_60 t_549) t_679) (- 0.15 t_550)) (- t_550 0.25)) t_633)) (fmax (fmax t_941 (- (* x 8.13008) 7.72551)) (- 7.62551 (* x 8.13008)))) (fmax (fmax t_424 t_737) t_947)) (fmax (fmax (fmax (fmax (fmax t_737 t_947) t_299) t_379) (- 0.15 t_738)) (- t_738 0.25))) (fmax (fmax (fmax t_379 (- (* y 8.13008) 0.65)) (- (* x 8.13008) 7.35551)) (- 7.25551 (* x 8.13008)))) (fmax (- 0.175 t_771) (- t_771 0.275))) (fmax (- 0.175 t_801) (- t_801 0.275))) (fmax (- (fmin (fmax (fmax (fmax t_168 (+ 3.575 (* x 5.42005))) t_313) t_437) (- (sqrt (+ (pow (- (+ 2.49333 (* x 3.61337))) 2.0) t_76)) 0.0625))) (- (sqrt (+ (pow t_168 2.0) t_500)) 0.1625))) (fmax (- (fmin (fmax (fmax (fmax t_167 (- (+ 3.9 (* x 5.42005)))) t_213) t_394) (- (sqrt (+ (pow (+ 2.49 (* x 3.61337)) 2.0) t_982)) 0.0625))) (- (sqrt (+ (pow t_167 2.0) t_395)) 0.1625))) (fmax (fmax (fmax (- (+ 6.075 (* x 8.13008))) t_793) t_491) t_633)) (- (sqrt (+ (pow (+ 6.025 (* x 8.13008)) 2.0) t_2)) 0.075)) (fmax (fmax (fmax t_52 (- (+ 6.35 (* x 8.13008)))) t_797) t_633)) (fmax (fmax (fmax (+ 6.7 (* x 8.13008)) t_191) t_34) t_633)) (fmax (- (fmin (- (sqrt (+ t_218 (pow (- (* x 3.61337) 2.02467) 2.0))) 0.0625) (fmax (fmax t_902 t_35) (- 2.872 (* x 5.42005))))) (- (sqrt (+ t_406 (pow t_35 2.0))) 0.1625))) (fmax t_774 (fmin (fmax (fmax t_410 (- (* x 8.13008) 4.208)) (- 3.708 (* x 8.13008))) (fmax (fmax t_774 (- (fmin (fmax (fmax t_97 (- (* x 2.23577) t_229)) (- 1.32095 t_25)) (fmax (fmax (- t_25 1.32095) (- t_229 (* x 2.23577))) t_729)))) (- 0.175 t_773))))) (fmax (- (fmin (fmax (fmax (fmax t_234 (- (* x 5.42005) 2.372)) t_409) t_469) (- (sqrt (+ (pow (- 1.47133 (* x 3.61337)) 2.0) t_61)) 0.0625))) (- (sqrt (+ (pow t_234 2.0) t_366)) 0.1625))) (fmax (fmax t_759 t_680) (- 6.5455 (* x 8.13008)))) (fmax (fmax t_940 (- (* x 8.13008) 6.19551)) t_241)) (fmax (fmax (fmax (fmax (fmax t_680 t_241) t_684) t_735) (- 0.175 t_942)) (- t_942 0.275))) (fmax (fmax t_941 (- (* x 8.13008) 5.8455)) (- 5.7455 (* x 8.13008)))) (fmax (fmax t_424 t_739) t_948)) (fmax (fmax (fmax (fmax t_380 t_739) t_948) (- 0.15 t_740)) (- t_740 0.25))) (fmax (- (fmin (fmax (fmax t_470 t_72) (- (* x 5.42005) 3.197)) (- (sqrt (+ t_61 (pow (- 2.02133 (* x 3.61337)) 2.0))) 0.0625))) (- (sqrt (+ t_366 (pow t_72 2.0))) 0.1625))) (fmax (- (fmin (fmax (fmax t_902 (- 0.788667 (* x 5.42005))) t_256) (- (sqrt (+ t_218 (pow (- (* x 3.61337) 0.635778) 2.0))) 0.0625))) (- (sqrt (+ t_406 (pow t_256 2.0))) 0.1625))) (fmax (fmax t_685 (- (* x 8.13008) 0.125)) (- 0.0249996 (* x 8.13008)))) (fmax (fmax (fmax (fmax t_685 t_704) (- 0.0357141 (* x 11.6144))) (- 0.45 (sqrt (+ t_169 (pow (- (* x 14.518) 0.732143) 2.0))))) (- (sqrt (+ t_169 (pow t_704 2.0))) 0.55))) (fmax (fmax t_685 (+ 0.1 (* x 8.13008))) (- (+ 0.2 (* x 8.13008))))) (- (sqrt (+ (pow (- (* y 8.13008) 1.0) 2.0) t_465)) 0.075)) (fmax t_789 (fmin (fmax (fmax t_410 (+ 0.325 (* x 8.13008))) (- (+ 0.825 (* x 8.13008)))) (fmax (fmax t_789 (- (fmin (fmax (fmax t_97 (- t_81 (* y 1.21951))) (- 0.0743749 t_25)) (fmax (fmax t_729 (- t_25 0.0743749)) (- (* y 1.21951) t_81))))) (- 0.175 t_788))))) (fmax (- (fmin (fmax (fmax (fmax t_28 (- 2.047 (* x 5.42005))) t_722) t_901) (- (sqrt (+ t_218 (pow (- (* x 3.61337) 1.47467) 2.0))) 0.0625))) (- (sqrt (+ t_406 (pow t_28 2.0))) 0.1625))) (fmax (fmax t_1012 t_36) (- 2.8705 (* x 8.13008)))) (fmax (fmax t_685 (- (* x 8.13008) 2.5205)) t_448)) (fmax (fmax (fmax (fmax (fmax t_684 t_36) t_448) t_1017) (- 0.175 t_762)) (- t_762 0.275))) (fmax t_768 (fmin (fmax (fmax t_410 (- (* x 8.13008) 2.3205)) (- 1.8205 (* x 8.13008))) (fmax (fmax t_768 (- (fmin (fmax (fmax t_97 (- (* x 2.23577) t_663)) (- 0.801888 t_25)) (fmax (fmax t_729 (- t_25 0.801888)) (- t_663 (* x 2.23577)))))) (- 0.175 t_767))))) (fmax (- (fmin (fmax (fmax t_470 t_543) (- (* x 5.42005) 1.11367)) (- (sqrt (+ t_61 (pow (- 0.632445 (* x 3.61337)) 2.0))) 0.0625))) (- (sqrt (+ t_366 (pow t_543 2.0))) 0.1625))) (fmax (- (sqrt (+ (pow (- t_733) 2.0) (pow t_8 2.0))) 0.1625) (- (fmin (fmax (fmax (fmax t_420 t_733) t_8) (+ 0.233001 (* x 5.42005))) (- (sqrt (+ (pow (- (+ 1.515 (* y 8.13008))) 2.0) (pow (- (+ 0.265334 (* x 3.61337))) 2.0))) 0.0625))))) (fmax (- (fmin (fmax (fmax (fmax (+ 1.575 (* y 8.13008)) (- t_67)) t_156) (- (+ 0.558001 (* x 5.42005)))) (- (sqrt (+ (pow (+ 1.735 (* y 8.13008)) 2.0) (pow (+ 0.262 (* x 3.61337)) 2.0))) 0.0625))) (- (sqrt (+ (pow t_67 2.0) (pow t_156 2.0))) 0.1625))) (fmax (fmax t_208 (- t_430 (* y 1.82927))) t_625)) (fmax (fmax t_207 t_960) t_431)) (fmax (fmax t_115 t_960) t_210)) (fmax (fmax t_567 t_625) t_434)) (fmax (fmax t_567 (- (+ 0.5966 (* x 4.47154)) (* y 1.82927))) t_965)) (fmax (fmax t_115 t_431) t_964)) (fmax (fmax t_264 t_210) t_964)) (fmax (fmax t_498 t_434) t_965)) (fmax (fmax t_567 (- t_636)) t_860)) (fmax (fmax t_115 t_861) t_636)) (fmax (fmax t_264 t_861) t_315)) (fmax (fmax t_498 t_860) (- t_315))) (fmax (fmax t_711 t_871) t_23)) (fmax (fmax (fmax (fmax (fmax t_47 t_483) t_871) t_23) (- 0.15 t_872)) (- t_872 0.25))) (fmax (fmax t_987 (- (* x 8.13008) 0.8105)) (- 0.7105 (* x 8.13008)))) (fmax (- 0.175 t_398) (- t_398 0.275))) (fmax (fmax t_748 (- (* x 8.13008) 0.000499725)) (- (+ 0.0995007 (* x 8.13008))))) (fmax (fmax t_608 t_400) t_509)) (fmax (fmax (fmax (fmax (fmax t_377 t_747) t_400) t_509) (- 0.15 t_750)) (- t_750 0.25))) (fmax (fmax (fmax t_662 (- (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmax (fmax (- t_222 (* y 3.25203)) (- t_407)) t_516) (fmax (fmax t_407 (- (* y 3.25203) t_222)) (- t_516))) (fmax (fmax t_93 t_137) (- t_980))) (fmax (fmax t_980 (- t_137)) (- t_93))) (fmax (fmax (- t_909 (* y 0.813008)) (- t_44)) (- (* y 3.41463) t_224))) (fmax (fmax (- t_224 (* y 3.41463)) t_44) (- (* y 0.813008) t_909))) (fmax (fmax (- t_818) (- t_48)) t_145)) (fmax (fmax t_818 t_48) (- t_145))))) (+ 3.687 (* x 8.13008))) (- (+ 4.187 (* x 8.13008))))) (fmax (fmax t_987 (+ 4.307 (* x 8.13008))) (- (+ 4.407 (* x 8.13008))))) (fmax (- 0.175 t_358) (- t_358 0.275))) (fmax t_919 (fmin (fmax (fmax (fmax (+ 1.585 (* y 8.13008)) t_420) (+ 4.967 (* x 8.13008))) (- (+ 5.467 (* x 8.13008)))) (fmax (fmax t_919 (- (fmin (fmax (fmax t_295 (- t_475 (* y 1.21951))) (- t_686)) (fmax (fmax t_686 (- (* y 1.21951) t_475)) (- t_295))))) (- 0.175 t_55))))) (fmax (fmax t_607 (+ 5.875 (* x 8.13008))) (- t_793))) (fmax (fmax (fmax t_377 (+ 2.287 (* x 8.13008))) (- (+ 2.387 (* x 8.13008)))) t_983)) (fmax (fmax t_987 (+ 2.537 (* x 8.13008))) (- (+ 2.637 (* x 8.13008))))) (fmax (fmax (fmax t_377 (+ 1.375 (* y 8.13008))) (+ 2.787 (* x 8.13008))) t_957)) (fmax (fmax (fmax (fmax t_423 t_957) (- t_983)) (+ 2.237 (* x 8.13008))) (fmin (fmax (- 0.075 t_986) (- t_986 0.175)) (fmax (- 0.075 t_985) (- t_985 0.175))))) (fmax (fmax (fmax (fmax (fmax (- (fmin (fmax (fmax (- (* x 2.84553) t_263) (- 0.681276 t_492)) (- t_637 (* x 1.01626))) (fmax (fmax (- (* x 1.01626) t_637) (- t_492 0.681276)) (- t_263 (* x 2.84553))))) t_120) (- (+ 0.95 (* y 8.13008)))) (- (* x 8.13008) 5.289)) (- 5.139 (* x 8.13008))) (- (sqrt (+ (pow (+ 0.241667 (* y 2.71003)) 2.0) (pow (- (* x 8.13008) 5.214) 2.0))) 0.075))) (- (sqrt (+ (pow t_120 2.0) (pow (- (* x 8.13008) 5.239) 2.0))) 0.075)) (fmax (fmax (fmax t_491 (- (* x 8.13008) 4.781)) (- 4.681 (* x 8.13008))) t_633)) (fmax (fmax (fmax (fmax (fmax t_491 t_329) (- 6.68715 (* x 11.6144))) (- 0.45 (sqrt (+ t_784 (pow (- (* x 14.518) 9.04643) 2.0))))) (- (sqrt (+ t_784 (pow t_329 2.0))) 0.55)) t_633)) (fmax (- 0.175 t_803) (- t_803 0.275))) (fmax (fmax (fmax (fmax t_607 t_29) (- (+ 8.53571 (* x 11.6144)))) (- 0.45 (sqrt (+ t_376 (pow (+ 9.98214 (* x 14.518)) 2.0))))) (- (sqrt (+ t_376 (pow t_29 2.0))) 0.55))) (fmax (fmax t_662 t_90) t_182)) (fmax (fmax (fmax t_606 t_653) t_71) t_519)) (fmax (fmax (fmax t_377 t_653) t_80) t_519)) (fmax (fmax (fmax (fmax t_662 t_45) (- t_653)) (- 0.175 t_656)) (- t_656 0.275))) (fmax (fmax t_635 (- (* x 8.13008) 7.28901)) (- 7.18901 (* x 8.13008)))) (fmax (fmax t_635 (- (* x 8.13008) 7.03901)) (- 6.93901 (* x 8.13008)))) (fmax (fmax (fmax (- (* y 8.13008) 4.76837e-7) t_926) (- (* x 8.13008) 6.81401)) (- 6.71401 (* x 8.13008)))) (fmax (fmax (fmax t_34 (- 0.1 (* y 8.13008))) t_98) t_192)) (fmax (fmax (fmax t_633 t_98) t_192) (+ 0.7 (* y 8.13008)))) (fmax (fmax t_635 (- (* x 8.13008) 6.41401)) (- 6.314 (* x 8.13008)))) (fmax (fmax t_634 (- (* x 8.13008) 2.1185)) (- 2.0185 (* x 8.13008)))) (- (sqrt (+ t_2 (pow (- (* x 8.13008) 2.0685) 2.0))) 0.075)) (fmax (fmax t_646 (- (* x 8.13008) 1.1935)) (- 1.0935 (* x 8.13008)))) (fmax (fmax t_646 (- (* x 8.13008) 0.943501)) (- 0.8435 (* x 8.13008)))) (fmax (fmax (fmax t_633 (+ 0.275 (* y 8.13008))) (- (* x 8.13008) 0.693501)) t_64)) (fmax (fmax (fmax (fmax t_64 t_10) (- t_645)) (- (* x 8.13008) 1.2435)) (fmin (fmax (- 0.075 t_951) (- t_951 0.175)) (fmax (- 0.075 t_950) (- t_950 0.175))))) (fmax (fmax t_634 (- (* x 8.13008) 0.2355)) (- 0.1355 (* x 8.13008)))) (fmax (fmax (fmax t_248 (- (* x 8.13008) 3.781)) t_633) (- 3.681 (* x 8.13008)))) (fmax (fmax (fmax t_491 (- (+ 0.35 (* y 8.13008)))) t_73) t_162)) (fmax (fmax (fmax (fmax (fmax t_34 t_73) t_162) (- t_248)) (- 0.15 t_701)) (- t_701 0.25))) (fmax (- (fmin (fmax (fmax (fmax t_313 t_437) t_387) (- (* x 5.42005) 1.82067)) (- (sqrt (+ t_76 (pow (- 1.10378 (* x 3.61337)) 2.0))) 0.0625))) (- (sqrt (+ t_500 (pow t_387 2.0))) 0.1625))) (fmax (- (fmin (fmax (fmax (fmax t_213 t_394) t_593) (- 1.49567 (* x 5.42005))) (- (sqrt (+ t_982 (pow (- (* x 3.61337) 1.10711) 2.0))) 0.0625))) (- (sqrt (+ t_395 (pow t_593 2.0))) 0.1625))) (fmax (fmax (fmax (fmax t_634 t_709) (- 0.193571 (* x 11.6144))) (- 0.45 (sqrt (+ t_784 (pow (- (* x 14.518) 0.929465) 2.0))))) (- (sqrt (+ t_784 (pow t_709 2.0))) 0.55))) 100000000.0) (fmax t_795 (fmin (fmax (fmax t_578 (- (* x 8.13008) 7.40251)) (- 6.90251 (* x 8.13008))) (fmax (fmax t_795 (- (fmin (fmax (fmax t_277 (- (* x 2.23577) t_446)) (- 3.29944 t_25)) (fmax (fmax (- t_25 3.29944) (- t_446 (* x 2.23577))) t_39)))) (- 0.175 t_794))))) (fmax (fmax t_223 (- (* x 4.47154) t_340)) t_521)) (fmax (fmax t_812 (- t_340 (* x 4.47154))) t_1018)) (fmax (fmax t_812 t_94) (- t_225 (* x 4.47154)))) (fmax (fmax t_521 (- (* x 4.47154) t_225)) t_523)) (fmax (fmax t_223 (- 4.14638 t_912)) t_50)) (fmax (fmax t_1018 t_231) (- t_912 4.14638))) (fmax (fmax t_94 t_231) (- t_912 4.20138))) (fmax (fmax t_523 t_50) (- 4.20138 t_912))) (fmax (fmax (- t_57) t_193) t_359)) (fmax (fmax t_57 t_597) t_673)) (fmax (fmax t_597 t_920) t_102)) (fmax (fmax t_193 (- t_920)) t_369)) (fmax (- 0.175 t_932) (- t_932 0.275))) (fmax (fmax (fmax t_242 (- (+ 6.85 (* x 8.13008)))) t_559) t_687)) (fmax (fmax (fmax t_679 (+ 7.2 (* x 8.13008))) t_687) t_153)) (fmax (fmax (fmax (fmax (fmax t_679 t_242) (- 0.175 t_933)) (- t_933 0.275)) t_68) t_153)) (fmax (fmax t_383 t_480) (- 7.95251 (* x 8.13008)))) (fmax (fmax t_958 (- (* x 8.13008) 7.60251)) t_205)) (fmax (fmax (fmax (fmax (fmax t_480 t_16) t_205) t_626) (- 0.175 t_775)) (- t_775 0.275))) (fmax (fmax t_384 t_306) (- 3.0225 (* x 8.13008)))) (fmax (fmax (fmax t_381 (- (* x 8.13008) 2.6725)) t_968) t_74)) (fmax (fmax (fmax (fmax (fmax t_16 t_968) (- 0.175 t_493)) (- t_493 0.275)) t_976) t_306)) (fmax (fmax t_223 (- (* x 4.47154) t_170)) t_324)) (fmax (fmax t_1018 t_573) (- t_170 (* x 4.47154)))) (fmax (fmax t_94 t_573) (- t_995 (* x 4.47154)))) (fmax (fmax t_523 t_324) (- (* x 4.47154) t_995))) (fmax (fmax t_223 (- 1.79238 t_912)) t_440)) (fmax (fmax t_1018 t_710) (- t_912 1.79238))) (fmax (fmax t_94 t_710) (- t_912 1.84738))) (fmax (fmax t_523 t_440) (- 1.84738 t_912))) (fmax (fmax t_223 (- (* x 4.47154) t_441)) t_648)) (fmax (fmax t_1018 t_1003) (- t_441 (* x 4.47154)))) (fmax (fmax t_94 t_1003) (- t_215 (* x 4.47154)))) (fmax (fmax t_523 t_648) (- (* x 4.47154) t_215))) (fmax (fmax t_223 (- 1.51738 t_912)) t_808)) (fmax (fmax t_1018 t_87) (- t_912 1.51738))) (fmax (fmax t_94 t_87) (- t_912 1.57238))) (fmax (fmax t_523 t_808) (- 1.57238 t_912))) (fmax t_724 (fmin (fmax (fmax t_578 (- (* x 8.13008) 6.0525)) (- 5.5525 (* x 8.13008))) (fmax (fmax t_724 (- (fmin (fmax (fmax t_277 (- (* x 2.23577) t_1019)) (- 2.92819 t_25)) (fmax (fmax t_39 (- t_25 2.92819)) (- t_1019 (* x 2.23577)))))) (- 0.175 t_723))))) (fmax (fmax t_384 t_524) (- 4.5525 (* x 8.13008)))) (fmax (fmax t_382 (- (* x 8.13008) 4.2025)) t_146)) (fmax (fmax (fmax (fmax (fmax t_16 t_524) t_146) t_976) (- 0.175 t_546)) (- t_546 0.275))) (fmax (fmax (- (fmin (fmax (fmax (- t_367 (* x 2.27642)) (- (* x 4.5122) 2.26024)) (- 1.80744 t_1014)) (fmax (fmax (- t_1014 1.80744) (- 2.26024 (* x 4.5122))) (- (* x 2.27642) t_367)))) (- 0.175 t_178)) (- t_178 0.275))) (fmax (fmax t_958 (- (* x 8.13008) 3.3975)) (- 3.2975 (* x 8.13008)))) (- (sqrt (+ t_104 (pow (- (* x 8.13008) 3.3475) 2.0))) 0.075)) (fmax (- (fmin (fmax (fmax (fmax t_577 (- (* y 8.13008) 2.8875)) t_943) (+ 0.355 (* x 5.42005))) (- (sqrt (+ (pow (- 2.885 (* y 8.13008)) 2.0) (pow (- (+ 0.346667 (* x 3.61337))) 2.0))) 0.0625))) (- (sqrt (+ (pow (- 2.8875 (* y 8.13008)) 2.0) (pow t_943 2.0))) 0.1625))) (fmax (- (fmin (fmax (fmax (fmax t_245 (- 2.6625 (* y 8.13008))) t_14) (- (+ 0.68 (* x 5.42005)))) (- (sqrt (+ (pow (- (* y 8.13008) 2.665) 2.0) (pow (+ 0.343334 (* x 3.61337)) 2.0))) 0.0625))) (- (sqrt (+ (pow (- (* y 8.13008) 2.6625) 2.0) (pow t_14 2.0))) 0.1625))) (fmax (fmax t_958 t_18) (- (+ 1.22 (* x 8.13008))))) (fmax (fmax (fmax t_16 t_976) (+ 1.57 (* x 8.13008))) t_565)) (fmax (fmax (fmax (fmax t_384 t_18) t_565) (- 0.175 t_177)) (- t_177 0.275))) (fmax (fmax t_642 (+ 1.77 (* x 8.13008))) (- (+ 1.87 (* x 8.13008))))) (fmax (fmax t_642 (+ 2.02 (* x 8.13008))) (- (+ 2.12 (* x 8.13008))))) (fmax (fmax (fmax (fmax (fmax (- (fmin (fmax (fmax (- (+ 0.0958748 (* x 2.84553)) (* y 0.813008)) (- 1.26444 t_492)) (- (* y 4.87805) t_396)) (fmax (fmax (- t_396 (* y 4.87805)) (- t_492 1.26444)) (- (* y 0.813008) (+ 0.095875 (* x 2.84553)))))) t_24) (- 2.35 (* y 8.13008))) (- (* x 8.13008) 0.5475)) (- 0.3975 (* x 8.13008))) (- (sqrt (+ (pow (- (* y 2.71003) 0.858333) 2.0) (pow (- (* x 8.13008) 0.4725) 2.0))) 0.075))) (- (sqrt (+ (pow t_24 2.0) (pow (- (* x 8.13008) 0.4975) 2.0))) 0.075)) (fmax (fmax (- (fmin (fmax (fmax (- (* y 2.23577) t_811) (- (* x 4.5122) 0.203962)) (- 0.788562 t_1014)) (fmax (fmax (- t_1014 0.788562) (- 0.203962 (* x 4.5122))) (- t_811 (* y 2.23577))))) (- 0.175 t_513)) (- t_513 0.275))) (fmax (fmax t_958 (+ 0.3075 (* x 8.13008))) (- (+ 0.4075 (* x 8.13008))))) (- (sqrt (+ t_104 (pow (+ 0.357501 (* x 8.13008)) 2.0))) 0.075)) (fmax (fmax t_382 (+ 3.845 (* x 8.13008))) (- (+ 3.945 (* x 8.13008))))) (fmax (fmax t_383 t_230) (- (+ 4.17 (* x 8.13008))))) (fmax (fmax t_958 (+ 4.52 (* x 8.13008))) t_821)) (fmax (fmax (fmax (fmax (fmax t_16 t_626) t_230) t_821) (- 0.175 t_356)) (- t_356 0.275))) (fmax t_911 (fmin (fmax (fmax t_578 (+ 4.72 (* x 8.13008))) (- (+ 5.22 (* x 8.13008)))) (fmax (fmax t_911 (- (fmin (fmax (fmax t_277 (- t_150 (* y 1.21951))) (- t_289)) (fmax (fmax t_39 t_289) (- (* y 1.21951) t_150))))) (- 0.175 t_910))))) (fmax (fmax t_223 (- t_12 (* y 2.03252))) t_152)) (fmax (fmax t_1018 t_372) (- (* y 2.03252) t_12))) (fmax (fmax t_94 t_372) (- (* y 2.03252) t_694))) (fmax (fmax t_523 t_152) (- t_694 (* y 2.03252)))) (fmax (fmax t_223 (- t_197)) t_373)) (fmax (fmax (fmax t_381 (- (* y 8.13008) 3.025)) (+ 2.27 (* x 8.13008))) t_69)) (fmax (fmax (fmax (fmax t_69 (- (* y 8.13008) 3.15)) (- 2.85 (* y 8.13008))) (+ 1.72 (* x 8.13008))) (fmin (fmax (- 0.075 t_640) (- t_640 0.175)) (fmax (- 0.075 t_641) (- t_641 0.175))))) (fmax (fmax t_369 t_117) t_258)) (fmax (fmax t_488 t_566) t_102)) (fmax (fmax t_488 t_1018) t_857)) (fmax (fmax t_258 t_856) t_223)) (fmax (fmax t_223 t_117) t_318)) (fmax (fmax t_1018 t_566) t_568)) (fmax (fmax t_94 t_857) t_568)) (fmax (fmax t_523 t_856) t_318)) (fmax (fmax t_223 (- t_121)) t_267)) (fmax (fmax t_1018 t_121) t_571)) (fmax (fmax t_94 t_571) t_787)) (fmax (fmax t_523 t_267) (- t_787))) (fmax (fmax (fmax t_684 (- (+ 4.725 (* x 8.13008)))) (- (+ 0.0749998 (* y 8.13008)))) (+ 4.625 (* x 8.13008)))) (fmax (- 0.175 t_761) (- t_761 0.275))) (fmax (fmax t_685 t_442) (- t_813))) (fmax (fmax t_796 t_880) t_84)) (fmax (fmax (fmax (fmax t_759 t_442) t_84) (- 0.175 t_766)) (- t_766 0.275))) (fmax (fmax t_940 (- t_38)) (+ 6.175 (* x 8.13008)))) (fmax (fmax (fmax t_684 (- 0.75 (* y 8.13008))) t_582) t_38)) (fmax (fmax (fmax t_379 t_582) t_38) (- (* y 8.13008) 0.4))) (fmax (fmax (fmax (fmax t_940 t_581) (- (+ 7.175 (* x 8.13008)))) (- 0.175 t_769)) (- t_769 0.275))) (fmax (fmax (fmax t_379 t_190) t_722) (- t_549))) (fmax (fmax t_685 t_144) t_227)) (fmax (fmax t_759 t_525) (- (+ 1.125 (* x 8.13008))))) (fmax (fmax t_940 (+ 1.475 (* x 8.13008))) t_147)) (fmax (fmax (fmax (fmax t_796 t_525) t_147) (- 0.175 t_770)) (- t_770 0.275))) (fmax (fmax t_941 (+ 1.825 (* x 8.13008))) (- (+ 1.925 (* x 8.13008))))) (fmax (fmax t_424 t_364) t_415)) (fmax (fmax (fmax (fmax t_380 t_364) t_415) (- 0.15 t_696)) (- t_696 0.25))) (fmax (fmax t_1012 t_290) (- (+ 2.975 (* x 8.13008))))) (fmax (fmax t_685 (+ 3.325 (* x 8.13008))) t_937)) (fmax (fmax (fmax (fmax (fmax t_684 t_1017) t_290) t_937) (- 0.175 t_765)) (- t_765 0.275))) (fmax (- 0.175 t_945) (- t_945 0.275))) (fmax (fmax t_689 (- (* x 8.13008) 5.958)) t_426)) (fmax (fmax (fmax (fmax (fmax t_68 (- 0.175 t_928)) (- t_928 0.275)) t_304) t_153) t_426)) (fmax (fmax (fmax t_388 (- 5.633 (* x 8.13008))) t_687) t_153)) (- (sqrt (+ (pow (- (* y 8.13008) 2.1) 2.0) (pow (- (* x 8.13008) 5.683) 2.0))) 0.075)) (fmax (fmax (fmax t_484 (- (* x 8.13008) 5.508)) (- 5.408 (* x 8.13008))) t_687)) (fmax (fmax (fmax t_484 (- (* x 8.13008) 5.258)) (- 5.158 (* x 8.13008))) t_687)) (fmax (fmax (fmax (- (* y 8.13008) 1.925) (- (* x 8.13008) 5.008)) t_702) t_687)) (fmax (fmax (fmax (fmax t_702 t_118) (- 1.75 (* y 8.13008))) t_904) (fmin (fmax (- 0.075 t_496) (- t_496 0.175)) (fmax (- 0.075 t_495) (- t_495 0.175))))) (fmax (fmax (fmax (fmax (fmax t_190 t_684) t_1017) t_227) (- 0.175 t_772)) (- t_772 0.275))) (fmax t_764 (fmin (fmax (fmax (fmax t_294 t_419) t_286) t_409) (fmax (fmax t_764 (- (fmin (fmax (fmax t_97 (- t_79 (* y 1.21951))) (- t_186)) (fmax (fmax t_729 t_186) (- (* y 1.21951) t_79))))) (- 0.175 t_763))))) (fmax t_936 (fmin (fmax (fmax (fmax (- (* y 8.13008) 1.715) (- 1.625 (* y 8.13008))) (- (* x 8.13008) 7.058)) (- 6.558 (* x 8.13008))) (fmax (fmax t_936 (- (fmin (fmax (fmax (- (* y 5.28455) 1.08875) (- (* x 2.23577) t_336)) (- 2.6547 t_25)) (fmax (fmax (- t_25 2.6547) (- t_336 (* x 2.23577))) (- 1.08875 (* y 5.28455)))))) (- 0.175 t_935))))) (fmax (fmax (fmax t_559 t_687) t_304) (- 6.308 (* x 8.13008)))) (fmax (- t_931 0.275) (- 0.175 t_931))) (fmax (fmax t_359 (- (* x 4.47154) t_1021)) t_96)) (fmax (fmax t_228 (- t_1021 (* x 4.47154))) t_673)) (fmax (fmax t_228 t_102) (- t_526 (* x 4.47154)))) (fmax (fmax t_96 (- (* x 4.47154) t_526)) t_369)) (fmax (fmax t_359 (- 1.4775 t_912)) t_148)) (fmax (fmax t_673 t_357) (- t_912 1.4775))) (fmax (fmax t_102 t_357) (- t_912 1.5325))) (fmax (fmax t_369 t_148) (- 1.5325 t_912))) (fmax (fmax t_359 (- (* x 4.47154) t_149)) t_288)) (fmax (fmax t_673 t_554) (- t_149 (* x 4.47154)))) (fmax (fmax t_102 t_554) (- t_922 (* x 4.47154)))) (fmax (fmax t_369 t_288) (- (* x 4.47154) t_922))) (fmax (fmax t_359 (- 1.2025 t_912)) t_418)) (fmax (fmax t_673 t_682) (- t_912 1.2025))) (fmax (fmax t_102 t_682) (- t_912 1.2575))) (fmax (fmax t_369 t_418) (- 1.2575 t_912))) (fmax (- 0.175 t_930) (- t_930 0.275))) (fmax (fmax (fmax (fmax t_687 (- (fmin (fmin (fmin (fmin (fmin (fmin (fmin (fmax (fmax (- (* y 4.06504) 1.2) (- (* x 4.06504) 2.104)) (- 3.054 t_979)) (fmax (fmax (- t_979 3.054) (- 2.104 (* x 4.06504))) (- 1.2 (* y 4.06504)))) (fmax (fmax (- (* x 8.13008) t_428) (- 1.8858 t_697)) (- t_817 (* x 5.28455)))) (fmax (fmax (- (* x 5.28455) t_817) (- t_697 1.8858)) (- t_428 (* x 8.13008)))) (fmax (fmax (- 0.351 (* y 2.19512)) (- 1.2978 (* x 2.84553))) (- t_444 1.7433))) (fmax (fmax (- 1.7433 t_444) (- (* x 2.84553) 1.2978)) (- (* y 2.19512) 0.351))) (fmax (fmax (- (* y 3.25203) 0.96) (- (* x 4.47154) t_353)) (- 2.0394 (* x 4.47154)))) (fmax (fmax (- (* x 4.47154) 2.0394) (- t_353 (* x 4.47154))) (- 0.96 (* y 3.25203)))))) t_1) (- (* x 8.13008) 4.108)) (- 3.608 (* x 8.13008)))) (fmax (fmax t_689 (- (* x 8.13008) 3.25)) (- 3.15 (* x 8.13008)))) (fmax (fmax (fmax (fmax t_689 t_977) (- 4.5 (* x 11.6144))) (- 0.45 (sqrt (+ t_269 (pow (- (* x 14.518) 6.3125) 2.0))))) (- (sqrt (+ t_269 (pow t_977 2.0))) 0.55))) (fmax (fmax (fmax t_153 t_124) t_173) (- 1.85 (* y 8.13008)))) (fmax (fmax (fmax t_687 t_124) t_575) t_173)) (fmax (fmax (fmax (fmax t_688 t_123) (- (+ 3.275 (* x 8.13008)))) (- 0.175 t_929)) (- t_929 0.275))) (fmax (fmax (fmax t_1 (- 2.3 (* y 8.13008))) t_807) t_1004)) (fmax (fmax (fmax t_687 t_575) t_807) t_1004)) (fmax (fmax (fmax t_481 t_687) t_1) (- (+ 3.9 (* x 8.13008))))) (fmax (fmax t_359 (- t_718 (* y 2.03252))) t_1010)) (fmax (fmax t_673 t_1009) (- (* y 2.03252) t_718))) (fmax (fmax t_102 t_1009) (- (* y 2.03252) t_447))) (fmax (fmax t_369 t_1010) (- t_447 (* y 2.03252)))) (fmax (fmax t_359 (- t_40)) t_184)) (fmax (fmax t_673 t_40) t_449)) (fmax (fmax t_102 t_449) t_651)) (fmax (fmax t_369 t_184) (- t_651))) (fmax (fmax t_359 (- t_187 (* y 2.03252))) t_355)) (fmax (fmax t_673 t_594) (- (* y 2.03252) t_187))) (fmax (fmax t_102 t_594) (- (* y 2.03252) t_6))) (fmax (fmax t_369 t_355) (- t_6 (* y 2.03252)))) (fmax (fmax (fmax (- 1.65 (* y 8.13008)) (+ 0.300001 (* x 8.13008))) t_1) (- (+ 0.400001 (* x 8.13008))))) (fmax (fmax (fmax t_464 t_118) (- 1.95 (* y 8.13008))) t_100)) (fmax (fmax (fmax (fmax (fmax t_464 t_687) t_100) t_556) (- 0.15 t_676)) (- t_676 0.25))) (fmax (fmax (fmax (fmax (fmax (- (fmin (fmax (fmax (- t_558 (* y 0.813008)) (- 0.281875 t_492)) (- (* y 4.87805) t_938)) (fmax (fmax (- t_938 (* y 4.87805)) (- t_492 0.281875)) (- (* y 0.813008) t_558)))) t_296) (- 1.25 (* y 8.13008))) (+ 1.375 (* x 8.13008))) (- (+ 1.525 (* x 8.13008)))) (- (sqrt (+ (pow (- (* y 2.71003) 0.491667) 2.0) (pow (+ 1.45 (* x 8.13008)) 2.0))) 0.075))) (- (sqrt (+ (pow t_296 2.0) (pow (+ 1.425 (* x 8.13008)) 2.0))) 0.075)) (fmax (- 0.175 t_934) (- t_934 0.275))) (fmax (fmax t_688 (- t_173)) (+ 2.275 (* x 8.13008)))) (fmax (fmax (fmax (fmax (fmax (- t_754 0.275) t_206) t_305) (- 0.175 t_754)) t_486) t_627)) (fmax (fmax (fmax t_19 (- (* x 8.13008) 1.556)) (- 1.456 (* x 8.13008))) t_259)) (fmax (- 0.175 t_436) (- t_436 0.275))) (fmax (fmax (fmax (fmax (fmax (- (fmin (fmax (fmax (- t_497 (* y 0.813008)) (- 2.27973 t_492)) (- (* y 4.87805) t_868)) (fmax (fmax (- t_868 (* y 4.87805)) (- t_492 2.27973)) (- (* y 0.813008) t_497)))) t_271) (- 4.55 (* y 8.13008))) (- (* x 8.13008) 0.171)) (- 0.0209999 (* x 8.13008))) (- (sqrt (+ (pow (- (* y 2.71003) 1.59167) 2.0) (pow (- (* x 8.13008) 0.0959997) 2.0))) 0.075))) (- (sqrt (+ (pow t_271 2.0) (pow (- (* x 8.13008) 0.121) 2.0))) 0.075)) (fmax (fmax t_879 t_998) (- 3.65055 t_912))) (fmax (fmax (- (* x 4.47154) t_330) t_505) t_649)) (fmax (fmax t_1005 (- t_330 (* x 4.47154))) t_86)) (fmax (fmax t_1005 (- (+ 0.970551 (* y 2.03252)) (* x 4.47154))) t_404)) (fmax (fmax t_505 (- (* x 4.47154) (+ 0.970552 (* y 2.03252)))) t_879)) (fmax (fmax (- 3.32055 t_912) t_88) t_649)) (fmax (fmax t_281 (- t_912 3.32055)) t_86)) (fmax (fmax t_281 (- t_912 3.37555)) t_404)) (fmax (fmax t_88 (- 3.37555 t_912)) t_879)) (fmax (fmax (fmax (- 2.751 (* x 8.13008)) (- (* x 8.13008) 2.851)) t_283) t_259)) (fmax (fmax (fmax t_592 t_652) t_814) t_486)) (fmax (fmax (fmax t_652 t_814) t_46) t_259)) (fmax (fmax (fmax (fmax (fmax (- 1.851 (* x 8.13008)) (- (* x 8.13008) 2.576)) (- 0.175 t_661)) (- t_661 0.275)) t_283) t_259)) (fmax (fmax (fmax t_206 (- 2.126 (* x 8.13008))) t_233) t_259)) (fmax (fmax (fmax (- (* x 8.13008) 1.776) t_305) t_259) t_486)) (fmax (fmax (fmax (- 4.6 (* y 8.13008)) (+ 1.862 (* x 8.13008))) (- (+ 1.962 (* x 8.13008)))) t_486)) (- (sqrt (+ (pow (- (* y 8.13008) 5.4) 2.0) (pow (+ 1.912 (* x 8.13008)) 2.0))) 0.075)) (fmax (fmax (fmax t_923 (- (+ 2.762 (* x 8.13008)))) t_283) t_259)) (fmax (fmax (fmax t_592 t_370) t_924) t_486)) (fmax (fmax (fmax t_46 t_370) t_924) t_259)) (fmax (fmax (fmax (fmax (fmax (+ 1.762 (* x 8.13008)) (- t_370)) (- 0.175 t_371)) (- t_371 0.275)) t_283) t_259)) (fmax (fmax (fmax t_19 (+ 2.882 (* x 8.13008))) (- (+ 2.982 (* x 8.13008)))) t_259)) (fmax (- 0.175 t_199) (- t_199 0.275))) (fmax t_753 (fmin (fmax (fmax (fmax (+ 0.0790005 (* x 8.13008)) (- (+ 0.579001 (* x 8.13008)))) t_612) t_755) (fmax (fmax t_753 (- (fmin (fmax (fmax (- t_252 (* y 1.21951)) (- 2.34202 t_25)) t_487) (fmax (fmax (- t_25 2.34202) (- (* y 1.21951) t_252)) t_967)))) (- 0.175 t_752))))) (fmax (fmax (fmax (+ 0.987 (* x 8.13008)) (- (+ 1.087 (* x 8.13008)))) t_259) t_486)) (fmax (fmax (fmax (fmax (fmax t_865 (- (+ 1.55286 (* x 11.6144)))) (- 0.45 (sqrt (+ t_314 (pow (+ 1.25357 (* x 14.518)) 2.0))))) (- (sqrt (+ t_314 (pow t_865 2.0))) 0.55)) t_259) t_486)) (fmax (fmax (fmax t_122 (- (+ 1.287 (* x 8.13008)))) t_259) t_486)) (fmax (fmax (fmax (+ 1.637 (* x 8.13008)) t_708) t_997) t_486)) (fmax (fmax (fmax (fmax (fmax t_122 t_708) (- 0.175 t_326)) (- t_326 0.275)) t_259) t_157)) (fmax (fmax (fmax (fmax (fmax (- 4.325 (* y 8.13008)) (+ 1.587 (* x 8.13008))) (- t_331)) (- 0.175 t_716)) (- t_716 0.275)) t_714)) (fmax (fmax (fmax t_132 t_216) t_334) t_445)) (fmax (fmax (fmax t_216 (- (* x 8.13008) 6.3305)) (- 6.2305 (* x 8.13008))) t_89)) (fmax (fmax (- (fmin (fmax (fmax (- (* y 2.23577) t_518) (- (* x 4.5122) 2.94178)) (- 3.05264 t_1014)) (fmax (fmax (- t_1014 3.05264) (- 2.94178 (* x 4.5122))) (- t_518 (* y 2.23577))))) (- 0.175 t_461)) (- t_461 0.275))) (fmax (fmax t_1022 (- (* x 8.13008) 4.6255)) (- 4.5255 (* x 8.13008)))) (- (sqrt (+ t_411 (pow (- (* x 8.13008) 4.5755) 2.0))) 0.075)) (fmax (fmax t_915 t_56) (- 4.3005 (* x 8.13008)))) (fmax (- 0.175 t_468) (- t_468 0.275))) (fmax (fmax (fmax (fmax (fmax t_56 t_101) (- 3.8505 (* x 8.13008))) (- 0.175 t_474)) (- t_474 0.275)) t_283)) (fmax t_732 (fmin (fmax (fmax (fmax (+ 4.242 (* x 8.13008)) (- (+ 4.742 (* x 8.13008)))) t_612) t_755) (fmax (fmax t_732 (- (fmin (fmax (fmax (- t_105 (* y 1.21951)) (- 1.1972 t_25)) t_487) (fmax (fmax (- t_25 1.1972) (- (* y 1.21951) t_105)) t_967)))) (- 0.175 t_731))))) (fmax (fmax (fmax t_143 (- (+ 5.25 (* x 8.13008)))) t_259) t_486)) (fmax (fmax (fmax (fmax (fmax t_244 (- (+ 7.5 (* x 11.6144)))) (- 0.45 (sqrt (+ t_314 (pow (+ 8.6875 (* x 14.518)) 2.0))))) (- (sqrt (+ t_314 (pow t_244 2.0))) 0.55)) t_259) t_486)) (fmax t_301 (fmin (fmax (fmax (fmax (+ 5.35 (* x 8.13008)) (- (+ 5.85 (* x 8.13008)))) t_612) t_755) (fmax (fmax t_301 (- (fmin (fmax (fmax (- t_564 (* y 1.21951)) (- 0.8925 t_25)) t_487) (fmax (fmax (- t_25 0.8925) (- (* y 1.21951) t_564)) t_967)))) (- 0.175 t_300))))) (fmax (fmax (fmax t_311 (- (+ 6.15 (* x 8.13008)))) t_259) t_157)) (fmax (fmax t_779 t_283) t_259)) (fmax (fmax (fmax (fmax (fmax t_182 t_311) (- 0.175 t_655)) (- t_655 0.275)) t_997) t_486)) (fmax (fmax (fmax t_89 t_570) t_334) t_445)) (fmax (fmax t_915 t_782) (- 0.8705 (* x 8.13008)))) (fmax (- 0.175 t_459) (- t_459 0.275))) (fmax (fmax (fmax (fmax (fmax t_101 t_782) (- 0.4205 (* x 8.13008))) (- 0.175 t_473)) (- t_473 0.275)) t_283)) (fmax (fmax t_1022 t_327) (- 0.220499 (* x 8.13008)))) (fmax (fmax (fmax t_3 (+ 0.129501 (* x 8.13008))) t_999) t_126)) (fmax (fmax (fmax (fmax t_455 t_327) t_999) (- 0.175 t_506)) (- t_506 0.275))) (fmax (- 0.175 t_457) (- t_457 0.275))) (fmax (fmax t_1022 (+ 1.2375 (* x 8.13008))) (- (+ 1.3375 (* x 8.13008))))) (fmax (fmax (fmax (fmax t_1022 t_133) (- (+ 1.91072 (* x 11.6144)))) (- 0.45 (sqrt (+ t_587 (pow (+ 1.70089 (* x 14.518)) 2.0))))) (- (sqrt (+ t_587 (pow t_133 2.0))) 0.55))) (fmax (fmax t_350 (- (* x 8.13008) 3.7305)) (- 3.6305 (* x 8.13008)))) (fmax (- 0.175 t_726) (- t_726 0.275))) (fmax (fmax t_350 (- (* x 8.13008) 3.0705)) (- 2.9705 (* x 8.13008)))) (fmax (fmax t_350 (- (* x 8.13008) 2.8205)) (- 2.7205 (* x 8.13008)))) (fmax (fmax (fmax t_216 (- (* y 8.13008) 6.325)) (- (* x 8.13008) 2.5705)) t_189)) (fmax (fmax (fmax (fmax t_189 t_540) (- 6.15 (* y 8.13008))) (- (* x 8.13008) 3.1205)) (fmin (fmax (- 0.075 t_349) (- t_349 0.175)) (fmax (- 0.075 t_548) (- t_548 0.175))))) (fmax (fmax t_455 t_103) (- 1.5205 (* x 8.13008)))) (fmax (fmax t_422 (- (* x 8.13008) 1.1705)) t_603)) (fmax (fmax (fmax (fmax (fmax t_3 t_103) t_603) t_126) (- 0.175 t_458)) (- t_458 0.275))) (fmax (fmin (fmax (fmax (fmax t_850 (- (* x 8.13008) 6.4085)) (- 5.9085 (* x 8.13008))) t_154) (fmax (fmax (- (fmin (fmax (fmax t_610 (- (* x 2.23577) t_852)) (- 3.57609 t_25)) (fmax (fmax (- t_25 3.57609) (- t_852 (* x 2.23577))) t_302))) (- 0.175 t_622)) t_959)) t_959)) (fmax (fmax t_254 (- (* x 8.13008) 5.7585)) (- 5.6585 (* x 8.13008)))) (fmax (fmax t_254 (- (* x 8.13008) 5.5085)) (- 5.4085 (* x 8.13008)))) (fmax (fmax (fmax t_253 (- (* y 8.13008) 4.125)) (- (* x 8.13008) 5.2585)) t_312)) (fmax (fmax (fmax (fmax t_312 (- (* y 8.13008) 4.25)) (- 3.95 (* y 8.13008))) (- (* x 8.13008) 5.8085)) (fmin (fmax (- 0.075 t_266) (- t_266 0.175)) (fmax (- 0.075 t_707) (- t_707 0.175))))) (fmax (fmax t_1018 t_197) t_374)) (fmax (fmax t_94 t_374) t_392)) (fmax (fmax t_523 t_373) (- t_392))) (fmax (fmax t_642 (+ 6.09 (* x 8.13008))) (- (+ 6.19 (* x 8.13008))))) (fmax (- 0.175 t_328) (- t_328 0.275))) (fmax t_1001 (fmin (fmax (fmax t_578 t_242) (- t_144)) (fmax (fmax t_1001 (- (fmin (fmax (fmax t_277 (- t_717 (* y 1.21951))) (- t_1007)) (fmax (fmax t_39 t_1007) (- (* y 1.21951) t_717))))) (- 0.175 t_1000))))) (fmax (fmax (fmax t_294 t_381) t_175) (- (+ 7.55 (* x 8.13008))))) (fmax (fmax t_382 (+ 7.9 (* x 8.13008))) t_33)) (fmax (fmax (fmax (fmax (fmax t_294 t_16) t_976) t_33) (- 0.175 t_514)) (- t_514 0.275))) (fmax (fmax (fmax (fmax t_715 (- 2.121 (* x 8.13008))) (- (* x 8.13008) 2.846)) (- 0.175 t_621)) (- t_621 0.275))) (fmax t_816 (fmin (fmax (fmax t_851 (- (* x 8.13008) 2.496)) (- 1.996 (* x 8.13008))) (fmax (fmax t_816 (- (fmin (fmax (fmax t_610 (- (* x 2.23577) t_51)) (- 2.50015 t_25)) (fmax (fmax t_302 (- t_25 2.50015)) (- t_51 (* x 2.23577)))))) (- 0.175 t_815))))) (fmax (fmax (fmax t_253 (- (* x 8.13008) 1.588)) (- 1.488 (* x 8.13008))) t_59)) (fmax (fmax (fmax (fmax (fmax t_253 t_416) (- 2.12571 (* x 11.6144))) (- 0.45 (sqrt (+ t_925 (pow (- (* x 14.518) 3.34464) 2.0))))) (- (sqrt (+ t_925 (pow t_416 2.0))) 0.55)) t_59)) (fmax (fmax (fmax t_253 (- (* x 8.13008) 1.363)) (- 1.263 (* x 8.13008))) t_59)) (- (sqrt (+ (pow (- (* y 8.13008) 4.3) 2.0) (pow (- (* x 8.13008) 1.313) 2.0))) 0.075)) (fmax (fmax (fmax t_253 t_609) (- 1.038 (* x 8.13008))) t_59)) (fmax (- t_616 0.275) (- 0.175 t_616))) (fmax (- (fmin (fmax (fmax (fmax t_850 (- (* y 8.13008) 3.9875)) t_955) (- (* x 5.42005) 2.939)) (- (sqrt (+ (pow (- 3.985 (* y 8.13008)) 2.0) (pow (- 1.84933 (* x 3.61337)) 2.0))) 0.0625))) (- (sqrt (+ (pow (- 3.9875 (* y 8.13008)) 2.0) (pow t_955 2.0))) 0.1625))) (fmax (- (fmin (fmax (fmax (fmax (- (* y 8.13008) 3.925) (- 3.7625 (* y 8.13008))) t_700) (- 2.614 (* x 5.42005))) (- (sqrt (+ (pow (- (* y 8.13008) 3.765) 2.0) (pow (- (* x 3.61337) 1.85267) 2.0))) 0.0625))) (- (sqrt (+ (pow (- (* y 8.13008) 3.7625) 2.0) (pow t_700 2.0))) 0.1625))) (fmax (fmax t_715 (- 3.021 (* x 8.13008))) (- (* x 8.13008) 3.121))) (fmax (fmax (fmax t_59 (- 4.05 (* y 8.13008))) t_522) t_499)) (fmax (fmax (fmax t_253 t_522) t_499) t_783)) (fmax (fmax (fmax (fmax t_255 t_212) (- (+ 1.67143 (* x 11.6144)))) (- 0.45 (sqrt (+ t_925 (pow (+ 1.40179 (* x 14.518)) 2.0))))) (- (sqrt (+ t_925 (pow t_212 2.0))) 0.55))) (fmax t_620 (fmin (fmax (fmax t_851 (+ 1.97 (* x 8.13008))) (- (+ 2.47 (* x 8.13008)))) (fmax (fmax t_620 (- (fmin (fmax (fmax t_610 (- t_507 (* y 1.21951))) (- 1.272 t_25)) (fmax (fmax t_302 (- t_25 1.272)) (- (* y 1.21951) t_507))))) (- 0.175 t_619))))) (fmax (fmax t_217 (- t_332 (* y 2.03252))) t_512)) (fmax (fmax t_809 (- (* y 2.03252) t_332)) t_1011)) (fmax (fmax t_809 t_134) (- (* y 2.03252) t_221))) (fmax (fmax t_512 (- t_221 (* y 2.03252))) t_515)) (fmax (fmax t_217 (- t_727)) t_41)) (fmax (fmax t_1011 t_727) t_285)) (fmax (fmax t_134 t_285) t_452)) (fmax (fmax t_515 t_41) (- t_452))) (fmax (fmax t_254 (+ 3.34 (* x 8.13008))) (- (+ 3.44 (* x 8.13008))))) (fmax (fmax (fmax t_412 (- (* x 8.13008) 0.688)) t_595) t_59)) (fmax (fmax (fmax (fmax t_614 t_609) t_595) (- 0.175 t_617)) (- t_617 0.275))) (fmax (fmax (fmax t_59 (- 3.225 (* y 8.13008))) (- (* x 8.13008) 0.487999)) (- 0.387999 (* x 8.13008)))) (fmax (- 0.175 t_618) (- t_618 0.275))) (fmax t_678 (fmin (fmax (fmax t_851 (+ 0.162001 (* x 8.13008))) (- (+ 0.662001 (* x 8.13008)))) (fmax (fmax t_678 (- (fmin (fmax (fmax t_610 (- t_13 (* y 1.21951))) (- 1.7692 t_25)) (fmax (fmax t_302 (- t_25 1.7692)) (- (* y 1.21951) t_13))))) (- 0.175 t_677))))) (fmax (fmax t_255 (+ 1.07 (* x 8.13008))) (- (+ 1.17 (* x 8.13008))))) (fmax (fmin (fmax (fmax (- (fmin (fmax (fmax t_487 (- (* x 2.23577) t_479)) (- 4.04153 t_25)) (fmax (fmax (- t_25 4.04153) (- t_479 (* x 2.23577))) t_967))) (- 0.175 t_159)) t_386) (fmax (fmax (fmax t_612 t_755) (- (* x 8.13008) 6.101)) (- 5.601 (* x 8.13008)))) t_386)) (fmax (fmax (fmax t_112 (- 5.301 (* x 8.13008))) t_259) t_157)) (fmax (fmax (fmax t_283 (- (* x 8.13008) 4.951)) t_629) t_259)) (fmax (fmax (fmax (fmax (fmax t_112 t_629) t_997) (- 0.175 t_166)) (- t_166 0.275)) t_486)) (fmax (fmax t_649 (- (* x 4.47154) t_703)) t_975)) (fmax (fmax t_974 (- t_703 (* x 4.47154))) t_86)) (fmax (fmax t_974 t_404) (- t_438 (* x 4.47154)))) (fmax (fmax t_975 (- (* x 4.47154) t_438)) t_879)) (fmax (fmax t_649 (- 3.59555 t_912)) t_998)) (fmax (fmax t_86 t_172) (- t_912 3.59555))) (fmax (fmax t_404 t_172) (- t_912 3.65055))) (fmax (- 0.175 t_623) (- t_623 0.275))) (fmax (fmax t_614 t_174) (- (+ 4.15 (* x 8.13008))))) (fmax (fmax (fmax t_179 t_274) t_253) t_714)) (fmax (fmax (fmax (fmax (fmax t_274 t_412) t_59) t_174) (- 0.175 t_1002)) (- t_1002 0.275))) (fmax (fmax (fmax t_714 (- 4.5 (* y 8.13008))) t_443) t_508)) (fmax (fmax (fmax t_253 t_783) t_443) t_508)) (fmax (fmax t_715 t_45) (- (+ 5.7 (* x 8.13008))))) (fmax (fmax (fmax t_233 t_259) t_276) (- 6.651 (* x 8.13008)))) (fmax (fmax (fmax t_259 t_486) (- (* x 8.13008) 6.30101)) t_900)) (fmax (fmax (fmax (fmax (fmax t_276 t_486) t_900) t_627) (- 0.175 t_339)) (- t_339 0.275))) (fmax (fmax (fmax (fmax t_127 t_92) t_136) (- 0.175 t_460)) (- t_460 0.275))) (fmax (fmax t_588 (+ 3.825 (* x 8.13008))) (- (+ 3.925 (* x 8.13008))))) (fmax (fmax t_541 t_322) t_142)) (fmax (fmax (fmax (fmax (fmax t_216 t_322) t_142) t_596) (- 0.15 t_918)) (- t_918 0.25))) (fmax (fmax t_588 (+ 5.025 (* x 8.13008))) (- (+ 5.125 (* x 8.13008))))) (fmax (fmax t_541 t_542) t_881)) (fmax (fmax (fmax (fmax (fmax t_216 t_596) t_542) t_881) (- 0.15 t_917)) (- t_917 0.25))) (fmax (fmax t_417 t_3) (- (+ 5.475 (* x 8.13008))))) (fmax (fmax t_127 (+ 5.825 (* x 8.13008))) t_11)) (fmax (fmax (fmax (fmax t_417 t_454) t_11) (- 0.175 t_462)) (- t_462 0.275))) (fmax (fmax t_779 t_216) t_89)) (fmax (fmax (fmax t_519 t_89) t_570) t_107)) (fmax (fmax (fmax t_519 t_3) t_107) (- 6.25 (* y 8.13008)))) (fmax (fmax (fmax t_519 t_132) t_216) t_107)) (fmax (- (fmin (fmax (fmax (fmax (- 6.025 (* y 8.13008)) (- (* y 8.13008) 6.1875)) t_202) (+ 1.425 (* x 5.42005))) (- (sqrt (+ (pow (- 6.185 (* y 8.13008)) 2.0) (pow (- (+ 1.06 (* x 3.61337))) 2.0))) 0.0625))) (- (sqrt (+ (pow (- 6.1875 (* y 8.13008)) 2.0) (pow t_202 2.0))) 0.1625))) (fmax (- (fmin (fmax (fmax (fmax (- (* y 8.13008) 6.125) (- 5.9625 (* y 8.13008))) t_201) (- (+ 1.75 (* x 5.42005)))) (- (sqrt (+ (pow (- (* y 8.13008) 5.965) 2.0) (pow (+ 1.05667 (* x 3.61337)) 2.0))) 0.0625))) (- (sqrt (+ (pow (- (* y 8.13008) 5.9625) 2.0) (pow t_201 2.0))) 0.1625))) (fmax (fmax t_1022 (+ 2.75 (* x 8.13008))) (- (+ 2.85 (* x 8.13008))))) (- (sqrt (+ t_411 (pow (+ 2.8 (* x 8.13008)) 2.0))) 0.075)) (fmax (fmax t_455 t_92) (- (+ 3.125 (* x 8.13008))))) (fmax (fmax t_422 (+ 3.475 (* x 8.13008))) t_136)) (fmax (fmax (fmax (fmax t_45 t_216) t_89) (- t_107)) (fmin (fmax (- 0.175 t_870) (- t_870 0.275)) (fmax (- 0.175 t_214) (- t_214 0.275)))))))
double code(double x, double y) { double t_0 = (x * 8.13008) - 0.0979996; double t_1 = (y * 8.13008) - 2.4; double t_2 = pow((0.0999999 + (y * 8.13008)), 2.0); double t_3 = (y * 8.13008) - 6.35; double t_4 = (x * 11.6144) - 3.18286; double t_5 = 2.35 + (y * 8.13008); double t_6 = 3.5125 + (x * 4.47154); double t_7 = pow((7.725 + (x * 8.13008)), 2.0); double t_8 = -(0.3955 + (x * 5.42005)); double t_9 = 4.0 + (y * 8.13008); double t_10 = 0.15 + (y * 8.13008); double t_11 = -(5.925 + (x * 8.13008)); double t_12 = 3.716 + (x * 4.47154); double t_13 = 0.5708 + (x * 2.23577); double t_14 = 0.5175 + (x * 5.42005); double t_15 = 1.38723 + (x * 4.47154); double t_16 = (y * 8.13008) - 3.05; double t_17 = (1.80223 + (y * 1.82927)) + (x * 4.47154); double t_18 = 1.12 + (x * 8.13008); double t_19 = (y * 8.13008) - 5.05; double t_20 = 0.750575 + (y * 1.21951); double t_21 = 2.95 + (x * 8.13008); double t_22 = (y * 2.64228) + (x * 4.47154); double t_23 = 0.9305 - (x * 8.13008); double t_24 = (y * 8.13008) - 2.575; double t_25 = (x * 2.23577) + (y * 4.06504); double t_26 = 1.0405 + (x * 2.23577); double t_27 = (x * 8.13008) - 5.5355; double t_28 = (x * 5.42005) - 2.2095; double t_29 = 7.98571 + (x * 11.6144); double t_30 = -(5.2 + (x * 8.13008)); double t_31 = 2.12 + (y * 3.25203); double t_32 = 2.65 + (y * 8.13008); double t_33 = -(8.0 + (x * 8.13008)); double t_34 = (y * 8.13008) - 0.2; double t_35 = (x * 5.42005) - 3.0345; double t_36 = (x * 8.13008) - 2.9705; double t_37 = ((y * 2.84553) + 4.13) + (x * 4.47154); double t_38 = 6.275 + (x * 8.13008); double t_39 = 1.80375 - (y * 5.28455); double t_40 = ((y * 2.03252) + 2.5375) + (x * 4.47154); double t_41 = (0.318501 + (y * 2.84553)) + (x * 4.47154); double t_42 = 5.162 + (x * 8.13008); double t_43 = 4.875 + (y * 8.13008); double t_44 = (1.89845 + (y * 2.60163)) + (x * 2.84553); double t_45 = 5.6 + (x * 8.13008); double t_46 = (y * 8.13008) - 4.8; double t_47 = 0.9 + (y * 8.13008); double t_48 = 1.43045 + (x * 2.84553); double t_49 = (y * 2.84553) + (x * 4.47154); double t_50 = t_49 - 4.45138; double t_51 = 0.16015 + (y * 1.21951); double t_52 = 6.25 + (x * 8.13008); double t_53 = 1.625 + (y * 8.13008); double t_54 = pow(t_53, 2.0); double t_55 = sqrt((t_54 + pow((5.242 + (x * 8.13008)), 2.0))); double t_56 = (x * 8.13008) - 4.4005; double t_57 = ((y * 2.03252) + 2.8125) + (x * 4.47154); double t_58 = ((y * 2.03252) + 2.24435) + (x * 4.47154); double t_59 = (y * 8.13008) - 4.15; double t_60 = 0.55 + (y * 8.13008); double t_61 = pow((0.685 - (y * 8.13008)), 2.0); double t_62 = 4.675 + (y * 8.13008); double t_63 = 4.025 + (y * 8.13008); double t_64 = 0.5935 - (x * 8.13008); double t_65 = 1.30723 + (x * 4.47154); double t_66 = t_65 - (y * 2.64228); double t_67 = 1.7375 + (y * 8.13008); double t_68 = 1.725 - (y * 8.13008); double t_69 = -(2.37 + (x * 8.13008)); double t_70 = 3.575 + (x * 8.13008); double t_71 = -(1.45 + (y * 8.13008)); double t_72 = 3.0345 - (x * 5.42005); double t_73 = (x * 8.13008) - 3.931; double t_74 = (y * 8.13008) - 3.5; double t_75 = (1.91435 + (y * 2.03252)) + (x * 4.47154); double t_76 = pow(-(0.415 + (y * 8.13008)), 2.0); double t_77 = (2.09318 + (x * 2.23577)) + (y * 4.06504); double t_78 = (x * 8.13008) - 1.958; double t_79 = 2.08 + (x * 2.23577); double t_80 = 1.8 + (y * 8.13008); double t_81 = 0.120625 + (x * 2.23577); double t_82 = 5.75 + (y * 8.13008); double t_83 = 5.375 + (x * 8.13008); double t_84 = -t_83; double t_85 = 1.728 + (y * 2.19512); double t_86 = (y * 0.813008) - 0.47; double t_87 = 1.82238 - t_49; double t_88 = t_49 - 3.84555; double t_89 = (y * 8.13008) - 6.8; double t_90 = 6.5 + (x * 8.13008); double t_91 = (x * 8.13008) - 4.8855; double t_92 = 3.025 + (x * 8.13008); double t_93 = 0.45 + (y * 4.06504); double t_94 = (y * 0.813008) - 0.305; double t_95 = 0.6375 + (y * 2.84553); double t_96 = t_95 - (x * 4.47154); double t_97 = (y * 5.28455) - 0.37375; double t_98 = (x * 8.13008) - 6.61401; double t_99 = 0.685 + (y * 0.813008); double t_100 = -(0.550001 + (x * 8.13008)); double t_101 = 5.425 - (y * 8.13008); double t_102 = (y * 0.813008) - 0.195; double t_103 = (x * 8.13008) - 1.6205; double t_104 = pow(((y * 8.13008) - 3.2), 2.0); double t_105 = 1.8578 + (x * 2.23577); double t_106 = 1.42 + (x * 2.23577); double t_107 = 6.3 + (x * 8.13008); double t_108 = pow(t_107, 2.0); double t_109 = 5.812 + (x * 8.13008); double t_110 = 0.11375 + (x * 2.23577); double t_111 = 1.23565 + (y * 2.03252); double t_112 = (x * 8.13008) - 5.401; double t_113 = 0.545 + (x * 4.47154); double t_114 = (y * 2.84553) - t_113; double t_115 = 0.19 + (y * 0.813008); double t_116 = 2.42975 + (x * 4.47154); double t_117 = t_116 - (y * 1.82927); double t_118 = (y * 8.13008) - 2.05; double t_119 = 4.63929 + (x * 11.6144); double t_120 = 0.725 + (y * 8.13008); double t_121 = (1.35975 + (y * 1.82927)) + (x * 4.47154); double t_122 = 1.187 + (x * 8.13008); double t_123 = 2.55 + (x * 8.13008); double t_124 = -t_123; double t_125 = (y * 3.41463) + 5.9037; double t_126 = 6.075 - (y * 8.13008); double t_127 = fmax(t_3, t_126); double t_128 = 1.132 + (x * 8.13008); double t_129 = -t_128; double t_130 = 2.75 + (y * 8.13008); double t_131 = -t_130; double t_132 = (y * 8.13008) - 5.9; double t_133 = 1.36071 + (x * 11.6144); double t_134 = (y * 0.813008) - 0.415; double t_135 = 0.465 + (y * 0.813008); double t_136 = -t_70; double t_137 = 1.7935 + (x * 4.06504); double t_138 = 1.558 - (x * 8.13008); double t_139 = 5.54551 - (x * 8.13008); double t_140 = pow(t_32, 2.0); double t_141 = sqrt((t_140 + pow(((x * 8.13008) - 1.323), 2.0))); double t_142 = -(4.075 + (x * 8.13008)); double t_143 = 5.15 + (x * 8.13008); double t_144 = 7.25 + (x * 8.13008); double t_145 = (1.87595 + (y * 2.19512)) + (x * 2.84553); double t_146 = 4.1025 - (x * 8.13008); double t_147 = -(1.575 + (x * 8.13008)); double t_148 = t_49 - 1.6725; double t_149 = 0.5575 + (y * 2.03252); double t_150 = 1.65925 + (x * 2.23577); double t_151 = 4.021 + (x * 4.47154); double t_152 = (y * 2.84553) - t_151; double t_153 = (y * 8.13008) - 1.95; double t_154 = (y * 8.13008) - 3.915; double t_155 = 0.08 + (y * 0.813008); double t_156 = 0.395501 + (x * 5.42005); double t_157 = (y * 8.13008) - 4.975; double t_158 = pow(t_157, 2.0); double t_159 = sqrt((t_158 + pow(((x * 8.13008) - 5.826), 2.0))); double t_160 = (1.82723 + (y * 2.64228)) + (x * 4.47154); double t_161 = (y * 8.13008) - 3.95; double t_162 = 3.531 - (x * 8.13008); double t_163 = -(4.975 + (y * 8.13008)); double t_164 = fmax((4.885 + (y * 8.13008)), t_163); double t_165 = (1.91443 + (x * 2.23577)) + (y * 4.06504); double t_166 = sqrt((pow(((x * 8.13008) - 5.126), 2.0) + t_158)); double t_167 = 3.7375 + (x * 5.42005); double t_168 = -t_167; double t_169 = pow(((y * 8.13008) - 0.3), 2.0); double t_170 = 0.597376 + (y * 2.03252); double t_171 = 2.932 + (x * 8.13008); double t_172 = 4.12055 - t_49; double t_173 = 2.375 + (x * 8.13008); double t_174 = 4.05 + (x * 8.13008); double t_175 = (y * 8.13008) - 2.775; double t_176 = pow(t_175, 2.0); double t_177 = sqrt((t_176 + pow((1.395 + (x * 8.13008)), 2.0))); double t_178 = sqrt((t_176 + pow(((x * 8.13008) - 3.7975), 2.0))); double t_179 = 4.5 + (x * 8.13008); double t_180 = ((x * 2.23577) + 2.9905) + (y * 4.06504); double t_181 = 0.6945 + (x * 8.13008); double t_182 = -(6.6 + (x * 8.13008)); double t_183 = 4.2 + (y * 8.13008); double t_184 = (2.3425 + (y * 2.84553)) + (x * 4.47154); double t_185 = 4.4855 - (x * 8.13008); double t_186 = (1.885 + (x * 2.23577)) + (y * 4.06504); double t_187 = 3.4575 + (x * 4.47154); double t_188 = (x * 8.13008) - 3.1805; double t_189 = 2.4705 - (x * 8.13008); double t_190 = 6.8 + (x * 8.13008); double t_191 = -t_190; double t_192 = 6.11401 - (x * 8.13008); double t_193 = (2.6175 + (y * 2.84553)) + (x * 4.47154); double t_194 = (2.81935 + (y * 2.84553)) + (x * 4.47154); double t_195 = (y * 0.813008) + 0.880675; double t_196 = 1.3292 + (x * 2.84553); double t_197 = ((y * 2.03252) + 2.521) + (x * 4.47154); double t_198 = 5.975 + (y * 8.13008); double t_199 = sqrt((pow(((4.58486 + (x * 8.13008)) - (y * 2.32288)), 2.0) + t_158)); double t_200 = 1.15 + (y * 8.13008); double t_201 = 1.5875 + (x * 5.42005); double t_202 = -t_201; double t_203 = 2.775 + (x * 8.13008); double t_204 = -(6.212 + (x * 8.13008)); double t_205 = 7.50251 - (x * 8.13008); double t_206 = (x * 8.13008) - 2.226; double t_207 = 0.245 + (y * 0.813008); double t_208 = -t_207; double t_209 = 0.6516 + (x * 4.47154); double t_210 = (y * 1.82927) - t_209; double t_211 = 2.8375 + (y * 8.13008); double t_212 = 1.12143 + (x * 11.6144); double t_213 = 0.475 + (y * 8.13008); double t_214 = sqrt((t_108 + pow(((y * 8.13008) - 6.525), 2.0))); double t_215 = 0.267376 + (y * 2.03252); double t_216 = 5.8 - (y * 8.13008); double t_217 = 0.36 - (y * 0.813008); double t_218 = pow(((y * 8.13008) - 0.465), 2.0); double t_219 = 0.52 + (y * 0.813008); double t_220 = -t_219; double t_221 = 2.5335 + (x * 4.47154); double t_222 = 1.66785 + (x * 4.47154); double t_223 = 0.25 - (y * 0.813008); double t_224 = 1.95355 + (x * 5.28455); double t_225 = (y * 2.03252) + 2.89638; double t_226 = (x * 8.13008) - 5.7205; double t_227 = -(7.35 + (x * 8.13008)); double t_228 = (x * 4.47154) - t_95; double t_229 = 1.12595 + (y * 1.21951); double t_230 = 4.07 + (x * 8.13008); double t_231 = 4.45138 - t_49; double t_232 = 0.90565 + (y * 2.03252); double t_233 = (y * 8.13008) - 5.025; double t_234 = 2.2095 - (x * 5.42005); double t_235 = 3.55 + (y * 8.13008); double t_236 = fmax((3.45 + (y * 8.13008)), -t_235); double t_237 = fmax(t_235, -(3.65 + (y * 8.13008))); double t_238 = (y * 1.82927) + 2.5769; double t_239 = t_238 - (x * 4.47154); double t_240 = (x * 4.47154) - t_238; double t_241 = 6.0955 - (x * 8.13008); double t_242 = 6.75 + (x * 8.13008); double t_243 = t_25 + 4.085; double t_244 = 6.95 + (x * 11.6144); double t_245 = (y * 8.13008) - 2.825; double t_246 = -(2.775 + (y * 8.13008)); double t_247 = (y * 1.82927) - t_15; double t_248 = 0.0499997 + (y * 8.13008); double t_249 = ((x * 2.23577) + 3.49375) + (y * 4.06504); double t_250 = 1.81065 + (y * 2.84553); double t_251 = t_250 - (x * 4.47154); double t_252 = 0.712975 + (x * 2.23577); double t_253 = 3.6 - (y * 8.13008); double t_254 = fmax(t_161, t_253); double t_255 = fmax(t_253, t_59); double t_256 = (x * 5.42005) - 0.951167; double t_257 = 2.67975 + (x * 4.47154); double t_258 = (y * 2.64228) - t_257; double t_259 = 4.7 - (y * 8.13008); double t_260 = (y * 1.82927) + 3.10243; double t_261 = t_260 - (x * 4.47154); double t_262 = 2.807 + (x * 8.13008); double t_263 = (y * 0.813008) + 1.89365; double t_264 = 0.135 + (y * 0.813008); double t_265 = pow(t_161, 2.0); double t_266 = sqrt((t_265 + pow(((x * 8.13008) - 5.5835), 2.0))); double t_267 = (1.05475 + (y * 2.64228)) + (x * 4.47154); double t_268 = pow(((x * 8.13008) - 0.695499), 2.0); double t_269 = pow(((y * 8.13008) - 1.4), 2.0); double t_270 = -(3.482 + (x * 8.13008)); double t_271 = (y * 8.13008) - 4.775; double t_272 = 4.95 + (y * 8.13008); double t_273 = (0.2581 + (y * 1.82927)) + (x * 4.47154); double t_274 = -(4.6 + (x * 8.13008)); double t_275 = 2.282 + (x * 8.13008); double t_276 = (x * 8.13008) - 6.75101; double t_277 = (y * 5.28455) - 1.80375; double t_278 = (x * 8.13008) - 5.1955; double t_279 = (y * 3.25203) + 5.1769; double t_280 = pow(t_130, 2.0); double t_281 = 3.84555 - t_49; double t_282 = 0.898001 - (x * 8.13008); double t_283 = (y * 8.13008) - 5.7; double t_284 = 1.10808 + (y * 1.21951); double t_285 = -t_41; double t_286 = (y * 8.13008) - 0.615; double t_287 = 0.3625 + (y * 2.84553); double t_288 = t_287 - (x * 4.47154); double t_289 = (0.03425 + (x * 2.23577)) + (y * 4.06504); double t_290 = 2.875 + (x * 8.13008); double t_291 = 1.083 - (x * 8.13008); double t_292 = 1.825 + (y * 8.13008); double t_293 = 6.48101 - (x * 8.13008); double t_294 = 7.45 + (x * 8.13008); double t_295 = 1.05625 + (y * 5.28455); double t_296 = (y * 8.13008) - 1.475; double t_297 = (x * 8.13008) - 0.282999; double t_298 = 4.881 - (x * 8.13008); double t_299 = (y * 8.13008) - 0.55; double t_300 = sqrt((pow((5.625 + (x * 8.13008)), 2.0) + t_158)); double t_301 = t_300 - 0.275; double t_302 = 2.51875 - (y * 5.28455); double t_303 = 3.3 + (x * 8.13008); double t_304 = (x * 8.13008) - 6.408; double t_305 = 1.676 - (x * 8.13008); double t_306 = (x * 8.13008) - 3.1225; double t_307 = 4.8125 + (y * 8.13008); double t_308 = t_113 - (y * 2.84553); double t_309 = (1.96935 + (y * 2.03252)) + (x * 4.47154); double t_310 = (x * 5.42005) - 1.22783; double t_311 = 6.05 + (x * 8.13008); double t_312 = 5.1585 - (x * 8.13008); double t_313 = -(0.575 + (y * 8.13008)); double t_314 = pow(((y * 8.13008) - 4.7), 2.0); double t_315 = (1.4516 + (y * 1.82927)) + (x * 4.47154); double t_316 = 1.1947 + (y * 1.21951); double t_317 = 2.73475 + (x * 4.47154); double t_318 = (y * 2.64228) - t_317; double t_319 = (y * 1.82927) + 2.5219; double t_320 = t_319 - (x * 4.47154); double t_321 = 3.5305 - (x * 8.13008); double t_322 = 3.675 + (x * 8.13008); double t_323 = 0.292376 + (y * 2.84553); double t_324 = t_323 - (x * 4.47154); double t_325 = 5.3 + (y * 8.13008); double t_326 = sqrt((pow((1.462 + (x * 8.13008)), 2.0) + t_158)); double t_327 = (x * 8.13008) - 0.320499; double t_328 = sqrt((t_176 + pow(((7.16429 + (x * 8.13008)) - (y * 2.32288)), 2.0))); double t_329 = (x * 11.6144) - 7.23715; double t_330 = 1.02555 + (y * 2.03252); double t_331 = 2.137 + (x * 8.13008); double t_332 = 2.4785 + (x * 4.47154); double t_333 = 1.77125 + (y * 5.28455); double t_334 = (x * 8.13008) - 6.5305; double t_335 = 6.2 + (y * 8.13008); double t_336 = (y * 1.21951) + 1.7447; double t_337 = 3.0 + (y * 8.13008); double t_338 = -t_337; double t_339 = sqrt((t_158 + pow(((x * 8.13008) - 6.476), 2.0))); double t_340 = (y * 2.03252) + 2.95138; double t_341 = 5.2 + (y * 8.13008); double t_342 = pow(t_341, 2.0); double t_343 = -t_341; double t_344 = fmax(t_183, t_343); double t_345 = 0.289485 + (x * 2.27642); double t_346 = (x * 8.13008) - 3.401; double t_347 = (y * 8.13008) - 6.15; double t_348 = pow(t_347, 2.0); double t_349 = sqrt((t_348 + pow(((x * 8.13008) - 2.8955), 2.0))); double t_350 = fmax(t_216, t_347); double t_351 = (y * 1.82927) + 3.15743; double t_352 = (x * 4.47154) - t_351; double t_353 = 1.2994 + (y * 3.25203); double t_354 = 3.6525 + (x * 4.47154); double t_355 = (y * 2.84553) - t_354; double t_356 = sqrt((t_176 + pow((4.345 + (x * 8.13008)), 2.0))); double t_357 = 1.6725 - t_49; double t_358 = sqrt((t_54 + pow(((4.12414 + (x * 8.13008)) - (y * 2.32288)), 2.0))); double t_359 = 0.14 - (y * 0.813008); double t_360 = 4.85 + (y * 8.13008); double t_361 = pow(t_360, 2.0); double t_362 = sqrt((t_361 + pow(((x * 8.13008) - 0.633), 2.0))); double t_363 = sqrt((pow((0.317 + (x * 8.13008)), 2.0) + t_361)); double t_364 = 1.675 + (x * 8.13008); double t_365 = ((x * 1.82927) + 3.2527) + (y * 4.06504); double t_366 = pow((0.6875 - (y * 8.13008)), 2.0); double t_367 = 0.300176 + (y * 2.23577); double t_368 = (0.590637 + (x * 1.82927)) + (y * 4.06504); double t_369 = 0.195 - (y * 0.813008); double t_370 = 2.487 + (x * 8.13008); double t_371 = sqrt((pow(t_370, 2.0) + t_158)); double t_372 = t_151 - (y * 2.84553); double t_373 = (2.216 + (y * 2.84553)) + (x * 4.47154); double t_374 = -t_373; double t_375 = 1.9 + (y * 8.13008); double t_376 = pow(t_375, 2.0); double t_377 = -t_375; double t_378 = fmax(t_377, t_200); double t_379 = 0.3 - (y * 8.13008); double t_380 = fmax(t_299, t_379); double t_381 = 2.5 - (y * 8.13008); double t_382 = fmax(t_381, t_74); double t_383 = fmax(t_245, t_381); double t_384 = fmax(t_381, t_175); double t_385 = 2.6125 + (y * 8.13008); double t_386 = t_159 - 0.275; double t_387 = 1.65817 - (x * 5.42005); double t_388 = (x * 8.13008) - 5.733; double t_389 = fmax(t_343, t_360); double t_390 = 2.65 + (y * 4.06504); double t_391 = 7.12143 + (x * 11.6144); double t_392 = ((y * 2.03252) + 2.466) + (x * 4.47154); double t_393 = 0.6375 + (y * 8.13008); double t_394 = -t_393; double t_395 = pow(t_393, 2.0); double t_396 = (x * 1.01626) + 1.55781; double t_397 = 0.208 - (x * 8.13008); double t_398 = sqrt((t_54 + pow(((x * 8.13008) - (0.993357 + (y * 2.32288))), 2.0))); double t_399 = 2.685 + (y * 8.13008); double t_400 = (x * 8.13008) - 0.150499; double t_401 = 3.501 - (x * 8.13008); double t_402 = 4.512 + (x * 8.13008); double t_403 = sqrt((pow(t_402, 2.0) + t_280)); double t_404 = (y * 0.813008) - 0.525; double t_405 = ((y * 2.03252) + 3.665) + (x * 4.47154); double t_406 = pow(((y * 8.13008) - 0.4625), 2.0); double t_407 = 2.24785 + (x * 4.47154); double t_408 = -t_135; double t_409 = 0.525 - (y * 8.13008); double t_410 = fmax(t_286, t_409); double t_411 = pow(((y * 8.13008) - 6.5), 2.0); double t_412 = 3.875 - (y * 8.13008); double t_413 = 0.63 + (y * 0.813008); double t_414 = -t_413; double t_415 = -(2.075 + (x * 8.13008)); double t_416 = (x * 11.6144) - 2.67571; double t_417 = fmax(t_83, t_216); double t_418 = t_49 - 1.3975; double t_419 = -(7.95 + (x * 8.13008)); double t_420 = -(1.675 + (y * 8.13008)); double t_421 = (x * 8.13008) - 6.656; double t_422 = fmax(t_216, t_89); double t_423 = 1.25 + (y * 8.13008); double t_424 = fmax(((y * 8.13008) - 0.95), (0.85 - (y * 8.13008))); double t_425 = -(1.142 + (x * 8.13008)); double t_426 = 5.858 - (x * 8.13008); double t_427 = -t_155; double t_428 = (y * 0.813008) + 3.968; double t_429 = 0.025 + (y * 0.813008); double t_430 = 0.596601 + (x * 4.47154); double t_431 = (y * 1.82927) - t_430; double t_432 = 2.11243 - t_22; double t_433 = -t_160; double t_434 = t_209 - (y * 1.82927); double t_435 = 2.00117 - (x * 5.42005); double t_436 = sqrt((pow(((0.146856 + (x * 8.13008)) - (y * 2.32288)), 2.0) + t_158)); double t_437 = 0.4125 + (y * 8.13008); double t_438 = 1.24555 + (y * 2.03252); double t_439 = (y * 0.813008) + 6.188; double t_440 = t_49 - 2.09738; double t_441 = 0.322376 + (y * 2.03252); double t_442 = 4.825 + (x * 8.13008); double t_443 = 5.4 + (x * 8.13008); double t_444 = (y * 2.19512) + (x * 2.84553); double t_445 = 6.0305 - (x * 8.13008); double t_446 = (y * 1.21951) + 1.67444; double t_447 = 3.2375 + (x * 4.47154); double t_448 = 2.4205 - (x * 8.13008); double t_449 = -t_184; double t_450 = 3.001 - (x * 8.13008); double t_451 = (1.55693 + (x * 2.23577)) + (y * 4.06504); double t_452 = (0.6785 + (y * 2.03252)) + (x * 4.47154); double t_453 = 0.707348 + (x * 4.5122); double t_454 = (y * 8.13008) - 6.075; double t_455 = fmax(t_216, t_454); double t_456 = pow(t_454, 2.0); double t_457 = sqrt((t_456 + pow((0.604501 + (x * 8.13008)), 2.0))); double t_458 = sqrt((t_456 + pow(((x * 8.13008) - 1.3455), 2.0))); double t_459 = sqrt((t_456 + t_268)); double t_460 = sqrt((t_456 + pow(t_303, 2.0))); double t_461 = sqrt((t_456 + pow(((x * 8.13008) - 5.0255), 2.0))); double t_462 = sqrt((t_456 + pow((5.65 + (x * 8.13008)), 2.0))); double t_463 = 3.9955 - (x * 8.13008); double t_464 = 0.150001 + (x * 8.13008); double t_465 = pow(t_464, 2.0); double t_466 = 3.1 + (y * 8.13008); double t_467 = pow(((x * 8.13008) - 4.1255), 2.0); double t_468 = sqrt((t_456 + t_467)); double t_469 = (y * 8.13008) - 0.6875; double t_470 = fmax(t_409, t_469); double t_471 = 1.732 + (x * 8.13008); double t_472 = pow(t_283, 2.0); double t_473 = sqrt((t_472 + t_268)); double t_474 = sqrt((t_467 + t_472)); double t_475 = 1.06718 + (x * 2.23577); double t_476 = (x * 8.13008) - 3.6855; double t_477 = pow((2.3 + (y * 8.13008)), 2.0); double t_478 = (y * 2.64228) - t_65; double t_479 = 0.986526 + (y * 1.21951); double t_480 = (x * 8.13008) - 8.05251; double t_481 = 3.8 + (x * 8.13008); double t_482 = 1.22783 - (x * 5.42005); double t_483 = -t_200; double t_484 = (y * 8.13008) - 1.75; double t_485 = (x * 4.47154) - t_250; double t_486 = (y * 8.13008) - 5.25; double t_487 = (y * 5.28455) - 3.23375; double t_488 = t_257 - (y * 2.64228); double t_489 = (2.54435 + (y * 2.84553)) + (x * 4.47154); double t_490 = (x * 4.47154) - t_260; double t_491 = 0.25 + (y * 8.13008); double t_492 = (x * 1.82927) + (y * 4.06504); double t_493 = sqrt((t_176 + pow(((x * 8.13008) - 2.8475), 2.0))); double t_494 = pow(t_484, 2.0); double t_495 = sqrt((t_494 + pow(((x * 8.13008) - 5.083), 2.0))); double t_496 = sqrt((t_494 + pow(((x * 8.13008) - 5.333), 2.0))); double t_497 = 0.44765 + (x * 2.84553); double t_498 = -t_264; double t_499 = (x * 8.13008) - 3.021; double t_500 = pow(-t_437, 2.0); double t_501 = 6.3 + (y * 8.13008); double t_502 = pow(t_501, 2.0); double t_503 = -t_501; double t_504 = 0.500551 + (y * 2.84553); double t_505 = t_504 - (x * 4.47154); double t_506 = sqrt((t_456 + pow(((x * 8.13008) - 0.0454988), 2.0))); double t_507 = 1.068 + (x * 2.23577); double t_508 = -(5.9 + (x * 8.13008)); double t_509 = -(0.249501 + (x * 8.13008)); double t_510 = 4.9855 - (x * 8.13008); double t_511 = 2.8935 + (x * 4.47154); double t_512 = (y * 2.84553) - t_511; double t_513 = sqrt((t_176 + pow(((x * 8.13008) - 0.0924997), 2.0))); double t_514 = sqrt((t_7 + t_176)); double t_515 = 0.415 - (y * 0.813008); double t_516 = 0.36 + (y * 3.25203); double t_517 = 3.35775 + (x * 4.5122); double t_518 = 0.263484 + (x * 2.27642); double t_519 = -t_90; double t_520 = 2.64638 + (y * 2.84553); double t_521 = t_520 - (x * 4.47154); double t_522 = 2.846 - (x * 8.13008); double t_523 = 0.305 - (y * 0.813008); double t_524 = (x * 8.13008) - 4.6525; double t_525 = 1.025 + (x * 8.13008); double t_526 = 0.7775 + (y * 2.03252); double t_527 = sqrt((t_140 + pow(((x * 8.13008) - 1.073), 2.0))); double t_528 = 2.725 + (y * 8.13008); double t_529 = pow(t_528, 2.0); double t_530 = sqrt((pow(((3.35486 + (x * 8.13008)) - (y * 2.32288)), 2.0) + t_529)); double t_531 = sqrt((pow(((x * 8.13008) - 5.2605), 2.0) + t_529)); double t_532 = sqrt((pow(((0.574857 + (x * 8.13008)) - (y * 2.32288)), 2.0) + t_529)); double t_533 = sqrt((t_529 + pow(((x * 8.13008) - 5.9605), 2.0))); double t_534 = t_533 - 0.275; double t_535 = sqrt((pow(((x * 8.13008) - 3.4105), 2.0) + t_529)); double t_536 = sqrt((pow((0.177 + (x * 8.13008)), 2.0) + t_529)); double t_537 = sqrt((pow(((x * 8.13008) - 0.523), 2.0) + t_529)); double t_538 = sqrt((pow((5.745 + (x * 8.13008)), 2.0) + t_529)); double t_539 = t_538 - 0.275; double t_540 = (y * 8.13008) - 6.45; double t_541 = fmax(t_540, (6.35 - (y * 8.13008))); double t_542 = 4.875 + (x * 8.13008); double t_543 = 0.951167 - (x * 5.42005); double t_544 = 0.575 + (y * 0.813008); double t_545 = -t_544; double t_546 = sqrt((t_176 + pow(((x * 8.13008) - 4.3775), 2.0))); double t_547 = 7.35601 - (x * 8.13008); double t_548 = sqrt((t_348 + pow(((x * 8.13008) - 2.6455), 2.0))); double t_549 = 6.9 + (x * 8.13008); double t_550 = sqrt((pow(t_60, 2.0) + pow(t_549, 2.0))); double t_551 = (y * 2.64228) + 3.2069; double t_552 = (x * 4.47154) - t_551; double t_553 = t_551 - (x * 4.47154); double t_554 = (x * 4.47154) - t_287; double t_555 = -(0.452 + (x * 8.13008)); double t_556 = (y * 8.13008) - 1.65; double t_557 = 2.45 + (y * 8.13008); double t_558 = 0.65875 + (x * 2.84553); double t_559 = (y * 8.13008) - 1.725; double t_560 = 3.12857 + (x * 11.6144); double t_561 = -(5.712 + (x * 8.13008)); double t_562 = (y * 2.64228) + 3.34743; double t_563 = t_562 - (x * 4.47154); double t_564 = 2.1625 + (x * 2.23577); double t_565 = -(1.67 + (x * 8.13008)); double t_566 = (y * 1.82927) - t_116; double t_567 = -t_115; double t_568 = t_317 - (y * 2.64228); double t_569 = 0.96065 + (y * 2.03252); double t_570 = 6.7 - (y * 8.13008); double t_571 = -t_267; double t_572 = (x * 4.47154) - t_319; double t_573 = (x * 4.47154) - t_323; double t_574 = (0.3131 + (y * 1.82927)) + (x * 4.47154); double t_575 = (y * 8.13008) - 1.5; double t_576 = sqrt((t_361 + pow(((x * 8.13008) - 0.383), 2.0))); double t_577 = 2.725 - (y * 8.13008); double t_578 = fmax(((y * 8.13008) - 2.815), t_577); double t_579 = 4.912 + (x * 8.13008); double t_580 = fmax(t_402, -t_579); double t_581 = 6.45 + (x * 8.13008); double t_582 = -t_581; double t_583 = 3.85 + (y * 8.13008); double t_584 = pow(t_583, 2.0); double t_585 = sqrt((t_584 + pow(t_346, 2.0))); double t_586 = fmax(t_466, -t_583); double t_587 = pow(((y * 8.13008) - 5.8), 2.0); double t_588 = fmax(t_89, (6.05 - (y * 8.13008))); double t_589 = 0.552 + (x * 8.13008); double t_590 = sqrt((pow(t_589, 2.0) + t_280)); double t_591 = fmax(t_589, -(0.952 + (x * 8.13008))); double t_592 = 5.15 - (y * 8.13008); double t_593 = (x * 5.42005) - 1.65817; double t_594 = t_354 - (y * 2.84553); double t_595 = 0.587999 - (x * 8.13008); double t_596 = (y * 8.13008) - 6.05; double t_597 = -t_193; double t_598 = -(2.132 + (x * 8.13008)); double t_599 = 1.726 + (y * 4.87805); double t_600 = 5.95 + (y * 8.13008); double t_601 = pow(t_600, 2.0); double t_602 = sqrt((t_601 + pow(((x * 8.13008) - 1.508), 2.0))); double t_603 = 1.0705 - (x * 8.13008); double t_604 = sqrt((t_601 + pow(((x * 8.13008) - 1.258), 2.0))); double t_605 = 3.1355 - (x * 8.13008); double t_606 = 1.35 + (y * 8.13008); double t_607 = fmax(t_377, t_606); double t_608 = fmax(t_423, -t_606); double t_609 = (x * 8.13008) - 1.138; double t_610 = (y * 5.28455) - 2.51875; double t_611 = -(5.85 + (y * 8.13008)); double t_612 = (y * 8.13008) - 5.015; double t_613 = (y * 8.13008) - 3.875; double t_614 = fmax(t_253, t_613); double t_615 = pow(t_613, 2.0); double t_616 = sqrt((pow(((x * 8.13008) - 4.7835), 2.0) + t_615)); double t_617 = sqrt((t_615 + pow(((x * 8.13008) - 0.862999), 2.0))); double t_618 = sqrt((t_615 + pow(((x * 8.13008) - 0.212998), 2.0))); double t_619 = sqrt((t_615 + pow((2.245 + (x * 8.13008)), 2.0))); double t_620 = t_619 - 0.275; double t_621 = sqrt((t_615 + pow(t_522, 2.0))); double t_622 = sqrt((t_615 + pow(((x * 8.13008) - 6.1335), 2.0))); double t_623 = sqrt((t_615 + pow(((4.72857 + (x * 8.13008)) - (y * 2.32288)), 2.0))); double t_624 = 0.4066 + (x * 4.47154); double t_625 = (y * 2.64228) - t_624; double t_626 = 2.825 - (y * 8.13008); double t_627 = 5.025 - (y * 8.13008); double t_628 = (1.74723 + (y * 1.82927)) + (x * 4.47154); double t_629 = 4.851 - (x * 8.13008); double t_630 = 1.065 + (x * 4.47154); double t_631 = (x * 11.6144) - 6.52214; double t_632 = 0.8 + (y * 8.13008); double t_633 = -t_632; double t_634 = fmax(t_491, t_633); double t_635 = fmax(t_34, t_633); double t_636 = (1.5066 + (y * 1.82927)) + (x * 4.47154); double t_637 = 1.01488 + (y * 4.87805); double t_638 = (y * 8.13008) - 2.85; double t_639 = pow(t_638, 2.0); double t_640 = sqrt((t_639 + pow((1.945 + (x * 8.13008)), 2.0))); double t_641 = sqrt((t_639 + pow((2.195 + (x * 8.13008)), 2.0))); double t_642 = fmax(t_381, t_638); double t_643 = (2.1853 + (x * 2.23577)) + (y * 4.06504); double t_644 = 0.957 + (x * 8.13008); double t_645 = 0.45 + (y * 8.13008); double t_646 = fmax(t_633, t_645); double t_647 = 0.0173756 + (y * 2.84553); double t_648 = t_647 - (x * 4.47154); double t_649 = 0.47 - (y * 0.813008); double t_650 = -t_333; double t_651 = ((y * 2.03252) + 2.4825) + (x * 4.47154); double t_652 = 2.576 - (x * 8.13008); double t_653 = 6.325 + (x * 8.13008); double t_654 = pow(t_653, 2.0); double t_655 = sqrt((t_654 + t_158)); double t_656 = sqrt((t_654 + t_54)); double t_657 = sqrt((t_654 + t_529)); double t_658 = sqrt((t_280 + pow(t_91, 2.0))); double t_659 = 0.485 + (x * 2.23577); double t_660 = (x * 8.13008) - 3.408; double t_661 = sqrt((pow(t_652, 2.0) + t_158)); double t_662 = fmax(t_377, t_47); double t_663 = 0.606888 + (y * 1.21951); double t_664 = 4.1 + (y * 8.13008); double t_665 = pow(t_664, 2.0); double t_666 = -t_664; double t_667 = fmax(t_666, t_235); double t_668 = fmax(t_666, (3.75 + (y * 8.13008))); double t_669 = fmax(t_466, t_666); double t_670 = fmax(t_666, t_9); double t_671 = 2.25 + (y * 8.13008); double t_672 = sqrt((pow(t_671, 2.0) + pow(t_471, 2.0))); double t_673 = (y * 0.813008) - 0.14; double t_674 = -t_194; double t_675 = (x * 8.13008) - 7.531; double t_676 = sqrt((t_465 + pow(t_556, 2.0))); double t_677 = sqrt((t_615 + pow((0.437001 + (x * 8.13008)), 2.0))); double t_678 = t_677 - 0.275; double t_679 = -(7.3 + (x * 8.13008)); double t_680 = (x * 8.13008) - 6.6455; double t_681 = 1.27381 + (y * 4.87805); double t_682 = 1.3975 - t_49; double t_683 = -t_528; double t_684 = (y * 8.13008) - 0.85; double t_685 = fmax(t_379, t_684); double t_686 = ((x * 2.23577) + 2.30217) + (y * 4.06504); double t_687 = 1.4 - (y * 8.13008); double t_688 = fmax(t_687, t_1); double t_689 = fmax(t_687, t_153); double t_690 = 4.02143 + (x * 11.6144); double t_691 = 3.775 + (y * 8.13008); double t_692 = fmax(t_666, t_691); double t_693 = -t_360; double t_694 = 3.771 + (x * 4.47154); double t_695 = pow(t_299, 2.0); double t_696 = sqrt((t_695 + pow(t_364, 2.0))); double t_697 = (y * 2.60163) + (x * 2.84553); double t_698 = sqrt((t_584 + pow(t_109, 2.0))); double t_699 = -t_429; double t_700 = (x * 5.42005) - 2.7765; double t_701 = sqrt((pow(t_248, 2.0) + pow(t_73, 2.0))); double t_702 = 4.908 - (x * 8.13008); double t_703 = 1.30055 + (y * 2.03252); double t_704 = (x * 11.6144) - 0.585714; double t_705 = 5.0375 + (y * 8.13008); double t_706 = (x * 8.13008) - 4.0805; double t_707 = sqrt((t_265 + pow(((x * 8.13008) - 5.3335), 2.0))); double t_708 = -(1.737 + (x * 8.13008)); double t_709 = (x * 11.6144) - 0.743571; double t_710 = 2.09738 - t_49; double t_711 = fmax(t_606, t_71); double t_712 = (y * 1.21951) + 2.17851; double t_713 = sqrt((pow(t_272, 2.0) + pow(t_78, 2.0))); double t_714 = (y * 8.13008) - 4.6; double t_715 = fmax(t_253, t_714); double t_716 = sqrt((pow(t_714, 2.0) + pow(t_331, 2.0))); double t_717 = 2.2175 + (x * 2.23577); double t_718 = 3.1825 + (x * 4.47154); double t_719 = -t_557; double t_720 = 2.457 + (x * 8.13008); double t_721 = -t_720; double t_722 = (y * 8.13008) - 0.625; double t_723 = sqrt((pow(((x * 8.13008) - 5.7775), 2.0) + t_176)); double t_724 = t_723 - 0.275; double t_725 = -t_37; double t_726 = sqrt((t_456 + pow(((x * 8.13008) - (1.71336 + (y * 2.32288))), 2.0))); double t_727 = (0.7335 + (y * 2.03252)) + (x * 4.47154); double t_728 = 8.97857 + (x * 11.6144); double t_729 = 0.37375 - (y * 5.28455); double t_730 = 2.0 + (y * 8.13008); double t_731 = sqrt((pow((4.517 + (x * 8.13008)), 2.0) + t_158)); double t_732 = t_731 - 0.275; double t_733 = 1.5125 + (y * 8.13008); double t_734 = sqrt((pow((0.0670004 + (x * 8.13008)), 2.0) + t_361)); double t_735 = 0.575 - (y * 8.13008); double t_736 = (x * 8.13008) - 6.6385; double t_737 = (x * 8.13008) - 7.87551; double t_738 = sqrt((t_695 + pow(t_737, 2.0))); double t_739 = (x * 8.13008) - 5.9955; double t_740 = sqrt((t_695 + pow(t_739, 2.0))); double t_741 = pow((7.025 + (x * 8.13008)), 2.0); double t_742 = (x * 8.13008) - 1.8305; double t_743 = -t_691; double t_744 = 1.36223 + (x * 4.47154); double t_745 = t_744 - (y * 2.64228); double t_746 = (y * 2.64228) - t_744; double t_747 = 1.65 + (y * 8.13008); double t_748 = fmax(t_47, -t_747); double t_749 = pow(t_747, 2.0); double t_750 = sqrt((t_749 + pow(t_400, 2.0))); double t_751 = sqrt((t_749 + pow(t_736, 2.0))); double t_752 = sqrt((pow((0.354001 + (x * 8.13008)), 2.0) + t_158)); double t_753 = t_752 - 0.275; double t_754 = sqrt((pow(((x * 8.13008) - 1.951), 2.0) + t_158)); double t_755 = 4.925 - (y * 8.13008); double t_756 = pow(t_200, 2.0); double t_757 = sqrt((t_756 + pow(t_742, 2.0))); double t_758 = (y * 8.13008) - 0.575; double t_759 = fmax(t_379, t_758); double t_760 = pow(t_758, 2.0); double t_761 = sqrt((t_760 + pow((4.45 + (x * 8.13008)), 2.0))); double t_762 = sqrt((t_760 + pow(((x * 8.13008) - 2.6955), 2.0))); double t_763 = sqrt((t_7 + t_760)); double t_764 = t_763 - 0.275; double t_765 = sqrt((t_760 + pow((3.15 + (x * 8.13008)), 2.0))); double t_766 = sqrt((t_760 + pow((5.1 + (x * 8.13008)), 2.0))); double t_767 = sqrt((t_760 + pow(((x * 8.13008) - 2.0455), 2.0))); double t_768 = t_767 - 0.275; double t_769 = sqrt((t_760 + pow(t_582, 2.0))); double t_770 = sqrt((t_760 + pow((1.3 + (x * 8.13008)), 2.0))); double t_771 = sqrt((t_760 + pow(((x * 8.13008) - ((y * 2.32288) + 6.90979)), 2.0))); double t_772 = sqrt((t_760 + pow((7.075 + (x * 8.13008)), 2.0))); double t_773 = sqrt((t_760 + pow(((x * 8.13008) - 3.933), 2.0))); double t_774 = t_773 - 0.275; double t_775 = sqrt((t_176 + pow(((x * 8.13008) - 7.77751), 2.0))); double t_776 = (x * 8.13008) - 1.183; double t_777 = 2.48625 + (y * 5.28455); double t_778 = -t_777; double t_779 = fmax(t_90, t_182); double t_780 = 3.785 + (y * 8.13008); double t_781 = sqrt((pow((3.207 + (x * 8.13008)), 2.0) + t_529)); double t_782 = (x * 8.13008) - 0.9705; double t_783 = (y * 8.13008) - 3.7; double t_784 = pow(t_632, 2.0); double t_785 = -t_21; double t_786 = fmax(t_203, t_785); double t_787 = (1.30475 + (y * 1.82927)) + (x * 4.47154); double t_788 = sqrt((t_760 + pow((0.6 + (x * 8.13008)), 2.0))); double t_789 = t_788 - 0.275; double t_790 = (0.8881 + (y * 2.64228)) + (x * 4.47154); double t_791 = -t_790; double t_792 = 3.0055 - (x * 8.13008); double t_793 = 5.975 + (x * 8.13008); double t_794 = sqrt((pow(((x * 8.13008) - 7.12751), 2.0) + t_176)); double t_795 = t_794 - 0.275; double t_796 = fmax(t_684, t_735); double t_797 = 0.525 + (y * 8.13008); double t_798 = -t_797; double t_799 = pow(t_797, 2.0); double t_800 = sqrt((pow((1.5495 + (x * 8.13008)), 2.0) + t_799)); double t_801 = sqrt((pow(((4.13393 + (x * 8.13008)) - (y * 2.32288)), 2.0) + t_799)); double t_802 = sqrt((pow(((0.11593 + (x * 8.13008)) - (y * 2.32288)), 2.0) + t_799)); double t_803 = sqrt((t_799 + pow(((x * 8.13008) - 4.306), 2.0))); double t_804 = sqrt((pow((6.525 + (x * 8.13008)), 2.0) + t_799)); double t_805 = sqrt((pow((0.969501 + (x * 8.13008)), 2.0) + t_799)); double t_806 = fmax(t_503, t_600); double t_807 = 3.6 + (x * 8.13008); double t_808 = t_49 - 1.82238; double t_809 = t_511 - (y * 2.84553); double t_810 = -(1.2445 + (x * 8.13008)); double t_811 = 0.737225 + (x * 2.27642); double t_812 = (x * 4.47154) - t_520; double t_813 = 4.925 + (x * 8.13008); double t_814 = (x * 8.13008) - 2.751; double t_815 = sqrt((t_615 + pow(((x * 8.13008) - 2.221), 2.0))); double t_816 = t_815 - 0.275; double t_817 = 1.7272 + (y * 3.41463); double t_818 = 0.54 + (y * 2.19512); double t_819 = 1.53565 + (y * 2.84553); double t_820 = t_819 - (x * 4.47154); double t_821 = -(4.62 + (x * 8.13008)); double t_822 = 3.233 - (x * 8.13008); double t_823 = sqrt((t_54 + pow(t_188, 2.0))); double t_824 = -(0.492001 + (x * 8.13008)); double t_825 = 3.825 + (y * 8.13008); double t_826 = pow(t_825, 2.0); double t_827 = sqrt((t_826 + pow(((x * 8.13008) - 3.776), 2.0))); double t_828 = sqrt((t_826 + pow(((x * 8.13008) - 1.468), 2.0))); double t_829 = t_828 - 0.275; double t_830 = sqrt((t_826 + pow((5.437 + (x * 8.13008)), 2.0))); double t_831 = sqrt((t_826 + pow(((x * 8.13008) - 0.167999), 2.0))); double t_832 = sqrt((t_826 + pow(((5.97857 + (x * 8.13008)) - (y * 2.32288)), 2.0))); double t_833 = sqrt((t_826 + pow(t_293, 2.0))); double t_834 = sqrt((t_826 + pow(((x * 8.13008) - ((y * 2.32288) + 5.57243)), 2.0))); double t_835 = sqrt((t_826 + pow(((2.66557 + (x * 8.13008)) - (y * 2.32288)), 2.0))); double t_836 = sqrt((t_826 + pow((3.082 + (x * 8.13008)), 2.0))); double t_837 = t_831 - 0.275; double t_838 = sqrt((t_826 + pow((0.482 + (x * 8.13008)), 2.0))); double t_839 = t_838 - 0.275; double t_840 = sqrt((t_826 + pow(((x * 8.13008) - 0.818), 2.0))); double t_841 = sqrt((t_826 + pow(t_547, 2.0))); double t_842 = sqrt((t_826 + t_7)); double t_843 = t_842 - 0.275; double t_844 = 2.675 + (y * 8.13008); double t_845 = -t_844; double t_846 = 1.44223 + (x * 4.47154); double t_847 = t_846 - (y * 1.82927); double t_848 = (y * 1.82927) - t_846; double t_849 = (x * 8.13008) - 5.431; double t_850 = 3.825 - (y * 8.13008); double t_851 = fmax(t_850, t_154); double t_852 = (y * 1.21951) + 1.23609; double t_853 = 1.18065 + (y * 2.03252); double t_854 = (x * 4.47154) - t_562; double t_855 = 2.48475 + (x * 4.47154); double t_856 = t_855 - (y * 1.82927); double t_857 = (y * 1.82927) - t_855; double t_858 = -t_489; double t_859 = -(3.357 + (x * 8.13008)); double t_860 = (1.6416 + (y * 2.64228)) + (x * 4.47154); double t_861 = -t_860; double t_862 = (y * 2.64228) + 3.29243; double t_863 = (x * 4.47154) - t_862; double t_864 = t_862 - (x * 4.47154); double t_865 = 1.00286 + (x * 11.6144); double t_866 = (x * 5.42005) - 2.00117; double t_867 = (x * 4.47154) - t_819; double t_868 = (x * 1.01626) + 2.92488; double t_869 = (y * 1.82927) + (x * 4.47154); double t_870 = sqrt((t_456 + t_108)); double t_871 = (x * 8.13008) - 1.3305; double t_872 = sqrt((t_756 + pow(t_871, 2.0))); double t_873 = (y * 2.64228) + 3.1519; double t_874 = (x * 4.47154) - t_873; double t_875 = t_873 - (x * 4.47154); double t_876 = sqrt((t_54 + pow(((x * 8.13008) - 3.8055), 2.0))); double t_877 = 0.571825 + (y * 1.21951); double t_878 = 4.55 + (y * 8.13008); double t_879 = 0.525 - (y * 0.813008); double t_880 = 5.275 + (x * 8.13008); double t_881 = -t_880; double t_882 = fmax(t_666, t_825); double t_883 = sqrt((t_826 + pow(t_129, 2.0))); double t_884 = 4.7 + (x * 8.13008); double t_885 = 4.925 + (y * 8.13008); double t_886 = pow(t_885, 2.0); double t_887 = sqrt((t_886 + pow((0.867001 + (x * 8.13008)), 2.0))); double t_888 = sqrt((t_886 + pow(((x * 8.13008) - 4.2705), 2.0))); double t_889 = sqrt((t_886 + pow(((x * 8.13008) - 4.9205), 2.0))); double t_890 = sqrt((t_886 + pow((1.767 + (x * 8.13008)), 2.0))); double t_891 = sqrt((t_886 + pow(((x * 8.13008) - 3.6205), 2.0))); double t_892 = sqrt((t_886 + pow(t_776, 2.0))); double t_893 = t_892 - 0.275; double t_894 = sqrt((t_886 + pow(t_813, 2.0))); double t_895 = t_894 - 0.275; double t_896 = sqrt((t_886 + pow(t_139, 2.0))); double t_897 = sqrt((t_886 + pow(t_70, 2.0))); double t_898 = t_897 - 0.275; double t_899 = -t_825; double t_900 = 6.201 - (x * 8.13008); double t_901 = 0.4625 - (y * 8.13008); double t_902 = fmax(t_722, t_901); double t_903 = 4.6455 - (x * 8.13008); double t_904 = (x * 8.13008) - 5.558; double t_905 = 4.65 + (y * 8.13008); double t_906 = fmax(t_905, -t_885); double t_907 = fmax(t_343, t_905); double t_908 = fmax(t_666, t_583); double t_909 = 3.497 + (x * 8.13008); double t_910 = sqrt((t_176 + pow((4.995 + (x * 8.13008)), 2.0))); double t_911 = t_910 - 0.275; double t_912 = (y * 2.03252) + (x * 4.47154); double t_913 = fmax(t_343, t_885); double t_914 = ((x * 2.23577) + 3.865) + (y * 4.06504); double t_915 = fmax(t_3, (5.7 - (y * 8.13008))); double t_916 = pow(t_596, 2.0); double t_917 = sqrt((t_916 + pow(t_542, 2.0))); double t_918 = sqrt((t_916 + pow(t_322, 2.0))); double t_919 = t_55 - 0.275; double t_920 = ((y * 2.03252) + 2.7575) + (x * 4.47154); double t_921 = ((y * 2.03252) + 2.18935) + (x * 4.47154); double t_922 = 0.5025 + (y * 2.03252); double t_923 = 2.662 + (x * 8.13008); double t_924 = -t_923; double t_925 = pow(((y * 8.13008) - 3.6), 2.0); double t_926 = -t_491; double t_927 = pow(((y * 8.13008) - 1.675), 2.0); double t_928 = sqrt((pow(((x * 8.13008) - 6.133), 2.0) + t_927)); double t_929 = sqrt((t_927 + pow(t_124, 2.0))); double t_930 = sqrt((t_927 + pow(((x * 8.13008) - 0.224999), 2.0))); double t_931 = sqrt((t_927 + pow(((x * 8.13008) - 2.775), 2.0))); double t_932 = sqrt((pow((6.375 + (x * 8.13008)), 2.0) + t_927)); double t_933 = sqrt((t_741 + t_927)); double t_934 = sqrt((t_927 + pow((1.9 + (x * 8.13008)), 2.0))); double t_935 = sqrt((t_927 + pow(((x * 8.13008) - 6.783), 2.0))); double t_936 = t_935 - 0.275; double t_937 = -(3.425 + (x * 8.13008)); double t_938 = (x * 1.01626) + 1.13813; double t_939 = (y * 8.13008) - 1.3; double t_940 = fmax(t_939, t_379); double t_941 = fmax(t_939, (0.55 - (y * 8.13008))); double t_942 = sqrt((t_760 + pow(((x * 8.13008) - 6.3705), 2.0))); double t_943 = -t_14; double t_944 = 0.592 + (x * 8.13008); double t_945 = sqrt((t_760 + pow(t_481, 2.0))); double t_946 = 6.2385 - (x * 8.13008); double t_947 = 7.47551 - (x * 8.13008); double t_948 = 5.5955 - (x * 8.13008); double t_949 = pow(t_645, 2.0); double t_950 = sqrt((t_949 + pow(((x * 8.13008) - 0.7685), 2.0))); double t_951 = sqrt((t_949 + pow(((x * 8.13008) - 1.0185), 2.0))); double t_952 = -(0.267001 + (x * 8.13008)); double t_953 = 1.4305 - (x * 8.13008); double t_954 = sqrt((t_826 + pow(((x * 8.13008) - 5.156), 2.0))); double t_955 = 2.7765 - (x * 5.42005); double t_956 = t_15 - (y * 1.82927); double t_957 = -(2.887 + (x * 8.13008)); double t_958 = fmax(t_381, t_16); double t_959 = t_622 - 0.275; double t_960 = t_624 - (y * 2.64228); double t_961 = 1.01 + (x * 4.47154); double t_962 = sqrt((t_826 + pow(t_721, 2.0))); double t_963 = 0.461601 + (x * 4.47154); double t_964 = t_963 - (y * 2.64228); double t_965 = (y * 2.64228) - t_963; double t_966 = t_351 - (x * 4.47154); double t_967 = 3.23375 - (y * 5.28455); double t_968 = 2.5725 - (x * 8.13008); double t_969 = 3.20125 + (y * 5.28455); double t_970 = -t_969; double t_971 = -(3.875 + (y * 8.13008)); double t_972 = fmax(t_780, t_971); double t_973 = 0.775551 + (y * 2.84553); double t_974 = (x * 4.47154) - t_973; double t_975 = t_973 - (x * 4.47154); double t_976 = 2.775 - (y * 8.13008); double t_977 = (x * 11.6144) - 5.05; double t_978 = t_22 - 2.11243; double t_979 = (x + y) * 4.06504; double t_980 = 2.4935 + t_979; double t_981 = 0.0709989 + t_979; double t_982 = pow((0.635 + (y * 8.13008)), 2.0); double t_983 = 1.55 + (y * 8.13008); double t_984 = pow(t_983, 2.0); double t_985 = sqrt((t_984 + pow((2.712 + (x * 8.13008)), 2.0))); double t_986 = sqrt((t_984 + pow((2.462 + (x * 8.13008)), 2.0))); double t_987 = fmax(t_377, t_983); double t_988 = pow((6.025 + (y * 8.13008)), 2.0); double t_989 = sqrt((t_988 + pow(((x * 8.13008) - 4.683), 2.0))); double t_990 = sqrt((pow((1.842 + (x * 8.13008)), 2.0) + t_988)); double t_991 = sqrt((t_988 + pow(((x * 8.13008) - 0.00799847), 2.0))); double t_992 = sqrt((pow(t_785, 2.0) + t_988)); double t_993 = sqrt((t_988 + pow(t_660, 2.0))); double t_994 = sqrt((t_988 + pow(((x * 8.13008) - 4.033), 2.0))); double t_995 = 0.542376 + (y * 2.03252); double t_996 = pow(t_337, 2.0); double t_997 = 4.975 - (y * 8.13008); double t_998 = t_49 - 4.12055; double t_999 = -(0.229501 + (x * 8.13008)); double t_1000 = sqrt((t_741 + t_176)); double t_1001 = t_1000 - 0.275; double t_1002 = sqrt((t_615 + pow((4.325 + (x * 8.13008)), 2.0))); double t_1003 = (x * 4.47154) - t_647; double t_1004 = -(4.1 + (x * 8.13008)); double t_1005 = (x * 4.47154) - t_504; double t_1006 = (x * 8.13008) - 4.051; double t_1007 = (0.5925 + (x * 2.23577)) + (y * 4.06504); double t_1008 = 3.3775 + (x * 4.47154); double t_1009 = t_1008 - (y * 2.84553); double t_1010 = (y * 2.84553) - t_1008; double t_1011 = (y * 0.813008) - 0.36; double t_1012 = fmax(t_379, t_722); double t_1013 = ((y * 2.03252) + 3.61) + (x * 4.47154); double t_1014 = (x + y) * 2.23577; double t_1015 = 0.570488 + t_1014; double t_1016 = t_1014 + 2.48875; double t_1017 = 0.625 - (y * 8.13008); double t_1018 = (y * 0.813008) - 0.25; double t_1019 = (y * 1.21951) + 1.30319; double t_1020 = (x * 8.13008) - 4.5455; double t_1021 = 0.8325 + (y * 2.03252); double t_1022 = fmax(t_216, t_3); return fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmax(fmax(fmax(fmax(fmax(t_21, -t_322), (0.175 - t_992)), (t_992 - 0.275)), t_325), t_503), fmax(fmax(fmax((4.025 + (x * 8.13008)), -(4.125 + (x * 8.13008))), t_325), t_503)), fmax(fmax(fmax((4.275 + (x * 8.13008)), -(4.375 + (x * 8.13008))), t_325), t_503)), fmax(fmax(fmax((5.5 + (y * 8.13008)), -t_82), t_179), t_274)), fmax(fmax(fmax(-(5.4 + (y * 8.13008)), t_884), t_30), t_325)), fmax(fmax(fmax(t_884, t_30), t_335), t_503)), fmax(fmax(fmax((4.9 + (x * 8.13008)), -(5.0 + (x * 8.13008))), t_325), t_503)), fmax(fmax(t_344, (5.7205 - (x * 8.13008))), ((x * 8.13008) - 5.8205))), fmax(fmax(fmax(t_905, -(4.75 + (y * 8.13008))), t_139), t_226)), fmax(fmax(fmax(t_343, t_139), t_226), (5.1 + (y * 8.13008)))), fmax(fmax(t_820, ((x * 4.47154) - t_232)), t_545)), fmax(fmax(-t_58, t_194), t_414)), fmax(fmax(t_58, t_674), t_413)), fmax(fmax(t_674, t_921), t_544)), fmax(fmax(t_194, -t_921), t_545)), fmax((0.175 - t_990), (t_990 - 0.275))), fmax(fmax(fmax((2.475 + (x * 8.13008)), -(2.575 + (x * 8.13008))), t_82), t_503)), fmax(fmax(fmax(fmax(fmax(t_560, -(3.67857 + (x * 11.6144))), (0.45 - sqrt((t_502 + pow((3.91072 + (x * 14.518)), 2.0))))), (sqrt((t_502 + pow(t_560, 2.0))) - 0.55)), t_82), t_503)), fmax(fmax(fmax(-t_203, (2.675 + (x * 8.13008))), t_325), t_503)), fmax(fmax(t_786, t_82), t_611)), fmax(fmax(t_786, t_335), t_503)), fmax(-fmin((sqrt((pow((1.33245 - (x * 3.61337)), 2.0) + pow(-(4.815 + (y * 8.13008)), 2.0))) - 0.0625), fmax(fmax(fmax(t_163, t_307), t_435), ((x * 5.42005) - 2.16367))), (sqrt((pow(-t_307, 2.0) + pow(t_435, 2.0))) - 0.1625))), fmax(-fmin(fmax(fmax(fmax(-t_705, t_866), (1.83867 - (x * 5.42005))), t_43), (sqrt((pow((5.035 + (y * 8.13008)), 2.0) + pow(((x * 3.61337) - 1.33578), 2.0))) - 0.0625)), (sqrt((pow(t_705, 2.0) + pow(t_866, 2.0))) - 0.1625))), fmax(fmax(fmax(t_183, -t_272), ((x * 8.13008) - 1.808)), (1.708 - (x * 8.13008)))), fmax(fmax(fmax(t_878, -t_905), t_78), t_138)), fmax(fmax(fmax(fmax(fmax(t_343, t_272), t_78), t_138), (0.15 - t_713)), (t_713 - 0.25))), fmax(fmax(fmax(fmax(t_344, (4.8205 - (x * 8.13008))), ((x * 8.13008) - 5.5455)), (0.175 - t_896)), (t_896 - 0.275))), fmax(fmax(fmax(t_343, t_43), t_278), (5.0955 - (x * 8.13008)))), fmax(fmax(t_907, ((x * 8.13008) - 4.7455)), t_903)), fmax(fmax(fmax(fmax(fmax(t_905, t_278), t_903), -t_43), (0.175 - t_889)), (t_889 - 0.275))), fmax(fmax(t_907, t_1020), (4.4455 - (x * 8.13008)))), fmax(fmax(t_906, ((x * 8.13008) - 4.0955)), t_463)), fmax(fmax(fmax(fmax(t_913, t_1020), t_463), (0.175 - t_888)), (t_888 - 0.275))), fmax((0.175 - t_891), (t_891 - 0.275))), fmax(fmax(fmax(t_343, (0.142001 + (x * 8.13008))), -(0.242001 + (x * 8.13008))), t_360)), fmax(fmax(fmax(t_343, (0.392001 + (x * 8.13008))), t_824), t_62)), fmax(fmax(fmax(fmax(t_878, t_824), ((x * 8.13008) - 0.157999)), fmin(fmax((0.075 - t_734), (t_734 - 0.175)), fmax((0.075 - t_363), (t_363 - 0.175)))), t_693)), fmax(fmax(t_907, t_944), -(0.692001 + (x * 8.13008)))), fmax(fmax(t_906, (1.042 + (x * 8.13008))), t_425)), fmax(fmax(fmax(fmax(t_913, t_944), t_425), (0.175 - t_887)), (t_887 - 0.275))), fmax(fmax(t_344, (1.267 + (x * 8.13008))), -(1.367 + (x * 8.13008)))), fmax(fmax(fmax(t_905, -(5.575 + (y * 8.13008))), (1.942 + (x * 8.13008))), -(2.042 + (x * 8.13008)))), fmax(t_893, fmin(fmax(fmax(t_164, ((x * 8.13008) - 1.458)), (0.958001 - (x * 8.13008))), fmax(fmax(t_893, -fmin(fmax(fmax(t_969, ((x * 2.23577) - t_316)), -t_643), fmax(fmax(t_643, (t_316 - (x * 2.23577))), t_970))), (0.175 - t_892))))), fmax(fmax(t_389, ((x * 8.13008) - 0.808001)), (0.708 - (x * 8.13008)))), fmax(fmax(t_389, ((x * 8.13008) - 0.558001)), (0.458 - (x * 8.13008)))), fmax(fmax(fmax(t_343, t_62), ((x * 8.13008) - 0.308001)), t_397)), fmax(fmax(fmax(fmax(t_878, t_397), t_693), ((x * 8.13008) - 0.858)), fmin(fmax((0.075 - t_362), (t_362 - 0.175)), fmax((0.075 - t_576), (t_576 - 0.175))))), fmax(fmax(t_389, ((x * 8.13008) - 0.108)), (0.00799942 - (x * 8.13008)))), fmax((0.175 - t_890), (t_890 - 0.275))), fmax(fmax(t_37, t_220), -t_405)), fmax(fmax(t_725, t_219), t_405)), fmax(fmax(t_725, t_1013), t_135)), fmax(fmax(t_37, -t_1013), t_408)), fmax(t_895, fmin(fmax(fmax(t_164, (4.65 + (x * 8.13008))), -t_143), fmax(fmax(t_895, -fmin(fmax(fmax(t_969, (t_659 - (y * 1.21951))), -t_914), fmax(fmax(t_970, t_914), ((y * 1.21951) - t_659)))), (0.175 - t_894))))), fmax(fmax(t_669, (7.531 - (x * 8.13008))), ((x * 8.13008) - 7.631))), fmax(fmax(t_237, t_547), t_675)), fmax(fmax(fmax(t_666, t_547), t_675), t_9)), fmax(fmax(fmax(fmax(t_669, (6.631 - (x * 8.13008))), ((x * 8.13008) - 7.356)), (0.175 - t_841)), (t_841 - 0.275))), fmax(fmax(t_907, (3.1 + (x * 8.13008))), -(3.2 + (x * 8.13008)))), fmax(fmax(fmax(fmax(t_907, t_690), -(4.57143 + (x * 11.6144))), (0.45 - sqrt((t_342 + pow((5.02679 + (x * 14.518)), 2.0))))), (sqrt((t_342 + pow(t_690, 2.0))) - 0.55))), fmax(t_898, fmin(fmax(fmax(t_164, t_303), -t_481), fmax(fmax(t_898, -fmin(fmax(fmax(t_969, (t_110 - (y * 1.21951))), -t_249), fmax(fmax(t_970, t_249), ((y * 1.21951) - t_110)))), (0.175 - t_897))))), fmax(fmax(t_220, (t_961 - (y * 2.03252))), t_114)), fmax(fmax(t_219, t_308), ((y * 2.03252) - t_961))), fmax(fmax(t_308, t_135), ((y * 2.03252) - t_630))), fmax(fmax(t_114, (t_630 - (y * 2.03252))), t_408)), (sqrt((pow((6.225 + (y * 8.13008)), 2.0) + pow(t_388, 2.0))) - 0.075)), fmax(fmax(fmax(fmax(-fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmax(fmax(t_390, ((x * 4.06504) - 2.829)), -t_981), fmax(fmax(t_981, (2.829 - (x * 4.06504))), -t_390)), fmax(fmax(((x * 8.13008) - t_439), -((0.0706995 + (y * 2.60163)) + (x * 2.84553))), (t_125 - (x * 5.28455)))), fmax(fmax(((x * 5.28455) - t_125), ((0.0706992 + (y * 2.60163)) + (x * 2.84553))), (t_439 - (x * 8.13008)))), fmax(fmax(-t_85, (1.8053 - (x * 2.84553))), (t_444 - 0.171801))), fmax(fmax(t_85, (0.171801 - t_444)), ((x * 2.84553) - 1.8053))), fmax(fmax(t_31, ((x * 4.47154) - t_279)), (2.8369 - (x * 4.47154)))), fmax(fmax(((x * 4.47154) - 2.8369), (t_279 - (x * 4.47154))), -t_31)), t_325), t_503), t_904), (5.058 - (x * 8.13008)))), fmax((0.175 - t_989), (t_989 - 0.275))), fmax((0.175 - t_994), (t_994 - 0.275))), fmax(fmax(fmax(((x * 8.13008) - 3.233), (3.133 - (x * 8.13008))), t_325), t_503)), fmax(fmax(fmax(t_82, t_611), t_660), t_822)), fmax(fmax(fmax(t_660, t_822), t_335), t_503)), fmax(fmax(fmax(fmax(fmax(((x * 8.13008) - 4.133), (3.408 - (x * 8.13008))), (0.175 - t_993)), (t_993 - 0.275)), t_325), t_503)), fmax(fmax(-t_99, t_240), t_553)), fmax(fmax(t_99, t_552), t_239)), fmax(fmax(fmax(fmax(t_291, (5.65 + (y * 8.13008))), -t_600), ((x * 8.13008) - 1.733)), fmin(fmax((0.075 - t_602), (t_602 - 0.175)), fmax((0.075 - t_604), (t_604 - 0.175))))), fmax(fmax(fmax(t_503, t_198), t_297), (0.182999 - (x * 8.13008)))), fmax(fmax(fmax(t_82, t_503), (0.167001 + (x * 8.13008))), t_952)), fmax(fmax(fmax(fmax(fmax(t_82, t_297), t_952), -t_198), (0.175 - t_991)), (t_991 - 0.275))), fmax(fmax(((x * 4.47154) - t_111), t_251), t_414)), fmax(fmax(t_485, (t_111 - (x * 4.47154))), t_413)), fmax(fmax(t_485, (t_853 - (x * 4.47154))), t_544)), fmax(fmax(t_251, ((x * 4.47154) - t_853)), t_545)), fmax(fmax(-t_309, t_489), t_414)), fmax(fmax(t_309, t_858), t_413)), fmax(fmax(t_858, t_75), t_544)), fmax(fmax(t_489, -t_75), t_545)), fmax(fmax(((x * 4.47154) - t_569), t_820), t_414)), fmax(fmax(t_867, (t_569 - (x * 4.47154))), t_413)), fmax(fmax(t_867, (t_232 - (x * 4.47154))), t_544)), fmax(fmax(t_552, t_413), t_320)), fmax(fmax(t_553, t_572), t_414)), fmax(fmax(t_240, t_414), t_875)), fmax(fmax(t_239, t_413), t_874)), fmax(fmax(t_320, t_874), t_544)), fmax(fmax(t_572, t_875), t_545)), fmax(fmax(t_414, -t_574), t_790)), fmax(fmax(t_413, t_574), t_791)), fmax(fmax(t_544, t_791), t_273)), fmax(fmax(t_545, t_790), -t_273)), fmax(fmax(t_806, ((x * 8.13008) - 1.683)), (1.583 - (x * 8.13008)))), fmax(fmax(t_806, ((x * 8.13008) - 1.433)), (1.333 - (x * 8.13008)))), fmax(fmax(fmax(t_503, (5.775 + (y * 8.13008))), t_776), t_291)), fmax(fmax(fmax(t_32, ((x * 8.13008) - 1.498)), (1.398 - (x * 8.13008))), t_338)), fmax(fmax(fmax(t_32, ((x * 8.13008) - 1.248)), (1.148 - (x * 8.13008))), t_338)), fmax(fmax(fmax((2.475 + (y * 8.13008)), ((x * 8.13008) - 0.998001)), t_282), t_338)), fmax(fmax(fmax(fmax(t_282, -t_32), ((x * 8.13008) - 1.548)), fmin(fmax((0.075 - t_141), (t_141 - 0.175)), fmax((0.075 - t_527), (t_527 - 0.175)))), t_5)), fmax((0.175 - t_537), (t_537 - 0.275))), fmax(fmax(fmax(t_0, -(0.00200015 + (x * 8.13008))), t_338), t_528)), fmax(fmax(fmax((0.352 + (x * 8.13008)), t_555), t_338), t_730)), fmax(fmax(fmax(fmax(fmax(t_0, t_555), (0.175 - t_536)), (t_536 - 0.275)), t_557), t_683)), fmax(fmax(fmax(fmax(fmax((0.175 - t_535), (t_535 - 0.275)), t_557), t_476), t_605), t_845)), fmax(fmax(fmax(((x * 8.13008) - 3.0105), (2.9105 - (x * 8.13008))), t_338), t_557)), (sqrt((t_477 + pow(((x * 8.13008) - 2.9605), 2.0))) - 0.075)), fmax(-fmin(fmax(fmax(fmax(t_246, t_385), t_482), ((x * 5.42005) - 1.39033)), (sqrt((pow(-(2.615 + (y * 8.13008)), 2.0) + pow((0.81689 - (x * 3.61337)), 2.0))) - 0.0625)), (sqrt((pow(-t_385, 2.0) + pow(t_482, 2.0))) - 0.1625))), fmax(-fmin(fmax(fmax(fmax(-t_211, t_310), (1.06533 - (x * 5.42005))), t_844), (sqrt((pow((2.835 + (y * 8.13008)), 2.0) + pow(((x * 3.61337) - 0.820223), 2.0))) - 0.0625)), (sqrt((pow(t_211, 2.0) + pow(t_310, 2.0))) - 0.1625))), fmax(fmax(fmax(fmax(fmax((0.175 - t_781), (t_781 - 0.275)), t_171), t_270), t_557), t_845)), fmax(fmax(fmax((3.607 + (x * 8.13008)), -(3.707 + (x * 8.13008))), t_338), t_557)), (sqrt((t_477 + pow((3.657 + (x * 8.13008)), 2.0))) - 0.075)), fmax(fmax(fmax(t_32, (3.852 + (x * 8.13008))), -(3.952 + (x * 8.13008))), t_338)), fmax((0.175 - t_530), (t_530 - 0.275))), fmax(fmax(fmax((4.662 + (x * 8.13008)), -(4.762 + (x * 8.13008))), t_730), t_131)), fmax(fmax(t_580, t_5), t_719)), fmax(fmax(fmax(fmax(t_580, (0.15 - t_403)), (t_403 - 0.25)), t_338), t_130)), fmax(fmax(fmax((5.27 + (x * 8.13008)), -(5.37 + (x * 8.13008))), t_338), t_557)), fmax(fmax(fmax((0.702 + (x * 8.13008)), -(0.802 + (x * 8.13008))), t_730), t_131)), fmax(fmax(t_591, t_5), t_719)), fmax(fmax(fmax(fmax(t_591, (0.15 - t_590)), (t_590 - 0.25)), t_338), t_130)), fmax(fmax(fmax(t_32, (1.072 + (x * 8.13008))), -(1.172 + (x * 8.13008))), t_338)), fmax((0.175 - t_532), (t_532 - 0.275))), fmax(fmax(fmax(t_671, (1.882 + (x * 8.13008))), -(1.982 + (x * 8.13008))), t_338)), fmax(fmax(fmax(-(2.55 + (y * 8.13008)), t_471), t_598), t_557)), fmax(fmax(fmax(fmax(fmax(t_471, t_598), -t_671), (0.15 - t_672)), (t_672 - 0.25)), t_730)), fmax(fmax(fmax(t_171, -(3.032 + (x * 8.13008))), t_338), t_844)), fmax(fmax(fmax((3.382 + (x * 8.13008)), t_270), t_338), t_557)), fmax(fmax(t_608, t_736), t_946)), fmax(fmax(fmax(fmax(fmax(t_736, t_946), t_377), (0.15 - t_751)), (t_751 - 0.25)), t_747)), fmax(fmax(t_607, ((x * 8.13008) - 6.1135)), (6.0135 - (x * 8.13008)))), (sqrt((pow((1.2 + (y * 8.13008)), 2.0) + pow(((x * 8.13008) - 6.0635), 2.0))) - 0.075)), fmax(fmax(t_208, t_352), t_563)), fmax(fmax(t_207, t_854), t_966)), fmax(fmax(t_854, t_115), t_261)), fmax(fmax(t_563, t_490), t_567)), fmax(fmax(t_352, t_567), t_864)), fmax(fmax(t_966, t_115), t_863)), fmax(fmax(t_261, t_863), t_264)), fmax(fmax(t_490, t_864), t_498)), fmax(fmax(t_567, (2.24743 - t_869)), t_978)), fmax(fmax(fmax(fmax(fmax(t_391, -(7.67143 + (x * 11.6144))), (0.45 - sqrt((t_996 + pow((8.90179 + (x * 14.518)), 2.0))))), (sqrt((t_996 + pow(t_391, 2.0))) - 0.55)), t_338), t_557)), fmax(t_539, fmin(fmax(fmax(fmax((5.47 + (x * 8.13008)), -(5.97 + (x * 8.13008))), t_399), t_246), fmax(fmax(t_539, -fmin(fmax(fmax((t_26 - (y * 1.21951)), -t_180), t_333), fmax(fmax(t_180, ((y * 1.21951) - t_26)), t_650))), (0.175 - t_538))))), fmax(fmax(-fmin(fmax(fmax(((y * 2.23577) - (1.02163 + (x * 2.27642))), t_517), -t_1016), fmax(fmax(t_1016, -t_517), ((1.02162 + (x * 2.27642)) - (y * 2.23577)))), (0.175 - t_657)), (t_657 - 0.275))), fmax(fmax(t_748, ((x * 8.13008) - 6.4885)), (6.3885 - (x * 8.13008)))), fmax(fmax(fmax(fmax(t_662, (0.175 - t_823)), (t_823 - 0.275)), ((x * 8.13008) - 3.9055)), (3.1805 - (x * 8.13008)))), fmax(fmax(fmax(fmax(fmax(-fmin(fmax(fmax(((x * 2.84553) - t_195), -t_368), (t_681 - (x * 1.01626))), fmax(fmax(t_368, ((x * 1.01626) - t_681)), (t_195 - (x * 2.84553)))), t_292), -(2.05 + (y * 8.13008))), ((x * 8.13008) - 2.0805)), (1.9305 - (x * 8.13008))), (sqrt((pow((0.608333 + (y * 2.71003)), 2.0) + pow(((x * 8.13008) - 2.0055), 2.0))) - 0.075))), (sqrt((pow(t_292, 2.0) + pow(((x * 8.13008) - 2.0305), 2.0))) - 0.075)), fmax(fmax(t_378, ((x * 8.13008) - 1.6805)), (1.5805 - (x * 8.13008)))), fmax(fmax(fmax(t_606, t_742), t_953), t_71)), fmax(fmax(fmax(fmax(fmax(t_47, t_742), t_953), t_483), (0.15 - t_757)), (t_757 - 0.25))), fmax(fmax(t_378, ((x * 8.13008) - 1.1805)), (1.0805 - (x * 8.13008)))), fmax(fmax(t_115, t_432), (t_869 - 2.24743))), fmax(fmax(t_264, t_432), (t_869 - 2.30243))), fmax(fmax(t_498, t_978), (2.30243 - t_869))), fmax(fmax(t_607, ((x * 8.13008) - 4.2805)), (4.1805 - (x * 8.13008)))), fmax(fmax(fmax(fmax(t_607, t_631), (5.97215 - (x * 11.6144))), (0.45 - sqrt((t_376 + pow(((x * 14.518) - 8.15268), 2.0))))), (sqrt((t_376 + pow(t_631, 2.0))) - 0.55))), fmax(fmax(t_607, t_706), (3.9805 - (x * 8.13008)))), fmax(fmax(fmax(t_606, -t_53), ((x * 8.13008) - 3.6305)), t_321)), fmax(fmax(fmax(fmax(fmax(t_377, t_706), t_321), t_53), (0.175 - t_876)), (t_876 - 0.275))), fmax(fmax(t_662, ((x * 8.13008) - 3.0055)), (2.9055 - (x * 8.13008)))), fmax(fmax(t_711, t_188), t_792)), fmax(fmax(fmax(t_377, t_188), t_792), t_80)), fmax((0.175 - t_834), (t_834 - 0.275))), fmax(fmax(t_882, t_1006), (3.951 - (x * 8.13008)))), fmax(fmax(t_669, ((x * 8.13008) - 3.601)), t_401)), fmax(fmax(fmax(fmax(fmax(t_235, t_1006), t_401), t_899), (0.175 - t_827)), (t_827 - 0.275))), fmax(fmax(t_586, ((x * 8.13008) - 3.251)), (3.151 - (x * 8.13008)))), fmax(fmax(t_236, t_346), t_450)), fmax(fmax(fmax(fmax(t_908, t_346), t_450), (0.15 - t_585)), (t_585 - 0.25))), fmax(fmax(t_667, ((x * 8.13008) - 1.943)), (1.843 - (x * 8.13008)))), fmax(fmax(fmax(fmax(t_667, t_4), (2.63286 - (x * 11.6144))), (0.45 - sqrt((t_665 + pow(((x * 14.518) - 3.97857), 2.0))))), (sqrt((t_665 + pow(t_4, 2.0))) - 0.55))), fmax(fmax(t_667, ((x * 8.13008) - 6.981)), (6.881 - (x * 8.13008)))), (sqrt((pow((3.4 + (y * 8.13008)), 2.0) + pow(((x * 8.13008) - 6.931), 2.0))) - 0.075)), fmax(fmax(t_669, (6.656 - (x * 8.13008))), ((x * 8.13008) - 6.756))), fmax(fmax(t_237, t_293), t_421)), fmax(fmax(t_670, t_293), t_421)), fmax(fmax(fmax(fmax(t_669, (5.756 - (x * 8.13008))), ((x * 8.13008) - 6.481)), (0.175 - t_833)), (t_833 - 0.275))), fmax(fmax(t_692, t_849), (5.331 - (x * 8.13008)))), fmax(fmax(t_667, ((x * 8.13008) - 4.981)), t_298)), fmax(fmax(fmax(fmax(fmax(t_235, t_849), t_298), t_743), (0.175 - t_954)), (t_954 - 0.275))), fmax(fmax(t_668, ((x * 8.13008) - 4.761)), (4.661 - (x * 8.13008)))), fmax(fmin(fmax(fmax((0.175 - t_831), t_837), -fmin(fmax(fmax(t_777, ((x * 2.23577) - t_20)), -t_165), fmax(fmax(t_778, t_165), (t_20 - (x * 2.23577))))), fmax(fmax(t_972, ((x * 8.13008) - 0.443)), -(0.0570004 + (x * 8.13008)))), t_837)), fmax(t_839, fmin(fmax(fmax(fmax((0.207 + (x * 8.13008)), -(0.707 + (x * 8.13008))), t_780), t_971), fmax(fmax(t_839, -fmin(fmax(fmax(((x * 2.23577) - t_877), -t_77), t_777), fmax(fmax(t_77, (t_877 - (x * 2.23577))), t_778))), (0.175 - t_838))))), fmax(fmax(t_669, -t_644), (0.857 + (x * 8.13008)))), fmax(fmax(t_237, t_129), t_644)), fmax(fmax(t_670, t_129), t_644)), fmax(fmax(fmax(fmax(t_669, -(1.857 + (x * 8.13008))), t_128), (0.175 - t_883)), (t_883 - 0.275))), fmax(fmax(t_669, -t_275), (2.182 + (x * 8.13008)))), fmax(fmax(t_237, t_275), t_721)), fmax(fmax(t_670, t_275), t_721)), fmax(t_829, fmin(fmax(fmax(t_972, ((x * 8.13008) - 1.743)), (1.243 - (x * 8.13008))), fmax(fmax(t_829, -fmin(fmax(fmax(t_777, ((x * 2.23577) - t_284)), -t_451), fmax(fmax(t_451, (t_284 - (x * 2.23577))), t_778))), (0.175 - t_828))))), fmax(fmax(fmax(t_235, -(4.475 + (y * 8.13008))), ((x * 8.13008) - 0.643001)), (0.543 - (x * 8.13008)))), fmax((0.175 - t_840), (t_840 - 0.275))), fmax(fmax(fmax(fmax(fmax((sqrt((pow((4.937 + (x * 8.13008)), 2.0) + pow((1.34167 + (y * 2.71003)), 2.0))) - 0.075), -fmin(fmax(fmax((t_196 - (y * 0.813008)), -t_365), (t_599 - (x * 1.01626))), fmax(fmax(((x * 1.01626) - t_599), t_365), ((y * 0.813008) - t_196)))), t_63), -(4.25 + (y * 8.13008))), (4.862 + (x * 8.13008))), -(5.012 + (x * 8.13008)))), (sqrt((pow(t_63, 2.0) + pow(t_579, 2.0))) - 0.075)), fmax(fmax(t_882, t_42), -(5.262 + (x * 8.13008)))), fmax(fmax(t_669, (5.612 + (x * 8.13008))), t_561)), fmax(fmax(fmax(fmax(fmax(t_235, t_899), t_42), t_561), (0.175 - t_830)), (t_830 - 0.275))), fmax(fmax(t_586, (5.962 + (x * 8.13008))), -(6.062 + (x * 8.13008)))), fmax(fmax(t_236, t_109), t_204)), fmax(fmax(fmax(fmax(t_908, t_109), t_204), (0.15 - t_698)), (t_698 - 0.25))), fmax(fmax(t_667, (6.57 + (x * 8.13008))), -(6.67 + (x * 8.13008)))), fmax(fmax(fmax(fmax(t_669, t_720), -(3.182 + (x * 8.13008))), (0.175 - t_962)), (t_962 - 0.275))), fmax(fmax(t_692, t_262), -(2.907 + (x * 8.13008)))), fmax(fmax(t_667, (3.257 + (x * 8.13008))), t_859)), fmax(fmax(fmax(fmax(fmax(t_235, t_743), t_262), t_859), (0.175 - t_836)), (t_836 - 0.275))), fmax(fmax(t_668, (3.477 + (x * 8.13008))), -(3.577 + (x * 8.13008)))), fmax((0.175 - t_835), (t_835 - 0.275))), fmax(fmin(fmax(fmax(t_534, -fmin(fmax(fmax(t_333, ((x * 2.23577) - t_712)), (0.228514 - t_25)), fmax(fmax((t_25 - 0.228514), (t_712 - (x * 2.23577))), t_650))), (0.175 - t_533)), fmax(fmax(fmax(t_399, t_246), ((x * 8.13008) - 6.23551)), (5.73551 - (x * 8.13008)))), t_534)), fmax(fmax(fmax(t_338, t_27), (5.4355 - (x * 8.13008))), t_528)), fmax(fmax(fmax(t_338, t_730), ((x * 8.13008) - 5.0855)), t_510)), fmax(fmax(fmax(fmax(fmax(t_27, t_510), t_557), t_683), (0.175 - t_531)), (t_531 - 0.275))), fmax(fmax(fmax(t_730, t_131), ((x * 8.13008) - 4.7355)), (4.6355 - (x * 8.13008)))), fmax(fmax(fmax(t_5, t_719), t_91), t_185)), fmax(fmax(fmax(fmax(fmax(t_338, t_130), t_91), t_185), (0.15 - t_658)), (t_658 - 0.25))), fmax(fmax(fmax(t_338, t_844), t_476), (3.5855 - (x * 8.13008)))), fmax(fmax(fmax(t_338, t_557), ((x * 8.13008) - 3.2355)), t_605)), fmax(fmax(fmax(fmax(t_667, t_728), -(9.52857 + (x * 11.6144))), (0.45 - sqrt((t_665 + pow((11.2232 + (x * 14.518)), 2.0))))), (sqrt((t_665 + pow(t_728, 2.0))) - 0.55))), fmax(fmax(t_668, (6.79 + (x * 8.13008))), -(6.89 + (x * 8.13008)))), fmax((0.175 - t_832), (t_832 - 0.275))), fmax(t_843, fmin(fmax(fmax(t_972, t_294), t_419), fmax(fmax(t_843, -fmin(fmax(fmax(t_777, (t_106 - (y * 1.21951))), -t_243), fmax(fmax(t_778, t_243), ((y * 1.21951) - t_106)))), (0.175 - t_842))))), fmax(fmax(t_848, t_66), t_155)), fmax(fmax(t_847, t_427), t_478)), fmax(fmax(t_427, t_746), t_956)), fmax(fmax(t_155, t_745), t_247)), fmax(fmax(t_848, t_745), t_429)), fmax(fmax(t_847, t_746), t_699)), fmax(fmax(t_427, -t_17), t_160)), fmax(fmax(t_155, t_17), t_433)), fmax(fmax(t_429, t_433), t_628)), fmax(fmax(t_699, t_160), -t_628)), fmax(fmax(fmax((3.5325 + (x * 8.13008)), -(3.6325 + (x * 8.13008))), t_491), t_633)), fmax(fmax(fmax(fmax(fmax(t_119, -(5.18929 + (x * 11.6144))), (0.45 - sqrt((pow((5.79911 + (x * 14.518)), 2.0) + t_784)))), (sqrt((pow(t_119, 2.0) + t_784)) - 0.55)), t_491), t_633)), fmax(fmax(fmax((3.7575 + (x * 8.13008)), -(3.8575 + (x * 8.13008))), t_491), t_633)), (sqrt((pow((3.8075 + (x * 8.13008)), 2.0) + t_2)) - 0.075)), fmax(fmax(fmax((4.0025 + (x * 8.13008)), -(4.1025 + (x * 8.13008))), t_633), t_645)), fmax(fmax(fmax(((x * 8.13008) - 0.0154991), -(0.084501 + (x * 8.13008))), t_633), t_645)), fmax((0.175 - t_802), (t_802 - 0.275))), fmax(fmax(fmax(t_181, -(0.794501 + (x * 8.13008))), t_797), t_633)), fmax(fmax(fmax((1.1445 + (x * 8.13008)), t_810), t_34), t_633)), fmax(fmax(fmax(fmax(fmax(t_181, t_810), t_798), (0.175 - t_805)), (t_805 - 0.275)), t_491)), fmax(fmax(-fmin(fmax(fmax(((y * 2.23577) - t_345), t_453), -t_1015), fmax(fmax(t_1015, -t_453), (t_345 - (y * 2.23577)))), (0.175 - t_800)), (t_800 - 0.275))), fmax(fmax(t_498, t_956), t_478)), fmax(fmax(t_264, t_66), t_247)), fmax(fmax(fmax(fmax(fmax(t_798, t_52), t_191), (0.175 - t_804)), (t_804 - 0.275)), t_491)), fmax(fmax(fmax(-t_60, (7.05 + (x * 8.13008))), -(7.15 + (x * 8.13008))), t_34)), fmax(fmax(fmax(t_549, t_679), t_926), t_10)), fmax(fmax(fmax(fmax(fmax(t_60, t_549), t_679), (0.15 - t_550)), (t_550 - 0.25)), t_633)), fmax(fmax(t_941, ((x * 8.13008) - 7.72551)), (7.62551 - (x * 8.13008)))), fmax(fmax(t_424, t_737), t_947)), fmax(fmax(fmax(fmax(fmax(t_737, t_947), t_299), t_379), (0.15 - t_738)), (t_738 - 0.25))), fmax(fmax(fmax(t_379, ((y * 8.13008) - 0.65)), ((x * 8.13008) - 7.35551)), (7.25551 - (x * 8.13008)))), fmax((0.175 - t_771), (t_771 - 0.275))), fmax((0.175 - t_801), (t_801 - 0.275))), fmax(-fmin(fmax(fmax(fmax(t_168, (3.575 + (x * 5.42005))), t_313), t_437), (sqrt((pow(-(2.49333 + (x * 3.61337)), 2.0) + t_76)) - 0.0625)), (sqrt((pow(t_168, 2.0) + t_500)) - 0.1625))), fmax(-fmin(fmax(fmax(fmax(t_167, -(3.9 + (x * 5.42005))), t_213), t_394), (sqrt((pow((2.49 + (x * 3.61337)), 2.0) + t_982)) - 0.0625)), (sqrt((pow(t_167, 2.0) + t_395)) - 0.1625))), fmax(fmax(fmax(-(6.075 + (x * 8.13008)), t_793), t_491), t_633)), (sqrt((pow((6.025 + (x * 8.13008)), 2.0) + t_2)) - 0.075)), fmax(fmax(fmax(t_52, -(6.35 + (x * 8.13008))), t_797), t_633)), fmax(fmax(fmax((6.7 + (x * 8.13008)), t_191), t_34), t_633)), fmax(-fmin((sqrt((t_218 + pow(((x * 3.61337) - 2.02467), 2.0))) - 0.0625), fmax(fmax(t_902, t_35), (2.872 - (x * 5.42005)))), (sqrt((t_406 + pow(t_35, 2.0))) - 0.1625))), fmax(t_774, fmin(fmax(fmax(t_410, ((x * 8.13008) - 4.208)), (3.708 - (x * 8.13008))), fmax(fmax(t_774, -fmin(fmax(fmax(t_97, ((x * 2.23577) - t_229)), (1.32095 - t_25)), fmax(fmax((t_25 - 1.32095), (t_229 - (x * 2.23577))), t_729))), (0.175 - t_773))))), fmax(-fmin(fmax(fmax(fmax(t_234, ((x * 5.42005) - 2.372)), t_409), t_469), (sqrt((pow((1.47133 - (x * 3.61337)), 2.0) + t_61)) - 0.0625)), (sqrt((pow(t_234, 2.0) + t_366)) - 0.1625))), fmax(fmax(t_759, t_680), (6.5455 - (x * 8.13008)))), fmax(fmax(t_940, ((x * 8.13008) - 6.19551)), t_241)), fmax(fmax(fmax(fmax(fmax(t_680, t_241), t_684), t_735), (0.175 - t_942)), (t_942 - 0.275))), fmax(fmax(t_941, ((x * 8.13008) - 5.8455)), (5.7455 - (x * 8.13008)))), fmax(fmax(t_424, t_739), t_948)), fmax(fmax(fmax(fmax(t_380, t_739), t_948), (0.15 - t_740)), (t_740 - 0.25))), fmax(-fmin(fmax(fmax(t_470, t_72), ((x * 5.42005) - 3.197)), (sqrt((t_61 + pow((2.02133 - (x * 3.61337)), 2.0))) - 0.0625)), (sqrt((t_366 + pow(t_72, 2.0))) - 0.1625))), fmax(-fmin(fmax(fmax(t_902, (0.788667 - (x * 5.42005))), t_256), (sqrt((t_218 + pow(((x * 3.61337) - 0.635778), 2.0))) - 0.0625)), (sqrt((t_406 + pow(t_256, 2.0))) - 0.1625))), fmax(fmax(t_685, ((x * 8.13008) - 0.125)), (0.0249996 - (x * 8.13008)))), fmax(fmax(fmax(fmax(t_685, t_704), (0.0357141 - (x * 11.6144))), (0.45 - sqrt((t_169 + pow(((x * 14.518) - 0.732143), 2.0))))), (sqrt((t_169 + pow(t_704, 2.0))) - 0.55))), fmax(fmax(t_685, (0.1 + (x * 8.13008))), -(0.2 + (x * 8.13008)))), (sqrt((pow(((y * 8.13008) - 1.0), 2.0) + t_465)) - 0.075)), fmax(t_789, fmin(fmax(fmax(t_410, (0.325 + (x * 8.13008))), -(0.825 + (x * 8.13008))), fmax(fmax(t_789, -fmin(fmax(fmax(t_97, (t_81 - (y * 1.21951))), (0.0743749 - t_25)), fmax(fmax(t_729, (t_25 - 0.0743749)), ((y * 1.21951) - t_81)))), (0.175 - t_788))))), fmax(-fmin(fmax(fmax(fmax(t_28, (2.047 - (x * 5.42005))), t_722), t_901), (sqrt((t_218 + pow(((x * 3.61337) - 1.47467), 2.0))) - 0.0625)), (sqrt((t_406 + pow(t_28, 2.0))) - 0.1625))), fmax(fmax(t_1012, t_36), (2.8705 - (x * 8.13008)))), fmax(fmax(t_685, ((x * 8.13008) - 2.5205)), t_448)), fmax(fmax(fmax(fmax(fmax(t_684, t_36), t_448), t_1017), (0.175 - t_762)), (t_762 - 0.275))), fmax(t_768, fmin(fmax(fmax(t_410, ((x * 8.13008) - 2.3205)), (1.8205 - (x * 8.13008))), fmax(fmax(t_768, -fmin(fmax(fmax(t_97, ((x * 2.23577) - t_663)), (0.801888 - t_25)), fmax(fmax(t_729, (t_25 - 0.801888)), (t_663 - (x * 2.23577))))), (0.175 - t_767))))), fmax(-fmin(fmax(fmax(t_470, t_543), ((x * 5.42005) - 1.11367)), (sqrt((t_61 + pow((0.632445 - (x * 3.61337)), 2.0))) - 0.0625)), (sqrt((t_366 + pow(t_543, 2.0))) - 0.1625))), fmax((sqrt((pow(-t_733, 2.0) + pow(t_8, 2.0))) - 0.1625), -fmin(fmax(fmax(fmax(t_420, t_733), t_8), (0.233001 + (x * 5.42005))), (sqrt((pow(-(1.515 + (y * 8.13008)), 2.0) + pow(-(0.265334 + (x * 3.61337)), 2.0))) - 0.0625)))), fmax(-fmin(fmax(fmax(fmax((1.575 + (y * 8.13008)), -t_67), t_156), -(0.558001 + (x * 5.42005))), (sqrt((pow((1.735 + (y * 8.13008)), 2.0) + pow((0.262 + (x * 3.61337)), 2.0))) - 0.0625)), (sqrt((pow(t_67, 2.0) + pow(t_156, 2.0))) - 0.1625))), fmax(fmax(t_208, (t_430 - (y * 1.82927))), t_625)), fmax(fmax(t_207, t_960), t_431)), fmax(fmax(t_115, t_960), t_210)), fmax(fmax(t_567, t_625), t_434)), fmax(fmax(t_567, ((0.5966 + (x * 4.47154)) - (y * 1.82927))), t_965)), fmax(fmax(t_115, t_431), t_964)), fmax(fmax(t_264, t_210), t_964)), fmax(fmax(t_498, t_434), t_965)), fmax(fmax(t_567, -t_636), t_860)), fmax(fmax(t_115, t_861), t_636)), fmax(fmax(t_264, t_861), t_315)), fmax(fmax(t_498, t_860), -t_315)), fmax(fmax(t_711, t_871), t_23)), fmax(fmax(fmax(fmax(fmax(t_47, t_483), t_871), t_23), (0.15 - t_872)), (t_872 - 0.25))), fmax(fmax(t_987, ((x * 8.13008) - 0.8105)), (0.7105 - (x * 8.13008)))), fmax((0.175 - t_398), (t_398 - 0.275))), fmax(fmax(t_748, ((x * 8.13008) - 0.000499725)), -(0.0995007 + (x * 8.13008)))), fmax(fmax(t_608, t_400), t_509)), fmax(fmax(fmax(fmax(fmax(t_377, t_747), t_400), t_509), (0.15 - t_750)), (t_750 - 0.25))), fmax(fmax(fmax(t_662, -fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmax(fmax((t_222 - (y * 3.25203)), -t_407), t_516), fmax(fmax(t_407, ((y * 3.25203) - t_222)), -t_516)), fmax(fmax(t_93, t_137), -t_980)), fmax(fmax(t_980, -t_137), -t_93)), fmax(fmax((t_909 - (y * 0.813008)), -t_44), ((y * 3.41463) - t_224))), fmax(fmax((t_224 - (y * 3.41463)), t_44), ((y * 0.813008) - t_909))), fmax(fmax(-t_818, -t_48), t_145)), fmax(fmax(t_818, t_48), -t_145))), (3.687 + (x * 8.13008))), -(4.187 + (x * 8.13008)))), fmax(fmax(t_987, (4.307 + (x * 8.13008))), -(4.407 + (x * 8.13008)))), fmax((0.175 - t_358), (t_358 - 0.275))), fmax(t_919, fmin(fmax(fmax(fmax((1.585 + (y * 8.13008)), t_420), (4.967 + (x * 8.13008))), -(5.467 + (x * 8.13008))), fmax(fmax(t_919, -fmin(fmax(fmax(t_295, (t_475 - (y * 1.21951))), -t_686), fmax(fmax(t_686, ((y * 1.21951) - t_475)), -t_295))), (0.175 - t_55))))), fmax(fmax(t_607, (5.875 + (x * 8.13008))), -t_793)), fmax(fmax(fmax(t_377, (2.287 + (x * 8.13008))), -(2.387 + (x * 8.13008))), t_983)), fmax(fmax(t_987, (2.537 + (x * 8.13008))), -(2.637 + (x * 8.13008)))), fmax(fmax(fmax(t_377, (1.375 + (y * 8.13008))), (2.787 + (x * 8.13008))), t_957)), fmax(fmax(fmax(fmax(t_423, t_957), -t_983), (2.237 + (x * 8.13008))), fmin(fmax((0.075 - t_986), (t_986 - 0.175)), fmax((0.075 - t_985), (t_985 - 0.175))))), fmax(fmax(fmax(fmax(fmax(-fmin(fmax(fmax(((x * 2.84553) - t_263), (0.681276 - t_492)), (t_637 - (x * 1.01626))), fmax(fmax(((x * 1.01626) - t_637), (t_492 - 0.681276)), (t_263 - (x * 2.84553)))), t_120), -(0.95 + (y * 8.13008))), ((x * 8.13008) - 5.289)), (5.139 - (x * 8.13008))), (sqrt((pow((0.241667 + (y * 2.71003)), 2.0) + pow(((x * 8.13008) - 5.214), 2.0))) - 0.075))), (sqrt((pow(t_120, 2.0) + pow(((x * 8.13008) - 5.239), 2.0))) - 0.075)), fmax(fmax(fmax(t_491, ((x * 8.13008) - 4.781)), (4.681 - (x * 8.13008))), t_633)), fmax(fmax(fmax(fmax(fmax(t_491, t_329), (6.68715 - (x * 11.6144))), (0.45 - sqrt((t_784 + pow(((x * 14.518) - 9.04643), 2.0))))), (sqrt((t_784 + pow(t_329, 2.0))) - 0.55)), t_633)), fmax((0.175 - t_803), (t_803 - 0.275))), fmax(fmax(fmax(fmax(t_607, t_29), -(8.53571 + (x * 11.6144))), (0.45 - sqrt((t_376 + pow((9.98214 + (x * 14.518)), 2.0))))), (sqrt((t_376 + pow(t_29, 2.0))) - 0.55))), fmax(fmax(t_662, t_90), t_182)), fmax(fmax(fmax(t_606, t_653), t_71), t_519)), fmax(fmax(fmax(t_377, t_653), t_80), t_519)), fmax(fmax(fmax(fmax(t_662, t_45), -t_653), (0.175 - t_656)), (t_656 - 0.275))), fmax(fmax(t_635, ((x * 8.13008) - 7.28901)), (7.18901 - (x * 8.13008)))), fmax(fmax(t_635, ((x * 8.13008) - 7.03901)), (6.93901 - (x * 8.13008)))), fmax(fmax(fmax(((y * 8.13008) - 4.76837e-7), t_926), ((x * 8.13008) - 6.81401)), (6.71401 - (x * 8.13008)))), fmax(fmax(fmax(t_34, (0.1 - (y * 8.13008))), t_98), t_192)), fmax(fmax(fmax(t_633, t_98), t_192), (0.7 + (y * 8.13008)))), fmax(fmax(t_635, ((x * 8.13008) - 6.41401)), (6.314 - (x * 8.13008)))), fmax(fmax(t_634, ((x * 8.13008) - 2.1185)), (2.0185 - (x * 8.13008)))), (sqrt((t_2 + pow(((x * 8.13008) - 2.0685), 2.0))) - 0.075)), fmax(fmax(t_646, ((x * 8.13008) - 1.1935)), (1.0935 - (x * 8.13008)))), fmax(fmax(t_646, ((x * 8.13008) - 0.943501)), (0.8435 - (x * 8.13008)))), fmax(fmax(fmax(t_633, (0.275 + (y * 8.13008))), ((x * 8.13008) - 0.693501)), t_64)), fmax(fmax(fmax(fmax(t_64, t_10), -t_645), ((x * 8.13008) - 1.2435)), fmin(fmax((0.075 - t_951), (t_951 - 0.175)), fmax((0.075 - t_950), (t_950 - 0.175))))), fmax(fmax(t_634, ((x * 8.13008) - 0.2355)), (0.1355 - (x * 8.13008)))), fmax(fmax(fmax(t_248, ((x * 8.13008) - 3.781)), t_633), (3.681 - (x * 8.13008)))), fmax(fmax(fmax(t_491, -(0.35 + (y * 8.13008))), t_73), t_162)), fmax(fmax(fmax(fmax(fmax(t_34, t_73), t_162), -t_248), (0.15 - t_701)), (t_701 - 0.25))), fmax(-fmin(fmax(fmax(fmax(t_313, t_437), t_387), ((x * 5.42005) - 1.82067)), (sqrt((t_76 + pow((1.10378 - (x * 3.61337)), 2.0))) - 0.0625)), (sqrt((t_500 + pow(t_387, 2.0))) - 0.1625))), fmax(-fmin(fmax(fmax(fmax(t_213, t_394), t_593), (1.49567 - (x * 5.42005))), (sqrt((t_982 + pow(((x * 3.61337) - 1.10711), 2.0))) - 0.0625)), (sqrt((t_395 + pow(t_593, 2.0))) - 0.1625))), fmax(fmax(fmax(fmax(t_634, t_709), (0.193571 - (x * 11.6144))), (0.45 - sqrt((t_784 + pow(((x * 14.518) - 0.929465), 2.0))))), (sqrt((t_784 + pow(t_709, 2.0))) - 0.55))), 100000000.0), fmax(t_795, fmin(fmax(fmax(t_578, ((x * 8.13008) - 7.40251)), (6.90251 - (x * 8.13008))), fmax(fmax(t_795, -fmin(fmax(fmax(t_277, ((x * 2.23577) - t_446)), (3.29944 - t_25)), fmax(fmax((t_25 - 3.29944), (t_446 - (x * 2.23577))), t_39))), (0.175 - t_794))))), fmax(fmax(t_223, ((x * 4.47154) - t_340)), t_521)), fmax(fmax(t_812, (t_340 - (x * 4.47154))), t_1018)), fmax(fmax(t_812, t_94), (t_225 - (x * 4.47154)))), fmax(fmax(t_521, ((x * 4.47154) - t_225)), t_523)), fmax(fmax(t_223, (4.14638 - t_912)), t_50)), fmax(fmax(t_1018, t_231), (t_912 - 4.14638))), fmax(fmax(t_94, t_231), (t_912 - 4.20138))), fmax(fmax(t_523, t_50), (4.20138 - t_912))), fmax(fmax(-t_57, t_193), t_359)), fmax(fmax(t_57, t_597), t_673)), fmax(fmax(t_597, t_920), t_102)), fmax(fmax(t_193, -t_920), t_369)), fmax((0.175 - t_932), (t_932 - 0.275))), fmax(fmax(fmax(t_242, -(6.85 + (x * 8.13008))), t_559), t_687)), fmax(fmax(fmax(t_679, (7.2 + (x * 8.13008))), t_687), t_153)), fmax(fmax(fmax(fmax(fmax(t_679, t_242), (0.175 - t_933)), (t_933 - 0.275)), t_68), t_153)), fmax(fmax(t_383, t_480), (7.95251 - (x * 8.13008)))), fmax(fmax(t_958, ((x * 8.13008) - 7.60251)), t_205)), fmax(fmax(fmax(fmax(fmax(t_480, t_16), t_205), t_626), (0.175 - t_775)), (t_775 - 0.275))), fmax(fmax(t_384, t_306), (3.0225 - (x * 8.13008)))), fmax(fmax(fmax(t_381, ((x * 8.13008) - 2.6725)), t_968), t_74)), fmax(fmax(fmax(fmax(fmax(t_16, t_968), (0.175 - t_493)), (t_493 - 0.275)), t_976), t_306)), fmax(fmax(t_223, ((x * 4.47154) - t_170)), t_324)), fmax(fmax(t_1018, t_573), (t_170 - (x * 4.47154)))), fmax(fmax(t_94, t_573), (t_995 - (x * 4.47154)))), fmax(fmax(t_523, t_324), ((x * 4.47154) - t_995))), fmax(fmax(t_223, (1.79238 - t_912)), t_440)), fmax(fmax(t_1018, t_710), (t_912 - 1.79238))), fmax(fmax(t_94, t_710), (t_912 - 1.84738))), fmax(fmax(t_523, t_440), (1.84738 - t_912))), fmax(fmax(t_223, ((x * 4.47154) - t_441)), t_648)), fmax(fmax(t_1018, t_1003), (t_441 - (x * 4.47154)))), fmax(fmax(t_94, t_1003), (t_215 - (x * 4.47154)))), fmax(fmax(t_523, t_648), ((x * 4.47154) - t_215))), fmax(fmax(t_223, (1.51738 - t_912)), t_808)), fmax(fmax(t_1018, t_87), (t_912 - 1.51738))), fmax(fmax(t_94, t_87), (t_912 - 1.57238))), fmax(fmax(t_523, t_808), (1.57238 - t_912))), fmax(t_724, fmin(fmax(fmax(t_578, ((x * 8.13008) - 6.0525)), (5.5525 - (x * 8.13008))), fmax(fmax(t_724, -fmin(fmax(fmax(t_277, ((x * 2.23577) - t_1019)), (2.92819 - t_25)), fmax(fmax(t_39, (t_25 - 2.92819)), (t_1019 - (x * 2.23577))))), (0.175 - t_723))))), fmax(fmax(t_384, t_524), (4.5525 - (x * 8.13008)))), fmax(fmax(t_382, ((x * 8.13008) - 4.2025)), t_146)), fmax(fmax(fmax(fmax(fmax(t_16, t_524), t_146), t_976), (0.175 - t_546)), (t_546 - 0.275))), fmax(fmax(-fmin(fmax(fmax((t_367 - (x * 2.27642)), ((x * 4.5122) - 2.26024)), (1.80744 - t_1014)), fmax(fmax((t_1014 - 1.80744), (2.26024 - (x * 4.5122))), ((x * 2.27642) - t_367))), (0.175 - t_178)), (t_178 - 0.275))), fmax(fmax(t_958, ((x * 8.13008) - 3.3975)), (3.2975 - (x * 8.13008)))), (sqrt((t_104 + pow(((x * 8.13008) - 3.3475), 2.0))) - 0.075)), fmax(-fmin(fmax(fmax(fmax(t_577, ((y * 8.13008) - 2.8875)), t_943), (0.355 + (x * 5.42005))), (sqrt((pow((2.885 - (y * 8.13008)), 2.0) + pow(-(0.346667 + (x * 3.61337)), 2.0))) - 0.0625)), (sqrt((pow((2.8875 - (y * 8.13008)), 2.0) + pow(t_943, 2.0))) - 0.1625))), fmax(-fmin(fmax(fmax(fmax(t_245, (2.6625 - (y * 8.13008))), t_14), -(0.68 + (x * 5.42005))), (sqrt((pow(((y * 8.13008) - 2.665), 2.0) + pow((0.343334 + (x * 3.61337)), 2.0))) - 0.0625)), (sqrt((pow(((y * 8.13008) - 2.6625), 2.0) + pow(t_14, 2.0))) - 0.1625))), fmax(fmax(t_958, t_18), -(1.22 + (x * 8.13008)))), fmax(fmax(fmax(t_16, t_976), (1.57 + (x * 8.13008))), t_565)), fmax(fmax(fmax(fmax(t_384, t_18), t_565), (0.175 - t_177)), (t_177 - 0.275))), fmax(fmax(t_642, (1.77 + (x * 8.13008))), -(1.87 + (x * 8.13008)))), fmax(fmax(t_642, (2.02 + (x * 8.13008))), -(2.12 + (x * 8.13008)))), fmax(fmax(fmax(fmax(fmax(-fmin(fmax(fmax(((0.0958748 + (x * 2.84553)) - (y * 0.813008)), (1.26444 - t_492)), ((y * 4.87805) - t_396)), fmax(fmax((t_396 - (y * 4.87805)), (t_492 - 1.26444)), ((y * 0.813008) - (0.095875 + (x * 2.84553))))), t_24), (2.35 - (y * 8.13008))), ((x * 8.13008) - 0.5475)), (0.3975 - (x * 8.13008))), (sqrt((pow(((y * 2.71003) - 0.858333), 2.0) + pow(((x * 8.13008) - 0.4725), 2.0))) - 0.075))), (sqrt((pow(t_24, 2.0) + pow(((x * 8.13008) - 0.4975), 2.0))) - 0.075)), fmax(fmax(-fmin(fmax(fmax(((y * 2.23577) - t_811), ((x * 4.5122) - 0.203962)), (0.788562 - t_1014)), fmax(fmax((t_1014 - 0.788562), (0.203962 - (x * 4.5122))), (t_811 - (y * 2.23577)))), (0.175 - t_513)), (t_513 - 0.275))), fmax(fmax(t_958, (0.3075 + (x * 8.13008))), -(0.4075 + (x * 8.13008)))), (sqrt((t_104 + pow((0.357501 + (x * 8.13008)), 2.0))) - 0.075)), fmax(fmax(t_382, (3.845 + (x * 8.13008))), -(3.945 + (x * 8.13008)))), fmax(fmax(t_383, t_230), -(4.17 + (x * 8.13008)))), fmax(fmax(t_958, (4.52 + (x * 8.13008))), t_821)), fmax(fmax(fmax(fmax(fmax(t_16, t_626), t_230), t_821), (0.175 - t_356)), (t_356 - 0.275))), fmax(t_911, fmin(fmax(fmax(t_578, (4.72 + (x * 8.13008))), -(5.22 + (x * 8.13008))), fmax(fmax(t_911, -fmin(fmax(fmax(t_277, (t_150 - (y * 1.21951))), -t_289), fmax(fmax(t_39, t_289), ((y * 1.21951) - t_150)))), (0.175 - t_910))))), fmax(fmax(t_223, (t_12 - (y * 2.03252))), t_152)), fmax(fmax(t_1018, t_372), ((y * 2.03252) - t_12))), fmax(fmax(t_94, t_372), ((y * 2.03252) - t_694))), fmax(fmax(t_523, t_152), (t_694 - (y * 2.03252)))), fmax(fmax(t_223, -t_197), t_373)), fmax(fmax(fmax(t_381, ((y * 8.13008) - 3.025)), (2.27 + (x * 8.13008))), t_69)), fmax(fmax(fmax(fmax(t_69, ((y * 8.13008) - 3.15)), (2.85 - (y * 8.13008))), (1.72 + (x * 8.13008))), fmin(fmax((0.075 - t_640), (t_640 - 0.175)), fmax((0.075 - t_641), (t_641 - 0.175))))), fmax(fmax(t_369, t_117), t_258)), fmax(fmax(t_488, t_566), t_102)), fmax(fmax(t_488, t_1018), t_857)), fmax(fmax(t_258, t_856), t_223)), fmax(fmax(t_223, t_117), t_318)), fmax(fmax(t_1018, t_566), t_568)), fmax(fmax(t_94, t_857), t_568)), fmax(fmax(t_523, t_856), t_318)), fmax(fmax(t_223, -t_121), t_267)), fmax(fmax(t_1018, t_121), t_571)), fmax(fmax(t_94, t_571), t_787)), fmax(fmax(t_523, t_267), -t_787)), fmax(fmax(fmax(t_684, -(4.725 + (x * 8.13008))), -(0.0749998 + (y * 8.13008))), (4.625 + (x * 8.13008)))), fmax((0.175 - t_761), (t_761 - 0.275))), fmax(fmax(t_685, t_442), -t_813)), fmax(fmax(t_796, t_880), t_84)), fmax(fmax(fmax(fmax(t_759, t_442), t_84), (0.175 - t_766)), (t_766 - 0.275))), fmax(fmax(t_940, -t_38), (6.175 + (x * 8.13008)))), fmax(fmax(fmax(t_684, (0.75 - (y * 8.13008))), t_582), t_38)), fmax(fmax(fmax(t_379, t_582), t_38), ((y * 8.13008) - 0.4))), fmax(fmax(fmax(fmax(t_940, t_581), -(7.175 + (x * 8.13008))), (0.175 - t_769)), (t_769 - 0.275))), fmax(fmax(fmax(t_379, t_190), t_722), -t_549)), fmax(fmax(t_685, t_144), t_227)), fmax(fmax(t_759, t_525), -(1.125 + (x * 8.13008)))), fmax(fmax(t_940, (1.475 + (x * 8.13008))), t_147)), fmax(fmax(fmax(fmax(t_796, t_525), t_147), (0.175 - t_770)), (t_770 - 0.275))), fmax(fmax(t_941, (1.825 + (x * 8.13008))), -(1.925 + (x * 8.13008)))), fmax(fmax(t_424, t_364), t_415)), fmax(fmax(fmax(fmax(t_380, t_364), t_415), (0.15 - t_696)), (t_696 - 0.25))), fmax(fmax(t_1012, t_290), -(2.975 + (x * 8.13008)))), fmax(fmax(t_685, (3.325 + (x * 8.13008))), t_937)), fmax(fmax(fmax(fmax(fmax(t_684, t_1017), t_290), t_937), (0.175 - t_765)), (t_765 - 0.275))), fmax((0.175 - t_945), (t_945 - 0.275))), fmax(fmax(t_689, ((x * 8.13008) - 5.958)), t_426)), fmax(fmax(fmax(fmax(fmax(t_68, (0.175 - t_928)), (t_928 - 0.275)), t_304), t_153), t_426)), fmax(fmax(fmax(t_388, (5.633 - (x * 8.13008))), t_687), t_153)), (sqrt((pow(((y * 8.13008) - 2.1), 2.0) + pow(((x * 8.13008) - 5.683), 2.0))) - 0.075)), fmax(fmax(fmax(t_484, ((x * 8.13008) - 5.508)), (5.408 - (x * 8.13008))), t_687)), fmax(fmax(fmax(t_484, ((x * 8.13008) - 5.258)), (5.158 - (x * 8.13008))), t_687)), fmax(fmax(fmax(((y * 8.13008) - 1.925), ((x * 8.13008) - 5.008)), t_702), t_687)), fmax(fmax(fmax(fmax(t_702, t_118), (1.75 - (y * 8.13008))), t_904), fmin(fmax((0.075 - t_496), (t_496 - 0.175)), fmax((0.075 - t_495), (t_495 - 0.175))))), fmax(fmax(fmax(fmax(fmax(t_190, t_684), t_1017), t_227), (0.175 - t_772)), (t_772 - 0.275))), fmax(t_764, fmin(fmax(fmax(fmax(t_294, t_419), t_286), t_409), fmax(fmax(t_764, -fmin(fmax(fmax(t_97, (t_79 - (y * 1.21951))), -t_186), fmax(fmax(t_729, t_186), ((y * 1.21951) - t_79)))), (0.175 - t_763))))), fmax(t_936, fmin(fmax(fmax(fmax(((y * 8.13008) - 1.715), (1.625 - (y * 8.13008))), ((x * 8.13008) - 7.058)), (6.558 - (x * 8.13008))), fmax(fmax(t_936, -fmin(fmax(fmax(((y * 5.28455) - 1.08875), ((x * 2.23577) - t_336)), (2.6547 - t_25)), fmax(fmax((t_25 - 2.6547), (t_336 - (x * 2.23577))), (1.08875 - (y * 5.28455))))), (0.175 - t_935))))), fmax(fmax(fmax(t_559, t_687), t_304), (6.308 - (x * 8.13008)))), fmax((t_931 - 0.275), (0.175 - t_931))), fmax(fmax(t_359, ((x * 4.47154) - t_1021)), t_96)), fmax(fmax(t_228, (t_1021 - (x * 4.47154))), t_673)), fmax(fmax(t_228, t_102), (t_526 - (x * 4.47154)))), fmax(fmax(t_96, ((x * 4.47154) - t_526)), t_369)), fmax(fmax(t_359, (1.4775 - t_912)), t_148)), fmax(fmax(t_673, t_357), (t_912 - 1.4775))), fmax(fmax(t_102, t_357), (t_912 - 1.5325))), fmax(fmax(t_369, t_148), (1.5325 - t_912))), fmax(fmax(t_359, ((x * 4.47154) - t_149)), t_288)), fmax(fmax(t_673, t_554), (t_149 - (x * 4.47154)))), fmax(fmax(t_102, t_554), (t_922 - (x * 4.47154)))), fmax(fmax(t_369, t_288), ((x * 4.47154) - t_922))), fmax(fmax(t_359, (1.2025 - t_912)), t_418)), fmax(fmax(t_673, t_682), (t_912 - 1.2025))), fmax(fmax(t_102, t_682), (t_912 - 1.2575))), fmax(fmax(t_369, t_418), (1.2575 - t_912))), fmax((0.175 - t_930), (t_930 - 0.275))), fmax(fmax(fmax(fmax(t_687, -fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmax(fmax(((y * 4.06504) - 1.2), ((x * 4.06504) - 2.104)), (3.054 - t_979)), fmax(fmax((t_979 - 3.054), (2.104 - (x * 4.06504))), (1.2 - (y * 4.06504)))), fmax(fmax(((x * 8.13008) - t_428), (1.8858 - t_697)), (t_817 - (x * 5.28455)))), fmax(fmax(((x * 5.28455) - t_817), (t_697 - 1.8858)), (t_428 - (x * 8.13008)))), fmax(fmax((0.351 - (y * 2.19512)), (1.2978 - (x * 2.84553))), (t_444 - 1.7433))), fmax(fmax((1.7433 - t_444), ((x * 2.84553) - 1.2978)), ((y * 2.19512) - 0.351))), fmax(fmax(((y * 3.25203) - 0.96), ((x * 4.47154) - t_353)), (2.0394 - (x * 4.47154)))), fmax(fmax(((x * 4.47154) - 2.0394), (t_353 - (x * 4.47154))), (0.96 - (y * 3.25203))))), t_1), ((x * 8.13008) - 4.108)), (3.608 - (x * 8.13008)))), fmax(fmax(t_689, ((x * 8.13008) - 3.25)), (3.15 - (x * 8.13008)))), fmax(fmax(fmax(fmax(t_689, t_977), (4.5 - (x * 11.6144))), (0.45 - sqrt((t_269 + pow(((x * 14.518) - 6.3125), 2.0))))), (sqrt((t_269 + pow(t_977, 2.0))) - 0.55))), fmax(fmax(fmax(t_153, t_124), t_173), (1.85 - (y * 8.13008)))), fmax(fmax(fmax(t_687, t_124), t_575), t_173)), fmax(fmax(fmax(fmax(t_688, t_123), -(3.275 + (x * 8.13008))), (0.175 - t_929)), (t_929 - 0.275))), fmax(fmax(fmax(t_1, (2.3 - (y * 8.13008))), t_807), t_1004)), fmax(fmax(fmax(t_687, t_575), t_807), t_1004)), fmax(fmax(fmax(t_481, t_687), t_1), -(3.9 + (x * 8.13008)))), fmax(fmax(t_359, (t_718 - (y * 2.03252))), t_1010)), fmax(fmax(t_673, t_1009), ((y * 2.03252) - t_718))), fmax(fmax(t_102, t_1009), ((y * 2.03252) - t_447))), fmax(fmax(t_369, t_1010), (t_447 - (y * 2.03252)))), fmax(fmax(t_359, -t_40), t_184)), fmax(fmax(t_673, t_40), t_449)), fmax(fmax(t_102, t_449), t_651)), fmax(fmax(t_369, t_184), -t_651)), fmax(fmax(t_359, (t_187 - (y * 2.03252))), t_355)), fmax(fmax(t_673, t_594), ((y * 2.03252) - t_187))), fmax(fmax(t_102, t_594), ((y * 2.03252) - t_6))), fmax(fmax(t_369, t_355), (t_6 - (y * 2.03252)))), fmax(fmax(fmax((1.65 - (y * 8.13008)), (0.300001 + (x * 8.13008))), t_1), -(0.400001 + (x * 8.13008)))), fmax(fmax(fmax(t_464, t_118), (1.95 - (y * 8.13008))), t_100)), fmax(fmax(fmax(fmax(fmax(t_464, t_687), t_100), t_556), (0.15 - t_676)), (t_676 - 0.25))), fmax(fmax(fmax(fmax(fmax(-fmin(fmax(fmax((t_558 - (y * 0.813008)), (0.281875 - t_492)), ((y * 4.87805) - t_938)), fmax(fmax((t_938 - (y * 4.87805)), (t_492 - 0.281875)), ((y * 0.813008) - t_558))), t_296), (1.25 - (y * 8.13008))), (1.375 + (x * 8.13008))), -(1.525 + (x * 8.13008))), (sqrt((pow(((y * 2.71003) - 0.491667), 2.0) + pow((1.45 + (x * 8.13008)), 2.0))) - 0.075))), (sqrt((pow(t_296, 2.0) + pow((1.425 + (x * 8.13008)), 2.0))) - 0.075)), fmax((0.175 - t_934), (t_934 - 0.275))), fmax(fmax(t_688, -t_173), (2.275 + (x * 8.13008)))), fmax(fmax(fmax(fmax(fmax((t_754 - 0.275), t_206), t_305), (0.175 - t_754)), t_486), t_627)), fmax(fmax(fmax(t_19, ((x * 8.13008) - 1.556)), (1.456 - (x * 8.13008))), t_259)), fmax((0.175 - t_436), (t_436 - 0.275))), fmax(fmax(fmax(fmax(fmax(-fmin(fmax(fmax((t_497 - (y * 0.813008)), (2.27973 - t_492)), ((y * 4.87805) - t_868)), fmax(fmax((t_868 - (y * 4.87805)), (t_492 - 2.27973)), ((y * 0.813008) - t_497))), t_271), (4.55 - (y * 8.13008))), ((x * 8.13008) - 0.171)), (0.0209999 - (x * 8.13008))), (sqrt((pow(((y * 2.71003) - 1.59167), 2.0) + pow(((x * 8.13008) - 0.0959997), 2.0))) - 0.075))), (sqrt((pow(t_271, 2.0) + pow(((x * 8.13008) - 0.121), 2.0))) - 0.075)), fmax(fmax(t_879, t_998), (3.65055 - t_912))), fmax(fmax(((x * 4.47154) - t_330), t_505), t_649)), fmax(fmax(t_1005, (t_330 - (x * 4.47154))), t_86)), fmax(fmax(t_1005, ((0.970551 + (y * 2.03252)) - (x * 4.47154))), t_404)), fmax(fmax(t_505, ((x * 4.47154) - (0.970552 + (y * 2.03252)))), t_879)), fmax(fmax((3.32055 - t_912), t_88), t_649)), fmax(fmax(t_281, (t_912 - 3.32055)), t_86)), fmax(fmax(t_281, (t_912 - 3.37555)), t_404)), fmax(fmax(t_88, (3.37555 - t_912)), t_879)), fmax(fmax(fmax((2.751 - (x * 8.13008)), ((x * 8.13008) - 2.851)), t_283), t_259)), fmax(fmax(fmax(t_592, t_652), t_814), t_486)), fmax(fmax(fmax(t_652, t_814), t_46), t_259)), fmax(fmax(fmax(fmax(fmax((1.851 - (x * 8.13008)), ((x * 8.13008) - 2.576)), (0.175 - t_661)), (t_661 - 0.275)), t_283), t_259)), fmax(fmax(fmax(t_206, (2.126 - (x * 8.13008))), t_233), t_259)), fmax(fmax(fmax(((x * 8.13008) - 1.776), t_305), t_259), t_486)), fmax(fmax(fmax((4.6 - (y * 8.13008)), (1.862 + (x * 8.13008))), -(1.962 + (x * 8.13008))), t_486)), (sqrt((pow(((y * 8.13008) - 5.4), 2.0) + pow((1.912 + (x * 8.13008)), 2.0))) - 0.075)), fmax(fmax(fmax(t_923, -(2.762 + (x * 8.13008))), t_283), t_259)), fmax(fmax(fmax(t_592, t_370), t_924), t_486)), fmax(fmax(fmax(t_46, t_370), t_924), t_259)), fmax(fmax(fmax(fmax(fmax((1.762 + (x * 8.13008)), -t_370), (0.175 - t_371)), (t_371 - 0.275)), t_283), t_259)), fmax(fmax(fmax(t_19, (2.882 + (x * 8.13008))), -(2.982 + (x * 8.13008))), t_259)), fmax((0.175 - t_199), (t_199 - 0.275))), fmax(t_753, fmin(fmax(fmax(fmax((0.0790005 + (x * 8.13008)), -(0.579001 + (x * 8.13008))), t_612), t_755), fmax(fmax(t_753, -fmin(fmax(fmax((t_252 - (y * 1.21951)), (2.34202 - t_25)), t_487), fmax(fmax((t_25 - 2.34202), ((y * 1.21951) - t_252)), t_967))), (0.175 - t_752))))), fmax(fmax(fmax((0.987 + (x * 8.13008)), -(1.087 + (x * 8.13008))), t_259), t_486)), fmax(fmax(fmax(fmax(fmax(t_865, -(1.55286 + (x * 11.6144))), (0.45 - sqrt((t_314 + pow((1.25357 + (x * 14.518)), 2.0))))), (sqrt((t_314 + pow(t_865, 2.0))) - 0.55)), t_259), t_486)), fmax(fmax(fmax(t_122, -(1.287 + (x * 8.13008))), t_259), t_486)), fmax(fmax(fmax((1.637 + (x * 8.13008)), t_708), t_997), t_486)), fmax(fmax(fmax(fmax(fmax(t_122, t_708), (0.175 - t_326)), (t_326 - 0.275)), t_259), t_157)), fmax(fmax(fmax(fmax(fmax((4.325 - (y * 8.13008)), (1.587 + (x * 8.13008))), -t_331), (0.175 - t_716)), (t_716 - 0.275)), t_714)), fmax(fmax(fmax(t_132, t_216), t_334), t_445)), fmax(fmax(fmax(t_216, ((x * 8.13008) - 6.3305)), (6.2305 - (x * 8.13008))), t_89)), fmax(fmax(-fmin(fmax(fmax(((y * 2.23577) - t_518), ((x * 4.5122) - 2.94178)), (3.05264 - t_1014)), fmax(fmax((t_1014 - 3.05264), (2.94178 - (x * 4.5122))), (t_518 - (y * 2.23577)))), (0.175 - t_461)), (t_461 - 0.275))), fmax(fmax(t_1022, ((x * 8.13008) - 4.6255)), (4.5255 - (x * 8.13008)))), (sqrt((t_411 + pow(((x * 8.13008) - 4.5755), 2.0))) - 0.075)), fmax(fmax(t_915, t_56), (4.3005 - (x * 8.13008)))), fmax((0.175 - t_468), (t_468 - 0.275))), fmax(fmax(fmax(fmax(fmax(t_56, t_101), (3.8505 - (x * 8.13008))), (0.175 - t_474)), (t_474 - 0.275)), t_283)), fmax(t_732, fmin(fmax(fmax(fmax((4.242 + (x * 8.13008)), -(4.742 + (x * 8.13008))), t_612), t_755), fmax(fmax(t_732, -fmin(fmax(fmax((t_105 - (y * 1.21951)), (1.1972 - t_25)), t_487), fmax(fmax((t_25 - 1.1972), ((y * 1.21951) - t_105)), t_967))), (0.175 - t_731))))), fmax(fmax(fmax(t_143, -(5.25 + (x * 8.13008))), t_259), t_486)), fmax(fmax(fmax(fmax(fmax(t_244, -(7.5 + (x * 11.6144))), (0.45 - sqrt((t_314 + pow((8.6875 + (x * 14.518)), 2.0))))), (sqrt((t_314 + pow(t_244, 2.0))) - 0.55)), t_259), t_486)), fmax(t_301, fmin(fmax(fmax(fmax((5.35 + (x * 8.13008)), -(5.85 + (x * 8.13008))), t_612), t_755), fmax(fmax(t_301, -fmin(fmax(fmax((t_564 - (y * 1.21951)), (0.8925 - t_25)), t_487), fmax(fmax((t_25 - 0.8925), ((y * 1.21951) - t_564)), t_967))), (0.175 - t_300))))), fmax(fmax(fmax(t_311, -(6.15 + (x * 8.13008))), t_259), t_157)), fmax(fmax(t_779, t_283), t_259)), fmax(fmax(fmax(fmax(fmax(t_182, t_311), (0.175 - t_655)), (t_655 - 0.275)), t_997), t_486)), fmax(fmax(fmax(t_89, t_570), t_334), t_445)), fmax(fmax(t_915, t_782), (0.8705 - (x * 8.13008)))), fmax((0.175 - t_459), (t_459 - 0.275))), fmax(fmax(fmax(fmax(fmax(t_101, t_782), (0.4205 - (x * 8.13008))), (0.175 - t_473)), (t_473 - 0.275)), t_283)), fmax(fmax(t_1022, t_327), (0.220499 - (x * 8.13008)))), fmax(fmax(fmax(t_3, (0.129501 + (x * 8.13008))), t_999), t_126)), fmax(fmax(fmax(fmax(t_455, t_327), t_999), (0.175 - t_506)), (t_506 - 0.275))), fmax((0.175 - t_457), (t_457 - 0.275))), fmax(fmax(t_1022, (1.2375 + (x * 8.13008))), -(1.3375 + (x * 8.13008)))), fmax(fmax(fmax(fmax(t_1022, t_133), -(1.91072 + (x * 11.6144))), (0.45 - sqrt((t_587 + pow((1.70089 + (x * 14.518)), 2.0))))), (sqrt((t_587 + pow(t_133, 2.0))) - 0.55))), fmax(fmax(t_350, ((x * 8.13008) - 3.7305)), (3.6305 - (x * 8.13008)))), fmax((0.175 - t_726), (t_726 - 0.275))), fmax(fmax(t_350, ((x * 8.13008) - 3.0705)), (2.9705 - (x * 8.13008)))), fmax(fmax(t_350, ((x * 8.13008) - 2.8205)), (2.7205 - (x * 8.13008)))), fmax(fmax(fmax(t_216, ((y * 8.13008) - 6.325)), ((x * 8.13008) - 2.5705)), t_189)), fmax(fmax(fmax(fmax(t_189, t_540), (6.15 - (y * 8.13008))), ((x * 8.13008) - 3.1205)), fmin(fmax((0.075 - t_349), (t_349 - 0.175)), fmax((0.075 - t_548), (t_548 - 0.175))))), fmax(fmax(t_455, t_103), (1.5205 - (x * 8.13008)))), fmax(fmax(t_422, ((x * 8.13008) - 1.1705)), t_603)), fmax(fmax(fmax(fmax(fmax(t_3, t_103), t_603), t_126), (0.175 - t_458)), (t_458 - 0.275))), fmax(fmin(fmax(fmax(fmax(t_850, ((x * 8.13008) - 6.4085)), (5.9085 - (x * 8.13008))), t_154), fmax(fmax(-fmin(fmax(fmax(t_610, ((x * 2.23577) - t_852)), (3.57609 - t_25)), fmax(fmax((t_25 - 3.57609), (t_852 - (x * 2.23577))), t_302)), (0.175 - t_622)), t_959)), t_959)), fmax(fmax(t_254, ((x * 8.13008) - 5.7585)), (5.6585 - (x * 8.13008)))), fmax(fmax(t_254, ((x * 8.13008) - 5.5085)), (5.4085 - (x * 8.13008)))), fmax(fmax(fmax(t_253, ((y * 8.13008) - 4.125)), ((x * 8.13008) - 5.2585)), t_312)), fmax(fmax(fmax(fmax(t_312, ((y * 8.13008) - 4.25)), (3.95 - (y * 8.13008))), ((x * 8.13008) - 5.8085)), fmin(fmax((0.075 - t_266), (t_266 - 0.175)), fmax((0.075 - t_707), (t_707 - 0.175))))), fmax(fmax(t_1018, t_197), t_374)), fmax(fmax(t_94, t_374), t_392)), fmax(fmax(t_523, t_373), -t_392)), fmax(fmax(t_642, (6.09 + (x * 8.13008))), -(6.19 + (x * 8.13008)))), fmax((0.175 - t_328), (t_328 - 0.275))), fmax(t_1001, fmin(fmax(fmax(t_578, t_242), -t_144), fmax(fmax(t_1001, -fmin(fmax(fmax(t_277, (t_717 - (y * 1.21951))), -t_1007), fmax(fmax(t_39, t_1007), ((y * 1.21951) - t_717)))), (0.175 - t_1000))))), fmax(fmax(fmax(t_294, t_381), t_175), -(7.55 + (x * 8.13008)))), fmax(fmax(t_382, (7.9 + (x * 8.13008))), t_33)), fmax(fmax(fmax(fmax(fmax(t_294, t_16), t_976), t_33), (0.175 - t_514)), (t_514 - 0.275))), fmax(fmax(fmax(fmax(t_715, (2.121 - (x * 8.13008))), ((x * 8.13008) - 2.846)), (0.175 - t_621)), (t_621 - 0.275))), fmax(t_816, fmin(fmax(fmax(t_851, ((x * 8.13008) - 2.496)), (1.996 - (x * 8.13008))), fmax(fmax(t_816, -fmin(fmax(fmax(t_610, ((x * 2.23577) - t_51)), (2.50015 - t_25)), fmax(fmax(t_302, (t_25 - 2.50015)), (t_51 - (x * 2.23577))))), (0.175 - t_815))))), fmax(fmax(fmax(t_253, ((x * 8.13008) - 1.588)), (1.488 - (x * 8.13008))), t_59)), fmax(fmax(fmax(fmax(fmax(t_253, t_416), (2.12571 - (x * 11.6144))), (0.45 - sqrt((t_925 + pow(((x * 14.518) - 3.34464), 2.0))))), (sqrt((t_925 + pow(t_416, 2.0))) - 0.55)), t_59)), fmax(fmax(fmax(t_253, ((x * 8.13008) - 1.363)), (1.263 - (x * 8.13008))), t_59)), (sqrt((pow(((y * 8.13008) - 4.3), 2.0) + pow(((x * 8.13008) - 1.313), 2.0))) - 0.075)), fmax(fmax(fmax(t_253, t_609), (1.038 - (x * 8.13008))), t_59)), fmax((t_616 - 0.275), (0.175 - t_616))), fmax(-fmin(fmax(fmax(fmax(t_850, ((y * 8.13008) - 3.9875)), t_955), ((x * 5.42005) - 2.939)), (sqrt((pow((3.985 - (y * 8.13008)), 2.0) + pow((1.84933 - (x * 3.61337)), 2.0))) - 0.0625)), (sqrt((pow((3.9875 - (y * 8.13008)), 2.0) + pow(t_955, 2.0))) - 0.1625))), fmax(-fmin(fmax(fmax(fmax(((y * 8.13008) - 3.925), (3.7625 - (y * 8.13008))), t_700), (2.614 - (x * 5.42005))), (sqrt((pow(((y * 8.13008) - 3.765), 2.0) + pow(((x * 3.61337) - 1.85267), 2.0))) - 0.0625)), (sqrt((pow(((y * 8.13008) - 3.7625), 2.0) + pow(t_700, 2.0))) - 0.1625))), fmax(fmax(t_715, (3.021 - (x * 8.13008))), ((x * 8.13008) - 3.121))), fmax(fmax(fmax(t_59, (4.05 - (y * 8.13008))), t_522), t_499)), fmax(fmax(fmax(t_253, t_522), t_499), t_783)), fmax(fmax(fmax(fmax(t_255, t_212), -(1.67143 + (x * 11.6144))), (0.45 - sqrt((t_925 + pow((1.40179 + (x * 14.518)), 2.0))))), (sqrt((t_925 + pow(t_212, 2.0))) - 0.55))), fmax(t_620, fmin(fmax(fmax(t_851, (1.97 + (x * 8.13008))), -(2.47 + (x * 8.13008))), fmax(fmax(t_620, -fmin(fmax(fmax(t_610, (t_507 - (y * 1.21951))), (1.272 - t_25)), fmax(fmax(t_302, (t_25 - 1.272)), ((y * 1.21951) - t_507)))), (0.175 - t_619))))), fmax(fmax(t_217, (t_332 - (y * 2.03252))), t_512)), fmax(fmax(t_809, ((y * 2.03252) - t_332)), t_1011)), fmax(fmax(t_809, t_134), ((y * 2.03252) - t_221))), fmax(fmax(t_512, (t_221 - (y * 2.03252))), t_515)), fmax(fmax(t_217, -t_727), t_41)), fmax(fmax(t_1011, t_727), t_285)), fmax(fmax(t_134, t_285), t_452)), fmax(fmax(t_515, t_41), -t_452)), fmax(fmax(t_254, (3.34 + (x * 8.13008))), -(3.44 + (x * 8.13008)))), fmax(fmax(fmax(t_412, ((x * 8.13008) - 0.688)), t_595), t_59)), fmax(fmax(fmax(fmax(t_614, t_609), t_595), (0.175 - t_617)), (t_617 - 0.275))), fmax(fmax(fmax(t_59, (3.225 - (y * 8.13008))), ((x * 8.13008) - 0.487999)), (0.387999 - (x * 8.13008)))), fmax((0.175 - t_618), (t_618 - 0.275))), fmax(t_678, fmin(fmax(fmax(t_851, (0.162001 + (x * 8.13008))), -(0.662001 + (x * 8.13008))), fmax(fmax(t_678, -fmin(fmax(fmax(t_610, (t_13 - (y * 1.21951))), (1.7692 - t_25)), fmax(fmax(t_302, (t_25 - 1.7692)), ((y * 1.21951) - t_13)))), (0.175 - t_677))))), fmax(fmax(t_255, (1.07 + (x * 8.13008))), -(1.17 + (x * 8.13008)))), fmax(fmin(fmax(fmax(-fmin(fmax(fmax(t_487, ((x * 2.23577) - t_479)), (4.04153 - t_25)), fmax(fmax((t_25 - 4.04153), (t_479 - (x * 2.23577))), t_967)), (0.175 - t_159)), t_386), fmax(fmax(fmax(t_612, t_755), ((x * 8.13008) - 6.101)), (5.601 - (x * 8.13008)))), t_386)), fmax(fmax(fmax(t_112, (5.301 - (x * 8.13008))), t_259), t_157)), fmax(fmax(fmax(t_283, ((x * 8.13008) - 4.951)), t_629), t_259)), fmax(fmax(fmax(fmax(fmax(t_112, t_629), t_997), (0.175 - t_166)), (t_166 - 0.275)), t_486)), fmax(fmax(t_649, ((x * 4.47154) - t_703)), t_975)), fmax(fmax(t_974, (t_703 - (x * 4.47154))), t_86)), fmax(fmax(t_974, t_404), (t_438 - (x * 4.47154)))), fmax(fmax(t_975, ((x * 4.47154) - t_438)), t_879)), fmax(fmax(t_649, (3.59555 - t_912)), t_998)), fmax(fmax(t_86, t_172), (t_912 - 3.59555))), fmax(fmax(t_404, t_172), (t_912 - 3.65055))), fmax((0.175 - t_623), (t_623 - 0.275))), fmax(fmax(t_614, t_174), -(4.15 + (x * 8.13008)))), fmax(fmax(fmax(t_179, t_274), t_253), t_714)), fmax(fmax(fmax(fmax(fmax(t_274, t_412), t_59), t_174), (0.175 - t_1002)), (t_1002 - 0.275))), fmax(fmax(fmax(t_714, (4.5 - (y * 8.13008))), t_443), t_508)), fmax(fmax(fmax(t_253, t_783), t_443), t_508)), fmax(fmax(t_715, t_45), -(5.7 + (x * 8.13008)))), fmax(fmax(fmax(t_233, t_259), t_276), (6.651 - (x * 8.13008)))), fmax(fmax(fmax(t_259, t_486), ((x * 8.13008) - 6.30101)), t_900)), fmax(fmax(fmax(fmax(fmax(t_276, t_486), t_900), t_627), (0.175 - t_339)), (t_339 - 0.275))), fmax(fmax(fmax(fmax(t_127, t_92), t_136), (0.175 - t_460)), (t_460 - 0.275))), fmax(fmax(t_588, (3.825 + (x * 8.13008))), -(3.925 + (x * 8.13008)))), fmax(fmax(t_541, t_322), t_142)), fmax(fmax(fmax(fmax(fmax(t_216, t_322), t_142), t_596), (0.15 - t_918)), (t_918 - 0.25))), fmax(fmax(t_588, (5.025 + (x * 8.13008))), -(5.125 + (x * 8.13008)))), fmax(fmax(t_541, t_542), t_881)), fmax(fmax(fmax(fmax(fmax(t_216, t_596), t_542), t_881), (0.15 - t_917)), (t_917 - 0.25))), fmax(fmax(t_417, t_3), -(5.475 + (x * 8.13008)))), fmax(fmax(t_127, (5.825 + (x * 8.13008))), t_11)), fmax(fmax(fmax(fmax(t_417, t_454), t_11), (0.175 - t_462)), (t_462 - 0.275))), fmax(fmax(t_779, t_216), t_89)), fmax(fmax(fmax(t_519, t_89), t_570), t_107)), fmax(fmax(fmax(t_519, t_3), t_107), (6.25 - (y * 8.13008)))), fmax(fmax(fmax(t_519, t_132), t_216), t_107)), fmax(-fmin(fmax(fmax(fmax((6.025 - (y * 8.13008)), ((y * 8.13008) - 6.1875)), t_202), (1.425 + (x * 5.42005))), (sqrt((pow((6.185 - (y * 8.13008)), 2.0) + pow(-(1.06 + (x * 3.61337)), 2.0))) - 0.0625)), (sqrt((pow((6.1875 - (y * 8.13008)), 2.0) + pow(t_202, 2.0))) - 0.1625))), fmax(-fmin(fmax(fmax(fmax(((y * 8.13008) - 6.125), (5.9625 - (y * 8.13008))), t_201), -(1.75 + (x * 5.42005))), (sqrt((pow(((y * 8.13008) - 5.965), 2.0) + pow((1.05667 + (x * 3.61337)), 2.0))) - 0.0625)), (sqrt((pow(((y * 8.13008) - 5.9625), 2.0) + pow(t_201, 2.0))) - 0.1625))), fmax(fmax(t_1022, (2.75 + (x * 8.13008))), -(2.85 + (x * 8.13008)))), (sqrt((t_411 + pow((2.8 + (x * 8.13008)), 2.0))) - 0.075)), fmax(fmax(t_455, t_92), -(3.125 + (x * 8.13008)))), fmax(fmax(t_422, (3.475 + (x * 8.13008))), t_136)), fmax(fmax(fmax(fmax(t_45, t_216), t_89), -t_107), fmin(fmax((0.175 - t_870), (t_870 - 0.275)), fmax((0.175 - t_214), (t_214 - 0.275))))); }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8) :: t_0 real(8) :: t_1 real(8) :: t_10 real(8) :: t_100 real(8) :: t_1000 real(8) :: t_1001 real(8) :: t_1002 real(8) :: t_1003 real(8) :: t_1004 real(8) :: t_1005 real(8) :: t_1006 real(8) :: t_1007 real(8) :: t_1008 real(8) :: t_1009 real(8) :: t_101 real(8) :: t_1010 real(8) :: t_1011 real(8) :: t_1012 real(8) :: t_1013 real(8) :: t_1014 real(8) :: t_1015 real(8) :: t_1016 real(8) :: t_1017 real(8) :: t_1018 real(8) :: t_1019 real(8) :: t_102 real(8) :: t_1020 real(8) :: t_1021 real(8) :: t_1022 real(8) :: t_103 real(8) :: t_104 real(8) :: t_105 real(8) :: t_106 real(8) :: t_107 real(8) :: t_108 real(8) :: t_109 real(8) :: t_11 real(8) :: t_110 real(8) :: t_111 real(8) :: t_112 real(8) :: t_113 real(8) :: t_114 real(8) :: t_115 real(8) :: t_116 real(8) :: t_117 real(8) :: t_118 real(8) :: t_119 real(8) :: t_12 real(8) :: t_120 real(8) :: t_121 real(8) :: t_122 real(8) :: t_123 real(8) :: t_124 real(8) :: t_125 real(8) :: t_126 real(8) :: t_127 real(8) :: t_128 real(8) :: t_129 real(8) :: t_13 real(8) :: t_130 real(8) :: t_131 real(8) :: t_132 real(8) :: t_133 real(8) :: t_134 real(8) :: t_135 real(8) :: t_136 real(8) :: t_137 real(8) :: t_138 real(8) :: t_139 real(8) :: t_14 real(8) :: t_140 real(8) :: t_141 real(8) :: t_142 real(8) :: t_143 real(8) :: t_144 real(8) :: t_145 real(8) :: t_146 real(8) :: t_147 real(8) :: t_148 real(8) :: t_149 real(8) :: t_15 real(8) :: t_150 real(8) :: t_151 real(8) :: t_152 real(8) :: t_153 real(8) :: t_154 real(8) :: t_155 real(8) :: t_156 real(8) :: t_157 real(8) :: t_158 real(8) :: t_159 real(8) :: t_16 real(8) :: t_160 real(8) :: t_161 real(8) :: t_162 real(8) :: t_163 real(8) :: t_164 real(8) :: t_165 real(8) :: t_166 real(8) :: t_167 real(8) :: t_168 real(8) :: t_169 real(8) :: t_17 real(8) :: t_170 real(8) :: t_171 real(8) :: t_172 real(8) :: t_173 real(8) :: t_174 real(8) :: t_175 real(8) :: t_176 real(8) :: t_177 real(8) :: t_178 real(8) :: t_179 real(8) :: t_18 real(8) :: t_180 real(8) :: t_181 real(8) :: t_182 real(8) :: t_183 real(8) :: t_184 real(8) :: t_185 real(8) :: t_186 real(8) :: t_187 real(8) :: t_188 real(8) :: t_189 real(8) :: t_19 real(8) :: t_190 real(8) :: t_191 real(8) :: t_192 real(8) :: t_193 real(8) :: t_194 real(8) :: t_195 real(8) :: t_196 real(8) :: t_197 real(8) :: t_198 real(8) :: t_199 real(8) :: t_2 real(8) :: t_20 real(8) :: t_200 real(8) :: t_201 real(8) :: t_202 real(8) :: t_203 real(8) :: t_204 real(8) :: t_205 real(8) :: t_206 real(8) :: t_207 real(8) :: t_208 real(8) :: t_209 real(8) :: t_21 real(8) :: t_210 real(8) :: t_211 real(8) :: t_212 real(8) :: t_213 real(8) :: t_214 real(8) :: t_215 real(8) :: t_216 real(8) :: t_217 real(8) :: t_218 real(8) :: t_219 real(8) :: t_22 real(8) :: t_220 real(8) :: t_221 real(8) :: t_222 real(8) :: t_223 real(8) :: t_224 real(8) :: t_225 real(8) :: t_226 real(8) :: t_227 real(8) :: t_228 real(8) :: t_229 real(8) :: t_23 real(8) :: t_230 real(8) :: t_231 real(8) :: t_232 real(8) :: t_233 real(8) :: t_234 real(8) :: t_235 real(8) :: t_236 real(8) :: t_237 real(8) :: t_238 real(8) :: t_239 real(8) :: t_24 real(8) :: t_240 real(8) :: t_241 real(8) :: t_242 real(8) :: t_243 real(8) :: t_244 real(8) :: t_245 real(8) :: t_246 real(8) :: t_247 real(8) :: t_248 real(8) :: t_249 real(8) :: t_25 real(8) :: t_250 real(8) :: t_251 real(8) :: t_252 real(8) :: t_253 real(8) :: t_254 real(8) :: t_255 real(8) :: t_256 real(8) :: t_257 real(8) :: t_258 real(8) :: t_259 real(8) :: t_26 real(8) :: t_260 real(8) :: t_261 real(8) :: t_262 real(8) :: t_263 real(8) :: t_264 real(8) :: t_265 real(8) :: t_266 real(8) :: t_267 real(8) :: t_268 real(8) :: t_269 real(8) :: t_27 real(8) :: t_270 real(8) :: t_271 real(8) :: t_272 real(8) :: t_273 real(8) :: t_274 real(8) :: t_275 real(8) :: t_276 real(8) :: t_277 real(8) :: t_278 real(8) :: t_279 real(8) :: t_28 real(8) :: t_280 real(8) :: t_281 real(8) :: t_282 real(8) :: t_283 real(8) :: t_284 real(8) :: t_285 real(8) :: t_286 real(8) :: t_287 real(8) :: t_288 real(8) :: t_289 real(8) :: t_29 real(8) :: t_290 real(8) :: t_291 real(8) :: t_292 real(8) :: t_293 real(8) :: t_294 real(8) :: t_295 real(8) :: t_296 real(8) :: t_297 real(8) :: t_298 real(8) :: t_299 real(8) :: t_3 real(8) :: t_30 real(8) :: t_300 real(8) :: t_301 real(8) :: t_302 real(8) :: t_303 real(8) :: t_304 real(8) :: t_305 real(8) :: t_306 real(8) :: t_307 real(8) :: t_308 real(8) :: t_309 real(8) :: t_31 real(8) :: t_310 real(8) :: t_311 real(8) :: t_312 real(8) :: t_313 real(8) :: t_314 real(8) :: t_315 real(8) :: t_316 real(8) :: t_317 real(8) :: t_318 real(8) :: t_319 real(8) :: t_32 real(8) :: t_320 real(8) :: t_321 real(8) :: t_322 real(8) :: t_323 real(8) :: t_324 real(8) :: t_325 real(8) :: t_326 real(8) :: t_327 real(8) :: t_328 real(8) :: t_329 real(8) :: t_33 real(8) :: t_330 real(8) :: t_331 real(8) :: t_332 real(8) :: t_333 real(8) :: t_334 real(8) :: t_335 real(8) :: t_336 real(8) :: t_337 real(8) :: t_338 real(8) :: t_339 real(8) :: t_34 real(8) :: t_340 real(8) :: t_341 real(8) :: t_342 real(8) :: t_343 real(8) :: t_344 real(8) :: t_345 real(8) :: t_346 real(8) :: t_347 real(8) :: t_348 real(8) :: t_349 real(8) :: t_35 real(8) :: t_350 real(8) :: t_351 real(8) :: t_352 real(8) :: t_353 real(8) :: t_354 real(8) :: t_355 real(8) :: t_356 real(8) :: t_357 real(8) :: t_358 real(8) :: t_359 real(8) :: t_36 real(8) :: t_360 real(8) :: t_361 real(8) :: t_362 real(8) :: t_363 real(8) :: t_364 real(8) :: t_365 real(8) :: t_366 real(8) :: t_367 real(8) :: t_368 real(8) :: t_369 real(8) :: t_37 real(8) :: t_370 real(8) :: t_371 real(8) :: t_372 real(8) :: t_373 real(8) :: t_374 real(8) :: t_375 real(8) :: t_376 real(8) :: t_377 real(8) :: t_378 real(8) :: t_379 real(8) :: t_38 real(8) :: t_380 real(8) :: t_381 real(8) :: t_382 real(8) :: t_383 real(8) :: t_384 real(8) :: t_385 real(8) :: t_386 real(8) :: t_387 real(8) :: t_388 real(8) :: t_389 real(8) :: t_39 real(8) :: t_390 real(8) :: t_391 real(8) :: t_392 real(8) :: t_393 real(8) :: t_394 real(8) :: t_395 real(8) :: t_396 real(8) :: t_397 real(8) :: t_398 real(8) :: t_399 real(8) :: t_4 real(8) :: t_40 real(8) :: t_400 real(8) :: t_401 real(8) :: t_402 real(8) :: t_403 real(8) :: t_404 real(8) :: t_405 real(8) :: t_406 real(8) :: t_407 real(8) :: t_408 real(8) :: t_409 real(8) :: t_41 real(8) :: t_410 real(8) :: t_411 real(8) :: t_412 real(8) :: t_413 real(8) :: t_414 real(8) :: t_415 real(8) :: t_416 real(8) :: t_417 real(8) :: t_418 real(8) :: t_419 real(8) :: t_42 real(8) :: t_420 real(8) :: t_421 real(8) :: t_422 real(8) :: t_423 real(8) :: t_424 real(8) :: t_425 real(8) :: t_426 real(8) :: t_427 real(8) :: t_428 real(8) :: t_429 real(8) :: t_43 real(8) :: t_430 real(8) :: t_431 real(8) :: t_432 real(8) :: t_433 real(8) :: t_434 real(8) :: t_435 real(8) :: t_436 real(8) :: t_437 real(8) :: t_438 real(8) :: t_439 real(8) :: t_44 real(8) :: t_440 real(8) :: t_441 real(8) :: t_442 real(8) :: t_443 real(8) :: t_444 real(8) :: t_445 real(8) :: t_446 real(8) :: t_447 real(8) :: t_448 real(8) :: t_449 real(8) :: t_45 real(8) :: t_450 real(8) :: t_451 real(8) :: t_452 real(8) :: t_453 real(8) :: t_454 real(8) :: t_455 real(8) :: t_456 real(8) :: t_457 real(8) :: t_458 real(8) :: t_459 real(8) :: t_46 real(8) :: t_460 real(8) :: t_461 real(8) :: t_462 real(8) :: t_463 real(8) :: t_464 real(8) :: t_465 real(8) :: t_466 real(8) :: t_467 real(8) :: t_468 real(8) :: t_469 real(8) :: t_47 real(8) :: t_470 real(8) :: t_471 real(8) :: t_472 real(8) :: t_473 real(8) :: t_474 real(8) :: t_475 real(8) :: t_476 real(8) :: t_477 real(8) :: t_478 real(8) :: t_479 real(8) :: t_48 real(8) :: t_480 real(8) :: t_481 real(8) :: t_482 real(8) :: t_483 real(8) :: t_484 real(8) :: t_485 real(8) :: t_486 real(8) :: t_487 real(8) :: t_488 real(8) :: t_489 real(8) :: t_49 real(8) :: t_490 real(8) :: t_491 real(8) :: t_492 real(8) :: t_493 real(8) :: t_494 real(8) :: t_495 real(8) :: t_496 real(8) :: t_497 real(8) :: t_498 real(8) :: t_499 real(8) :: t_5 real(8) :: t_50 real(8) :: t_500 real(8) :: t_501 real(8) :: t_502 real(8) :: t_503 real(8) :: t_504 real(8) :: t_505 real(8) :: t_506 real(8) :: t_507 real(8) :: t_508 real(8) :: t_509 real(8) :: t_51 real(8) :: t_510 real(8) :: t_511 real(8) :: t_512 real(8) :: t_513 real(8) :: t_514 real(8) :: t_515 real(8) :: t_516 real(8) :: t_517 real(8) :: t_518 real(8) :: t_519 real(8) :: t_52 real(8) :: t_520 real(8) :: t_521 real(8) :: t_522 real(8) :: t_523 real(8) :: t_524 real(8) :: t_525 real(8) :: t_526 real(8) :: t_527 real(8) :: t_528 real(8) :: t_529 real(8) :: t_53 real(8) :: t_530 real(8) :: t_531 real(8) :: t_532 real(8) :: t_533 real(8) :: t_534 real(8) :: t_535 real(8) :: t_536 real(8) :: t_537 real(8) :: t_538 real(8) :: t_539 real(8) :: t_54 real(8) :: t_540 real(8) :: t_541 real(8) :: t_542 real(8) :: t_543 real(8) :: t_544 real(8) :: t_545 real(8) :: t_546 real(8) :: t_547 real(8) :: t_548 real(8) :: t_549 real(8) :: t_55 real(8) :: t_550 real(8) :: t_551 real(8) :: t_552 real(8) :: t_553 real(8) :: t_554 real(8) :: t_555 real(8) :: t_556 real(8) :: t_557 real(8) :: t_558 real(8) :: t_559 real(8) :: t_56 real(8) :: t_560 real(8) :: t_561 real(8) :: t_562 real(8) :: t_563 real(8) :: t_564 real(8) :: t_565 real(8) :: t_566 real(8) :: t_567 real(8) :: t_568 real(8) :: t_569 real(8) :: t_57 real(8) :: t_570 real(8) :: t_571 real(8) :: t_572 real(8) :: t_573 real(8) :: t_574 real(8) :: t_575 real(8) :: t_576 real(8) :: t_577 real(8) :: t_578 real(8) :: t_579 real(8) :: t_58 real(8) :: t_580 real(8) :: t_581 real(8) :: t_582 real(8) :: t_583 real(8) :: t_584 real(8) :: t_585 real(8) :: t_586 real(8) :: t_587 real(8) :: t_588 real(8) :: t_589 real(8) :: t_59 real(8) :: t_590 real(8) :: t_591 real(8) :: t_592 real(8) :: t_593 real(8) :: t_594 real(8) :: t_595 real(8) :: t_596 real(8) :: t_597 real(8) :: t_598 real(8) :: t_599 real(8) :: t_6 real(8) :: t_60 real(8) :: t_600 real(8) :: t_601 real(8) :: t_602 real(8) :: t_603 real(8) :: t_604 real(8) :: t_605 real(8) :: t_606 real(8) :: t_607 real(8) :: t_608 real(8) :: t_609 real(8) :: t_61 real(8) :: t_610 real(8) :: t_611 real(8) :: t_612 real(8) :: t_613 real(8) :: t_614 real(8) :: t_615 real(8) :: t_616 real(8) :: t_617 real(8) :: t_618 real(8) :: t_619 real(8) :: t_62 real(8) :: t_620 real(8) :: t_621 real(8) :: t_622 real(8) :: t_623 real(8) :: t_624 real(8) :: t_625 real(8) :: t_626 real(8) :: t_627 real(8) :: t_628 real(8) :: t_629 real(8) :: t_63 real(8) :: t_630 real(8) :: t_631 real(8) :: t_632 real(8) :: t_633 real(8) :: t_634 real(8) :: t_635 real(8) :: t_636 real(8) :: t_637 real(8) :: t_638 real(8) :: t_639 real(8) :: t_64 real(8) :: t_640 real(8) :: t_641 real(8) :: t_642 real(8) :: t_643 real(8) :: t_644 real(8) :: t_645 real(8) :: t_646 real(8) :: t_647 real(8) :: t_648 real(8) :: t_649 real(8) :: t_65 real(8) :: t_650 real(8) :: t_651 real(8) :: t_652 real(8) :: t_653 real(8) :: t_654 real(8) :: t_655 real(8) :: t_656 real(8) :: t_657 real(8) :: t_658 real(8) :: t_659 real(8) :: t_66 real(8) :: t_660 real(8) :: t_661 real(8) :: t_662 real(8) :: t_663 real(8) :: t_664 real(8) :: t_665 real(8) :: t_666 real(8) :: t_667 real(8) :: t_668 real(8) :: t_669 real(8) :: t_67 real(8) :: t_670 real(8) :: t_671 real(8) :: t_672 real(8) :: t_673 real(8) :: t_674 real(8) :: t_675 real(8) :: t_676 real(8) :: t_677 real(8) :: t_678 real(8) :: t_679 real(8) :: t_68 real(8) :: t_680 real(8) :: t_681 real(8) :: t_682 real(8) :: t_683 real(8) :: t_684 real(8) :: t_685 real(8) :: t_686 real(8) :: t_687 real(8) :: t_688 real(8) :: t_689 real(8) :: t_69 real(8) :: t_690 real(8) :: t_691 real(8) :: t_692 real(8) :: t_693 real(8) :: t_694 real(8) :: t_695 real(8) :: t_696 real(8) :: t_697 real(8) :: t_698 real(8) :: t_699 real(8) :: t_7 real(8) :: t_70 real(8) :: t_700 real(8) :: t_701 real(8) :: t_702 real(8) :: t_703 real(8) :: t_704 real(8) :: t_705 real(8) :: t_706 real(8) :: t_707 real(8) :: t_708 real(8) :: t_709 real(8) :: t_71 real(8) :: t_710 real(8) :: t_711 real(8) :: t_712 real(8) :: t_713 real(8) :: t_714 real(8) :: t_715 real(8) :: t_716 real(8) :: t_717 real(8) :: t_718 real(8) :: t_719 real(8) :: t_72 real(8) :: t_720 real(8) :: t_721 real(8) :: t_722 real(8) :: t_723 real(8) :: t_724 real(8) :: t_725 real(8) :: t_726 real(8) :: t_727 real(8) :: t_728 real(8) :: t_729 real(8) :: t_73 real(8) :: t_730 real(8) :: t_731 real(8) :: t_732 real(8) :: t_733 real(8) :: t_734 real(8) :: t_735 real(8) :: t_736 real(8) :: t_737 real(8) :: t_738 real(8) :: t_739 real(8) :: t_74 real(8) :: t_740 real(8) :: t_741 real(8) :: t_742 real(8) :: t_743 real(8) :: t_744 real(8) :: t_745 real(8) :: t_746 real(8) :: t_747 real(8) :: t_748 real(8) :: t_749 real(8) :: t_75 real(8) :: t_750 real(8) :: t_751 real(8) :: t_752 real(8) :: t_753 real(8) :: t_754 real(8) :: t_755 real(8) :: t_756 real(8) :: t_757 real(8) :: t_758 real(8) :: t_759 real(8) :: t_76 real(8) :: t_760 real(8) :: t_761 real(8) :: t_762 real(8) :: t_763 real(8) :: t_764 real(8) :: t_765 real(8) :: t_766 real(8) :: t_767 real(8) :: t_768 real(8) :: t_769 real(8) :: t_77 real(8) :: t_770 real(8) :: t_771 real(8) :: t_772 real(8) :: t_773 real(8) :: t_774 real(8) :: t_775 real(8) :: t_776 real(8) :: t_777 real(8) :: t_778 real(8) :: t_779 real(8) :: t_78 real(8) :: t_780 real(8) :: t_781 real(8) :: t_782 real(8) :: t_783 real(8) :: t_784 real(8) :: t_785 real(8) :: t_786 real(8) :: t_787 real(8) :: t_788 real(8) :: t_789 real(8) :: t_79 real(8) :: t_790 real(8) :: t_791 real(8) :: t_792 real(8) :: t_793 real(8) :: t_794 real(8) :: t_795 real(8) :: t_796 real(8) :: t_797 real(8) :: t_798 real(8) :: t_799 real(8) :: t_8 real(8) :: t_80 real(8) :: t_800 real(8) :: t_801 real(8) :: t_802 real(8) :: t_803 real(8) :: t_804 real(8) :: t_805 real(8) :: t_806 real(8) :: t_807 real(8) :: t_808 real(8) :: t_809 real(8) :: t_81 real(8) :: t_810 real(8) :: t_811 real(8) :: t_812 real(8) :: t_813 real(8) :: t_814 real(8) :: t_815 real(8) :: t_816 real(8) :: t_817 real(8) :: t_818 real(8) :: t_819 real(8) :: t_82 real(8) :: t_820 real(8) :: t_821 real(8) :: t_822 real(8) :: t_823 real(8) :: t_824 real(8) :: t_825 real(8) :: t_826 real(8) :: t_827 real(8) :: t_828 real(8) :: t_829 real(8) :: t_83 real(8) :: t_830 real(8) :: t_831 real(8) :: t_832 real(8) :: t_833 real(8) :: t_834 real(8) :: t_835 real(8) :: t_836 real(8) :: t_837 real(8) :: t_838 real(8) :: t_839 real(8) :: t_84 real(8) :: t_840 real(8) :: t_841 real(8) :: t_842 real(8) :: t_843 real(8) :: t_844 real(8) :: t_845 real(8) :: t_846 real(8) :: t_847 real(8) :: t_848 real(8) :: t_849 real(8) :: t_85 real(8) :: t_850 real(8) :: t_851 real(8) :: t_852 real(8) :: t_853 real(8) :: t_854 real(8) :: t_855 real(8) :: t_856 real(8) :: t_857 real(8) :: t_858 real(8) :: t_859 real(8) :: t_86 real(8) :: t_860 real(8) :: t_861 real(8) :: t_862 real(8) :: t_863 real(8) :: t_864 real(8) :: t_865 real(8) :: t_866 real(8) :: t_867 real(8) :: t_868 real(8) :: t_869 real(8) :: t_87 real(8) :: t_870 real(8) :: t_871 real(8) :: t_872 real(8) :: t_873 real(8) :: t_874 real(8) :: t_875 real(8) :: t_876 real(8) :: t_877 real(8) :: t_878 real(8) :: t_879 real(8) :: t_88 real(8) :: t_880 real(8) :: t_881 real(8) :: t_882 real(8) :: t_883 real(8) :: t_884 real(8) :: t_885 real(8) :: t_886 real(8) :: t_887 real(8) :: t_888 real(8) :: t_889 real(8) :: t_89 real(8) :: t_890 real(8) :: t_891 real(8) :: t_892 real(8) :: t_893 real(8) :: t_894 real(8) :: t_895 real(8) :: t_896 real(8) :: t_897 real(8) :: t_898 real(8) :: t_899 real(8) :: t_9 real(8) :: t_90 real(8) :: t_900 real(8) :: t_901 real(8) :: t_902 real(8) :: t_903 real(8) :: t_904 real(8) :: t_905 real(8) :: t_906 real(8) :: t_907 real(8) :: t_908 real(8) :: t_909 real(8) :: t_91 real(8) :: t_910 real(8) :: t_911 real(8) :: t_912 real(8) :: t_913 real(8) :: t_914 real(8) :: t_915 real(8) :: t_916 real(8) :: t_917 real(8) :: t_918 real(8) :: t_919 real(8) :: t_92 real(8) :: t_920 real(8) :: t_921 real(8) :: t_922 real(8) :: t_923 real(8) :: t_924 real(8) :: t_925 real(8) :: t_926 real(8) :: t_927 real(8) :: t_928 real(8) :: t_929 real(8) :: t_93 real(8) :: t_930 real(8) :: t_931 real(8) :: t_932 real(8) :: t_933 real(8) :: t_934 real(8) :: t_935 real(8) :: t_936 real(8) :: t_937 real(8) :: t_938 real(8) :: t_939 real(8) :: t_94 real(8) :: t_940 real(8) :: t_941 real(8) :: t_942 real(8) :: t_943 real(8) :: t_944 real(8) :: t_945 real(8) :: t_946 real(8) :: t_947 real(8) :: t_948 real(8) :: t_949 real(8) :: t_95 real(8) :: t_950 real(8) :: t_951 real(8) :: t_952 real(8) :: t_953 real(8) :: t_954 real(8) :: t_955 real(8) :: t_956 real(8) :: t_957 real(8) :: t_958 real(8) :: t_959 real(8) :: t_96 real(8) :: t_960 real(8) :: t_961 real(8) :: t_962 real(8) :: t_963 real(8) :: t_964 real(8) :: t_965 real(8) :: t_966 real(8) :: t_967 real(8) :: t_968 real(8) :: t_969 real(8) :: t_97 real(8) :: t_970 real(8) :: t_971 real(8) :: t_972 real(8) :: t_973 real(8) :: t_974 real(8) :: t_975 real(8) :: t_976 real(8) :: t_977 real(8) :: t_978 real(8) :: t_979 real(8) :: t_98 real(8) :: t_980 real(8) :: t_981 real(8) :: t_982 real(8) :: t_983 real(8) :: t_984 real(8) :: t_985 real(8) :: t_986 real(8) :: t_987 real(8) :: t_988 real(8) :: t_989 real(8) :: t_99 real(8) :: t_990 real(8) :: t_991 real(8) :: t_992 real(8) :: t_993 real(8) :: t_994 real(8) :: t_995 real(8) :: t_996 real(8) :: t_997 real(8) :: t_998 real(8) :: t_999 t_0 = (x * 8.13008d0) - 0.0979996d0 t_1 = (y * 8.13008d0) - 2.4d0 t_2 = (0.0999999d0 + (y * 8.13008d0)) ** 2.0d0 t_3 = (y * 8.13008d0) - 6.35d0 t_4 = (x * 11.6144d0) - 3.18286d0 t_5 = 2.35d0 + (y * 8.13008d0) t_6 = 3.5125d0 + (x * 4.47154d0) t_7 = (7.725d0 + (x * 8.13008d0)) ** 2.0d0 t_8 = -(0.3955d0 + (x * 5.42005d0)) t_9 = 4.0d0 + (y * 8.13008d0) t_10 = 0.15d0 + (y * 8.13008d0) t_11 = -(5.925d0 + (x * 8.13008d0)) t_12 = 3.716d0 + (x * 4.47154d0) t_13 = 0.5708d0 + (x * 2.23577d0) t_14 = 0.5175d0 + (x * 5.42005d0) t_15 = 1.38723d0 + (x * 4.47154d0) t_16 = (y * 8.13008d0) - 3.05d0 t_17 = (1.80223d0 + (y * 1.82927d0)) + (x * 4.47154d0) t_18 = 1.12d0 + (x * 8.13008d0) t_19 = (y * 8.13008d0) - 5.05d0 t_20 = 0.750575d0 + (y * 1.21951d0) t_21 = 2.95d0 + (x * 8.13008d0) t_22 = (y * 2.64228d0) + (x * 4.47154d0) t_23 = 0.9305d0 - (x * 8.13008d0) t_24 = (y * 8.13008d0) - 2.575d0 t_25 = (x * 2.23577d0) + (y * 4.06504d0) t_26 = 1.0405d0 + (x * 2.23577d0) t_27 = (x * 8.13008d0) - 5.5355d0 t_28 = (x * 5.42005d0) - 2.2095d0 t_29 = 7.98571d0 + (x * 11.6144d0) t_30 = -(5.2d0 + (x * 8.13008d0)) t_31 = 2.12d0 + (y * 3.25203d0) t_32 = 2.65d0 + (y * 8.13008d0) t_33 = -(8.0d0 + (x * 8.13008d0)) t_34 = (y * 8.13008d0) - 0.2d0 t_35 = (x * 5.42005d0) - 3.0345d0 t_36 = (x * 8.13008d0) - 2.9705d0 t_37 = ((y * 2.84553d0) + 4.13d0) + (x * 4.47154d0) t_38 = 6.275d0 + (x * 8.13008d0) t_39 = 1.80375d0 - (y * 5.28455d0) t_40 = ((y * 2.03252d0) + 2.5375d0) + (x * 4.47154d0) t_41 = (0.318501d0 + (y * 2.84553d0)) + (x * 4.47154d0) t_42 = 5.162d0 + (x * 8.13008d0) t_43 = 4.875d0 + (y * 8.13008d0) t_44 = (1.89845d0 + (y * 2.60163d0)) + (x * 2.84553d0) t_45 = 5.6d0 + (x * 8.13008d0) t_46 = (y * 8.13008d0) - 4.8d0 t_47 = 0.9d0 + (y * 8.13008d0) t_48 = 1.43045d0 + (x * 2.84553d0) t_49 = (y * 2.84553d0) + (x * 4.47154d0) t_50 = t_49 - 4.45138d0 t_51 = 0.16015d0 + (y * 1.21951d0) t_52 = 6.25d0 + (x * 8.13008d0) t_53 = 1.625d0 + (y * 8.13008d0) t_54 = t_53 ** 2.0d0 t_55 = sqrt((t_54 + ((5.242d0 + (x * 8.13008d0)) ** 2.0d0))) t_56 = (x * 8.13008d0) - 4.4005d0 t_57 = ((y * 2.03252d0) + 2.8125d0) + (x * 4.47154d0) t_58 = ((y * 2.03252d0) + 2.24435d0) + (x * 4.47154d0) t_59 = (y * 8.13008d0) - 4.15d0 t_60 = 0.55d0 + (y * 8.13008d0) t_61 = (0.685d0 - (y * 8.13008d0)) ** 2.0d0 t_62 = 4.675d0 + (y * 8.13008d0) t_63 = 4.025d0 + (y * 8.13008d0) t_64 = 0.5935d0 - (x * 8.13008d0) t_65 = 1.30723d0 + (x * 4.47154d0) t_66 = t_65 - (y * 2.64228d0) t_67 = 1.7375d0 + (y * 8.13008d0) t_68 = 1.725d0 - (y * 8.13008d0) t_69 = -(2.37d0 + (x * 8.13008d0)) t_70 = 3.575d0 + (x * 8.13008d0) t_71 = -(1.45d0 + (y * 8.13008d0)) t_72 = 3.0345d0 - (x * 5.42005d0) t_73 = (x * 8.13008d0) - 3.931d0 t_74 = (y * 8.13008d0) - 3.5d0 t_75 = (1.91435d0 + (y * 2.03252d0)) + (x * 4.47154d0) t_76 = -(0.415d0 + (y * 8.13008d0)) ** 2.0d0 t_77 = (2.09318d0 + (x * 2.23577d0)) + (y * 4.06504d0) t_78 = (x * 8.13008d0) - 1.958d0 t_79 = 2.08d0 + (x * 2.23577d0) t_80 = 1.8d0 + (y * 8.13008d0) t_81 = 0.120625d0 + (x * 2.23577d0) t_82 = 5.75d0 + (y * 8.13008d0) t_83 = 5.375d0 + (x * 8.13008d0) t_84 = -t_83 t_85 = 1.728d0 + (y * 2.19512d0) t_86 = (y * 0.813008d0) - 0.47d0 t_87 = 1.82238d0 - t_49 t_88 = t_49 - 3.84555d0 t_89 = (y * 8.13008d0) - 6.8d0 t_90 = 6.5d0 + (x * 8.13008d0) t_91 = (x * 8.13008d0) - 4.8855d0 t_92 = 3.025d0 + (x * 8.13008d0) t_93 = 0.45d0 + (y * 4.06504d0) t_94 = (y * 0.813008d0) - 0.305d0 t_95 = 0.6375d0 + (y * 2.84553d0) t_96 = t_95 - (x * 4.47154d0) t_97 = (y * 5.28455d0) - 0.37375d0 t_98 = (x * 8.13008d0) - 6.61401d0 t_99 = 0.685d0 + (y * 0.813008d0) t_100 = -(0.550001d0 + (x * 8.13008d0)) t_101 = 5.425d0 - (y * 8.13008d0) t_102 = (y * 0.813008d0) - 0.195d0 t_103 = (x * 8.13008d0) - 1.6205d0 t_104 = ((y * 8.13008d0) - 3.2d0) ** 2.0d0 t_105 = 1.8578d0 + (x * 2.23577d0) t_106 = 1.42d0 + (x * 2.23577d0) t_107 = 6.3d0 + (x * 8.13008d0) t_108 = t_107 ** 2.0d0 t_109 = 5.812d0 + (x * 8.13008d0) t_110 = 0.11375d0 + (x * 2.23577d0) t_111 = 1.23565d0 + (y * 2.03252d0) t_112 = (x * 8.13008d0) - 5.401d0 t_113 = 0.545d0 + (x * 4.47154d0) t_114 = (y * 2.84553d0) - t_113 t_115 = 0.19d0 + (y * 0.813008d0) t_116 = 2.42975d0 + (x * 4.47154d0) t_117 = t_116 - (y * 1.82927d0) t_118 = (y * 8.13008d0) - 2.05d0 t_119 = 4.63929d0 + (x * 11.6144d0) t_120 = 0.725d0 + (y * 8.13008d0) t_121 = (1.35975d0 + (y * 1.82927d0)) + (x * 4.47154d0) t_122 = 1.187d0 + (x * 8.13008d0) t_123 = 2.55d0 + (x * 8.13008d0) t_124 = -t_123 t_125 = (y * 3.41463d0) + 5.9037d0 t_126 = 6.075d0 - (y * 8.13008d0) t_127 = fmax(t_3, t_126) t_128 = 1.132d0 + (x * 8.13008d0) t_129 = -t_128 t_130 = 2.75d0 + (y * 8.13008d0) t_131 = -t_130 t_132 = (y * 8.13008d0) - 5.9d0 t_133 = 1.36071d0 + (x * 11.6144d0) t_134 = (y * 0.813008d0) - 0.415d0 t_135 = 0.465d0 + (y * 0.813008d0) t_136 = -t_70 t_137 = 1.7935d0 + (x * 4.06504d0) t_138 = 1.558d0 - (x * 8.13008d0) t_139 = 5.54551d0 - (x * 8.13008d0) t_140 = t_32 ** 2.0d0 t_141 = sqrt((t_140 + (((x * 8.13008d0) - 1.323d0) ** 2.0d0))) t_142 = -(4.075d0 + (x * 8.13008d0)) t_143 = 5.15d0 + (x * 8.13008d0) t_144 = 7.25d0 + (x * 8.13008d0) t_145 = (1.87595d0 + (y * 2.19512d0)) + (x * 2.84553d0) t_146 = 4.1025d0 - (x * 8.13008d0) t_147 = -(1.575d0 + (x * 8.13008d0)) t_148 = t_49 - 1.6725d0 t_149 = 0.5575d0 + (y * 2.03252d0) t_150 = 1.65925d0 + (x * 2.23577d0) t_151 = 4.021d0 + (x * 4.47154d0) t_152 = (y * 2.84553d0) - t_151 t_153 = (y * 8.13008d0) - 1.95d0 t_154 = (y * 8.13008d0) - 3.915d0 t_155 = 0.08d0 + (y * 0.813008d0) t_156 = 0.395501d0 + (x * 5.42005d0) t_157 = (y * 8.13008d0) - 4.975d0 t_158 = t_157 ** 2.0d0 t_159 = sqrt((t_158 + (((x * 8.13008d0) - 5.826d0) ** 2.0d0))) t_160 = (1.82723d0 + (y * 2.64228d0)) + (x * 4.47154d0) t_161 = (y * 8.13008d0) - 3.95d0 t_162 = 3.531d0 - (x * 8.13008d0) t_163 = -(4.975d0 + (y * 8.13008d0)) t_164 = fmax((4.885d0 + (y * 8.13008d0)), t_163) t_165 = (1.91443d0 + (x * 2.23577d0)) + (y * 4.06504d0) t_166 = sqrt(((((x * 8.13008d0) - 5.126d0) ** 2.0d0) + t_158)) t_167 = 3.7375d0 + (x * 5.42005d0) t_168 = -t_167 t_169 = ((y * 8.13008d0) - 0.3d0) ** 2.0d0 t_170 = 0.597376d0 + (y * 2.03252d0) t_171 = 2.932d0 + (x * 8.13008d0) t_172 = 4.12055d0 - t_49 t_173 = 2.375d0 + (x * 8.13008d0) t_174 = 4.05d0 + (x * 8.13008d0) t_175 = (y * 8.13008d0) - 2.775d0 t_176 = t_175 ** 2.0d0 t_177 = sqrt((t_176 + ((1.395d0 + (x * 8.13008d0)) ** 2.0d0))) t_178 = sqrt((t_176 + (((x * 8.13008d0) - 3.7975d0) ** 2.0d0))) t_179 = 4.5d0 + (x * 8.13008d0) t_180 = ((x * 2.23577d0) + 2.9905d0) + (y * 4.06504d0) t_181 = 0.6945d0 + (x * 8.13008d0) t_182 = -(6.6d0 + (x * 8.13008d0)) t_183 = 4.2d0 + (y * 8.13008d0) t_184 = (2.3425d0 + (y * 2.84553d0)) + (x * 4.47154d0) t_185 = 4.4855d0 - (x * 8.13008d0) t_186 = (1.885d0 + (x * 2.23577d0)) + (y * 4.06504d0) t_187 = 3.4575d0 + (x * 4.47154d0) t_188 = (x * 8.13008d0) - 3.1805d0 t_189 = 2.4705d0 - (x * 8.13008d0) t_190 = 6.8d0 + (x * 8.13008d0) t_191 = -t_190 t_192 = 6.11401d0 - (x * 8.13008d0) t_193 = (2.6175d0 + (y * 2.84553d0)) + (x * 4.47154d0) t_194 = (2.81935d0 + (y * 2.84553d0)) + (x * 4.47154d0) t_195 = (y * 0.813008d0) + 0.880675d0 t_196 = 1.3292d0 + (x * 2.84553d0) t_197 = ((y * 2.03252d0) + 2.521d0) + (x * 4.47154d0) t_198 = 5.975d0 + (y * 8.13008d0) t_199 = sqrt(((((4.58486d0 + (x * 8.13008d0)) - (y * 2.32288d0)) ** 2.0d0) + t_158)) t_200 = 1.15d0 + (y * 8.13008d0) t_201 = 1.5875d0 + (x * 5.42005d0) t_202 = -t_201 t_203 = 2.775d0 + (x * 8.13008d0) t_204 = -(6.212d0 + (x * 8.13008d0)) t_205 = 7.50251d0 - (x * 8.13008d0) t_206 = (x * 8.13008d0) - 2.226d0 t_207 = 0.245d0 + (y * 0.813008d0) t_208 = -t_207 t_209 = 0.6516d0 + (x * 4.47154d0) t_210 = (y * 1.82927d0) - t_209 t_211 = 2.8375d0 + (y * 8.13008d0) t_212 = 1.12143d0 + (x * 11.6144d0) t_213 = 0.475d0 + (y * 8.13008d0) t_214 = sqrt((t_108 + (((y * 8.13008d0) - 6.525d0) ** 2.0d0))) t_215 = 0.267376d0 + (y * 2.03252d0) t_216 = 5.8d0 - (y * 8.13008d0) t_217 = 0.36d0 - (y * 0.813008d0) t_218 = ((y * 8.13008d0) - 0.465d0) ** 2.0d0 t_219 = 0.52d0 + (y * 0.813008d0) t_220 = -t_219 t_221 = 2.5335d0 + (x * 4.47154d0) t_222 = 1.66785d0 + (x * 4.47154d0) t_223 = 0.25d0 - (y * 0.813008d0) t_224 = 1.95355d0 + (x * 5.28455d0) t_225 = (y * 2.03252d0) + 2.89638d0 t_226 = (x * 8.13008d0) - 5.7205d0 t_227 = -(7.35d0 + (x * 8.13008d0)) t_228 = (x * 4.47154d0) - t_95 t_229 = 1.12595d0 + (y * 1.21951d0) t_230 = 4.07d0 + (x * 8.13008d0) t_231 = 4.45138d0 - t_49 t_232 = 0.90565d0 + (y * 2.03252d0) t_233 = (y * 8.13008d0) - 5.025d0 t_234 = 2.2095d0 - (x * 5.42005d0) t_235 = 3.55d0 + (y * 8.13008d0) t_236 = fmax((3.45d0 + (y * 8.13008d0)), -t_235) t_237 = fmax(t_235, -(3.65d0 + (y * 8.13008d0))) t_238 = (y * 1.82927d0) + 2.5769d0 t_239 = t_238 - (x * 4.47154d0) t_240 = (x * 4.47154d0) - t_238 t_241 = 6.0955d0 - (x * 8.13008d0) t_242 = 6.75d0 + (x * 8.13008d0) t_243 = t_25 + 4.085d0 t_244 = 6.95d0 + (x * 11.6144d0) t_245 = (y * 8.13008d0) - 2.825d0 t_246 = -(2.775d0 + (y * 8.13008d0)) t_247 = (y * 1.82927d0) - t_15 t_248 = 0.0499997d0 + (y * 8.13008d0) t_249 = ((x * 2.23577d0) + 3.49375d0) + (y * 4.06504d0) t_250 = 1.81065d0 + (y * 2.84553d0) t_251 = t_250 - (x * 4.47154d0) t_252 = 0.712975d0 + (x * 2.23577d0) t_253 = 3.6d0 - (y * 8.13008d0) t_254 = fmax(t_161, t_253) t_255 = fmax(t_253, t_59) t_256 = (x * 5.42005d0) - 0.951167d0 t_257 = 2.67975d0 + (x * 4.47154d0) t_258 = (y * 2.64228d0) - t_257 t_259 = 4.7d0 - (y * 8.13008d0) t_260 = (y * 1.82927d0) + 3.10243d0 t_261 = t_260 - (x * 4.47154d0) t_262 = 2.807d0 + (x * 8.13008d0) t_263 = (y * 0.813008d0) + 1.89365d0 t_264 = 0.135d0 + (y * 0.813008d0) t_265 = t_161 ** 2.0d0 t_266 = sqrt((t_265 + (((x * 8.13008d0) - 5.5835d0) ** 2.0d0))) t_267 = (1.05475d0 + (y * 2.64228d0)) + (x * 4.47154d0) t_268 = ((x * 8.13008d0) - 0.695499d0) ** 2.0d0 t_269 = ((y * 8.13008d0) - 1.4d0) ** 2.0d0 t_270 = -(3.482d0 + (x * 8.13008d0)) t_271 = (y * 8.13008d0) - 4.775d0 t_272 = 4.95d0 + (y * 8.13008d0) t_273 = (0.2581d0 + (y * 1.82927d0)) + (x * 4.47154d0) t_274 = -(4.6d0 + (x * 8.13008d0)) t_275 = 2.282d0 + (x * 8.13008d0) t_276 = (x * 8.13008d0) - 6.75101d0 t_277 = (y * 5.28455d0) - 1.80375d0 t_278 = (x * 8.13008d0) - 5.1955d0 t_279 = (y * 3.25203d0) + 5.1769d0 t_280 = t_130 ** 2.0d0 t_281 = 3.84555d0 - t_49 t_282 = 0.898001d0 - (x * 8.13008d0) t_283 = (y * 8.13008d0) - 5.7d0 t_284 = 1.10808d0 + (y * 1.21951d0) t_285 = -t_41 t_286 = (y * 8.13008d0) - 0.615d0 t_287 = 0.3625d0 + (y * 2.84553d0) t_288 = t_287 - (x * 4.47154d0) t_289 = (0.03425d0 + (x * 2.23577d0)) + (y * 4.06504d0) t_290 = 2.875d0 + (x * 8.13008d0) t_291 = 1.083d0 - (x * 8.13008d0) t_292 = 1.825d0 + (y * 8.13008d0) t_293 = 6.48101d0 - (x * 8.13008d0) t_294 = 7.45d0 + (x * 8.13008d0) t_295 = 1.05625d0 + (y * 5.28455d0) t_296 = (y * 8.13008d0) - 1.475d0 t_297 = (x * 8.13008d0) - 0.282999d0 t_298 = 4.881d0 - (x * 8.13008d0) t_299 = (y * 8.13008d0) - 0.55d0 t_300 = sqrt((((5.625d0 + (x * 8.13008d0)) ** 2.0d0) + t_158)) t_301 = t_300 - 0.275d0 t_302 = 2.51875d0 - (y * 5.28455d0) t_303 = 3.3d0 + (x * 8.13008d0) t_304 = (x * 8.13008d0) - 6.408d0 t_305 = 1.676d0 - (x * 8.13008d0) t_306 = (x * 8.13008d0) - 3.1225d0 t_307 = 4.8125d0 + (y * 8.13008d0) t_308 = t_113 - (y * 2.84553d0) t_309 = (1.96935d0 + (y * 2.03252d0)) + (x * 4.47154d0) t_310 = (x * 5.42005d0) - 1.22783d0 t_311 = 6.05d0 + (x * 8.13008d0) t_312 = 5.1585d0 - (x * 8.13008d0) t_313 = -(0.575d0 + (y * 8.13008d0)) t_314 = ((y * 8.13008d0) - 4.7d0) ** 2.0d0 t_315 = (1.4516d0 + (y * 1.82927d0)) + (x * 4.47154d0) t_316 = 1.1947d0 + (y * 1.21951d0) t_317 = 2.73475d0 + (x * 4.47154d0) t_318 = (y * 2.64228d0) - t_317 t_319 = (y * 1.82927d0) + 2.5219d0 t_320 = t_319 - (x * 4.47154d0) t_321 = 3.5305d0 - (x * 8.13008d0) t_322 = 3.675d0 + (x * 8.13008d0) t_323 = 0.292376d0 + (y * 2.84553d0) t_324 = t_323 - (x * 4.47154d0) t_325 = 5.3d0 + (y * 8.13008d0) t_326 = sqrt((((1.462d0 + (x * 8.13008d0)) ** 2.0d0) + t_158)) t_327 = (x * 8.13008d0) - 0.320499d0 t_328 = sqrt((t_176 + (((7.16429d0 + (x * 8.13008d0)) - (y * 2.32288d0)) ** 2.0d0))) t_329 = (x * 11.6144d0) - 7.23715d0 t_330 = 1.02555d0 + (y * 2.03252d0) t_331 = 2.137d0 + (x * 8.13008d0) t_332 = 2.4785d0 + (x * 4.47154d0) t_333 = 1.77125d0 + (y * 5.28455d0) t_334 = (x * 8.13008d0) - 6.5305d0 t_335 = 6.2d0 + (y * 8.13008d0) t_336 = (y * 1.21951d0) + 1.7447d0 t_337 = 3.0d0 + (y * 8.13008d0) t_338 = -t_337 t_339 = sqrt((t_158 + (((x * 8.13008d0) - 6.476d0) ** 2.0d0))) t_340 = (y * 2.03252d0) + 2.95138d0 t_341 = 5.2d0 + (y * 8.13008d0) t_342 = t_341 ** 2.0d0 t_343 = -t_341 t_344 = fmax(t_183, t_343) t_345 = 0.289485d0 + (x * 2.27642d0) t_346 = (x * 8.13008d0) - 3.401d0 t_347 = (y * 8.13008d0) - 6.15d0 t_348 = t_347 ** 2.0d0 t_349 = sqrt((t_348 + (((x * 8.13008d0) - 2.8955d0) ** 2.0d0))) t_350 = fmax(t_216, t_347) t_351 = (y * 1.82927d0) + 3.15743d0 t_352 = (x * 4.47154d0) - t_351 t_353 = 1.2994d0 + (y * 3.25203d0) t_354 = 3.6525d0 + (x * 4.47154d0) t_355 = (y * 2.84553d0) - t_354 t_356 = sqrt((t_176 + ((4.345d0 + (x * 8.13008d0)) ** 2.0d0))) t_357 = 1.6725d0 - t_49 t_358 = sqrt((t_54 + (((4.12414d0 + (x * 8.13008d0)) - (y * 2.32288d0)) ** 2.0d0))) t_359 = 0.14d0 - (y * 0.813008d0) t_360 = 4.85d0 + (y * 8.13008d0) t_361 = t_360 ** 2.0d0 t_362 = sqrt((t_361 + (((x * 8.13008d0) - 0.633d0) ** 2.0d0))) t_363 = sqrt((((0.317d0 + (x * 8.13008d0)) ** 2.0d0) + t_361)) t_364 = 1.675d0 + (x * 8.13008d0) t_365 = ((x * 1.82927d0) + 3.2527d0) + (y * 4.06504d0) t_366 = (0.6875d0 - (y * 8.13008d0)) ** 2.0d0 t_367 = 0.300176d0 + (y * 2.23577d0) t_368 = (0.590637d0 + (x * 1.82927d0)) + (y * 4.06504d0) t_369 = 0.195d0 - (y * 0.813008d0) t_370 = 2.487d0 + (x * 8.13008d0) t_371 = sqrt(((t_370 ** 2.0d0) + t_158)) t_372 = t_151 - (y * 2.84553d0) t_373 = (2.216d0 + (y * 2.84553d0)) + (x * 4.47154d0) t_374 = -t_373 t_375 = 1.9d0 + (y * 8.13008d0) t_376 = t_375 ** 2.0d0 t_377 = -t_375 t_378 = fmax(t_377, t_200) t_379 = 0.3d0 - (y * 8.13008d0) t_380 = fmax(t_299, t_379) t_381 = 2.5d0 - (y * 8.13008d0) t_382 = fmax(t_381, t_74) t_383 = fmax(t_245, t_381) t_384 = fmax(t_381, t_175) t_385 = 2.6125d0 + (y * 8.13008d0) t_386 = t_159 - 0.275d0 t_387 = 1.65817d0 - (x * 5.42005d0) t_388 = (x * 8.13008d0) - 5.733d0 t_389 = fmax(t_343, t_360) t_390 = 2.65d0 + (y * 4.06504d0) t_391 = 7.12143d0 + (x * 11.6144d0) t_392 = ((y * 2.03252d0) + 2.466d0) + (x * 4.47154d0) t_393 = 0.6375d0 + (y * 8.13008d0) t_394 = -t_393 t_395 = t_393 ** 2.0d0 t_396 = (x * 1.01626d0) + 1.55781d0 t_397 = 0.208d0 - (x * 8.13008d0) t_398 = sqrt((t_54 + (((x * 8.13008d0) - (0.993357d0 + (y * 2.32288d0))) ** 2.0d0))) t_399 = 2.685d0 + (y * 8.13008d0) t_400 = (x * 8.13008d0) - 0.150499d0 t_401 = 3.501d0 - (x * 8.13008d0) t_402 = 4.512d0 + (x * 8.13008d0) t_403 = sqrt(((t_402 ** 2.0d0) + t_280)) t_404 = (y * 0.813008d0) - 0.525d0 t_405 = ((y * 2.03252d0) + 3.665d0) + (x * 4.47154d0) t_406 = ((y * 8.13008d0) - 0.4625d0) ** 2.0d0 t_407 = 2.24785d0 + (x * 4.47154d0) t_408 = -t_135 t_409 = 0.525d0 - (y * 8.13008d0) t_410 = fmax(t_286, t_409) t_411 = ((y * 8.13008d0) - 6.5d0) ** 2.0d0 t_412 = 3.875d0 - (y * 8.13008d0) t_413 = 0.63d0 + (y * 0.813008d0) t_414 = -t_413 t_415 = -(2.075d0 + (x * 8.13008d0)) t_416 = (x * 11.6144d0) - 2.67571d0 t_417 = fmax(t_83, t_216) t_418 = t_49 - 1.3975d0 t_419 = -(7.95d0 + (x * 8.13008d0)) t_420 = -(1.675d0 + (y * 8.13008d0)) t_421 = (x * 8.13008d0) - 6.656d0 t_422 = fmax(t_216, t_89) t_423 = 1.25d0 + (y * 8.13008d0) t_424 = fmax(((y * 8.13008d0) - 0.95d0), (0.85d0 - (y * 8.13008d0))) t_425 = -(1.142d0 + (x * 8.13008d0)) t_426 = 5.858d0 - (x * 8.13008d0) t_427 = -t_155 t_428 = (y * 0.813008d0) + 3.968d0 t_429 = 0.025d0 + (y * 0.813008d0) t_430 = 0.596601d0 + (x * 4.47154d0) t_431 = (y * 1.82927d0) - t_430 t_432 = 2.11243d0 - t_22 t_433 = -t_160 t_434 = t_209 - (y * 1.82927d0) t_435 = 2.00117d0 - (x * 5.42005d0) t_436 = sqrt(((((0.146856d0 + (x * 8.13008d0)) - (y * 2.32288d0)) ** 2.0d0) + t_158)) t_437 = 0.4125d0 + (y * 8.13008d0) t_438 = 1.24555d0 + (y * 2.03252d0) t_439 = (y * 0.813008d0) + 6.188d0 t_440 = t_49 - 2.09738d0 t_441 = 0.322376d0 + (y * 2.03252d0) t_442 = 4.825d0 + (x * 8.13008d0) t_443 = 5.4d0 + (x * 8.13008d0) t_444 = (y * 2.19512d0) + (x * 2.84553d0) t_445 = 6.0305d0 - (x * 8.13008d0) t_446 = (y * 1.21951d0) + 1.67444d0 t_447 = 3.2375d0 + (x * 4.47154d0) t_448 = 2.4205d0 - (x * 8.13008d0) t_449 = -t_184 t_450 = 3.001d0 - (x * 8.13008d0) t_451 = (1.55693d0 + (x * 2.23577d0)) + (y * 4.06504d0) t_452 = (0.6785d0 + (y * 2.03252d0)) + (x * 4.47154d0) t_453 = 0.707348d0 + (x * 4.5122d0) t_454 = (y * 8.13008d0) - 6.075d0 t_455 = fmax(t_216, t_454) t_456 = t_454 ** 2.0d0 t_457 = sqrt((t_456 + ((0.604501d0 + (x * 8.13008d0)) ** 2.0d0))) t_458 = sqrt((t_456 + (((x * 8.13008d0) - 1.3455d0) ** 2.0d0))) t_459 = sqrt((t_456 + t_268)) t_460 = sqrt((t_456 + (t_303 ** 2.0d0))) t_461 = sqrt((t_456 + (((x * 8.13008d0) - 5.0255d0) ** 2.0d0))) t_462 = sqrt((t_456 + ((5.65d0 + (x * 8.13008d0)) ** 2.0d0))) t_463 = 3.9955d0 - (x * 8.13008d0) t_464 = 0.150001d0 + (x * 8.13008d0) t_465 = t_464 ** 2.0d0 t_466 = 3.1d0 + (y * 8.13008d0) t_467 = ((x * 8.13008d0) - 4.1255d0) ** 2.0d0 t_468 = sqrt((t_456 + t_467)) t_469 = (y * 8.13008d0) - 0.6875d0 t_470 = fmax(t_409, t_469) t_471 = 1.732d0 + (x * 8.13008d0) t_472 = t_283 ** 2.0d0 t_473 = sqrt((t_472 + t_268)) t_474 = sqrt((t_467 + t_472)) t_475 = 1.06718d0 + (x * 2.23577d0) t_476 = (x * 8.13008d0) - 3.6855d0 t_477 = (2.3d0 + (y * 8.13008d0)) ** 2.0d0 t_478 = (y * 2.64228d0) - t_65 t_479 = 0.986526d0 + (y * 1.21951d0) t_480 = (x * 8.13008d0) - 8.05251d0 t_481 = 3.8d0 + (x * 8.13008d0) t_482 = 1.22783d0 - (x * 5.42005d0) t_483 = -t_200 t_484 = (y * 8.13008d0) - 1.75d0 t_485 = (x * 4.47154d0) - t_250 t_486 = (y * 8.13008d0) - 5.25d0 t_487 = (y * 5.28455d0) - 3.23375d0 t_488 = t_257 - (y * 2.64228d0) t_489 = (2.54435d0 + (y * 2.84553d0)) + (x * 4.47154d0) t_490 = (x * 4.47154d0) - t_260 t_491 = 0.25d0 + (y * 8.13008d0) t_492 = (x * 1.82927d0) + (y * 4.06504d0) t_493 = sqrt((t_176 + (((x * 8.13008d0) - 2.8475d0) ** 2.0d0))) t_494 = t_484 ** 2.0d0 t_495 = sqrt((t_494 + (((x * 8.13008d0) - 5.083d0) ** 2.0d0))) t_496 = sqrt((t_494 + (((x * 8.13008d0) - 5.333d0) ** 2.0d0))) t_497 = 0.44765d0 + (x * 2.84553d0) t_498 = -t_264 t_499 = (x * 8.13008d0) - 3.021d0 t_500 = -t_437 ** 2.0d0 t_501 = 6.3d0 + (y * 8.13008d0) t_502 = t_501 ** 2.0d0 t_503 = -t_501 t_504 = 0.500551d0 + (y * 2.84553d0) t_505 = t_504 - (x * 4.47154d0) t_506 = sqrt((t_456 + (((x * 8.13008d0) - 0.0454988d0) ** 2.0d0))) t_507 = 1.068d0 + (x * 2.23577d0) t_508 = -(5.9d0 + (x * 8.13008d0)) t_509 = -(0.249501d0 + (x * 8.13008d0)) t_510 = 4.9855d0 - (x * 8.13008d0) t_511 = 2.8935d0 + (x * 4.47154d0) t_512 = (y * 2.84553d0) - t_511 t_513 = sqrt((t_176 + (((x * 8.13008d0) - 0.0924997d0) ** 2.0d0))) t_514 = sqrt((t_7 + t_176)) t_515 = 0.415d0 - (y * 0.813008d0) t_516 = 0.36d0 + (y * 3.25203d0) t_517 = 3.35775d0 + (x * 4.5122d0) t_518 = 0.263484d0 + (x * 2.27642d0) t_519 = -t_90 t_520 = 2.64638d0 + (y * 2.84553d0) t_521 = t_520 - (x * 4.47154d0) t_522 = 2.846d0 - (x * 8.13008d0) t_523 = 0.305d0 - (y * 0.813008d0) t_524 = (x * 8.13008d0) - 4.6525d0 t_525 = 1.025d0 + (x * 8.13008d0) t_526 = 0.7775d0 + (y * 2.03252d0) t_527 = sqrt((t_140 + (((x * 8.13008d0) - 1.073d0) ** 2.0d0))) t_528 = 2.725d0 + (y * 8.13008d0) t_529 = t_528 ** 2.0d0 t_530 = sqrt(((((3.35486d0 + (x * 8.13008d0)) - (y * 2.32288d0)) ** 2.0d0) + t_529)) t_531 = sqrt(((((x * 8.13008d0) - 5.2605d0) ** 2.0d0) + t_529)) t_532 = sqrt(((((0.574857d0 + (x * 8.13008d0)) - (y * 2.32288d0)) ** 2.0d0) + t_529)) t_533 = sqrt((t_529 + (((x * 8.13008d0) - 5.9605d0) ** 2.0d0))) t_534 = t_533 - 0.275d0 t_535 = sqrt(((((x * 8.13008d0) - 3.4105d0) ** 2.0d0) + t_529)) t_536 = sqrt((((0.177d0 + (x * 8.13008d0)) ** 2.0d0) + t_529)) t_537 = sqrt(((((x * 8.13008d0) - 0.523d0) ** 2.0d0) + t_529)) t_538 = sqrt((((5.745d0 + (x * 8.13008d0)) ** 2.0d0) + t_529)) t_539 = t_538 - 0.275d0 t_540 = (y * 8.13008d0) - 6.45d0 t_541 = fmax(t_540, (6.35d0 - (y * 8.13008d0))) t_542 = 4.875d0 + (x * 8.13008d0) t_543 = 0.951167d0 - (x * 5.42005d0) t_544 = 0.575d0 + (y * 0.813008d0) t_545 = -t_544 t_546 = sqrt((t_176 + (((x * 8.13008d0) - 4.3775d0) ** 2.0d0))) t_547 = 7.35601d0 - (x * 8.13008d0) t_548 = sqrt((t_348 + (((x * 8.13008d0) - 2.6455d0) ** 2.0d0))) t_549 = 6.9d0 + (x * 8.13008d0) t_550 = sqrt(((t_60 ** 2.0d0) + (t_549 ** 2.0d0))) t_551 = (y * 2.64228d0) + 3.2069d0 t_552 = (x * 4.47154d0) - t_551 t_553 = t_551 - (x * 4.47154d0) t_554 = (x * 4.47154d0) - t_287 t_555 = -(0.452d0 + (x * 8.13008d0)) t_556 = (y * 8.13008d0) - 1.65d0 t_557 = 2.45d0 + (y * 8.13008d0) t_558 = 0.65875d0 + (x * 2.84553d0) t_559 = (y * 8.13008d0) - 1.725d0 t_560 = 3.12857d0 + (x * 11.6144d0) t_561 = -(5.712d0 + (x * 8.13008d0)) t_562 = (y * 2.64228d0) + 3.34743d0 t_563 = t_562 - (x * 4.47154d0) t_564 = 2.1625d0 + (x * 2.23577d0) t_565 = -(1.67d0 + (x * 8.13008d0)) t_566 = (y * 1.82927d0) - t_116 t_567 = -t_115 t_568 = t_317 - (y * 2.64228d0) t_569 = 0.96065d0 + (y * 2.03252d0) t_570 = 6.7d0 - (y * 8.13008d0) t_571 = -t_267 t_572 = (x * 4.47154d0) - t_319 t_573 = (x * 4.47154d0) - t_323 t_574 = (0.3131d0 + (y * 1.82927d0)) + (x * 4.47154d0) t_575 = (y * 8.13008d0) - 1.5d0 t_576 = sqrt((t_361 + (((x * 8.13008d0) - 0.383d0) ** 2.0d0))) t_577 = 2.725d0 - (y * 8.13008d0) t_578 = fmax(((y * 8.13008d0) - 2.815d0), t_577) t_579 = 4.912d0 + (x * 8.13008d0) t_580 = fmax(t_402, -t_579) t_581 = 6.45d0 + (x * 8.13008d0) t_582 = -t_581 t_583 = 3.85d0 + (y * 8.13008d0) t_584 = t_583 ** 2.0d0 t_585 = sqrt((t_584 + (t_346 ** 2.0d0))) t_586 = fmax(t_466, -t_583) t_587 = ((y * 8.13008d0) - 5.8d0) ** 2.0d0 t_588 = fmax(t_89, (6.05d0 - (y * 8.13008d0))) t_589 = 0.552d0 + (x * 8.13008d0) t_590 = sqrt(((t_589 ** 2.0d0) + t_280)) t_591 = fmax(t_589, -(0.952d0 + (x * 8.13008d0))) t_592 = 5.15d0 - (y * 8.13008d0) t_593 = (x * 5.42005d0) - 1.65817d0 t_594 = t_354 - (y * 2.84553d0) t_595 = 0.587999d0 - (x * 8.13008d0) t_596 = (y * 8.13008d0) - 6.05d0 t_597 = -t_193 t_598 = -(2.132d0 + (x * 8.13008d0)) t_599 = 1.726d0 + (y * 4.87805d0) t_600 = 5.95d0 + (y * 8.13008d0) t_601 = t_600 ** 2.0d0 t_602 = sqrt((t_601 + (((x * 8.13008d0) - 1.508d0) ** 2.0d0))) t_603 = 1.0705d0 - (x * 8.13008d0) t_604 = sqrt((t_601 + (((x * 8.13008d0) - 1.258d0) ** 2.0d0))) t_605 = 3.1355d0 - (x * 8.13008d0) t_606 = 1.35d0 + (y * 8.13008d0) t_607 = fmax(t_377, t_606) t_608 = fmax(t_423, -t_606) t_609 = (x * 8.13008d0) - 1.138d0 t_610 = (y * 5.28455d0) - 2.51875d0 t_611 = -(5.85d0 + (y * 8.13008d0)) t_612 = (y * 8.13008d0) - 5.015d0 t_613 = (y * 8.13008d0) - 3.875d0 t_614 = fmax(t_253, t_613) t_615 = t_613 ** 2.0d0 t_616 = sqrt(((((x * 8.13008d0) - 4.7835d0) ** 2.0d0) + t_615)) t_617 = sqrt((t_615 + (((x * 8.13008d0) - 0.862999d0) ** 2.0d0))) t_618 = sqrt((t_615 + (((x * 8.13008d0) - 0.212998d0) ** 2.0d0))) t_619 = sqrt((t_615 + ((2.245d0 + (x * 8.13008d0)) ** 2.0d0))) t_620 = t_619 - 0.275d0 t_621 = sqrt((t_615 + (t_522 ** 2.0d0))) t_622 = sqrt((t_615 + (((x * 8.13008d0) - 6.1335d0) ** 2.0d0))) t_623 = sqrt((t_615 + (((4.72857d0 + (x * 8.13008d0)) - (y * 2.32288d0)) ** 2.0d0))) t_624 = 0.4066d0 + (x * 4.47154d0) t_625 = (y * 2.64228d0) - t_624 t_626 = 2.825d0 - (y * 8.13008d0) t_627 = 5.025d0 - (y * 8.13008d0) t_628 = (1.74723d0 + (y * 1.82927d0)) + (x * 4.47154d0) t_629 = 4.851d0 - (x * 8.13008d0) t_630 = 1.065d0 + (x * 4.47154d0) t_631 = (x * 11.6144d0) - 6.52214d0 t_632 = 0.8d0 + (y * 8.13008d0) t_633 = -t_632 t_634 = fmax(t_491, t_633) t_635 = fmax(t_34, t_633) t_636 = (1.5066d0 + (y * 1.82927d0)) + (x * 4.47154d0) t_637 = 1.01488d0 + (y * 4.87805d0) t_638 = (y * 8.13008d0) - 2.85d0 t_639 = t_638 ** 2.0d0 t_640 = sqrt((t_639 + ((1.945d0 + (x * 8.13008d0)) ** 2.0d0))) t_641 = sqrt((t_639 + ((2.195d0 + (x * 8.13008d0)) ** 2.0d0))) t_642 = fmax(t_381, t_638) t_643 = (2.1853d0 + (x * 2.23577d0)) + (y * 4.06504d0) t_644 = 0.957d0 + (x * 8.13008d0) t_645 = 0.45d0 + (y * 8.13008d0) t_646 = fmax(t_633, t_645) t_647 = 0.0173756d0 + (y * 2.84553d0) t_648 = t_647 - (x * 4.47154d0) t_649 = 0.47d0 - (y * 0.813008d0) t_650 = -t_333 t_651 = ((y * 2.03252d0) + 2.4825d0) + (x * 4.47154d0) t_652 = 2.576d0 - (x * 8.13008d0) t_653 = 6.325d0 + (x * 8.13008d0) t_654 = t_653 ** 2.0d0 t_655 = sqrt((t_654 + t_158)) t_656 = sqrt((t_654 + t_54)) t_657 = sqrt((t_654 + t_529)) t_658 = sqrt((t_280 + (t_91 ** 2.0d0))) t_659 = 0.485d0 + (x * 2.23577d0) t_660 = (x * 8.13008d0) - 3.408d0 t_661 = sqrt(((t_652 ** 2.0d0) + t_158)) t_662 = fmax(t_377, t_47) t_663 = 0.606888d0 + (y * 1.21951d0) t_664 = 4.1d0 + (y * 8.13008d0) t_665 = t_664 ** 2.0d0 t_666 = -t_664 t_667 = fmax(t_666, t_235) t_668 = fmax(t_666, (3.75d0 + (y * 8.13008d0))) t_669 = fmax(t_466, t_666) t_670 = fmax(t_666, t_9) t_671 = 2.25d0 + (y * 8.13008d0) t_672 = sqrt(((t_671 ** 2.0d0) + (t_471 ** 2.0d0))) t_673 = (y * 0.813008d0) - 0.14d0 t_674 = -t_194 t_675 = (x * 8.13008d0) - 7.531d0 t_676 = sqrt((t_465 + (t_556 ** 2.0d0))) t_677 = sqrt((t_615 + ((0.437001d0 + (x * 8.13008d0)) ** 2.0d0))) t_678 = t_677 - 0.275d0 t_679 = -(7.3d0 + (x * 8.13008d0)) t_680 = (x * 8.13008d0) - 6.6455d0 t_681 = 1.27381d0 + (y * 4.87805d0) t_682 = 1.3975d0 - t_49 t_683 = -t_528 t_684 = (y * 8.13008d0) - 0.85d0 t_685 = fmax(t_379, t_684) t_686 = ((x * 2.23577d0) + 2.30217d0) + (y * 4.06504d0) t_687 = 1.4d0 - (y * 8.13008d0) t_688 = fmax(t_687, t_1) t_689 = fmax(t_687, t_153) t_690 = 4.02143d0 + (x * 11.6144d0) t_691 = 3.775d0 + (y * 8.13008d0) t_692 = fmax(t_666, t_691) t_693 = -t_360 t_694 = 3.771d0 + (x * 4.47154d0) t_695 = t_299 ** 2.0d0 t_696 = sqrt((t_695 + (t_364 ** 2.0d0))) t_697 = (y * 2.60163d0) + (x * 2.84553d0) t_698 = sqrt((t_584 + (t_109 ** 2.0d0))) t_699 = -t_429 t_700 = (x * 5.42005d0) - 2.7765d0 t_701 = sqrt(((t_248 ** 2.0d0) + (t_73 ** 2.0d0))) t_702 = 4.908d0 - (x * 8.13008d0) t_703 = 1.30055d0 + (y * 2.03252d0) t_704 = (x * 11.6144d0) - 0.585714d0 t_705 = 5.0375d0 + (y * 8.13008d0) t_706 = (x * 8.13008d0) - 4.0805d0 t_707 = sqrt((t_265 + (((x * 8.13008d0) - 5.3335d0) ** 2.0d0))) t_708 = -(1.737d0 + (x * 8.13008d0)) t_709 = (x * 11.6144d0) - 0.743571d0 t_710 = 2.09738d0 - t_49 t_711 = fmax(t_606, t_71) t_712 = (y * 1.21951d0) + 2.17851d0 t_713 = sqrt(((t_272 ** 2.0d0) + (t_78 ** 2.0d0))) t_714 = (y * 8.13008d0) - 4.6d0 t_715 = fmax(t_253, t_714) t_716 = sqrt(((t_714 ** 2.0d0) + (t_331 ** 2.0d0))) t_717 = 2.2175d0 + (x * 2.23577d0) t_718 = 3.1825d0 + (x * 4.47154d0) t_719 = -t_557 t_720 = 2.457d0 + (x * 8.13008d0) t_721 = -t_720 t_722 = (y * 8.13008d0) - 0.625d0 t_723 = sqrt(((((x * 8.13008d0) - 5.7775d0) ** 2.0d0) + t_176)) t_724 = t_723 - 0.275d0 t_725 = -t_37 t_726 = sqrt((t_456 + (((x * 8.13008d0) - (1.71336d0 + (y * 2.32288d0))) ** 2.0d0))) t_727 = (0.7335d0 + (y * 2.03252d0)) + (x * 4.47154d0) t_728 = 8.97857d0 + (x * 11.6144d0) t_729 = 0.37375d0 - (y * 5.28455d0) t_730 = 2.0d0 + (y * 8.13008d0) t_731 = sqrt((((4.517d0 + (x * 8.13008d0)) ** 2.0d0) + t_158)) t_732 = t_731 - 0.275d0 t_733 = 1.5125d0 + (y * 8.13008d0) t_734 = sqrt((((0.0670004d0 + (x * 8.13008d0)) ** 2.0d0) + t_361)) t_735 = 0.575d0 - (y * 8.13008d0) t_736 = (x * 8.13008d0) - 6.6385d0 t_737 = (x * 8.13008d0) - 7.87551d0 t_738 = sqrt((t_695 + (t_737 ** 2.0d0))) t_739 = (x * 8.13008d0) - 5.9955d0 t_740 = sqrt((t_695 + (t_739 ** 2.0d0))) t_741 = (7.025d0 + (x * 8.13008d0)) ** 2.0d0 t_742 = (x * 8.13008d0) - 1.8305d0 t_743 = -t_691 t_744 = 1.36223d0 + (x * 4.47154d0) t_745 = t_744 - (y * 2.64228d0) t_746 = (y * 2.64228d0) - t_744 t_747 = 1.65d0 + (y * 8.13008d0) t_748 = fmax(t_47, -t_747) t_749 = t_747 ** 2.0d0 t_750 = sqrt((t_749 + (t_400 ** 2.0d0))) t_751 = sqrt((t_749 + (t_736 ** 2.0d0))) t_752 = sqrt((((0.354001d0 + (x * 8.13008d0)) ** 2.0d0) + t_158)) t_753 = t_752 - 0.275d0 t_754 = sqrt(((((x * 8.13008d0) - 1.951d0) ** 2.0d0) + t_158)) t_755 = 4.925d0 - (y * 8.13008d0) t_756 = t_200 ** 2.0d0 t_757 = sqrt((t_756 + (t_742 ** 2.0d0))) t_758 = (y * 8.13008d0) - 0.575d0 t_759 = fmax(t_379, t_758) t_760 = t_758 ** 2.0d0 t_761 = sqrt((t_760 + ((4.45d0 + (x * 8.13008d0)) ** 2.0d0))) t_762 = sqrt((t_760 + (((x * 8.13008d0) - 2.6955d0) ** 2.0d0))) t_763 = sqrt((t_7 + t_760)) t_764 = t_763 - 0.275d0 t_765 = sqrt((t_760 + ((3.15d0 + (x * 8.13008d0)) ** 2.0d0))) t_766 = sqrt((t_760 + ((5.1d0 + (x * 8.13008d0)) ** 2.0d0))) t_767 = sqrt((t_760 + (((x * 8.13008d0) - 2.0455d0) ** 2.0d0))) t_768 = t_767 - 0.275d0 t_769 = sqrt((t_760 + (t_582 ** 2.0d0))) t_770 = sqrt((t_760 + ((1.3d0 + (x * 8.13008d0)) ** 2.0d0))) t_771 = sqrt((t_760 + (((x * 8.13008d0) - ((y * 2.32288d0) + 6.90979d0)) ** 2.0d0))) t_772 = sqrt((t_760 + ((7.075d0 + (x * 8.13008d0)) ** 2.0d0))) t_773 = sqrt((t_760 + (((x * 8.13008d0) - 3.933d0) ** 2.0d0))) t_774 = t_773 - 0.275d0 t_775 = sqrt((t_176 + (((x * 8.13008d0) - 7.77751d0) ** 2.0d0))) t_776 = (x * 8.13008d0) - 1.183d0 t_777 = 2.48625d0 + (y * 5.28455d0) t_778 = -t_777 t_779 = fmax(t_90, t_182) t_780 = 3.785d0 + (y * 8.13008d0) t_781 = sqrt((((3.207d0 + (x * 8.13008d0)) ** 2.0d0) + t_529)) t_782 = (x * 8.13008d0) - 0.9705d0 t_783 = (y * 8.13008d0) - 3.7d0 t_784 = t_632 ** 2.0d0 t_785 = -t_21 t_786 = fmax(t_203, t_785) t_787 = (1.30475d0 + (y * 1.82927d0)) + (x * 4.47154d0) t_788 = sqrt((t_760 + ((0.6d0 + (x * 8.13008d0)) ** 2.0d0))) t_789 = t_788 - 0.275d0 t_790 = (0.8881d0 + (y * 2.64228d0)) + (x * 4.47154d0) t_791 = -t_790 t_792 = 3.0055d0 - (x * 8.13008d0) t_793 = 5.975d0 + (x * 8.13008d0) t_794 = sqrt(((((x * 8.13008d0) - 7.12751d0) ** 2.0d0) + t_176)) t_795 = t_794 - 0.275d0 t_796 = fmax(t_684, t_735) t_797 = 0.525d0 + (y * 8.13008d0) t_798 = -t_797 t_799 = t_797 ** 2.0d0 t_800 = sqrt((((1.5495d0 + (x * 8.13008d0)) ** 2.0d0) + t_799)) t_801 = sqrt(((((4.13393d0 + (x * 8.13008d0)) - (y * 2.32288d0)) ** 2.0d0) + t_799)) t_802 = sqrt(((((0.11593d0 + (x * 8.13008d0)) - (y * 2.32288d0)) ** 2.0d0) + t_799)) t_803 = sqrt((t_799 + (((x * 8.13008d0) - 4.306d0) ** 2.0d0))) t_804 = sqrt((((6.525d0 + (x * 8.13008d0)) ** 2.0d0) + t_799)) t_805 = sqrt((((0.969501d0 + (x * 8.13008d0)) ** 2.0d0) + t_799)) t_806 = fmax(t_503, t_600) t_807 = 3.6d0 + (x * 8.13008d0) t_808 = t_49 - 1.82238d0 t_809 = t_511 - (y * 2.84553d0) t_810 = -(1.2445d0 + (x * 8.13008d0)) t_811 = 0.737225d0 + (x * 2.27642d0) t_812 = (x * 4.47154d0) - t_520 t_813 = 4.925d0 + (x * 8.13008d0) t_814 = (x * 8.13008d0) - 2.751d0 t_815 = sqrt((t_615 + (((x * 8.13008d0) - 2.221d0) ** 2.0d0))) t_816 = t_815 - 0.275d0 t_817 = 1.7272d0 + (y * 3.41463d0) t_818 = 0.54d0 + (y * 2.19512d0) t_819 = 1.53565d0 + (y * 2.84553d0) t_820 = t_819 - (x * 4.47154d0) t_821 = -(4.62d0 + (x * 8.13008d0)) t_822 = 3.233d0 - (x * 8.13008d0) t_823 = sqrt((t_54 + (t_188 ** 2.0d0))) t_824 = -(0.492001d0 + (x * 8.13008d0)) t_825 = 3.825d0 + (y * 8.13008d0) t_826 = t_825 ** 2.0d0 t_827 = sqrt((t_826 + (((x * 8.13008d0) - 3.776d0) ** 2.0d0))) t_828 = sqrt((t_826 + (((x * 8.13008d0) - 1.468d0) ** 2.0d0))) t_829 = t_828 - 0.275d0 t_830 = sqrt((t_826 + ((5.437d0 + (x * 8.13008d0)) ** 2.0d0))) t_831 = sqrt((t_826 + (((x * 8.13008d0) - 0.167999d0) ** 2.0d0))) t_832 = sqrt((t_826 + (((5.97857d0 + (x * 8.13008d0)) - (y * 2.32288d0)) ** 2.0d0))) t_833 = sqrt((t_826 + (t_293 ** 2.0d0))) t_834 = sqrt((t_826 + (((x * 8.13008d0) - ((y * 2.32288d0) + 5.57243d0)) ** 2.0d0))) t_835 = sqrt((t_826 + (((2.66557d0 + (x * 8.13008d0)) - (y * 2.32288d0)) ** 2.0d0))) t_836 = sqrt((t_826 + ((3.082d0 + (x * 8.13008d0)) ** 2.0d0))) t_837 = t_831 - 0.275d0 t_838 = sqrt((t_826 + ((0.482d0 + (x * 8.13008d0)) ** 2.0d0))) t_839 = t_838 - 0.275d0 t_840 = sqrt((t_826 + (((x * 8.13008d0) - 0.818d0) ** 2.0d0))) t_841 = sqrt((t_826 + (t_547 ** 2.0d0))) t_842 = sqrt((t_826 + t_7)) t_843 = t_842 - 0.275d0 t_844 = 2.675d0 + (y * 8.13008d0) t_845 = -t_844 t_846 = 1.44223d0 + (x * 4.47154d0) t_847 = t_846 - (y * 1.82927d0) t_848 = (y * 1.82927d0) - t_846 t_849 = (x * 8.13008d0) - 5.431d0 t_850 = 3.825d0 - (y * 8.13008d0) t_851 = fmax(t_850, t_154) t_852 = (y * 1.21951d0) + 1.23609d0 t_853 = 1.18065d0 + (y * 2.03252d0) t_854 = (x * 4.47154d0) - t_562 t_855 = 2.48475d0 + (x * 4.47154d0) t_856 = t_855 - (y * 1.82927d0) t_857 = (y * 1.82927d0) - t_855 t_858 = -t_489 t_859 = -(3.357d0 + (x * 8.13008d0)) t_860 = (1.6416d0 + (y * 2.64228d0)) + (x * 4.47154d0) t_861 = -t_860 t_862 = (y * 2.64228d0) + 3.29243d0 t_863 = (x * 4.47154d0) - t_862 t_864 = t_862 - (x * 4.47154d0) t_865 = 1.00286d0 + (x * 11.6144d0) t_866 = (x * 5.42005d0) - 2.00117d0 t_867 = (x * 4.47154d0) - t_819 t_868 = (x * 1.01626d0) + 2.92488d0 t_869 = (y * 1.82927d0) + (x * 4.47154d0) t_870 = sqrt((t_456 + t_108)) t_871 = (x * 8.13008d0) - 1.3305d0 t_872 = sqrt((t_756 + (t_871 ** 2.0d0))) t_873 = (y * 2.64228d0) + 3.1519d0 t_874 = (x * 4.47154d0) - t_873 t_875 = t_873 - (x * 4.47154d0) t_876 = sqrt((t_54 + (((x * 8.13008d0) - 3.8055d0) ** 2.0d0))) t_877 = 0.571825d0 + (y * 1.21951d0) t_878 = 4.55d0 + (y * 8.13008d0) t_879 = 0.525d0 - (y * 0.813008d0) t_880 = 5.275d0 + (x * 8.13008d0) t_881 = -t_880 t_882 = fmax(t_666, t_825) t_883 = sqrt((t_826 + (t_129 ** 2.0d0))) t_884 = 4.7d0 + (x * 8.13008d0) t_885 = 4.925d0 + (y * 8.13008d0) t_886 = t_885 ** 2.0d0 t_887 = sqrt((t_886 + ((0.867001d0 + (x * 8.13008d0)) ** 2.0d0))) t_888 = sqrt((t_886 + (((x * 8.13008d0) - 4.2705d0) ** 2.0d0))) t_889 = sqrt((t_886 + (((x * 8.13008d0) - 4.9205d0) ** 2.0d0))) t_890 = sqrt((t_886 + ((1.767d0 + (x * 8.13008d0)) ** 2.0d0))) t_891 = sqrt((t_886 + (((x * 8.13008d0) - 3.6205d0) ** 2.0d0))) t_892 = sqrt((t_886 + (t_776 ** 2.0d0))) t_893 = t_892 - 0.275d0 t_894 = sqrt((t_886 + (t_813 ** 2.0d0))) t_895 = t_894 - 0.275d0 t_896 = sqrt((t_886 + (t_139 ** 2.0d0))) t_897 = sqrt((t_886 + (t_70 ** 2.0d0))) t_898 = t_897 - 0.275d0 t_899 = -t_825 t_900 = 6.201d0 - (x * 8.13008d0) t_901 = 0.4625d0 - (y * 8.13008d0) t_902 = fmax(t_722, t_901) t_903 = 4.6455d0 - (x * 8.13008d0) t_904 = (x * 8.13008d0) - 5.558d0 t_905 = 4.65d0 + (y * 8.13008d0) t_906 = fmax(t_905, -t_885) t_907 = fmax(t_343, t_905) t_908 = fmax(t_666, t_583) t_909 = 3.497d0 + (x * 8.13008d0) t_910 = sqrt((t_176 + ((4.995d0 + (x * 8.13008d0)) ** 2.0d0))) t_911 = t_910 - 0.275d0 t_912 = (y * 2.03252d0) + (x * 4.47154d0) t_913 = fmax(t_343, t_885) t_914 = ((x * 2.23577d0) + 3.865d0) + (y * 4.06504d0) t_915 = fmax(t_3, (5.7d0 - (y * 8.13008d0))) t_916 = t_596 ** 2.0d0 t_917 = sqrt((t_916 + (t_542 ** 2.0d0))) t_918 = sqrt((t_916 + (t_322 ** 2.0d0))) t_919 = t_55 - 0.275d0 t_920 = ((y * 2.03252d0) + 2.7575d0) + (x * 4.47154d0) t_921 = ((y * 2.03252d0) + 2.18935d0) + (x * 4.47154d0) t_922 = 0.5025d0 + (y * 2.03252d0) t_923 = 2.662d0 + (x * 8.13008d0) t_924 = -t_923 t_925 = ((y * 8.13008d0) - 3.6d0) ** 2.0d0 t_926 = -t_491 t_927 = ((y * 8.13008d0) - 1.675d0) ** 2.0d0 t_928 = sqrt(((((x * 8.13008d0) - 6.133d0) ** 2.0d0) + t_927)) t_929 = sqrt((t_927 + (t_124 ** 2.0d0))) t_930 = sqrt((t_927 + (((x * 8.13008d0) - 0.224999d0) ** 2.0d0))) t_931 = sqrt((t_927 + (((x * 8.13008d0) - 2.775d0) ** 2.0d0))) t_932 = sqrt((((6.375d0 + (x * 8.13008d0)) ** 2.0d0) + t_927)) t_933 = sqrt((t_741 + t_927)) t_934 = sqrt((t_927 + ((1.9d0 + (x * 8.13008d0)) ** 2.0d0))) t_935 = sqrt((t_927 + (((x * 8.13008d0) - 6.783d0) ** 2.0d0))) t_936 = t_935 - 0.275d0 t_937 = -(3.425d0 + (x * 8.13008d0)) t_938 = (x * 1.01626d0) + 1.13813d0 t_939 = (y * 8.13008d0) - 1.3d0 t_940 = fmax(t_939, t_379) t_941 = fmax(t_939, (0.55d0 - (y * 8.13008d0))) t_942 = sqrt((t_760 + (((x * 8.13008d0) - 6.3705d0) ** 2.0d0))) t_943 = -t_14 t_944 = 0.592d0 + (x * 8.13008d0) t_945 = sqrt((t_760 + (t_481 ** 2.0d0))) t_946 = 6.2385d0 - (x * 8.13008d0) t_947 = 7.47551d0 - (x * 8.13008d0) t_948 = 5.5955d0 - (x * 8.13008d0) t_949 = t_645 ** 2.0d0 t_950 = sqrt((t_949 + (((x * 8.13008d0) - 0.7685d0) ** 2.0d0))) t_951 = sqrt((t_949 + (((x * 8.13008d0) - 1.0185d0) ** 2.0d0))) t_952 = -(0.267001d0 + (x * 8.13008d0)) t_953 = 1.4305d0 - (x * 8.13008d0) t_954 = sqrt((t_826 + (((x * 8.13008d0) - 5.156d0) ** 2.0d0))) t_955 = 2.7765d0 - (x * 5.42005d0) t_956 = t_15 - (y * 1.82927d0) t_957 = -(2.887d0 + (x * 8.13008d0)) t_958 = fmax(t_381, t_16) t_959 = t_622 - 0.275d0 t_960 = t_624 - (y * 2.64228d0) t_961 = 1.01d0 + (x * 4.47154d0) t_962 = sqrt((t_826 + (t_721 ** 2.0d0))) t_963 = 0.461601d0 + (x * 4.47154d0) t_964 = t_963 - (y * 2.64228d0) t_965 = (y * 2.64228d0) - t_963 t_966 = t_351 - (x * 4.47154d0) t_967 = 3.23375d0 - (y * 5.28455d0) t_968 = 2.5725d0 - (x * 8.13008d0) t_969 = 3.20125d0 + (y * 5.28455d0) t_970 = -t_969 t_971 = -(3.875d0 + (y * 8.13008d0)) t_972 = fmax(t_780, t_971) t_973 = 0.775551d0 + (y * 2.84553d0) t_974 = (x * 4.47154d0) - t_973 t_975 = t_973 - (x * 4.47154d0) t_976 = 2.775d0 - (y * 8.13008d0) t_977 = (x * 11.6144d0) - 5.05d0 t_978 = t_22 - 2.11243d0 t_979 = (x + y) * 4.06504d0 t_980 = 2.4935d0 + t_979 t_981 = 0.0709989d0 + t_979 t_982 = (0.635d0 + (y * 8.13008d0)) ** 2.0d0 t_983 = 1.55d0 + (y * 8.13008d0) t_984 = t_983 ** 2.0d0 t_985 = sqrt((t_984 + ((2.712d0 + (x * 8.13008d0)) ** 2.0d0))) t_986 = sqrt((t_984 + ((2.462d0 + (x * 8.13008d0)) ** 2.0d0))) t_987 = fmax(t_377, t_983) t_988 = (6.025d0 + (y * 8.13008d0)) ** 2.0d0 t_989 = sqrt((t_988 + (((x * 8.13008d0) - 4.683d0) ** 2.0d0))) t_990 = sqrt((((1.842d0 + (x * 8.13008d0)) ** 2.0d0) + t_988)) t_991 = sqrt((t_988 + (((x * 8.13008d0) - 0.00799847d0) ** 2.0d0))) t_992 = sqrt(((t_785 ** 2.0d0) + t_988)) t_993 = sqrt((t_988 + (t_660 ** 2.0d0))) t_994 = sqrt((t_988 + (((x * 8.13008d0) - 4.033d0) ** 2.0d0))) t_995 = 0.542376d0 + (y * 2.03252d0) t_996 = t_337 ** 2.0d0 t_997 = 4.975d0 - (y * 8.13008d0) t_998 = t_49 - 4.12055d0 t_999 = -(0.229501d0 + (x * 8.13008d0)) t_1000 = sqrt((t_741 + t_176)) t_1001 = t_1000 - 0.275d0 t_1002 = sqrt((t_615 + ((4.325d0 + (x * 8.13008d0)) ** 2.0d0))) t_1003 = (x * 4.47154d0) - t_647 t_1004 = -(4.1d0 + (x * 8.13008d0)) t_1005 = (x * 4.47154d0) - t_504 t_1006 = (x * 8.13008d0) - 4.051d0 t_1007 = (0.5925d0 + (x * 2.23577d0)) + (y * 4.06504d0) t_1008 = 3.3775d0 + (x * 4.47154d0) t_1009 = t_1008 - (y * 2.84553d0) t_1010 = (y * 2.84553d0) - t_1008 t_1011 = (y * 0.813008d0) - 0.36d0 t_1012 = fmax(t_379, t_722) t_1013 = ((y * 2.03252d0) + 3.61d0) + (x * 4.47154d0) t_1014 = (x + y) * 2.23577d0 t_1015 = 0.570488d0 + t_1014 t_1016 = t_1014 + 2.48875d0 t_1017 = 0.625d0 - (y * 8.13008d0) t_1018 = (y * 0.813008d0) - 0.25d0 t_1019 = (y * 1.21951d0) + 1.30319d0 t_1020 = (x * 8.13008d0) - 4.5455d0 t_1021 = 0.8325d0 + (y * 2.03252d0) t_1022 = fmax(t_216, t_3) code = fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmax(fmax(fmax(fmax(fmax(t_21, -t_322), (0.175d0 - t_992)), (t_992 - 0.275d0)), t_325), t_503), fmax(fmax(fmax((4.025d0 + (x * 8.13008d0)), -(4.125d0 + (x * 8.13008d0))), t_325), t_503)), fmax(fmax(fmax((4.275d0 + (x * 8.13008d0)), -(4.375d0 + (x * 8.13008d0))), t_325), t_503)), fmax(fmax(fmax((5.5d0 + (y * 8.13008d0)), -t_82), t_179), t_274)), fmax(fmax(fmax(-(5.4d0 + (y * 8.13008d0)), t_884), t_30), t_325)), fmax(fmax(fmax(t_884, t_30), t_335), t_503)), fmax(fmax(fmax((4.9d0 + (x * 8.13008d0)), -(5.0d0 + (x * 8.13008d0))), t_325), t_503)), fmax(fmax(t_344, (5.7205d0 - (x * 8.13008d0))), ((x * 8.13008d0) - 5.8205d0))), fmax(fmax(fmax(t_905, -(4.75d0 + (y * 8.13008d0))), t_139), t_226)), fmax(fmax(fmax(t_343, t_139), t_226), (5.1d0 + (y * 8.13008d0)))), fmax(fmax(t_820, ((x * 4.47154d0) - t_232)), t_545)), fmax(fmax(-t_58, t_194), t_414)), fmax(fmax(t_58, t_674), t_413)), fmax(fmax(t_674, t_921), t_544)), fmax(fmax(t_194, -t_921), t_545)), fmax((0.175d0 - t_990), (t_990 - 0.275d0))), fmax(fmax(fmax((2.475d0 + (x * 8.13008d0)), -(2.575d0 + (x * 8.13008d0))), t_82), t_503)), fmax(fmax(fmax(fmax(fmax(t_560, -(3.67857d0 + (x * 11.6144d0))), (0.45d0 - sqrt((t_502 + ((3.91072d0 + (x * 14.518d0)) ** 2.0d0))))), (sqrt((t_502 + (t_560 ** 2.0d0))) - 0.55d0)), t_82), t_503)), fmax(fmax(fmax(-t_203, (2.675d0 + (x * 8.13008d0))), t_325), t_503)), fmax(fmax(t_786, t_82), t_611)), fmax(fmax(t_786, t_335), t_503)), fmax(-fmin((sqrt((((1.33245d0 - (x * 3.61337d0)) ** 2.0d0) + (-(4.815d0 + (y * 8.13008d0)) ** 2.0d0))) - 0.0625d0), fmax(fmax(fmax(t_163, t_307), t_435), ((x * 5.42005d0) - 2.16367d0))), (sqrt(((-t_307 ** 2.0d0) + (t_435 ** 2.0d0))) - 0.1625d0))), fmax(-fmin(fmax(fmax(fmax(-t_705, t_866), (1.83867d0 - (x * 5.42005d0))), t_43), (sqrt((((5.035d0 + (y * 8.13008d0)) ** 2.0d0) + (((x * 3.61337d0) - 1.33578d0) ** 2.0d0))) - 0.0625d0)), (sqrt(((t_705 ** 2.0d0) + (t_866 ** 2.0d0))) - 0.1625d0))), fmax(fmax(fmax(t_183, -t_272), ((x * 8.13008d0) - 1.808d0)), (1.708d0 - (x * 8.13008d0)))), fmax(fmax(fmax(t_878, -t_905), t_78), t_138)), fmax(fmax(fmax(fmax(fmax(t_343, t_272), t_78), t_138), (0.15d0 - t_713)), (t_713 - 0.25d0))), fmax(fmax(fmax(fmax(t_344, (4.8205d0 - (x * 8.13008d0))), ((x * 8.13008d0) - 5.5455d0)), (0.175d0 - t_896)), (t_896 - 0.275d0))), fmax(fmax(fmax(t_343, t_43), t_278), (5.0955d0 - (x * 8.13008d0)))), fmax(fmax(t_907, ((x * 8.13008d0) - 4.7455d0)), t_903)), fmax(fmax(fmax(fmax(fmax(t_905, t_278), t_903), -t_43), (0.175d0 - t_889)), (t_889 - 0.275d0))), fmax(fmax(t_907, t_1020), (4.4455d0 - (x * 8.13008d0)))), fmax(fmax(t_906, ((x * 8.13008d0) - 4.0955d0)), t_463)), fmax(fmax(fmax(fmax(t_913, t_1020), t_463), (0.175d0 - t_888)), (t_888 - 0.275d0))), fmax((0.175d0 - t_891), (t_891 - 0.275d0))), fmax(fmax(fmax(t_343, (0.142001d0 + (x * 8.13008d0))), -(0.242001d0 + (x * 8.13008d0))), t_360)), fmax(fmax(fmax(t_343, (0.392001d0 + (x * 8.13008d0))), t_824), t_62)), fmax(fmax(fmax(fmax(t_878, t_824), ((x * 8.13008d0) - 0.157999d0)), fmin(fmax((0.075d0 - t_734), (t_734 - 0.175d0)), fmax((0.075d0 - t_363), (t_363 - 0.175d0)))), t_693)), fmax(fmax(t_907, t_944), -(0.692001d0 + (x * 8.13008d0)))), fmax(fmax(t_906, (1.042d0 + (x * 8.13008d0))), t_425)), fmax(fmax(fmax(fmax(t_913, t_944), t_425), (0.175d0 - t_887)), (t_887 - 0.275d0))), fmax(fmax(t_344, (1.267d0 + (x * 8.13008d0))), -(1.367d0 + (x * 8.13008d0)))), fmax(fmax(fmax(t_905, -(5.575d0 + (y * 8.13008d0))), (1.942d0 + (x * 8.13008d0))), -(2.042d0 + (x * 8.13008d0)))), fmax(t_893, fmin(fmax(fmax(t_164, ((x * 8.13008d0) - 1.458d0)), (0.958001d0 - (x * 8.13008d0))), fmax(fmax(t_893, -fmin(fmax(fmax(t_969, ((x * 2.23577d0) - t_316)), -t_643), fmax(fmax(t_643, (t_316 - (x * 2.23577d0))), t_970))), (0.175d0 - t_892))))), fmax(fmax(t_389, ((x * 8.13008d0) - 0.808001d0)), (0.708d0 - (x * 8.13008d0)))), fmax(fmax(t_389, ((x * 8.13008d0) - 0.558001d0)), (0.458d0 - (x * 8.13008d0)))), fmax(fmax(fmax(t_343, t_62), ((x * 8.13008d0) - 0.308001d0)), t_397)), fmax(fmax(fmax(fmax(t_878, t_397), t_693), ((x * 8.13008d0) - 0.858d0)), fmin(fmax((0.075d0 - t_362), (t_362 - 0.175d0)), fmax((0.075d0 - t_576), (t_576 - 0.175d0))))), fmax(fmax(t_389, ((x * 8.13008d0) - 0.108d0)), (0.00799942d0 - (x * 8.13008d0)))), fmax((0.175d0 - t_890), (t_890 - 0.275d0))), fmax(fmax(t_37, t_220), -t_405)), fmax(fmax(t_725, t_219), t_405)), fmax(fmax(t_725, t_1013), t_135)), fmax(fmax(t_37, -t_1013), t_408)), fmax(t_895, fmin(fmax(fmax(t_164, (4.65d0 + (x * 8.13008d0))), -t_143), fmax(fmax(t_895, -fmin(fmax(fmax(t_969, (t_659 - (y * 1.21951d0))), -t_914), fmax(fmax(t_970, t_914), ((y * 1.21951d0) - t_659)))), (0.175d0 - t_894))))), fmax(fmax(t_669, (7.531d0 - (x * 8.13008d0))), ((x * 8.13008d0) - 7.631d0))), fmax(fmax(t_237, t_547), t_675)), fmax(fmax(fmax(t_666, t_547), t_675), t_9)), fmax(fmax(fmax(fmax(t_669, (6.631d0 - (x * 8.13008d0))), ((x * 8.13008d0) - 7.356d0)), (0.175d0 - t_841)), (t_841 - 0.275d0))), fmax(fmax(t_907, (3.1d0 + (x * 8.13008d0))), -(3.2d0 + (x * 8.13008d0)))), fmax(fmax(fmax(fmax(t_907, t_690), -(4.57143d0 + (x * 11.6144d0))), (0.45d0 - sqrt((t_342 + ((5.02679d0 + (x * 14.518d0)) ** 2.0d0))))), (sqrt((t_342 + (t_690 ** 2.0d0))) - 0.55d0))), fmax(t_898, fmin(fmax(fmax(t_164, t_303), -t_481), fmax(fmax(t_898, -fmin(fmax(fmax(t_969, (t_110 - (y * 1.21951d0))), -t_249), fmax(fmax(t_970, t_249), ((y * 1.21951d0) - t_110)))), (0.175d0 - t_897))))), fmax(fmax(t_220, (t_961 - (y * 2.03252d0))), t_114)), fmax(fmax(t_219, t_308), ((y * 2.03252d0) - t_961))), fmax(fmax(t_308, t_135), ((y * 2.03252d0) - t_630))), fmax(fmax(t_114, (t_630 - (y * 2.03252d0))), t_408)), (sqrt((((6.225d0 + (y * 8.13008d0)) ** 2.0d0) + (t_388 ** 2.0d0))) - 0.075d0)), fmax(fmax(fmax(fmax(-fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmax(fmax(t_390, ((x * 4.06504d0) - 2.829d0)), -t_981), fmax(fmax(t_981, (2.829d0 - (x * 4.06504d0))), -t_390)), fmax(fmax(((x * 8.13008d0) - t_439), -((0.0706995d0 + (y * 2.60163d0)) + (x * 2.84553d0))), (t_125 - (x * 5.28455d0)))), fmax(fmax(((x * 5.28455d0) - t_125), ((0.0706992d0 + (y * 2.60163d0)) + (x * 2.84553d0))), (t_439 - (x * 8.13008d0)))), fmax(fmax(-t_85, (1.8053d0 - (x * 2.84553d0))), (t_444 - 0.171801d0))), fmax(fmax(t_85, (0.171801d0 - t_444)), ((x * 2.84553d0) - 1.8053d0))), fmax(fmax(t_31, ((x * 4.47154d0) - t_279)), (2.8369d0 - (x * 4.47154d0)))), fmax(fmax(((x * 4.47154d0) - 2.8369d0), (t_279 - (x * 4.47154d0))), -t_31)), t_325), t_503), t_904), (5.058d0 - (x * 8.13008d0)))), fmax((0.175d0 - t_989), (t_989 - 0.275d0))), fmax((0.175d0 - t_994), (t_994 - 0.275d0))), fmax(fmax(fmax(((x * 8.13008d0) - 3.233d0), (3.133d0 - (x * 8.13008d0))), t_325), t_503)), fmax(fmax(fmax(t_82, t_611), t_660), t_822)), fmax(fmax(fmax(t_660, t_822), t_335), t_503)), fmax(fmax(fmax(fmax(fmax(((x * 8.13008d0) - 4.133d0), (3.408d0 - (x * 8.13008d0))), (0.175d0 - t_993)), (t_993 - 0.275d0)), t_325), t_503)), fmax(fmax(-t_99, t_240), t_553)), fmax(fmax(t_99, t_552), t_239)), fmax(fmax(fmax(fmax(t_291, (5.65d0 + (y * 8.13008d0))), -t_600), ((x * 8.13008d0) - 1.733d0)), fmin(fmax((0.075d0 - t_602), (t_602 - 0.175d0)), fmax((0.075d0 - t_604), (t_604 - 0.175d0))))), fmax(fmax(fmax(t_503, t_198), t_297), (0.182999d0 - (x * 8.13008d0)))), fmax(fmax(fmax(t_82, t_503), (0.167001d0 + (x * 8.13008d0))), t_952)), fmax(fmax(fmax(fmax(fmax(t_82, t_297), t_952), -t_198), (0.175d0 - t_991)), (t_991 - 0.275d0))), fmax(fmax(((x * 4.47154d0) - t_111), t_251), t_414)), fmax(fmax(t_485, (t_111 - (x * 4.47154d0))), t_413)), fmax(fmax(t_485, (t_853 - (x * 4.47154d0))), t_544)), fmax(fmax(t_251, ((x * 4.47154d0) - t_853)), t_545)), fmax(fmax(-t_309, t_489), t_414)), fmax(fmax(t_309, t_858), t_413)), fmax(fmax(t_858, t_75), t_544)), fmax(fmax(t_489, -t_75), t_545)), fmax(fmax(((x * 4.47154d0) - t_569), t_820), t_414)), fmax(fmax(t_867, (t_569 - (x * 4.47154d0))), t_413)), fmax(fmax(t_867, (t_232 - (x * 4.47154d0))), t_544)), fmax(fmax(t_552, t_413), t_320)), fmax(fmax(t_553, t_572), t_414)), fmax(fmax(t_240, t_414), t_875)), fmax(fmax(t_239, t_413), t_874)), fmax(fmax(t_320, t_874), t_544)), fmax(fmax(t_572, t_875), t_545)), fmax(fmax(t_414, -t_574), t_790)), fmax(fmax(t_413, t_574), t_791)), fmax(fmax(t_544, t_791), t_273)), fmax(fmax(t_545, t_790), -t_273)), fmax(fmax(t_806, ((x * 8.13008d0) - 1.683d0)), (1.583d0 - (x * 8.13008d0)))), fmax(fmax(t_806, ((x * 8.13008d0) - 1.433d0)), (1.333d0 - (x * 8.13008d0)))), fmax(fmax(fmax(t_503, (5.775d0 + (y * 8.13008d0))), t_776), t_291)), fmax(fmax(fmax(t_32, ((x * 8.13008d0) - 1.498d0)), (1.398d0 - (x * 8.13008d0))), t_338)), fmax(fmax(fmax(t_32, ((x * 8.13008d0) - 1.248d0)), (1.148d0 - (x * 8.13008d0))), t_338)), fmax(fmax(fmax((2.475d0 + (y * 8.13008d0)), ((x * 8.13008d0) - 0.998001d0)), t_282), t_338)), fmax(fmax(fmax(fmax(t_282, -t_32), ((x * 8.13008d0) - 1.548d0)), fmin(fmax((0.075d0 - t_141), (t_141 - 0.175d0)), fmax((0.075d0 - t_527), (t_527 - 0.175d0)))), t_5)), fmax((0.175d0 - t_537), (t_537 - 0.275d0))), fmax(fmax(fmax(t_0, -(0.00200015d0 + (x * 8.13008d0))), t_338), t_528)), fmax(fmax(fmax((0.352d0 + (x * 8.13008d0)), t_555), t_338), t_730)), fmax(fmax(fmax(fmax(fmax(t_0, t_555), (0.175d0 - t_536)), (t_536 - 0.275d0)), t_557), t_683)), fmax(fmax(fmax(fmax(fmax((0.175d0 - t_535), (t_535 - 0.275d0)), t_557), t_476), t_605), t_845)), fmax(fmax(fmax(((x * 8.13008d0) - 3.0105d0), (2.9105d0 - (x * 8.13008d0))), t_338), t_557)), (sqrt((t_477 + (((x * 8.13008d0) - 2.9605d0) ** 2.0d0))) - 0.075d0)), fmax(-fmin(fmax(fmax(fmax(t_246, t_385), t_482), ((x * 5.42005d0) - 1.39033d0)), (sqrt(((-(2.615d0 + (y * 8.13008d0)) ** 2.0d0) + ((0.81689d0 - (x * 3.61337d0)) ** 2.0d0))) - 0.0625d0)), (sqrt(((-t_385 ** 2.0d0) + (t_482 ** 2.0d0))) - 0.1625d0))), fmax(-fmin(fmax(fmax(fmax(-t_211, t_310), (1.06533d0 - (x * 5.42005d0))), t_844), (sqrt((((2.835d0 + (y * 8.13008d0)) ** 2.0d0) + (((x * 3.61337d0) - 0.820223d0) ** 2.0d0))) - 0.0625d0)), (sqrt(((t_211 ** 2.0d0) + (t_310 ** 2.0d0))) - 0.1625d0))), fmax(fmax(fmax(fmax(fmax((0.175d0 - t_781), (t_781 - 0.275d0)), t_171), t_270), t_557), t_845)), fmax(fmax(fmax((3.607d0 + (x * 8.13008d0)), -(3.707d0 + (x * 8.13008d0))), t_338), t_557)), (sqrt((t_477 + ((3.657d0 + (x * 8.13008d0)) ** 2.0d0))) - 0.075d0)), fmax(fmax(fmax(t_32, (3.852d0 + (x * 8.13008d0))), -(3.952d0 + (x * 8.13008d0))), t_338)), fmax((0.175d0 - t_530), (t_530 - 0.275d0))), fmax(fmax(fmax((4.662d0 + (x * 8.13008d0)), -(4.762d0 + (x * 8.13008d0))), t_730), t_131)), fmax(fmax(t_580, t_5), t_719)), fmax(fmax(fmax(fmax(t_580, (0.15d0 - t_403)), (t_403 - 0.25d0)), t_338), t_130)), fmax(fmax(fmax((5.27d0 + (x * 8.13008d0)), -(5.37d0 + (x * 8.13008d0))), t_338), t_557)), fmax(fmax(fmax((0.702d0 + (x * 8.13008d0)), -(0.802d0 + (x * 8.13008d0))), t_730), t_131)), fmax(fmax(t_591, t_5), t_719)), fmax(fmax(fmax(fmax(t_591, (0.15d0 - t_590)), (t_590 - 0.25d0)), t_338), t_130)), fmax(fmax(fmax(t_32, (1.072d0 + (x * 8.13008d0))), -(1.172d0 + (x * 8.13008d0))), t_338)), fmax((0.175d0 - t_532), (t_532 - 0.275d0))), fmax(fmax(fmax(t_671, (1.882d0 + (x * 8.13008d0))), -(1.982d0 + (x * 8.13008d0))), t_338)), fmax(fmax(fmax(-(2.55d0 + (y * 8.13008d0)), t_471), t_598), t_557)), fmax(fmax(fmax(fmax(fmax(t_471, t_598), -t_671), (0.15d0 - t_672)), (t_672 - 0.25d0)), t_730)), fmax(fmax(fmax(t_171, -(3.032d0 + (x * 8.13008d0))), t_338), t_844)), fmax(fmax(fmax((3.382d0 + (x * 8.13008d0)), t_270), t_338), t_557)), fmax(fmax(t_608, t_736), t_946)), fmax(fmax(fmax(fmax(fmax(t_736, t_946), t_377), (0.15d0 - t_751)), (t_751 - 0.25d0)), t_747)), fmax(fmax(t_607, ((x * 8.13008d0) - 6.1135d0)), (6.0135d0 - (x * 8.13008d0)))), (sqrt((((1.2d0 + (y * 8.13008d0)) ** 2.0d0) + (((x * 8.13008d0) - 6.0635d0) ** 2.0d0))) - 0.075d0)), fmax(fmax(t_208, t_352), t_563)), fmax(fmax(t_207, t_854), t_966)), fmax(fmax(t_854, t_115), t_261)), fmax(fmax(t_563, t_490), t_567)), fmax(fmax(t_352, t_567), t_864)), fmax(fmax(t_966, t_115), t_863)), fmax(fmax(t_261, t_863), t_264)), fmax(fmax(t_490, t_864), t_498)), fmax(fmax(t_567, (2.24743d0 - t_869)), t_978)), fmax(fmax(fmax(fmax(fmax(t_391, -(7.67143d0 + (x * 11.6144d0))), (0.45d0 - sqrt((t_996 + ((8.90179d0 + (x * 14.518d0)) ** 2.0d0))))), (sqrt((t_996 + (t_391 ** 2.0d0))) - 0.55d0)), t_338), t_557)), fmax(t_539, fmin(fmax(fmax(fmax((5.47d0 + (x * 8.13008d0)), -(5.97d0 + (x * 8.13008d0))), t_399), t_246), fmax(fmax(t_539, -fmin(fmax(fmax((t_26 - (y * 1.21951d0)), -t_180), t_333), fmax(fmax(t_180, ((y * 1.21951d0) - t_26)), t_650))), (0.175d0 - t_538))))), fmax(fmax(-fmin(fmax(fmax(((y * 2.23577d0) - (1.02163d0 + (x * 2.27642d0))), t_517), -t_1016), fmax(fmax(t_1016, -t_517), ((1.02162d0 + (x * 2.27642d0)) - (y * 2.23577d0)))), (0.175d0 - t_657)), (t_657 - 0.275d0))), fmax(fmax(t_748, ((x * 8.13008d0) - 6.4885d0)), (6.3885d0 - (x * 8.13008d0)))), fmax(fmax(fmax(fmax(t_662, (0.175d0 - t_823)), (t_823 - 0.275d0)), ((x * 8.13008d0) - 3.9055d0)), (3.1805d0 - (x * 8.13008d0)))), fmax(fmax(fmax(fmax(fmax(-fmin(fmax(fmax(((x * 2.84553d0) - t_195), -t_368), (t_681 - (x * 1.01626d0))), fmax(fmax(t_368, ((x * 1.01626d0) - t_681)), (t_195 - (x * 2.84553d0)))), t_292), -(2.05d0 + (y * 8.13008d0))), ((x * 8.13008d0) - 2.0805d0)), (1.9305d0 - (x * 8.13008d0))), (sqrt((((0.608333d0 + (y * 2.71003d0)) ** 2.0d0) + (((x * 8.13008d0) - 2.0055d0) ** 2.0d0))) - 0.075d0))), (sqrt(((t_292 ** 2.0d0) + (((x * 8.13008d0) - 2.0305d0) ** 2.0d0))) - 0.075d0)), fmax(fmax(t_378, ((x * 8.13008d0) - 1.6805d0)), (1.5805d0 - (x * 8.13008d0)))), fmax(fmax(fmax(t_606, t_742), t_953), t_71)), fmax(fmax(fmax(fmax(fmax(t_47, t_742), t_953), t_483), (0.15d0 - t_757)), (t_757 - 0.25d0))), fmax(fmax(t_378, ((x * 8.13008d0) - 1.1805d0)), (1.0805d0 - (x * 8.13008d0)))), fmax(fmax(t_115, t_432), (t_869 - 2.24743d0))), fmax(fmax(t_264, t_432), (t_869 - 2.30243d0))), fmax(fmax(t_498, t_978), (2.30243d0 - t_869))), fmax(fmax(t_607, ((x * 8.13008d0) - 4.2805d0)), (4.1805d0 - (x * 8.13008d0)))), fmax(fmax(fmax(fmax(t_607, t_631), (5.97215d0 - (x * 11.6144d0))), (0.45d0 - sqrt((t_376 + (((x * 14.518d0) - 8.15268d0) ** 2.0d0))))), (sqrt((t_376 + (t_631 ** 2.0d0))) - 0.55d0))), fmax(fmax(t_607, t_706), (3.9805d0 - (x * 8.13008d0)))), fmax(fmax(fmax(t_606, -t_53), ((x * 8.13008d0) - 3.6305d0)), t_321)), fmax(fmax(fmax(fmax(fmax(t_377, t_706), t_321), t_53), (0.175d0 - t_876)), (t_876 - 0.275d0))), fmax(fmax(t_662, ((x * 8.13008d0) - 3.0055d0)), (2.9055d0 - (x * 8.13008d0)))), fmax(fmax(t_711, t_188), t_792)), fmax(fmax(fmax(t_377, t_188), t_792), t_80)), fmax((0.175d0 - t_834), (t_834 - 0.275d0))), fmax(fmax(t_882, t_1006), (3.951d0 - (x * 8.13008d0)))), fmax(fmax(t_669, ((x * 8.13008d0) - 3.601d0)), t_401)), fmax(fmax(fmax(fmax(fmax(t_235, t_1006), t_401), t_899), (0.175d0 - t_827)), (t_827 - 0.275d0))), fmax(fmax(t_586, ((x * 8.13008d0) - 3.251d0)), (3.151d0 - (x * 8.13008d0)))), fmax(fmax(t_236, t_346), t_450)), fmax(fmax(fmax(fmax(t_908, t_346), t_450), (0.15d0 - t_585)), (t_585 - 0.25d0))), fmax(fmax(t_667, ((x * 8.13008d0) - 1.943d0)), (1.843d0 - (x * 8.13008d0)))), fmax(fmax(fmax(fmax(t_667, t_4), (2.63286d0 - (x * 11.6144d0))), (0.45d0 - sqrt((t_665 + (((x * 14.518d0) - 3.97857d0) ** 2.0d0))))), (sqrt((t_665 + (t_4 ** 2.0d0))) - 0.55d0))), fmax(fmax(t_667, ((x * 8.13008d0) - 6.981d0)), (6.881d0 - (x * 8.13008d0)))), (sqrt((((3.4d0 + (y * 8.13008d0)) ** 2.0d0) + (((x * 8.13008d0) - 6.931d0) ** 2.0d0))) - 0.075d0)), fmax(fmax(t_669, (6.656d0 - (x * 8.13008d0))), ((x * 8.13008d0) - 6.756d0))), fmax(fmax(t_237, t_293), t_421)), fmax(fmax(t_670, t_293), t_421)), fmax(fmax(fmax(fmax(t_669, (5.756d0 - (x * 8.13008d0))), ((x * 8.13008d0) - 6.481d0)), (0.175d0 - t_833)), (t_833 - 0.275d0))), fmax(fmax(t_692, t_849), (5.331d0 - (x * 8.13008d0)))), fmax(fmax(t_667, ((x * 8.13008d0) - 4.981d0)), t_298)), fmax(fmax(fmax(fmax(fmax(t_235, t_849), t_298), t_743), (0.175d0 - t_954)), (t_954 - 0.275d0))), fmax(fmax(t_668, ((x * 8.13008d0) - 4.761d0)), (4.661d0 - (x * 8.13008d0)))), fmax(fmin(fmax(fmax((0.175d0 - t_831), t_837), -fmin(fmax(fmax(t_777, ((x * 2.23577d0) - t_20)), -t_165), fmax(fmax(t_778, t_165), (t_20 - (x * 2.23577d0))))), fmax(fmax(t_972, ((x * 8.13008d0) - 0.443d0)), -(0.0570004d0 + (x * 8.13008d0)))), t_837)), fmax(t_839, fmin(fmax(fmax(fmax((0.207d0 + (x * 8.13008d0)), -(0.707d0 + (x * 8.13008d0))), t_780), t_971), fmax(fmax(t_839, -fmin(fmax(fmax(((x * 2.23577d0) - t_877), -t_77), t_777), fmax(fmax(t_77, (t_877 - (x * 2.23577d0))), t_778))), (0.175d0 - t_838))))), fmax(fmax(t_669, -t_644), (0.857d0 + (x * 8.13008d0)))), fmax(fmax(t_237, t_129), t_644)), fmax(fmax(t_670, t_129), t_644)), fmax(fmax(fmax(fmax(t_669, -(1.857d0 + (x * 8.13008d0))), t_128), (0.175d0 - t_883)), (t_883 - 0.275d0))), fmax(fmax(t_669, -t_275), (2.182d0 + (x * 8.13008d0)))), fmax(fmax(t_237, t_275), t_721)), fmax(fmax(t_670, t_275), t_721)), fmax(t_829, fmin(fmax(fmax(t_972, ((x * 8.13008d0) - 1.743d0)), (1.243d0 - (x * 8.13008d0))), fmax(fmax(t_829, -fmin(fmax(fmax(t_777, ((x * 2.23577d0) - t_284)), -t_451), fmax(fmax(t_451, (t_284 - (x * 2.23577d0))), t_778))), (0.175d0 - t_828))))), fmax(fmax(fmax(t_235, -(4.475d0 + (y * 8.13008d0))), ((x * 8.13008d0) - 0.643001d0)), (0.543d0 - (x * 8.13008d0)))), fmax((0.175d0 - t_840), (t_840 - 0.275d0))), fmax(fmax(fmax(fmax(fmax((sqrt((((4.937d0 + (x * 8.13008d0)) ** 2.0d0) + ((1.34167d0 + (y * 2.71003d0)) ** 2.0d0))) - 0.075d0), -fmin(fmax(fmax((t_196 - (y * 0.813008d0)), -t_365), (t_599 - (x * 1.01626d0))), fmax(fmax(((x * 1.01626d0) - t_599), t_365), ((y * 0.813008d0) - t_196)))), t_63), -(4.25d0 + (y * 8.13008d0))), (4.862d0 + (x * 8.13008d0))), -(5.012d0 + (x * 8.13008d0)))), (sqrt(((t_63 ** 2.0d0) + (t_579 ** 2.0d0))) - 0.075d0)), fmax(fmax(t_882, t_42), -(5.262d0 + (x * 8.13008d0)))), fmax(fmax(t_669, (5.612d0 + (x * 8.13008d0))), t_561)), fmax(fmax(fmax(fmax(fmax(t_235, t_899), t_42), t_561), (0.175d0 - t_830)), (t_830 - 0.275d0))), fmax(fmax(t_586, (5.962d0 + (x * 8.13008d0))), -(6.062d0 + (x * 8.13008d0)))), fmax(fmax(t_236, t_109), t_204)), fmax(fmax(fmax(fmax(t_908, t_109), t_204), (0.15d0 - t_698)), (t_698 - 0.25d0))), fmax(fmax(t_667, (6.57d0 + (x * 8.13008d0))), -(6.67d0 + (x * 8.13008d0)))), fmax(fmax(fmax(fmax(t_669, t_720), -(3.182d0 + (x * 8.13008d0))), (0.175d0 - t_962)), (t_962 - 0.275d0))), fmax(fmax(t_692, t_262), -(2.907d0 + (x * 8.13008d0)))), fmax(fmax(t_667, (3.257d0 + (x * 8.13008d0))), t_859)), fmax(fmax(fmax(fmax(fmax(t_235, t_743), t_262), t_859), (0.175d0 - t_836)), (t_836 - 0.275d0))), fmax(fmax(t_668, (3.477d0 + (x * 8.13008d0))), -(3.577d0 + (x * 8.13008d0)))), fmax((0.175d0 - t_835), (t_835 - 0.275d0))), fmax(fmin(fmax(fmax(t_534, -fmin(fmax(fmax(t_333, ((x * 2.23577d0) - t_712)), (0.228514d0 - t_25)), fmax(fmax((t_25 - 0.228514d0), (t_712 - (x * 2.23577d0))), t_650))), (0.175d0 - t_533)), fmax(fmax(fmax(t_399, t_246), ((x * 8.13008d0) - 6.23551d0)), (5.73551d0 - (x * 8.13008d0)))), t_534)), fmax(fmax(fmax(t_338, t_27), (5.4355d0 - (x * 8.13008d0))), t_528)), fmax(fmax(fmax(t_338, t_730), ((x * 8.13008d0) - 5.0855d0)), t_510)), fmax(fmax(fmax(fmax(fmax(t_27, t_510), t_557), t_683), (0.175d0 - t_531)), (t_531 - 0.275d0))), fmax(fmax(fmax(t_730, t_131), ((x * 8.13008d0) - 4.7355d0)), (4.6355d0 - (x * 8.13008d0)))), fmax(fmax(fmax(t_5, t_719), t_91), t_185)), fmax(fmax(fmax(fmax(fmax(t_338, t_130), t_91), t_185), (0.15d0 - t_658)), (t_658 - 0.25d0))), fmax(fmax(fmax(t_338, t_844), t_476), (3.5855d0 - (x * 8.13008d0)))), fmax(fmax(fmax(t_338, t_557), ((x * 8.13008d0) - 3.2355d0)), t_605)), fmax(fmax(fmax(fmax(t_667, t_728), -(9.52857d0 + (x * 11.6144d0))), (0.45d0 - sqrt((t_665 + ((11.2232d0 + (x * 14.518d0)) ** 2.0d0))))), (sqrt((t_665 + (t_728 ** 2.0d0))) - 0.55d0))), fmax(fmax(t_668, (6.79d0 + (x * 8.13008d0))), -(6.89d0 + (x * 8.13008d0)))), fmax((0.175d0 - t_832), (t_832 - 0.275d0))), fmax(t_843, fmin(fmax(fmax(t_972, t_294), t_419), fmax(fmax(t_843, -fmin(fmax(fmax(t_777, (t_106 - (y * 1.21951d0))), -t_243), fmax(fmax(t_778, t_243), ((y * 1.21951d0) - t_106)))), (0.175d0 - t_842))))), fmax(fmax(t_848, t_66), t_155)), fmax(fmax(t_847, t_427), t_478)), fmax(fmax(t_427, t_746), t_956)), fmax(fmax(t_155, t_745), t_247)), fmax(fmax(t_848, t_745), t_429)), fmax(fmax(t_847, t_746), t_699)), fmax(fmax(t_427, -t_17), t_160)), fmax(fmax(t_155, t_17), t_433)), fmax(fmax(t_429, t_433), t_628)), fmax(fmax(t_699, t_160), -t_628)), fmax(fmax(fmax((3.5325d0 + (x * 8.13008d0)), -(3.6325d0 + (x * 8.13008d0))), t_491), t_633)), fmax(fmax(fmax(fmax(fmax(t_119, -(5.18929d0 + (x * 11.6144d0))), (0.45d0 - sqrt((((5.79911d0 + (x * 14.518d0)) ** 2.0d0) + t_784)))), (sqrt(((t_119 ** 2.0d0) + t_784)) - 0.55d0)), t_491), t_633)), fmax(fmax(fmax((3.7575d0 + (x * 8.13008d0)), -(3.8575d0 + (x * 8.13008d0))), t_491), t_633)), (sqrt((((3.8075d0 + (x * 8.13008d0)) ** 2.0d0) + t_2)) - 0.075d0)), fmax(fmax(fmax((4.0025d0 + (x * 8.13008d0)), -(4.1025d0 + (x * 8.13008d0))), t_633), t_645)), fmax(fmax(fmax(((x * 8.13008d0) - 0.0154991d0), -(0.084501d0 + (x * 8.13008d0))), t_633), t_645)), fmax((0.175d0 - t_802), (t_802 - 0.275d0))), fmax(fmax(fmax(t_181, -(0.794501d0 + (x * 8.13008d0))), t_797), t_633)), fmax(fmax(fmax((1.1445d0 + (x * 8.13008d0)), t_810), t_34), t_633)), fmax(fmax(fmax(fmax(fmax(t_181, t_810), t_798), (0.175d0 - t_805)), (t_805 - 0.275d0)), t_491)), fmax(fmax(-fmin(fmax(fmax(((y * 2.23577d0) - t_345), t_453), -t_1015), fmax(fmax(t_1015, -t_453), (t_345 - (y * 2.23577d0)))), (0.175d0 - t_800)), (t_800 - 0.275d0))), fmax(fmax(t_498, t_956), t_478)), fmax(fmax(t_264, t_66), t_247)), fmax(fmax(fmax(fmax(fmax(t_798, t_52), t_191), (0.175d0 - t_804)), (t_804 - 0.275d0)), t_491)), fmax(fmax(fmax(-t_60, (7.05d0 + (x * 8.13008d0))), -(7.15d0 + (x * 8.13008d0))), t_34)), fmax(fmax(fmax(t_549, t_679), t_926), t_10)), fmax(fmax(fmax(fmax(fmax(t_60, t_549), t_679), (0.15d0 - t_550)), (t_550 - 0.25d0)), t_633)), fmax(fmax(t_941, ((x * 8.13008d0) - 7.72551d0)), (7.62551d0 - (x * 8.13008d0)))), fmax(fmax(t_424, t_737), t_947)), fmax(fmax(fmax(fmax(fmax(t_737, t_947), t_299), t_379), (0.15d0 - t_738)), (t_738 - 0.25d0))), fmax(fmax(fmax(t_379, ((y * 8.13008d0) - 0.65d0)), ((x * 8.13008d0) - 7.35551d0)), (7.25551d0 - (x * 8.13008d0)))), fmax((0.175d0 - t_771), (t_771 - 0.275d0))), fmax((0.175d0 - t_801), (t_801 - 0.275d0))), fmax(-fmin(fmax(fmax(fmax(t_168, (3.575d0 + (x * 5.42005d0))), t_313), t_437), (sqrt(((-(2.49333d0 + (x * 3.61337d0)) ** 2.0d0) + t_76)) - 0.0625d0)), (sqrt(((t_168 ** 2.0d0) + t_500)) - 0.1625d0))), fmax(-fmin(fmax(fmax(fmax(t_167, -(3.9d0 + (x * 5.42005d0))), t_213), t_394), (sqrt((((2.49d0 + (x * 3.61337d0)) ** 2.0d0) + t_982)) - 0.0625d0)), (sqrt(((t_167 ** 2.0d0) + t_395)) - 0.1625d0))), fmax(fmax(fmax(-(6.075d0 + (x * 8.13008d0)), t_793), t_491), t_633)), (sqrt((((6.025d0 + (x * 8.13008d0)) ** 2.0d0) + t_2)) - 0.075d0)), fmax(fmax(fmax(t_52, -(6.35d0 + (x * 8.13008d0))), t_797), t_633)), fmax(fmax(fmax((6.7d0 + (x * 8.13008d0)), t_191), t_34), t_633)), fmax(-fmin((sqrt((t_218 + (((x * 3.61337d0) - 2.02467d0) ** 2.0d0))) - 0.0625d0), fmax(fmax(t_902, t_35), (2.872d0 - (x * 5.42005d0)))), (sqrt((t_406 + (t_35 ** 2.0d0))) - 0.1625d0))), fmax(t_774, fmin(fmax(fmax(t_410, ((x * 8.13008d0) - 4.208d0)), (3.708d0 - (x * 8.13008d0))), fmax(fmax(t_774, -fmin(fmax(fmax(t_97, ((x * 2.23577d0) - t_229)), (1.32095d0 - t_25)), fmax(fmax((t_25 - 1.32095d0), (t_229 - (x * 2.23577d0))), t_729))), (0.175d0 - t_773))))), fmax(-fmin(fmax(fmax(fmax(t_234, ((x * 5.42005d0) - 2.372d0)), t_409), t_469), (sqrt((((1.47133d0 - (x * 3.61337d0)) ** 2.0d0) + t_61)) - 0.0625d0)), (sqrt(((t_234 ** 2.0d0) + t_366)) - 0.1625d0))), fmax(fmax(t_759, t_680), (6.5455d0 - (x * 8.13008d0)))), fmax(fmax(t_940, ((x * 8.13008d0) - 6.19551d0)), t_241)), fmax(fmax(fmax(fmax(fmax(t_680, t_241), t_684), t_735), (0.175d0 - t_942)), (t_942 - 0.275d0))), fmax(fmax(t_941, ((x * 8.13008d0) - 5.8455d0)), (5.7455d0 - (x * 8.13008d0)))), fmax(fmax(t_424, t_739), t_948)), fmax(fmax(fmax(fmax(t_380, t_739), t_948), (0.15d0 - t_740)), (t_740 - 0.25d0))), fmax(-fmin(fmax(fmax(t_470, t_72), ((x * 5.42005d0) - 3.197d0)), (sqrt((t_61 + ((2.02133d0 - (x * 3.61337d0)) ** 2.0d0))) - 0.0625d0)), (sqrt((t_366 + (t_72 ** 2.0d0))) - 0.1625d0))), fmax(-fmin(fmax(fmax(t_902, (0.788667d0 - (x * 5.42005d0))), t_256), (sqrt((t_218 + (((x * 3.61337d0) - 0.635778d0) ** 2.0d0))) - 0.0625d0)), (sqrt((t_406 + (t_256 ** 2.0d0))) - 0.1625d0))), fmax(fmax(t_685, ((x * 8.13008d0) - 0.125d0)), (0.0249996d0 - (x * 8.13008d0)))), fmax(fmax(fmax(fmax(t_685, t_704), (0.0357141d0 - (x * 11.6144d0))), (0.45d0 - sqrt((t_169 + (((x * 14.518d0) - 0.732143d0) ** 2.0d0))))), (sqrt((t_169 + (t_704 ** 2.0d0))) - 0.55d0))), fmax(fmax(t_685, (0.1d0 + (x * 8.13008d0))), -(0.2d0 + (x * 8.13008d0)))), (sqrt(((((y * 8.13008d0) - 1.0d0) ** 2.0d0) + t_465)) - 0.075d0)), fmax(t_789, fmin(fmax(fmax(t_410, (0.325d0 + (x * 8.13008d0))), -(0.825d0 + (x * 8.13008d0))), fmax(fmax(t_789, -fmin(fmax(fmax(t_97, (t_81 - (y * 1.21951d0))), (0.0743749d0 - t_25)), fmax(fmax(t_729, (t_25 - 0.0743749d0)), ((y * 1.21951d0) - t_81)))), (0.175d0 - t_788))))), fmax(-fmin(fmax(fmax(fmax(t_28, (2.047d0 - (x * 5.42005d0))), t_722), t_901), (sqrt((t_218 + (((x * 3.61337d0) - 1.47467d0) ** 2.0d0))) - 0.0625d0)), (sqrt((t_406 + (t_28 ** 2.0d0))) - 0.1625d0))), fmax(fmax(t_1012, t_36), (2.8705d0 - (x * 8.13008d0)))), fmax(fmax(t_685, ((x * 8.13008d0) - 2.5205d0)), t_448)), fmax(fmax(fmax(fmax(fmax(t_684, t_36), t_448), t_1017), (0.175d0 - t_762)), (t_762 - 0.275d0))), fmax(t_768, fmin(fmax(fmax(t_410, ((x * 8.13008d0) - 2.3205d0)), (1.8205d0 - (x * 8.13008d0))), fmax(fmax(t_768, -fmin(fmax(fmax(t_97, ((x * 2.23577d0) - t_663)), (0.801888d0 - t_25)), fmax(fmax(t_729, (t_25 - 0.801888d0)), (t_663 - (x * 2.23577d0))))), (0.175d0 - t_767))))), fmax(-fmin(fmax(fmax(t_470, t_543), ((x * 5.42005d0) - 1.11367d0)), (sqrt((t_61 + ((0.632445d0 - (x * 3.61337d0)) ** 2.0d0))) - 0.0625d0)), (sqrt((t_366 + (t_543 ** 2.0d0))) - 0.1625d0))), fmax((sqrt(((-t_733 ** 2.0d0) + (t_8 ** 2.0d0))) - 0.1625d0), -fmin(fmax(fmax(fmax(t_420, t_733), t_8), (0.233001d0 + (x * 5.42005d0))), (sqrt(((-(1.515d0 + (y * 8.13008d0)) ** 2.0d0) + (-(0.265334d0 + (x * 3.61337d0)) ** 2.0d0))) - 0.0625d0)))), fmax(-fmin(fmax(fmax(fmax((1.575d0 + (y * 8.13008d0)), -t_67), t_156), -(0.558001d0 + (x * 5.42005d0))), (sqrt((((1.735d0 + (y * 8.13008d0)) ** 2.0d0) + ((0.262d0 + (x * 3.61337d0)) ** 2.0d0))) - 0.0625d0)), (sqrt(((t_67 ** 2.0d0) + (t_156 ** 2.0d0))) - 0.1625d0))), fmax(fmax(t_208, (t_430 - (y * 1.82927d0))), t_625)), fmax(fmax(t_207, t_960), t_431)), fmax(fmax(t_115, t_960), t_210)), fmax(fmax(t_567, t_625), t_434)), fmax(fmax(t_567, ((0.5966d0 + (x * 4.47154d0)) - (y * 1.82927d0))), t_965)), fmax(fmax(t_115, t_431), t_964)), fmax(fmax(t_264, t_210), t_964)), fmax(fmax(t_498, t_434), t_965)), fmax(fmax(t_567, -t_636), t_860)), fmax(fmax(t_115, t_861), t_636)), fmax(fmax(t_264, t_861), t_315)), fmax(fmax(t_498, t_860), -t_315)), fmax(fmax(t_711, t_871), t_23)), fmax(fmax(fmax(fmax(fmax(t_47, t_483), t_871), t_23), (0.15d0 - t_872)), (t_872 - 0.25d0))), fmax(fmax(t_987, ((x * 8.13008d0) - 0.8105d0)), (0.7105d0 - (x * 8.13008d0)))), fmax((0.175d0 - t_398), (t_398 - 0.275d0))), fmax(fmax(t_748, ((x * 8.13008d0) - 0.000499725d0)), -(0.0995007d0 + (x * 8.13008d0)))), fmax(fmax(t_608, t_400), t_509)), fmax(fmax(fmax(fmax(fmax(t_377, t_747), t_400), t_509), (0.15d0 - t_750)), (t_750 - 0.25d0))), fmax(fmax(fmax(t_662, -fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmax(fmax((t_222 - (y * 3.25203d0)), -t_407), t_516), fmax(fmax(t_407, ((y * 3.25203d0) - t_222)), -t_516)), fmax(fmax(t_93, t_137), -t_980)), fmax(fmax(t_980, -t_137), -t_93)), fmax(fmax((t_909 - (y * 0.813008d0)), -t_44), ((y * 3.41463d0) - t_224))), fmax(fmax((t_224 - (y * 3.41463d0)), t_44), ((y * 0.813008d0) - t_909))), fmax(fmax(-t_818, -t_48), t_145)), fmax(fmax(t_818, t_48), -t_145))), (3.687d0 + (x * 8.13008d0))), -(4.187d0 + (x * 8.13008d0)))), fmax(fmax(t_987, (4.307d0 + (x * 8.13008d0))), -(4.407d0 + (x * 8.13008d0)))), fmax((0.175d0 - t_358), (t_358 - 0.275d0))), fmax(t_919, fmin(fmax(fmax(fmax((1.585d0 + (y * 8.13008d0)), t_420), (4.967d0 + (x * 8.13008d0))), -(5.467d0 + (x * 8.13008d0))), fmax(fmax(t_919, -fmin(fmax(fmax(t_295, (t_475 - (y * 1.21951d0))), -t_686), fmax(fmax(t_686, ((y * 1.21951d0) - t_475)), -t_295))), (0.175d0 - t_55))))), fmax(fmax(t_607, (5.875d0 + (x * 8.13008d0))), -t_793)), fmax(fmax(fmax(t_377, (2.287d0 + (x * 8.13008d0))), -(2.387d0 + (x * 8.13008d0))), t_983)), fmax(fmax(t_987, (2.537d0 + (x * 8.13008d0))), -(2.637d0 + (x * 8.13008d0)))), fmax(fmax(fmax(t_377, (1.375d0 + (y * 8.13008d0))), (2.787d0 + (x * 8.13008d0))), t_957)), fmax(fmax(fmax(fmax(t_423, t_957), -t_983), (2.237d0 + (x * 8.13008d0))), fmin(fmax((0.075d0 - t_986), (t_986 - 0.175d0)), fmax((0.075d0 - t_985), (t_985 - 0.175d0))))), fmax(fmax(fmax(fmax(fmax(-fmin(fmax(fmax(((x * 2.84553d0) - t_263), (0.681276d0 - t_492)), (t_637 - (x * 1.01626d0))), fmax(fmax(((x * 1.01626d0) - t_637), (t_492 - 0.681276d0)), (t_263 - (x * 2.84553d0)))), t_120), -(0.95d0 + (y * 8.13008d0))), ((x * 8.13008d0) - 5.289d0)), (5.139d0 - (x * 8.13008d0))), (sqrt((((0.241667d0 + (y * 2.71003d0)) ** 2.0d0) + (((x * 8.13008d0) - 5.214d0) ** 2.0d0))) - 0.075d0))), (sqrt(((t_120 ** 2.0d0) + (((x * 8.13008d0) - 5.239d0) ** 2.0d0))) - 0.075d0)), fmax(fmax(fmax(t_491, ((x * 8.13008d0) - 4.781d0)), (4.681d0 - (x * 8.13008d0))), t_633)), fmax(fmax(fmax(fmax(fmax(t_491, t_329), (6.68715d0 - (x * 11.6144d0))), (0.45d0 - sqrt((t_784 + (((x * 14.518d0) - 9.04643d0) ** 2.0d0))))), (sqrt((t_784 + (t_329 ** 2.0d0))) - 0.55d0)), t_633)), fmax((0.175d0 - t_803), (t_803 - 0.275d0))), fmax(fmax(fmax(fmax(t_607, t_29), -(8.53571d0 + (x * 11.6144d0))), (0.45d0 - sqrt((t_376 + ((9.98214d0 + (x * 14.518d0)) ** 2.0d0))))), (sqrt((t_376 + (t_29 ** 2.0d0))) - 0.55d0))), fmax(fmax(t_662, t_90), t_182)), fmax(fmax(fmax(t_606, t_653), t_71), t_519)), fmax(fmax(fmax(t_377, t_653), t_80), t_519)), fmax(fmax(fmax(fmax(t_662, t_45), -t_653), (0.175d0 - t_656)), (t_656 - 0.275d0))), fmax(fmax(t_635, ((x * 8.13008d0) - 7.28901d0)), (7.18901d0 - (x * 8.13008d0)))), fmax(fmax(t_635, ((x * 8.13008d0) - 7.03901d0)), (6.93901d0 - (x * 8.13008d0)))), fmax(fmax(fmax(((y * 8.13008d0) - 4.76837d-7), t_926), ((x * 8.13008d0) - 6.81401d0)), (6.71401d0 - (x * 8.13008d0)))), fmax(fmax(fmax(t_34, (0.1d0 - (y * 8.13008d0))), t_98), t_192)), fmax(fmax(fmax(t_633, t_98), t_192), (0.7d0 + (y * 8.13008d0)))), fmax(fmax(t_635, ((x * 8.13008d0) - 6.41401d0)), (6.314d0 - (x * 8.13008d0)))), fmax(fmax(t_634, ((x * 8.13008d0) - 2.1185d0)), (2.0185d0 - (x * 8.13008d0)))), (sqrt((t_2 + (((x * 8.13008d0) - 2.0685d0) ** 2.0d0))) - 0.075d0)), fmax(fmax(t_646, ((x * 8.13008d0) - 1.1935d0)), (1.0935d0 - (x * 8.13008d0)))), fmax(fmax(t_646, ((x * 8.13008d0) - 0.943501d0)), (0.8435d0 - (x * 8.13008d0)))), fmax(fmax(fmax(t_633, (0.275d0 + (y * 8.13008d0))), ((x * 8.13008d0) - 0.693501d0)), t_64)), fmax(fmax(fmax(fmax(t_64, t_10), -t_645), ((x * 8.13008d0) - 1.2435d0)), fmin(fmax((0.075d0 - t_951), (t_951 - 0.175d0)), fmax((0.075d0 - t_950), (t_950 - 0.175d0))))), fmax(fmax(t_634, ((x * 8.13008d0) - 0.2355d0)), (0.1355d0 - (x * 8.13008d0)))), fmax(fmax(fmax(t_248, ((x * 8.13008d0) - 3.781d0)), t_633), (3.681d0 - (x * 8.13008d0)))), fmax(fmax(fmax(t_491, -(0.35d0 + (y * 8.13008d0))), t_73), t_162)), fmax(fmax(fmax(fmax(fmax(t_34, t_73), t_162), -t_248), (0.15d0 - t_701)), (t_701 - 0.25d0))), fmax(-fmin(fmax(fmax(fmax(t_313, t_437), t_387), ((x * 5.42005d0) - 1.82067d0)), (sqrt((t_76 + ((1.10378d0 - (x * 3.61337d0)) ** 2.0d0))) - 0.0625d0)), (sqrt((t_500 + (t_387 ** 2.0d0))) - 0.1625d0))), fmax(-fmin(fmax(fmax(fmax(t_213, t_394), t_593), (1.49567d0 - (x * 5.42005d0))), (sqrt((t_982 + (((x * 3.61337d0) - 1.10711d0) ** 2.0d0))) - 0.0625d0)), (sqrt((t_395 + (t_593 ** 2.0d0))) - 0.1625d0))), fmax(fmax(fmax(fmax(t_634, t_709), (0.193571d0 - (x * 11.6144d0))), (0.45d0 - sqrt((t_784 + (((x * 14.518d0) - 0.929465d0) ** 2.0d0))))), (sqrt((t_784 + (t_709 ** 2.0d0))) - 0.55d0))), 100000000.0d0), fmax(t_795, fmin(fmax(fmax(t_578, ((x * 8.13008d0) - 7.40251d0)), (6.90251d0 - (x * 8.13008d0))), fmax(fmax(t_795, -fmin(fmax(fmax(t_277, ((x * 2.23577d0) - t_446)), (3.29944d0 - t_25)), fmax(fmax((t_25 - 3.29944d0), (t_446 - (x * 2.23577d0))), t_39))), (0.175d0 - t_794))))), fmax(fmax(t_223, ((x * 4.47154d0) - t_340)), t_521)), fmax(fmax(t_812, (t_340 - (x * 4.47154d0))), t_1018)), fmax(fmax(t_812, t_94), (t_225 - (x * 4.47154d0)))), fmax(fmax(t_521, ((x * 4.47154d0) - t_225)), t_523)), fmax(fmax(t_223, (4.14638d0 - t_912)), t_50)), fmax(fmax(t_1018, t_231), (t_912 - 4.14638d0))), fmax(fmax(t_94, t_231), (t_912 - 4.20138d0))), fmax(fmax(t_523, t_50), (4.20138d0 - t_912))), fmax(fmax(-t_57, t_193), t_359)), fmax(fmax(t_57, t_597), t_673)), fmax(fmax(t_597, t_920), t_102)), fmax(fmax(t_193, -t_920), t_369)), fmax((0.175d0 - t_932), (t_932 - 0.275d0))), fmax(fmax(fmax(t_242, -(6.85d0 + (x * 8.13008d0))), t_559), t_687)), fmax(fmax(fmax(t_679, (7.2d0 + (x * 8.13008d0))), t_687), t_153)), fmax(fmax(fmax(fmax(fmax(t_679, t_242), (0.175d0 - t_933)), (t_933 - 0.275d0)), t_68), t_153)), fmax(fmax(t_383, t_480), (7.95251d0 - (x * 8.13008d0)))), fmax(fmax(t_958, ((x * 8.13008d0) - 7.60251d0)), t_205)), fmax(fmax(fmax(fmax(fmax(t_480, t_16), t_205), t_626), (0.175d0 - t_775)), (t_775 - 0.275d0))), fmax(fmax(t_384, t_306), (3.0225d0 - (x * 8.13008d0)))), fmax(fmax(fmax(t_381, ((x * 8.13008d0) - 2.6725d0)), t_968), t_74)), fmax(fmax(fmax(fmax(fmax(t_16, t_968), (0.175d0 - t_493)), (t_493 - 0.275d0)), t_976), t_306)), fmax(fmax(t_223, ((x * 4.47154d0) - t_170)), t_324)), fmax(fmax(t_1018, t_573), (t_170 - (x * 4.47154d0)))), fmax(fmax(t_94, t_573), (t_995 - (x * 4.47154d0)))), fmax(fmax(t_523, t_324), ((x * 4.47154d0) - t_995))), fmax(fmax(t_223, (1.79238d0 - t_912)), t_440)), fmax(fmax(t_1018, t_710), (t_912 - 1.79238d0))), fmax(fmax(t_94, t_710), (t_912 - 1.84738d0))), fmax(fmax(t_523, t_440), (1.84738d0 - t_912))), fmax(fmax(t_223, ((x * 4.47154d0) - t_441)), t_648)), fmax(fmax(t_1018, t_1003), (t_441 - (x * 4.47154d0)))), fmax(fmax(t_94, t_1003), (t_215 - (x * 4.47154d0)))), fmax(fmax(t_523, t_648), ((x * 4.47154d0) - t_215))), fmax(fmax(t_223, (1.51738d0 - t_912)), t_808)), fmax(fmax(t_1018, t_87), (t_912 - 1.51738d0))), fmax(fmax(t_94, t_87), (t_912 - 1.57238d0))), fmax(fmax(t_523, t_808), (1.57238d0 - t_912))), fmax(t_724, fmin(fmax(fmax(t_578, ((x * 8.13008d0) - 6.0525d0)), (5.5525d0 - (x * 8.13008d0))), fmax(fmax(t_724, -fmin(fmax(fmax(t_277, ((x * 2.23577d0) - t_1019)), (2.92819d0 - t_25)), fmax(fmax(t_39, (t_25 - 2.92819d0)), (t_1019 - (x * 2.23577d0))))), (0.175d0 - t_723))))), fmax(fmax(t_384, t_524), (4.5525d0 - (x * 8.13008d0)))), fmax(fmax(t_382, ((x * 8.13008d0) - 4.2025d0)), t_146)), fmax(fmax(fmax(fmax(fmax(t_16, t_524), t_146), t_976), (0.175d0 - t_546)), (t_546 - 0.275d0))), fmax(fmax(-fmin(fmax(fmax((t_367 - (x * 2.27642d0)), ((x * 4.5122d0) - 2.26024d0)), (1.80744d0 - t_1014)), fmax(fmax((t_1014 - 1.80744d0), (2.26024d0 - (x * 4.5122d0))), ((x * 2.27642d0) - t_367))), (0.175d0 - t_178)), (t_178 - 0.275d0))), fmax(fmax(t_958, ((x * 8.13008d0) - 3.3975d0)), (3.2975d0 - (x * 8.13008d0)))), (sqrt((t_104 + (((x * 8.13008d0) - 3.3475d0) ** 2.0d0))) - 0.075d0)), fmax(-fmin(fmax(fmax(fmax(t_577, ((y * 8.13008d0) - 2.8875d0)), t_943), (0.355d0 + (x * 5.42005d0))), (sqrt((((2.885d0 - (y * 8.13008d0)) ** 2.0d0) + (-(0.346667d0 + (x * 3.61337d0)) ** 2.0d0))) - 0.0625d0)), (sqrt((((2.8875d0 - (y * 8.13008d0)) ** 2.0d0) + (t_943 ** 2.0d0))) - 0.1625d0))), fmax(-fmin(fmax(fmax(fmax(t_245, (2.6625d0 - (y * 8.13008d0))), t_14), -(0.68d0 + (x * 5.42005d0))), (sqrt(((((y * 8.13008d0) - 2.665d0) ** 2.0d0) + ((0.343334d0 + (x * 3.61337d0)) ** 2.0d0))) - 0.0625d0)), (sqrt(((((y * 8.13008d0) - 2.6625d0) ** 2.0d0) + (t_14 ** 2.0d0))) - 0.1625d0))), fmax(fmax(t_958, t_18), -(1.22d0 + (x * 8.13008d0)))), fmax(fmax(fmax(t_16, t_976), (1.57d0 + (x * 8.13008d0))), t_565)), fmax(fmax(fmax(fmax(t_384, t_18), t_565), (0.175d0 - t_177)), (t_177 - 0.275d0))), fmax(fmax(t_642, (1.77d0 + (x * 8.13008d0))), -(1.87d0 + (x * 8.13008d0)))), fmax(fmax(t_642, (2.02d0 + (x * 8.13008d0))), -(2.12d0 + (x * 8.13008d0)))), fmax(fmax(fmax(fmax(fmax(-fmin(fmax(fmax(((0.0958748d0 + (x * 2.84553d0)) - (y * 0.813008d0)), (1.26444d0 - t_492)), ((y * 4.87805d0) - t_396)), fmax(fmax((t_396 - (y * 4.87805d0)), (t_492 - 1.26444d0)), ((y * 0.813008d0) - (0.095875d0 + (x * 2.84553d0))))), t_24), (2.35d0 - (y * 8.13008d0))), ((x * 8.13008d0) - 0.5475d0)), (0.3975d0 - (x * 8.13008d0))), (sqrt(((((y * 2.71003d0) - 0.858333d0) ** 2.0d0) + (((x * 8.13008d0) - 0.4725d0) ** 2.0d0))) - 0.075d0))), (sqrt(((t_24 ** 2.0d0) + (((x * 8.13008d0) - 0.4975d0) ** 2.0d0))) - 0.075d0)), fmax(fmax(-fmin(fmax(fmax(((y * 2.23577d0) - t_811), ((x * 4.5122d0) - 0.203962d0)), (0.788562d0 - t_1014)), fmax(fmax((t_1014 - 0.788562d0), (0.203962d0 - (x * 4.5122d0))), (t_811 - (y * 2.23577d0)))), (0.175d0 - t_513)), (t_513 - 0.275d0))), fmax(fmax(t_958, (0.3075d0 + (x * 8.13008d0))), -(0.4075d0 + (x * 8.13008d0)))), (sqrt((t_104 + ((0.357501d0 + (x * 8.13008d0)) ** 2.0d0))) - 0.075d0)), fmax(fmax(t_382, (3.845d0 + (x * 8.13008d0))), -(3.945d0 + (x * 8.13008d0)))), fmax(fmax(t_383, t_230), -(4.17d0 + (x * 8.13008d0)))), fmax(fmax(t_958, (4.52d0 + (x * 8.13008d0))), t_821)), fmax(fmax(fmax(fmax(fmax(t_16, t_626), t_230), t_821), (0.175d0 - t_356)), (t_356 - 0.275d0))), fmax(t_911, fmin(fmax(fmax(t_578, (4.72d0 + (x * 8.13008d0))), -(5.22d0 + (x * 8.13008d0))), fmax(fmax(t_911, -fmin(fmax(fmax(t_277, (t_150 - (y * 1.21951d0))), -t_289), fmax(fmax(t_39, t_289), ((y * 1.21951d0) - t_150)))), (0.175d0 - t_910))))), fmax(fmax(t_223, (t_12 - (y * 2.03252d0))), t_152)), fmax(fmax(t_1018, t_372), ((y * 2.03252d0) - t_12))), fmax(fmax(t_94, t_372), ((y * 2.03252d0) - t_694))), fmax(fmax(t_523, t_152), (t_694 - (y * 2.03252d0)))), fmax(fmax(t_223, -t_197), t_373)), fmax(fmax(fmax(t_381, ((y * 8.13008d0) - 3.025d0)), (2.27d0 + (x * 8.13008d0))), t_69)), fmax(fmax(fmax(fmax(t_69, ((y * 8.13008d0) - 3.15d0)), (2.85d0 - (y * 8.13008d0))), (1.72d0 + (x * 8.13008d0))), fmin(fmax((0.075d0 - t_640), (t_640 - 0.175d0)), fmax((0.075d0 - t_641), (t_641 - 0.175d0))))), fmax(fmax(t_369, t_117), t_258)), fmax(fmax(t_488, t_566), t_102)), fmax(fmax(t_488, t_1018), t_857)), fmax(fmax(t_258, t_856), t_223)), fmax(fmax(t_223, t_117), t_318)), fmax(fmax(t_1018, t_566), t_568)), fmax(fmax(t_94, t_857), t_568)), fmax(fmax(t_523, t_856), t_318)), fmax(fmax(t_223, -t_121), t_267)), fmax(fmax(t_1018, t_121), t_571)), fmax(fmax(t_94, t_571), t_787)), fmax(fmax(t_523, t_267), -t_787)), fmax(fmax(fmax(t_684, -(4.725d0 + (x * 8.13008d0))), -(0.0749998d0 + (y * 8.13008d0))), (4.625d0 + (x * 8.13008d0)))), fmax((0.175d0 - t_761), (t_761 - 0.275d0))), fmax(fmax(t_685, t_442), -t_813)), fmax(fmax(t_796, t_880), t_84)), fmax(fmax(fmax(fmax(t_759, t_442), t_84), (0.175d0 - t_766)), (t_766 - 0.275d0))), fmax(fmax(t_940, -t_38), (6.175d0 + (x * 8.13008d0)))), fmax(fmax(fmax(t_684, (0.75d0 - (y * 8.13008d0))), t_582), t_38)), fmax(fmax(fmax(t_379, t_582), t_38), ((y * 8.13008d0) - 0.4d0))), fmax(fmax(fmax(fmax(t_940, t_581), -(7.175d0 + (x * 8.13008d0))), (0.175d0 - t_769)), (t_769 - 0.275d0))), fmax(fmax(fmax(t_379, t_190), t_722), -t_549)), fmax(fmax(t_685, t_144), t_227)), fmax(fmax(t_759, t_525), -(1.125d0 + (x * 8.13008d0)))), fmax(fmax(t_940, (1.475d0 + (x * 8.13008d0))), t_147)), fmax(fmax(fmax(fmax(t_796, t_525), t_147), (0.175d0 - t_770)), (t_770 - 0.275d0))), fmax(fmax(t_941, (1.825d0 + (x * 8.13008d0))), -(1.925d0 + (x * 8.13008d0)))), fmax(fmax(t_424, t_364), t_415)), fmax(fmax(fmax(fmax(t_380, t_364), t_415), (0.15d0 - t_696)), (t_696 - 0.25d0))), fmax(fmax(t_1012, t_290), -(2.975d0 + (x * 8.13008d0)))), fmax(fmax(t_685, (3.325d0 + (x * 8.13008d0))), t_937)), fmax(fmax(fmax(fmax(fmax(t_684, t_1017), t_290), t_937), (0.175d0 - t_765)), (t_765 - 0.275d0))), fmax((0.175d0 - t_945), (t_945 - 0.275d0))), fmax(fmax(t_689, ((x * 8.13008d0) - 5.958d0)), t_426)), fmax(fmax(fmax(fmax(fmax(t_68, (0.175d0 - t_928)), (t_928 - 0.275d0)), t_304), t_153), t_426)), fmax(fmax(fmax(t_388, (5.633d0 - (x * 8.13008d0))), t_687), t_153)), (sqrt(((((y * 8.13008d0) - 2.1d0) ** 2.0d0) + (((x * 8.13008d0) - 5.683d0) ** 2.0d0))) - 0.075d0)), fmax(fmax(fmax(t_484, ((x * 8.13008d0) - 5.508d0)), (5.408d0 - (x * 8.13008d0))), t_687)), fmax(fmax(fmax(t_484, ((x * 8.13008d0) - 5.258d0)), (5.158d0 - (x * 8.13008d0))), t_687)), fmax(fmax(fmax(((y * 8.13008d0) - 1.925d0), ((x * 8.13008d0) - 5.008d0)), t_702), t_687)), fmax(fmax(fmax(fmax(t_702, t_118), (1.75d0 - (y * 8.13008d0))), t_904), fmin(fmax((0.075d0 - t_496), (t_496 - 0.175d0)), fmax((0.075d0 - t_495), (t_495 - 0.175d0))))), fmax(fmax(fmax(fmax(fmax(t_190, t_684), t_1017), t_227), (0.175d0 - t_772)), (t_772 - 0.275d0))), fmax(t_764, fmin(fmax(fmax(fmax(t_294, t_419), t_286), t_409), fmax(fmax(t_764, -fmin(fmax(fmax(t_97, (t_79 - (y * 1.21951d0))), -t_186), fmax(fmax(t_729, t_186), ((y * 1.21951d0) - t_79)))), (0.175d0 - t_763))))), fmax(t_936, fmin(fmax(fmax(fmax(((y * 8.13008d0) - 1.715d0), (1.625d0 - (y * 8.13008d0))), ((x * 8.13008d0) - 7.058d0)), (6.558d0 - (x * 8.13008d0))), fmax(fmax(t_936, -fmin(fmax(fmax(((y * 5.28455d0) - 1.08875d0), ((x * 2.23577d0) - t_336)), (2.6547d0 - t_25)), fmax(fmax((t_25 - 2.6547d0), (t_336 - (x * 2.23577d0))), (1.08875d0 - (y * 5.28455d0))))), (0.175d0 - t_935))))), fmax(fmax(fmax(t_559, t_687), t_304), (6.308d0 - (x * 8.13008d0)))), fmax((t_931 - 0.275d0), (0.175d0 - t_931))), fmax(fmax(t_359, ((x * 4.47154d0) - t_1021)), t_96)), fmax(fmax(t_228, (t_1021 - (x * 4.47154d0))), t_673)), fmax(fmax(t_228, t_102), (t_526 - (x * 4.47154d0)))), fmax(fmax(t_96, ((x * 4.47154d0) - t_526)), t_369)), fmax(fmax(t_359, (1.4775d0 - t_912)), t_148)), fmax(fmax(t_673, t_357), (t_912 - 1.4775d0))), fmax(fmax(t_102, t_357), (t_912 - 1.5325d0))), fmax(fmax(t_369, t_148), (1.5325d0 - t_912))), fmax(fmax(t_359, ((x * 4.47154d0) - t_149)), t_288)), fmax(fmax(t_673, t_554), (t_149 - (x * 4.47154d0)))), fmax(fmax(t_102, t_554), (t_922 - (x * 4.47154d0)))), fmax(fmax(t_369, t_288), ((x * 4.47154d0) - t_922))), fmax(fmax(t_359, (1.2025d0 - t_912)), t_418)), fmax(fmax(t_673, t_682), (t_912 - 1.2025d0))), fmax(fmax(t_102, t_682), (t_912 - 1.2575d0))), fmax(fmax(t_369, t_418), (1.2575d0 - t_912))), fmax((0.175d0 - t_930), (t_930 - 0.275d0))), fmax(fmax(fmax(fmax(t_687, -fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmax(fmax(((y * 4.06504d0) - 1.2d0), ((x * 4.06504d0) - 2.104d0)), (3.054d0 - t_979)), fmax(fmax((t_979 - 3.054d0), (2.104d0 - (x * 4.06504d0))), (1.2d0 - (y * 4.06504d0)))), fmax(fmax(((x * 8.13008d0) - t_428), (1.8858d0 - t_697)), (t_817 - (x * 5.28455d0)))), fmax(fmax(((x * 5.28455d0) - t_817), (t_697 - 1.8858d0)), (t_428 - (x * 8.13008d0)))), fmax(fmax((0.351d0 - (y * 2.19512d0)), (1.2978d0 - (x * 2.84553d0))), (t_444 - 1.7433d0))), fmax(fmax((1.7433d0 - t_444), ((x * 2.84553d0) - 1.2978d0)), ((y * 2.19512d0) - 0.351d0))), fmax(fmax(((y * 3.25203d0) - 0.96d0), ((x * 4.47154d0) - t_353)), (2.0394d0 - (x * 4.47154d0)))), fmax(fmax(((x * 4.47154d0) - 2.0394d0), (t_353 - (x * 4.47154d0))), (0.96d0 - (y * 3.25203d0))))), t_1), ((x * 8.13008d0) - 4.108d0)), (3.608d0 - (x * 8.13008d0)))), fmax(fmax(t_689, ((x * 8.13008d0) - 3.25d0)), (3.15d0 - (x * 8.13008d0)))), fmax(fmax(fmax(fmax(t_689, t_977), (4.5d0 - (x * 11.6144d0))), (0.45d0 - sqrt((t_269 + (((x * 14.518d0) - 6.3125d0) ** 2.0d0))))), (sqrt((t_269 + (t_977 ** 2.0d0))) - 0.55d0))), fmax(fmax(fmax(t_153, t_124), t_173), (1.85d0 - (y * 8.13008d0)))), fmax(fmax(fmax(t_687, t_124), t_575), t_173)), fmax(fmax(fmax(fmax(t_688, t_123), -(3.275d0 + (x * 8.13008d0))), (0.175d0 - t_929)), (t_929 - 0.275d0))), fmax(fmax(fmax(t_1, (2.3d0 - (y * 8.13008d0))), t_807), t_1004)), fmax(fmax(fmax(t_687, t_575), t_807), t_1004)), fmax(fmax(fmax(t_481, t_687), t_1), -(3.9d0 + (x * 8.13008d0)))), fmax(fmax(t_359, (t_718 - (y * 2.03252d0))), t_1010)), fmax(fmax(t_673, t_1009), ((y * 2.03252d0) - t_718))), fmax(fmax(t_102, t_1009), ((y * 2.03252d0) - t_447))), fmax(fmax(t_369, t_1010), (t_447 - (y * 2.03252d0)))), fmax(fmax(t_359, -t_40), t_184)), fmax(fmax(t_673, t_40), t_449)), fmax(fmax(t_102, t_449), t_651)), fmax(fmax(t_369, t_184), -t_651)), fmax(fmax(t_359, (t_187 - (y * 2.03252d0))), t_355)), fmax(fmax(t_673, t_594), ((y * 2.03252d0) - t_187))), fmax(fmax(t_102, t_594), ((y * 2.03252d0) - t_6))), fmax(fmax(t_369, t_355), (t_6 - (y * 2.03252d0)))), fmax(fmax(fmax((1.65d0 - (y * 8.13008d0)), (0.300001d0 + (x * 8.13008d0))), t_1), -(0.400001d0 + (x * 8.13008d0)))), fmax(fmax(fmax(t_464, t_118), (1.95d0 - (y * 8.13008d0))), t_100)), fmax(fmax(fmax(fmax(fmax(t_464, t_687), t_100), t_556), (0.15d0 - t_676)), (t_676 - 0.25d0))), fmax(fmax(fmax(fmax(fmax(-fmin(fmax(fmax((t_558 - (y * 0.813008d0)), (0.281875d0 - t_492)), ((y * 4.87805d0) - t_938)), fmax(fmax((t_938 - (y * 4.87805d0)), (t_492 - 0.281875d0)), ((y * 0.813008d0) - t_558))), t_296), (1.25d0 - (y * 8.13008d0))), (1.375d0 + (x * 8.13008d0))), -(1.525d0 + (x * 8.13008d0))), (sqrt(((((y * 2.71003d0) - 0.491667d0) ** 2.0d0) + ((1.45d0 + (x * 8.13008d0)) ** 2.0d0))) - 0.075d0))), (sqrt(((t_296 ** 2.0d0) + ((1.425d0 + (x * 8.13008d0)) ** 2.0d0))) - 0.075d0)), fmax((0.175d0 - t_934), (t_934 - 0.275d0))), fmax(fmax(t_688, -t_173), (2.275d0 + (x * 8.13008d0)))), fmax(fmax(fmax(fmax(fmax((t_754 - 0.275d0), t_206), t_305), (0.175d0 - t_754)), t_486), t_627)), fmax(fmax(fmax(t_19, ((x * 8.13008d0) - 1.556d0)), (1.456d0 - (x * 8.13008d0))), t_259)), fmax((0.175d0 - t_436), (t_436 - 0.275d0))), fmax(fmax(fmax(fmax(fmax(-fmin(fmax(fmax((t_497 - (y * 0.813008d0)), (2.27973d0 - t_492)), ((y * 4.87805d0) - t_868)), fmax(fmax((t_868 - (y * 4.87805d0)), (t_492 - 2.27973d0)), ((y * 0.813008d0) - t_497))), t_271), (4.55d0 - (y * 8.13008d0))), ((x * 8.13008d0) - 0.171d0)), (0.0209999d0 - (x * 8.13008d0))), (sqrt(((((y * 2.71003d0) - 1.59167d0) ** 2.0d0) + (((x * 8.13008d0) - 0.0959997d0) ** 2.0d0))) - 0.075d0))), (sqrt(((t_271 ** 2.0d0) + (((x * 8.13008d0) - 0.121d0) ** 2.0d0))) - 0.075d0)), fmax(fmax(t_879, t_998), (3.65055d0 - t_912))), fmax(fmax(((x * 4.47154d0) - t_330), t_505), t_649)), fmax(fmax(t_1005, (t_330 - (x * 4.47154d0))), t_86)), fmax(fmax(t_1005, ((0.970551d0 + (y * 2.03252d0)) - (x * 4.47154d0))), t_404)), fmax(fmax(t_505, ((x * 4.47154d0) - (0.970552d0 + (y * 2.03252d0)))), t_879)), fmax(fmax((3.32055d0 - t_912), t_88), t_649)), fmax(fmax(t_281, (t_912 - 3.32055d0)), t_86)), fmax(fmax(t_281, (t_912 - 3.37555d0)), t_404)), fmax(fmax(t_88, (3.37555d0 - t_912)), t_879)), fmax(fmax(fmax((2.751d0 - (x * 8.13008d0)), ((x * 8.13008d0) - 2.851d0)), t_283), t_259)), fmax(fmax(fmax(t_592, t_652), t_814), t_486)), fmax(fmax(fmax(t_652, t_814), t_46), t_259)), fmax(fmax(fmax(fmax(fmax((1.851d0 - (x * 8.13008d0)), ((x * 8.13008d0) - 2.576d0)), (0.175d0 - t_661)), (t_661 - 0.275d0)), t_283), t_259)), fmax(fmax(fmax(t_206, (2.126d0 - (x * 8.13008d0))), t_233), t_259)), fmax(fmax(fmax(((x * 8.13008d0) - 1.776d0), t_305), t_259), t_486)), fmax(fmax(fmax((4.6d0 - (y * 8.13008d0)), (1.862d0 + (x * 8.13008d0))), -(1.962d0 + (x * 8.13008d0))), t_486)), (sqrt(((((y * 8.13008d0) - 5.4d0) ** 2.0d0) + ((1.912d0 + (x * 8.13008d0)) ** 2.0d0))) - 0.075d0)), fmax(fmax(fmax(t_923, -(2.762d0 + (x * 8.13008d0))), t_283), t_259)), fmax(fmax(fmax(t_592, t_370), t_924), t_486)), fmax(fmax(fmax(t_46, t_370), t_924), t_259)), fmax(fmax(fmax(fmax(fmax((1.762d0 + (x * 8.13008d0)), -t_370), (0.175d0 - t_371)), (t_371 - 0.275d0)), t_283), t_259)), fmax(fmax(fmax(t_19, (2.882d0 + (x * 8.13008d0))), -(2.982d0 + (x * 8.13008d0))), t_259)), fmax((0.175d0 - t_199), (t_199 - 0.275d0))), fmax(t_753, fmin(fmax(fmax(fmax((0.0790005d0 + (x * 8.13008d0)), -(0.579001d0 + (x * 8.13008d0))), t_612), t_755), fmax(fmax(t_753, -fmin(fmax(fmax((t_252 - (y * 1.21951d0)), (2.34202d0 - t_25)), t_487), fmax(fmax((t_25 - 2.34202d0), ((y * 1.21951d0) - t_252)), t_967))), (0.175d0 - t_752))))), fmax(fmax(fmax((0.987d0 + (x * 8.13008d0)), -(1.087d0 + (x * 8.13008d0))), t_259), t_486)), fmax(fmax(fmax(fmax(fmax(t_865, -(1.55286d0 + (x * 11.6144d0))), (0.45d0 - sqrt((t_314 + ((1.25357d0 + (x * 14.518d0)) ** 2.0d0))))), (sqrt((t_314 + (t_865 ** 2.0d0))) - 0.55d0)), t_259), t_486)), fmax(fmax(fmax(t_122, -(1.287d0 + (x * 8.13008d0))), t_259), t_486)), fmax(fmax(fmax((1.637d0 + (x * 8.13008d0)), t_708), t_997), t_486)), fmax(fmax(fmax(fmax(fmax(t_122, t_708), (0.175d0 - t_326)), (t_326 - 0.275d0)), t_259), t_157)), fmax(fmax(fmax(fmax(fmax((4.325d0 - (y * 8.13008d0)), (1.587d0 + (x * 8.13008d0))), -t_331), (0.175d0 - t_716)), (t_716 - 0.275d0)), t_714)), fmax(fmax(fmax(t_132, t_216), t_334), t_445)), fmax(fmax(fmax(t_216, ((x * 8.13008d0) - 6.3305d0)), (6.2305d0 - (x * 8.13008d0))), t_89)), fmax(fmax(-fmin(fmax(fmax(((y * 2.23577d0) - t_518), ((x * 4.5122d0) - 2.94178d0)), (3.05264d0 - t_1014)), fmax(fmax((t_1014 - 3.05264d0), (2.94178d0 - (x * 4.5122d0))), (t_518 - (y * 2.23577d0)))), (0.175d0 - t_461)), (t_461 - 0.275d0))), fmax(fmax(t_1022, ((x * 8.13008d0) - 4.6255d0)), (4.5255d0 - (x * 8.13008d0)))), (sqrt((t_411 + (((x * 8.13008d0) - 4.5755d0) ** 2.0d0))) - 0.075d0)), fmax(fmax(t_915, t_56), (4.3005d0 - (x * 8.13008d0)))), fmax((0.175d0 - t_468), (t_468 - 0.275d0))), fmax(fmax(fmax(fmax(fmax(t_56, t_101), (3.8505d0 - (x * 8.13008d0))), (0.175d0 - t_474)), (t_474 - 0.275d0)), t_283)), fmax(t_732, fmin(fmax(fmax(fmax((4.242d0 + (x * 8.13008d0)), -(4.742d0 + (x * 8.13008d0))), t_612), t_755), fmax(fmax(t_732, -fmin(fmax(fmax((t_105 - (y * 1.21951d0)), (1.1972d0 - t_25)), t_487), fmax(fmax((t_25 - 1.1972d0), ((y * 1.21951d0) - t_105)), t_967))), (0.175d0 - t_731))))), fmax(fmax(fmax(t_143, -(5.25d0 + (x * 8.13008d0))), t_259), t_486)), fmax(fmax(fmax(fmax(fmax(t_244, -(7.5d0 + (x * 11.6144d0))), (0.45d0 - sqrt((t_314 + ((8.6875d0 + (x * 14.518d0)) ** 2.0d0))))), (sqrt((t_314 + (t_244 ** 2.0d0))) - 0.55d0)), t_259), t_486)), fmax(t_301, fmin(fmax(fmax(fmax((5.35d0 + (x * 8.13008d0)), -(5.85d0 + (x * 8.13008d0))), t_612), t_755), fmax(fmax(t_301, -fmin(fmax(fmax((t_564 - (y * 1.21951d0)), (0.8925d0 - t_25)), t_487), fmax(fmax((t_25 - 0.8925d0), ((y * 1.21951d0) - t_564)), t_967))), (0.175d0 - t_300))))), fmax(fmax(fmax(t_311, -(6.15d0 + (x * 8.13008d0))), t_259), t_157)), fmax(fmax(t_779, t_283), t_259)), fmax(fmax(fmax(fmax(fmax(t_182, t_311), (0.175d0 - t_655)), (t_655 - 0.275d0)), t_997), t_486)), fmax(fmax(fmax(t_89, t_570), t_334), t_445)), fmax(fmax(t_915, t_782), (0.8705d0 - (x * 8.13008d0)))), fmax((0.175d0 - t_459), (t_459 - 0.275d0))), fmax(fmax(fmax(fmax(fmax(t_101, t_782), (0.4205d0 - (x * 8.13008d0))), (0.175d0 - t_473)), (t_473 - 0.275d0)), t_283)), fmax(fmax(t_1022, t_327), (0.220499d0 - (x * 8.13008d0)))), fmax(fmax(fmax(t_3, (0.129501d0 + (x * 8.13008d0))), t_999), t_126)), fmax(fmax(fmax(fmax(t_455, t_327), t_999), (0.175d0 - t_506)), (t_506 - 0.275d0))), fmax((0.175d0 - t_457), (t_457 - 0.275d0))), fmax(fmax(t_1022, (1.2375d0 + (x * 8.13008d0))), -(1.3375d0 + (x * 8.13008d0)))), fmax(fmax(fmax(fmax(t_1022, t_133), -(1.91072d0 + (x * 11.6144d0))), (0.45d0 - sqrt((t_587 + ((1.70089d0 + (x * 14.518d0)) ** 2.0d0))))), (sqrt((t_587 + (t_133 ** 2.0d0))) - 0.55d0))), fmax(fmax(t_350, ((x * 8.13008d0) - 3.7305d0)), (3.6305d0 - (x * 8.13008d0)))), fmax((0.175d0 - t_726), (t_726 - 0.275d0))), fmax(fmax(t_350, ((x * 8.13008d0) - 3.0705d0)), (2.9705d0 - (x * 8.13008d0)))), fmax(fmax(t_350, ((x * 8.13008d0) - 2.8205d0)), (2.7205d0 - (x * 8.13008d0)))), fmax(fmax(fmax(t_216, ((y * 8.13008d0) - 6.325d0)), ((x * 8.13008d0) - 2.5705d0)), t_189)), fmax(fmax(fmax(fmax(t_189, t_540), (6.15d0 - (y * 8.13008d0))), ((x * 8.13008d0) - 3.1205d0)), fmin(fmax((0.075d0 - t_349), (t_349 - 0.175d0)), fmax((0.075d0 - t_548), (t_548 - 0.175d0))))), fmax(fmax(t_455, t_103), (1.5205d0 - (x * 8.13008d0)))), fmax(fmax(t_422, ((x * 8.13008d0) - 1.1705d0)), t_603)), fmax(fmax(fmax(fmax(fmax(t_3, t_103), t_603), t_126), (0.175d0 - t_458)), (t_458 - 0.275d0))), fmax(fmin(fmax(fmax(fmax(t_850, ((x * 8.13008d0) - 6.4085d0)), (5.9085d0 - (x * 8.13008d0))), t_154), fmax(fmax(-fmin(fmax(fmax(t_610, ((x * 2.23577d0) - t_852)), (3.57609d0 - t_25)), fmax(fmax((t_25 - 3.57609d0), (t_852 - (x * 2.23577d0))), t_302)), (0.175d0 - t_622)), t_959)), t_959)), fmax(fmax(t_254, ((x * 8.13008d0) - 5.7585d0)), (5.6585d0 - (x * 8.13008d0)))), fmax(fmax(t_254, ((x * 8.13008d0) - 5.5085d0)), (5.4085d0 - (x * 8.13008d0)))), fmax(fmax(fmax(t_253, ((y * 8.13008d0) - 4.125d0)), ((x * 8.13008d0) - 5.2585d0)), t_312)), fmax(fmax(fmax(fmax(t_312, ((y * 8.13008d0) - 4.25d0)), (3.95d0 - (y * 8.13008d0))), ((x * 8.13008d0) - 5.8085d0)), fmin(fmax((0.075d0 - t_266), (t_266 - 0.175d0)), fmax((0.075d0 - t_707), (t_707 - 0.175d0))))), fmax(fmax(t_1018, t_197), t_374)), fmax(fmax(t_94, t_374), t_392)), fmax(fmax(t_523, t_373), -t_392)), fmax(fmax(t_642, (6.09d0 + (x * 8.13008d0))), -(6.19d0 + (x * 8.13008d0)))), fmax((0.175d0 - t_328), (t_328 - 0.275d0))), fmax(t_1001, fmin(fmax(fmax(t_578, t_242), -t_144), fmax(fmax(t_1001, -fmin(fmax(fmax(t_277, (t_717 - (y * 1.21951d0))), -t_1007), fmax(fmax(t_39, t_1007), ((y * 1.21951d0) - t_717)))), (0.175d0 - t_1000))))), fmax(fmax(fmax(t_294, t_381), t_175), -(7.55d0 + (x * 8.13008d0)))), fmax(fmax(t_382, (7.9d0 + (x * 8.13008d0))), t_33)), fmax(fmax(fmax(fmax(fmax(t_294, t_16), t_976), t_33), (0.175d0 - t_514)), (t_514 - 0.275d0))), fmax(fmax(fmax(fmax(t_715, (2.121d0 - (x * 8.13008d0))), ((x * 8.13008d0) - 2.846d0)), (0.175d0 - t_621)), (t_621 - 0.275d0))), fmax(t_816, fmin(fmax(fmax(t_851, ((x * 8.13008d0) - 2.496d0)), (1.996d0 - (x * 8.13008d0))), fmax(fmax(t_816, -fmin(fmax(fmax(t_610, ((x * 2.23577d0) - t_51)), (2.50015d0 - t_25)), fmax(fmax(t_302, (t_25 - 2.50015d0)), (t_51 - (x * 2.23577d0))))), (0.175d0 - t_815))))), fmax(fmax(fmax(t_253, ((x * 8.13008d0) - 1.588d0)), (1.488d0 - (x * 8.13008d0))), t_59)), fmax(fmax(fmax(fmax(fmax(t_253, t_416), (2.12571d0 - (x * 11.6144d0))), (0.45d0 - sqrt((t_925 + (((x * 14.518d0) - 3.34464d0) ** 2.0d0))))), (sqrt((t_925 + (t_416 ** 2.0d0))) - 0.55d0)), t_59)), fmax(fmax(fmax(t_253, ((x * 8.13008d0) - 1.363d0)), (1.263d0 - (x * 8.13008d0))), t_59)), (sqrt(((((y * 8.13008d0) - 4.3d0) ** 2.0d0) + (((x * 8.13008d0) - 1.313d0) ** 2.0d0))) - 0.075d0)), fmax(fmax(fmax(t_253, t_609), (1.038d0 - (x * 8.13008d0))), t_59)), fmax((t_616 - 0.275d0), (0.175d0 - t_616))), fmax(-fmin(fmax(fmax(fmax(t_850, ((y * 8.13008d0) - 3.9875d0)), t_955), ((x * 5.42005d0) - 2.939d0)), (sqrt((((3.985d0 - (y * 8.13008d0)) ** 2.0d0) + ((1.84933d0 - (x * 3.61337d0)) ** 2.0d0))) - 0.0625d0)), (sqrt((((3.9875d0 - (y * 8.13008d0)) ** 2.0d0) + (t_955 ** 2.0d0))) - 0.1625d0))), fmax(-fmin(fmax(fmax(fmax(((y * 8.13008d0) - 3.925d0), (3.7625d0 - (y * 8.13008d0))), t_700), (2.614d0 - (x * 5.42005d0))), (sqrt(((((y * 8.13008d0) - 3.765d0) ** 2.0d0) + (((x * 3.61337d0) - 1.85267d0) ** 2.0d0))) - 0.0625d0)), (sqrt(((((y * 8.13008d0) - 3.7625d0) ** 2.0d0) + (t_700 ** 2.0d0))) - 0.1625d0))), fmax(fmax(t_715, (3.021d0 - (x * 8.13008d0))), ((x * 8.13008d0) - 3.121d0))), fmax(fmax(fmax(t_59, (4.05d0 - (y * 8.13008d0))), t_522), t_499)), fmax(fmax(fmax(t_253, t_522), t_499), t_783)), fmax(fmax(fmax(fmax(t_255, t_212), -(1.67143d0 + (x * 11.6144d0))), (0.45d0 - sqrt((t_925 + ((1.40179d0 + (x * 14.518d0)) ** 2.0d0))))), (sqrt((t_925 + (t_212 ** 2.0d0))) - 0.55d0))), fmax(t_620, fmin(fmax(fmax(t_851, (1.97d0 + (x * 8.13008d0))), -(2.47d0 + (x * 8.13008d0))), fmax(fmax(t_620, -fmin(fmax(fmax(t_610, (t_507 - (y * 1.21951d0))), (1.272d0 - t_25)), fmax(fmax(t_302, (t_25 - 1.272d0)), ((y * 1.21951d0) - t_507)))), (0.175d0 - t_619))))), fmax(fmax(t_217, (t_332 - (y * 2.03252d0))), t_512)), fmax(fmax(t_809, ((y * 2.03252d0) - t_332)), t_1011)), fmax(fmax(t_809, t_134), ((y * 2.03252d0) - t_221))), fmax(fmax(t_512, (t_221 - (y * 2.03252d0))), t_515)), fmax(fmax(t_217, -t_727), t_41)), fmax(fmax(t_1011, t_727), t_285)), fmax(fmax(t_134, t_285), t_452)), fmax(fmax(t_515, t_41), -t_452)), fmax(fmax(t_254, (3.34d0 + (x * 8.13008d0))), -(3.44d0 + (x * 8.13008d0)))), fmax(fmax(fmax(t_412, ((x * 8.13008d0) - 0.688d0)), t_595), t_59)), fmax(fmax(fmax(fmax(t_614, t_609), t_595), (0.175d0 - t_617)), (t_617 - 0.275d0))), fmax(fmax(fmax(t_59, (3.225d0 - (y * 8.13008d0))), ((x * 8.13008d0) - 0.487999d0)), (0.387999d0 - (x * 8.13008d0)))), fmax((0.175d0 - t_618), (t_618 - 0.275d0))), fmax(t_678, fmin(fmax(fmax(t_851, (0.162001d0 + (x * 8.13008d0))), -(0.662001d0 + (x * 8.13008d0))), fmax(fmax(t_678, -fmin(fmax(fmax(t_610, (t_13 - (y * 1.21951d0))), (1.7692d0 - t_25)), fmax(fmax(t_302, (t_25 - 1.7692d0)), ((y * 1.21951d0) - t_13)))), (0.175d0 - t_677))))), fmax(fmax(t_255, (1.07d0 + (x * 8.13008d0))), -(1.17d0 + (x * 8.13008d0)))), fmax(fmin(fmax(fmax(-fmin(fmax(fmax(t_487, ((x * 2.23577d0) - t_479)), (4.04153d0 - t_25)), fmax(fmax((t_25 - 4.04153d0), (t_479 - (x * 2.23577d0))), t_967)), (0.175d0 - t_159)), t_386), fmax(fmax(fmax(t_612, t_755), ((x * 8.13008d0) - 6.101d0)), (5.601d0 - (x * 8.13008d0)))), t_386)), fmax(fmax(fmax(t_112, (5.301d0 - (x * 8.13008d0))), t_259), t_157)), fmax(fmax(fmax(t_283, ((x * 8.13008d0) - 4.951d0)), t_629), t_259)), fmax(fmax(fmax(fmax(fmax(t_112, t_629), t_997), (0.175d0 - t_166)), (t_166 - 0.275d0)), t_486)), fmax(fmax(t_649, ((x * 4.47154d0) - t_703)), t_975)), fmax(fmax(t_974, (t_703 - (x * 4.47154d0))), t_86)), fmax(fmax(t_974, t_404), (t_438 - (x * 4.47154d0)))), fmax(fmax(t_975, ((x * 4.47154d0) - t_438)), t_879)), fmax(fmax(t_649, (3.59555d0 - t_912)), t_998)), fmax(fmax(t_86, t_172), (t_912 - 3.59555d0))), fmax(fmax(t_404, t_172), (t_912 - 3.65055d0))), fmax((0.175d0 - t_623), (t_623 - 0.275d0))), fmax(fmax(t_614, t_174), -(4.15d0 + (x * 8.13008d0)))), fmax(fmax(fmax(t_179, t_274), t_253), t_714)), fmax(fmax(fmax(fmax(fmax(t_274, t_412), t_59), t_174), (0.175d0 - t_1002)), (t_1002 - 0.275d0))), fmax(fmax(fmax(t_714, (4.5d0 - (y * 8.13008d0))), t_443), t_508)), fmax(fmax(fmax(t_253, t_783), t_443), t_508)), fmax(fmax(t_715, t_45), -(5.7d0 + (x * 8.13008d0)))), fmax(fmax(fmax(t_233, t_259), t_276), (6.651d0 - (x * 8.13008d0)))), fmax(fmax(fmax(t_259, t_486), ((x * 8.13008d0) - 6.30101d0)), t_900)), fmax(fmax(fmax(fmax(fmax(t_276, t_486), t_900), t_627), (0.175d0 - t_339)), (t_339 - 0.275d0))), fmax(fmax(fmax(fmax(t_127, t_92), t_136), (0.175d0 - t_460)), (t_460 - 0.275d0))), fmax(fmax(t_588, (3.825d0 + (x * 8.13008d0))), -(3.925d0 + (x * 8.13008d0)))), fmax(fmax(t_541, t_322), t_142)), fmax(fmax(fmax(fmax(fmax(t_216, t_322), t_142), t_596), (0.15d0 - t_918)), (t_918 - 0.25d0))), fmax(fmax(t_588, (5.025d0 + (x * 8.13008d0))), -(5.125d0 + (x * 8.13008d0)))), fmax(fmax(t_541, t_542), t_881)), fmax(fmax(fmax(fmax(fmax(t_216, t_596), t_542), t_881), (0.15d0 - t_917)), (t_917 - 0.25d0))), fmax(fmax(t_417, t_3), -(5.475d0 + (x * 8.13008d0)))), fmax(fmax(t_127, (5.825d0 + (x * 8.13008d0))), t_11)), fmax(fmax(fmax(fmax(t_417, t_454), t_11), (0.175d0 - t_462)), (t_462 - 0.275d0))), fmax(fmax(t_779, t_216), t_89)), fmax(fmax(fmax(t_519, t_89), t_570), t_107)), fmax(fmax(fmax(t_519, t_3), t_107), (6.25d0 - (y * 8.13008d0)))), fmax(fmax(fmax(t_519, t_132), t_216), t_107)), fmax(-fmin(fmax(fmax(fmax((6.025d0 - (y * 8.13008d0)), ((y * 8.13008d0) - 6.1875d0)), t_202), (1.425d0 + (x * 5.42005d0))), (sqrt((((6.185d0 - (y * 8.13008d0)) ** 2.0d0) + (-(1.06d0 + (x * 3.61337d0)) ** 2.0d0))) - 0.0625d0)), (sqrt((((6.1875d0 - (y * 8.13008d0)) ** 2.0d0) + (t_202 ** 2.0d0))) - 0.1625d0))), fmax(-fmin(fmax(fmax(fmax(((y * 8.13008d0) - 6.125d0), (5.9625d0 - (y * 8.13008d0))), t_201), -(1.75d0 + (x * 5.42005d0))), (sqrt(((((y * 8.13008d0) - 5.965d0) ** 2.0d0) + ((1.05667d0 + (x * 3.61337d0)) ** 2.0d0))) - 0.0625d0)), (sqrt(((((y * 8.13008d0) - 5.9625d0) ** 2.0d0) + (t_201 ** 2.0d0))) - 0.1625d0))), fmax(fmax(t_1022, (2.75d0 + (x * 8.13008d0))), -(2.85d0 + (x * 8.13008d0)))), (sqrt((t_411 + ((2.8d0 + (x * 8.13008d0)) ** 2.0d0))) - 0.075d0)), fmax(fmax(t_455, t_92), -(3.125d0 + (x * 8.13008d0)))), fmax(fmax(t_422, (3.475d0 + (x * 8.13008d0))), t_136)), fmax(fmax(fmax(fmax(t_45, t_216), t_89), -t_107), fmin(fmax((0.175d0 - t_870), (t_870 - 0.275d0)), fmax((0.175d0 - t_214), (t_214 - 0.275d0))))) end function
public static double code(double x, double y) { double t_0 = (x * 8.13008) - 0.0979996; double t_1 = (y * 8.13008) - 2.4; double t_2 = Math.pow((0.0999999 + (y * 8.13008)), 2.0); double t_3 = (y * 8.13008) - 6.35; double t_4 = (x * 11.6144) - 3.18286; double t_5 = 2.35 + (y * 8.13008); double t_6 = 3.5125 + (x * 4.47154); double t_7 = Math.pow((7.725 + (x * 8.13008)), 2.0); double t_8 = -(0.3955 + (x * 5.42005)); double t_9 = 4.0 + (y * 8.13008); double t_10 = 0.15 + (y * 8.13008); double t_11 = -(5.925 + (x * 8.13008)); double t_12 = 3.716 + (x * 4.47154); double t_13 = 0.5708 + (x * 2.23577); double t_14 = 0.5175 + (x * 5.42005); double t_15 = 1.38723 + (x * 4.47154); double t_16 = (y * 8.13008) - 3.05; double t_17 = (1.80223 + (y * 1.82927)) + (x * 4.47154); double t_18 = 1.12 + (x * 8.13008); double t_19 = (y * 8.13008) - 5.05; double t_20 = 0.750575 + (y * 1.21951); double t_21 = 2.95 + (x * 8.13008); double t_22 = (y * 2.64228) + (x * 4.47154); double t_23 = 0.9305 - (x * 8.13008); double t_24 = (y * 8.13008) - 2.575; double t_25 = (x * 2.23577) + (y * 4.06504); double t_26 = 1.0405 + (x * 2.23577); double t_27 = (x * 8.13008) - 5.5355; double t_28 = (x * 5.42005) - 2.2095; double t_29 = 7.98571 + (x * 11.6144); double t_30 = -(5.2 + (x * 8.13008)); double t_31 = 2.12 + (y * 3.25203); double t_32 = 2.65 + (y * 8.13008); double t_33 = -(8.0 + (x * 8.13008)); double t_34 = (y * 8.13008) - 0.2; double t_35 = (x * 5.42005) - 3.0345; double t_36 = (x * 8.13008) - 2.9705; double t_37 = ((y * 2.84553) + 4.13) + (x * 4.47154); double t_38 = 6.275 + (x * 8.13008); double t_39 = 1.80375 - (y * 5.28455); double t_40 = ((y * 2.03252) + 2.5375) + (x * 4.47154); double t_41 = (0.318501 + (y * 2.84553)) + (x * 4.47154); double t_42 = 5.162 + (x * 8.13008); double t_43 = 4.875 + (y * 8.13008); double t_44 = (1.89845 + (y * 2.60163)) + (x * 2.84553); double t_45 = 5.6 + (x * 8.13008); double t_46 = (y * 8.13008) - 4.8; double t_47 = 0.9 + (y * 8.13008); double t_48 = 1.43045 + (x * 2.84553); double t_49 = (y * 2.84553) + (x * 4.47154); double t_50 = t_49 - 4.45138; double t_51 = 0.16015 + (y * 1.21951); double t_52 = 6.25 + (x * 8.13008); double t_53 = 1.625 + (y * 8.13008); double t_54 = Math.pow(t_53, 2.0); double t_55 = Math.sqrt((t_54 + Math.pow((5.242 + (x * 8.13008)), 2.0))); double t_56 = (x * 8.13008) - 4.4005; double t_57 = ((y * 2.03252) + 2.8125) + (x * 4.47154); double t_58 = ((y * 2.03252) + 2.24435) + (x * 4.47154); double t_59 = (y * 8.13008) - 4.15; double t_60 = 0.55 + (y * 8.13008); double t_61 = Math.pow((0.685 - (y * 8.13008)), 2.0); double t_62 = 4.675 + (y * 8.13008); double t_63 = 4.025 + (y * 8.13008); double t_64 = 0.5935 - (x * 8.13008); double t_65 = 1.30723 + (x * 4.47154); double t_66 = t_65 - (y * 2.64228); double t_67 = 1.7375 + (y * 8.13008); double t_68 = 1.725 - (y * 8.13008); double t_69 = -(2.37 + (x * 8.13008)); double t_70 = 3.575 + (x * 8.13008); double t_71 = -(1.45 + (y * 8.13008)); double t_72 = 3.0345 - (x * 5.42005); double t_73 = (x * 8.13008) - 3.931; double t_74 = (y * 8.13008) - 3.5; double t_75 = (1.91435 + (y * 2.03252)) + (x * 4.47154); double t_76 = Math.pow(-(0.415 + (y * 8.13008)), 2.0); double t_77 = (2.09318 + (x * 2.23577)) + (y * 4.06504); double t_78 = (x * 8.13008) - 1.958; double t_79 = 2.08 + (x * 2.23577); double t_80 = 1.8 + (y * 8.13008); double t_81 = 0.120625 + (x * 2.23577); double t_82 = 5.75 + (y * 8.13008); double t_83 = 5.375 + (x * 8.13008); double t_84 = -t_83; double t_85 = 1.728 + (y * 2.19512); double t_86 = (y * 0.813008) - 0.47; double t_87 = 1.82238 - t_49; double t_88 = t_49 - 3.84555; double t_89 = (y * 8.13008) - 6.8; double t_90 = 6.5 + (x * 8.13008); double t_91 = (x * 8.13008) - 4.8855; double t_92 = 3.025 + (x * 8.13008); double t_93 = 0.45 + (y * 4.06504); double t_94 = (y * 0.813008) - 0.305; double t_95 = 0.6375 + (y * 2.84553); double t_96 = t_95 - (x * 4.47154); double t_97 = (y * 5.28455) - 0.37375; double t_98 = (x * 8.13008) - 6.61401; double t_99 = 0.685 + (y * 0.813008); double t_100 = -(0.550001 + (x * 8.13008)); double t_101 = 5.425 - (y * 8.13008); double t_102 = (y * 0.813008) - 0.195; double t_103 = (x * 8.13008) - 1.6205; double t_104 = Math.pow(((y * 8.13008) - 3.2), 2.0); double t_105 = 1.8578 + (x * 2.23577); double t_106 = 1.42 + (x * 2.23577); double t_107 = 6.3 + (x * 8.13008); double t_108 = Math.pow(t_107, 2.0); double t_109 = 5.812 + (x * 8.13008); double t_110 = 0.11375 + (x * 2.23577); double t_111 = 1.23565 + (y * 2.03252); double t_112 = (x * 8.13008) - 5.401; double t_113 = 0.545 + (x * 4.47154); double t_114 = (y * 2.84553) - t_113; double t_115 = 0.19 + (y * 0.813008); double t_116 = 2.42975 + (x * 4.47154); double t_117 = t_116 - (y * 1.82927); double t_118 = (y * 8.13008) - 2.05; double t_119 = 4.63929 + (x * 11.6144); double t_120 = 0.725 + (y * 8.13008); double t_121 = (1.35975 + (y * 1.82927)) + (x * 4.47154); double t_122 = 1.187 + (x * 8.13008); double t_123 = 2.55 + (x * 8.13008); double t_124 = -t_123; double t_125 = (y * 3.41463) + 5.9037; double t_126 = 6.075 - (y * 8.13008); double t_127 = fmax(t_3, t_126); double t_128 = 1.132 + (x * 8.13008); double t_129 = -t_128; double t_130 = 2.75 + (y * 8.13008); double t_131 = -t_130; double t_132 = (y * 8.13008) - 5.9; double t_133 = 1.36071 + (x * 11.6144); double t_134 = (y * 0.813008) - 0.415; double t_135 = 0.465 + (y * 0.813008); double t_136 = -t_70; double t_137 = 1.7935 + (x * 4.06504); double t_138 = 1.558 - (x * 8.13008); double t_139 = 5.54551 - (x * 8.13008); double t_140 = Math.pow(t_32, 2.0); double t_141 = Math.sqrt((t_140 + Math.pow(((x * 8.13008) - 1.323), 2.0))); double t_142 = -(4.075 + (x * 8.13008)); double t_143 = 5.15 + (x * 8.13008); double t_144 = 7.25 + (x * 8.13008); double t_145 = (1.87595 + (y * 2.19512)) + (x * 2.84553); double t_146 = 4.1025 - (x * 8.13008); double t_147 = -(1.575 + (x * 8.13008)); double t_148 = t_49 - 1.6725; double t_149 = 0.5575 + (y * 2.03252); double t_150 = 1.65925 + (x * 2.23577); double t_151 = 4.021 + (x * 4.47154); double t_152 = (y * 2.84553) - t_151; double t_153 = (y * 8.13008) - 1.95; double t_154 = (y * 8.13008) - 3.915; double t_155 = 0.08 + (y * 0.813008); double t_156 = 0.395501 + (x * 5.42005); double t_157 = (y * 8.13008) - 4.975; double t_158 = Math.pow(t_157, 2.0); double t_159 = Math.sqrt((t_158 + Math.pow(((x * 8.13008) - 5.826), 2.0))); double t_160 = (1.82723 + (y * 2.64228)) + (x * 4.47154); double t_161 = (y * 8.13008) - 3.95; double t_162 = 3.531 - (x * 8.13008); double t_163 = -(4.975 + (y * 8.13008)); double t_164 = fmax((4.885 + (y * 8.13008)), t_163); double t_165 = (1.91443 + (x * 2.23577)) + (y * 4.06504); double t_166 = Math.sqrt((Math.pow(((x * 8.13008) - 5.126), 2.0) + t_158)); double t_167 = 3.7375 + (x * 5.42005); double t_168 = -t_167; double t_169 = Math.pow(((y * 8.13008) - 0.3), 2.0); double t_170 = 0.597376 + (y * 2.03252); double t_171 = 2.932 + (x * 8.13008); double t_172 = 4.12055 - t_49; double t_173 = 2.375 + (x * 8.13008); double t_174 = 4.05 + (x * 8.13008); double t_175 = (y * 8.13008) - 2.775; double t_176 = Math.pow(t_175, 2.0); double t_177 = Math.sqrt((t_176 + Math.pow((1.395 + (x * 8.13008)), 2.0))); double t_178 = Math.sqrt((t_176 + Math.pow(((x * 8.13008) - 3.7975), 2.0))); double t_179 = 4.5 + (x * 8.13008); double t_180 = ((x * 2.23577) + 2.9905) + (y * 4.06504); double t_181 = 0.6945 + (x * 8.13008); double t_182 = -(6.6 + (x * 8.13008)); double t_183 = 4.2 + (y * 8.13008); double t_184 = (2.3425 + (y * 2.84553)) + (x * 4.47154); double t_185 = 4.4855 - (x * 8.13008); double t_186 = (1.885 + (x * 2.23577)) + (y * 4.06504); double t_187 = 3.4575 + (x * 4.47154); double t_188 = (x * 8.13008) - 3.1805; double t_189 = 2.4705 - (x * 8.13008); double t_190 = 6.8 + (x * 8.13008); double t_191 = -t_190; double t_192 = 6.11401 - (x * 8.13008); double t_193 = (2.6175 + (y * 2.84553)) + (x * 4.47154); double t_194 = (2.81935 + (y * 2.84553)) + (x * 4.47154); double t_195 = (y * 0.813008) + 0.880675; double t_196 = 1.3292 + (x * 2.84553); double t_197 = ((y * 2.03252) + 2.521) + (x * 4.47154); double t_198 = 5.975 + (y * 8.13008); double t_199 = Math.sqrt((Math.pow(((4.58486 + (x * 8.13008)) - (y * 2.32288)), 2.0) + t_158)); double t_200 = 1.15 + (y * 8.13008); double t_201 = 1.5875 + (x * 5.42005); double t_202 = -t_201; double t_203 = 2.775 + (x * 8.13008); double t_204 = -(6.212 + (x * 8.13008)); double t_205 = 7.50251 - (x * 8.13008); double t_206 = (x * 8.13008) - 2.226; double t_207 = 0.245 + (y * 0.813008); double t_208 = -t_207; double t_209 = 0.6516 + (x * 4.47154); double t_210 = (y * 1.82927) - t_209; double t_211 = 2.8375 + (y * 8.13008); double t_212 = 1.12143 + (x * 11.6144); double t_213 = 0.475 + (y * 8.13008); double t_214 = Math.sqrt((t_108 + Math.pow(((y * 8.13008) - 6.525), 2.0))); double t_215 = 0.267376 + (y * 2.03252); double t_216 = 5.8 - (y * 8.13008); double t_217 = 0.36 - (y * 0.813008); double t_218 = Math.pow(((y * 8.13008) - 0.465), 2.0); double t_219 = 0.52 + (y * 0.813008); double t_220 = -t_219; double t_221 = 2.5335 + (x * 4.47154); double t_222 = 1.66785 + (x * 4.47154); double t_223 = 0.25 - (y * 0.813008); double t_224 = 1.95355 + (x * 5.28455); double t_225 = (y * 2.03252) + 2.89638; double t_226 = (x * 8.13008) - 5.7205; double t_227 = -(7.35 + (x * 8.13008)); double t_228 = (x * 4.47154) - t_95; double t_229 = 1.12595 + (y * 1.21951); double t_230 = 4.07 + (x * 8.13008); double t_231 = 4.45138 - t_49; double t_232 = 0.90565 + (y * 2.03252); double t_233 = (y * 8.13008) - 5.025; double t_234 = 2.2095 - (x * 5.42005); double t_235 = 3.55 + (y * 8.13008); double t_236 = fmax((3.45 + (y * 8.13008)), -t_235); double t_237 = fmax(t_235, -(3.65 + (y * 8.13008))); double t_238 = (y * 1.82927) + 2.5769; double t_239 = t_238 - (x * 4.47154); double t_240 = (x * 4.47154) - t_238; double t_241 = 6.0955 - (x * 8.13008); double t_242 = 6.75 + (x * 8.13008); double t_243 = t_25 + 4.085; double t_244 = 6.95 + (x * 11.6144); double t_245 = (y * 8.13008) - 2.825; double t_246 = -(2.775 + (y * 8.13008)); double t_247 = (y * 1.82927) - t_15; double t_248 = 0.0499997 + (y * 8.13008); double t_249 = ((x * 2.23577) + 3.49375) + (y * 4.06504); double t_250 = 1.81065 + (y * 2.84553); double t_251 = t_250 - (x * 4.47154); double t_252 = 0.712975 + (x * 2.23577); double t_253 = 3.6 - (y * 8.13008); double t_254 = fmax(t_161, t_253); double t_255 = fmax(t_253, t_59); double t_256 = (x * 5.42005) - 0.951167; double t_257 = 2.67975 + (x * 4.47154); double t_258 = (y * 2.64228) - t_257; double t_259 = 4.7 - (y * 8.13008); double t_260 = (y * 1.82927) + 3.10243; double t_261 = t_260 - (x * 4.47154); double t_262 = 2.807 + (x * 8.13008); double t_263 = (y * 0.813008) + 1.89365; double t_264 = 0.135 + (y * 0.813008); double t_265 = Math.pow(t_161, 2.0); double t_266 = Math.sqrt((t_265 + Math.pow(((x * 8.13008) - 5.5835), 2.0))); double t_267 = (1.05475 + (y * 2.64228)) + (x * 4.47154); double t_268 = Math.pow(((x * 8.13008) - 0.695499), 2.0); double t_269 = Math.pow(((y * 8.13008) - 1.4), 2.0); double t_270 = -(3.482 + (x * 8.13008)); double t_271 = (y * 8.13008) - 4.775; double t_272 = 4.95 + (y * 8.13008); double t_273 = (0.2581 + (y * 1.82927)) + (x * 4.47154); double t_274 = -(4.6 + (x * 8.13008)); double t_275 = 2.282 + (x * 8.13008); double t_276 = (x * 8.13008) - 6.75101; double t_277 = (y * 5.28455) - 1.80375; double t_278 = (x * 8.13008) - 5.1955; double t_279 = (y * 3.25203) + 5.1769; double t_280 = Math.pow(t_130, 2.0); double t_281 = 3.84555 - t_49; double t_282 = 0.898001 - (x * 8.13008); double t_283 = (y * 8.13008) - 5.7; double t_284 = 1.10808 + (y * 1.21951); double t_285 = -t_41; double t_286 = (y * 8.13008) - 0.615; double t_287 = 0.3625 + (y * 2.84553); double t_288 = t_287 - (x * 4.47154); double t_289 = (0.03425 + (x * 2.23577)) + (y * 4.06504); double t_290 = 2.875 + (x * 8.13008); double t_291 = 1.083 - (x * 8.13008); double t_292 = 1.825 + (y * 8.13008); double t_293 = 6.48101 - (x * 8.13008); double t_294 = 7.45 + (x * 8.13008); double t_295 = 1.05625 + (y * 5.28455); double t_296 = (y * 8.13008) - 1.475; double t_297 = (x * 8.13008) - 0.282999; double t_298 = 4.881 - (x * 8.13008); double t_299 = (y * 8.13008) - 0.55; double t_300 = Math.sqrt((Math.pow((5.625 + (x * 8.13008)), 2.0) + t_158)); double t_301 = t_300 - 0.275; double t_302 = 2.51875 - (y * 5.28455); double t_303 = 3.3 + (x * 8.13008); double t_304 = (x * 8.13008) - 6.408; double t_305 = 1.676 - (x * 8.13008); double t_306 = (x * 8.13008) - 3.1225; double t_307 = 4.8125 + (y * 8.13008); double t_308 = t_113 - (y * 2.84553); double t_309 = (1.96935 + (y * 2.03252)) + (x * 4.47154); double t_310 = (x * 5.42005) - 1.22783; double t_311 = 6.05 + (x * 8.13008); double t_312 = 5.1585 - (x * 8.13008); double t_313 = -(0.575 + (y * 8.13008)); double t_314 = Math.pow(((y * 8.13008) - 4.7), 2.0); double t_315 = (1.4516 + (y * 1.82927)) + (x * 4.47154); double t_316 = 1.1947 + (y * 1.21951); double t_317 = 2.73475 + (x * 4.47154); double t_318 = (y * 2.64228) - t_317; double t_319 = (y * 1.82927) + 2.5219; double t_320 = t_319 - (x * 4.47154); double t_321 = 3.5305 - (x * 8.13008); double t_322 = 3.675 + (x * 8.13008); double t_323 = 0.292376 + (y * 2.84553); double t_324 = t_323 - (x * 4.47154); double t_325 = 5.3 + (y * 8.13008); double t_326 = Math.sqrt((Math.pow((1.462 + (x * 8.13008)), 2.0) + t_158)); double t_327 = (x * 8.13008) - 0.320499; double t_328 = Math.sqrt((t_176 + Math.pow(((7.16429 + (x * 8.13008)) - (y * 2.32288)), 2.0))); double t_329 = (x * 11.6144) - 7.23715; double t_330 = 1.02555 + (y * 2.03252); double t_331 = 2.137 + (x * 8.13008); double t_332 = 2.4785 + (x * 4.47154); double t_333 = 1.77125 + (y * 5.28455); double t_334 = (x * 8.13008) - 6.5305; double t_335 = 6.2 + (y * 8.13008); double t_336 = (y * 1.21951) + 1.7447; double t_337 = 3.0 + (y * 8.13008); double t_338 = -t_337; double t_339 = Math.sqrt((t_158 + Math.pow(((x * 8.13008) - 6.476), 2.0))); double t_340 = (y * 2.03252) + 2.95138; double t_341 = 5.2 + (y * 8.13008); double t_342 = Math.pow(t_341, 2.0); double t_343 = -t_341; double t_344 = fmax(t_183, t_343); double t_345 = 0.289485 + (x * 2.27642); double t_346 = (x * 8.13008) - 3.401; double t_347 = (y * 8.13008) - 6.15; double t_348 = Math.pow(t_347, 2.0); double t_349 = Math.sqrt((t_348 + Math.pow(((x * 8.13008) - 2.8955), 2.0))); double t_350 = fmax(t_216, t_347); double t_351 = (y * 1.82927) + 3.15743; double t_352 = (x * 4.47154) - t_351; double t_353 = 1.2994 + (y * 3.25203); double t_354 = 3.6525 + (x * 4.47154); double t_355 = (y * 2.84553) - t_354; double t_356 = Math.sqrt((t_176 + Math.pow((4.345 + (x * 8.13008)), 2.0))); double t_357 = 1.6725 - t_49; double t_358 = Math.sqrt((t_54 + Math.pow(((4.12414 + (x * 8.13008)) - (y * 2.32288)), 2.0))); double t_359 = 0.14 - (y * 0.813008); double t_360 = 4.85 + (y * 8.13008); double t_361 = Math.pow(t_360, 2.0); double t_362 = Math.sqrt((t_361 + Math.pow(((x * 8.13008) - 0.633), 2.0))); double t_363 = Math.sqrt((Math.pow((0.317 + (x * 8.13008)), 2.0) + t_361)); double t_364 = 1.675 + (x * 8.13008); double t_365 = ((x * 1.82927) + 3.2527) + (y * 4.06504); double t_366 = Math.pow((0.6875 - (y * 8.13008)), 2.0); double t_367 = 0.300176 + (y * 2.23577); double t_368 = (0.590637 + (x * 1.82927)) + (y * 4.06504); double t_369 = 0.195 - (y * 0.813008); double t_370 = 2.487 + (x * 8.13008); double t_371 = Math.sqrt((Math.pow(t_370, 2.0) + t_158)); double t_372 = t_151 - (y * 2.84553); double t_373 = (2.216 + (y * 2.84553)) + (x * 4.47154); double t_374 = -t_373; double t_375 = 1.9 + (y * 8.13008); double t_376 = Math.pow(t_375, 2.0); double t_377 = -t_375; double t_378 = fmax(t_377, t_200); double t_379 = 0.3 - (y * 8.13008); double t_380 = fmax(t_299, t_379); double t_381 = 2.5 - (y * 8.13008); double t_382 = fmax(t_381, t_74); double t_383 = fmax(t_245, t_381); double t_384 = fmax(t_381, t_175); double t_385 = 2.6125 + (y * 8.13008); double t_386 = t_159 - 0.275; double t_387 = 1.65817 - (x * 5.42005); double t_388 = (x * 8.13008) - 5.733; double t_389 = fmax(t_343, t_360); double t_390 = 2.65 + (y * 4.06504); double t_391 = 7.12143 + (x * 11.6144); double t_392 = ((y * 2.03252) + 2.466) + (x * 4.47154); double t_393 = 0.6375 + (y * 8.13008); double t_394 = -t_393; double t_395 = Math.pow(t_393, 2.0); double t_396 = (x * 1.01626) + 1.55781; double t_397 = 0.208 - (x * 8.13008); double t_398 = Math.sqrt((t_54 + Math.pow(((x * 8.13008) - (0.993357 + (y * 2.32288))), 2.0))); double t_399 = 2.685 + (y * 8.13008); double t_400 = (x * 8.13008) - 0.150499; double t_401 = 3.501 - (x * 8.13008); double t_402 = 4.512 + (x * 8.13008); double t_403 = Math.sqrt((Math.pow(t_402, 2.0) + t_280)); double t_404 = (y * 0.813008) - 0.525; double t_405 = ((y * 2.03252) + 3.665) + (x * 4.47154); double t_406 = Math.pow(((y * 8.13008) - 0.4625), 2.0); double t_407 = 2.24785 + (x * 4.47154); double t_408 = -t_135; double t_409 = 0.525 - (y * 8.13008); double t_410 = fmax(t_286, t_409); double t_411 = Math.pow(((y * 8.13008) - 6.5), 2.0); double t_412 = 3.875 - (y * 8.13008); double t_413 = 0.63 + (y * 0.813008); double t_414 = -t_413; double t_415 = -(2.075 + (x * 8.13008)); double t_416 = (x * 11.6144) - 2.67571; double t_417 = fmax(t_83, t_216); double t_418 = t_49 - 1.3975; double t_419 = -(7.95 + (x * 8.13008)); double t_420 = -(1.675 + (y * 8.13008)); double t_421 = (x * 8.13008) - 6.656; double t_422 = fmax(t_216, t_89); double t_423 = 1.25 + (y * 8.13008); double t_424 = fmax(((y * 8.13008) - 0.95), (0.85 - (y * 8.13008))); double t_425 = -(1.142 + (x * 8.13008)); double t_426 = 5.858 - (x * 8.13008); double t_427 = -t_155; double t_428 = (y * 0.813008) + 3.968; double t_429 = 0.025 + (y * 0.813008); double t_430 = 0.596601 + (x * 4.47154); double t_431 = (y * 1.82927) - t_430; double t_432 = 2.11243 - t_22; double t_433 = -t_160; double t_434 = t_209 - (y * 1.82927); double t_435 = 2.00117 - (x * 5.42005); double t_436 = Math.sqrt((Math.pow(((0.146856 + (x * 8.13008)) - (y * 2.32288)), 2.0) + t_158)); double t_437 = 0.4125 + (y * 8.13008); double t_438 = 1.24555 + (y * 2.03252); double t_439 = (y * 0.813008) + 6.188; double t_440 = t_49 - 2.09738; double t_441 = 0.322376 + (y * 2.03252); double t_442 = 4.825 + (x * 8.13008); double t_443 = 5.4 + (x * 8.13008); double t_444 = (y * 2.19512) + (x * 2.84553); double t_445 = 6.0305 - (x * 8.13008); double t_446 = (y * 1.21951) + 1.67444; double t_447 = 3.2375 + (x * 4.47154); double t_448 = 2.4205 - (x * 8.13008); double t_449 = -t_184; double t_450 = 3.001 - (x * 8.13008); double t_451 = (1.55693 + (x * 2.23577)) + (y * 4.06504); double t_452 = (0.6785 + (y * 2.03252)) + (x * 4.47154); double t_453 = 0.707348 + (x * 4.5122); double t_454 = (y * 8.13008) - 6.075; double t_455 = fmax(t_216, t_454); double t_456 = Math.pow(t_454, 2.0); double t_457 = Math.sqrt((t_456 + Math.pow((0.604501 + (x * 8.13008)), 2.0))); double t_458 = Math.sqrt((t_456 + Math.pow(((x * 8.13008) - 1.3455), 2.0))); double t_459 = Math.sqrt((t_456 + t_268)); double t_460 = Math.sqrt((t_456 + Math.pow(t_303, 2.0))); double t_461 = Math.sqrt((t_456 + Math.pow(((x * 8.13008) - 5.0255), 2.0))); double t_462 = Math.sqrt((t_456 + Math.pow((5.65 + (x * 8.13008)), 2.0))); double t_463 = 3.9955 - (x * 8.13008); double t_464 = 0.150001 + (x * 8.13008); double t_465 = Math.pow(t_464, 2.0); double t_466 = 3.1 + (y * 8.13008); double t_467 = Math.pow(((x * 8.13008) - 4.1255), 2.0); double t_468 = Math.sqrt((t_456 + t_467)); double t_469 = (y * 8.13008) - 0.6875; double t_470 = fmax(t_409, t_469); double t_471 = 1.732 + (x * 8.13008); double t_472 = Math.pow(t_283, 2.0); double t_473 = Math.sqrt((t_472 + t_268)); double t_474 = Math.sqrt((t_467 + t_472)); double t_475 = 1.06718 + (x * 2.23577); double t_476 = (x * 8.13008) - 3.6855; double t_477 = Math.pow((2.3 + (y * 8.13008)), 2.0); double t_478 = (y * 2.64228) - t_65; double t_479 = 0.986526 + (y * 1.21951); double t_480 = (x * 8.13008) - 8.05251; double t_481 = 3.8 + (x * 8.13008); double t_482 = 1.22783 - (x * 5.42005); double t_483 = -t_200; double t_484 = (y * 8.13008) - 1.75; double t_485 = (x * 4.47154) - t_250; double t_486 = (y * 8.13008) - 5.25; double t_487 = (y * 5.28455) - 3.23375; double t_488 = t_257 - (y * 2.64228); double t_489 = (2.54435 + (y * 2.84553)) + (x * 4.47154); double t_490 = (x * 4.47154) - t_260; double t_491 = 0.25 + (y * 8.13008); double t_492 = (x * 1.82927) + (y * 4.06504); double t_493 = Math.sqrt((t_176 + Math.pow(((x * 8.13008) - 2.8475), 2.0))); double t_494 = Math.pow(t_484, 2.0); double t_495 = Math.sqrt((t_494 + Math.pow(((x * 8.13008) - 5.083), 2.0))); double t_496 = Math.sqrt((t_494 + Math.pow(((x * 8.13008) - 5.333), 2.0))); double t_497 = 0.44765 + (x * 2.84553); double t_498 = -t_264; double t_499 = (x * 8.13008) - 3.021; double t_500 = Math.pow(-t_437, 2.0); double t_501 = 6.3 + (y * 8.13008); double t_502 = Math.pow(t_501, 2.0); double t_503 = -t_501; double t_504 = 0.500551 + (y * 2.84553); double t_505 = t_504 - (x * 4.47154); double t_506 = Math.sqrt((t_456 + Math.pow(((x * 8.13008) - 0.0454988), 2.0))); double t_507 = 1.068 + (x * 2.23577); double t_508 = -(5.9 + (x * 8.13008)); double t_509 = -(0.249501 + (x * 8.13008)); double t_510 = 4.9855 - (x * 8.13008); double t_511 = 2.8935 + (x * 4.47154); double t_512 = (y * 2.84553) - t_511; double t_513 = Math.sqrt((t_176 + Math.pow(((x * 8.13008) - 0.0924997), 2.0))); double t_514 = Math.sqrt((t_7 + t_176)); double t_515 = 0.415 - (y * 0.813008); double t_516 = 0.36 + (y * 3.25203); double t_517 = 3.35775 + (x * 4.5122); double t_518 = 0.263484 + (x * 2.27642); double t_519 = -t_90; double t_520 = 2.64638 + (y * 2.84553); double t_521 = t_520 - (x * 4.47154); double t_522 = 2.846 - (x * 8.13008); double t_523 = 0.305 - (y * 0.813008); double t_524 = (x * 8.13008) - 4.6525; double t_525 = 1.025 + (x * 8.13008); double t_526 = 0.7775 + (y * 2.03252); double t_527 = Math.sqrt((t_140 + Math.pow(((x * 8.13008) - 1.073), 2.0))); double t_528 = 2.725 + (y * 8.13008); double t_529 = Math.pow(t_528, 2.0); double t_530 = Math.sqrt((Math.pow(((3.35486 + (x * 8.13008)) - (y * 2.32288)), 2.0) + t_529)); double t_531 = Math.sqrt((Math.pow(((x * 8.13008) - 5.2605), 2.0) + t_529)); double t_532 = Math.sqrt((Math.pow(((0.574857 + (x * 8.13008)) - (y * 2.32288)), 2.0) + t_529)); double t_533 = Math.sqrt((t_529 + Math.pow(((x * 8.13008) - 5.9605), 2.0))); double t_534 = t_533 - 0.275; double t_535 = Math.sqrt((Math.pow(((x * 8.13008) - 3.4105), 2.0) + t_529)); double t_536 = Math.sqrt((Math.pow((0.177 + (x * 8.13008)), 2.0) + t_529)); double t_537 = Math.sqrt((Math.pow(((x * 8.13008) - 0.523), 2.0) + t_529)); double t_538 = Math.sqrt((Math.pow((5.745 + (x * 8.13008)), 2.0) + t_529)); double t_539 = t_538 - 0.275; double t_540 = (y * 8.13008) - 6.45; double t_541 = fmax(t_540, (6.35 - (y * 8.13008))); double t_542 = 4.875 + (x * 8.13008); double t_543 = 0.951167 - (x * 5.42005); double t_544 = 0.575 + (y * 0.813008); double t_545 = -t_544; double t_546 = Math.sqrt((t_176 + Math.pow(((x * 8.13008) - 4.3775), 2.0))); double t_547 = 7.35601 - (x * 8.13008); double t_548 = Math.sqrt((t_348 + Math.pow(((x * 8.13008) - 2.6455), 2.0))); double t_549 = 6.9 + (x * 8.13008); double t_550 = Math.sqrt((Math.pow(t_60, 2.0) + Math.pow(t_549, 2.0))); double t_551 = (y * 2.64228) + 3.2069; double t_552 = (x * 4.47154) - t_551; double t_553 = t_551 - (x * 4.47154); double t_554 = (x * 4.47154) - t_287; double t_555 = -(0.452 + (x * 8.13008)); double t_556 = (y * 8.13008) - 1.65; double t_557 = 2.45 + (y * 8.13008); double t_558 = 0.65875 + (x * 2.84553); double t_559 = (y * 8.13008) - 1.725; double t_560 = 3.12857 + (x * 11.6144); double t_561 = -(5.712 + (x * 8.13008)); double t_562 = (y * 2.64228) + 3.34743; double t_563 = t_562 - (x * 4.47154); double t_564 = 2.1625 + (x * 2.23577); double t_565 = -(1.67 + (x * 8.13008)); double t_566 = (y * 1.82927) - t_116; double t_567 = -t_115; double t_568 = t_317 - (y * 2.64228); double t_569 = 0.96065 + (y * 2.03252); double t_570 = 6.7 - (y * 8.13008); double t_571 = -t_267; double t_572 = (x * 4.47154) - t_319; double t_573 = (x * 4.47154) - t_323; double t_574 = (0.3131 + (y * 1.82927)) + (x * 4.47154); double t_575 = (y * 8.13008) - 1.5; double t_576 = Math.sqrt((t_361 + Math.pow(((x * 8.13008) - 0.383), 2.0))); double t_577 = 2.725 - (y * 8.13008); double t_578 = fmax(((y * 8.13008) - 2.815), t_577); double t_579 = 4.912 + (x * 8.13008); double t_580 = fmax(t_402, -t_579); double t_581 = 6.45 + (x * 8.13008); double t_582 = -t_581; double t_583 = 3.85 + (y * 8.13008); double t_584 = Math.pow(t_583, 2.0); double t_585 = Math.sqrt((t_584 + Math.pow(t_346, 2.0))); double t_586 = fmax(t_466, -t_583); double t_587 = Math.pow(((y * 8.13008) - 5.8), 2.0); double t_588 = fmax(t_89, (6.05 - (y * 8.13008))); double t_589 = 0.552 + (x * 8.13008); double t_590 = Math.sqrt((Math.pow(t_589, 2.0) + t_280)); double t_591 = fmax(t_589, -(0.952 + (x * 8.13008))); double t_592 = 5.15 - (y * 8.13008); double t_593 = (x * 5.42005) - 1.65817; double t_594 = t_354 - (y * 2.84553); double t_595 = 0.587999 - (x * 8.13008); double t_596 = (y * 8.13008) - 6.05; double t_597 = -t_193; double t_598 = -(2.132 + (x * 8.13008)); double t_599 = 1.726 + (y * 4.87805); double t_600 = 5.95 + (y * 8.13008); double t_601 = Math.pow(t_600, 2.0); double t_602 = Math.sqrt((t_601 + Math.pow(((x * 8.13008) - 1.508), 2.0))); double t_603 = 1.0705 - (x * 8.13008); double t_604 = Math.sqrt((t_601 + Math.pow(((x * 8.13008) - 1.258), 2.0))); double t_605 = 3.1355 - (x * 8.13008); double t_606 = 1.35 + (y * 8.13008); double t_607 = fmax(t_377, t_606); double t_608 = fmax(t_423, -t_606); double t_609 = (x * 8.13008) - 1.138; double t_610 = (y * 5.28455) - 2.51875; double t_611 = -(5.85 + (y * 8.13008)); double t_612 = (y * 8.13008) - 5.015; double t_613 = (y * 8.13008) - 3.875; double t_614 = fmax(t_253, t_613); double t_615 = Math.pow(t_613, 2.0); double t_616 = Math.sqrt((Math.pow(((x * 8.13008) - 4.7835), 2.0) + t_615)); double t_617 = Math.sqrt((t_615 + Math.pow(((x * 8.13008) - 0.862999), 2.0))); double t_618 = Math.sqrt((t_615 + Math.pow(((x * 8.13008) - 0.212998), 2.0))); double t_619 = Math.sqrt((t_615 + Math.pow((2.245 + (x * 8.13008)), 2.0))); double t_620 = t_619 - 0.275; double t_621 = Math.sqrt((t_615 + Math.pow(t_522, 2.0))); double t_622 = Math.sqrt((t_615 + Math.pow(((x * 8.13008) - 6.1335), 2.0))); double t_623 = Math.sqrt((t_615 + Math.pow(((4.72857 + (x * 8.13008)) - (y * 2.32288)), 2.0))); double t_624 = 0.4066 + (x * 4.47154); double t_625 = (y * 2.64228) - t_624; double t_626 = 2.825 - (y * 8.13008); double t_627 = 5.025 - (y * 8.13008); double t_628 = (1.74723 + (y * 1.82927)) + (x * 4.47154); double t_629 = 4.851 - (x * 8.13008); double t_630 = 1.065 + (x * 4.47154); double t_631 = (x * 11.6144) - 6.52214; double t_632 = 0.8 + (y * 8.13008); double t_633 = -t_632; double t_634 = fmax(t_491, t_633); double t_635 = fmax(t_34, t_633); double t_636 = (1.5066 + (y * 1.82927)) + (x * 4.47154); double t_637 = 1.01488 + (y * 4.87805); double t_638 = (y * 8.13008) - 2.85; double t_639 = Math.pow(t_638, 2.0); double t_640 = Math.sqrt((t_639 + Math.pow((1.945 + (x * 8.13008)), 2.0))); double t_641 = Math.sqrt((t_639 + Math.pow((2.195 + (x * 8.13008)), 2.0))); double t_642 = fmax(t_381, t_638); double t_643 = (2.1853 + (x * 2.23577)) + (y * 4.06504); double t_644 = 0.957 + (x * 8.13008); double t_645 = 0.45 + (y * 8.13008); double t_646 = fmax(t_633, t_645); double t_647 = 0.0173756 + (y * 2.84553); double t_648 = t_647 - (x * 4.47154); double t_649 = 0.47 - (y * 0.813008); double t_650 = -t_333; double t_651 = ((y * 2.03252) + 2.4825) + (x * 4.47154); double t_652 = 2.576 - (x * 8.13008); double t_653 = 6.325 + (x * 8.13008); double t_654 = Math.pow(t_653, 2.0); double t_655 = Math.sqrt((t_654 + t_158)); double t_656 = Math.sqrt((t_654 + t_54)); double t_657 = Math.sqrt((t_654 + t_529)); double t_658 = Math.sqrt((t_280 + Math.pow(t_91, 2.0))); double t_659 = 0.485 + (x * 2.23577); double t_660 = (x * 8.13008) - 3.408; double t_661 = Math.sqrt((Math.pow(t_652, 2.0) + t_158)); double t_662 = fmax(t_377, t_47); double t_663 = 0.606888 + (y * 1.21951); double t_664 = 4.1 + (y * 8.13008); double t_665 = Math.pow(t_664, 2.0); double t_666 = -t_664; double t_667 = fmax(t_666, t_235); double t_668 = fmax(t_666, (3.75 + (y * 8.13008))); double t_669 = fmax(t_466, t_666); double t_670 = fmax(t_666, t_9); double t_671 = 2.25 + (y * 8.13008); double t_672 = Math.sqrt((Math.pow(t_671, 2.0) + Math.pow(t_471, 2.0))); double t_673 = (y * 0.813008) - 0.14; double t_674 = -t_194; double t_675 = (x * 8.13008) - 7.531; double t_676 = Math.sqrt((t_465 + Math.pow(t_556, 2.0))); double t_677 = Math.sqrt((t_615 + Math.pow((0.437001 + (x * 8.13008)), 2.0))); double t_678 = t_677 - 0.275; double t_679 = -(7.3 + (x * 8.13008)); double t_680 = (x * 8.13008) - 6.6455; double t_681 = 1.27381 + (y * 4.87805); double t_682 = 1.3975 - t_49; double t_683 = -t_528; double t_684 = (y * 8.13008) - 0.85; double t_685 = fmax(t_379, t_684); double t_686 = ((x * 2.23577) + 2.30217) + (y * 4.06504); double t_687 = 1.4 - (y * 8.13008); double t_688 = fmax(t_687, t_1); double t_689 = fmax(t_687, t_153); double t_690 = 4.02143 + (x * 11.6144); double t_691 = 3.775 + (y * 8.13008); double t_692 = fmax(t_666, t_691); double t_693 = -t_360; double t_694 = 3.771 + (x * 4.47154); double t_695 = Math.pow(t_299, 2.0); double t_696 = Math.sqrt((t_695 + Math.pow(t_364, 2.0))); double t_697 = (y * 2.60163) + (x * 2.84553); double t_698 = Math.sqrt((t_584 + Math.pow(t_109, 2.0))); double t_699 = -t_429; double t_700 = (x * 5.42005) - 2.7765; double t_701 = Math.sqrt((Math.pow(t_248, 2.0) + Math.pow(t_73, 2.0))); double t_702 = 4.908 - (x * 8.13008); double t_703 = 1.30055 + (y * 2.03252); double t_704 = (x * 11.6144) - 0.585714; double t_705 = 5.0375 + (y * 8.13008); double t_706 = (x * 8.13008) - 4.0805; double t_707 = Math.sqrt((t_265 + Math.pow(((x * 8.13008) - 5.3335), 2.0))); double t_708 = -(1.737 + (x * 8.13008)); double t_709 = (x * 11.6144) - 0.743571; double t_710 = 2.09738 - t_49; double t_711 = fmax(t_606, t_71); double t_712 = (y * 1.21951) + 2.17851; double t_713 = Math.sqrt((Math.pow(t_272, 2.0) + Math.pow(t_78, 2.0))); double t_714 = (y * 8.13008) - 4.6; double t_715 = fmax(t_253, t_714); double t_716 = Math.sqrt((Math.pow(t_714, 2.0) + Math.pow(t_331, 2.0))); double t_717 = 2.2175 + (x * 2.23577); double t_718 = 3.1825 + (x * 4.47154); double t_719 = -t_557; double t_720 = 2.457 + (x * 8.13008); double t_721 = -t_720; double t_722 = (y * 8.13008) - 0.625; double t_723 = Math.sqrt((Math.pow(((x * 8.13008) - 5.7775), 2.0) + t_176)); double t_724 = t_723 - 0.275; double t_725 = -t_37; double t_726 = Math.sqrt((t_456 + Math.pow(((x * 8.13008) - (1.71336 + (y * 2.32288))), 2.0))); double t_727 = (0.7335 + (y * 2.03252)) + (x * 4.47154); double t_728 = 8.97857 + (x * 11.6144); double t_729 = 0.37375 - (y * 5.28455); double t_730 = 2.0 + (y * 8.13008); double t_731 = Math.sqrt((Math.pow((4.517 + (x * 8.13008)), 2.0) + t_158)); double t_732 = t_731 - 0.275; double t_733 = 1.5125 + (y * 8.13008); double t_734 = Math.sqrt((Math.pow((0.0670004 + (x * 8.13008)), 2.0) + t_361)); double t_735 = 0.575 - (y * 8.13008); double t_736 = (x * 8.13008) - 6.6385; double t_737 = (x * 8.13008) - 7.87551; double t_738 = Math.sqrt((t_695 + Math.pow(t_737, 2.0))); double t_739 = (x * 8.13008) - 5.9955; double t_740 = Math.sqrt((t_695 + Math.pow(t_739, 2.0))); double t_741 = Math.pow((7.025 + (x * 8.13008)), 2.0); double t_742 = (x * 8.13008) - 1.8305; double t_743 = -t_691; double t_744 = 1.36223 + (x * 4.47154); double t_745 = t_744 - (y * 2.64228); double t_746 = (y * 2.64228) - t_744; double t_747 = 1.65 + (y * 8.13008); double t_748 = fmax(t_47, -t_747); double t_749 = Math.pow(t_747, 2.0); double t_750 = Math.sqrt((t_749 + Math.pow(t_400, 2.0))); double t_751 = Math.sqrt((t_749 + Math.pow(t_736, 2.0))); double t_752 = Math.sqrt((Math.pow((0.354001 + (x * 8.13008)), 2.0) + t_158)); double t_753 = t_752 - 0.275; double t_754 = Math.sqrt((Math.pow(((x * 8.13008) - 1.951), 2.0) + t_158)); double t_755 = 4.925 - (y * 8.13008); double t_756 = Math.pow(t_200, 2.0); double t_757 = Math.sqrt((t_756 + Math.pow(t_742, 2.0))); double t_758 = (y * 8.13008) - 0.575; double t_759 = fmax(t_379, t_758); double t_760 = Math.pow(t_758, 2.0); double t_761 = Math.sqrt((t_760 + Math.pow((4.45 + (x * 8.13008)), 2.0))); double t_762 = Math.sqrt((t_760 + Math.pow(((x * 8.13008) - 2.6955), 2.0))); double t_763 = Math.sqrt((t_7 + t_760)); double t_764 = t_763 - 0.275; double t_765 = Math.sqrt((t_760 + Math.pow((3.15 + (x * 8.13008)), 2.0))); double t_766 = Math.sqrt((t_760 + Math.pow((5.1 + (x * 8.13008)), 2.0))); double t_767 = Math.sqrt((t_760 + Math.pow(((x * 8.13008) - 2.0455), 2.0))); double t_768 = t_767 - 0.275; double t_769 = Math.sqrt((t_760 + Math.pow(t_582, 2.0))); double t_770 = Math.sqrt((t_760 + Math.pow((1.3 + (x * 8.13008)), 2.0))); double t_771 = Math.sqrt((t_760 + Math.pow(((x * 8.13008) - ((y * 2.32288) + 6.90979)), 2.0))); double t_772 = Math.sqrt((t_760 + Math.pow((7.075 + (x * 8.13008)), 2.0))); double t_773 = Math.sqrt((t_760 + Math.pow(((x * 8.13008) - 3.933), 2.0))); double t_774 = t_773 - 0.275; double t_775 = Math.sqrt((t_176 + Math.pow(((x * 8.13008) - 7.77751), 2.0))); double t_776 = (x * 8.13008) - 1.183; double t_777 = 2.48625 + (y * 5.28455); double t_778 = -t_777; double t_779 = fmax(t_90, t_182); double t_780 = 3.785 + (y * 8.13008); double t_781 = Math.sqrt((Math.pow((3.207 + (x * 8.13008)), 2.0) + t_529)); double t_782 = (x * 8.13008) - 0.9705; double t_783 = (y * 8.13008) - 3.7; double t_784 = Math.pow(t_632, 2.0); double t_785 = -t_21; double t_786 = fmax(t_203, t_785); double t_787 = (1.30475 + (y * 1.82927)) + (x * 4.47154); double t_788 = Math.sqrt((t_760 + Math.pow((0.6 + (x * 8.13008)), 2.0))); double t_789 = t_788 - 0.275; double t_790 = (0.8881 + (y * 2.64228)) + (x * 4.47154); double t_791 = -t_790; double t_792 = 3.0055 - (x * 8.13008); double t_793 = 5.975 + (x * 8.13008); double t_794 = Math.sqrt((Math.pow(((x * 8.13008) - 7.12751), 2.0) + t_176)); double t_795 = t_794 - 0.275; double t_796 = fmax(t_684, t_735); double t_797 = 0.525 + (y * 8.13008); double t_798 = -t_797; double t_799 = Math.pow(t_797, 2.0); double t_800 = Math.sqrt((Math.pow((1.5495 + (x * 8.13008)), 2.0) + t_799)); double t_801 = Math.sqrt((Math.pow(((4.13393 + (x * 8.13008)) - (y * 2.32288)), 2.0) + t_799)); double t_802 = Math.sqrt((Math.pow(((0.11593 + (x * 8.13008)) - (y * 2.32288)), 2.0) + t_799)); double t_803 = Math.sqrt((t_799 + Math.pow(((x * 8.13008) - 4.306), 2.0))); double t_804 = Math.sqrt((Math.pow((6.525 + (x * 8.13008)), 2.0) + t_799)); double t_805 = Math.sqrt((Math.pow((0.969501 + (x * 8.13008)), 2.0) + t_799)); double t_806 = fmax(t_503, t_600); double t_807 = 3.6 + (x * 8.13008); double t_808 = t_49 - 1.82238; double t_809 = t_511 - (y * 2.84553); double t_810 = -(1.2445 + (x * 8.13008)); double t_811 = 0.737225 + (x * 2.27642); double t_812 = (x * 4.47154) - t_520; double t_813 = 4.925 + (x * 8.13008); double t_814 = (x * 8.13008) - 2.751; double t_815 = Math.sqrt((t_615 + Math.pow(((x * 8.13008) - 2.221), 2.0))); double t_816 = t_815 - 0.275; double t_817 = 1.7272 + (y * 3.41463); double t_818 = 0.54 + (y * 2.19512); double t_819 = 1.53565 + (y * 2.84553); double t_820 = t_819 - (x * 4.47154); double t_821 = -(4.62 + (x * 8.13008)); double t_822 = 3.233 - (x * 8.13008); double t_823 = Math.sqrt((t_54 + Math.pow(t_188, 2.0))); double t_824 = -(0.492001 + (x * 8.13008)); double t_825 = 3.825 + (y * 8.13008); double t_826 = Math.pow(t_825, 2.0); double t_827 = Math.sqrt((t_826 + Math.pow(((x * 8.13008) - 3.776), 2.0))); double t_828 = Math.sqrt((t_826 + Math.pow(((x * 8.13008) - 1.468), 2.0))); double t_829 = t_828 - 0.275; double t_830 = Math.sqrt((t_826 + Math.pow((5.437 + (x * 8.13008)), 2.0))); double t_831 = Math.sqrt((t_826 + Math.pow(((x * 8.13008) - 0.167999), 2.0))); double t_832 = Math.sqrt((t_826 + Math.pow(((5.97857 + (x * 8.13008)) - (y * 2.32288)), 2.0))); double t_833 = Math.sqrt((t_826 + Math.pow(t_293, 2.0))); double t_834 = Math.sqrt((t_826 + Math.pow(((x * 8.13008) - ((y * 2.32288) + 5.57243)), 2.0))); double t_835 = Math.sqrt((t_826 + Math.pow(((2.66557 + (x * 8.13008)) - (y * 2.32288)), 2.0))); double t_836 = Math.sqrt((t_826 + Math.pow((3.082 + (x * 8.13008)), 2.0))); double t_837 = t_831 - 0.275; double t_838 = Math.sqrt((t_826 + Math.pow((0.482 + (x * 8.13008)), 2.0))); double t_839 = t_838 - 0.275; double t_840 = Math.sqrt((t_826 + Math.pow(((x * 8.13008) - 0.818), 2.0))); double t_841 = Math.sqrt((t_826 + Math.pow(t_547, 2.0))); double t_842 = Math.sqrt((t_826 + t_7)); double t_843 = t_842 - 0.275; double t_844 = 2.675 + (y * 8.13008); double t_845 = -t_844; double t_846 = 1.44223 + (x * 4.47154); double t_847 = t_846 - (y * 1.82927); double t_848 = (y * 1.82927) - t_846; double t_849 = (x * 8.13008) - 5.431; double t_850 = 3.825 - (y * 8.13008); double t_851 = fmax(t_850, t_154); double t_852 = (y * 1.21951) + 1.23609; double t_853 = 1.18065 + (y * 2.03252); double t_854 = (x * 4.47154) - t_562; double t_855 = 2.48475 + (x * 4.47154); double t_856 = t_855 - (y * 1.82927); double t_857 = (y * 1.82927) - t_855; double t_858 = -t_489; double t_859 = -(3.357 + (x * 8.13008)); double t_860 = (1.6416 + (y * 2.64228)) + (x * 4.47154); double t_861 = -t_860; double t_862 = (y * 2.64228) + 3.29243; double t_863 = (x * 4.47154) - t_862; double t_864 = t_862 - (x * 4.47154); double t_865 = 1.00286 + (x * 11.6144); double t_866 = (x * 5.42005) - 2.00117; double t_867 = (x * 4.47154) - t_819; double t_868 = (x * 1.01626) + 2.92488; double t_869 = (y * 1.82927) + (x * 4.47154); double t_870 = Math.sqrt((t_456 + t_108)); double t_871 = (x * 8.13008) - 1.3305; double t_872 = Math.sqrt((t_756 + Math.pow(t_871, 2.0))); double t_873 = (y * 2.64228) + 3.1519; double t_874 = (x * 4.47154) - t_873; double t_875 = t_873 - (x * 4.47154); double t_876 = Math.sqrt((t_54 + Math.pow(((x * 8.13008) - 3.8055), 2.0))); double t_877 = 0.571825 + (y * 1.21951); double t_878 = 4.55 + (y * 8.13008); double t_879 = 0.525 - (y * 0.813008); double t_880 = 5.275 + (x * 8.13008); double t_881 = -t_880; double t_882 = fmax(t_666, t_825); double t_883 = Math.sqrt((t_826 + Math.pow(t_129, 2.0))); double t_884 = 4.7 + (x * 8.13008); double t_885 = 4.925 + (y * 8.13008); double t_886 = Math.pow(t_885, 2.0); double t_887 = Math.sqrt((t_886 + Math.pow((0.867001 + (x * 8.13008)), 2.0))); double t_888 = Math.sqrt((t_886 + Math.pow(((x * 8.13008) - 4.2705), 2.0))); double t_889 = Math.sqrt((t_886 + Math.pow(((x * 8.13008) - 4.9205), 2.0))); double t_890 = Math.sqrt((t_886 + Math.pow((1.767 + (x * 8.13008)), 2.0))); double t_891 = Math.sqrt((t_886 + Math.pow(((x * 8.13008) - 3.6205), 2.0))); double t_892 = Math.sqrt((t_886 + Math.pow(t_776, 2.0))); double t_893 = t_892 - 0.275; double t_894 = Math.sqrt((t_886 + Math.pow(t_813, 2.0))); double t_895 = t_894 - 0.275; double t_896 = Math.sqrt((t_886 + Math.pow(t_139, 2.0))); double t_897 = Math.sqrt((t_886 + Math.pow(t_70, 2.0))); double t_898 = t_897 - 0.275; double t_899 = -t_825; double t_900 = 6.201 - (x * 8.13008); double t_901 = 0.4625 - (y * 8.13008); double t_902 = fmax(t_722, t_901); double t_903 = 4.6455 - (x * 8.13008); double t_904 = (x * 8.13008) - 5.558; double t_905 = 4.65 + (y * 8.13008); double t_906 = fmax(t_905, -t_885); double t_907 = fmax(t_343, t_905); double t_908 = fmax(t_666, t_583); double t_909 = 3.497 + (x * 8.13008); double t_910 = Math.sqrt((t_176 + Math.pow((4.995 + (x * 8.13008)), 2.0))); double t_911 = t_910 - 0.275; double t_912 = (y * 2.03252) + (x * 4.47154); double t_913 = fmax(t_343, t_885); double t_914 = ((x * 2.23577) + 3.865) + (y * 4.06504); double t_915 = fmax(t_3, (5.7 - (y * 8.13008))); double t_916 = Math.pow(t_596, 2.0); double t_917 = Math.sqrt((t_916 + Math.pow(t_542, 2.0))); double t_918 = Math.sqrt((t_916 + Math.pow(t_322, 2.0))); double t_919 = t_55 - 0.275; double t_920 = ((y * 2.03252) + 2.7575) + (x * 4.47154); double t_921 = ((y * 2.03252) + 2.18935) + (x * 4.47154); double t_922 = 0.5025 + (y * 2.03252); double t_923 = 2.662 + (x * 8.13008); double t_924 = -t_923; double t_925 = Math.pow(((y * 8.13008) - 3.6), 2.0); double t_926 = -t_491; double t_927 = Math.pow(((y * 8.13008) - 1.675), 2.0); double t_928 = Math.sqrt((Math.pow(((x * 8.13008) - 6.133), 2.0) + t_927)); double t_929 = Math.sqrt((t_927 + Math.pow(t_124, 2.0))); double t_930 = Math.sqrt((t_927 + Math.pow(((x * 8.13008) - 0.224999), 2.0))); double t_931 = Math.sqrt((t_927 + Math.pow(((x * 8.13008) - 2.775), 2.0))); double t_932 = Math.sqrt((Math.pow((6.375 + (x * 8.13008)), 2.0) + t_927)); double t_933 = Math.sqrt((t_741 + t_927)); double t_934 = Math.sqrt((t_927 + Math.pow((1.9 + (x * 8.13008)), 2.0))); double t_935 = Math.sqrt((t_927 + Math.pow(((x * 8.13008) - 6.783), 2.0))); double t_936 = t_935 - 0.275; double t_937 = -(3.425 + (x * 8.13008)); double t_938 = (x * 1.01626) + 1.13813; double t_939 = (y * 8.13008) - 1.3; double t_940 = fmax(t_939, t_379); double t_941 = fmax(t_939, (0.55 - (y * 8.13008))); double t_942 = Math.sqrt((t_760 + Math.pow(((x * 8.13008) - 6.3705), 2.0))); double t_943 = -t_14; double t_944 = 0.592 + (x * 8.13008); double t_945 = Math.sqrt((t_760 + Math.pow(t_481, 2.0))); double t_946 = 6.2385 - (x * 8.13008); double t_947 = 7.47551 - (x * 8.13008); double t_948 = 5.5955 - (x * 8.13008); double t_949 = Math.pow(t_645, 2.0); double t_950 = Math.sqrt((t_949 + Math.pow(((x * 8.13008) - 0.7685), 2.0))); double t_951 = Math.sqrt((t_949 + Math.pow(((x * 8.13008) - 1.0185), 2.0))); double t_952 = -(0.267001 + (x * 8.13008)); double t_953 = 1.4305 - (x * 8.13008); double t_954 = Math.sqrt((t_826 + Math.pow(((x * 8.13008) - 5.156), 2.0))); double t_955 = 2.7765 - (x * 5.42005); double t_956 = t_15 - (y * 1.82927); double t_957 = -(2.887 + (x * 8.13008)); double t_958 = fmax(t_381, t_16); double t_959 = t_622 - 0.275; double t_960 = t_624 - (y * 2.64228); double t_961 = 1.01 + (x * 4.47154); double t_962 = Math.sqrt((t_826 + Math.pow(t_721, 2.0))); double t_963 = 0.461601 + (x * 4.47154); double t_964 = t_963 - (y * 2.64228); double t_965 = (y * 2.64228) - t_963; double t_966 = t_351 - (x * 4.47154); double t_967 = 3.23375 - (y * 5.28455); double t_968 = 2.5725 - (x * 8.13008); double t_969 = 3.20125 + (y * 5.28455); double t_970 = -t_969; double t_971 = -(3.875 + (y * 8.13008)); double t_972 = fmax(t_780, t_971); double t_973 = 0.775551 + (y * 2.84553); double t_974 = (x * 4.47154) - t_973; double t_975 = t_973 - (x * 4.47154); double t_976 = 2.775 - (y * 8.13008); double t_977 = (x * 11.6144) - 5.05; double t_978 = t_22 - 2.11243; double t_979 = (x + y) * 4.06504; double t_980 = 2.4935 + t_979; double t_981 = 0.0709989 + t_979; double t_982 = Math.pow((0.635 + (y * 8.13008)), 2.0); double t_983 = 1.55 + (y * 8.13008); double t_984 = Math.pow(t_983, 2.0); double t_985 = Math.sqrt((t_984 + Math.pow((2.712 + (x * 8.13008)), 2.0))); double t_986 = Math.sqrt((t_984 + Math.pow((2.462 + (x * 8.13008)), 2.0))); double t_987 = fmax(t_377, t_983); double t_988 = Math.pow((6.025 + (y * 8.13008)), 2.0); double t_989 = Math.sqrt((t_988 + Math.pow(((x * 8.13008) - 4.683), 2.0))); double t_990 = Math.sqrt((Math.pow((1.842 + (x * 8.13008)), 2.0) + t_988)); double t_991 = Math.sqrt((t_988 + Math.pow(((x * 8.13008) - 0.00799847), 2.0))); double t_992 = Math.sqrt((Math.pow(t_785, 2.0) + t_988)); double t_993 = Math.sqrt((t_988 + Math.pow(t_660, 2.0))); double t_994 = Math.sqrt((t_988 + Math.pow(((x * 8.13008) - 4.033), 2.0))); double t_995 = 0.542376 + (y * 2.03252); double t_996 = Math.pow(t_337, 2.0); double t_997 = 4.975 - (y * 8.13008); double t_998 = t_49 - 4.12055; double t_999 = -(0.229501 + (x * 8.13008)); double t_1000 = Math.sqrt((t_741 + t_176)); double t_1001 = t_1000 - 0.275; double t_1002 = Math.sqrt((t_615 + Math.pow((4.325 + (x * 8.13008)), 2.0))); double t_1003 = (x * 4.47154) - t_647; double t_1004 = -(4.1 + (x * 8.13008)); double t_1005 = (x * 4.47154) - t_504; double t_1006 = (x * 8.13008) - 4.051; double t_1007 = (0.5925 + (x * 2.23577)) + (y * 4.06504); double t_1008 = 3.3775 + (x * 4.47154); double t_1009 = t_1008 - (y * 2.84553); double t_1010 = (y * 2.84553) - t_1008; double t_1011 = (y * 0.813008) - 0.36; double t_1012 = fmax(t_379, t_722); double t_1013 = ((y * 2.03252) + 3.61) + (x * 4.47154); double t_1014 = (x + y) * 2.23577; double t_1015 = 0.570488 + t_1014; double t_1016 = t_1014 + 2.48875; double t_1017 = 0.625 - (y * 8.13008); double t_1018 = (y * 0.813008) - 0.25; double t_1019 = (y * 1.21951) + 1.30319; double t_1020 = (x * 8.13008) - 4.5455; double t_1021 = 0.8325 + (y * 2.03252); double t_1022 = fmax(t_216, t_3); return fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmax(fmax(fmax(fmax(fmax(t_21, -t_322), (0.175 - t_992)), (t_992 - 0.275)), t_325), t_503), fmax(fmax(fmax((4.025 + (x * 8.13008)), -(4.125 + (x * 8.13008))), t_325), t_503)), fmax(fmax(fmax((4.275 + (x * 8.13008)), -(4.375 + (x * 8.13008))), t_325), t_503)), fmax(fmax(fmax((5.5 + (y * 8.13008)), -t_82), t_179), t_274)), fmax(fmax(fmax(-(5.4 + (y * 8.13008)), t_884), t_30), t_325)), fmax(fmax(fmax(t_884, t_30), t_335), t_503)), fmax(fmax(fmax((4.9 + (x * 8.13008)), -(5.0 + (x * 8.13008))), t_325), t_503)), fmax(fmax(t_344, (5.7205 - (x * 8.13008))), ((x * 8.13008) - 5.8205))), fmax(fmax(fmax(t_905, -(4.75 + (y * 8.13008))), t_139), t_226)), fmax(fmax(fmax(t_343, t_139), t_226), (5.1 + (y * 8.13008)))), fmax(fmax(t_820, ((x * 4.47154) - t_232)), t_545)), fmax(fmax(-t_58, t_194), t_414)), fmax(fmax(t_58, t_674), t_413)), fmax(fmax(t_674, t_921), t_544)), fmax(fmax(t_194, -t_921), t_545)), fmax((0.175 - t_990), (t_990 - 0.275))), fmax(fmax(fmax((2.475 + (x * 8.13008)), -(2.575 + (x * 8.13008))), t_82), t_503)), fmax(fmax(fmax(fmax(fmax(t_560, -(3.67857 + (x * 11.6144))), (0.45 - Math.sqrt((t_502 + Math.pow((3.91072 + (x * 14.518)), 2.0))))), (Math.sqrt((t_502 + Math.pow(t_560, 2.0))) - 0.55)), t_82), t_503)), fmax(fmax(fmax(-t_203, (2.675 + (x * 8.13008))), t_325), t_503)), fmax(fmax(t_786, t_82), t_611)), fmax(fmax(t_786, t_335), t_503)), fmax(-fmin((Math.sqrt((Math.pow((1.33245 - (x * 3.61337)), 2.0) + Math.pow(-(4.815 + (y * 8.13008)), 2.0))) - 0.0625), fmax(fmax(fmax(t_163, t_307), t_435), ((x * 5.42005) - 2.16367))), (Math.sqrt((Math.pow(-t_307, 2.0) + Math.pow(t_435, 2.0))) - 0.1625))), fmax(-fmin(fmax(fmax(fmax(-t_705, t_866), (1.83867 - (x * 5.42005))), t_43), (Math.sqrt((Math.pow((5.035 + (y * 8.13008)), 2.0) + Math.pow(((x * 3.61337) - 1.33578), 2.0))) - 0.0625)), (Math.sqrt((Math.pow(t_705, 2.0) + Math.pow(t_866, 2.0))) - 0.1625))), fmax(fmax(fmax(t_183, -t_272), ((x * 8.13008) - 1.808)), (1.708 - (x * 8.13008)))), fmax(fmax(fmax(t_878, -t_905), t_78), t_138)), fmax(fmax(fmax(fmax(fmax(t_343, t_272), t_78), t_138), (0.15 - t_713)), (t_713 - 0.25))), fmax(fmax(fmax(fmax(t_344, (4.8205 - (x * 8.13008))), ((x * 8.13008) - 5.5455)), (0.175 - t_896)), (t_896 - 0.275))), fmax(fmax(fmax(t_343, t_43), t_278), (5.0955 - (x * 8.13008)))), fmax(fmax(t_907, ((x * 8.13008) - 4.7455)), t_903)), fmax(fmax(fmax(fmax(fmax(t_905, t_278), t_903), -t_43), (0.175 - t_889)), (t_889 - 0.275))), fmax(fmax(t_907, t_1020), (4.4455 - (x * 8.13008)))), fmax(fmax(t_906, ((x * 8.13008) - 4.0955)), t_463)), fmax(fmax(fmax(fmax(t_913, t_1020), t_463), (0.175 - t_888)), (t_888 - 0.275))), fmax((0.175 - t_891), (t_891 - 0.275))), fmax(fmax(fmax(t_343, (0.142001 + (x * 8.13008))), -(0.242001 + (x * 8.13008))), t_360)), fmax(fmax(fmax(t_343, (0.392001 + (x * 8.13008))), t_824), t_62)), fmax(fmax(fmax(fmax(t_878, t_824), ((x * 8.13008) - 0.157999)), fmin(fmax((0.075 - t_734), (t_734 - 0.175)), fmax((0.075 - t_363), (t_363 - 0.175)))), t_693)), fmax(fmax(t_907, t_944), -(0.692001 + (x * 8.13008)))), fmax(fmax(t_906, (1.042 + (x * 8.13008))), t_425)), fmax(fmax(fmax(fmax(t_913, t_944), t_425), (0.175 - t_887)), (t_887 - 0.275))), fmax(fmax(t_344, (1.267 + (x * 8.13008))), -(1.367 + (x * 8.13008)))), fmax(fmax(fmax(t_905, -(5.575 + (y * 8.13008))), (1.942 + (x * 8.13008))), -(2.042 + (x * 8.13008)))), fmax(t_893, fmin(fmax(fmax(t_164, ((x * 8.13008) - 1.458)), (0.958001 - (x * 8.13008))), fmax(fmax(t_893, -fmin(fmax(fmax(t_969, ((x * 2.23577) - t_316)), -t_643), fmax(fmax(t_643, (t_316 - (x * 2.23577))), t_970))), (0.175 - t_892))))), fmax(fmax(t_389, ((x * 8.13008) - 0.808001)), (0.708 - (x * 8.13008)))), fmax(fmax(t_389, ((x * 8.13008) - 0.558001)), (0.458 - (x * 8.13008)))), fmax(fmax(fmax(t_343, t_62), ((x * 8.13008) - 0.308001)), t_397)), fmax(fmax(fmax(fmax(t_878, t_397), t_693), ((x * 8.13008) - 0.858)), fmin(fmax((0.075 - t_362), (t_362 - 0.175)), fmax((0.075 - t_576), (t_576 - 0.175))))), fmax(fmax(t_389, ((x * 8.13008) - 0.108)), (0.00799942 - (x * 8.13008)))), fmax((0.175 - t_890), (t_890 - 0.275))), fmax(fmax(t_37, t_220), -t_405)), fmax(fmax(t_725, t_219), t_405)), fmax(fmax(t_725, t_1013), t_135)), fmax(fmax(t_37, -t_1013), t_408)), fmax(t_895, fmin(fmax(fmax(t_164, (4.65 + (x * 8.13008))), -t_143), fmax(fmax(t_895, -fmin(fmax(fmax(t_969, (t_659 - (y * 1.21951))), -t_914), fmax(fmax(t_970, t_914), ((y * 1.21951) - t_659)))), (0.175 - t_894))))), fmax(fmax(t_669, (7.531 - (x * 8.13008))), ((x * 8.13008) - 7.631))), fmax(fmax(t_237, t_547), t_675)), fmax(fmax(fmax(t_666, t_547), t_675), t_9)), fmax(fmax(fmax(fmax(t_669, (6.631 - (x * 8.13008))), ((x * 8.13008) - 7.356)), (0.175 - t_841)), (t_841 - 0.275))), fmax(fmax(t_907, (3.1 + (x * 8.13008))), -(3.2 + (x * 8.13008)))), fmax(fmax(fmax(fmax(t_907, t_690), -(4.57143 + (x * 11.6144))), (0.45 - Math.sqrt((t_342 + Math.pow((5.02679 + (x * 14.518)), 2.0))))), (Math.sqrt((t_342 + Math.pow(t_690, 2.0))) - 0.55))), fmax(t_898, fmin(fmax(fmax(t_164, t_303), -t_481), fmax(fmax(t_898, -fmin(fmax(fmax(t_969, (t_110 - (y * 1.21951))), -t_249), fmax(fmax(t_970, t_249), ((y * 1.21951) - t_110)))), (0.175 - t_897))))), fmax(fmax(t_220, (t_961 - (y * 2.03252))), t_114)), fmax(fmax(t_219, t_308), ((y * 2.03252) - t_961))), fmax(fmax(t_308, t_135), ((y * 2.03252) - t_630))), fmax(fmax(t_114, (t_630 - (y * 2.03252))), t_408)), (Math.sqrt((Math.pow((6.225 + (y * 8.13008)), 2.0) + Math.pow(t_388, 2.0))) - 0.075)), fmax(fmax(fmax(fmax(-fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmax(fmax(t_390, ((x * 4.06504) - 2.829)), -t_981), fmax(fmax(t_981, (2.829 - (x * 4.06504))), -t_390)), fmax(fmax(((x * 8.13008) - t_439), -((0.0706995 + (y * 2.60163)) + (x * 2.84553))), (t_125 - (x * 5.28455)))), fmax(fmax(((x * 5.28455) - t_125), ((0.0706992 + (y * 2.60163)) + (x * 2.84553))), (t_439 - (x * 8.13008)))), fmax(fmax(-t_85, (1.8053 - (x * 2.84553))), (t_444 - 0.171801))), fmax(fmax(t_85, (0.171801 - t_444)), ((x * 2.84553) - 1.8053))), fmax(fmax(t_31, ((x * 4.47154) - t_279)), (2.8369 - (x * 4.47154)))), fmax(fmax(((x * 4.47154) - 2.8369), (t_279 - (x * 4.47154))), -t_31)), t_325), t_503), t_904), (5.058 - (x * 8.13008)))), fmax((0.175 - t_989), (t_989 - 0.275))), fmax((0.175 - t_994), (t_994 - 0.275))), fmax(fmax(fmax(((x * 8.13008) - 3.233), (3.133 - (x * 8.13008))), t_325), t_503)), fmax(fmax(fmax(t_82, t_611), t_660), t_822)), fmax(fmax(fmax(t_660, t_822), t_335), t_503)), fmax(fmax(fmax(fmax(fmax(((x * 8.13008) - 4.133), (3.408 - (x * 8.13008))), (0.175 - t_993)), (t_993 - 0.275)), t_325), t_503)), fmax(fmax(-t_99, t_240), t_553)), fmax(fmax(t_99, t_552), t_239)), fmax(fmax(fmax(fmax(t_291, (5.65 + (y * 8.13008))), -t_600), ((x * 8.13008) - 1.733)), fmin(fmax((0.075 - t_602), (t_602 - 0.175)), fmax((0.075 - t_604), (t_604 - 0.175))))), fmax(fmax(fmax(t_503, t_198), t_297), (0.182999 - (x * 8.13008)))), fmax(fmax(fmax(t_82, t_503), (0.167001 + (x * 8.13008))), t_952)), fmax(fmax(fmax(fmax(fmax(t_82, t_297), t_952), -t_198), (0.175 - t_991)), (t_991 - 0.275))), fmax(fmax(((x * 4.47154) - t_111), t_251), t_414)), fmax(fmax(t_485, (t_111 - (x * 4.47154))), t_413)), fmax(fmax(t_485, (t_853 - (x * 4.47154))), t_544)), fmax(fmax(t_251, ((x * 4.47154) - t_853)), t_545)), fmax(fmax(-t_309, t_489), t_414)), fmax(fmax(t_309, t_858), t_413)), fmax(fmax(t_858, t_75), t_544)), fmax(fmax(t_489, -t_75), t_545)), fmax(fmax(((x * 4.47154) - t_569), t_820), t_414)), fmax(fmax(t_867, (t_569 - (x * 4.47154))), t_413)), fmax(fmax(t_867, (t_232 - (x * 4.47154))), t_544)), fmax(fmax(t_552, t_413), t_320)), fmax(fmax(t_553, t_572), t_414)), fmax(fmax(t_240, t_414), t_875)), fmax(fmax(t_239, t_413), t_874)), fmax(fmax(t_320, t_874), t_544)), fmax(fmax(t_572, t_875), t_545)), fmax(fmax(t_414, -t_574), t_790)), fmax(fmax(t_413, t_574), t_791)), fmax(fmax(t_544, t_791), t_273)), fmax(fmax(t_545, t_790), -t_273)), fmax(fmax(t_806, ((x * 8.13008) - 1.683)), (1.583 - (x * 8.13008)))), fmax(fmax(t_806, ((x * 8.13008) - 1.433)), (1.333 - (x * 8.13008)))), fmax(fmax(fmax(t_503, (5.775 + (y * 8.13008))), t_776), t_291)), fmax(fmax(fmax(t_32, ((x * 8.13008) - 1.498)), (1.398 - (x * 8.13008))), t_338)), fmax(fmax(fmax(t_32, ((x * 8.13008) - 1.248)), (1.148 - (x * 8.13008))), t_338)), fmax(fmax(fmax((2.475 + (y * 8.13008)), ((x * 8.13008) - 0.998001)), t_282), t_338)), fmax(fmax(fmax(fmax(t_282, -t_32), ((x * 8.13008) - 1.548)), fmin(fmax((0.075 - t_141), (t_141 - 0.175)), fmax((0.075 - t_527), (t_527 - 0.175)))), t_5)), fmax((0.175 - t_537), (t_537 - 0.275))), fmax(fmax(fmax(t_0, -(0.00200015 + (x * 8.13008))), t_338), t_528)), fmax(fmax(fmax((0.352 + (x * 8.13008)), t_555), t_338), t_730)), fmax(fmax(fmax(fmax(fmax(t_0, t_555), (0.175 - t_536)), (t_536 - 0.275)), t_557), t_683)), fmax(fmax(fmax(fmax(fmax((0.175 - t_535), (t_535 - 0.275)), t_557), t_476), t_605), t_845)), fmax(fmax(fmax(((x * 8.13008) - 3.0105), (2.9105 - (x * 8.13008))), t_338), t_557)), (Math.sqrt((t_477 + Math.pow(((x * 8.13008) - 2.9605), 2.0))) - 0.075)), fmax(-fmin(fmax(fmax(fmax(t_246, t_385), t_482), ((x * 5.42005) - 1.39033)), (Math.sqrt((Math.pow(-(2.615 + (y * 8.13008)), 2.0) + Math.pow((0.81689 - (x * 3.61337)), 2.0))) - 0.0625)), (Math.sqrt((Math.pow(-t_385, 2.0) + Math.pow(t_482, 2.0))) - 0.1625))), fmax(-fmin(fmax(fmax(fmax(-t_211, t_310), (1.06533 - (x * 5.42005))), t_844), (Math.sqrt((Math.pow((2.835 + (y * 8.13008)), 2.0) + Math.pow(((x * 3.61337) - 0.820223), 2.0))) - 0.0625)), (Math.sqrt((Math.pow(t_211, 2.0) + Math.pow(t_310, 2.0))) - 0.1625))), fmax(fmax(fmax(fmax(fmax((0.175 - t_781), (t_781 - 0.275)), t_171), t_270), t_557), t_845)), fmax(fmax(fmax((3.607 + (x * 8.13008)), -(3.707 + (x * 8.13008))), t_338), t_557)), (Math.sqrt((t_477 + Math.pow((3.657 + (x * 8.13008)), 2.0))) - 0.075)), fmax(fmax(fmax(t_32, (3.852 + (x * 8.13008))), -(3.952 + (x * 8.13008))), t_338)), fmax((0.175 - t_530), (t_530 - 0.275))), fmax(fmax(fmax((4.662 + (x * 8.13008)), -(4.762 + (x * 8.13008))), t_730), t_131)), fmax(fmax(t_580, t_5), t_719)), fmax(fmax(fmax(fmax(t_580, (0.15 - t_403)), (t_403 - 0.25)), t_338), t_130)), fmax(fmax(fmax((5.27 + (x * 8.13008)), -(5.37 + (x * 8.13008))), t_338), t_557)), fmax(fmax(fmax((0.702 + (x * 8.13008)), -(0.802 + (x * 8.13008))), t_730), t_131)), fmax(fmax(t_591, t_5), t_719)), fmax(fmax(fmax(fmax(t_591, (0.15 - t_590)), (t_590 - 0.25)), t_338), t_130)), fmax(fmax(fmax(t_32, (1.072 + (x * 8.13008))), -(1.172 + (x * 8.13008))), t_338)), fmax((0.175 - t_532), (t_532 - 0.275))), fmax(fmax(fmax(t_671, (1.882 + (x * 8.13008))), -(1.982 + (x * 8.13008))), t_338)), fmax(fmax(fmax(-(2.55 + (y * 8.13008)), t_471), t_598), t_557)), fmax(fmax(fmax(fmax(fmax(t_471, t_598), -t_671), (0.15 - t_672)), (t_672 - 0.25)), t_730)), fmax(fmax(fmax(t_171, -(3.032 + (x * 8.13008))), t_338), t_844)), fmax(fmax(fmax((3.382 + (x * 8.13008)), t_270), t_338), t_557)), fmax(fmax(t_608, t_736), t_946)), fmax(fmax(fmax(fmax(fmax(t_736, t_946), t_377), (0.15 - t_751)), (t_751 - 0.25)), t_747)), fmax(fmax(t_607, ((x * 8.13008) - 6.1135)), (6.0135 - (x * 8.13008)))), (Math.sqrt((Math.pow((1.2 + (y * 8.13008)), 2.0) + Math.pow(((x * 8.13008) - 6.0635), 2.0))) - 0.075)), fmax(fmax(t_208, t_352), t_563)), fmax(fmax(t_207, t_854), t_966)), fmax(fmax(t_854, t_115), t_261)), fmax(fmax(t_563, t_490), t_567)), fmax(fmax(t_352, t_567), t_864)), fmax(fmax(t_966, t_115), t_863)), fmax(fmax(t_261, t_863), t_264)), fmax(fmax(t_490, t_864), t_498)), fmax(fmax(t_567, (2.24743 - t_869)), t_978)), fmax(fmax(fmax(fmax(fmax(t_391, -(7.67143 + (x * 11.6144))), (0.45 - Math.sqrt((t_996 + Math.pow((8.90179 + (x * 14.518)), 2.0))))), (Math.sqrt((t_996 + Math.pow(t_391, 2.0))) - 0.55)), t_338), t_557)), fmax(t_539, fmin(fmax(fmax(fmax((5.47 + (x * 8.13008)), -(5.97 + (x * 8.13008))), t_399), t_246), fmax(fmax(t_539, -fmin(fmax(fmax((t_26 - (y * 1.21951)), -t_180), t_333), fmax(fmax(t_180, ((y * 1.21951) - t_26)), t_650))), (0.175 - t_538))))), fmax(fmax(-fmin(fmax(fmax(((y * 2.23577) - (1.02163 + (x * 2.27642))), t_517), -t_1016), fmax(fmax(t_1016, -t_517), ((1.02162 + (x * 2.27642)) - (y * 2.23577)))), (0.175 - t_657)), (t_657 - 0.275))), fmax(fmax(t_748, ((x * 8.13008) - 6.4885)), (6.3885 - (x * 8.13008)))), fmax(fmax(fmax(fmax(t_662, (0.175 - t_823)), (t_823 - 0.275)), ((x * 8.13008) - 3.9055)), (3.1805 - (x * 8.13008)))), fmax(fmax(fmax(fmax(fmax(-fmin(fmax(fmax(((x * 2.84553) - t_195), -t_368), (t_681 - (x * 1.01626))), fmax(fmax(t_368, ((x * 1.01626) - t_681)), (t_195 - (x * 2.84553)))), t_292), -(2.05 + (y * 8.13008))), ((x * 8.13008) - 2.0805)), (1.9305 - (x * 8.13008))), (Math.sqrt((Math.pow((0.608333 + (y * 2.71003)), 2.0) + Math.pow(((x * 8.13008) - 2.0055), 2.0))) - 0.075))), (Math.sqrt((Math.pow(t_292, 2.0) + Math.pow(((x * 8.13008) - 2.0305), 2.0))) - 0.075)), fmax(fmax(t_378, ((x * 8.13008) - 1.6805)), (1.5805 - (x * 8.13008)))), fmax(fmax(fmax(t_606, t_742), t_953), t_71)), fmax(fmax(fmax(fmax(fmax(t_47, t_742), t_953), t_483), (0.15 - t_757)), (t_757 - 0.25))), fmax(fmax(t_378, ((x * 8.13008) - 1.1805)), (1.0805 - (x * 8.13008)))), fmax(fmax(t_115, t_432), (t_869 - 2.24743))), fmax(fmax(t_264, t_432), (t_869 - 2.30243))), fmax(fmax(t_498, t_978), (2.30243 - t_869))), fmax(fmax(t_607, ((x * 8.13008) - 4.2805)), (4.1805 - (x * 8.13008)))), fmax(fmax(fmax(fmax(t_607, t_631), (5.97215 - (x * 11.6144))), (0.45 - Math.sqrt((t_376 + Math.pow(((x * 14.518) - 8.15268), 2.0))))), (Math.sqrt((t_376 + Math.pow(t_631, 2.0))) - 0.55))), fmax(fmax(t_607, t_706), (3.9805 - (x * 8.13008)))), fmax(fmax(fmax(t_606, -t_53), ((x * 8.13008) - 3.6305)), t_321)), fmax(fmax(fmax(fmax(fmax(t_377, t_706), t_321), t_53), (0.175 - t_876)), (t_876 - 0.275))), fmax(fmax(t_662, ((x * 8.13008) - 3.0055)), (2.9055 - (x * 8.13008)))), fmax(fmax(t_711, t_188), t_792)), fmax(fmax(fmax(t_377, t_188), t_792), t_80)), fmax((0.175 - t_834), (t_834 - 0.275))), fmax(fmax(t_882, t_1006), (3.951 - (x * 8.13008)))), fmax(fmax(t_669, ((x * 8.13008) - 3.601)), t_401)), fmax(fmax(fmax(fmax(fmax(t_235, t_1006), t_401), t_899), (0.175 - t_827)), (t_827 - 0.275))), fmax(fmax(t_586, ((x * 8.13008) - 3.251)), (3.151 - (x * 8.13008)))), fmax(fmax(t_236, t_346), t_450)), fmax(fmax(fmax(fmax(t_908, t_346), t_450), (0.15 - t_585)), (t_585 - 0.25))), fmax(fmax(t_667, ((x * 8.13008) - 1.943)), (1.843 - (x * 8.13008)))), fmax(fmax(fmax(fmax(t_667, t_4), (2.63286 - (x * 11.6144))), (0.45 - Math.sqrt((t_665 + Math.pow(((x * 14.518) - 3.97857), 2.0))))), (Math.sqrt((t_665 + Math.pow(t_4, 2.0))) - 0.55))), fmax(fmax(t_667, ((x * 8.13008) - 6.981)), (6.881 - (x * 8.13008)))), (Math.sqrt((Math.pow((3.4 + (y * 8.13008)), 2.0) + Math.pow(((x * 8.13008) - 6.931), 2.0))) - 0.075)), fmax(fmax(t_669, (6.656 - (x * 8.13008))), ((x * 8.13008) - 6.756))), fmax(fmax(t_237, t_293), t_421)), fmax(fmax(t_670, t_293), t_421)), fmax(fmax(fmax(fmax(t_669, (5.756 - (x * 8.13008))), ((x * 8.13008) - 6.481)), (0.175 - t_833)), (t_833 - 0.275))), fmax(fmax(t_692, t_849), (5.331 - (x * 8.13008)))), fmax(fmax(t_667, ((x * 8.13008) - 4.981)), t_298)), fmax(fmax(fmax(fmax(fmax(t_235, t_849), t_298), t_743), (0.175 - t_954)), (t_954 - 0.275))), fmax(fmax(t_668, ((x * 8.13008) - 4.761)), (4.661 - (x * 8.13008)))), fmax(fmin(fmax(fmax((0.175 - t_831), t_837), -fmin(fmax(fmax(t_777, ((x * 2.23577) - t_20)), -t_165), fmax(fmax(t_778, t_165), (t_20 - (x * 2.23577))))), fmax(fmax(t_972, ((x * 8.13008) - 0.443)), -(0.0570004 + (x * 8.13008)))), t_837)), fmax(t_839, fmin(fmax(fmax(fmax((0.207 + (x * 8.13008)), -(0.707 + (x * 8.13008))), t_780), t_971), fmax(fmax(t_839, -fmin(fmax(fmax(((x * 2.23577) - t_877), -t_77), t_777), fmax(fmax(t_77, (t_877 - (x * 2.23577))), t_778))), (0.175 - t_838))))), fmax(fmax(t_669, -t_644), (0.857 + (x * 8.13008)))), fmax(fmax(t_237, t_129), t_644)), fmax(fmax(t_670, t_129), t_644)), fmax(fmax(fmax(fmax(t_669, -(1.857 + (x * 8.13008))), t_128), (0.175 - t_883)), (t_883 - 0.275))), fmax(fmax(t_669, -t_275), (2.182 + (x * 8.13008)))), fmax(fmax(t_237, t_275), t_721)), fmax(fmax(t_670, t_275), t_721)), fmax(t_829, fmin(fmax(fmax(t_972, ((x * 8.13008) - 1.743)), (1.243 - (x * 8.13008))), fmax(fmax(t_829, -fmin(fmax(fmax(t_777, ((x * 2.23577) - t_284)), -t_451), fmax(fmax(t_451, (t_284 - (x * 2.23577))), t_778))), (0.175 - t_828))))), fmax(fmax(fmax(t_235, -(4.475 + (y * 8.13008))), ((x * 8.13008) - 0.643001)), (0.543 - (x * 8.13008)))), fmax((0.175 - t_840), (t_840 - 0.275))), fmax(fmax(fmax(fmax(fmax((Math.sqrt((Math.pow((4.937 + (x * 8.13008)), 2.0) + Math.pow((1.34167 + (y * 2.71003)), 2.0))) - 0.075), -fmin(fmax(fmax((t_196 - (y * 0.813008)), -t_365), (t_599 - (x * 1.01626))), fmax(fmax(((x * 1.01626) - t_599), t_365), ((y * 0.813008) - t_196)))), t_63), -(4.25 + (y * 8.13008))), (4.862 + (x * 8.13008))), -(5.012 + (x * 8.13008)))), (Math.sqrt((Math.pow(t_63, 2.0) + Math.pow(t_579, 2.0))) - 0.075)), fmax(fmax(t_882, t_42), -(5.262 + (x * 8.13008)))), fmax(fmax(t_669, (5.612 + (x * 8.13008))), t_561)), fmax(fmax(fmax(fmax(fmax(t_235, t_899), t_42), t_561), (0.175 - t_830)), (t_830 - 0.275))), fmax(fmax(t_586, (5.962 + (x * 8.13008))), -(6.062 + (x * 8.13008)))), fmax(fmax(t_236, t_109), t_204)), fmax(fmax(fmax(fmax(t_908, t_109), t_204), (0.15 - t_698)), (t_698 - 0.25))), fmax(fmax(t_667, (6.57 + (x * 8.13008))), -(6.67 + (x * 8.13008)))), fmax(fmax(fmax(fmax(t_669, t_720), -(3.182 + (x * 8.13008))), (0.175 - t_962)), (t_962 - 0.275))), fmax(fmax(t_692, t_262), -(2.907 + (x * 8.13008)))), fmax(fmax(t_667, (3.257 + (x * 8.13008))), t_859)), fmax(fmax(fmax(fmax(fmax(t_235, t_743), t_262), t_859), (0.175 - t_836)), (t_836 - 0.275))), fmax(fmax(t_668, (3.477 + (x * 8.13008))), -(3.577 + (x * 8.13008)))), fmax((0.175 - t_835), (t_835 - 0.275))), fmax(fmin(fmax(fmax(t_534, -fmin(fmax(fmax(t_333, ((x * 2.23577) - t_712)), (0.228514 - t_25)), fmax(fmax((t_25 - 0.228514), (t_712 - (x * 2.23577))), t_650))), (0.175 - t_533)), fmax(fmax(fmax(t_399, t_246), ((x * 8.13008) - 6.23551)), (5.73551 - (x * 8.13008)))), t_534)), fmax(fmax(fmax(t_338, t_27), (5.4355 - (x * 8.13008))), t_528)), fmax(fmax(fmax(t_338, t_730), ((x * 8.13008) - 5.0855)), t_510)), fmax(fmax(fmax(fmax(fmax(t_27, t_510), t_557), t_683), (0.175 - t_531)), (t_531 - 0.275))), fmax(fmax(fmax(t_730, t_131), ((x * 8.13008) - 4.7355)), (4.6355 - (x * 8.13008)))), fmax(fmax(fmax(t_5, t_719), t_91), t_185)), fmax(fmax(fmax(fmax(fmax(t_338, t_130), t_91), t_185), (0.15 - t_658)), (t_658 - 0.25))), fmax(fmax(fmax(t_338, t_844), t_476), (3.5855 - (x * 8.13008)))), fmax(fmax(fmax(t_338, t_557), ((x * 8.13008) - 3.2355)), t_605)), fmax(fmax(fmax(fmax(t_667, t_728), -(9.52857 + (x * 11.6144))), (0.45 - Math.sqrt((t_665 + Math.pow((11.2232 + (x * 14.518)), 2.0))))), (Math.sqrt((t_665 + Math.pow(t_728, 2.0))) - 0.55))), fmax(fmax(t_668, (6.79 + (x * 8.13008))), -(6.89 + (x * 8.13008)))), fmax((0.175 - t_832), (t_832 - 0.275))), fmax(t_843, fmin(fmax(fmax(t_972, t_294), t_419), fmax(fmax(t_843, -fmin(fmax(fmax(t_777, (t_106 - (y * 1.21951))), -t_243), fmax(fmax(t_778, t_243), ((y * 1.21951) - t_106)))), (0.175 - t_842))))), fmax(fmax(t_848, t_66), t_155)), fmax(fmax(t_847, t_427), t_478)), fmax(fmax(t_427, t_746), t_956)), fmax(fmax(t_155, t_745), t_247)), fmax(fmax(t_848, t_745), t_429)), fmax(fmax(t_847, t_746), t_699)), fmax(fmax(t_427, -t_17), t_160)), fmax(fmax(t_155, t_17), t_433)), fmax(fmax(t_429, t_433), t_628)), fmax(fmax(t_699, t_160), -t_628)), fmax(fmax(fmax((3.5325 + (x * 8.13008)), -(3.6325 + (x * 8.13008))), t_491), t_633)), fmax(fmax(fmax(fmax(fmax(t_119, -(5.18929 + (x * 11.6144))), (0.45 - Math.sqrt((Math.pow((5.79911 + (x * 14.518)), 2.0) + t_784)))), (Math.sqrt((Math.pow(t_119, 2.0) + t_784)) - 0.55)), t_491), t_633)), fmax(fmax(fmax((3.7575 + (x * 8.13008)), -(3.8575 + (x * 8.13008))), t_491), t_633)), (Math.sqrt((Math.pow((3.8075 + (x * 8.13008)), 2.0) + t_2)) - 0.075)), fmax(fmax(fmax((4.0025 + (x * 8.13008)), -(4.1025 + (x * 8.13008))), t_633), t_645)), fmax(fmax(fmax(((x * 8.13008) - 0.0154991), -(0.084501 + (x * 8.13008))), t_633), t_645)), fmax((0.175 - t_802), (t_802 - 0.275))), fmax(fmax(fmax(t_181, -(0.794501 + (x * 8.13008))), t_797), t_633)), fmax(fmax(fmax((1.1445 + (x * 8.13008)), t_810), t_34), t_633)), fmax(fmax(fmax(fmax(fmax(t_181, t_810), t_798), (0.175 - t_805)), (t_805 - 0.275)), t_491)), fmax(fmax(-fmin(fmax(fmax(((y * 2.23577) - t_345), t_453), -t_1015), fmax(fmax(t_1015, -t_453), (t_345 - (y * 2.23577)))), (0.175 - t_800)), (t_800 - 0.275))), fmax(fmax(t_498, t_956), t_478)), fmax(fmax(t_264, t_66), t_247)), fmax(fmax(fmax(fmax(fmax(t_798, t_52), t_191), (0.175 - t_804)), (t_804 - 0.275)), t_491)), fmax(fmax(fmax(-t_60, (7.05 + (x * 8.13008))), -(7.15 + (x * 8.13008))), t_34)), fmax(fmax(fmax(t_549, t_679), t_926), t_10)), fmax(fmax(fmax(fmax(fmax(t_60, t_549), t_679), (0.15 - t_550)), (t_550 - 0.25)), t_633)), fmax(fmax(t_941, ((x * 8.13008) - 7.72551)), (7.62551 - (x * 8.13008)))), fmax(fmax(t_424, t_737), t_947)), fmax(fmax(fmax(fmax(fmax(t_737, t_947), t_299), t_379), (0.15 - t_738)), (t_738 - 0.25))), fmax(fmax(fmax(t_379, ((y * 8.13008) - 0.65)), ((x * 8.13008) - 7.35551)), (7.25551 - (x * 8.13008)))), fmax((0.175 - t_771), (t_771 - 0.275))), fmax((0.175 - t_801), (t_801 - 0.275))), fmax(-fmin(fmax(fmax(fmax(t_168, (3.575 + (x * 5.42005))), t_313), t_437), (Math.sqrt((Math.pow(-(2.49333 + (x * 3.61337)), 2.0) + t_76)) - 0.0625)), (Math.sqrt((Math.pow(t_168, 2.0) + t_500)) - 0.1625))), fmax(-fmin(fmax(fmax(fmax(t_167, -(3.9 + (x * 5.42005))), t_213), t_394), (Math.sqrt((Math.pow((2.49 + (x * 3.61337)), 2.0) + t_982)) - 0.0625)), (Math.sqrt((Math.pow(t_167, 2.0) + t_395)) - 0.1625))), fmax(fmax(fmax(-(6.075 + (x * 8.13008)), t_793), t_491), t_633)), (Math.sqrt((Math.pow((6.025 + (x * 8.13008)), 2.0) + t_2)) - 0.075)), fmax(fmax(fmax(t_52, -(6.35 + (x * 8.13008))), t_797), t_633)), fmax(fmax(fmax((6.7 + (x * 8.13008)), t_191), t_34), t_633)), fmax(-fmin((Math.sqrt((t_218 + Math.pow(((x * 3.61337) - 2.02467), 2.0))) - 0.0625), fmax(fmax(t_902, t_35), (2.872 - (x * 5.42005)))), (Math.sqrt((t_406 + Math.pow(t_35, 2.0))) - 0.1625))), fmax(t_774, fmin(fmax(fmax(t_410, ((x * 8.13008) - 4.208)), (3.708 - (x * 8.13008))), fmax(fmax(t_774, -fmin(fmax(fmax(t_97, ((x * 2.23577) - t_229)), (1.32095 - t_25)), fmax(fmax((t_25 - 1.32095), (t_229 - (x * 2.23577))), t_729))), (0.175 - t_773))))), fmax(-fmin(fmax(fmax(fmax(t_234, ((x * 5.42005) - 2.372)), t_409), t_469), (Math.sqrt((Math.pow((1.47133 - (x * 3.61337)), 2.0) + t_61)) - 0.0625)), (Math.sqrt((Math.pow(t_234, 2.0) + t_366)) - 0.1625))), fmax(fmax(t_759, t_680), (6.5455 - (x * 8.13008)))), fmax(fmax(t_940, ((x * 8.13008) - 6.19551)), t_241)), fmax(fmax(fmax(fmax(fmax(t_680, t_241), t_684), t_735), (0.175 - t_942)), (t_942 - 0.275))), fmax(fmax(t_941, ((x * 8.13008) - 5.8455)), (5.7455 - (x * 8.13008)))), fmax(fmax(t_424, t_739), t_948)), fmax(fmax(fmax(fmax(t_380, t_739), t_948), (0.15 - t_740)), (t_740 - 0.25))), fmax(-fmin(fmax(fmax(t_470, t_72), ((x * 5.42005) - 3.197)), (Math.sqrt((t_61 + Math.pow((2.02133 - (x * 3.61337)), 2.0))) - 0.0625)), (Math.sqrt((t_366 + Math.pow(t_72, 2.0))) - 0.1625))), fmax(-fmin(fmax(fmax(t_902, (0.788667 - (x * 5.42005))), t_256), (Math.sqrt((t_218 + Math.pow(((x * 3.61337) - 0.635778), 2.0))) - 0.0625)), (Math.sqrt((t_406 + Math.pow(t_256, 2.0))) - 0.1625))), fmax(fmax(t_685, ((x * 8.13008) - 0.125)), (0.0249996 - (x * 8.13008)))), fmax(fmax(fmax(fmax(t_685, t_704), (0.0357141 - (x * 11.6144))), (0.45 - Math.sqrt((t_169 + Math.pow(((x * 14.518) - 0.732143), 2.0))))), (Math.sqrt((t_169 + Math.pow(t_704, 2.0))) - 0.55))), fmax(fmax(t_685, (0.1 + (x * 8.13008))), -(0.2 + (x * 8.13008)))), (Math.sqrt((Math.pow(((y * 8.13008) - 1.0), 2.0) + t_465)) - 0.075)), fmax(t_789, fmin(fmax(fmax(t_410, (0.325 + (x * 8.13008))), -(0.825 + (x * 8.13008))), fmax(fmax(t_789, -fmin(fmax(fmax(t_97, (t_81 - (y * 1.21951))), (0.0743749 - t_25)), fmax(fmax(t_729, (t_25 - 0.0743749)), ((y * 1.21951) - t_81)))), (0.175 - t_788))))), fmax(-fmin(fmax(fmax(fmax(t_28, (2.047 - (x * 5.42005))), t_722), t_901), (Math.sqrt((t_218 + Math.pow(((x * 3.61337) - 1.47467), 2.0))) - 0.0625)), (Math.sqrt((t_406 + Math.pow(t_28, 2.0))) - 0.1625))), fmax(fmax(t_1012, t_36), (2.8705 - (x * 8.13008)))), fmax(fmax(t_685, ((x * 8.13008) - 2.5205)), t_448)), fmax(fmax(fmax(fmax(fmax(t_684, t_36), t_448), t_1017), (0.175 - t_762)), (t_762 - 0.275))), fmax(t_768, fmin(fmax(fmax(t_410, ((x * 8.13008) - 2.3205)), (1.8205 - (x * 8.13008))), fmax(fmax(t_768, -fmin(fmax(fmax(t_97, ((x * 2.23577) - t_663)), (0.801888 - t_25)), fmax(fmax(t_729, (t_25 - 0.801888)), (t_663 - (x * 2.23577))))), (0.175 - t_767))))), fmax(-fmin(fmax(fmax(t_470, t_543), ((x * 5.42005) - 1.11367)), (Math.sqrt((t_61 + Math.pow((0.632445 - (x * 3.61337)), 2.0))) - 0.0625)), (Math.sqrt((t_366 + Math.pow(t_543, 2.0))) - 0.1625))), fmax((Math.sqrt((Math.pow(-t_733, 2.0) + Math.pow(t_8, 2.0))) - 0.1625), -fmin(fmax(fmax(fmax(t_420, t_733), t_8), (0.233001 + (x * 5.42005))), (Math.sqrt((Math.pow(-(1.515 + (y * 8.13008)), 2.0) + Math.pow(-(0.265334 + (x * 3.61337)), 2.0))) - 0.0625)))), fmax(-fmin(fmax(fmax(fmax((1.575 + (y * 8.13008)), -t_67), t_156), -(0.558001 + (x * 5.42005))), (Math.sqrt((Math.pow((1.735 + (y * 8.13008)), 2.0) + Math.pow((0.262 + (x * 3.61337)), 2.0))) - 0.0625)), (Math.sqrt((Math.pow(t_67, 2.0) + Math.pow(t_156, 2.0))) - 0.1625))), fmax(fmax(t_208, (t_430 - (y * 1.82927))), t_625)), fmax(fmax(t_207, t_960), t_431)), fmax(fmax(t_115, t_960), t_210)), fmax(fmax(t_567, t_625), t_434)), fmax(fmax(t_567, ((0.5966 + (x * 4.47154)) - (y * 1.82927))), t_965)), fmax(fmax(t_115, t_431), t_964)), fmax(fmax(t_264, t_210), t_964)), fmax(fmax(t_498, t_434), t_965)), fmax(fmax(t_567, -t_636), t_860)), fmax(fmax(t_115, t_861), t_636)), fmax(fmax(t_264, t_861), t_315)), fmax(fmax(t_498, t_860), -t_315)), fmax(fmax(t_711, t_871), t_23)), fmax(fmax(fmax(fmax(fmax(t_47, t_483), t_871), t_23), (0.15 - t_872)), (t_872 - 0.25))), fmax(fmax(t_987, ((x * 8.13008) - 0.8105)), (0.7105 - (x * 8.13008)))), fmax((0.175 - t_398), (t_398 - 0.275))), fmax(fmax(t_748, ((x * 8.13008) - 0.000499725)), -(0.0995007 + (x * 8.13008)))), fmax(fmax(t_608, t_400), t_509)), fmax(fmax(fmax(fmax(fmax(t_377, t_747), t_400), t_509), (0.15 - t_750)), (t_750 - 0.25))), fmax(fmax(fmax(t_662, -fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmax(fmax((t_222 - (y * 3.25203)), -t_407), t_516), fmax(fmax(t_407, ((y * 3.25203) - t_222)), -t_516)), fmax(fmax(t_93, t_137), -t_980)), fmax(fmax(t_980, -t_137), -t_93)), fmax(fmax((t_909 - (y * 0.813008)), -t_44), ((y * 3.41463) - t_224))), fmax(fmax((t_224 - (y * 3.41463)), t_44), ((y * 0.813008) - t_909))), fmax(fmax(-t_818, -t_48), t_145)), fmax(fmax(t_818, t_48), -t_145))), (3.687 + (x * 8.13008))), -(4.187 + (x * 8.13008)))), fmax(fmax(t_987, (4.307 + (x * 8.13008))), -(4.407 + (x * 8.13008)))), fmax((0.175 - t_358), (t_358 - 0.275))), fmax(t_919, fmin(fmax(fmax(fmax((1.585 + (y * 8.13008)), t_420), (4.967 + (x * 8.13008))), -(5.467 + (x * 8.13008))), fmax(fmax(t_919, -fmin(fmax(fmax(t_295, (t_475 - (y * 1.21951))), -t_686), fmax(fmax(t_686, ((y * 1.21951) - t_475)), -t_295))), (0.175 - t_55))))), fmax(fmax(t_607, (5.875 + (x * 8.13008))), -t_793)), fmax(fmax(fmax(t_377, (2.287 + (x * 8.13008))), -(2.387 + (x * 8.13008))), t_983)), fmax(fmax(t_987, (2.537 + (x * 8.13008))), -(2.637 + (x * 8.13008)))), fmax(fmax(fmax(t_377, (1.375 + (y * 8.13008))), (2.787 + (x * 8.13008))), t_957)), fmax(fmax(fmax(fmax(t_423, t_957), -t_983), (2.237 + (x * 8.13008))), fmin(fmax((0.075 - t_986), (t_986 - 0.175)), fmax((0.075 - t_985), (t_985 - 0.175))))), fmax(fmax(fmax(fmax(fmax(-fmin(fmax(fmax(((x * 2.84553) - t_263), (0.681276 - t_492)), (t_637 - (x * 1.01626))), fmax(fmax(((x * 1.01626) - t_637), (t_492 - 0.681276)), (t_263 - (x * 2.84553)))), t_120), -(0.95 + (y * 8.13008))), ((x * 8.13008) - 5.289)), (5.139 - (x * 8.13008))), (Math.sqrt((Math.pow((0.241667 + (y * 2.71003)), 2.0) + Math.pow(((x * 8.13008) - 5.214), 2.0))) - 0.075))), (Math.sqrt((Math.pow(t_120, 2.0) + Math.pow(((x * 8.13008) - 5.239), 2.0))) - 0.075)), fmax(fmax(fmax(t_491, ((x * 8.13008) - 4.781)), (4.681 - (x * 8.13008))), t_633)), fmax(fmax(fmax(fmax(fmax(t_491, t_329), (6.68715 - (x * 11.6144))), (0.45 - Math.sqrt((t_784 + Math.pow(((x * 14.518) - 9.04643), 2.0))))), (Math.sqrt((t_784 + Math.pow(t_329, 2.0))) - 0.55)), t_633)), fmax((0.175 - t_803), (t_803 - 0.275))), fmax(fmax(fmax(fmax(t_607, t_29), -(8.53571 + (x * 11.6144))), (0.45 - Math.sqrt((t_376 + Math.pow((9.98214 + (x * 14.518)), 2.0))))), (Math.sqrt((t_376 + Math.pow(t_29, 2.0))) - 0.55))), fmax(fmax(t_662, t_90), t_182)), fmax(fmax(fmax(t_606, t_653), t_71), t_519)), fmax(fmax(fmax(t_377, t_653), t_80), t_519)), fmax(fmax(fmax(fmax(t_662, t_45), -t_653), (0.175 - t_656)), (t_656 - 0.275))), fmax(fmax(t_635, ((x * 8.13008) - 7.28901)), (7.18901 - (x * 8.13008)))), fmax(fmax(t_635, ((x * 8.13008) - 7.03901)), (6.93901 - (x * 8.13008)))), fmax(fmax(fmax(((y * 8.13008) - 4.76837e-7), t_926), ((x * 8.13008) - 6.81401)), (6.71401 - (x * 8.13008)))), fmax(fmax(fmax(t_34, (0.1 - (y * 8.13008))), t_98), t_192)), fmax(fmax(fmax(t_633, t_98), t_192), (0.7 + (y * 8.13008)))), fmax(fmax(t_635, ((x * 8.13008) - 6.41401)), (6.314 - (x * 8.13008)))), fmax(fmax(t_634, ((x * 8.13008) - 2.1185)), (2.0185 - (x * 8.13008)))), (Math.sqrt((t_2 + Math.pow(((x * 8.13008) - 2.0685), 2.0))) - 0.075)), fmax(fmax(t_646, ((x * 8.13008) - 1.1935)), (1.0935 - (x * 8.13008)))), fmax(fmax(t_646, ((x * 8.13008) - 0.943501)), (0.8435 - (x * 8.13008)))), fmax(fmax(fmax(t_633, (0.275 + (y * 8.13008))), ((x * 8.13008) - 0.693501)), t_64)), fmax(fmax(fmax(fmax(t_64, t_10), -t_645), ((x * 8.13008) - 1.2435)), fmin(fmax((0.075 - t_951), (t_951 - 0.175)), fmax((0.075 - t_950), (t_950 - 0.175))))), fmax(fmax(t_634, ((x * 8.13008) - 0.2355)), (0.1355 - (x * 8.13008)))), fmax(fmax(fmax(t_248, ((x * 8.13008) - 3.781)), t_633), (3.681 - (x * 8.13008)))), fmax(fmax(fmax(t_491, -(0.35 + (y * 8.13008))), t_73), t_162)), fmax(fmax(fmax(fmax(fmax(t_34, t_73), t_162), -t_248), (0.15 - t_701)), (t_701 - 0.25))), fmax(-fmin(fmax(fmax(fmax(t_313, t_437), t_387), ((x * 5.42005) - 1.82067)), (Math.sqrt((t_76 + Math.pow((1.10378 - (x * 3.61337)), 2.0))) - 0.0625)), (Math.sqrt((t_500 + Math.pow(t_387, 2.0))) - 0.1625))), fmax(-fmin(fmax(fmax(fmax(t_213, t_394), t_593), (1.49567 - (x * 5.42005))), (Math.sqrt((t_982 + Math.pow(((x * 3.61337) - 1.10711), 2.0))) - 0.0625)), (Math.sqrt((t_395 + Math.pow(t_593, 2.0))) - 0.1625))), fmax(fmax(fmax(fmax(t_634, t_709), (0.193571 - (x * 11.6144))), (0.45 - Math.sqrt((t_784 + Math.pow(((x * 14.518) - 0.929465), 2.0))))), (Math.sqrt((t_784 + Math.pow(t_709, 2.0))) - 0.55))), 100000000.0), fmax(t_795, fmin(fmax(fmax(t_578, ((x * 8.13008) - 7.40251)), (6.90251 - (x * 8.13008))), fmax(fmax(t_795, -fmin(fmax(fmax(t_277, ((x * 2.23577) - t_446)), (3.29944 - t_25)), fmax(fmax((t_25 - 3.29944), (t_446 - (x * 2.23577))), t_39))), (0.175 - t_794))))), fmax(fmax(t_223, ((x * 4.47154) - t_340)), t_521)), fmax(fmax(t_812, (t_340 - (x * 4.47154))), t_1018)), fmax(fmax(t_812, t_94), (t_225 - (x * 4.47154)))), fmax(fmax(t_521, ((x * 4.47154) - t_225)), t_523)), fmax(fmax(t_223, (4.14638 - t_912)), t_50)), fmax(fmax(t_1018, t_231), (t_912 - 4.14638))), fmax(fmax(t_94, t_231), (t_912 - 4.20138))), fmax(fmax(t_523, t_50), (4.20138 - t_912))), fmax(fmax(-t_57, t_193), t_359)), fmax(fmax(t_57, t_597), t_673)), fmax(fmax(t_597, t_920), t_102)), fmax(fmax(t_193, -t_920), t_369)), fmax((0.175 - t_932), (t_932 - 0.275))), fmax(fmax(fmax(t_242, -(6.85 + (x * 8.13008))), t_559), t_687)), fmax(fmax(fmax(t_679, (7.2 + (x * 8.13008))), t_687), t_153)), fmax(fmax(fmax(fmax(fmax(t_679, t_242), (0.175 - t_933)), (t_933 - 0.275)), t_68), t_153)), fmax(fmax(t_383, t_480), (7.95251 - (x * 8.13008)))), fmax(fmax(t_958, ((x * 8.13008) - 7.60251)), t_205)), fmax(fmax(fmax(fmax(fmax(t_480, t_16), t_205), t_626), (0.175 - t_775)), (t_775 - 0.275))), fmax(fmax(t_384, t_306), (3.0225 - (x * 8.13008)))), fmax(fmax(fmax(t_381, ((x * 8.13008) - 2.6725)), t_968), t_74)), fmax(fmax(fmax(fmax(fmax(t_16, t_968), (0.175 - t_493)), (t_493 - 0.275)), t_976), t_306)), fmax(fmax(t_223, ((x * 4.47154) - t_170)), t_324)), fmax(fmax(t_1018, t_573), (t_170 - (x * 4.47154)))), fmax(fmax(t_94, t_573), (t_995 - (x * 4.47154)))), fmax(fmax(t_523, t_324), ((x * 4.47154) - t_995))), fmax(fmax(t_223, (1.79238 - t_912)), t_440)), fmax(fmax(t_1018, t_710), (t_912 - 1.79238))), fmax(fmax(t_94, t_710), (t_912 - 1.84738))), fmax(fmax(t_523, t_440), (1.84738 - t_912))), fmax(fmax(t_223, ((x * 4.47154) - t_441)), t_648)), fmax(fmax(t_1018, t_1003), (t_441 - (x * 4.47154)))), fmax(fmax(t_94, t_1003), (t_215 - (x * 4.47154)))), fmax(fmax(t_523, t_648), ((x * 4.47154) - t_215))), fmax(fmax(t_223, (1.51738 - t_912)), t_808)), fmax(fmax(t_1018, t_87), (t_912 - 1.51738))), fmax(fmax(t_94, t_87), (t_912 - 1.57238))), fmax(fmax(t_523, t_808), (1.57238 - t_912))), fmax(t_724, fmin(fmax(fmax(t_578, ((x * 8.13008) - 6.0525)), (5.5525 - (x * 8.13008))), fmax(fmax(t_724, -fmin(fmax(fmax(t_277, ((x * 2.23577) - t_1019)), (2.92819 - t_25)), fmax(fmax(t_39, (t_25 - 2.92819)), (t_1019 - (x * 2.23577))))), (0.175 - t_723))))), fmax(fmax(t_384, t_524), (4.5525 - (x * 8.13008)))), fmax(fmax(t_382, ((x * 8.13008) - 4.2025)), t_146)), fmax(fmax(fmax(fmax(fmax(t_16, t_524), t_146), t_976), (0.175 - t_546)), (t_546 - 0.275))), fmax(fmax(-fmin(fmax(fmax((t_367 - (x * 2.27642)), ((x * 4.5122) - 2.26024)), (1.80744 - t_1014)), fmax(fmax((t_1014 - 1.80744), (2.26024 - (x * 4.5122))), ((x * 2.27642) - t_367))), (0.175 - t_178)), (t_178 - 0.275))), fmax(fmax(t_958, ((x * 8.13008) - 3.3975)), (3.2975 - (x * 8.13008)))), (Math.sqrt((t_104 + Math.pow(((x * 8.13008) - 3.3475), 2.0))) - 0.075)), fmax(-fmin(fmax(fmax(fmax(t_577, ((y * 8.13008) - 2.8875)), t_943), (0.355 + (x * 5.42005))), (Math.sqrt((Math.pow((2.885 - (y * 8.13008)), 2.0) + Math.pow(-(0.346667 + (x * 3.61337)), 2.0))) - 0.0625)), (Math.sqrt((Math.pow((2.8875 - (y * 8.13008)), 2.0) + Math.pow(t_943, 2.0))) - 0.1625))), fmax(-fmin(fmax(fmax(fmax(t_245, (2.6625 - (y * 8.13008))), t_14), -(0.68 + (x * 5.42005))), (Math.sqrt((Math.pow(((y * 8.13008) - 2.665), 2.0) + Math.pow((0.343334 + (x * 3.61337)), 2.0))) - 0.0625)), (Math.sqrt((Math.pow(((y * 8.13008) - 2.6625), 2.0) + Math.pow(t_14, 2.0))) - 0.1625))), fmax(fmax(t_958, t_18), -(1.22 + (x * 8.13008)))), fmax(fmax(fmax(t_16, t_976), (1.57 + (x * 8.13008))), t_565)), fmax(fmax(fmax(fmax(t_384, t_18), t_565), (0.175 - t_177)), (t_177 - 0.275))), fmax(fmax(t_642, (1.77 + (x * 8.13008))), -(1.87 + (x * 8.13008)))), fmax(fmax(t_642, (2.02 + (x * 8.13008))), -(2.12 + (x * 8.13008)))), fmax(fmax(fmax(fmax(fmax(-fmin(fmax(fmax(((0.0958748 + (x * 2.84553)) - (y * 0.813008)), (1.26444 - t_492)), ((y * 4.87805) - t_396)), fmax(fmax((t_396 - (y * 4.87805)), (t_492 - 1.26444)), ((y * 0.813008) - (0.095875 + (x * 2.84553))))), t_24), (2.35 - (y * 8.13008))), ((x * 8.13008) - 0.5475)), (0.3975 - (x * 8.13008))), (Math.sqrt((Math.pow(((y * 2.71003) - 0.858333), 2.0) + Math.pow(((x * 8.13008) - 0.4725), 2.0))) - 0.075))), (Math.sqrt((Math.pow(t_24, 2.0) + Math.pow(((x * 8.13008) - 0.4975), 2.0))) - 0.075)), fmax(fmax(-fmin(fmax(fmax(((y * 2.23577) - t_811), ((x * 4.5122) - 0.203962)), (0.788562 - t_1014)), fmax(fmax((t_1014 - 0.788562), (0.203962 - (x * 4.5122))), (t_811 - (y * 2.23577)))), (0.175 - t_513)), (t_513 - 0.275))), fmax(fmax(t_958, (0.3075 + (x * 8.13008))), -(0.4075 + (x * 8.13008)))), (Math.sqrt((t_104 + Math.pow((0.357501 + (x * 8.13008)), 2.0))) - 0.075)), fmax(fmax(t_382, (3.845 + (x * 8.13008))), -(3.945 + (x * 8.13008)))), fmax(fmax(t_383, t_230), -(4.17 + (x * 8.13008)))), fmax(fmax(t_958, (4.52 + (x * 8.13008))), t_821)), fmax(fmax(fmax(fmax(fmax(t_16, t_626), t_230), t_821), (0.175 - t_356)), (t_356 - 0.275))), fmax(t_911, fmin(fmax(fmax(t_578, (4.72 + (x * 8.13008))), -(5.22 + (x * 8.13008))), fmax(fmax(t_911, -fmin(fmax(fmax(t_277, (t_150 - (y * 1.21951))), -t_289), fmax(fmax(t_39, t_289), ((y * 1.21951) - t_150)))), (0.175 - t_910))))), fmax(fmax(t_223, (t_12 - (y * 2.03252))), t_152)), fmax(fmax(t_1018, t_372), ((y * 2.03252) - t_12))), fmax(fmax(t_94, t_372), ((y * 2.03252) - t_694))), fmax(fmax(t_523, t_152), (t_694 - (y * 2.03252)))), fmax(fmax(t_223, -t_197), t_373)), fmax(fmax(fmax(t_381, ((y * 8.13008) - 3.025)), (2.27 + (x * 8.13008))), t_69)), fmax(fmax(fmax(fmax(t_69, ((y * 8.13008) - 3.15)), (2.85 - (y * 8.13008))), (1.72 + (x * 8.13008))), fmin(fmax((0.075 - t_640), (t_640 - 0.175)), fmax((0.075 - t_641), (t_641 - 0.175))))), fmax(fmax(t_369, t_117), t_258)), fmax(fmax(t_488, t_566), t_102)), fmax(fmax(t_488, t_1018), t_857)), fmax(fmax(t_258, t_856), t_223)), fmax(fmax(t_223, t_117), t_318)), fmax(fmax(t_1018, t_566), t_568)), fmax(fmax(t_94, t_857), t_568)), fmax(fmax(t_523, t_856), t_318)), fmax(fmax(t_223, -t_121), t_267)), fmax(fmax(t_1018, t_121), t_571)), fmax(fmax(t_94, t_571), t_787)), fmax(fmax(t_523, t_267), -t_787)), fmax(fmax(fmax(t_684, -(4.725 + (x * 8.13008))), -(0.0749998 + (y * 8.13008))), (4.625 + (x * 8.13008)))), fmax((0.175 - t_761), (t_761 - 0.275))), fmax(fmax(t_685, t_442), -t_813)), fmax(fmax(t_796, t_880), t_84)), fmax(fmax(fmax(fmax(t_759, t_442), t_84), (0.175 - t_766)), (t_766 - 0.275))), fmax(fmax(t_940, -t_38), (6.175 + (x * 8.13008)))), fmax(fmax(fmax(t_684, (0.75 - (y * 8.13008))), t_582), t_38)), fmax(fmax(fmax(t_379, t_582), t_38), ((y * 8.13008) - 0.4))), fmax(fmax(fmax(fmax(t_940, t_581), -(7.175 + (x * 8.13008))), (0.175 - t_769)), (t_769 - 0.275))), fmax(fmax(fmax(t_379, t_190), t_722), -t_549)), fmax(fmax(t_685, t_144), t_227)), fmax(fmax(t_759, t_525), -(1.125 + (x * 8.13008)))), fmax(fmax(t_940, (1.475 + (x * 8.13008))), t_147)), fmax(fmax(fmax(fmax(t_796, t_525), t_147), (0.175 - t_770)), (t_770 - 0.275))), fmax(fmax(t_941, (1.825 + (x * 8.13008))), -(1.925 + (x * 8.13008)))), fmax(fmax(t_424, t_364), t_415)), fmax(fmax(fmax(fmax(t_380, t_364), t_415), (0.15 - t_696)), (t_696 - 0.25))), fmax(fmax(t_1012, t_290), -(2.975 + (x * 8.13008)))), fmax(fmax(t_685, (3.325 + (x * 8.13008))), t_937)), fmax(fmax(fmax(fmax(fmax(t_684, t_1017), t_290), t_937), (0.175 - t_765)), (t_765 - 0.275))), fmax((0.175 - t_945), (t_945 - 0.275))), fmax(fmax(t_689, ((x * 8.13008) - 5.958)), t_426)), fmax(fmax(fmax(fmax(fmax(t_68, (0.175 - t_928)), (t_928 - 0.275)), t_304), t_153), t_426)), fmax(fmax(fmax(t_388, (5.633 - (x * 8.13008))), t_687), t_153)), (Math.sqrt((Math.pow(((y * 8.13008) - 2.1), 2.0) + Math.pow(((x * 8.13008) - 5.683), 2.0))) - 0.075)), fmax(fmax(fmax(t_484, ((x * 8.13008) - 5.508)), (5.408 - (x * 8.13008))), t_687)), fmax(fmax(fmax(t_484, ((x * 8.13008) - 5.258)), (5.158 - (x * 8.13008))), t_687)), fmax(fmax(fmax(((y * 8.13008) - 1.925), ((x * 8.13008) - 5.008)), t_702), t_687)), fmax(fmax(fmax(fmax(t_702, t_118), (1.75 - (y * 8.13008))), t_904), fmin(fmax((0.075 - t_496), (t_496 - 0.175)), fmax((0.075 - t_495), (t_495 - 0.175))))), fmax(fmax(fmax(fmax(fmax(t_190, t_684), t_1017), t_227), (0.175 - t_772)), (t_772 - 0.275))), fmax(t_764, fmin(fmax(fmax(fmax(t_294, t_419), t_286), t_409), fmax(fmax(t_764, -fmin(fmax(fmax(t_97, (t_79 - (y * 1.21951))), -t_186), fmax(fmax(t_729, t_186), ((y * 1.21951) - t_79)))), (0.175 - t_763))))), fmax(t_936, fmin(fmax(fmax(fmax(((y * 8.13008) - 1.715), (1.625 - (y * 8.13008))), ((x * 8.13008) - 7.058)), (6.558 - (x * 8.13008))), fmax(fmax(t_936, -fmin(fmax(fmax(((y * 5.28455) - 1.08875), ((x * 2.23577) - t_336)), (2.6547 - t_25)), fmax(fmax((t_25 - 2.6547), (t_336 - (x * 2.23577))), (1.08875 - (y * 5.28455))))), (0.175 - t_935))))), fmax(fmax(fmax(t_559, t_687), t_304), (6.308 - (x * 8.13008)))), fmax((t_931 - 0.275), (0.175 - t_931))), fmax(fmax(t_359, ((x * 4.47154) - t_1021)), t_96)), fmax(fmax(t_228, (t_1021 - (x * 4.47154))), t_673)), fmax(fmax(t_228, t_102), (t_526 - (x * 4.47154)))), fmax(fmax(t_96, ((x * 4.47154) - t_526)), t_369)), fmax(fmax(t_359, (1.4775 - t_912)), t_148)), fmax(fmax(t_673, t_357), (t_912 - 1.4775))), fmax(fmax(t_102, t_357), (t_912 - 1.5325))), fmax(fmax(t_369, t_148), (1.5325 - t_912))), fmax(fmax(t_359, ((x * 4.47154) - t_149)), t_288)), fmax(fmax(t_673, t_554), (t_149 - (x * 4.47154)))), fmax(fmax(t_102, t_554), (t_922 - (x * 4.47154)))), fmax(fmax(t_369, t_288), ((x * 4.47154) - t_922))), fmax(fmax(t_359, (1.2025 - t_912)), t_418)), fmax(fmax(t_673, t_682), (t_912 - 1.2025))), fmax(fmax(t_102, t_682), (t_912 - 1.2575))), fmax(fmax(t_369, t_418), (1.2575 - t_912))), fmax((0.175 - t_930), (t_930 - 0.275))), fmax(fmax(fmax(fmax(t_687, -fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmax(fmax(((y * 4.06504) - 1.2), ((x * 4.06504) - 2.104)), (3.054 - t_979)), fmax(fmax((t_979 - 3.054), (2.104 - (x * 4.06504))), (1.2 - (y * 4.06504)))), fmax(fmax(((x * 8.13008) - t_428), (1.8858 - t_697)), (t_817 - (x * 5.28455)))), fmax(fmax(((x * 5.28455) - t_817), (t_697 - 1.8858)), (t_428 - (x * 8.13008)))), fmax(fmax((0.351 - (y * 2.19512)), (1.2978 - (x * 2.84553))), (t_444 - 1.7433))), fmax(fmax((1.7433 - t_444), ((x * 2.84553) - 1.2978)), ((y * 2.19512) - 0.351))), fmax(fmax(((y * 3.25203) - 0.96), ((x * 4.47154) - t_353)), (2.0394 - (x * 4.47154)))), fmax(fmax(((x * 4.47154) - 2.0394), (t_353 - (x * 4.47154))), (0.96 - (y * 3.25203))))), t_1), ((x * 8.13008) - 4.108)), (3.608 - (x * 8.13008)))), fmax(fmax(t_689, ((x * 8.13008) - 3.25)), (3.15 - (x * 8.13008)))), fmax(fmax(fmax(fmax(t_689, t_977), (4.5 - (x * 11.6144))), (0.45 - Math.sqrt((t_269 + Math.pow(((x * 14.518) - 6.3125), 2.0))))), (Math.sqrt((t_269 + Math.pow(t_977, 2.0))) - 0.55))), fmax(fmax(fmax(t_153, t_124), t_173), (1.85 - (y * 8.13008)))), fmax(fmax(fmax(t_687, t_124), t_575), t_173)), fmax(fmax(fmax(fmax(t_688, t_123), -(3.275 + (x * 8.13008))), (0.175 - t_929)), (t_929 - 0.275))), fmax(fmax(fmax(t_1, (2.3 - (y * 8.13008))), t_807), t_1004)), fmax(fmax(fmax(t_687, t_575), t_807), t_1004)), fmax(fmax(fmax(t_481, t_687), t_1), -(3.9 + (x * 8.13008)))), fmax(fmax(t_359, (t_718 - (y * 2.03252))), t_1010)), fmax(fmax(t_673, t_1009), ((y * 2.03252) - t_718))), fmax(fmax(t_102, t_1009), ((y * 2.03252) - t_447))), fmax(fmax(t_369, t_1010), (t_447 - (y * 2.03252)))), fmax(fmax(t_359, -t_40), t_184)), fmax(fmax(t_673, t_40), t_449)), fmax(fmax(t_102, t_449), t_651)), fmax(fmax(t_369, t_184), -t_651)), fmax(fmax(t_359, (t_187 - (y * 2.03252))), t_355)), fmax(fmax(t_673, t_594), ((y * 2.03252) - t_187))), fmax(fmax(t_102, t_594), ((y * 2.03252) - t_6))), fmax(fmax(t_369, t_355), (t_6 - (y * 2.03252)))), fmax(fmax(fmax((1.65 - (y * 8.13008)), (0.300001 + (x * 8.13008))), t_1), -(0.400001 + (x * 8.13008)))), fmax(fmax(fmax(t_464, t_118), (1.95 - (y * 8.13008))), t_100)), fmax(fmax(fmax(fmax(fmax(t_464, t_687), t_100), t_556), (0.15 - t_676)), (t_676 - 0.25))), fmax(fmax(fmax(fmax(fmax(-fmin(fmax(fmax((t_558 - (y * 0.813008)), (0.281875 - t_492)), ((y * 4.87805) - t_938)), fmax(fmax((t_938 - (y * 4.87805)), (t_492 - 0.281875)), ((y * 0.813008) - t_558))), t_296), (1.25 - (y * 8.13008))), (1.375 + (x * 8.13008))), -(1.525 + (x * 8.13008))), (Math.sqrt((Math.pow(((y * 2.71003) - 0.491667), 2.0) + Math.pow((1.45 + (x * 8.13008)), 2.0))) - 0.075))), (Math.sqrt((Math.pow(t_296, 2.0) + Math.pow((1.425 + (x * 8.13008)), 2.0))) - 0.075)), fmax((0.175 - t_934), (t_934 - 0.275))), fmax(fmax(t_688, -t_173), (2.275 + (x * 8.13008)))), fmax(fmax(fmax(fmax(fmax((t_754 - 0.275), t_206), t_305), (0.175 - t_754)), t_486), t_627)), fmax(fmax(fmax(t_19, ((x * 8.13008) - 1.556)), (1.456 - (x * 8.13008))), t_259)), fmax((0.175 - t_436), (t_436 - 0.275))), fmax(fmax(fmax(fmax(fmax(-fmin(fmax(fmax((t_497 - (y * 0.813008)), (2.27973 - t_492)), ((y * 4.87805) - t_868)), fmax(fmax((t_868 - (y * 4.87805)), (t_492 - 2.27973)), ((y * 0.813008) - t_497))), t_271), (4.55 - (y * 8.13008))), ((x * 8.13008) - 0.171)), (0.0209999 - (x * 8.13008))), (Math.sqrt((Math.pow(((y * 2.71003) - 1.59167), 2.0) + Math.pow(((x * 8.13008) - 0.0959997), 2.0))) - 0.075))), (Math.sqrt((Math.pow(t_271, 2.0) + Math.pow(((x * 8.13008) - 0.121), 2.0))) - 0.075)), fmax(fmax(t_879, t_998), (3.65055 - t_912))), fmax(fmax(((x * 4.47154) - t_330), t_505), t_649)), fmax(fmax(t_1005, (t_330 - (x * 4.47154))), t_86)), fmax(fmax(t_1005, ((0.970551 + (y * 2.03252)) - (x * 4.47154))), t_404)), fmax(fmax(t_505, ((x * 4.47154) - (0.970552 + (y * 2.03252)))), t_879)), fmax(fmax((3.32055 - t_912), t_88), t_649)), fmax(fmax(t_281, (t_912 - 3.32055)), t_86)), fmax(fmax(t_281, (t_912 - 3.37555)), t_404)), fmax(fmax(t_88, (3.37555 - t_912)), t_879)), fmax(fmax(fmax((2.751 - (x * 8.13008)), ((x * 8.13008) - 2.851)), t_283), t_259)), fmax(fmax(fmax(t_592, t_652), t_814), t_486)), fmax(fmax(fmax(t_652, t_814), t_46), t_259)), fmax(fmax(fmax(fmax(fmax((1.851 - (x * 8.13008)), ((x * 8.13008) - 2.576)), (0.175 - t_661)), (t_661 - 0.275)), t_283), t_259)), fmax(fmax(fmax(t_206, (2.126 - (x * 8.13008))), t_233), t_259)), fmax(fmax(fmax(((x * 8.13008) - 1.776), t_305), t_259), t_486)), fmax(fmax(fmax((4.6 - (y * 8.13008)), (1.862 + (x * 8.13008))), -(1.962 + (x * 8.13008))), t_486)), (Math.sqrt((Math.pow(((y * 8.13008) - 5.4), 2.0) + Math.pow((1.912 + (x * 8.13008)), 2.0))) - 0.075)), fmax(fmax(fmax(t_923, -(2.762 + (x * 8.13008))), t_283), t_259)), fmax(fmax(fmax(t_592, t_370), t_924), t_486)), fmax(fmax(fmax(t_46, t_370), t_924), t_259)), fmax(fmax(fmax(fmax(fmax((1.762 + (x * 8.13008)), -t_370), (0.175 - t_371)), (t_371 - 0.275)), t_283), t_259)), fmax(fmax(fmax(t_19, (2.882 + (x * 8.13008))), -(2.982 + (x * 8.13008))), t_259)), fmax((0.175 - t_199), (t_199 - 0.275))), fmax(t_753, fmin(fmax(fmax(fmax((0.0790005 + (x * 8.13008)), -(0.579001 + (x * 8.13008))), t_612), t_755), fmax(fmax(t_753, -fmin(fmax(fmax((t_252 - (y * 1.21951)), (2.34202 - t_25)), t_487), fmax(fmax((t_25 - 2.34202), ((y * 1.21951) - t_252)), t_967))), (0.175 - t_752))))), fmax(fmax(fmax((0.987 + (x * 8.13008)), -(1.087 + (x * 8.13008))), t_259), t_486)), fmax(fmax(fmax(fmax(fmax(t_865, -(1.55286 + (x * 11.6144))), (0.45 - Math.sqrt((t_314 + Math.pow((1.25357 + (x * 14.518)), 2.0))))), (Math.sqrt((t_314 + Math.pow(t_865, 2.0))) - 0.55)), t_259), t_486)), fmax(fmax(fmax(t_122, -(1.287 + (x * 8.13008))), t_259), t_486)), fmax(fmax(fmax((1.637 + (x * 8.13008)), t_708), t_997), t_486)), fmax(fmax(fmax(fmax(fmax(t_122, t_708), (0.175 - t_326)), (t_326 - 0.275)), t_259), t_157)), fmax(fmax(fmax(fmax(fmax((4.325 - (y * 8.13008)), (1.587 + (x * 8.13008))), -t_331), (0.175 - t_716)), (t_716 - 0.275)), t_714)), fmax(fmax(fmax(t_132, t_216), t_334), t_445)), fmax(fmax(fmax(t_216, ((x * 8.13008) - 6.3305)), (6.2305 - (x * 8.13008))), t_89)), fmax(fmax(-fmin(fmax(fmax(((y * 2.23577) - t_518), ((x * 4.5122) - 2.94178)), (3.05264 - t_1014)), fmax(fmax((t_1014 - 3.05264), (2.94178 - (x * 4.5122))), (t_518 - (y * 2.23577)))), (0.175 - t_461)), (t_461 - 0.275))), fmax(fmax(t_1022, ((x * 8.13008) - 4.6255)), (4.5255 - (x * 8.13008)))), (Math.sqrt((t_411 + Math.pow(((x * 8.13008) - 4.5755), 2.0))) - 0.075)), fmax(fmax(t_915, t_56), (4.3005 - (x * 8.13008)))), fmax((0.175 - t_468), (t_468 - 0.275))), fmax(fmax(fmax(fmax(fmax(t_56, t_101), (3.8505 - (x * 8.13008))), (0.175 - t_474)), (t_474 - 0.275)), t_283)), fmax(t_732, fmin(fmax(fmax(fmax((4.242 + (x * 8.13008)), -(4.742 + (x * 8.13008))), t_612), t_755), fmax(fmax(t_732, -fmin(fmax(fmax((t_105 - (y * 1.21951)), (1.1972 - t_25)), t_487), fmax(fmax((t_25 - 1.1972), ((y * 1.21951) - t_105)), t_967))), (0.175 - t_731))))), fmax(fmax(fmax(t_143, -(5.25 + (x * 8.13008))), t_259), t_486)), fmax(fmax(fmax(fmax(fmax(t_244, -(7.5 + (x * 11.6144))), (0.45 - Math.sqrt((t_314 + Math.pow((8.6875 + (x * 14.518)), 2.0))))), (Math.sqrt((t_314 + Math.pow(t_244, 2.0))) - 0.55)), t_259), t_486)), fmax(t_301, fmin(fmax(fmax(fmax((5.35 + (x * 8.13008)), -(5.85 + (x * 8.13008))), t_612), t_755), fmax(fmax(t_301, -fmin(fmax(fmax((t_564 - (y * 1.21951)), (0.8925 - t_25)), t_487), fmax(fmax((t_25 - 0.8925), ((y * 1.21951) - t_564)), t_967))), (0.175 - t_300))))), fmax(fmax(fmax(t_311, -(6.15 + (x * 8.13008))), t_259), t_157)), fmax(fmax(t_779, t_283), t_259)), fmax(fmax(fmax(fmax(fmax(t_182, t_311), (0.175 - t_655)), (t_655 - 0.275)), t_997), t_486)), fmax(fmax(fmax(t_89, t_570), t_334), t_445)), fmax(fmax(t_915, t_782), (0.8705 - (x * 8.13008)))), fmax((0.175 - t_459), (t_459 - 0.275))), fmax(fmax(fmax(fmax(fmax(t_101, t_782), (0.4205 - (x * 8.13008))), (0.175 - t_473)), (t_473 - 0.275)), t_283)), fmax(fmax(t_1022, t_327), (0.220499 - (x * 8.13008)))), fmax(fmax(fmax(t_3, (0.129501 + (x * 8.13008))), t_999), t_126)), fmax(fmax(fmax(fmax(t_455, t_327), t_999), (0.175 - t_506)), (t_506 - 0.275))), fmax((0.175 - t_457), (t_457 - 0.275))), fmax(fmax(t_1022, (1.2375 + (x * 8.13008))), -(1.3375 + (x * 8.13008)))), fmax(fmax(fmax(fmax(t_1022, t_133), -(1.91072 + (x * 11.6144))), (0.45 - Math.sqrt((t_587 + Math.pow((1.70089 + (x * 14.518)), 2.0))))), (Math.sqrt((t_587 + Math.pow(t_133, 2.0))) - 0.55))), fmax(fmax(t_350, ((x * 8.13008) - 3.7305)), (3.6305 - (x * 8.13008)))), fmax((0.175 - t_726), (t_726 - 0.275))), fmax(fmax(t_350, ((x * 8.13008) - 3.0705)), (2.9705 - (x * 8.13008)))), fmax(fmax(t_350, ((x * 8.13008) - 2.8205)), (2.7205 - (x * 8.13008)))), fmax(fmax(fmax(t_216, ((y * 8.13008) - 6.325)), ((x * 8.13008) - 2.5705)), t_189)), fmax(fmax(fmax(fmax(t_189, t_540), (6.15 - (y * 8.13008))), ((x * 8.13008) - 3.1205)), fmin(fmax((0.075 - t_349), (t_349 - 0.175)), fmax((0.075 - t_548), (t_548 - 0.175))))), fmax(fmax(t_455, t_103), (1.5205 - (x * 8.13008)))), fmax(fmax(t_422, ((x * 8.13008) - 1.1705)), t_603)), fmax(fmax(fmax(fmax(fmax(t_3, t_103), t_603), t_126), (0.175 - t_458)), (t_458 - 0.275))), fmax(fmin(fmax(fmax(fmax(t_850, ((x * 8.13008) - 6.4085)), (5.9085 - (x * 8.13008))), t_154), fmax(fmax(-fmin(fmax(fmax(t_610, ((x * 2.23577) - t_852)), (3.57609 - t_25)), fmax(fmax((t_25 - 3.57609), (t_852 - (x * 2.23577))), t_302)), (0.175 - t_622)), t_959)), t_959)), fmax(fmax(t_254, ((x * 8.13008) - 5.7585)), (5.6585 - (x * 8.13008)))), fmax(fmax(t_254, ((x * 8.13008) - 5.5085)), (5.4085 - (x * 8.13008)))), fmax(fmax(fmax(t_253, ((y * 8.13008) - 4.125)), ((x * 8.13008) - 5.2585)), t_312)), fmax(fmax(fmax(fmax(t_312, ((y * 8.13008) - 4.25)), (3.95 - (y * 8.13008))), ((x * 8.13008) - 5.8085)), fmin(fmax((0.075 - t_266), (t_266 - 0.175)), fmax((0.075 - t_707), (t_707 - 0.175))))), fmax(fmax(t_1018, t_197), t_374)), fmax(fmax(t_94, t_374), t_392)), fmax(fmax(t_523, t_373), -t_392)), fmax(fmax(t_642, (6.09 + (x * 8.13008))), -(6.19 + (x * 8.13008)))), fmax((0.175 - t_328), (t_328 - 0.275))), fmax(t_1001, fmin(fmax(fmax(t_578, t_242), -t_144), fmax(fmax(t_1001, -fmin(fmax(fmax(t_277, (t_717 - (y * 1.21951))), -t_1007), fmax(fmax(t_39, t_1007), ((y * 1.21951) - t_717)))), (0.175 - t_1000))))), fmax(fmax(fmax(t_294, t_381), t_175), -(7.55 + (x * 8.13008)))), fmax(fmax(t_382, (7.9 + (x * 8.13008))), t_33)), fmax(fmax(fmax(fmax(fmax(t_294, t_16), t_976), t_33), (0.175 - t_514)), (t_514 - 0.275))), fmax(fmax(fmax(fmax(t_715, (2.121 - (x * 8.13008))), ((x * 8.13008) - 2.846)), (0.175 - t_621)), (t_621 - 0.275))), fmax(t_816, fmin(fmax(fmax(t_851, ((x * 8.13008) - 2.496)), (1.996 - (x * 8.13008))), fmax(fmax(t_816, -fmin(fmax(fmax(t_610, ((x * 2.23577) - t_51)), (2.50015 - t_25)), fmax(fmax(t_302, (t_25 - 2.50015)), (t_51 - (x * 2.23577))))), (0.175 - t_815))))), fmax(fmax(fmax(t_253, ((x * 8.13008) - 1.588)), (1.488 - (x * 8.13008))), t_59)), fmax(fmax(fmax(fmax(fmax(t_253, t_416), (2.12571 - (x * 11.6144))), (0.45 - Math.sqrt((t_925 + Math.pow(((x * 14.518) - 3.34464), 2.0))))), (Math.sqrt((t_925 + Math.pow(t_416, 2.0))) - 0.55)), t_59)), fmax(fmax(fmax(t_253, ((x * 8.13008) - 1.363)), (1.263 - (x * 8.13008))), t_59)), (Math.sqrt((Math.pow(((y * 8.13008) - 4.3), 2.0) + Math.pow(((x * 8.13008) - 1.313), 2.0))) - 0.075)), fmax(fmax(fmax(t_253, t_609), (1.038 - (x * 8.13008))), t_59)), fmax((t_616 - 0.275), (0.175 - t_616))), fmax(-fmin(fmax(fmax(fmax(t_850, ((y * 8.13008) - 3.9875)), t_955), ((x * 5.42005) - 2.939)), (Math.sqrt((Math.pow((3.985 - (y * 8.13008)), 2.0) + Math.pow((1.84933 - (x * 3.61337)), 2.0))) - 0.0625)), (Math.sqrt((Math.pow((3.9875 - (y * 8.13008)), 2.0) + Math.pow(t_955, 2.0))) - 0.1625))), fmax(-fmin(fmax(fmax(fmax(((y * 8.13008) - 3.925), (3.7625 - (y * 8.13008))), t_700), (2.614 - (x * 5.42005))), (Math.sqrt((Math.pow(((y * 8.13008) - 3.765), 2.0) + Math.pow(((x * 3.61337) - 1.85267), 2.0))) - 0.0625)), (Math.sqrt((Math.pow(((y * 8.13008) - 3.7625), 2.0) + Math.pow(t_700, 2.0))) - 0.1625))), fmax(fmax(t_715, (3.021 - (x * 8.13008))), ((x * 8.13008) - 3.121))), fmax(fmax(fmax(t_59, (4.05 - (y * 8.13008))), t_522), t_499)), fmax(fmax(fmax(t_253, t_522), t_499), t_783)), fmax(fmax(fmax(fmax(t_255, t_212), -(1.67143 + (x * 11.6144))), (0.45 - Math.sqrt((t_925 + Math.pow((1.40179 + (x * 14.518)), 2.0))))), (Math.sqrt((t_925 + Math.pow(t_212, 2.0))) - 0.55))), fmax(t_620, fmin(fmax(fmax(t_851, (1.97 + (x * 8.13008))), -(2.47 + (x * 8.13008))), fmax(fmax(t_620, -fmin(fmax(fmax(t_610, (t_507 - (y * 1.21951))), (1.272 - t_25)), fmax(fmax(t_302, (t_25 - 1.272)), ((y * 1.21951) - t_507)))), (0.175 - t_619))))), fmax(fmax(t_217, (t_332 - (y * 2.03252))), t_512)), fmax(fmax(t_809, ((y * 2.03252) - t_332)), t_1011)), fmax(fmax(t_809, t_134), ((y * 2.03252) - t_221))), fmax(fmax(t_512, (t_221 - (y * 2.03252))), t_515)), fmax(fmax(t_217, -t_727), t_41)), fmax(fmax(t_1011, t_727), t_285)), fmax(fmax(t_134, t_285), t_452)), fmax(fmax(t_515, t_41), -t_452)), fmax(fmax(t_254, (3.34 + (x * 8.13008))), -(3.44 + (x * 8.13008)))), fmax(fmax(fmax(t_412, ((x * 8.13008) - 0.688)), t_595), t_59)), fmax(fmax(fmax(fmax(t_614, t_609), t_595), (0.175 - t_617)), (t_617 - 0.275))), fmax(fmax(fmax(t_59, (3.225 - (y * 8.13008))), ((x * 8.13008) - 0.487999)), (0.387999 - (x * 8.13008)))), fmax((0.175 - t_618), (t_618 - 0.275))), fmax(t_678, fmin(fmax(fmax(t_851, (0.162001 + (x * 8.13008))), -(0.662001 + (x * 8.13008))), fmax(fmax(t_678, -fmin(fmax(fmax(t_610, (t_13 - (y * 1.21951))), (1.7692 - t_25)), fmax(fmax(t_302, (t_25 - 1.7692)), ((y * 1.21951) - t_13)))), (0.175 - t_677))))), fmax(fmax(t_255, (1.07 + (x * 8.13008))), -(1.17 + (x * 8.13008)))), fmax(fmin(fmax(fmax(-fmin(fmax(fmax(t_487, ((x * 2.23577) - t_479)), (4.04153 - t_25)), fmax(fmax((t_25 - 4.04153), (t_479 - (x * 2.23577))), t_967)), (0.175 - t_159)), t_386), fmax(fmax(fmax(t_612, t_755), ((x * 8.13008) - 6.101)), (5.601 - (x * 8.13008)))), t_386)), fmax(fmax(fmax(t_112, (5.301 - (x * 8.13008))), t_259), t_157)), fmax(fmax(fmax(t_283, ((x * 8.13008) - 4.951)), t_629), t_259)), fmax(fmax(fmax(fmax(fmax(t_112, t_629), t_997), (0.175 - t_166)), (t_166 - 0.275)), t_486)), fmax(fmax(t_649, ((x * 4.47154) - t_703)), t_975)), fmax(fmax(t_974, (t_703 - (x * 4.47154))), t_86)), fmax(fmax(t_974, t_404), (t_438 - (x * 4.47154)))), fmax(fmax(t_975, ((x * 4.47154) - t_438)), t_879)), fmax(fmax(t_649, (3.59555 - t_912)), t_998)), fmax(fmax(t_86, t_172), (t_912 - 3.59555))), fmax(fmax(t_404, t_172), (t_912 - 3.65055))), fmax((0.175 - t_623), (t_623 - 0.275))), fmax(fmax(t_614, t_174), -(4.15 + (x * 8.13008)))), fmax(fmax(fmax(t_179, t_274), t_253), t_714)), fmax(fmax(fmax(fmax(fmax(t_274, t_412), t_59), t_174), (0.175 - t_1002)), (t_1002 - 0.275))), fmax(fmax(fmax(t_714, (4.5 - (y * 8.13008))), t_443), t_508)), fmax(fmax(fmax(t_253, t_783), t_443), t_508)), fmax(fmax(t_715, t_45), -(5.7 + (x * 8.13008)))), fmax(fmax(fmax(t_233, t_259), t_276), (6.651 - (x * 8.13008)))), fmax(fmax(fmax(t_259, t_486), ((x * 8.13008) - 6.30101)), t_900)), fmax(fmax(fmax(fmax(fmax(t_276, t_486), t_900), t_627), (0.175 - t_339)), (t_339 - 0.275))), fmax(fmax(fmax(fmax(t_127, t_92), t_136), (0.175 - t_460)), (t_460 - 0.275))), fmax(fmax(t_588, (3.825 + (x * 8.13008))), -(3.925 + (x * 8.13008)))), fmax(fmax(t_541, t_322), t_142)), fmax(fmax(fmax(fmax(fmax(t_216, t_322), t_142), t_596), (0.15 - t_918)), (t_918 - 0.25))), fmax(fmax(t_588, (5.025 + (x * 8.13008))), -(5.125 + (x * 8.13008)))), fmax(fmax(t_541, t_542), t_881)), fmax(fmax(fmax(fmax(fmax(t_216, t_596), t_542), t_881), (0.15 - t_917)), (t_917 - 0.25))), fmax(fmax(t_417, t_3), -(5.475 + (x * 8.13008)))), fmax(fmax(t_127, (5.825 + (x * 8.13008))), t_11)), fmax(fmax(fmax(fmax(t_417, t_454), t_11), (0.175 - t_462)), (t_462 - 0.275))), fmax(fmax(t_779, t_216), t_89)), fmax(fmax(fmax(t_519, t_89), t_570), t_107)), fmax(fmax(fmax(t_519, t_3), t_107), (6.25 - (y * 8.13008)))), fmax(fmax(fmax(t_519, t_132), t_216), t_107)), fmax(-fmin(fmax(fmax(fmax((6.025 - (y * 8.13008)), ((y * 8.13008) - 6.1875)), t_202), (1.425 + (x * 5.42005))), (Math.sqrt((Math.pow((6.185 - (y * 8.13008)), 2.0) + Math.pow(-(1.06 + (x * 3.61337)), 2.0))) - 0.0625)), (Math.sqrt((Math.pow((6.1875 - (y * 8.13008)), 2.0) + Math.pow(t_202, 2.0))) - 0.1625))), fmax(-fmin(fmax(fmax(fmax(((y * 8.13008) - 6.125), (5.9625 - (y * 8.13008))), t_201), -(1.75 + (x * 5.42005))), (Math.sqrt((Math.pow(((y * 8.13008) - 5.965), 2.0) + Math.pow((1.05667 + (x * 3.61337)), 2.0))) - 0.0625)), (Math.sqrt((Math.pow(((y * 8.13008) - 5.9625), 2.0) + Math.pow(t_201, 2.0))) - 0.1625))), fmax(fmax(t_1022, (2.75 + (x * 8.13008))), -(2.85 + (x * 8.13008)))), (Math.sqrt((t_411 + Math.pow((2.8 + (x * 8.13008)), 2.0))) - 0.075)), fmax(fmax(t_455, t_92), -(3.125 + (x * 8.13008)))), fmax(fmax(t_422, (3.475 + (x * 8.13008))), t_136)), fmax(fmax(fmax(fmax(t_45, t_216), t_89), -t_107), fmin(fmax((0.175 - t_870), (t_870 - 0.275)), fmax((0.175 - t_214), (t_214 - 0.275))))); }
def code(x, y): t_0 = (x * 8.13008) - 0.0979996 t_1 = (y * 8.13008) - 2.4 t_2 = math.pow((0.0999999 + (y * 8.13008)), 2.0) t_3 = (y * 8.13008) - 6.35 t_4 = (x * 11.6144) - 3.18286 t_5 = 2.35 + (y * 8.13008) t_6 = 3.5125 + (x * 4.47154) t_7 = math.pow((7.725 + (x * 8.13008)), 2.0) t_8 = -(0.3955 + (x * 5.42005)) t_9 = 4.0 + (y * 8.13008) t_10 = 0.15 + (y * 8.13008) t_11 = -(5.925 + (x * 8.13008)) t_12 = 3.716 + (x * 4.47154) t_13 = 0.5708 + (x * 2.23577) t_14 = 0.5175 + (x * 5.42005) t_15 = 1.38723 + (x * 4.47154) t_16 = (y * 8.13008) - 3.05 t_17 = (1.80223 + (y * 1.82927)) + (x * 4.47154) t_18 = 1.12 + (x * 8.13008) t_19 = (y * 8.13008) - 5.05 t_20 = 0.750575 + (y * 1.21951) t_21 = 2.95 + (x * 8.13008) t_22 = (y * 2.64228) + (x * 4.47154) t_23 = 0.9305 - (x * 8.13008) t_24 = (y * 8.13008) - 2.575 t_25 = (x * 2.23577) + (y * 4.06504) t_26 = 1.0405 + (x * 2.23577) t_27 = (x * 8.13008) - 5.5355 t_28 = (x * 5.42005) - 2.2095 t_29 = 7.98571 + (x * 11.6144) t_30 = -(5.2 + (x * 8.13008)) t_31 = 2.12 + (y * 3.25203) t_32 = 2.65 + (y * 8.13008) t_33 = -(8.0 + (x * 8.13008)) t_34 = (y * 8.13008) - 0.2 t_35 = (x * 5.42005) - 3.0345 t_36 = (x * 8.13008) - 2.9705 t_37 = ((y * 2.84553) + 4.13) + (x * 4.47154) t_38 = 6.275 + (x * 8.13008) t_39 = 1.80375 - (y * 5.28455) t_40 = ((y * 2.03252) + 2.5375) + (x * 4.47154) t_41 = (0.318501 + (y * 2.84553)) + (x * 4.47154) t_42 = 5.162 + (x * 8.13008) t_43 = 4.875 + (y * 8.13008) t_44 = (1.89845 + (y * 2.60163)) + (x * 2.84553) t_45 = 5.6 + (x * 8.13008) t_46 = (y * 8.13008) - 4.8 t_47 = 0.9 + (y * 8.13008) t_48 = 1.43045 + (x * 2.84553) t_49 = (y * 2.84553) + (x * 4.47154) t_50 = t_49 - 4.45138 t_51 = 0.16015 + (y * 1.21951) t_52 = 6.25 + (x * 8.13008) t_53 = 1.625 + (y * 8.13008) t_54 = math.pow(t_53, 2.0) t_55 = math.sqrt((t_54 + math.pow((5.242 + (x * 8.13008)), 2.0))) t_56 = (x * 8.13008) - 4.4005 t_57 = ((y * 2.03252) + 2.8125) + (x * 4.47154) t_58 = ((y * 2.03252) + 2.24435) + (x * 4.47154) t_59 = (y * 8.13008) - 4.15 t_60 = 0.55 + (y * 8.13008) t_61 = math.pow((0.685 - (y * 8.13008)), 2.0) t_62 = 4.675 + (y * 8.13008) t_63 = 4.025 + (y * 8.13008) t_64 = 0.5935 - (x * 8.13008) t_65 = 1.30723 + (x * 4.47154) t_66 = t_65 - (y * 2.64228) t_67 = 1.7375 + (y * 8.13008) t_68 = 1.725 - (y * 8.13008) t_69 = -(2.37 + (x * 8.13008)) t_70 = 3.575 + (x * 8.13008) t_71 = -(1.45 + (y * 8.13008)) t_72 = 3.0345 - (x * 5.42005) t_73 = (x * 8.13008) - 3.931 t_74 = (y * 8.13008) - 3.5 t_75 = (1.91435 + (y * 2.03252)) + (x * 4.47154) t_76 = math.pow(-(0.415 + (y * 8.13008)), 2.0) t_77 = (2.09318 + (x * 2.23577)) + (y * 4.06504) t_78 = (x * 8.13008) - 1.958 t_79 = 2.08 + (x * 2.23577) t_80 = 1.8 + (y * 8.13008) t_81 = 0.120625 + (x * 2.23577) t_82 = 5.75 + (y * 8.13008) t_83 = 5.375 + (x * 8.13008) t_84 = -t_83 t_85 = 1.728 + (y * 2.19512) t_86 = (y * 0.813008) - 0.47 t_87 = 1.82238 - t_49 t_88 = t_49 - 3.84555 t_89 = (y * 8.13008) - 6.8 t_90 = 6.5 + (x * 8.13008) t_91 = (x * 8.13008) - 4.8855 t_92 = 3.025 + (x * 8.13008) t_93 = 0.45 + (y * 4.06504) t_94 = (y * 0.813008) - 0.305 t_95 = 0.6375 + (y * 2.84553) t_96 = t_95 - (x * 4.47154) t_97 = (y * 5.28455) - 0.37375 t_98 = (x * 8.13008) - 6.61401 t_99 = 0.685 + (y * 0.813008) t_100 = -(0.550001 + (x * 8.13008)) t_101 = 5.425 - (y * 8.13008) t_102 = (y * 0.813008) - 0.195 t_103 = (x * 8.13008) - 1.6205 t_104 = math.pow(((y * 8.13008) - 3.2), 2.0) t_105 = 1.8578 + (x * 2.23577) t_106 = 1.42 + (x * 2.23577) t_107 = 6.3 + (x * 8.13008) t_108 = math.pow(t_107, 2.0) t_109 = 5.812 + (x * 8.13008) t_110 = 0.11375 + (x * 2.23577) t_111 = 1.23565 + (y * 2.03252) t_112 = (x * 8.13008) - 5.401 t_113 = 0.545 + (x * 4.47154) t_114 = (y * 2.84553) - t_113 t_115 = 0.19 + (y * 0.813008) t_116 = 2.42975 + (x * 4.47154) t_117 = t_116 - (y * 1.82927) t_118 = (y * 8.13008) - 2.05 t_119 = 4.63929 + (x * 11.6144) t_120 = 0.725 + (y * 8.13008) t_121 = (1.35975 + (y * 1.82927)) + (x * 4.47154) t_122 = 1.187 + (x * 8.13008) t_123 = 2.55 + (x * 8.13008) t_124 = -t_123 t_125 = (y * 3.41463) + 5.9037 t_126 = 6.075 - (y * 8.13008) t_127 = fmax(t_3, t_126) t_128 = 1.132 + (x * 8.13008) t_129 = -t_128 t_130 = 2.75 + (y * 8.13008) t_131 = -t_130 t_132 = (y * 8.13008) - 5.9 t_133 = 1.36071 + (x * 11.6144) t_134 = (y * 0.813008) - 0.415 t_135 = 0.465 + (y * 0.813008) t_136 = -t_70 t_137 = 1.7935 + (x * 4.06504) t_138 = 1.558 - (x * 8.13008) t_139 = 5.54551 - (x * 8.13008) t_140 = math.pow(t_32, 2.0) t_141 = math.sqrt((t_140 + math.pow(((x * 8.13008) - 1.323), 2.0))) t_142 = -(4.075 + (x * 8.13008)) t_143 = 5.15 + (x * 8.13008) t_144 = 7.25 + (x * 8.13008) t_145 = (1.87595 + (y * 2.19512)) + (x * 2.84553) t_146 = 4.1025 - (x * 8.13008) t_147 = -(1.575 + (x * 8.13008)) t_148 = t_49 - 1.6725 t_149 = 0.5575 + (y * 2.03252) t_150 = 1.65925 + (x * 2.23577) t_151 = 4.021 + (x * 4.47154) t_152 = (y * 2.84553) - t_151 t_153 = (y * 8.13008) - 1.95 t_154 = (y * 8.13008) - 3.915 t_155 = 0.08 + (y * 0.813008) t_156 = 0.395501 + (x * 5.42005) t_157 = (y * 8.13008) - 4.975 t_158 = math.pow(t_157, 2.0) t_159 = math.sqrt((t_158 + math.pow(((x * 8.13008) - 5.826), 2.0))) t_160 = (1.82723 + (y * 2.64228)) + (x * 4.47154) t_161 = (y * 8.13008) - 3.95 t_162 = 3.531 - (x * 8.13008) t_163 = -(4.975 + (y * 8.13008)) t_164 = fmax((4.885 + (y * 8.13008)), t_163) t_165 = (1.91443 + (x * 2.23577)) + (y * 4.06504) t_166 = math.sqrt((math.pow(((x * 8.13008) - 5.126), 2.0) + t_158)) t_167 = 3.7375 + (x * 5.42005) t_168 = -t_167 t_169 = math.pow(((y * 8.13008) - 0.3), 2.0) t_170 = 0.597376 + (y * 2.03252) t_171 = 2.932 + (x * 8.13008) t_172 = 4.12055 - t_49 t_173 = 2.375 + (x * 8.13008) t_174 = 4.05 + (x * 8.13008) t_175 = (y * 8.13008) - 2.775 t_176 = math.pow(t_175, 2.0) t_177 = math.sqrt((t_176 + math.pow((1.395 + (x * 8.13008)), 2.0))) t_178 = math.sqrt((t_176 + math.pow(((x * 8.13008) - 3.7975), 2.0))) t_179 = 4.5 + (x * 8.13008) t_180 = ((x * 2.23577) + 2.9905) + (y * 4.06504) t_181 = 0.6945 + (x * 8.13008) t_182 = -(6.6 + (x * 8.13008)) t_183 = 4.2 + (y * 8.13008) t_184 = (2.3425 + (y * 2.84553)) + (x * 4.47154) t_185 = 4.4855 - (x * 8.13008) t_186 = (1.885 + (x * 2.23577)) + (y * 4.06504) t_187 = 3.4575 + (x * 4.47154) t_188 = (x * 8.13008) - 3.1805 t_189 = 2.4705 - (x * 8.13008) t_190 = 6.8 + (x * 8.13008) t_191 = -t_190 t_192 = 6.11401 - (x * 8.13008) t_193 = (2.6175 + (y * 2.84553)) + (x * 4.47154) t_194 = (2.81935 + (y * 2.84553)) + (x * 4.47154) t_195 = (y * 0.813008) + 0.880675 t_196 = 1.3292 + (x * 2.84553) t_197 = ((y * 2.03252) + 2.521) + (x * 4.47154) t_198 = 5.975 + (y * 8.13008) t_199 = math.sqrt((math.pow(((4.58486 + (x * 8.13008)) - (y * 2.32288)), 2.0) + t_158)) t_200 = 1.15 + (y * 8.13008) t_201 = 1.5875 + (x * 5.42005) t_202 = -t_201 t_203 = 2.775 + (x * 8.13008) t_204 = -(6.212 + (x * 8.13008)) t_205 = 7.50251 - (x * 8.13008) t_206 = (x * 8.13008) - 2.226 t_207 = 0.245 + (y * 0.813008) t_208 = -t_207 t_209 = 0.6516 + (x * 4.47154) t_210 = (y * 1.82927) - t_209 t_211 = 2.8375 + (y * 8.13008) t_212 = 1.12143 + (x * 11.6144) t_213 = 0.475 + (y * 8.13008) t_214 = math.sqrt((t_108 + math.pow(((y * 8.13008) - 6.525), 2.0))) t_215 = 0.267376 + (y * 2.03252) t_216 = 5.8 - (y * 8.13008) t_217 = 0.36 - (y * 0.813008) t_218 = math.pow(((y * 8.13008) - 0.465), 2.0) t_219 = 0.52 + (y * 0.813008) t_220 = -t_219 t_221 = 2.5335 + (x * 4.47154) t_222 = 1.66785 + (x * 4.47154) t_223 = 0.25 - (y * 0.813008) t_224 = 1.95355 + (x * 5.28455) t_225 = (y * 2.03252) + 2.89638 t_226 = (x * 8.13008) - 5.7205 t_227 = -(7.35 + (x * 8.13008)) t_228 = (x * 4.47154) - t_95 t_229 = 1.12595 + (y * 1.21951) t_230 = 4.07 + (x * 8.13008) t_231 = 4.45138 - t_49 t_232 = 0.90565 + (y * 2.03252) t_233 = (y * 8.13008) - 5.025 t_234 = 2.2095 - (x * 5.42005) t_235 = 3.55 + (y * 8.13008) t_236 = fmax((3.45 + (y * 8.13008)), -t_235) t_237 = fmax(t_235, -(3.65 + (y * 8.13008))) t_238 = (y * 1.82927) + 2.5769 t_239 = t_238 - (x * 4.47154) t_240 = (x * 4.47154) - t_238 t_241 = 6.0955 - (x * 8.13008) t_242 = 6.75 + (x * 8.13008) t_243 = t_25 + 4.085 t_244 = 6.95 + (x * 11.6144) t_245 = (y * 8.13008) - 2.825 t_246 = -(2.775 + (y * 8.13008)) t_247 = (y * 1.82927) - t_15 t_248 = 0.0499997 + (y * 8.13008) t_249 = ((x * 2.23577) + 3.49375) + (y * 4.06504) t_250 = 1.81065 + (y * 2.84553) t_251 = t_250 - (x * 4.47154) t_252 = 0.712975 + (x * 2.23577) t_253 = 3.6 - (y * 8.13008) t_254 = fmax(t_161, t_253) t_255 = fmax(t_253, t_59) t_256 = (x * 5.42005) - 0.951167 t_257 = 2.67975 + (x * 4.47154) t_258 = (y * 2.64228) - t_257 t_259 = 4.7 - (y * 8.13008) t_260 = (y * 1.82927) + 3.10243 t_261 = t_260 - (x * 4.47154) t_262 = 2.807 + (x * 8.13008) t_263 = (y * 0.813008) + 1.89365 t_264 = 0.135 + (y * 0.813008) t_265 = math.pow(t_161, 2.0) t_266 = math.sqrt((t_265 + math.pow(((x * 8.13008) - 5.5835), 2.0))) t_267 = (1.05475 + (y * 2.64228)) + (x * 4.47154) t_268 = math.pow(((x * 8.13008) - 0.695499), 2.0) t_269 = math.pow(((y * 8.13008) - 1.4), 2.0) t_270 = -(3.482 + (x * 8.13008)) t_271 = (y * 8.13008) - 4.775 t_272 = 4.95 + (y * 8.13008) t_273 = (0.2581 + (y * 1.82927)) + (x * 4.47154) t_274 = -(4.6 + (x * 8.13008)) t_275 = 2.282 + (x * 8.13008) t_276 = (x * 8.13008) - 6.75101 t_277 = (y * 5.28455) - 1.80375 t_278 = (x * 8.13008) - 5.1955 t_279 = (y * 3.25203) + 5.1769 t_280 = math.pow(t_130, 2.0) t_281 = 3.84555 - t_49 t_282 = 0.898001 - (x * 8.13008) t_283 = (y * 8.13008) - 5.7 t_284 = 1.10808 + (y * 1.21951) t_285 = -t_41 t_286 = (y * 8.13008) - 0.615 t_287 = 0.3625 + (y * 2.84553) t_288 = t_287 - (x * 4.47154) t_289 = (0.03425 + (x * 2.23577)) + (y * 4.06504) t_290 = 2.875 + (x * 8.13008) t_291 = 1.083 - (x * 8.13008) t_292 = 1.825 + (y * 8.13008) t_293 = 6.48101 - (x * 8.13008) t_294 = 7.45 + (x * 8.13008) t_295 = 1.05625 + (y * 5.28455) t_296 = (y * 8.13008) - 1.475 t_297 = (x * 8.13008) - 0.282999 t_298 = 4.881 - (x * 8.13008) t_299 = (y * 8.13008) - 0.55 t_300 = math.sqrt((math.pow((5.625 + (x * 8.13008)), 2.0) + t_158)) t_301 = t_300 - 0.275 t_302 = 2.51875 - (y * 5.28455) t_303 = 3.3 + (x * 8.13008) t_304 = (x * 8.13008) - 6.408 t_305 = 1.676 - (x * 8.13008) t_306 = (x * 8.13008) - 3.1225 t_307 = 4.8125 + (y * 8.13008) t_308 = t_113 - (y * 2.84553) t_309 = (1.96935 + (y * 2.03252)) + (x * 4.47154) t_310 = (x * 5.42005) - 1.22783 t_311 = 6.05 + (x * 8.13008) t_312 = 5.1585 - (x * 8.13008) t_313 = -(0.575 + (y * 8.13008)) t_314 = math.pow(((y * 8.13008) - 4.7), 2.0) t_315 = (1.4516 + (y * 1.82927)) + (x * 4.47154) t_316 = 1.1947 + (y * 1.21951) t_317 = 2.73475 + (x * 4.47154) t_318 = (y * 2.64228) - t_317 t_319 = (y * 1.82927) + 2.5219 t_320 = t_319 - (x * 4.47154) t_321 = 3.5305 - (x * 8.13008) t_322 = 3.675 + (x * 8.13008) t_323 = 0.292376 + (y * 2.84553) t_324 = t_323 - (x * 4.47154) t_325 = 5.3 + (y * 8.13008) t_326 = math.sqrt((math.pow((1.462 + (x * 8.13008)), 2.0) + t_158)) t_327 = (x * 8.13008) - 0.320499 t_328 = math.sqrt((t_176 + math.pow(((7.16429 + (x * 8.13008)) - (y * 2.32288)), 2.0))) t_329 = (x * 11.6144) - 7.23715 t_330 = 1.02555 + (y * 2.03252) t_331 = 2.137 + (x * 8.13008) t_332 = 2.4785 + (x * 4.47154) t_333 = 1.77125 + (y * 5.28455) t_334 = (x * 8.13008) - 6.5305 t_335 = 6.2 + (y * 8.13008) t_336 = (y * 1.21951) + 1.7447 t_337 = 3.0 + (y * 8.13008) t_338 = -t_337 t_339 = math.sqrt((t_158 + math.pow(((x * 8.13008) - 6.476), 2.0))) t_340 = (y * 2.03252) + 2.95138 t_341 = 5.2 + (y * 8.13008) t_342 = math.pow(t_341, 2.0) t_343 = -t_341 t_344 = fmax(t_183, t_343) t_345 = 0.289485 + (x * 2.27642) t_346 = (x * 8.13008) - 3.401 t_347 = (y * 8.13008) - 6.15 t_348 = math.pow(t_347, 2.0) t_349 = math.sqrt((t_348 + math.pow(((x * 8.13008) - 2.8955), 2.0))) t_350 = fmax(t_216, t_347) t_351 = (y * 1.82927) + 3.15743 t_352 = (x * 4.47154) - t_351 t_353 = 1.2994 + (y * 3.25203) t_354 = 3.6525 + (x * 4.47154) t_355 = (y * 2.84553) - t_354 t_356 = math.sqrt((t_176 + math.pow((4.345 + (x * 8.13008)), 2.0))) t_357 = 1.6725 - t_49 t_358 = math.sqrt((t_54 + math.pow(((4.12414 + (x * 8.13008)) - (y * 2.32288)), 2.0))) t_359 = 0.14 - (y * 0.813008) t_360 = 4.85 + (y * 8.13008) t_361 = math.pow(t_360, 2.0) t_362 = math.sqrt((t_361 + math.pow(((x * 8.13008) - 0.633), 2.0))) t_363 = math.sqrt((math.pow((0.317 + (x * 8.13008)), 2.0) + t_361)) t_364 = 1.675 + (x * 8.13008) t_365 = ((x * 1.82927) + 3.2527) + (y * 4.06504) t_366 = math.pow((0.6875 - (y * 8.13008)), 2.0) t_367 = 0.300176 + (y * 2.23577) t_368 = (0.590637 + (x * 1.82927)) + (y * 4.06504) t_369 = 0.195 - (y * 0.813008) t_370 = 2.487 + (x * 8.13008) t_371 = math.sqrt((math.pow(t_370, 2.0) + t_158)) t_372 = t_151 - (y * 2.84553) t_373 = (2.216 + (y * 2.84553)) + (x * 4.47154) t_374 = -t_373 t_375 = 1.9 + (y * 8.13008) t_376 = math.pow(t_375, 2.0) t_377 = -t_375 t_378 = fmax(t_377, t_200) t_379 = 0.3 - (y * 8.13008) t_380 = fmax(t_299, t_379) t_381 = 2.5 - (y * 8.13008) t_382 = fmax(t_381, t_74) t_383 = fmax(t_245, t_381) t_384 = fmax(t_381, t_175) t_385 = 2.6125 + (y * 8.13008) t_386 = t_159 - 0.275 t_387 = 1.65817 - (x * 5.42005) t_388 = (x * 8.13008) - 5.733 t_389 = fmax(t_343, t_360) t_390 = 2.65 + (y * 4.06504) t_391 = 7.12143 + (x * 11.6144) t_392 = ((y * 2.03252) + 2.466) + (x * 4.47154) t_393 = 0.6375 + (y * 8.13008) t_394 = -t_393 t_395 = math.pow(t_393, 2.0) t_396 = (x * 1.01626) + 1.55781 t_397 = 0.208 - (x * 8.13008) t_398 = math.sqrt((t_54 + math.pow(((x * 8.13008) - (0.993357 + (y * 2.32288))), 2.0))) t_399 = 2.685 + (y * 8.13008) t_400 = (x * 8.13008) - 0.150499 t_401 = 3.501 - (x * 8.13008) t_402 = 4.512 + (x * 8.13008) t_403 = math.sqrt((math.pow(t_402, 2.0) + t_280)) t_404 = (y * 0.813008) - 0.525 t_405 = ((y * 2.03252) + 3.665) + (x * 4.47154) t_406 = math.pow(((y * 8.13008) - 0.4625), 2.0) t_407 = 2.24785 + (x * 4.47154) t_408 = -t_135 t_409 = 0.525 - (y * 8.13008) t_410 = fmax(t_286, t_409) t_411 = math.pow(((y * 8.13008) - 6.5), 2.0) t_412 = 3.875 - (y * 8.13008) t_413 = 0.63 + (y * 0.813008) t_414 = -t_413 t_415 = -(2.075 + (x * 8.13008)) t_416 = (x * 11.6144) - 2.67571 t_417 = fmax(t_83, t_216) t_418 = t_49 - 1.3975 t_419 = -(7.95 + (x * 8.13008)) t_420 = -(1.675 + (y * 8.13008)) t_421 = (x * 8.13008) - 6.656 t_422 = fmax(t_216, t_89) t_423 = 1.25 + (y * 8.13008) t_424 = fmax(((y * 8.13008) - 0.95), (0.85 - (y * 8.13008))) t_425 = -(1.142 + (x * 8.13008)) t_426 = 5.858 - (x * 8.13008) t_427 = -t_155 t_428 = (y * 0.813008) + 3.968 t_429 = 0.025 + (y * 0.813008) t_430 = 0.596601 + (x * 4.47154) t_431 = (y * 1.82927) - t_430 t_432 = 2.11243 - t_22 t_433 = -t_160 t_434 = t_209 - (y * 1.82927) t_435 = 2.00117 - (x * 5.42005) t_436 = math.sqrt((math.pow(((0.146856 + (x * 8.13008)) - (y * 2.32288)), 2.0) + t_158)) t_437 = 0.4125 + (y * 8.13008) t_438 = 1.24555 + (y * 2.03252) t_439 = (y * 0.813008) + 6.188 t_440 = t_49 - 2.09738 t_441 = 0.322376 + (y * 2.03252) t_442 = 4.825 + (x * 8.13008) t_443 = 5.4 + (x * 8.13008) t_444 = (y * 2.19512) + (x * 2.84553) t_445 = 6.0305 - (x * 8.13008) t_446 = (y * 1.21951) + 1.67444 t_447 = 3.2375 + (x * 4.47154) t_448 = 2.4205 - (x * 8.13008) t_449 = -t_184 t_450 = 3.001 - (x * 8.13008) t_451 = (1.55693 + (x * 2.23577)) + (y * 4.06504) t_452 = (0.6785 + (y * 2.03252)) + (x * 4.47154) t_453 = 0.707348 + (x * 4.5122) t_454 = (y * 8.13008) - 6.075 t_455 = fmax(t_216, t_454) t_456 = math.pow(t_454, 2.0) t_457 = math.sqrt((t_456 + math.pow((0.604501 + (x * 8.13008)), 2.0))) t_458 = math.sqrt((t_456 + math.pow(((x * 8.13008) - 1.3455), 2.0))) t_459 = math.sqrt((t_456 + t_268)) t_460 = math.sqrt((t_456 + math.pow(t_303, 2.0))) t_461 = math.sqrt((t_456 + math.pow(((x * 8.13008) - 5.0255), 2.0))) t_462 = math.sqrt((t_456 + math.pow((5.65 + (x * 8.13008)), 2.0))) t_463 = 3.9955 - (x * 8.13008) t_464 = 0.150001 + (x * 8.13008) t_465 = math.pow(t_464, 2.0) t_466 = 3.1 + (y * 8.13008) t_467 = math.pow(((x * 8.13008) - 4.1255), 2.0) t_468 = math.sqrt((t_456 + t_467)) t_469 = (y * 8.13008) - 0.6875 t_470 = fmax(t_409, t_469) t_471 = 1.732 + (x * 8.13008) t_472 = math.pow(t_283, 2.0) t_473 = math.sqrt((t_472 + t_268)) t_474 = math.sqrt((t_467 + t_472)) t_475 = 1.06718 + (x * 2.23577) t_476 = (x * 8.13008) - 3.6855 t_477 = math.pow((2.3 + (y * 8.13008)), 2.0) t_478 = (y * 2.64228) - t_65 t_479 = 0.986526 + (y * 1.21951) t_480 = (x * 8.13008) - 8.05251 t_481 = 3.8 + (x * 8.13008) t_482 = 1.22783 - (x * 5.42005) t_483 = -t_200 t_484 = (y * 8.13008) - 1.75 t_485 = (x * 4.47154) - t_250 t_486 = (y * 8.13008) - 5.25 t_487 = (y * 5.28455) - 3.23375 t_488 = t_257 - (y * 2.64228) t_489 = (2.54435 + (y * 2.84553)) + (x * 4.47154) t_490 = (x * 4.47154) - t_260 t_491 = 0.25 + (y * 8.13008) t_492 = (x * 1.82927) + (y * 4.06504) t_493 = math.sqrt((t_176 + math.pow(((x * 8.13008) - 2.8475), 2.0))) t_494 = math.pow(t_484, 2.0) t_495 = math.sqrt((t_494 + math.pow(((x * 8.13008) - 5.083), 2.0))) t_496 = math.sqrt((t_494 + math.pow(((x * 8.13008) - 5.333), 2.0))) t_497 = 0.44765 + (x * 2.84553) t_498 = -t_264 t_499 = (x * 8.13008) - 3.021 t_500 = math.pow(-t_437, 2.0) t_501 = 6.3 + (y * 8.13008) t_502 = math.pow(t_501, 2.0) t_503 = -t_501 t_504 = 0.500551 + (y * 2.84553) t_505 = t_504 - (x * 4.47154) t_506 = math.sqrt((t_456 + math.pow(((x * 8.13008) - 0.0454988), 2.0))) t_507 = 1.068 + (x * 2.23577) t_508 = -(5.9 + (x * 8.13008)) t_509 = -(0.249501 + (x * 8.13008)) t_510 = 4.9855 - (x * 8.13008) t_511 = 2.8935 + (x * 4.47154) t_512 = (y * 2.84553) - t_511 t_513 = math.sqrt((t_176 + math.pow(((x * 8.13008) - 0.0924997), 2.0))) t_514 = math.sqrt((t_7 + t_176)) t_515 = 0.415 - (y * 0.813008) t_516 = 0.36 + (y * 3.25203) t_517 = 3.35775 + (x * 4.5122) t_518 = 0.263484 + (x * 2.27642) t_519 = -t_90 t_520 = 2.64638 + (y * 2.84553) t_521 = t_520 - (x * 4.47154) t_522 = 2.846 - (x * 8.13008) t_523 = 0.305 - (y * 0.813008) t_524 = (x * 8.13008) - 4.6525 t_525 = 1.025 + (x * 8.13008) t_526 = 0.7775 + (y * 2.03252) t_527 = math.sqrt((t_140 + math.pow(((x * 8.13008) - 1.073), 2.0))) t_528 = 2.725 + (y * 8.13008) t_529 = math.pow(t_528, 2.0) t_530 = math.sqrt((math.pow(((3.35486 + (x * 8.13008)) - (y * 2.32288)), 2.0) + t_529)) t_531 = math.sqrt((math.pow(((x * 8.13008) - 5.2605), 2.0) + t_529)) t_532 = math.sqrt((math.pow(((0.574857 + (x * 8.13008)) - (y * 2.32288)), 2.0) + t_529)) t_533 = math.sqrt((t_529 + math.pow(((x * 8.13008) - 5.9605), 2.0))) t_534 = t_533 - 0.275 t_535 = math.sqrt((math.pow(((x * 8.13008) - 3.4105), 2.0) + t_529)) t_536 = math.sqrt((math.pow((0.177 + (x * 8.13008)), 2.0) + t_529)) t_537 = math.sqrt((math.pow(((x * 8.13008) - 0.523), 2.0) + t_529)) t_538 = math.sqrt((math.pow((5.745 + (x * 8.13008)), 2.0) + t_529)) t_539 = t_538 - 0.275 t_540 = (y * 8.13008) - 6.45 t_541 = fmax(t_540, (6.35 - (y * 8.13008))) t_542 = 4.875 + (x * 8.13008) t_543 = 0.951167 - (x * 5.42005) t_544 = 0.575 + (y * 0.813008) t_545 = -t_544 t_546 = math.sqrt((t_176 + math.pow(((x * 8.13008) - 4.3775), 2.0))) t_547 = 7.35601 - (x * 8.13008) t_548 = math.sqrt((t_348 + math.pow(((x * 8.13008) - 2.6455), 2.0))) t_549 = 6.9 + (x * 8.13008) t_550 = math.sqrt((math.pow(t_60, 2.0) + math.pow(t_549, 2.0))) t_551 = (y * 2.64228) + 3.2069 t_552 = (x * 4.47154) - t_551 t_553 = t_551 - (x * 4.47154) t_554 = (x * 4.47154) - t_287 t_555 = -(0.452 + (x * 8.13008)) t_556 = (y * 8.13008) - 1.65 t_557 = 2.45 + (y * 8.13008) t_558 = 0.65875 + (x * 2.84553) t_559 = (y * 8.13008) - 1.725 t_560 = 3.12857 + (x * 11.6144) t_561 = -(5.712 + (x * 8.13008)) t_562 = (y * 2.64228) + 3.34743 t_563 = t_562 - (x * 4.47154) t_564 = 2.1625 + (x * 2.23577) t_565 = -(1.67 + (x * 8.13008)) t_566 = (y * 1.82927) - t_116 t_567 = -t_115 t_568 = t_317 - (y * 2.64228) t_569 = 0.96065 + (y * 2.03252) t_570 = 6.7 - (y * 8.13008) t_571 = -t_267 t_572 = (x * 4.47154) - t_319 t_573 = (x * 4.47154) - t_323 t_574 = (0.3131 + (y * 1.82927)) + (x * 4.47154) t_575 = (y * 8.13008) - 1.5 t_576 = math.sqrt((t_361 + math.pow(((x * 8.13008) - 0.383), 2.0))) t_577 = 2.725 - (y * 8.13008) t_578 = fmax(((y * 8.13008) - 2.815), t_577) t_579 = 4.912 + (x * 8.13008) t_580 = fmax(t_402, -t_579) t_581 = 6.45 + (x * 8.13008) t_582 = -t_581 t_583 = 3.85 + (y * 8.13008) t_584 = math.pow(t_583, 2.0) t_585 = math.sqrt((t_584 + math.pow(t_346, 2.0))) t_586 = fmax(t_466, -t_583) t_587 = math.pow(((y * 8.13008) - 5.8), 2.0) t_588 = fmax(t_89, (6.05 - (y * 8.13008))) t_589 = 0.552 + (x * 8.13008) t_590 = math.sqrt((math.pow(t_589, 2.0) + t_280)) t_591 = fmax(t_589, -(0.952 + (x * 8.13008))) t_592 = 5.15 - (y * 8.13008) t_593 = (x * 5.42005) - 1.65817 t_594 = t_354 - (y * 2.84553) t_595 = 0.587999 - (x * 8.13008) t_596 = (y * 8.13008) - 6.05 t_597 = -t_193 t_598 = -(2.132 + (x * 8.13008)) t_599 = 1.726 + (y * 4.87805) t_600 = 5.95 + (y * 8.13008) t_601 = math.pow(t_600, 2.0) t_602 = math.sqrt((t_601 + math.pow(((x * 8.13008) - 1.508), 2.0))) t_603 = 1.0705 - (x * 8.13008) t_604 = math.sqrt((t_601 + math.pow(((x * 8.13008) - 1.258), 2.0))) t_605 = 3.1355 - (x * 8.13008) t_606 = 1.35 + (y * 8.13008) t_607 = fmax(t_377, t_606) t_608 = fmax(t_423, -t_606) t_609 = (x * 8.13008) - 1.138 t_610 = (y * 5.28455) - 2.51875 t_611 = -(5.85 + (y * 8.13008)) t_612 = (y * 8.13008) - 5.015 t_613 = (y * 8.13008) - 3.875 t_614 = fmax(t_253, t_613) t_615 = math.pow(t_613, 2.0) t_616 = math.sqrt((math.pow(((x * 8.13008) - 4.7835), 2.0) + t_615)) t_617 = math.sqrt((t_615 + math.pow(((x * 8.13008) - 0.862999), 2.0))) t_618 = math.sqrt((t_615 + math.pow(((x * 8.13008) - 0.212998), 2.0))) t_619 = math.sqrt((t_615 + math.pow((2.245 + (x * 8.13008)), 2.0))) t_620 = t_619 - 0.275 t_621 = math.sqrt((t_615 + math.pow(t_522, 2.0))) t_622 = math.sqrt((t_615 + math.pow(((x * 8.13008) - 6.1335), 2.0))) t_623 = math.sqrt((t_615 + math.pow(((4.72857 + (x * 8.13008)) - (y * 2.32288)), 2.0))) t_624 = 0.4066 + (x * 4.47154) t_625 = (y * 2.64228) - t_624 t_626 = 2.825 - (y * 8.13008) t_627 = 5.025 - (y * 8.13008) t_628 = (1.74723 + (y * 1.82927)) + (x * 4.47154) t_629 = 4.851 - (x * 8.13008) t_630 = 1.065 + (x * 4.47154) t_631 = (x * 11.6144) - 6.52214 t_632 = 0.8 + (y * 8.13008) t_633 = -t_632 t_634 = fmax(t_491, t_633) t_635 = fmax(t_34, t_633) t_636 = (1.5066 + (y * 1.82927)) + (x * 4.47154) t_637 = 1.01488 + (y * 4.87805) t_638 = (y * 8.13008) - 2.85 t_639 = math.pow(t_638, 2.0) t_640 = math.sqrt((t_639 + math.pow((1.945 + (x * 8.13008)), 2.0))) t_641 = math.sqrt((t_639 + math.pow((2.195 + (x * 8.13008)), 2.0))) t_642 = fmax(t_381, t_638) t_643 = (2.1853 + (x * 2.23577)) + (y * 4.06504) t_644 = 0.957 + (x * 8.13008) t_645 = 0.45 + (y * 8.13008) t_646 = fmax(t_633, t_645) t_647 = 0.0173756 + (y * 2.84553) t_648 = t_647 - (x * 4.47154) t_649 = 0.47 - (y * 0.813008) t_650 = -t_333 t_651 = ((y * 2.03252) + 2.4825) + (x * 4.47154) t_652 = 2.576 - (x * 8.13008) t_653 = 6.325 + (x * 8.13008) t_654 = math.pow(t_653, 2.0) t_655 = math.sqrt((t_654 + t_158)) t_656 = math.sqrt((t_654 + t_54)) t_657 = math.sqrt((t_654 + t_529)) t_658 = math.sqrt((t_280 + math.pow(t_91, 2.0))) t_659 = 0.485 + (x * 2.23577) t_660 = (x * 8.13008) - 3.408 t_661 = math.sqrt((math.pow(t_652, 2.0) + t_158)) t_662 = fmax(t_377, t_47) t_663 = 0.606888 + (y * 1.21951) t_664 = 4.1 + (y * 8.13008) t_665 = math.pow(t_664, 2.0) t_666 = -t_664 t_667 = fmax(t_666, t_235) t_668 = fmax(t_666, (3.75 + (y * 8.13008))) t_669 = fmax(t_466, t_666) t_670 = fmax(t_666, t_9) t_671 = 2.25 + (y * 8.13008) t_672 = math.sqrt((math.pow(t_671, 2.0) + math.pow(t_471, 2.0))) t_673 = (y * 0.813008) - 0.14 t_674 = -t_194 t_675 = (x * 8.13008) - 7.531 t_676 = math.sqrt((t_465 + math.pow(t_556, 2.0))) t_677 = math.sqrt((t_615 + math.pow((0.437001 + (x * 8.13008)), 2.0))) t_678 = t_677 - 0.275 t_679 = -(7.3 + (x * 8.13008)) t_680 = (x * 8.13008) - 6.6455 t_681 = 1.27381 + (y * 4.87805) t_682 = 1.3975 - t_49 t_683 = -t_528 t_684 = (y * 8.13008) - 0.85 t_685 = fmax(t_379, t_684) t_686 = ((x * 2.23577) + 2.30217) + (y * 4.06504) t_687 = 1.4 - (y * 8.13008) t_688 = fmax(t_687, t_1) t_689 = fmax(t_687, t_153) t_690 = 4.02143 + (x * 11.6144) t_691 = 3.775 + (y * 8.13008) t_692 = fmax(t_666, t_691) t_693 = -t_360 t_694 = 3.771 + (x * 4.47154) t_695 = math.pow(t_299, 2.0) t_696 = math.sqrt((t_695 + math.pow(t_364, 2.0))) t_697 = (y * 2.60163) + (x * 2.84553) t_698 = math.sqrt((t_584 + math.pow(t_109, 2.0))) t_699 = -t_429 t_700 = (x * 5.42005) - 2.7765 t_701 = math.sqrt((math.pow(t_248, 2.0) + math.pow(t_73, 2.0))) t_702 = 4.908 - (x * 8.13008) t_703 = 1.30055 + (y * 2.03252) t_704 = (x * 11.6144) - 0.585714 t_705 = 5.0375 + (y * 8.13008) t_706 = (x * 8.13008) - 4.0805 t_707 = math.sqrt((t_265 + math.pow(((x * 8.13008) - 5.3335), 2.0))) t_708 = -(1.737 + (x * 8.13008)) t_709 = (x * 11.6144) - 0.743571 t_710 = 2.09738 - t_49 t_711 = fmax(t_606, t_71) t_712 = (y * 1.21951) + 2.17851 t_713 = math.sqrt((math.pow(t_272, 2.0) + math.pow(t_78, 2.0))) t_714 = (y * 8.13008) - 4.6 t_715 = fmax(t_253, t_714) t_716 = math.sqrt((math.pow(t_714, 2.0) + math.pow(t_331, 2.0))) t_717 = 2.2175 + (x * 2.23577) t_718 = 3.1825 + (x * 4.47154) t_719 = -t_557 t_720 = 2.457 + (x * 8.13008) t_721 = -t_720 t_722 = (y * 8.13008) - 0.625 t_723 = math.sqrt((math.pow(((x * 8.13008) - 5.7775), 2.0) + t_176)) t_724 = t_723 - 0.275 t_725 = -t_37 t_726 = math.sqrt((t_456 + math.pow(((x * 8.13008) - (1.71336 + (y * 2.32288))), 2.0))) t_727 = (0.7335 + (y * 2.03252)) + (x * 4.47154) t_728 = 8.97857 + (x * 11.6144) t_729 = 0.37375 - (y * 5.28455) t_730 = 2.0 + (y * 8.13008) t_731 = math.sqrt((math.pow((4.517 + (x * 8.13008)), 2.0) + t_158)) t_732 = t_731 - 0.275 t_733 = 1.5125 + (y * 8.13008) t_734 = math.sqrt((math.pow((0.0670004 + (x * 8.13008)), 2.0) + t_361)) t_735 = 0.575 - (y * 8.13008) t_736 = (x * 8.13008) - 6.6385 t_737 = (x * 8.13008) - 7.87551 t_738 = math.sqrt((t_695 + math.pow(t_737, 2.0))) t_739 = (x * 8.13008) - 5.9955 t_740 = math.sqrt((t_695 + math.pow(t_739, 2.0))) t_741 = math.pow((7.025 + (x * 8.13008)), 2.0) t_742 = (x * 8.13008) - 1.8305 t_743 = -t_691 t_744 = 1.36223 + (x * 4.47154) t_745 = t_744 - (y * 2.64228) t_746 = (y * 2.64228) - t_744 t_747 = 1.65 + (y * 8.13008) t_748 = fmax(t_47, -t_747) t_749 = math.pow(t_747, 2.0) t_750 = math.sqrt((t_749 + math.pow(t_400, 2.0))) t_751 = math.sqrt((t_749 + math.pow(t_736, 2.0))) t_752 = math.sqrt((math.pow((0.354001 + (x * 8.13008)), 2.0) + t_158)) t_753 = t_752 - 0.275 t_754 = math.sqrt((math.pow(((x * 8.13008) - 1.951), 2.0) + t_158)) t_755 = 4.925 - (y * 8.13008) t_756 = math.pow(t_200, 2.0) t_757 = math.sqrt((t_756 + math.pow(t_742, 2.0))) t_758 = (y * 8.13008) - 0.575 t_759 = fmax(t_379, t_758) t_760 = math.pow(t_758, 2.0) t_761 = math.sqrt((t_760 + math.pow((4.45 + (x * 8.13008)), 2.0))) t_762 = math.sqrt((t_760 + math.pow(((x * 8.13008) - 2.6955), 2.0))) t_763 = math.sqrt((t_7 + t_760)) t_764 = t_763 - 0.275 t_765 = math.sqrt((t_760 + math.pow((3.15 + (x * 8.13008)), 2.0))) t_766 = math.sqrt((t_760 + math.pow((5.1 + (x * 8.13008)), 2.0))) t_767 = math.sqrt((t_760 + math.pow(((x * 8.13008) - 2.0455), 2.0))) t_768 = t_767 - 0.275 t_769 = math.sqrt((t_760 + math.pow(t_582, 2.0))) t_770 = math.sqrt((t_760 + math.pow((1.3 + (x * 8.13008)), 2.0))) t_771 = math.sqrt((t_760 + math.pow(((x * 8.13008) - ((y * 2.32288) + 6.90979)), 2.0))) t_772 = math.sqrt((t_760 + math.pow((7.075 + (x * 8.13008)), 2.0))) t_773 = math.sqrt((t_760 + math.pow(((x * 8.13008) - 3.933), 2.0))) t_774 = t_773 - 0.275 t_775 = math.sqrt((t_176 + math.pow(((x * 8.13008) - 7.77751), 2.0))) t_776 = (x * 8.13008) - 1.183 t_777 = 2.48625 + (y * 5.28455) t_778 = -t_777 t_779 = fmax(t_90, t_182) t_780 = 3.785 + (y * 8.13008) t_781 = math.sqrt((math.pow((3.207 + (x * 8.13008)), 2.0) + t_529)) t_782 = (x * 8.13008) - 0.9705 t_783 = (y * 8.13008) - 3.7 t_784 = math.pow(t_632, 2.0) t_785 = -t_21 t_786 = fmax(t_203, t_785) t_787 = (1.30475 + (y * 1.82927)) + (x * 4.47154) t_788 = math.sqrt((t_760 + math.pow((0.6 + (x * 8.13008)), 2.0))) t_789 = t_788 - 0.275 t_790 = (0.8881 + (y * 2.64228)) + (x * 4.47154) t_791 = -t_790 t_792 = 3.0055 - (x * 8.13008) t_793 = 5.975 + (x * 8.13008) t_794 = math.sqrt((math.pow(((x * 8.13008) - 7.12751), 2.0) + t_176)) t_795 = t_794 - 0.275 t_796 = fmax(t_684, t_735) t_797 = 0.525 + (y * 8.13008) t_798 = -t_797 t_799 = math.pow(t_797, 2.0) t_800 = math.sqrt((math.pow((1.5495 + (x * 8.13008)), 2.0) + t_799)) t_801 = math.sqrt((math.pow(((4.13393 + (x * 8.13008)) - (y * 2.32288)), 2.0) + t_799)) t_802 = math.sqrt((math.pow(((0.11593 + (x * 8.13008)) - (y * 2.32288)), 2.0) + t_799)) t_803 = math.sqrt((t_799 + math.pow(((x * 8.13008) - 4.306), 2.0))) t_804 = math.sqrt((math.pow((6.525 + (x * 8.13008)), 2.0) + t_799)) t_805 = math.sqrt((math.pow((0.969501 + (x * 8.13008)), 2.0) + t_799)) t_806 = fmax(t_503, t_600) t_807 = 3.6 + (x * 8.13008) t_808 = t_49 - 1.82238 t_809 = t_511 - (y * 2.84553) t_810 = -(1.2445 + (x * 8.13008)) t_811 = 0.737225 + (x * 2.27642) t_812 = (x * 4.47154) - t_520 t_813 = 4.925 + (x * 8.13008) t_814 = (x * 8.13008) - 2.751 t_815 = math.sqrt((t_615 + math.pow(((x * 8.13008) - 2.221), 2.0))) t_816 = t_815 - 0.275 t_817 = 1.7272 + (y * 3.41463) t_818 = 0.54 + (y * 2.19512) t_819 = 1.53565 + (y * 2.84553) t_820 = t_819 - (x * 4.47154) t_821 = -(4.62 + (x * 8.13008)) t_822 = 3.233 - (x * 8.13008) t_823 = math.sqrt((t_54 + math.pow(t_188, 2.0))) t_824 = -(0.492001 + (x * 8.13008)) t_825 = 3.825 + (y * 8.13008) t_826 = math.pow(t_825, 2.0) t_827 = math.sqrt((t_826 + math.pow(((x * 8.13008) - 3.776), 2.0))) t_828 = math.sqrt((t_826 + math.pow(((x * 8.13008) - 1.468), 2.0))) t_829 = t_828 - 0.275 t_830 = math.sqrt((t_826 + math.pow((5.437 + (x * 8.13008)), 2.0))) t_831 = math.sqrt((t_826 + math.pow(((x * 8.13008) - 0.167999), 2.0))) t_832 = math.sqrt((t_826 + math.pow(((5.97857 + (x * 8.13008)) - (y * 2.32288)), 2.0))) t_833 = math.sqrt((t_826 + math.pow(t_293, 2.0))) t_834 = math.sqrt((t_826 + math.pow(((x * 8.13008) - ((y * 2.32288) + 5.57243)), 2.0))) t_835 = math.sqrt((t_826 + math.pow(((2.66557 + (x * 8.13008)) - (y * 2.32288)), 2.0))) t_836 = math.sqrt((t_826 + math.pow((3.082 + (x * 8.13008)), 2.0))) t_837 = t_831 - 0.275 t_838 = math.sqrt((t_826 + math.pow((0.482 + (x * 8.13008)), 2.0))) t_839 = t_838 - 0.275 t_840 = math.sqrt((t_826 + math.pow(((x * 8.13008) - 0.818), 2.0))) t_841 = math.sqrt((t_826 + math.pow(t_547, 2.0))) t_842 = math.sqrt((t_826 + t_7)) t_843 = t_842 - 0.275 t_844 = 2.675 + (y * 8.13008) t_845 = -t_844 t_846 = 1.44223 + (x * 4.47154) t_847 = t_846 - (y * 1.82927) t_848 = (y * 1.82927) - t_846 t_849 = (x * 8.13008) - 5.431 t_850 = 3.825 - (y * 8.13008) t_851 = fmax(t_850, t_154) t_852 = (y * 1.21951) + 1.23609 t_853 = 1.18065 + (y * 2.03252) t_854 = (x * 4.47154) - t_562 t_855 = 2.48475 + (x * 4.47154) t_856 = t_855 - (y * 1.82927) t_857 = (y * 1.82927) - t_855 t_858 = -t_489 t_859 = -(3.357 + (x * 8.13008)) t_860 = (1.6416 + (y * 2.64228)) + (x * 4.47154) t_861 = -t_860 t_862 = (y * 2.64228) + 3.29243 t_863 = (x * 4.47154) - t_862 t_864 = t_862 - (x * 4.47154) t_865 = 1.00286 + (x * 11.6144) t_866 = (x * 5.42005) - 2.00117 t_867 = (x * 4.47154) - t_819 t_868 = (x * 1.01626) + 2.92488 t_869 = (y * 1.82927) + (x * 4.47154) t_870 = math.sqrt((t_456 + t_108)) t_871 = (x * 8.13008) - 1.3305 t_872 = math.sqrt((t_756 + math.pow(t_871, 2.0))) t_873 = (y * 2.64228) + 3.1519 t_874 = (x * 4.47154) - t_873 t_875 = t_873 - (x * 4.47154) t_876 = math.sqrt((t_54 + math.pow(((x * 8.13008) - 3.8055), 2.0))) t_877 = 0.571825 + (y * 1.21951) t_878 = 4.55 + (y * 8.13008) t_879 = 0.525 - (y * 0.813008) t_880 = 5.275 + (x * 8.13008) t_881 = -t_880 t_882 = fmax(t_666, t_825) t_883 = math.sqrt((t_826 + math.pow(t_129, 2.0))) t_884 = 4.7 + (x * 8.13008) t_885 = 4.925 + (y * 8.13008) t_886 = math.pow(t_885, 2.0) t_887 = math.sqrt((t_886 + math.pow((0.867001 + (x * 8.13008)), 2.0))) t_888 = math.sqrt((t_886 + math.pow(((x * 8.13008) - 4.2705), 2.0))) t_889 = math.sqrt((t_886 + math.pow(((x * 8.13008) - 4.9205), 2.0))) t_890 = math.sqrt((t_886 + math.pow((1.767 + (x * 8.13008)), 2.0))) t_891 = math.sqrt((t_886 + math.pow(((x * 8.13008) - 3.6205), 2.0))) t_892 = math.sqrt((t_886 + math.pow(t_776, 2.0))) t_893 = t_892 - 0.275 t_894 = math.sqrt((t_886 + math.pow(t_813, 2.0))) t_895 = t_894 - 0.275 t_896 = math.sqrt((t_886 + math.pow(t_139, 2.0))) t_897 = math.sqrt((t_886 + math.pow(t_70, 2.0))) t_898 = t_897 - 0.275 t_899 = -t_825 t_900 = 6.201 - (x * 8.13008) t_901 = 0.4625 - (y * 8.13008) t_902 = fmax(t_722, t_901) t_903 = 4.6455 - (x * 8.13008) t_904 = (x * 8.13008) - 5.558 t_905 = 4.65 + (y * 8.13008) t_906 = fmax(t_905, -t_885) t_907 = fmax(t_343, t_905) t_908 = fmax(t_666, t_583) t_909 = 3.497 + (x * 8.13008) t_910 = math.sqrt((t_176 + math.pow((4.995 + (x * 8.13008)), 2.0))) t_911 = t_910 - 0.275 t_912 = (y * 2.03252) + (x * 4.47154) t_913 = fmax(t_343, t_885) t_914 = ((x * 2.23577) + 3.865) + (y * 4.06504) t_915 = fmax(t_3, (5.7 - (y * 8.13008))) t_916 = math.pow(t_596, 2.0) t_917 = math.sqrt((t_916 + math.pow(t_542, 2.0))) t_918 = math.sqrt((t_916 + math.pow(t_322, 2.0))) t_919 = t_55 - 0.275 t_920 = ((y * 2.03252) + 2.7575) + (x * 4.47154) t_921 = ((y * 2.03252) + 2.18935) + (x * 4.47154) t_922 = 0.5025 + (y * 2.03252) t_923 = 2.662 + (x * 8.13008) t_924 = -t_923 t_925 = math.pow(((y * 8.13008) - 3.6), 2.0) t_926 = -t_491 t_927 = math.pow(((y * 8.13008) - 1.675), 2.0) t_928 = math.sqrt((math.pow(((x * 8.13008) - 6.133), 2.0) + t_927)) t_929 = math.sqrt((t_927 + math.pow(t_124, 2.0))) t_930 = math.sqrt((t_927 + math.pow(((x * 8.13008) - 0.224999), 2.0))) t_931 = math.sqrt((t_927 + math.pow(((x * 8.13008) - 2.775), 2.0))) t_932 = math.sqrt((math.pow((6.375 + (x * 8.13008)), 2.0) + t_927)) t_933 = math.sqrt((t_741 + t_927)) t_934 = math.sqrt((t_927 + math.pow((1.9 + (x * 8.13008)), 2.0))) t_935 = math.sqrt((t_927 + math.pow(((x * 8.13008) - 6.783), 2.0))) t_936 = t_935 - 0.275 t_937 = -(3.425 + (x * 8.13008)) t_938 = (x * 1.01626) + 1.13813 t_939 = (y * 8.13008) - 1.3 t_940 = fmax(t_939, t_379) t_941 = fmax(t_939, (0.55 - (y * 8.13008))) t_942 = math.sqrt((t_760 + math.pow(((x * 8.13008) - 6.3705), 2.0))) t_943 = -t_14 t_944 = 0.592 + (x * 8.13008) t_945 = math.sqrt((t_760 + math.pow(t_481, 2.0))) t_946 = 6.2385 - (x * 8.13008) t_947 = 7.47551 - (x * 8.13008) t_948 = 5.5955 - (x * 8.13008) t_949 = math.pow(t_645, 2.0) t_950 = math.sqrt((t_949 + math.pow(((x * 8.13008) - 0.7685), 2.0))) t_951 = math.sqrt((t_949 + math.pow(((x * 8.13008) - 1.0185), 2.0))) t_952 = -(0.267001 + (x * 8.13008)) t_953 = 1.4305 - (x * 8.13008) t_954 = math.sqrt((t_826 + math.pow(((x * 8.13008) - 5.156), 2.0))) t_955 = 2.7765 - (x * 5.42005) t_956 = t_15 - (y * 1.82927) t_957 = -(2.887 + (x * 8.13008)) t_958 = fmax(t_381, t_16) t_959 = t_622 - 0.275 t_960 = t_624 - (y * 2.64228) t_961 = 1.01 + (x * 4.47154) t_962 = math.sqrt((t_826 + math.pow(t_721, 2.0))) t_963 = 0.461601 + (x * 4.47154) t_964 = t_963 - (y * 2.64228) t_965 = (y * 2.64228) - t_963 t_966 = t_351 - (x * 4.47154) t_967 = 3.23375 - (y * 5.28455) t_968 = 2.5725 - (x * 8.13008) t_969 = 3.20125 + (y * 5.28455) t_970 = -t_969 t_971 = -(3.875 + (y * 8.13008)) t_972 = fmax(t_780, t_971) t_973 = 0.775551 + (y * 2.84553) t_974 = (x * 4.47154) - t_973 t_975 = t_973 - (x * 4.47154) t_976 = 2.775 - (y * 8.13008) t_977 = (x * 11.6144) - 5.05 t_978 = t_22 - 2.11243 t_979 = (x + y) * 4.06504 t_980 = 2.4935 + t_979 t_981 = 0.0709989 + t_979 t_982 = math.pow((0.635 + (y * 8.13008)), 2.0) t_983 = 1.55 + (y * 8.13008) t_984 = math.pow(t_983, 2.0) t_985 = math.sqrt((t_984 + math.pow((2.712 + (x * 8.13008)), 2.0))) t_986 = math.sqrt((t_984 + math.pow((2.462 + (x * 8.13008)), 2.0))) t_987 = fmax(t_377, t_983) t_988 = math.pow((6.025 + (y * 8.13008)), 2.0) t_989 = math.sqrt((t_988 + math.pow(((x * 8.13008) - 4.683), 2.0))) t_990 = math.sqrt((math.pow((1.842 + (x * 8.13008)), 2.0) + t_988)) t_991 = math.sqrt((t_988 + math.pow(((x * 8.13008) - 0.00799847), 2.0))) t_992 = math.sqrt((math.pow(t_785, 2.0) + t_988)) t_993 = math.sqrt((t_988 + math.pow(t_660, 2.0))) t_994 = math.sqrt((t_988 + math.pow(((x * 8.13008) - 4.033), 2.0))) t_995 = 0.542376 + (y * 2.03252) t_996 = math.pow(t_337, 2.0) t_997 = 4.975 - (y * 8.13008) t_998 = t_49 - 4.12055 t_999 = -(0.229501 + (x * 8.13008)) t_1000 = math.sqrt((t_741 + t_176)) t_1001 = t_1000 - 0.275 t_1002 = math.sqrt((t_615 + math.pow((4.325 + (x * 8.13008)), 2.0))) t_1003 = (x * 4.47154) - t_647 t_1004 = -(4.1 + (x * 8.13008)) t_1005 = (x * 4.47154) - t_504 t_1006 = (x * 8.13008) - 4.051 t_1007 = (0.5925 + (x * 2.23577)) + (y * 4.06504) t_1008 = 3.3775 + (x * 4.47154) t_1009 = t_1008 - (y * 2.84553) t_1010 = (y * 2.84553) - t_1008 t_1011 = (y * 0.813008) - 0.36 t_1012 = fmax(t_379, t_722) t_1013 = ((y * 2.03252) + 3.61) + (x * 4.47154) t_1014 = (x + y) * 2.23577 t_1015 = 0.570488 + t_1014 t_1016 = t_1014 + 2.48875 t_1017 = 0.625 - (y * 8.13008) t_1018 = (y * 0.813008) - 0.25 t_1019 = (y * 1.21951) + 1.30319 t_1020 = (x * 8.13008) - 4.5455 t_1021 = 0.8325 + (y * 2.03252) t_1022 = fmax(t_216, t_3) return fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmax(fmax(fmax(fmax(fmax(t_21, -t_322), (0.175 - t_992)), (t_992 - 0.275)), t_325), t_503), fmax(fmax(fmax((4.025 + (x * 8.13008)), -(4.125 + (x * 8.13008))), t_325), t_503)), fmax(fmax(fmax((4.275 + (x * 8.13008)), -(4.375 + (x * 8.13008))), t_325), t_503)), fmax(fmax(fmax((5.5 + (y * 8.13008)), -t_82), t_179), t_274)), fmax(fmax(fmax(-(5.4 + (y * 8.13008)), t_884), t_30), t_325)), fmax(fmax(fmax(t_884, t_30), t_335), t_503)), fmax(fmax(fmax((4.9 + (x * 8.13008)), -(5.0 + (x * 8.13008))), t_325), t_503)), fmax(fmax(t_344, (5.7205 - (x * 8.13008))), ((x * 8.13008) - 5.8205))), fmax(fmax(fmax(t_905, -(4.75 + (y * 8.13008))), t_139), t_226)), fmax(fmax(fmax(t_343, t_139), t_226), (5.1 + (y * 8.13008)))), fmax(fmax(t_820, ((x * 4.47154) - t_232)), t_545)), fmax(fmax(-t_58, t_194), t_414)), fmax(fmax(t_58, t_674), t_413)), fmax(fmax(t_674, t_921), t_544)), fmax(fmax(t_194, -t_921), t_545)), fmax((0.175 - t_990), (t_990 - 0.275))), fmax(fmax(fmax((2.475 + (x * 8.13008)), -(2.575 + (x * 8.13008))), t_82), t_503)), fmax(fmax(fmax(fmax(fmax(t_560, -(3.67857 + (x * 11.6144))), (0.45 - math.sqrt((t_502 + math.pow((3.91072 + (x * 14.518)), 2.0))))), (math.sqrt((t_502 + math.pow(t_560, 2.0))) - 0.55)), t_82), t_503)), fmax(fmax(fmax(-t_203, (2.675 + (x * 8.13008))), t_325), t_503)), fmax(fmax(t_786, t_82), t_611)), fmax(fmax(t_786, t_335), t_503)), fmax(-fmin((math.sqrt((math.pow((1.33245 - (x * 3.61337)), 2.0) + math.pow(-(4.815 + (y * 8.13008)), 2.0))) - 0.0625), fmax(fmax(fmax(t_163, t_307), t_435), ((x * 5.42005) - 2.16367))), (math.sqrt((math.pow(-t_307, 2.0) + math.pow(t_435, 2.0))) - 0.1625))), fmax(-fmin(fmax(fmax(fmax(-t_705, t_866), (1.83867 - (x * 5.42005))), t_43), (math.sqrt((math.pow((5.035 + (y * 8.13008)), 2.0) + math.pow(((x * 3.61337) - 1.33578), 2.0))) - 0.0625)), (math.sqrt((math.pow(t_705, 2.0) + math.pow(t_866, 2.0))) - 0.1625))), fmax(fmax(fmax(t_183, -t_272), ((x * 8.13008) - 1.808)), (1.708 - (x * 8.13008)))), fmax(fmax(fmax(t_878, -t_905), t_78), t_138)), fmax(fmax(fmax(fmax(fmax(t_343, t_272), t_78), t_138), (0.15 - t_713)), (t_713 - 0.25))), fmax(fmax(fmax(fmax(t_344, (4.8205 - (x * 8.13008))), ((x * 8.13008) - 5.5455)), (0.175 - t_896)), (t_896 - 0.275))), fmax(fmax(fmax(t_343, t_43), t_278), (5.0955 - (x * 8.13008)))), fmax(fmax(t_907, ((x * 8.13008) - 4.7455)), t_903)), fmax(fmax(fmax(fmax(fmax(t_905, t_278), t_903), -t_43), (0.175 - t_889)), (t_889 - 0.275))), fmax(fmax(t_907, t_1020), (4.4455 - (x * 8.13008)))), fmax(fmax(t_906, ((x * 8.13008) - 4.0955)), t_463)), fmax(fmax(fmax(fmax(t_913, t_1020), t_463), (0.175 - t_888)), (t_888 - 0.275))), fmax((0.175 - t_891), (t_891 - 0.275))), fmax(fmax(fmax(t_343, (0.142001 + (x * 8.13008))), -(0.242001 + (x * 8.13008))), t_360)), fmax(fmax(fmax(t_343, (0.392001 + (x * 8.13008))), t_824), t_62)), fmax(fmax(fmax(fmax(t_878, t_824), ((x * 8.13008) - 0.157999)), fmin(fmax((0.075 - t_734), (t_734 - 0.175)), fmax((0.075 - t_363), (t_363 - 0.175)))), t_693)), fmax(fmax(t_907, t_944), -(0.692001 + (x * 8.13008)))), fmax(fmax(t_906, (1.042 + (x * 8.13008))), t_425)), fmax(fmax(fmax(fmax(t_913, t_944), t_425), (0.175 - t_887)), (t_887 - 0.275))), fmax(fmax(t_344, (1.267 + (x * 8.13008))), -(1.367 + (x * 8.13008)))), fmax(fmax(fmax(t_905, -(5.575 + (y * 8.13008))), (1.942 + (x * 8.13008))), -(2.042 + (x * 8.13008)))), fmax(t_893, fmin(fmax(fmax(t_164, ((x * 8.13008) - 1.458)), (0.958001 - (x * 8.13008))), fmax(fmax(t_893, -fmin(fmax(fmax(t_969, ((x * 2.23577) - t_316)), -t_643), fmax(fmax(t_643, (t_316 - (x * 2.23577))), t_970))), (0.175 - t_892))))), fmax(fmax(t_389, ((x * 8.13008) - 0.808001)), (0.708 - (x * 8.13008)))), fmax(fmax(t_389, ((x * 8.13008) - 0.558001)), (0.458 - (x * 8.13008)))), fmax(fmax(fmax(t_343, t_62), ((x * 8.13008) - 0.308001)), t_397)), fmax(fmax(fmax(fmax(t_878, t_397), t_693), ((x * 8.13008) - 0.858)), fmin(fmax((0.075 - t_362), (t_362 - 0.175)), fmax((0.075 - t_576), (t_576 - 0.175))))), fmax(fmax(t_389, ((x * 8.13008) - 0.108)), (0.00799942 - (x * 8.13008)))), fmax((0.175 - t_890), (t_890 - 0.275))), fmax(fmax(t_37, t_220), -t_405)), fmax(fmax(t_725, t_219), t_405)), fmax(fmax(t_725, t_1013), t_135)), fmax(fmax(t_37, -t_1013), t_408)), fmax(t_895, fmin(fmax(fmax(t_164, (4.65 + (x * 8.13008))), -t_143), fmax(fmax(t_895, -fmin(fmax(fmax(t_969, (t_659 - (y * 1.21951))), -t_914), fmax(fmax(t_970, t_914), ((y * 1.21951) - t_659)))), (0.175 - t_894))))), fmax(fmax(t_669, (7.531 - (x * 8.13008))), ((x * 8.13008) - 7.631))), fmax(fmax(t_237, t_547), t_675)), fmax(fmax(fmax(t_666, t_547), t_675), t_9)), fmax(fmax(fmax(fmax(t_669, (6.631 - (x * 8.13008))), ((x * 8.13008) - 7.356)), (0.175 - t_841)), (t_841 - 0.275))), fmax(fmax(t_907, (3.1 + (x * 8.13008))), -(3.2 + (x * 8.13008)))), fmax(fmax(fmax(fmax(t_907, t_690), -(4.57143 + (x * 11.6144))), (0.45 - math.sqrt((t_342 + math.pow((5.02679 + (x * 14.518)), 2.0))))), (math.sqrt((t_342 + math.pow(t_690, 2.0))) - 0.55))), fmax(t_898, fmin(fmax(fmax(t_164, t_303), -t_481), fmax(fmax(t_898, -fmin(fmax(fmax(t_969, (t_110 - (y * 1.21951))), -t_249), fmax(fmax(t_970, t_249), ((y * 1.21951) - t_110)))), (0.175 - t_897))))), fmax(fmax(t_220, (t_961 - (y * 2.03252))), t_114)), fmax(fmax(t_219, t_308), ((y * 2.03252) - t_961))), fmax(fmax(t_308, t_135), ((y * 2.03252) - t_630))), fmax(fmax(t_114, (t_630 - (y * 2.03252))), t_408)), (math.sqrt((math.pow((6.225 + (y * 8.13008)), 2.0) + math.pow(t_388, 2.0))) - 0.075)), fmax(fmax(fmax(fmax(-fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmax(fmax(t_390, ((x * 4.06504) - 2.829)), -t_981), fmax(fmax(t_981, (2.829 - (x * 4.06504))), -t_390)), fmax(fmax(((x * 8.13008) - t_439), -((0.0706995 + (y * 2.60163)) + (x * 2.84553))), (t_125 - (x * 5.28455)))), fmax(fmax(((x * 5.28455) - t_125), ((0.0706992 + (y * 2.60163)) + (x * 2.84553))), (t_439 - (x * 8.13008)))), fmax(fmax(-t_85, (1.8053 - (x * 2.84553))), (t_444 - 0.171801))), fmax(fmax(t_85, (0.171801 - t_444)), ((x * 2.84553) - 1.8053))), fmax(fmax(t_31, ((x * 4.47154) - t_279)), (2.8369 - (x * 4.47154)))), fmax(fmax(((x * 4.47154) - 2.8369), (t_279 - (x * 4.47154))), -t_31)), t_325), t_503), t_904), (5.058 - (x * 8.13008)))), fmax((0.175 - t_989), (t_989 - 0.275))), fmax((0.175 - t_994), (t_994 - 0.275))), fmax(fmax(fmax(((x * 8.13008) - 3.233), (3.133 - (x * 8.13008))), t_325), t_503)), fmax(fmax(fmax(t_82, t_611), t_660), t_822)), fmax(fmax(fmax(t_660, t_822), t_335), t_503)), fmax(fmax(fmax(fmax(fmax(((x * 8.13008) - 4.133), (3.408 - (x * 8.13008))), (0.175 - t_993)), (t_993 - 0.275)), t_325), t_503)), fmax(fmax(-t_99, t_240), t_553)), fmax(fmax(t_99, t_552), t_239)), fmax(fmax(fmax(fmax(t_291, (5.65 + (y * 8.13008))), -t_600), ((x * 8.13008) - 1.733)), fmin(fmax((0.075 - t_602), (t_602 - 0.175)), fmax((0.075 - t_604), (t_604 - 0.175))))), fmax(fmax(fmax(t_503, t_198), t_297), (0.182999 - (x * 8.13008)))), fmax(fmax(fmax(t_82, t_503), (0.167001 + (x * 8.13008))), t_952)), fmax(fmax(fmax(fmax(fmax(t_82, t_297), t_952), -t_198), (0.175 - t_991)), (t_991 - 0.275))), fmax(fmax(((x * 4.47154) - t_111), t_251), t_414)), fmax(fmax(t_485, (t_111 - (x * 4.47154))), t_413)), fmax(fmax(t_485, (t_853 - (x * 4.47154))), t_544)), fmax(fmax(t_251, ((x * 4.47154) - t_853)), t_545)), fmax(fmax(-t_309, t_489), t_414)), fmax(fmax(t_309, t_858), t_413)), fmax(fmax(t_858, t_75), t_544)), fmax(fmax(t_489, -t_75), t_545)), fmax(fmax(((x * 4.47154) - t_569), t_820), t_414)), fmax(fmax(t_867, (t_569 - (x * 4.47154))), t_413)), fmax(fmax(t_867, (t_232 - (x * 4.47154))), t_544)), fmax(fmax(t_552, t_413), t_320)), fmax(fmax(t_553, t_572), t_414)), fmax(fmax(t_240, t_414), t_875)), fmax(fmax(t_239, t_413), t_874)), fmax(fmax(t_320, t_874), t_544)), fmax(fmax(t_572, t_875), t_545)), fmax(fmax(t_414, -t_574), t_790)), fmax(fmax(t_413, t_574), t_791)), fmax(fmax(t_544, t_791), t_273)), fmax(fmax(t_545, t_790), -t_273)), fmax(fmax(t_806, ((x * 8.13008) - 1.683)), (1.583 - (x * 8.13008)))), fmax(fmax(t_806, ((x * 8.13008) - 1.433)), (1.333 - (x * 8.13008)))), fmax(fmax(fmax(t_503, (5.775 + (y * 8.13008))), t_776), t_291)), fmax(fmax(fmax(t_32, ((x * 8.13008) - 1.498)), (1.398 - (x * 8.13008))), t_338)), fmax(fmax(fmax(t_32, ((x * 8.13008) - 1.248)), (1.148 - (x * 8.13008))), t_338)), fmax(fmax(fmax((2.475 + (y * 8.13008)), ((x * 8.13008) - 0.998001)), t_282), t_338)), fmax(fmax(fmax(fmax(t_282, -t_32), ((x * 8.13008) - 1.548)), fmin(fmax((0.075 - t_141), (t_141 - 0.175)), fmax((0.075 - t_527), (t_527 - 0.175)))), t_5)), fmax((0.175 - t_537), (t_537 - 0.275))), fmax(fmax(fmax(t_0, -(0.00200015 + (x * 8.13008))), t_338), t_528)), fmax(fmax(fmax((0.352 + (x * 8.13008)), t_555), t_338), t_730)), fmax(fmax(fmax(fmax(fmax(t_0, t_555), (0.175 - t_536)), (t_536 - 0.275)), t_557), t_683)), fmax(fmax(fmax(fmax(fmax((0.175 - t_535), (t_535 - 0.275)), t_557), t_476), t_605), t_845)), fmax(fmax(fmax(((x * 8.13008) - 3.0105), (2.9105 - (x * 8.13008))), t_338), t_557)), (math.sqrt((t_477 + math.pow(((x * 8.13008) - 2.9605), 2.0))) - 0.075)), fmax(-fmin(fmax(fmax(fmax(t_246, t_385), t_482), ((x * 5.42005) - 1.39033)), (math.sqrt((math.pow(-(2.615 + (y * 8.13008)), 2.0) + math.pow((0.81689 - (x * 3.61337)), 2.0))) - 0.0625)), (math.sqrt((math.pow(-t_385, 2.0) + math.pow(t_482, 2.0))) - 0.1625))), fmax(-fmin(fmax(fmax(fmax(-t_211, t_310), (1.06533 - (x * 5.42005))), t_844), (math.sqrt((math.pow((2.835 + (y * 8.13008)), 2.0) + math.pow(((x * 3.61337) - 0.820223), 2.0))) - 0.0625)), (math.sqrt((math.pow(t_211, 2.0) + math.pow(t_310, 2.0))) - 0.1625))), fmax(fmax(fmax(fmax(fmax((0.175 - t_781), (t_781 - 0.275)), t_171), t_270), t_557), t_845)), fmax(fmax(fmax((3.607 + (x * 8.13008)), -(3.707 + (x * 8.13008))), t_338), t_557)), (math.sqrt((t_477 + math.pow((3.657 + (x * 8.13008)), 2.0))) - 0.075)), fmax(fmax(fmax(t_32, (3.852 + (x * 8.13008))), -(3.952 + (x * 8.13008))), t_338)), fmax((0.175 - t_530), (t_530 - 0.275))), fmax(fmax(fmax((4.662 + (x * 8.13008)), -(4.762 + (x * 8.13008))), t_730), t_131)), fmax(fmax(t_580, t_5), t_719)), fmax(fmax(fmax(fmax(t_580, (0.15 - t_403)), (t_403 - 0.25)), t_338), t_130)), fmax(fmax(fmax((5.27 + (x * 8.13008)), -(5.37 + (x * 8.13008))), t_338), t_557)), fmax(fmax(fmax((0.702 + (x * 8.13008)), -(0.802 + (x * 8.13008))), t_730), t_131)), fmax(fmax(t_591, t_5), t_719)), fmax(fmax(fmax(fmax(t_591, (0.15 - t_590)), (t_590 - 0.25)), t_338), t_130)), fmax(fmax(fmax(t_32, (1.072 + (x * 8.13008))), -(1.172 + (x * 8.13008))), t_338)), fmax((0.175 - t_532), (t_532 - 0.275))), fmax(fmax(fmax(t_671, (1.882 + (x * 8.13008))), -(1.982 + (x * 8.13008))), t_338)), fmax(fmax(fmax(-(2.55 + (y * 8.13008)), t_471), t_598), t_557)), fmax(fmax(fmax(fmax(fmax(t_471, t_598), -t_671), (0.15 - t_672)), (t_672 - 0.25)), t_730)), fmax(fmax(fmax(t_171, -(3.032 + (x * 8.13008))), t_338), t_844)), fmax(fmax(fmax((3.382 + (x * 8.13008)), t_270), t_338), t_557)), fmax(fmax(t_608, t_736), t_946)), fmax(fmax(fmax(fmax(fmax(t_736, t_946), t_377), (0.15 - t_751)), (t_751 - 0.25)), t_747)), fmax(fmax(t_607, ((x * 8.13008) - 6.1135)), (6.0135 - (x * 8.13008)))), (math.sqrt((math.pow((1.2 + (y * 8.13008)), 2.0) + math.pow(((x * 8.13008) - 6.0635), 2.0))) - 0.075)), fmax(fmax(t_208, t_352), t_563)), fmax(fmax(t_207, t_854), t_966)), fmax(fmax(t_854, t_115), t_261)), fmax(fmax(t_563, t_490), t_567)), fmax(fmax(t_352, t_567), t_864)), fmax(fmax(t_966, t_115), t_863)), fmax(fmax(t_261, t_863), t_264)), fmax(fmax(t_490, t_864), t_498)), fmax(fmax(t_567, (2.24743 - t_869)), t_978)), fmax(fmax(fmax(fmax(fmax(t_391, -(7.67143 + (x * 11.6144))), (0.45 - math.sqrt((t_996 + math.pow((8.90179 + (x * 14.518)), 2.0))))), (math.sqrt((t_996 + math.pow(t_391, 2.0))) - 0.55)), t_338), t_557)), fmax(t_539, fmin(fmax(fmax(fmax((5.47 + (x * 8.13008)), -(5.97 + (x * 8.13008))), t_399), t_246), fmax(fmax(t_539, -fmin(fmax(fmax((t_26 - (y * 1.21951)), -t_180), t_333), fmax(fmax(t_180, ((y * 1.21951) - t_26)), t_650))), (0.175 - t_538))))), fmax(fmax(-fmin(fmax(fmax(((y * 2.23577) - (1.02163 + (x * 2.27642))), t_517), -t_1016), fmax(fmax(t_1016, -t_517), ((1.02162 + (x * 2.27642)) - (y * 2.23577)))), (0.175 - t_657)), (t_657 - 0.275))), fmax(fmax(t_748, ((x * 8.13008) - 6.4885)), (6.3885 - (x * 8.13008)))), fmax(fmax(fmax(fmax(t_662, (0.175 - t_823)), (t_823 - 0.275)), ((x * 8.13008) - 3.9055)), (3.1805 - (x * 8.13008)))), fmax(fmax(fmax(fmax(fmax(-fmin(fmax(fmax(((x * 2.84553) - t_195), -t_368), (t_681 - (x * 1.01626))), fmax(fmax(t_368, ((x * 1.01626) - t_681)), (t_195 - (x * 2.84553)))), t_292), -(2.05 + (y * 8.13008))), ((x * 8.13008) - 2.0805)), (1.9305 - (x * 8.13008))), (math.sqrt((math.pow((0.608333 + (y * 2.71003)), 2.0) + math.pow(((x * 8.13008) - 2.0055), 2.0))) - 0.075))), (math.sqrt((math.pow(t_292, 2.0) + math.pow(((x * 8.13008) - 2.0305), 2.0))) - 0.075)), fmax(fmax(t_378, ((x * 8.13008) - 1.6805)), (1.5805 - (x * 8.13008)))), fmax(fmax(fmax(t_606, t_742), t_953), t_71)), fmax(fmax(fmax(fmax(fmax(t_47, t_742), t_953), t_483), (0.15 - t_757)), (t_757 - 0.25))), fmax(fmax(t_378, ((x * 8.13008) - 1.1805)), (1.0805 - (x * 8.13008)))), fmax(fmax(t_115, t_432), (t_869 - 2.24743))), fmax(fmax(t_264, t_432), (t_869 - 2.30243))), fmax(fmax(t_498, t_978), (2.30243 - t_869))), fmax(fmax(t_607, ((x * 8.13008) - 4.2805)), (4.1805 - (x * 8.13008)))), fmax(fmax(fmax(fmax(t_607, t_631), (5.97215 - (x * 11.6144))), (0.45 - math.sqrt((t_376 + math.pow(((x * 14.518) - 8.15268), 2.0))))), (math.sqrt((t_376 + math.pow(t_631, 2.0))) - 0.55))), fmax(fmax(t_607, t_706), (3.9805 - (x * 8.13008)))), fmax(fmax(fmax(t_606, -t_53), ((x * 8.13008) - 3.6305)), t_321)), fmax(fmax(fmax(fmax(fmax(t_377, t_706), t_321), t_53), (0.175 - t_876)), (t_876 - 0.275))), fmax(fmax(t_662, ((x * 8.13008) - 3.0055)), (2.9055 - (x * 8.13008)))), fmax(fmax(t_711, t_188), t_792)), fmax(fmax(fmax(t_377, t_188), t_792), t_80)), fmax((0.175 - t_834), (t_834 - 0.275))), fmax(fmax(t_882, t_1006), (3.951 - (x * 8.13008)))), fmax(fmax(t_669, ((x * 8.13008) - 3.601)), t_401)), fmax(fmax(fmax(fmax(fmax(t_235, t_1006), t_401), t_899), (0.175 - t_827)), (t_827 - 0.275))), fmax(fmax(t_586, ((x * 8.13008) - 3.251)), (3.151 - (x * 8.13008)))), fmax(fmax(t_236, t_346), t_450)), fmax(fmax(fmax(fmax(t_908, t_346), t_450), (0.15 - t_585)), (t_585 - 0.25))), fmax(fmax(t_667, ((x * 8.13008) - 1.943)), (1.843 - (x * 8.13008)))), fmax(fmax(fmax(fmax(t_667, t_4), (2.63286 - (x * 11.6144))), (0.45 - math.sqrt((t_665 + math.pow(((x * 14.518) - 3.97857), 2.0))))), (math.sqrt((t_665 + math.pow(t_4, 2.0))) - 0.55))), fmax(fmax(t_667, ((x * 8.13008) - 6.981)), (6.881 - (x * 8.13008)))), (math.sqrt((math.pow((3.4 + (y * 8.13008)), 2.0) + math.pow(((x * 8.13008) - 6.931), 2.0))) - 0.075)), fmax(fmax(t_669, (6.656 - (x * 8.13008))), ((x * 8.13008) - 6.756))), fmax(fmax(t_237, t_293), t_421)), fmax(fmax(t_670, t_293), t_421)), fmax(fmax(fmax(fmax(t_669, (5.756 - (x * 8.13008))), ((x * 8.13008) - 6.481)), (0.175 - t_833)), (t_833 - 0.275))), fmax(fmax(t_692, t_849), (5.331 - (x * 8.13008)))), fmax(fmax(t_667, ((x * 8.13008) - 4.981)), t_298)), fmax(fmax(fmax(fmax(fmax(t_235, t_849), t_298), t_743), (0.175 - t_954)), (t_954 - 0.275))), fmax(fmax(t_668, ((x * 8.13008) - 4.761)), (4.661 - (x * 8.13008)))), fmax(fmin(fmax(fmax((0.175 - t_831), t_837), -fmin(fmax(fmax(t_777, ((x * 2.23577) - t_20)), -t_165), fmax(fmax(t_778, t_165), (t_20 - (x * 2.23577))))), fmax(fmax(t_972, ((x * 8.13008) - 0.443)), -(0.0570004 + (x * 8.13008)))), t_837)), fmax(t_839, fmin(fmax(fmax(fmax((0.207 + (x * 8.13008)), -(0.707 + (x * 8.13008))), t_780), t_971), fmax(fmax(t_839, -fmin(fmax(fmax(((x * 2.23577) - t_877), -t_77), t_777), fmax(fmax(t_77, (t_877 - (x * 2.23577))), t_778))), (0.175 - t_838))))), fmax(fmax(t_669, -t_644), (0.857 + (x * 8.13008)))), fmax(fmax(t_237, t_129), t_644)), fmax(fmax(t_670, t_129), t_644)), fmax(fmax(fmax(fmax(t_669, -(1.857 + (x * 8.13008))), t_128), (0.175 - t_883)), (t_883 - 0.275))), fmax(fmax(t_669, -t_275), (2.182 + (x * 8.13008)))), fmax(fmax(t_237, t_275), t_721)), fmax(fmax(t_670, t_275), t_721)), fmax(t_829, fmin(fmax(fmax(t_972, ((x * 8.13008) - 1.743)), (1.243 - (x * 8.13008))), fmax(fmax(t_829, -fmin(fmax(fmax(t_777, ((x * 2.23577) - t_284)), -t_451), fmax(fmax(t_451, (t_284 - (x * 2.23577))), t_778))), (0.175 - t_828))))), fmax(fmax(fmax(t_235, -(4.475 + (y * 8.13008))), ((x * 8.13008) - 0.643001)), (0.543 - (x * 8.13008)))), fmax((0.175 - t_840), (t_840 - 0.275))), fmax(fmax(fmax(fmax(fmax((math.sqrt((math.pow((4.937 + (x * 8.13008)), 2.0) + math.pow((1.34167 + (y * 2.71003)), 2.0))) - 0.075), -fmin(fmax(fmax((t_196 - (y * 0.813008)), -t_365), (t_599 - (x * 1.01626))), fmax(fmax(((x * 1.01626) - t_599), t_365), ((y * 0.813008) - t_196)))), t_63), -(4.25 + (y * 8.13008))), (4.862 + (x * 8.13008))), -(5.012 + (x * 8.13008)))), (math.sqrt((math.pow(t_63, 2.0) + math.pow(t_579, 2.0))) - 0.075)), fmax(fmax(t_882, t_42), -(5.262 + (x * 8.13008)))), fmax(fmax(t_669, (5.612 + (x * 8.13008))), t_561)), fmax(fmax(fmax(fmax(fmax(t_235, t_899), t_42), t_561), (0.175 - t_830)), (t_830 - 0.275))), fmax(fmax(t_586, (5.962 + (x * 8.13008))), -(6.062 + (x * 8.13008)))), fmax(fmax(t_236, t_109), t_204)), fmax(fmax(fmax(fmax(t_908, t_109), t_204), (0.15 - t_698)), (t_698 - 0.25))), fmax(fmax(t_667, (6.57 + (x * 8.13008))), -(6.67 + (x * 8.13008)))), fmax(fmax(fmax(fmax(t_669, t_720), -(3.182 + (x * 8.13008))), (0.175 - t_962)), (t_962 - 0.275))), fmax(fmax(t_692, t_262), -(2.907 + (x * 8.13008)))), fmax(fmax(t_667, (3.257 + (x * 8.13008))), t_859)), fmax(fmax(fmax(fmax(fmax(t_235, t_743), t_262), t_859), (0.175 - t_836)), (t_836 - 0.275))), fmax(fmax(t_668, (3.477 + (x * 8.13008))), -(3.577 + (x * 8.13008)))), fmax((0.175 - t_835), (t_835 - 0.275))), fmax(fmin(fmax(fmax(t_534, -fmin(fmax(fmax(t_333, ((x * 2.23577) - t_712)), (0.228514 - t_25)), fmax(fmax((t_25 - 0.228514), (t_712 - (x * 2.23577))), t_650))), (0.175 - t_533)), fmax(fmax(fmax(t_399, t_246), ((x * 8.13008) - 6.23551)), (5.73551 - (x * 8.13008)))), t_534)), fmax(fmax(fmax(t_338, t_27), (5.4355 - (x * 8.13008))), t_528)), fmax(fmax(fmax(t_338, t_730), ((x * 8.13008) - 5.0855)), t_510)), fmax(fmax(fmax(fmax(fmax(t_27, t_510), t_557), t_683), (0.175 - t_531)), (t_531 - 0.275))), fmax(fmax(fmax(t_730, t_131), ((x * 8.13008) - 4.7355)), (4.6355 - (x * 8.13008)))), fmax(fmax(fmax(t_5, t_719), t_91), t_185)), fmax(fmax(fmax(fmax(fmax(t_338, t_130), t_91), t_185), (0.15 - t_658)), (t_658 - 0.25))), fmax(fmax(fmax(t_338, t_844), t_476), (3.5855 - (x * 8.13008)))), fmax(fmax(fmax(t_338, t_557), ((x * 8.13008) - 3.2355)), t_605)), fmax(fmax(fmax(fmax(t_667, t_728), -(9.52857 + (x * 11.6144))), (0.45 - math.sqrt((t_665 + math.pow((11.2232 + (x * 14.518)), 2.0))))), (math.sqrt((t_665 + math.pow(t_728, 2.0))) - 0.55))), fmax(fmax(t_668, (6.79 + (x * 8.13008))), -(6.89 + (x * 8.13008)))), fmax((0.175 - t_832), (t_832 - 0.275))), fmax(t_843, fmin(fmax(fmax(t_972, t_294), t_419), fmax(fmax(t_843, -fmin(fmax(fmax(t_777, (t_106 - (y * 1.21951))), -t_243), fmax(fmax(t_778, t_243), ((y * 1.21951) - t_106)))), (0.175 - t_842))))), fmax(fmax(t_848, t_66), t_155)), fmax(fmax(t_847, t_427), t_478)), fmax(fmax(t_427, t_746), t_956)), fmax(fmax(t_155, t_745), t_247)), fmax(fmax(t_848, t_745), t_429)), fmax(fmax(t_847, t_746), t_699)), fmax(fmax(t_427, -t_17), t_160)), fmax(fmax(t_155, t_17), t_433)), fmax(fmax(t_429, t_433), t_628)), fmax(fmax(t_699, t_160), -t_628)), fmax(fmax(fmax((3.5325 + (x * 8.13008)), -(3.6325 + (x * 8.13008))), t_491), t_633)), fmax(fmax(fmax(fmax(fmax(t_119, -(5.18929 + (x * 11.6144))), (0.45 - math.sqrt((math.pow((5.79911 + (x * 14.518)), 2.0) + t_784)))), (math.sqrt((math.pow(t_119, 2.0) + t_784)) - 0.55)), t_491), t_633)), fmax(fmax(fmax((3.7575 + (x * 8.13008)), -(3.8575 + (x * 8.13008))), t_491), t_633)), (math.sqrt((math.pow((3.8075 + (x * 8.13008)), 2.0) + t_2)) - 0.075)), fmax(fmax(fmax((4.0025 + (x * 8.13008)), -(4.1025 + (x * 8.13008))), t_633), t_645)), fmax(fmax(fmax(((x * 8.13008) - 0.0154991), -(0.084501 + (x * 8.13008))), t_633), t_645)), fmax((0.175 - t_802), (t_802 - 0.275))), fmax(fmax(fmax(t_181, -(0.794501 + (x * 8.13008))), t_797), t_633)), fmax(fmax(fmax((1.1445 + (x * 8.13008)), t_810), t_34), t_633)), fmax(fmax(fmax(fmax(fmax(t_181, t_810), t_798), (0.175 - t_805)), (t_805 - 0.275)), t_491)), fmax(fmax(-fmin(fmax(fmax(((y * 2.23577) - t_345), t_453), -t_1015), fmax(fmax(t_1015, -t_453), (t_345 - (y * 2.23577)))), (0.175 - t_800)), (t_800 - 0.275))), fmax(fmax(t_498, t_956), t_478)), fmax(fmax(t_264, t_66), t_247)), fmax(fmax(fmax(fmax(fmax(t_798, t_52), t_191), (0.175 - t_804)), (t_804 - 0.275)), t_491)), fmax(fmax(fmax(-t_60, (7.05 + (x * 8.13008))), -(7.15 + (x * 8.13008))), t_34)), fmax(fmax(fmax(t_549, t_679), t_926), t_10)), fmax(fmax(fmax(fmax(fmax(t_60, t_549), t_679), (0.15 - t_550)), (t_550 - 0.25)), t_633)), fmax(fmax(t_941, ((x * 8.13008) - 7.72551)), (7.62551 - (x * 8.13008)))), fmax(fmax(t_424, t_737), t_947)), fmax(fmax(fmax(fmax(fmax(t_737, t_947), t_299), t_379), (0.15 - t_738)), (t_738 - 0.25))), fmax(fmax(fmax(t_379, ((y * 8.13008) - 0.65)), ((x * 8.13008) - 7.35551)), (7.25551 - (x * 8.13008)))), fmax((0.175 - t_771), (t_771 - 0.275))), fmax((0.175 - t_801), (t_801 - 0.275))), fmax(-fmin(fmax(fmax(fmax(t_168, (3.575 + (x * 5.42005))), t_313), t_437), (math.sqrt((math.pow(-(2.49333 + (x * 3.61337)), 2.0) + t_76)) - 0.0625)), (math.sqrt((math.pow(t_168, 2.0) + t_500)) - 0.1625))), fmax(-fmin(fmax(fmax(fmax(t_167, -(3.9 + (x * 5.42005))), t_213), t_394), (math.sqrt((math.pow((2.49 + (x * 3.61337)), 2.0) + t_982)) - 0.0625)), (math.sqrt((math.pow(t_167, 2.0) + t_395)) - 0.1625))), fmax(fmax(fmax(-(6.075 + (x * 8.13008)), t_793), t_491), t_633)), (math.sqrt((math.pow((6.025 + (x * 8.13008)), 2.0) + t_2)) - 0.075)), fmax(fmax(fmax(t_52, -(6.35 + (x * 8.13008))), t_797), t_633)), fmax(fmax(fmax((6.7 + (x * 8.13008)), t_191), t_34), t_633)), fmax(-fmin((math.sqrt((t_218 + math.pow(((x * 3.61337) - 2.02467), 2.0))) - 0.0625), fmax(fmax(t_902, t_35), (2.872 - (x * 5.42005)))), (math.sqrt((t_406 + math.pow(t_35, 2.0))) - 0.1625))), fmax(t_774, fmin(fmax(fmax(t_410, ((x * 8.13008) - 4.208)), (3.708 - (x * 8.13008))), fmax(fmax(t_774, -fmin(fmax(fmax(t_97, ((x * 2.23577) - t_229)), (1.32095 - t_25)), fmax(fmax((t_25 - 1.32095), (t_229 - (x * 2.23577))), t_729))), (0.175 - t_773))))), fmax(-fmin(fmax(fmax(fmax(t_234, ((x * 5.42005) - 2.372)), t_409), t_469), (math.sqrt((math.pow((1.47133 - (x * 3.61337)), 2.0) + t_61)) - 0.0625)), (math.sqrt((math.pow(t_234, 2.0) + t_366)) - 0.1625))), fmax(fmax(t_759, t_680), (6.5455 - (x * 8.13008)))), fmax(fmax(t_940, ((x * 8.13008) - 6.19551)), t_241)), fmax(fmax(fmax(fmax(fmax(t_680, t_241), t_684), t_735), (0.175 - t_942)), (t_942 - 0.275))), fmax(fmax(t_941, ((x * 8.13008) - 5.8455)), (5.7455 - (x * 8.13008)))), fmax(fmax(t_424, t_739), t_948)), fmax(fmax(fmax(fmax(t_380, t_739), t_948), (0.15 - t_740)), (t_740 - 0.25))), fmax(-fmin(fmax(fmax(t_470, t_72), ((x * 5.42005) - 3.197)), (math.sqrt((t_61 + math.pow((2.02133 - (x * 3.61337)), 2.0))) - 0.0625)), (math.sqrt((t_366 + math.pow(t_72, 2.0))) - 0.1625))), fmax(-fmin(fmax(fmax(t_902, (0.788667 - (x * 5.42005))), t_256), (math.sqrt((t_218 + math.pow(((x * 3.61337) - 0.635778), 2.0))) - 0.0625)), (math.sqrt((t_406 + math.pow(t_256, 2.0))) - 0.1625))), fmax(fmax(t_685, ((x * 8.13008) - 0.125)), (0.0249996 - (x * 8.13008)))), fmax(fmax(fmax(fmax(t_685, t_704), (0.0357141 - (x * 11.6144))), (0.45 - math.sqrt((t_169 + math.pow(((x * 14.518) - 0.732143), 2.0))))), (math.sqrt((t_169 + math.pow(t_704, 2.0))) - 0.55))), fmax(fmax(t_685, (0.1 + (x * 8.13008))), -(0.2 + (x * 8.13008)))), (math.sqrt((math.pow(((y * 8.13008) - 1.0), 2.0) + t_465)) - 0.075)), fmax(t_789, fmin(fmax(fmax(t_410, (0.325 + (x * 8.13008))), -(0.825 + (x * 8.13008))), fmax(fmax(t_789, -fmin(fmax(fmax(t_97, (t_81 - (y * 1.21951))), (0.0743749 - t_25)), fmax(fmax(t_729, (t_25 - 0.0743749)), ((y * 1.21951) - t_81)))), (0.175 - t_788))))), fmax(-fmin(fmax(fmax(fmax(t_28, (2.047 - (x * 5.42005))), t_722), t_901), (math.sqrt((t_218 + math.pow(((x * 3.61337) - 1.47467), 2.0))) - 0.0625)), (math.sqrt((t_406 + math.pow(t_28, 2.0))) - 0.1625))), fmax(fmax(t_1012, t_36), (2.8705 - (x * 8.13008)))), fmax(fmax(t_685, ((x * 8.13008) - 2.5205)), t_448)), fmax(fmax(fmax(fmax(fmax(t_684, t_36), t_448), t_1017), (0.175 - t_762)), (t_762 - 0.275))), fmax(t_768, fmin(fmax(fmax(t_410, ((x * 8.13008) - 2.3205)), (1.8205 - (x * 8.13008))), fmax(fmax(t_768, -fmin(fmax(fmax(t_97, ((x * 2.23577) - t_663)), (0.801888 - t_25)), fmax(fmax(t_729, (t_25 - 0.801888)), (t_663 - (x * 2.23577))))), (0.175 - t_767))))), fmax(-fmin(fmax(fmax(t_470, t_543), ((x * 5.42005) - 1.11367)), (math.sqrt((t_61 + math.pow((0.632445 - (x * 3.61337)), 2.0))) - 0.0625)), (math.sqrt((t_366 + math.pow(t_543, 2.0))) - 0.1625))), fmax((math.sqrt((math.pow(-t_733, 2.0) + math.pow(t_8, 2.0))) - 0.1625), -fmin(fmax(fmax(fmax(t_420, t_733), t_8), (0.233001 + (x * 5.42005))), (math.sqrt((math.pow(-(1.515 + (y * 8.13008)), 2.0) + math.pow(-(0.265334 + (x * 3.61337)), 2.0))) - 0.0625)))), fmax(-fmin(fmax(fmax(fmax((1.575 + (y * 8.13008)), -t_67), t_156), -(0.558001 + (x * 5.42005))), (math.sqrt((math.pow((1.735 + (y * 8.13008)), 2.0) + math.pow((0.262 + (x * 3.61337)), 2.0))) - 0.0625)), (math.sqrt((math.pow(t_67, 2.0) + math.pow(t_156, 2.0))) - 0.1625))), fmax(fmax(t_208, (t_430 - (y * 1.82927))), t_625)), fmax(fmax(t_207, t_960), t_431)), fmax(fmax(t_115, t_960), t_210)), fmax(fmax(t_567, t_625), t_434)), fmax(fmax(t_567, ((0.5966 + (x * 4.47154)) - (y * 1.82927))), t_965)), fmax(fmax(t_115, t_431), t_964)), fmax(fmax(t_264, t_210), t_964)), fmax(fmax(t_498, t_434), t_965)), fmax(fmax(t_567, -t_636), t_860)), fmax(fmax(t_115, t_861), t_636)), fmax(fmax(t_264, t_861), t_315)), fmax(fmax(t_498, t_860), -t_315)), fmax(fmax(t_711, t_871), t_23)), fmax(fmax(fmax(fmax(fmax(t_47, t_483), t_871), t_23), (0.15 - t_872)), (t_872 - 0.25))), fmax(fmax(t_987, ((x * 8.13008) - 0.8105)), (0.7105 - (x * 8.13008)))), fmax((0.175 - t_398), (t_398 - 0.275))), fmax(fmax(t_748, ((x * 8.13008) - 0.000499725)), -(0.0995007 + (x * 8.13008)))), fmax(fmax(t_608, t_400), t_509)), fmax(fmax(fmax(fmax(fmax(t_377, t_747), t_400), t_509), (0.15 - t_750)), (t_750 - 0.25))), fmax(fmax(fmax(t_662, -fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmax(fmax((t_222 - (y * 3.25203)), -t_407), t_516), fmax(fmax(t_407, ((y * 3.25203) - t_222)), -t_516)), fmax(fmax(t_93, t_137), -t_980)), fmax(fmax(t_980, -t_137), -t_93)), fmax(fmax((t_909 - (y * 0.813008)), -t_44), ((y * 3.41463) - t_224))), fmax(fmax((t_224 - (y * 3.41463)), t_44), ((y * 0.813008) - t_909))), fmax(fmax(-t_818, -t_48), t_145)), fmax(fmax(t_818, t_48), -t_145))), (3.687 + (x * 8.13008))), -(4.187 + (x * 8.13008)))), fmax(fmax(t_987, (4.307 + (x * 8.13008))), -(4.407 + (x * 8.13008)))), fmax((0.175 - t_358), (t_358 - 0.275))), fmax(t_919, fmin(fmax(fmax(fmax((1.585 + (y * 8.13008)), t_420), (4.967 + (x * 8.13008))), -(5.467 + (x * 8.13008))), fmax(fmax(t_919, -fmin(fmax(fmax(t_295, (t_475 - (y * 1.21951))), -t_686), fmax(fmax(t_686, ((y * 1.21951) - t_475)), -t_295))), (0.175 - t_55))))), fmax(fmax(t_607, (5.875 + (x * 8.13008))), -t_793)), fmax(fmax(fmax(t_377, (2.287 + (x * 8.13008))), -(2.387 + (x * 8.13008))), t_983)), fmax(fmax(t_987, (2.537 + (x * 8.13008))), -(2.637 + (x * 8.13008)))), fmax(fmax(fmax(t_377, (1.375 + (y * 8.13008))), (2.787 + (x * 8.13008))), t_957)), fmax(fmax(fmax(fmax(t_423, t_957), -t_983), (2.237 + (x * 8.13008))), fmin(fmax((0.075 - t_986), (t_986 - 0.175)), fmax((0.075 - t_985), (t_985 - 0.175))))), fmax(fmax(fmax(fmax(fmax(-fmin(fmax(fmax(((x * 2.84553) - t_263), (0.681276 - t_492)), (t_637 - (x * 1.01626))), fmax(fmax(((x * 1.01626) - t_637), (t_492 - 0.681276)), (t_263 - (x * 2.84553)))), t_120), -(0.95 + (y * 8.13008))), ((x * 8.13008) - 5.289)), (5.139 - (x * 8.13008))), (math.sqrt((math.pow((0.241667 + (y * 2.71003)), 2.0) + math.pow(((x * 8.13008) - 5.214), 2.0))) - 0.075))), (math.sqrt((math.pow(t_120, 2.0) + math.pow(((x * 8.13008) - 5.239), 2.0))) - 0.075)), fmax(fmax(fmax(t_491, ((x * 8.13008) - 4.781)), (4.681 - (x * 8.13008))), t_633)), fmax(fmax(fmax(fmax(fmax(t_491, t_329), (6.68715 - (x * 11.6144))), (0.45 - math.sqrt((t_784 + math.pow(((x * 14.518) - 9.04643), 2.0))))), (math.sqrt((t_784 + math.pow(t_329, 2.0))) - 0.55)), t_633)), fmax((0.175 - t_803), (t_803 - 0.275))), fmax(fmax(fmax(fmax(t_607, t_29), -(8.53571 + (x * 11.6144))), (0.45 - math.sqrt((t_376 + math.pow((9.98214 + (x * 14.518)), 2.0))))), (math.sqrt((t_376 + math.pow(t_29, 2.0))) - 0.55))), fmax(fmax(t_662, t_90), t_182)), fmax(fmax(fmax(t_606, t_653), t_71), t_519)), fmax(fmax(fmax(t_377, t_653), t_80), t_519)), fmax(fmax(fmax(fmax(t_662, t_45), -t_653), (0.175 - t_656)), (t_656 - 0.275))), fmax(fmax(t_635, ((x * 8.13008) - 7.28901)), (7.18901 - (x * 8.13008)))), fmax(fmax(t_635, ((x * 8.13008) - 7.03901)), (6.93901 - (x * 8.13008)))), fmax(fmax(fmax(((y * 8.13008) - 4.76837e-7), t_926), ((x * 8.13008) - 6.81401)), (6.71401 - (x * 8.13008)))), fmax(fmax(fmax(t_34, (0.1 - (y * 8.13008))), t_98), t_192)), fmax(fmax(fmax(t_633, t_98), t_192), (0.7 + (y * 8.13008)))), fmax(fmax(t_635, ((x * 8.13008) - 6.41401)), (6.314 - (x * 8.13008)))), fmax(fmax(t_634, ((x * 8.13008) - 2.1185)), (2.0185 - (x * 8.13008)))), (math.sqrt((t_2 + math.pow(((x * 8.13008) - 2.0685), 2.0))) - 0.075)), fmax(fmax(t_646, ((x * 8.13008) - 1.1935)), (1.0935 - (x * 8.13008)))), fmax(fmax(t_646, ((x * 8.13008) - 0.943501)), (0.8435 - (x * 8.13008)))), fmax(fmax(fmax(t_633, (0.275 + (y * 8.13008))), ((x * 8.13008) - 0.693501)), t_64)), fmax(fmax(fmax(fmax(t_64, t_10), -t_645), ((x * 8.13008) - 1.2435)), fmin(fmax((0.075 - t_951), (t_951 - 0.175)), fmax((0.075 - t_950), (t_950 - 0.175))))), fmax(fmax(t_634, ((x * 8.13008) - 0.2355)), (0.1355 - (x * 8.13008)))), fmax(fmax(fmax(t_248, ((x * 8.13008) - 3.781)), t_633), (3.681 - (x * 8.13008)))), fmax(fmax(fmax(t_491, -(0.35 + (y * 8.13008))), t_73), t_162)), fmax(fmax(fmax(fmax(fmax(t_34, t_73), t_162), -t_248), (0.15 - t_701)), (t_701 - 0.25))), fmax(-fmin(fmax(fmax(fmax(t_313, t_437), t_387), ((x * 5.42005) - 1.82067)), (math.sqrt((t_76 + math.pow((1.10378 - (x * 3.61337)), 2.0))) - 0.0625)), (math.sqrt((t_500 + math.pow(t_387, 2.0))) - 0.1625))), fmax(-fmin(fmax(fmax(fmax(t_213, t_394), t_593), (1.49567 - (x * 5.42005))), (math.sqrt((t_982 + math.pow(((x * 3.61337) - 1.10711), 2.0))) - 0.0625)), (math.sqrt((t_395 + math.pow(t_593, 2.0))) - 0.1625))), fmax(fmax(fmax(fmax(t_634, t_709), (0.193571 - (x * 11.6144))), (0.45 - math.sqrt((t_784 + math.pow(((x * 14.518) - 0.929465), 2.0))))), (math.sqrt((t_784 + math.pow(t_709, 2.0))) - 0.55))), 100000000.0), fmax(t_795, fmin(fmax(fmax(t_578, ((x * 8.13008) - 7.40251)), (6.90251 - (x * 8.13008))), fmax(fmax(t_795, -fmin(fmax(fmax(t_277, ((x * 2.23577) - t_446)), (3.29944 - t_25)), fmax(fmax((t_25 - 3.29944), (t_446 - (x * 2.23577))), t_39))), (0.175 - t_794))))), fmax(fmax(t_223, ((x * 4.47154) - t_340)), t_521)), fmax(fmax(t_812, (t_340 - (x * 4.47154))), t_1018)), fmax(fmax(t_812, t_94), (t_225 - (x * 4.47154)))), fmax(fmax(t_521, ((x * 4.47154) - t_225)), t_523)), fmax(fmax(t_223, (4.14638 - t_912)), t_50)), fmax(fmax(t_1018, t_231), (t_912 - 4.14638))), fmax(fmax(t_94, t_231), (t_912 - 4.20138))), fmax(fmax(t_523, t_50), (4.20138 - t_912))), fmax(fmax(-t_57, t_193), t_359)), fmax(fmax(t_57, t_597), t_673)), fmax(fmax(t_597, t_920), t_102)), fmax(fmax(t_193, -t_920), t_369)), fmax((0.175 - t_932), (t_932 - 0.275))), fmax(fmax(fmax(t_242, -(6.85 + (x * 8.13008))), t_559), t_687)), fmax(fmax(fmax(t_679, (7.2 + (x * 8.13008))), t_687), t_153)), fmax(fmax(fmax(fmax(fmax(t_679, t_242), (0.175 - t_933)), (t_933 - 0.275)), t_68), t_153)), fmax(fmax(t_383, t_480), (7.95251 - (x * 8.13008)))), fmax(fmax(t_958, ((x * 8.13008) - 7.60251)), t_205)), fmax(fmax(fmax(fmax(fmax(t_480, t_16), t_205), t_626), (0.175 - t_775)), (t_775 - 0.275))), fmax(fmax(t_384, t_306), (3.0225 - (x * 8.13008)))), fmax(fmax(fmax(t_381, ((x * 8.13008) - 2.6725)), t_968), t_74)), fmax(fmax(fmax(fmax(fmax(t_16, t_968), (0.175 - t_493)), (t_493 - 0.275)), t_976), t_306)), fmax(fmax(t_223, ((x * 4.47154) - t_170)), t_324)), fmax(fmax(t_1018, t_573), (t_170 - (x * 4.47154)))), fmax(fmax(t_94, t_573), (t_995 - (x * 4.47154)))), fmax(fmax(t_523, t_324), ((x * 4.47154) - t_995))), fmax(fmax(t_223, (1.79238 - t_912)), t_440)), fmax(fmax(t_1018, t_710), (t_912 - 1.79238))), fmax(fmax(t_94, t_710), (t_912 - 1.84738))), fmax(fmax(t_523, t_440), (1.84738 - t_912))), fmax(fmax(t_223, ((x * 4.47154) - t_441)), t_648)), fmax(fmax(t_1018, t_1003), (t_441 - (x * 4.47154)))), fmax(fmax(t_94, t_1003), (t_215 - (x * 4.47154)))), fmax(fmax(t_523, t_648), ((x * 4.47154) - t_215))), fmax(fmax(t_223, (1.51738 - t_912)), t_808)), fmax(fmax(t_1018, t_87), (t_912 - 1.51738))), fmax(fmax(t_94, t_87), (t_912 - 1.57238))), fmax(fmax(t_523, t_808), (1.57238 - t_912))), fmax(t_724, fmin(fmax(fmax(t_578, ((x * 8.13008) - 6.0525)), (5.5525 - (x * 8.13008))), fmax(fmax(t_724, -fmin(fmax(fmax(t_277, ((x * 2.23577) - t_1019)), (2.92819 - t_25)), fmax(fmax(t_39, (t_25 - 2.92819)), (t_1019 - (x * 2.23577))))), (0.175 - t_723))))), fmax(fmax(t_384, t_524), (4.5525 - (x * 8.13008)))), fmax(fmax(t_382, ((x * 8.13008) - 4.2025)), t_146)), fmax(fmax(fmax(fmax(fmax(t_16, t_524), t_146), t_976), (0.175 - t_546)), (t_546 - 0.275))), fmax(fmax(-fmin(fmax(fmax((t_367 - (x * 2.27642)), ((x * 4.5122) - 2.26024)), (1.80744 - t_1014)), fmax(fmax((t_1014 - 1.80744), (2.26024 - (x * 4.5122))), ((x * 2.27642) - t_367))), (0.175 - t_178)), (t_178 - 0.275))), fmax(fmax(t_958, ((x * 8.13008) - 3.3975)), (3.2975 - (x * 8.13008)))), (math.sqrt((t_104 + math.pow(((x * 8.13008) - 3.3475), 2.0))) - 0.075)), fmax(-fmin(fmax(fmax(fmax(t_577, ((y * 8.13008) - 2.8875)), t_943), (0.355 + (x * 5.42005))), (math.sqrt((math.pow((2.885 - (y * 8.13008)), 2.0) + math.pow(-(0.346667 + (x * 3.61337)), 2.0))) - 0.0625)), (math.sqrt((math.pow((2.8875 - (y * 8.13008)), 2.0) + math.pow(t_943, 2.0))) - 0.1625))), fmax(-fmin(fmax(fmax(fmax(t_245, (2.6625 - (y * 8.13008))), t_14), -(0.68 + (x * 5.42005))), (math.sqrt((math.pow(((y * 8.13008) - 2.665), 2.0) + math.pow((0.343334 + (x * 3.61337)), 2.0))) - 0.0625)), (math.sqrt((math.pow(((y * 8.13008) - 2.6625), 2.0) + math.pow(t_14, 2.0))) - 0.1625))), fmax(fmax(t_958, t_18), -(1.22 + (x * 8.13008)))), fmax(fmax(fmax(t_16, t_976), (1.57 + (x * 8.13008))), t_565)), fmax(fmax(fmax(fmax(t_384, t_18), t_565), (0.175 - t_177)), (t_177 - 0.275))), fmax(fmax(t_642, (1.77 + (x * 8.13008))), -(1.87 + (x * 8.13008)))), fmax(fmax(t_642, (2.02 + (x * 8.13008))), -(2.12 + (x * 8.13008)))), fmax(fmax(fmax(fmax(fmax(-fmin(fmax(fmax(((0.0958748 + (x * 2.84553)) - (y * 0.813008)), (1.26444 - t_492)), ((y * 4.87805) - t_396)), fmax(fmax((t_396 - (y * 4.87805)), (t_492 - 1.26444)), ((y * 0.813008) - (0.095875 + (x * 2.84553))))), t_24), (2.35 - (y * 8.13008))), ((x * 8.13008) - 0.5475)), (0.3975 - (x * 8.13008))), (math.sqrt((math.pow(((y * 2.71003) - 0.858333), 2.0) + math.pow(((x * 8.13008) - 0.4725), 2.0))) - 0.075))), (math.sqrt((math.pow(t_24, 2.0) + math.pow(((x * 8.13008) - 0.4975), 2.0))) - 0.075)), fmax(fmax(-fmin(fmax(fmax(((y * 2.23577) - t_811), ((x * 4.5122) - 0.203962)), (0.788562 - t_1014)), fmax(fmax((t_1014 - 0.788562), (0.203962 - (x * 4.5122))), (t_811 - (y * 2.23577)))), (0.175 - t_513)), (t_513 - 0.275))), fmax(fmax(t_958, (0.3075 + (x * 8.13008))), -(0.4075 + (x * 8.13008)))), (math.sqrt((t_104 + math.pow((0.357501 + (x * 8.13008)), 2.0))) - 0.075)), fmax(fmax(t_382, (3.845 + (x * 8.13008))), -(3.945 + (x * 8.13008)))), fmax(fmax(t_383, t_230), -(4.17 + (x * 8.13008)))), fmax(fmax(t_958, (4.52 + (x * 8.13008))), t_821)), fmax(fmax(fmax(fmax(fmax(t_16, t_626), t_230), t_821), (0.175 - t_356)), (t_356 - 0.275))), fmax(t_911, fmin(fmax(fmax(t_578, (4.72 + (x * 8.13008))), -(5.22 + (x * 8.13008))), fmax(fmax(t_911, -fmin(fmax(fmax(t_277, (t_150 - (y * 1.21951))), -t_289), fmax(fmax(t_39, t_289), ((y * 1.21951) - t_150)))), (0.175 - t_910))))), fmax(fmax(t_223, (t_12 - (y * 2.03252))), t_152)), fmax(fmax(t_1018, t_372), ((y * 2.03252) - t_12))), fmax(fmax(t_94, t_372), ((y * 2.03252) - t_694))), fmax(fmax(t_523, t_152), (t_694 - (y * 2.03252)))), fmax(fmax(t_223, -t_197), t_373)), fmax(fmax(fmax(t_381, ((y * 8.13008) - 3.025)), (2.27 + (x * 8.13008))), t_69)), fmax(fmax(fmax(fmax(t_69, ((y * 8.13008) - 3.15)), (2.85 - (y * 8.13008))), (1.72 + (x * 8.13008))), fmin(fmax((0.075 - t_640), (t_640 - 0.175)), fmax((0.075 - t_641), (t_641 - 0.175))))), fmax(fmax(t_369, t_117), t_258)), fmax(fmax(t_488, t_566), t_102)), fmax(fmax(t_488, t_1018), t_857)), fmax(fmax(t_258, t_856), t_223)), fmax(fmax(t_223, t_117), t_318)), fmax(fmax(t_1018, t_566), t_568)), fmax(fmax(t_94, t_857), t_568)), fmax(fmax(t_523, t_856), t_318)), fmax(fmax(t_223, -t_121), t_267)), fmax(fmax(t_1018, t_121), t_571)), fmax(fmax(t_94, t_571), t_787)), fmax(fmax(t_523, t_267), -t_787)), fmax(fmax(fmax(t_684, -(4.725 + (x * 8.13008))), -(0.0749998 + (y * 8.13008))), (4.625 + (x * 8.13008)))), fmax((0.175 - t_761), (t_761 - 0.275))), fmax(fmax(t_685, t_442), -t_813)), fmax(fmax(t_796, t_880), t_84)), fmax(fmax(fmax(fmax(t_759, t_442), t_84), (0.175 - t_766)), (t_766 - 0.275))), fmax(fmax(t_940, -t_38), (6.175 + (x * 8.13008)))), fmax(fmax(fmax(t_684, (0.75 - (y * 8.13008))), t_582), t_38)), fmax(fmax(fmax(t_379, t_582), t_38), ((y * 8.13008) - 0.4))), fmax(fmax(fmax(fmax(t_940, t_581), -(7.175 + (x * 8.13008))), (0.175 - t_769)), (t_769 - 0.275))), fmax(fmax(fmax(t_379, t_190), t_722), -t_549)), fmax(fmax(t_685, t_144), t_227)), fmax(fmax(t_759, t_525), -(1.125 + (x * 8.13008)))), fmax(fmax(t_940, (1.475 + (x * 8.13008))), t_147)), fmax(fmax(fmax(fmax(t_796, t_525), t_147), (0.175 - t_770)), (t_770 - 0.275))), fmax(fmax(t_941, (1.825 + (x * 8.13008))), -(1.925 + (x * 8.13008)))), fmax(fmax(t_424, t_364), t_415)), fmax(fmax(fmax(fmax(t_380, t_364), t_415), (0.15 - t_696)), (t_696 - 0.25))), fmax(fmax(t_1012, t_290), -(2.975 + (x * 8.13008)))), fmax(fmax(t_685, (3.325 + (x * 8.13008))), t_937)), fmax(fmax(fmax(fmax(fmax(t_684, t_1017), t_290), t_937), (0.175 - t_765)), (t_765 - 0.275))), fmax((0.175 - t_945), (t_945 - 0.275))), fmax(fmax(t_689, ((x * 8.13008) - 5.958)), t_426)), fmax(fmax(fmax(fmax(fmax(t_68, (0.175 - t_928)), (t_928 - 0.275)), t_304), t_153), t_426)), fmax(fmax(fmax(t_388, (5.633 - (x * 8.13008))), t_687), t_153)), (math.sqrt((math.pow(((y * 8.13008) - 2.1), 2.0) + math.pow(((x * 8.13008) - 5.683), 2.0))) - 0.075)), fmax(fmax(fmax(t_484, ((x * 8.13008) - 5.508)), (5.408 - (x * 8.13008))), t_687)), fmax(fmax(fmax(t_484, ((x * 8.13008) - 5.258)), (5.158 - (x * 8.13008))), t_687)), fmax(fmax(fmax(((y * 8.13008) - 1.925), ((x * 8.13008) - 5.008)), t_702), t_687)), fmax(fmax(fmax(fmax(t_702, t_118), (1.75 - (y * 8.13008))), t_904), fmin(fmax((0.075 - t_496), (t_496 - 0.175)), fmax((0.075 - t_495), (t_495 - 0.175))))), fmax(fmax(fmax(fmax(fmax(t_190, t_684), t_1017), t_227), (0.175 - t_772)), (t_772 - 0.275))), fmax(t_764, fmin(fmax(fmax(fmax(t_294, t_419), t_286), t_409), fmax(fmax(t_764, -fmin(fmax(fmax(t_97, (t_79 - (y * 1.21951))), -t_186), fmax(fmax(t_729, t_186), ((y * 1.21951) - t_79)))), (0.175 - t_763))))), fmax(t_936, fmin(fmax(fmax(fmax(((y * 8.13008) - 1.715), (1.625 - (y * 8.13008))), ((x * 8.13008) - 7.058)), (6.558 - (x * 8.13008))), fmax(fmax(t_936, -fmin(fmax(fmax(((y * 5.28455) - 1.08875), ((x * 2.23577) - t_336)), (2.6547 - t_25)), fmax(fmax((t_25 - 2.6547), (t_336 - (x * 2.23577))), (1.08875 - (y * 5.28455))))), (0.175 - t_935))))), fmax(fmax(fmax(t_559, t_687), t_304), (6.308 - (x * 8.13008)))), fmax((t_931 - 0.275), (0.175 - t_931))), fmax(fmax(t_359, ((x * 4.47154) - t_1021)), t_96)), fmax(fmax(t_228, (t_1021 - (x * 4.47154))), t_673)), fmax(fmax(t_228, t_102), (t_526 - (x * 4.47154)))), fmax(fmax(t_96, ((x * 4.47154) - t_526)), t_369)), fmax(fmax(t_359, (1.4775 - t_912)), t_148)), fmax(fmax(t_673, t_357), (t_912 - 1.4775))), fmax(fmax(t_102, t_357), (t_912 - 1.5325))), fmax(fmax(t_369, t_148), (1.5325 - t_912))), fmax(fmax(t_359, ((x * 4.47154) - t_149)), t_288)), fmax(fmax(t_673, t_554), (t_149 - (x * 4.47154)))), fmax(fmax(t_102, t_554), (t_922 - (x * 4.47154)))), fmax(fmax(t_369, t_288), ((x * 4.47154) - t_922))), fmax(fmax(t_359, (1.2025 - t_912)), t_418)), fmax(fmax(t_673, t_682), (t_912 - 1.2025))), fmax(fmax(t_102, t_682), (t_912 - 1.2575))), fmax(fmax(t_369, t_418), (1.2575 - t_912))), fmax((0.175 - t_930), (t_930 - 0.275))), fmax(fmax(fmax(fmax(t_687, -fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmax(fmax(((y * 4.06504) - 1.2), ((x * 4.06504) - 2.104)), (3.054 - t_979)), fmax(fmax((t_979 - 3.054), (2.104 - (x * 4.06504))), (1.2 - (y * 4.06504)))), fmax(fmax(((x * 8.13008) - t_428), (1.8858 - t_697)), (t_817 - (x * 5.28455)))), fmax(fmax(((x * 5.28455) - t_817), (t_697 - 1.8858)), (t_428 - (x * 8.13008)))), fmax(fmax((0.351 - (y * 2.19512)), (1.2978 - (x * 2.84553))), (t_444 - 1.7433))), fmax(fmax((1.7433 - t_444), ((x * 2.84553) - 1.2978)), ((y * 2.19512) - 0.351))), fmax(fmax(((y * 3.25203) - 0.96), ((x * 4.47154) - t_353)), (2.0394 - (x * 4.47154)))), fmax(fmax(((x * 4.47154) - 2.0394), (t_353 - (x * 4.47154))), (0.96 - (y * 3.25203))))), t_1), ((x * 8.13008) - 4.108)), (3.608 - (x * 8.13008)))), fmax(fmax(t_689, ((x * 8.13008) - 3.25)), (3.15 - (x * 8.13008)))), fmax(fmax(fmax(fmax(t_689, t_977), (4.5 - (x * 11.6144))), (0.45 - math.sqrt((t_269 + math.pow(((x * 14.518) - 6.3125), 2.0))))), (math.sqrt((t_269 + math.pow(t_977, 2.0))) - 0.55))), fmax(fmax(fmax(t_153, t_124), t_173), (1.85 - (y * 8.13008)))), fmax(fmax(fmax(t_687, t_124), t_575), t_173)), fmax(fmax(fmax(fmax(t_688, t_123), -(3.275 + (x * 8.13008))), (0.175 - t_929)), (t_929 - 0.275))), fmax(fmax(fmax(t_1, (2.3 - (y * 8.13008))), t_807), t_1004)), fmax(fmax(fmax(t_687, t_575), t_807), t_1004)), fmax(fmax(fmax(t_481, t_687), t_1), -(3.9 + (x * 8.13008)))), fmax(fmax(t_359, (t_718 - (y * 2.03252))), t_1010)), fmax(fmax(t_673, t_1009), ((y * 2.03252) - t_718))), fmax(fmax(t_102, t_1009), ((y * 2.03252) - t_447))), fmax(fmax(t_369, t_1010), (t_447 - (y * 2.03252)))), fmax(fmax(t_359, -t_40), t_184)), fmax(fmax(t_673, t_40), t_449)), fmax(fmax(t_102, t_449), t_651)), fmax(fmax(t_369, t_184), -t_651)), fmax(fmax(t_359, (t_187 - (y * 2.03252))), t_355)), fmax(fmax(t_673, t_594), ((y * 2.03252) - t_187))), fmax(fmax(t_102, t_594), ((y * 2.03252) - t_6))), fmax(fmax(t_369, t_355), (t_6 - (y * 2.03252)))), fmax(fmax(fmax((1.65 - (y * 8.13008)), (0.300001 + (x * 8.13008))), t_1), -(0.400001 + (x * 8.13008)))), fmax(fmax(fmax(t_464, t_118), (1.95 - (y * 8.13008))), t_100)), fmax(fmax(fmax(fmax(fmax(t_464, t_687), t_100), t_556), (0.15 - t_676)), (t_676 - 0.25))), fmax(fmax(fmax(fmax(fmax(-fmin(fmax(fmax((t_558 - (y * 0.813008)), (0.281875 - t_492)), ((y * 4.87805) - t_938)), fmax(fmax((t_938 - (y * 4.87805)), (t_492 - 0.281875)), ((y * 0.813008) - t_558))), t_296), (1.25 - (y * 8.13008))), (1.375 + (x * 8.13008))), -(1.525 + (x * 8.13008))), (math.sqrt((math.pow(((y * 2.71003) - 0.491667), 2.0) + math.pow((1.45 + (x * 8.13008)), 2.0))) - 0.075))), (math.sqrt((math.pow(t_296, 2.0) + math.pow((1.425 + (x * 8.13008)), 2.0))) - 0.075)), fmax((0.175 - t_934), (t_934 - 0.275))), fmax(fmax(t_688, -t_173), (2.275 + (x * 8.13008)))), fmax(fmax(fmax(fmax(fmax((t_754 - 0.275), t_206), t_305), (0.175 - t_754)), t_486), t_627)), fmax(fmax(fmax(t_19, ((x * 8.13008) - 1.556)), (1.456 - (x * 8.13008))), t_259)), fmax((0.175 - t_436), (t_436 - 0.275))), fmax(fmax(fmax(fmax(fmax(-fmin(fmax(fmax((t_497 - (y * 0.813008)), (2.27973 - t_492)), ((y * 4.87805) - t_868)), fmax(fmax((t_868 - (y * 4.87805)), (t_492 - 2.27973)), ((y * 0.813008) - t_497))), t_271), (4.55 - (y * 8.13008))), ((x * 8.13008) - 0.171)), (0.0209999 - (x * 8.13008))), (math.sqrt((math.pow(((y * 2.71003) - 1.59167), 2.0) + math.pow(((x * 8.13008) - 0.0959997), 2.0))) - 0.075))), (math.sqrt((math.pow(t_271, 2.0) + math.pow(((x * 8.13008) - 0.121), 2.0))) - 0.075)), fmax(fmax(t_879, t_998), (3.65055 - t_912))), fmax(fmax(((x * 4.47154) - t_330), t_505), t_649)), fmax(fmax(t_1005, (t_330 - (x * 4.47154))), t_86)), fmax(fmax(t_1005, ((0.970551 + (y * 2.03252)) - (x * 4.47154))), t_404)), fmax(fmax(t_505, ((x * 4.47154) - (0.970552 + (y * 2.03252)))), t_879)), fmax(fmax((3.32055 - t_912), t_88), t_649)), fmax(fmax(t_281, (t_912 - 3.32055)), t_86)), fmax(fmax(t_281, (t_912 - 3.37555)), t_404)), fmax(fmax(t_88, (3.37555 - t_912)), t_879)), fmax(fmax(fmax((2.751 - (x * 8.13008)), ((x * 8.13008) - 2.851)), t_283), t_259)), fmax(fmax(fmax(t_592, t_652), t_814), t_486)), fmax(fmax(fmax(t_652, t_814), t_46), t_259)), fmax(fmax(fmax(fmax(fmax((1.851 - (x * 8.13008)), ((x * 8.13008) - 2.576)), (0.175 - t_661)), (t_661 - 0.275)), t_283), t_259)), fmax(fmax(fmax(t_206, (2.126 - (x * 8.13008))), t_233), t_259)), fmax(fmax(fmax(((x * 8.13008) - 1.776), t_305), t_259), t_486)), fmax(fmax(fmax((4.6 - (y * 8.13008)), (1.862 + (x * 8.13008))), -(1.962 + (x * 8.13008))), t_486)), (math.sqrt((math.pow(((y * 8.13008) - 5.4), 2.0) + math.pow((1.912 + (x * 8.13008)), 2.0))) - 0.075)), fmax(fmax(fmax(t_923, -(2.762 + (x * 8.13008))), t_283), t_259)), fmax(fmax(fmax(t_592, t_370), t_924), t_486)), fmax(fmax(fmax(t_46, t_370), t_924), t_259)), fmax(fmax(fmax(fmax(fmax((1.762 + (x * 8.13008)), -t_370), (0.175 - t_371)), (t_371 - 0.275)), t_283), t_259)), fmax(fmax(fmax(t_19, (2.882 + (x * 8.13008))), -(2.982 + (x * 8.13008))), t_259)), fmax((0.175 - t_199), (t_199 - 0.275))), fmax(t_753, fmin(fmax(fmax(fmax((0.0790005 + (x * 8.13008)), -(0.579001 + (x * 8.13008))), t_612), t_755), fmax(fmax(t_753, -fmin(fmax(fmax((t_252 - (y * 1.21951)), (2.34202 - t_25)), t_487), fmax(fmax((t_25 - 2.34202), ((y * 1.21951) - t_252)), t_967))), (0.175 - t_752))))), fmax(fmax(fmax((0.987 + (x * 8.13008)), -(1.087 + (x * 8.13008))), t_259), t_486)), fmax(fmax(fmax(fmax(fmax(t_865, -(1.55286 + (x * 11.6144))), (0.45 - math.sqrt((t_314 + math.pow((1.25357 + (x * 14.518)), 2.0))))), (math.sqrt((t_314 + math.pow(t_865, 2.0))) - 0.55)), t_259), t_486)), fmax(fmax(fmax(t_122, -(1.287 + (x * 8.13008))), t_259), t_486)), fmax(fmax(fmax((1.637 + (x * 8.13008)), t_708), t_997), t_486)), fmax(fmax(fmax(fmax(fmax(t_122, t_708), (0.175 - t_326)), (t_326 - 0.275)), t_259), t_157)), fmax(fmax(fmax(fmax(fmax((4.325 - (y * 8.13008)), (1.587 + (x * 8.13008))), -t_331), (0.175 - t_716)), (t_716 - 0.275)), t_714)), fmax(fmax(fmax(t_132, t_216), t_334), t_445)), fmax(fmax(fmax(t_216, ((x * 8.13008) - 6.3305)), (6.2305 - (x * 8.13008))), t_89)), fmax(fmax(-fmin(fmax(fmax(((y * 2.23577) - t_518), ((x * 4.5122) - 2.94178)), (3.05264 - t_1014)), fmax(fmax((t_1014 - 3.05264), (2.94178 - (x * 4.5122))), (t_518 - (y * 2.23577)))), (0.175 - t_461)), (t_461 - 0.275))), fmax(fmax(t_1022, ((x * 8.13008) - 4.6255)), (4.5255 - (x * 8.13008)))), (math.sqrt((t_411 + math.pow(((x * 8.13008) - 4.5755), 2.0))) - 0.075)), fmax(fmax(t_915, t_56), (4.3005 - (x * 8.13008)))), fmax((0.175 - t_468), (t_468 - 0.275))), fmax(fmax(fmax(fmax(fmax(t_56, t_101), (3.8505 - (x * 8.13008))), (0.175 - t_474)), (t_474 - 0.275)), t_283)), fmax(t_732, fmin(fmax(fmax(fmax((4.242 + (x * 8.13008)), -(4.742 + (x * 8.13008))), t_612), t_755), fmax(fmax(t_732, -fmin(fmax(fmax((t_105 - (y * 1.21951)), (1.1972 - t_25)), t_487), fmax(fmax((t_25 - 1.1972), ((y * 1.21951) - t_105)), t_967))), (0.175 - t_731))))), fmax(fmax(fmax(t_143, -(5.25 + (x * 8.13008))), t_259), t_486)), fmax(fmax(fmax(fmax(fmax(t_244, -(7.5 + (x * 11.6144))), (0.45 - math.sqrt((t_314 + math.pow((8.6875 + (x * 14.518)), 2.0))))), (math.sqrt((t_314 + math.pow(t_244, 2.0))) - 0.55)), t_259), t_486)), fmax(t_301, fmin(fmax(fmax(fmax((5.35 + (x * 8.13008)), -(5.85 + (x * 8.13008))), t_612), t_755), fmax(fmax(t_301, -fmin(fmax(fmax((t_564 - (y * 1.21951)), (0.8925 - t_25)), t_487), fmax(fmax((t_25 - 0.8925), ((y * 1.21951) - t_564)), t_967))), (0.175 - t_300))))), fmax(fmax(fmax(t_311, -(6.15 + (x * 8.13008))), t_259), t_157)), fmax(fmax(t_779, t_283), t_259)), fmax(fmax(fmax(fmax(fmax(t_182, t_311), (0.175 - t_655)), (t_655 - 0.275)), t_997), t_486)), fmax(fmax(fmax(t_89, t_570), t_334), t_445)), fmax(fmax(t_915, t_782), (0.8705 - (x * 8.13008)))), fmax((0.175 - t_459), (t_459 - 0.275))), fmax(fmax(fmax(fmax(fmax(t_101, t_782), (0.4205 - (x * 8.13008))), (0.175 - t_473)), (t_473 - 0.275)), t_283)), fmax(fmax(t_1022, t_327), (0.220499 - (x * 8.13008)))), fmax(fmax(fmax(t_3, (0.129501 + (x * 8.13008))), t_999), t_126)), fmax(fmax(fmax(fmax(t_455, t_327), t_999), (0.175 - t_506)), (t_506 - 0.275))), fmax((0.175 - t_457), (t_457 - 0.275))), fmax(fmax(t_1022, (1.2375 + (x * 8.13008))), -(1.3375 + (x * 8.13008)))), fmax(fmax(fmax(fmax(t_1022, t_133), -(1.91072 + (x * 11.6144))), (0.45 - math.sqrt((t_587 + math.pow((1.70089 + (x * 14.518)), 2.0))))), (math.sqrt((t_587 + math.pow(t_133, 2.0))) - 0.55))), fmax(fmax(t_350, ((x * 8.13008) - 3.7305)), (3.6305 - (x * 8.13008)))), fmax((0.175 - t_726), (t_726 - 0.275))), fmax(fmax(t_350, ((x * 8.13008) - 3.0705)), (2.9705 - (x * 8.13008)))), fmax(fmax(t_350, ((x * 8.13008) - 2.8205)), (2.7205 - (x * 8.13008)))), fmax(fmax(fmax(t_216, ((y * 8.13008) - 6.325)), ((x * 8.13008) - 2.5705)), t_189)), fmax(fmax(fmax(fmax(t_189, t_540), (6.15 - (y * 8.13008))), ((x * 8.13008) - 3.1205)), fmin(fmax((0.075 - t_349), (t_349 - 0.175)), fmax((0.075 - t_548), (t_548 - 0.175))))), fmax(fmax(t_455, t_103), (1.5205 - (x * 8.13008)))), fmax(fmax(t_422, ((x * 8.13008) - 1.1705)), t_603)), fmax(fmax(fmax(fmax(fmax(t_3, t_103), t_603), t_126), (0.175 - t_458)), (t_458 - 0.275))), fmax(fmin(fmax(fmax(fmax(t_850, ((x * 8.13008) - 6.4085)), (5.9085 - (x * 8.13008))), t_154), fmax(fmax(-fmin(fmax(fmax(t_610, ((x * 2.23577) - t_852)), (3.57609 - t_25)), fmax(fmax((t_25 - 3.57609), (t_852 - (x * 2.23577))), t_302)), (0.175 - t_622)), t_959)), t_959)), fmax(fmax(t_254, ((x * 8.13008) - 5.7585)), (5.6585 - (x * 8.13008)))), fmax(fmax(t_254, ((x * 8.13008) - 5.5085)), (5.4085 - (x * 8.13008)))), fmax(fmax(fmax(t_253, ((y * 8.13008) - 4.125)), ((x * 8.13008) - 5.2585)), t_312)), fmax(fmax(fmax(fmax(t_312, ((y * 8.13008) - 4.25)), (3.95 - (y * 8.13008))), ((x * 8.13008) - 5.8085)), fmin(fmax((0.075 - t_266), (t_266 - 0.175)), fmax((0.075 - t_707), (t_707 - 0.175))))), fmax(fmax(t_1018, t_197), t_374)), fmax(fmax(t_94, t_374), t_392)), fmax(fmax(t_523, t_373), -t_392)), fmax(fmax(t_642, (6.09 + (x * 8.13008))), -(6.19 + (x * 8.13008)))), fmax((0.175 - t_328), (t_328 - 0.275))), fmax(t_1001, fmin(fmax(fmax(t_578, t_242), -t_144), fmax(fmax(t_1001, -fmin(fmax(fmax(t_277, (t_717 - (y * 1.21951))), -t_1007), fmax(fmax(t_39, t_1007), ((y * 1.21951) - t_717)))), (0.175 - t_1000))))), fmax(fmax(fmax(t_294, t_381), t_175), -(7.55 + (x * 8.13008)))), fmax(fmax(t_382, (7.9 + (x * 8.13008))), t_33)), fmax(fmax(fmax(fmax(fmax(t_294, t_16), t_976), t_33), (0.175 - t_514)), (t_514 - 0.275))), fmax(fmax(fmax(fmax(t_715, (2.121 - (x * 8.13008))), ((x * 8.13008) - 2.846)), (0.175 - t_621)), (t_621 - 0.275))), fmax(t_816, fmin(fmax(fmax(t_851, ((x * 8.13008) - 2.496)), (1.996 - (x * 8.13008))), fmax(fmax(t_816, -fmin(fmax(fmax(t_610, ((x * 2.23577) - t_51)), (2.50015 - t_25)), fmax(fmax(t_302, (t_25 - 2.50015)), (t_51 - (x * 2.23577))))), (0.175 - t_815))))), fmax(fmax(fmax(t_253, ((x * 8.13008) - 1.588)), (1.488 - (x * 8.13008))), t_59)), fmax(fmax(fmax(fmax(fmax(t_253, t_416), (2.12571 - (x * 11.6144))), (0.45 - math.sqrt((t_925 + math.pow(((x * 14.518) - 3.34464), 2.0))))), (math.sqrt((t_925 + math.pow(t_416, 2.0))) - 0.55)), t_59)), fmax(fmax(fmax(t_253, ((x * 8.13008) - 1.363)), (1.263 - (x * 8.13008))), t_59)), (math.sqrt((math.pow(((y * 8.13008) - 4.3), 2.0) + math.pow(((x * 8.13008) - 1.313), 2.0))) - 0.075)), fmax(fmax(fmax(t_253, t_609), (1.038 - (x * 8.13008))), t_59)), fmax((t_616 - 0.275), (0.175 - t_616))), fmax(-fmin(fmax(fmax(fmax(t_850, ((y * 8.13008) - 3.9875)), t_955), ((x * 5.42005) - 2.939)), (math.sqrt((math.pow((3.985 - (y * 8.13008)), 2.0) + math.pow((1.84933 - (x * 3.61337)), 2.0))) - 0.0625)), (math.sqrt((math.pow((3.9875 - (y * 8.13008)), 2.0) + math.pow(t_955, 2.0))) - 0.1625))), fmax(-fmin(fmax(fmax(fmax(((y * 8.13008) - 3.925), (3.7625 - (y * 8.13008))), t_700), (2.614 - (x * 5.42005))), (math.sqrt((math.pow(((y * 8.13008) - 3.765), 2.0) + math.pow(((x * 3.61337) - 1.85267), 2.0))) - 0.0625)), (math.sqrt((math.pow(((y * 8.13008) - 3.7625), 2.0) + math.pow(t_700, 2.0))) - 0.1625))), fmax(fmax(t_715, (3.021 - (x * 8.13008))), ((x * 8.13008) - 3.121))), fmax(fmax(fmax(t_59, (4.05 - (y * 8.13008))), t_522), t_499)), fmax(fmax(fmax(t_253, t_522), t_499), t_783)), fmax(fmax(fmax(fmax(t_255, t_212), -(1.67143 + (x * 11.6144))), (0.45 - math.sqrt((t_925 + math.pow((1.40179 + (x * 14.518)), 2.0))))), (math.sqrt((t_925 + math.pow(t_212, 2.0))) - 0.55))), fmax(t_620, fmin(fmax(fmax(t_851, (1.97 + (x * 8.13008))), -(2.47 + (x * 8.13008))), fmax(fmax(t_620, -fmin(fmax(fmax(t_610, (t_507 - (y * 1.21951))), (1.272 - t_25)), fmax(fmax(t_302, (t_25 - 1.272)), ((y * 1.21951) - t_507)))), (0.175 - t_619))))), fmax(fmax(t_217, (t_332 - (y * 2.03252))), t_512)), fmax(fmax(t_809, ((y * 2.03252) - t_332)), t_1011)), fmax(fmax(t_809, t_134), ((y * 2.03252) - t_221))), fmax(fmax(t_512, (t_221 - (y * 2.03252))), t_515)), fmax(fmax(t_217, -t_727), t_41)), fmax(fmax(t_1011, t_727), t_285)), fmax(fmax(t_134, t_285), t_452)), fmax(fmax(t_515, t_41), -t_452)), fmax(fmax(t_254, (3.34 + (x * 8.13008))), -(3.44 + (x * 8.13008)))), fmax(fmax(fmax(t_412, ((x * 8.13008) - 0.688)), t_595), t_59)), fmax(fmax(fmax(fmax(t_614, t_609), t_595), (0.175 - t_617)), (t_617 - 0.275))), fmax(fmax(fmax(t_59, (3.225 - (y * 8.13008))), ((x * 8.13008) - 0.487999)), (0.387999 - (x * 8.13008)))), fmax((0.175 - t_618), (t_618 - 0.275))), fmax(t_678, fmin(fmax(fmax(t_851, (0.162001 + (x * 8.13008))), -(0.662001 + (x * 8.13008))), fmax(fmax(t_678, -fmin(fmax(fmax(t_610, (t_13 - (y * 1.21951))), (1.7692 - t_25)), fmax(fmax(t_302, (t_25 - 1.7692)), ((y * 1.21951) - t_13)))), (0.175 - t_677))))), fmax(fmax(t_255, (1.07 + (x * 8.13008))), -(1.17 + (x * 8.13008)))), fmax(fmin(fmax(fmax(-fmin(fmax(fmax(t_487, ((x * 2.23577) - t_479)), (4.04153 - t_25)), fmax(fmax((t_25 - 4.04153), (t_479 - (x * 2.23577))), t_967)), (0.175 - t_159)), t_386), fmax(fmax(fmax(t_612, t_755), ((x * 8.13008) - 6.101)), (5.601 - (x * 8.13008)))), t_386)), fmax(fmax(fmax(t_112, (5.301 - (x * 8.13008))), t_259), t_157)), fmax(fmax(fmax(t_283, ((x * 8.13008) - 4.951)), t_629), t_259)), fmax(fmax(fmax(fmax(fmax(t_112, t_629), t_997), (0.175 - t_166)), (t_166 - 0.275)), t_486)), fmax(fmax(t_649, ((x * 4.47154) - t_703)), t_975)), fmax(fmax(t_974, (t_703 - (x * 4.47154))), t_86)), fmax(fmax(t_974, t_404), (t_438 - (x * 4.47154)))), fmax(fmax(t_975, ((x * 4.47154) - t_438)), t_879)), fmax(fmax(t_649, (3.59555 - t_912)), t_998)), fmax(fmax(t_86, t_172), (t_912 - 3.59555))), fmax(fmax(t_404, t_172), (t_912 - 3.65055))), fmax((0.175 - t_623), (t_623 - 0.275))), fmax(fmax(t_614, t_174), -(4.15 + (x * 8.13008)))), fmax(fmax(fmax(t_179, t_274), t_253), t_714)), fmax(fmax(fmax(fmax(fmax(t_274, t_412), t_59), t_174), (0.175 - t_1002)), (t_1002 - 0.275))), fmax(fmax(fmax(t_714, (4.5 - (y * 8.13008))), t_443), t_508)), fmax(fmax(fmax(t_253, t_783), t_443), t_508)), fmax(fmax(t_715, t_45), -(5.7 + (x * 8.13008)))), fmax(fmax(fmax(t_233, t_259), t_276), (6.651 - (x * 8.13008)))), fmax(fmax(fmax(t_259, t_486), ((x * 8.13008) - 6.30101)), t_900)), fmax(fmax(fmax(fmax(fmax(t_276, t_486), t_900), t_627), (0.175 - t_339)), (t_339 - 0.275))), fmax(fmax(fmax(fmax(t_127, t_92), t_136), (0.175 - t_460)), (t_460 - 0.275))), fmax(fmax(t_588, (3.825 + (x * 8.13008))), -(3.925 + (x * 8.13008)))), fmax(fmax(t_541, t_322), t_142)), fmax(fmax(fmax(fmax(fmax(t_216, t_322), t_142), t_596), (0.15 - t_918)), (t_918 - 0.25))), fmax(fmax(t_588, (5.025 + (x * 8.13008))), -(5.125 + (x * 8.13008)))), fmax(fmax(t_541, t_542), t_881)), fmax(fmax(fmax(fmax(fmax(t_216, t_596), t_542), t_881), (0.15 - t_917)), (t_917 - 0.25))), fmax(fmax(t_417, t_3), -(5.475 + (x * 8.13008)))), fmax(fmax(t_127, (5.825 + (x * 8.13008))), t_11)), fmax(fmax(fmax(fmax(t_417, t_454), t_11), (0.175 - t_462)), (t_462 - 0.275))), fmax(fmax(t_779, t_216), t_89)), fmax(fmax(fmax(t_519, t_89), t_570), t_107)), fmax(fmax(fmax(t_519, t_3), t_107), (6.25 - (y * 8.13008)))), fmax(fmax(fmax(t_519, t_132), t_216), t_107)), fmax(-fmin(fmax(fmax(fmax((6.025 - (y * 8.13008)), ((y * 8.13008) - 6.1875)), t_202), (1.425 + (x * 5.42005))), (math.sqrt((math.pow((6.185 - (y * 8.13008)), 2.0) + math.pow(-(1.06 + (x * 3.61337)), 2.0))) - 0.0625)), (math.sqrt((math.pow((6.1875 - (y * 8.13008)), 2.0) + math.pow(t_202, 2.0))) - 0.1625))), fmax(-fmin(fmax(fmax(fmax(((y * 8.13008) - 6.125), (5.9625 - (y * 8.13008))), t_201), -(1.75 + (x * 5.42005))), (math.sqrt((math.pow(((y * 8.13008) - 5.965), 2.0) + math.pow((1.05667 + (x * 3.61337)), 2.0))) - 0.0625)), (math.sqrt((math.pow(((y * 8.13008) - 5.9625), 2.0) + math.pow(t_201, 2.0))) - 0.1625))), fmax(fmax(t_1022, (2.75 + (x * 8.13008))), -(2.85 + (x * 8.13008)))), (math.sqrt((t_411 + math.pow((2.8 + (x * 8.13008)), 2.0))) - 0.075)), fmax(fmax(t_455, t_92), -(3.125 + (x * 8.13008)))), fmax(fmax(t_422, (3.475 + (x * 8.13008))), t_136)), fmax(fmax(fmax(fmax(t_45, t_216), t_89), -t_107), fmin(fmax((0.175 - t_870), (t_870 - 0.275)), fmax((0.175 - t_214), (t_214 - 0.275)))))
function code(x, y) t_0 = Float64(Float64(x * 8.13008) - 0.0979996) t_1 = Float64(Float64(y * 8.13008) - 2.4) t_2 = Float64(0.0999999 + Float64(y * 8.13008)) ^ 2.0 t_3 = Float64(Float64(y * 8.13008) - 6.35) t_4 = Float64(Float64(x * 11.6144) - 3.18286) t_5 = Float64(2.35 + Float64(y * 8.13008)) t_6 = Float64(3.5125 + Float64(x * 4.47154)) t_7 = Float64(7.725 + Float64(x * 8.13008)) ^ 2.0 t_8 = Float64(-Float64(0.3955 + Float64(x * 5.42005))) t_9 = Float64(4.0 + Float64(y * 8.13008)) t_10 = Float64(0.15 + Float64(y * 8.13008)) t_11 = Float64(-Float64(5.925 + Float64(x * 8.13008))) t_12 = Float64(3.716 + Float64(x * 4.47154)) t_13 = Float64(0.5708 + Float64(x * 2.23577)) t_14 = Float64(0.5175 + Float64(x * 5.42005)) t_15 = Float64(1.38723 + Float64(x * 4.47154)) t_16 = Float64(Float64(y * 8.13008) - 3.05) t_17 = Float64(Float64(1.80223 + Float64(y * 1.82927)) + Float64(x * 4.47154)) t_18 = Float64(1.12 + Float64(x * 8.13008)) t_19 = Float64(Float64(y * 8.13008) - 5.05) t_20 = Float64(0.750575 + Float64(y * 1.21951)) t_21 = Float64(2.95 + Float64(x * 8.13008)) t_22 = Float64(Float64(y * 2.64228) + Float64(x * 4.47154)) t_23 = Float64(0.9305 - Float64(x * 8.13008)) t_24 = Float64(Float64(y * 8.13008) - 2.575) t_25 = Float64(Float64(x * 2.23577) + Float64(y * 4.06504)) t_26 = Float64(1.0405 + Float64(x * 2.23577)) t_27 = Float64(Float64(x * 8.13008) - 5.5355) t_28 = Float64(Float64(x * 5.42005) - 2.2095) t_29 = Float64(7.98571 + Float64(x * 11.6144)) t_30 = Float64(-Float64(5.2 + Float64(x * 8.13008))) t_31 = Float64(2.12 + Float64(y * 3.25203)) t_32 = Float64(2.65 + Float64(y * 8.13008)) t_33 = Float64(-Float64(8.0 + Float64(x * 8.13008))) t_34 = Float64(Float64(y * 8.13008) - 0.2) t_35 = Float64(Float64(x * 5.42005) - 3.0345) t_36 = Float64(Float64(x * 8.13008) - 2.9705) t_37 = Float64(Float64(Float64(y * 2.84553) + 4.13) + Float64(x * 4.47154)) t_38 = Float64(6.275 + Float64(x * 8.13008)) t_39 = Float64(1.80375 - Float64(y * 5.28455)) t_40 = Float64(Float64(Float64(y * 2.03252) + 2.5375) + Float64(x * 4.47154)) t_41 = Float64(Float64(0.318501 + Float64(y * 2.84553)) + Float64(x * 4.47154)) t_42 = Float64(5.162 + Float64(x * 8.13008)) t_43 = Float64(4.875 + Float64(y * 8.13008)) t_44 = Float64(Float64(1.89845 + Float64(y * 2.60163)) + Float64(x * 2.84553)) t_45 = Float64(5.6 + Float64(x * 8.13008)) t_46 = Float64(Float64(y * 8.13008) - 4.8) t_47 = Float64(0.9 + Float64(y * 8.13008)) t_48 = Float64(1.43045 + Float64(x * 2.84553)) t_49 = Float64(Float64(y * 2.84553) + Float64(x * 4.47154)) t_50 = Float64(t_49 - 4.45138) t_51 = Float64(0.16015 + Float64(y * 1.21951)) t_52 = Float64(6.25 + Float64(x * 8.13008)) t_53 = Float64(1.625 + Float64(y * 8.13008)) t_54 = t_53 ^ 2.0 t_55 = sqrt(Float64(t_54 + (Float64(5.242 + Float64(x * 8.13008)) ^ 2.0))) t_56 = Float64(Float64(x * 8.13008) - 4.4005) t_57 = Float64(Float64(Float64(y * 2.03252) + 2.8125) + Float64(x * 4.47154)) t_58 = Float64(Float64(Float64(y * 2.03252) + 2.24435) + Float64(x * 4.47154)) t_59 = Float64(Float64(y * 8.13008) - 4.15) t_60 = Float64(0.55 + Float64(y * 8.13008)) t_61 = Float64(0.685 - Float64(y * 8.13008)) ^ 2.0 t_62 = Float64(4.675 + Float64(y * 8.13008)) t_63 = Float64(4.025 + Float64(y * 8.13008)) t_64 = Float64(0.5935 - Float64(x * 8.13008)) t_65 = Float64(1.30723 + Float64(x * 4.47154)) t_66 = Float64(t_65 - Float64(y * 2.64228)) t_67 = Float64(1.7375 + Float64(y * 8.13008)) t_68 = Float64(1.725 - Float64(y * 8.13008)) t_69 = Float64(-Float64(2.37 + Float64(x * 8.13008))) t_70 = Float64(3.575 + Float64(x * 8.13008)) t_71 = Float64(-Float64(1.45 + Float64(y * 8.13008))) t_72 = Float64(3.0345 - Float64(x * 5.42005)) t_73 = Float64(Float64(x * 8.13008) - 3.931) t_74 = Float64(Float64(y * 8.13008) - 3.5) t_75 = Float64(Float64(1.91435 + Float64(y * 2.03252)) + Float64(x * 4.47154)) t_76 = Float64(-Float64(0.415 + Float64(y * 8.13008))) ^ 2.0 t_77 = Float64(Float64(2.09318 + Float64(x * 2.23577)) + Float64(y * 4.06504)) t_78 = Float64(Float64(x * 8.13008) - 1.958) t_79 = Float64(2.08 + Float64(x * 2.23577)) t_80 = Float64(1.8 + Float64(y * 8.13008)) t_81 = Float64(0.120625 + Float64(x * 2.23577)) t_82 = Float64(5.75 + Float64(y * 8.13008)) t_83 = Float64(5.375 + Float64(x * 8.13008)) t_84 = Float64(-t_83) t_85 = Float64(1.728 + Float64(y * 2.19512)) t_86 = Float64(Float64(y * 0.813008) - 0.47) t_87 = Float64(1.82238 - t_49) t_88 = Float64(t_49 - 3.84555) t_89 = Float64(Float64(y * 8.13008) - 6.8) t_90 = Float64(6.5 + Float64(x * 8.13008)) t_91 = Float64(Float64(x * 8.13008) - 4.8855) t_92 = Float64(3.025 + Float64(x * 8.13008)) t_93 = Float64(0.45 + Float64(y * 4.06504)) t_94 = Float64(Float64(y * 0.813008) - 0.305) t_95 = Float64(0.6375 + Float64(y * 2.84553)) t_96 = Float64(t_95 - Float64(x * 4.47154)) t_97 = Float64(Float64(y * 5.28455) - 0.37375) t_98 = Float64(Float64(x * 8.13008) - 6.61401) t_99 = Float64(0.685 + Float64(y * 0.813008)) t_100 = Float64(-Float64(0.550001 + Float64(x * 8.13008))) t_101 = Float64(5.425 - Float64(y * 8.13008)) t_102 = Float64(Float64(y * 0.813008) - 0.195) t_103 = Float64(Float64(x * 8.13008) - 1.6205) t_104 = Float64(Float64(y * 8.13008) - 3.2) ^ 2.0 t_105 = Float64(1.8578 + Float64(x * 2.23577)) t_106 = Float64(1.42 + Float64(x * 2.23577)) t_107 = Float64(6.3 + Float64(x * 8.13008)) t_108 = t_107 ^ 2.0 t_109 = Float64(5.812 + Float64(x * 8.13008)) t_110 = Float64(0.11375 + Float64(x * 2.23577)) t_111 = Float64(1.23565 + Float64(y * 2.03252)) t_112 = Float64(Float64(x * 8.13008) - 5.401) t_113 = Float64(0.545 + Float64(x * 4.47154)) t_114 = Float64(Float64(y * 2.84553) - t_113) t_115 = Float64(0.19 + Float64(y * 0.813008)) t_116 = Float64(2.42975 + Float64(x * 4.47154)) t_117 = Float64(t_116 - Float64(y * 1.82927)) t_118 = Float64(Float64(y * 8.13008) - 2.05) t_119 = Float64(4.63929 + Float64(x * 11.6144)) t_120 = Float64(0.725 + Float64(y * 8.13008)) t_121 = Float64(Float64(1.35975 + Float64(y * 1.82927)) + Float64(x * 4.47154)) t_122 = Float64(1.187 + Float64(x * 8.13008)) t_123 = Float64(2.55 + Float64(x * 8.13008)) t_124 = Float64(-t_123) t_125 = Float64(Float64(y * 3.41463) + 5.9037) t_126 = Float64(6.075 - Float64(y * 8.13008)) t_127 = fmax(t_3, t_126) t_128 = Float64(1.132 + Float64(x * 8.13008)) t_129 = Float64(-t_128) t_130 = Float64(2.75 + Float64(y * 8.13008)) t_131 = Float64(-t_130) t_132 = Float64(Float64(y * 8.13008) - 5.9) t_133 = Float64(1.36071 + Float64(x * 11.6144)) t_134 = Float64(Float64(y * 0.813008) - 0.415) t_135 = Float64(0.465 + Float64(y * 0.813008)) t_136 = Float64(-t_70) t_137 = Float64(1.7935 + Float64(x * 4.06504)) t_138 = Float64(1.558 - Float64(x * 8.13008)) t_139 = Float64(5.54551 - Float64(x * 8.13008)) t_140 = t_32 ^ 2.0 t_141 = sqrt(Float64(t_140 + (Float64(Float64(x * 8.13008) - 1.323) ^ 2.0))) t_142 = Float64(-Float64(4.075 + Float64(x * 8.13008))) t_143 = Float64(5.15 + Float64(x * 8.13008)) t_144 = Float64(7.25 + Float64(x * 8.13008)) t_145 = Float64(Float64(1.87595 + Float64(y * 2.19512)) + Float64(x * 2.84553)) t_146 = Float64(4.1025 - Float64(x * 8.13008)) t_147 = Float64(-Float64(1.575 + Float64(x * 8.13008))) t_148 = Float64(t_49 - 1.6725) t_149 = Float64(0.5575 + Float64(y * 2.03252)) t_150 = Float64(1.65925 + Float64(x * 2.23577)) t_151 = Float64(4.021 + Float64(x * 4.47154)) t_152 = Float64(Float64(y * 2.84553) - t_151) t_153 = Float64(Float64(y * 8.13008) - 1.95) t_154 = Float64(Float64(y * 8.13008) - 3.915) t_155 = Float64(0.08 + Float64(y * 0.813008)) t_156 = Float64(0.395501 + Float64(x * 5.42005)) t_157 = Float64(Float64(y * 8.13008) - 4.975) t_158 = t_157 ^ 2.0 t_159 = sqrt(Float64(t_158 + (Float64(Float64(x * 8.13008) - 5.826) ^ 2.0))) t_160 = Float64(Float64(1.82723 + Float64(y * 2.64228)) + Float64(x * 4.47154)) t_161 = Float64(Float64(y * 8.13008) - 3.95) t_162 = Float64(3.531 - Float64(x * 8.13008)) t_163 = Float64(-Float64(4.975 + Float64(y * 8.13008))) t_164 = fmax(Float64(4.885 + Float64(y * 8.13008)), t_163) t_165 = Float64(Float64(1.91443 + Float64(x * 2.23577)) + Float64(y * 4.06504)) t_166 = sqrt(Float64((Float64(Float64(x * 8.13008) - 5.126) ^ 2.0) + t_158)) t_167 = Float64(3.7375 + Float64(x * 5.42005)) t_168 = Float64(-t_167) t_169 = Float64(Float64(y * 8.13008) - 0.3) ^ 2.0 t_170 = Float64(0.597376 + Float64(y * 2.03252)) t_171 = Float64(2.932 + Float64(x * 8.13008)) t_172 = Float64(4.12055 - t_49) t_173 = Float64(2.375 + Float64(x * 8.13008)) t_174 = Float64(4.05 + Float64(x * 8.13008)) t_175 = Float64(Float64(y * 8.13008) - 2.775) t_176 = t_175 ^ 2.0 t_177 = sqrt(Float64(t_176 + (Float64(1.395 + Float64(x * 8.13008)) ^ 2.0))) t_178 = sqrt(Float64(t_176 + (Float64(Float64(x * 8.13008) - 3.7975) ^ 2.0))) t_179 = Float64(4.5 + Float64(x * 8.13008)) t_180 = Float64(Float64(Float64(x * 2.23577) + 2.9905) + Float64(y * 4.06504)) t_181 = Float64(0.6945 + Float64(x * 8.13008)) t_182 = Float64(-Float64(6.6 + Float64(x * 8.13008))) t_183 = Float64(4.2 + Float64(y * 8.13008)) t_184 = Float64(Float64(2.3425 + Float64(y * 2.84553)) + Float64(x * 4.47154)) t_185 = Float64(4.4855 - Float64(x * 8.13008)) t_186 = Float64(Float64(1.885 + Float64(x * 2.23577)) + Float64(y * 4.06504)) t_187 = Float64(3.4575 + Float64(x * 4.47154)) t_188 = Float64(Float64(x * 8.13008) - 3.1805) t_189 = Float64(2.4705 - Float64(x * 8.13008)) t_190 = Float64(6.8 + Float64(x * 8.13008)) t_191 = Float64(-t_190) t_192 = Float64(6.11401 - Float64(x * 8.13008)) t_193 = Float64(Float64(2.6175 + Float64(y * 2.84553)) + Float64(x * 4.47154)) t_194 = Float64(Float64(2.81935 + Float64(y * 2.84553)) + Float64(x * 4.47154)) t_195 = Float64(Float64(y * 0.813008) + 0.880675) t_196 = Float64(1.3292 + Float64(x * 2.84553)) t_197 = Float64(Float64(Float64(y * 2.03252) + 2.521) + Float64(x * 4.47154)) t_198 = Float64(5.975 + Float64(y * 8.13008)) t_199 = sqrt(Float64((Float64(Float64(4.58486 + Float64(x * 8.13008)) - Float64(y * 2.32288)) ^ 2.0) + t_158)) t_200 = Float64(1.15 + Float64(y * 8.13008)) t_201 = Float64(1.5875 + Float64(x * 5.42005)) t_202 = Float64(-t_201) t_203 = Float64(2.775 + Float64(x * 8.13008)) t_204 = Float64(-Float64(6.212 + Float64(x * 8.13008))) t_205 = Float64(7.50251 - Float64(x * 8.13008)) t_206 = Float64(Float64(x * 8.13008) - 2.226) t_207 = Float64(0.245 + Float64(y * 0.813008)) t_208 = Float64(-t_207) t_209 = Float64(0.6516 + Float64(x * 4.47154)) t_210 = Float64(Float64(y * 1.82927) - t_209) t_211 = Float64(2.8375 + Float64(y * 8.13008)) t_212 = Float64(1.12143 + Float64(x * 11.6144)) t_213 = Float64(0.475 + Float64(y * 8.13008)) t_214 = sqrt(Float64(t_108 + (Float64(Float64(y * 8.13008) - 6.525) ^ 2.0))) t_215 = Float64(0.267376 + Float64(y * 2.03252)) t_216 = Float64(5.8 - Float64(y * 8.13008)) t_217 = Float64(0.36 - Float64(y * 0.813008)) t_218 = Float64(Float64(y * 8.13008) - 0.465) ^ 2.0 t_219 = Float64(0.52 + Float64(y * 0.813008)) t_220 = Float64(-t_219) t_221 = Float64(2.5335 + Float64(x * 4.47154)) t_222 = Float64(1.66785 + Float64(x * 4.47154)) t_223 = Float64(0.25 - Float64(y * 0.813008)) t_224 = Float64(1.95355 + Float64(x * 5.28455)) t_225 = Float64(Float64(y * 2.03252) + 2.89638) t_226 = Float64(Float64(x * 8.13008) - 5.7205) t_227 = Float64(-Float64(7.35 + Float64(x * 8.13008))) t_228 = Float64(Float64(x * 4.47154) - t_95) t_229 = Float64(1.12595 + Float64(y * 1.21951)) t_230 = Float64(4.07 + Float64(x * 8.13008)) t_231 = Float64(4.45138 - t_49) t_232 = Float64(0.90565 + Float64(y * 2.03252)) t_233 = Float64(Float64(y * 8.13008) - 5.025) t_234 = Float64(2.2095 - Float64(x * 5.42005)) t_235 = Float64(3.55 + Float64(y * 8.13008)) t_236 = fmax(Float64(3.45 + Float64(y * 8.13008)), Float64(-t_235)) t_237 = fmax(t_235, Float64(-Float64(3.65 + Float64(y * 8.13008)))) t_238 = Float64(Float64(y * 1.82927) + 2.5769) t_239 = Float64(t_238 - Float64(x * 4.47154)) t_240 = Float64(Float64(x * 4.47154) - t_238) t_241 = Float64(6.0955 - Float64(x * 8.13008)) t_242 = Float64(6.75 + Float64(x * 8.13008)) t_243 = Float64(t_25 + 4.085) t_244 = Float64(6.95 + Float64(x * 11.6144)) t_245 = Float64(Float64(y * 8.13008) - 2.825) t_246 = Float64(-Float64(2.775 + Float64(y * 8.13008))) t_247 = Float64(Float64(y * 1.82927) - t_15) t_248 = Float64(0.0499997 + Float64(y * 8.13008)) t_249 = Float64(Float64(Float64(x * 2.23577) + 3.49375) + Float64(y * 4.06504)) t_250 = Float64(1.81065 + Float64(y * 2.84553)) t_251 = Float64(t_250 - Float64(x * 4.47154)) t_252 = Float64(0.712975 + Float64(x * 2.23577)) t_253 = Float64(3.6 - Float64(y * 8.13008)) t_254 = fmax(t_161, t_253) t_255 = fmax(t_253, t_59) t_256 = Float64(Float64(x * 5.42005) - 0.951167) t_257 = Float64(2.67975 + Float64(x * 4.47154)) t_258 = Float64(Float64(y * 2.64228) - t_257) t_259 = Float64(4.7 - Float64(y * 8.13008)) t_260 = Float64(Float64(y * 1.82927) + 3.10243) t_261 = Float64(t_260 - Float64(x * 4.47154)) t_262 = Float64(2.807 + Float64(x * 8.13008)) t_263 = Float64(Float64(y * 0.813008) + 1.89365) t_264 = Float64(0.135 + Float64(y * 0.813008)) t_265 = t_161 ^ 2.0 t_266 = sqrt(Float64(t_265 + (Float64(Float64(x * 8.13008) - 5.5835) ^ 2.0))) t_267 = Float64(Float64(1.05475 + Float64(y * 2.64228)) + Float64(x * 4.47154)) t_268 = Float64(Float64(x * 8.13008) - 0.695499) ^ 2.0 t_269 = Float64(Float64(y * 8.13008) - 1.4) ^ 2.0 t_270 = Float64(-Float64(3.482 + Float64(x * 8.13008))) t_271 = Float64(Float64(y * 8.13008) - 4.775) t_272 = Float64(4.95 + Float64(y * 8.13008)) t_273 = Float64(Float64(0.2581 + Float64(y * 1.82927)) + Float64(x * 4.47154)) t_274 = Float64(-Float64(4.6 + Float64(x * 8.13008))) t_275 = Float64(2.282 + Float64(x * 8.13008)) t_276 = Float64(Float64(x * 8.13008) - 6.75101) t_277 = Float64(Float64(y * 5.28455) - 1.80375) t_278 = Float64(Float64(x * 8.13008) - 5.1955) t_279 = Float64(Float64(y * 3.25203) + 5.1769) t_280 = t_130 ^ 2.0 t_281 = Float64(3.84555 - t_49) t_282 = Float64(0.898001 - Float64(x * 8.13008)) t_283 = Float64(Float64(y * 8.13008) - 5.7) t_284 = Float64(1.10808 + Float64(y * 1.21951)) t_285 = Float64(-t_41) t_286 = Float64(Float64(y * 8.13008) - 0.615) t_287 = Float64(0.3625 + Float64(y * 2.84553)) t_288 = Float64(t_287 - Float64(x * 4.47154)) t_289 = Float64(Float64(0.03425 + Float64(x * 2.23577)) + Float64(y * 4.06504)) t_290 = Float64(2.875 + Float64(x * 8.13008)) t_291 = Float64(1.083 - Float64(x * 8.13008)) t_292 = Float64(1.825 + Float64(y * 8.13008)) t_293 = Float64(6.48101 - Float64(x * 8.13008)) t_294 = Float64(7.45 + Float64(x * 8.13008)) t_295 = Float64(1.05625 + Float64(y * 5.28455)) t_296 = Float64(Float64(y * 8.13008) - 1.475) t_297 = Float64(Float64(x * 8.13008) - 0.282999) t_298 = Float64(4.881 - Float64(x * 8.13008)) t_299 = Float64(Float64(y * 8.13008) - 0.55) t_300 = sqrt(Float64((Float64(5.625 + Float64(x * 8.13008)) ^ 2.0) + t_158)) t_301 = Float64(t_300 - 0.275) t_302 = Float64(2.51875 - Float64(y * 5.28455)) t_303 = Float64(3.3 + Float64(x * 8.13008)) t_304 = Float64(Float64(x * 8.13008) - 6.408) t_305 = Float64(1.676 - Float64(x * 8.13008)) t_306 = Float64(Float64(x * 8.13008) - 3.1225) t_307 = Float64(4.8125 + Float64(y * 8.13008)) t_308 = Float64(t_113 - Float64(y * 2.84553)) t_309 = Float64(Float64(1.96935 + Float64(y * 2.03252)) + Float64(x * 4.47154)) t_310 = Float64(Float64(x * 5.42005) - 1.22783) t_311 = Float64(6.05 + Float64(x * 8.13008)) t_312 = Float64(5.1585 - Float64(x * 8.13008)) t_313 = Float64(-Float64(0.575 + Float64(y * 8.13008))) t_314 = Float64(Float64(y * 8.13008) - 4.7) ^ 2.0 t_315 = Float64(Float64(1.4516 + Float64(y * 1.82927)) + Float64(x * 4.47154)) t_316 = Float64(1.1947 + Float64(y * 1.21951)) t_317 = Float64(2.73475 + Float64(x * 4.47154)) t_318 = Float64(Float64(y * 2.64228) - t_317) t_319 = Float64(Float64(y * 1.82927) + 2.5219) t_320 = Float64(t_319 - Float64(x * 4.47154)) t_321 = Float64(3.5305 - Float64(x * 8.13008)) t_322 = Float64(3.675 + Float64(x * 8.13008)) t_323 = Float64(0.292376 + Float64(y * 2.84553)) t_324 = Float64(t_323 - Float64(x * 4.47154)) t_325 = Float64(5.3 + Float64(y * 8.13008)) t_326 = sqrt(Float64((Float64(1.462 + Float64(x * 8.13008)) ^ 2.0) + t_158)) t_327 = Float64(Float64(x * 8.13008) - 0.320499) t_328 = sqrt(Float64(t_176 + (Float64(Float64(7.16429 + Float64(x * 8.13008)) - Float64(y * 2.32288)) ^ 2.0))) t_329 = Float64(Float64(x * 11.6144) - 7.23715) t_330 = Float64(1.02555 + Float64(y * 2.03252)) t_331 = Float64(2.137 + Float64(x * 8.13008)) t_332 = Float64(2.4785 + Float64(x * 4.47154)) t_333 = Float64(1.77125 + Float64(y * 5.28455)) t_334 = Float64(Float64(x * 8.13008) - 6.5305) t_335 = Float64(6.2 + Float64(y * 8.13008)) t_336 = Float64(Float64(y * 1.21951) + 1.7447) t_337 = Float64(3.0 + Float64(y * 8.13008)) t_338 = Float64(-t_337) t_339 = sqrt(Float64(t_158 + (Float64(Float64(x * 8.13008) - 6.476) ^ 2.0))) t_340 = Float64(Float64(y * 2.03252) + 2.95138) t_341 = Float64(5.2 + Float64(y * 8.13008)) t_342 = t_341 ^ 2.0 t_343 = Float64(-t_341) t_344 = fmax(t_183, t_343) t_345 = Float64(0.289485 + Float64(x * 2.27642)) t_346 = Float64(Float64(x * 8.13008) - 3.401) t_347 = Float64(Float64(y * 8.13008) - 6.15) t_348 = t_347 ^ 2.0 t_349 = sqrt(Float64(t_348 + (Float64(Float64(x * 8.13008) - 2.8955) ^ 2.0))) t_350 = fmax(t_216, t_347) t_351 = Float64(Float64(y * 1.82927) + 3.15743) t_352 = Float64(Float64(x * 4.47154) - t_351) t_353 = Float64(1.2994 + Float64(y * 3.25203)) t_354 = Float64(3.6525 + Float64(x * 4.47154)) t_355 = Float64(Float64(y * 2.84553) - t_354) t_356 = sqrt(Float64(t_176 + (Float64(4.345 + Float64(x * 8.13008)) ^ 2.0))) t_357 = Float64(1.6725 - t_49) t_358 = sqrt(Float64(t_54 + (Float64(Float64(4.12414 + Float64(x * 8.13008)) - Float64(y * 2.32288)) ^ 2.0))) t_359 = Float64(0.14 - Float64(y * 0.813008)) t_360 = Float64(4.85 + Float64(y * 8.13008)) t_361 = t_360 ^ 2.0 t_362 = sqrt(Float64(t_361 + (Float64(Float64(x * 8.13008) - 0.633) ^ 2.0))) t_363 = sqrt(Float64((Float64(0.317 + Float64(x * 8.13008)) ^ 2.0) + t_361)) t_364 = Float64(1.675 + Float64(x * 8.13008)) t_365 = Float64(Float64(Float64(x * 1.82927) + 3.2527) + Float64(y * 4.06504)) t_366 = Float64(0.6875 - Float64(y * 8.13008)) ^ 2.0 t_367 = Float64(0.300176 + Float64(y * 2.23577)) t_368 = Float64(Float64(0.590637 + Float64(x * 1.82927)) + Float64(y * 4.06504)) t_369 = Float64(0.195 - Float64(y * 0.813008)) t_370 = Float64(2.487 + Float64(x * 8.13008)) t_371 = sqrt(Float64((t_370 ^ 2.0) + t_158)) t_372 = Float64(t_151 - Float64(y * 2.84553)) t_373 = Float64(Float64(2.216 + Float64(y * 2.84553)) + Float64(x * 4.47154)) t_374 = Float64(-t_373) t_375 = Float64(1.9 + Float64(y * 8.13008)) t_376 = t_375 ^ 2.0 t_377 = Float64(-t_375) t_378 = fmax(t_377, t_200) t_379 = Float64(0.3 - Float64(y * 8.13008)) t_380 = fmax(t_299, t_379) t_381 = Float64(2.5 - Float64(y * 8.13008)) t_382 = fmax(t_381, t_74) t_383 = fmax(t_245, t_381) t_384 = fmax(t_381, t_175) t_385 = Float64(2.6125 + Float64(y * 8.13008)) t_386 = Float64(t_159 - 0.275) t_387 = Float64(1.65817 - Float64(x * 5.42005)) t_388 = Float64(Float64(x * 8.13008) - 5.733) t_389 = fmax(t_343, t_360) t_390 = Float64(2.65 + Float64(y * 4.06504)) t_391 = Float64(7.12143 + Float64(x * 11.6144)) t_392 = Float64(Float64(Float64(y * 2.03252) + 2.466) + Float64(x * 4.47154)) t_393 = Float64(0.6375 + Float64(y * 8.13008)) t_394 = Float64(-t_393) t_395 = t_393 ^ 2.0 t_396 = Float64(Float64(x * 1.01626) + 1.55781) t_397 = Float64(0.208 - Float64(x * 8.13008)) t_398 = sqrt(Float64(t_54 + (Float64(Float64(x * 8.13008) - Float64(0.993357 + Float64(y * 2.32288))) ^ 2.0))) t_399 = Float64(2.685 + Float64(y * 8.13008)) t_400 = Float64(Float64(x * 8.13008) - 0.150499) t_401 = Float64(3.501 - Float64(x * 8.13008)) t_402 = Float64(4.512 + Float64(x * 8.13008)) t_403 = sqrt(Float64((t_402 ^ 2.0) + t_280)) t_404 = Float64(Float64(y * 0.813008) - 0.525) t_405 = Float64(Float64(Float64(y * 2.03252) + 3.665) + Float64(x * 4.47154)) t_406 = Float64(Float64(y * 8.13008) - 0.4625) ^ 2.0 t_407 = Float64(2.24785 + Float64(x * 4.47154)) t_408 = Float64(-t_135) t_409 = Float64(0.525 - Float64(y * 8.13008)) t_410 = fmax(t_286, t_409) t_411 = Float64(Float64(y * 8.13008) - 6.5) ^ 2.0 t_412 = Float64(3.875 - Float64(y * 8.13008)) t_413 = Float64(0.63 + Float64(y * 0.813008)) t_414 = Float64(-t_413) t_415 = Float64(-Float64(2.075 + Float64(x * 8.13008))) t_416 = Float64(Float64(x * 11.6144) - 2.67571) t_417 = fmax(t_83, t_216) t_418 = Float64(t_49 - 1.3975) t_419 = Float64(-Float64(7.95 + Float64(x * 8.13008))) t_420 = Float64(-Float64(1.675 + Float64(y * 8.13008))) t_421 = Float64(Float64(x * 8.13008) - 6.656) t_422 = fmax(t_216, t_89) t_423 = Float64(1.25 + Float64(y * 8.13008)) t_424 = fmax(Float64(Float64(y * 8.13008) - 0.95), Float64(0.85 - Float64(y * 8.13008))) t_425 = Float64(-Float64(1.142 + Float64(x * 8.13008))) t_426 = Float64(5.858 - Float64(x * 8.13008)) t_427 = Float64(-t_155) t_428 = Float64(Float64(y * 0.813008) + 3.968) t_429 = Float64(0.025 + Float64(y * 0.813008)) t_430 = Float64(0.596601 + Float64(x * 4.47154)) t_431 = Float64(Float64(y * 1.82927) - t_430) t_432 = Float64(2.11243 - t_22) t_433 = Float64(-t_160) t_434 = Float64(t_209 - Float64(y * 1.82927)) t_435 = Float64(2.00117 - Float64(x * 5.42005)) t_436 = sqrt(Float64((Float64(Float64(0.146856 + Float64(x * 8.13008)) - Float64(y * 2.32288)) ^ 2.0) + t_158)) t_437 = Float64(0.4125 + Float64(y * 8.13008)) t_438 = Float64(1.24555 + Float64(y * 2.03252)) t_439 = Float64(Float64(y * 0.813008) + 6.188) t_440 = Float64(t_49 - 2.09738) t_441 = Float64(0.322376 + Float64(y * 2.03252)) t_442 = Float64(4.825 + Float64(x * 8.13008)) t_443 = Float64(5.4 + Float64(x * 8.13008)) t_444 = Float64(Float64(y * 2.19512) + Float64(x * 2.84553)) t_445 = Float64(6.0305 - Float64(x * 8.13008)) t_446 = Float64(Float64(y * 1.21951) + 1.67444) t_447 = Float64(3.2375 + Float64(x * 4.47154)) t_448 = Float64(2.4205 - Float64(x * 8.13008)) t_449 = Float64(-t_184) t_450 = Float64(3.001 - Float64(x * 8.13008)) t_451 = Float64(Float64(1.55693 + Float64(x * 2.23577)) + Float64(y * 4.06504)) t_452 = Float64(Float64(0.6785 + Float64(y * 2.03252)) + Float64(x * 4.47154)) t_453 = Float64(0.707348 + Float64(x * 4.5122)) t_454 = Float64(Float64(y * 8.13008) - 6.075) t_455 = fmax(t_216, t_454) t_456 = t_454 ^ 2.0 t_457 = sqrt(Float64(t_456 + (Float64(0.604501 + Float64(x * 8.13008)) ^ 2.0))) t_458 = sqrt(Float64(t_456 + (Float64(Float64(x * 8.13008) - 1.3455) ^ 2.0))) t_459 = sqrt(Float64(t_456 + t_268)) t_460 = sqrt(Float64(t_456 + (t_303 ^ 2.0))) t_461 = sqrt(Float64(t_456 + (Float64(Float64(x * 8.13008) - 5.0255) ^ 2.0))) t_462 = sqrt(Float64(t_456 + (Float64(5.65 + Float64(x * 8.13008)) ^ 2.0))) t_463 = Float64(3.9955 - Float64(x * 8.13008)) t_464 = Float64(0.150001 + Float64(x * 8.13008)) t_465 = t_464 ^ 2.0 t_466 = Float64(3.1 + Float64(y * 8.13008)) t_467 = Float64(Float64(x * 8.13008) - 4.1255) ^ 2.0 t_468 = sqrt(Float64(t_456 + t_467)) t_469 = Float64(Float64(y * 8.13008) - 0.6875) t_470 = fmax(t_409, t_469) t_471 = Float64(1.732 + Float64(x * 8.13008)) t_472 = t_283 ^ 2.0 t_473 = sqrt(Float64(t_472 + t_268)) t_474 = sqrt(Float64(t_467 + t_472)) t_475 = Float64(1.06718 + Float64(x * 2.23577)) t_476 = Float64(Float64(x * 8.13008) - 3.6855) t_477 = Float64(2.3 + Float64(y * 8.13008)) ^ 2.0 t_478 = Float64(Float64(y * 2.64228) - t_65) t_479 = Float64(0.986526 + Float64(y * 1.21951)) t_480 = Float64(Float64(x * 8.13008) - 8.05251) t_481 = Float64(3.8 + Float64(x * 8.13008)) t_482 = Float64(1.22783 - Float64(x * 5.42005)) t_483 = Float64(-t_200) t_484 = Float64(Float64(y * 8.13008) - 1.75) t_485 = Float64(Float64(x * 4.47154) - t_250) t_486 = Float64(Float64(y * 8.13008) - 5.25) t_487 = Float64(Float64(y * 5.28455) - 3.23375) t_488 = Float64(t_257 - Float64(y * 2.64228)) t_489 = Float64(Float64(2.54435 + Float64(y * 2.84553)) + Float64(x * 4.47154)) t_490 = Float64(Float64(x * 4.47154) - t_260) t_491 = Float64(0.25 + Float64(y * 8.13008)) t_492 = Float64(Float64(x * 1.82927) + Float64(y * 4.06504)) t_493 = sqrt(Float64(t_176 + (Float64(Float64(x * 8.13008) - 2.8475) ^ 2.0))) t_494 = t_484 ^ 2.0 t_495 = sqrt(Float64(t_494 + (Float64(Float64(x * 8.13008) - 5.083) ^ 2.0))) t_496 = sqrt(Float64(t_494 + (Float64(Float64(x * 8.13008) - 5.333) ^ 2.0))) t_497 = Float64(0.44765 + Float64(x * 2.84553)) t_498 = Float64(-t_264) t_499 = Float64(Float64(x * 8.13008) - 3.021) t_500 = Float64(-t_437) ^ 2.0 t_501 = Float64(6.3 + Float64(y * 8.13008)) t_502 = t_501 ^ 2.0 t_503 = Float64(-t_501) t_504 = Float64(0.500551 + Float64(y * 2.84553)) t_505 = Float64(t_504 - Float64(x * 4.47154)) t_506 = sqrt(Float64(t_456 + (Float64(Float64(x * 8.13008) - 0.0454988) ^ 2.0))) t_507 = Float64(1.068 + Float64(x * 2.23577)) t_508 = Float64(-Float64(5.9 + Float64(x * 8.13008))) t_509 = Float64(-Float64(0.249501 + Float64(x * 8.13008))) t_510 = Float64(4.9855 - Float64(x * 8.13008)) t_511 = Float64(2.8935 + Float64(x * 4.47154)) t_512 = Float64(Float64(y * 2.84553) - t_511) t_513 = sqrt(Float64(t_176 + (Float64(Float64(x * 8.13008) - 0.0924997) ^ 2.0))) t_514 = sqrt(Float64(t_7 + t_176)) t_515 = Float64(0.415 - Float64(y * 0.813008)) t_516 = Float64(0.36 + Float64(y * 3.25203)) t_517 = Float64(3.35775 + Float64(x * 4.5122)) t_518 = Float64(0.263484 + Float64(x * 2.27642)) t_519 = Float64(-t_90) t_520 = Float64(2.64638 + Float64(y * 2.84553)) t_521 = Float64(t_520 - Float64(x * 4.47154)) t_522 = Float64(2.846 - Float64(x * 8.13008)) t_523 = Float64(0.305 - Float64(y * 0.813008)) t_524 = Float64(Float64(x * 8.13008) - 4.6525) t_525 = Float64(1.025 + Float64(x * 8.13008)) t_526 = Float64(0.7775 + Float64(y * 2.03252)) t_527 = sqrt(Float64(t_140 + (Float64(Float64(x * 8.13008) - 1.073) ^ 2.0))) t_528 = Float64(2.725 + Float64(y * 8.13008)) t_529 = t_528 ^ 2.0 t_530 = sqrt(Float64((Float64(Float64(3.35486 + Float64(x * 8.13008)) - Float64(y * 2.32288)) ^ 2.0) + t_529)) t_531 = sqrt(Float64((Float64(Float64(x * 8.13008) - 5.2605) ^ 2.0) + t_529)) t_532 = sqrt(Float64((Float64(Float64(0.574857 + Float64(x * 8.13008)) - Float64(y * 2.32288)) ^ 2.0) + t_529)) t_533 = sqrt(Float64(t_529 + (Float64(Float64(x * 8.13008) - 5.9605) ^ 2.0))) t_534 = Float64(t_533 - 0.275) t_535 = sqrt(Float64((Float64(Float64(x * 8.13008) - 3.4105) ^ 2.0) + t_529)) t_536 = sqrt(Float64((Float64(0.177 + Float64(x * 8.13008)) ^ 2.0) + t_529)) t_537 = sqrt(Float64((Float64(Float64(x * 8.13008) - 0.523) ^ 2.0) + t_529)) t_538 = sqrt(Float64((Float64(5.745 + Float64(x * 8.13008)) ^ 2.0) + t_529)) t_539 = Float64(t_538 - 0.275) t_540 = Float64(Float64(y * 8.13008) - 6.45) t_541 = fmax(t_540, Float64(6.35 - Float64(y * 8.13008))) t_542 = Float64(4.875 + Float64(x * 8.13008)) t_543 = Float64(0.951167 - Float64(x * 5.42005)) t_544 = Float64(0.575 + Float64(y * 0.813008)) t_545 = Float64(-t_544) t_546 = sqrt(Float64(t_176 + (Float64(Float64(x * 8.13008) - 4.3775) ^ 2.0))) t_547 = Float64(7.35601 - Float64(x * 8.13008)) t_548 = sqrt(Float64(t_348 + (Float64(Float64(x * 8.13008) - 2.6455) ^ 2.0))) t_549 = Float64(6.9 + Float64(x * 8.13008)) t_550 = sqrt(Float64((t_60 ^ 2.0) + (t_549 ^ 2.0))) t_551 = Float64(Float64(y * 2.64228) + 3.2069) t_552 = Float64(Float64(x * 4.47154) - t_551) t_553 = Float64(t_551 - Float64(x * 4.47154)) t_554 = Float64(Float64(x * 4.47154) - t_287) t_555 = Float64(-Float64(0.452 + Float64(x * 8.13008))) t_556 = Float64(Float64(y * 8.13008) - 1.65) t_557 = Float64(2.45 + Float64(y * 8.13008)) t_558 = Float64(0.65875 + Float64(x * 2.84553)) t_559 = Float64(Float64(y * 8.13008) - 1.725) t_560 = Float64(3.12857 + Float64(x * 11.6144)) t_561 = Float64(-Float64(5.712 + Float64(x * 8.13008))) t_562 = Float64(Float64(y * 2.64228) + 3.34743) t_563 = Float64(t_562 - Float64(x * 4.47154)) t_564 = Float64(2.1625 + Float64(x * 2.23577)) t_565 = Float64(-Float64(1.67 + Float64(x * 8.13008))) t_566 = Float64(Float64(y * 1.82927) - t_116) t_567 = Float64(-t_115) t_568 = Float64(t_317 - Float64(y * 2.64228)) t_569 = Float64(0.96065 + Float64(y * 2.03252)) t_570 = Float64(6.7 - Float64(y * 8.13008)) t_571 = Float64(-t_267) t_572 = Float64(Float64(x * 4.47154) - t_319) t_573 = Float64(Float64(x * 4.47154) - t_323) t_574 = Float64(Float64(0.3131 + Float64(y * 1.82927)) + Float64(x * 4.47154)) t_575 = Float64(Float64(y * 8.13008) - 1.5) t_576 = sqrt(Float64(t_361 + (Float64(Float64(x * 8.13008) - 0.383) ^ 2.0))) t_577 = Float64(2.725 - Float64(y * 8.13008)) t_578 = fmax(Float64(Float64(y * 8.13008) - 2.815), t_577) t_579 = Float64(4.912 + Float64(x * 8.13008)) t_580 = fmax(t_402, Float64(-t_579)) t_581 = Float64(6.45 + Float64(x * 8.13008)) t_582 = Float64(-t_581) t_583 = Float64(3.85 + Float64(y * 8.13008)) t_584 = t_583 ^ 2.0 t_585 = sqrt(Float64(t_584 + (t_346 ^ 2.0))) t_586 = fmax(t_466, Float64(-t_583)) t_587 = Float64(Float64(y * 8.13008) - 5.8) ^ 2.0 t_588 = fmax(t_89, Float64(6.05 - Float64(y * 8.13008))) t_589 = Float64(0.552 + Float64(x * 8.13008)) t_590 = sqrt(Float64((t_589 ^ 2.0) + t_280)) t_591 = fmax(t_589, Float64(-Float64(0.952 + Float64(x * 8.13008)))) t_592 = Float64(5.15 - Float64(y * 8.13008)) t_593 = Float64(Float64(x * 5.42005) - 1.65817) t_594 = Float64(t_354 - Float64(y * 2.84553)) t_595 = Float64(0.587999 - Float64(x * 8.13008)) t_596 = Float64(Float64(y * 8.13008) - 6.05) t_597 = Float64(-t_193) t_598 = Float64(-Float64(2.132 + Float64(x * 8.13008))) t_599 = Float64(1.726 + Float64(y * 4.87805)) t_600 = Float64(5.95 + Float64(y * 8.13008)) t_601 = t_600 ^ 2.0 t_602 = sqrt(Float64(t_601 + (Float64(Float64(x * 8.13008) - 1.508) ^ 2.0))) t_603 = Float64(1.0705 - Float64(x * 8.13008)) t_604 = sqrt(Float64(t_601 + (Float64(Float64(x * 8.13008) - 1.258) ^ 2.0))) t_605 = Float64(3.1355 - Float64(x * 8.13008)) t_606 = Float64(1.35 + Float64(y * 8.13008)) t_607 = fmax(t_377, t_606) t_608 = fmax(t_423, Float64(-t_606)) t_609 = Float64(Float64(x * 8.13008) - 1.138) t_610 = Float64(Float64(y * 5.28455) - 2.51875) t_611 = Float64(-Float64(5.85 + Float64(y * 8.13008))) t_612 = Float64(Float64(y * 8.13008) - 5.015) t_613 = Float64(Float64(y * 8.13008) - 3.875) t_614 = fmax(t_253, t_613) t_615 = t_613 ^ 2.0 t_616 = sqrt(Float64((Float64(Float64(x * 8.13008) - 4.7835) ^ 2.0) + t_615)) t_617 = sqrt(Float64(t_615 + (Float64(Float64(x * 8.13008) - 0.862999) ^ 2.0))) t_618 = sqrt(Float64(t_615 + (Float64(Float64(x * 8.13008) - 0.212998) ^ 2.0))) t_619 = sqrt(Float64(t_615 + (Float64(2.245 + Float64(x * 8.13008)) ^ 2.0))) t_620 = Float64(t_619 - 0.275) t_621 = sqrt(Float64(t_615 + (t_522 ^ 2.0))) t_622 = sqrt(Float64(t_615 + (Float64(Float64(x * 8.13008) - 6.1335) ^ 2.0))) t_623 = sqrt(Float64(t_615 + (Float64(Float64(4.72857 + Float64(x * 8.13008)) - Float64(y * 2.32288)) ^ 2.0))) t_624 = Float64(0.4066 + Float64(x * 4.47154)) t_625 = Float64(Float64(y * 2.64228) - t_624) t_626 = Float64(2.825 - Float64(y * 8.13008)) t_627 = Float64(5.025 - Float64(y * 8.13008)) t_628 = Float64(Float64(1.74723 + Float64(y * 1.82927)) + Float64(x * 4.47154)) t_629 = Float64(4.851 - Float64(x * 8.13008)) t_630 = Float64(1.065 + Float64(x * 4.47154)) t_631 = Float64(Float64(x * 11.6144) - 6.52214) t_632 = Float64(0.8 + Float64(y * 8.13008)) t_633 = Float64(-t_632) t_634 = fmax(t_491, t_633) t_635 = fmax(t_34, t_633) t_636 = Float64(Float64(1.5066 + Float64(y * 1.82927)) + Float64(x * 4.47154)) t_637 = Float64(1.01488 + Float64(y * 4.87805)) t_638 = Float64(Float64(y * 8.13008) - 2.85) t_639 = t_638 ^ 2.0 t_640 = sqrt(Float64(t_639 + (Float64(1.945 + Float64(x * 8.13008)) ^ 2.0))) t_641 = sqrt(Float64(t_639 + (Float64(2.195 + Float64(x * 8.13008)) ^ 2.0))) t_642 = fmax(t_381, t_638) t_643 = Float64(Float64(2.1853 + Float64(x * 2.23577)) + Float64(y * 4.06504)) t_644 = Float64(0.957 + Float64(x * 8.13008)) t_645 = Float64(0.45 + Float64(y * 8.13008)) t_646 = fmax(t_633, t_645) t_647 = Float64(0.0173756 + Float64(y * 2.84553)) t_648 = Float64(t_647 - Float64(x * 4.47154)) t_649 = Float64(0.47 - Float64(y * 0.813008)) t_650 = Float64(-t_333) t_651 = Float64(Float64(Float64(y * 2.03252) + 2.4825) + Float64(x * 4.47154)) t_652 = Float64(2.576 - Float64(x * 8.13008)) t_653 = Float64(6.325 + Float64(x * 8.13008)) t_654 = t_653 ^ 2.0 t_655 = sqrt(Float64(t_654 + t_158)) t_656 = sqrt(Float64(t_654 + t_54)) t_657 = sqrt(Float64(t_654 + t_529)) t_658 = sqrt(Float64(t_280 + (t_91 ^ 2.0))) t_659 = Float64(0.485 + Float64(x * 2.23577)) t_660 = Float64(Float64(x * 8.13008) - 3.408) t_661 = sqrt(Float64((t_652 ^ 2.0) + t_158)) t_662 = fmax(t_377, t_47) t_663 = Float64(0.606888 + Float64(y * 1.21951)) t_664 = Float64(4.1 + Float64(y * 8.13008)) t_665 = t_664 ^ 2.0 t_666 = Float64(-t_664) t_667 = fmax(t_666, t_235) t_668 = fmax(t_666, Float64(3.75 + Float64(y * 8.13008))) t_669 = fmax(t_466, t_666) t_670 = fmax(t_666, t_9) t_671 = Float64(2.25 + Float64(y * 8.13008)) t_672 = sqrt(Float64((t_671 ^ 2.0) + (t_471 ^ 2.0))) t_673 = Float64(Float64(y * 0.813008) - 0.14) t_674 = Float64(-t_194) t_675 = Float64(Float64(x * 8.13008) - 7.531) t_676 = sqrt(Float64(t_465 + (t_556 ^ 2.0))) t_677 = sqrt(Float64(t_615 + (Float64(0.437001 + Float64(x * 8.13008)) ^ 2.0))) t_678 = Float64(t_677 - 0.275) t_679 = Float64(-Float64(7.3 + Float64(x * 8.13008))) t_680 = Float64(Float64(x * 8.13008) - 6.6455) t_681 = Float64(1.27381 + Float64(y * 4.87805)) t_682 = Float64(1.3975 - t_49) t_683 = Float64(-t_528) t_684 = Float64(Float64(y * 8.13008) - 0.85) t_685 = fmax(t_379, t_684) t_686 = Float64(Float64(Float64(x * 2.23577) + 2.30217) + Float64(y * 4.06504)) t_687 = Float64(1.4 - Float64(y * 8.13008)) t_688 = fmax(t_687, t_1) t_689 = fmax(t_687, t_153) t_690 = Float64(4.02143 + Float64(x * 11.6144)) t_691 = Float64(3.775 + Float64(y * 8.13008)) t_692 = fmax(t_666, t_691) t_693 = Float64(-t_360) t_694 = Float64(3.771 + Float64(x * 4.47154)) t_695 = t_299 ^ 2.0 t_696 = sqrt(Float64(t_695 + (t_364 ^ 2.0))) t_697 = Float64(Float64(y * 2.60163) + Float64(x * 2.84553)) t_698 = sqrt(Float64(t_584 + (t_109 ^ 2.0))) t_699 = Float64(-t_429) t_700 = Float64(Float64(x * 5.42005) - 2.7765) t_701 = sqrt(Float64((t_248 ^ 2.0) + (t_73 ^ 2.0))) t_702 = Float64(4.908 - Float64(x * 8.13008)) t_703 = Float64(1.30055 + Float64(y * 2.03252)) t_704 = Float64(Float64(x * 11.6144) - 0.585714) t_705 = Float64(5.0375 + Float64(y * 8.13008)) t_706 = Float64(Float64(x * 8.13008) - 4.0805) t_707 = sqrt(Float64(t_265 + (Float64(Float64(x * 8.13008) - 5.3335) ^ 2.0))) t_708 = Float64(-Float64(1.737 + Float64(x * 8.13008))) t_709 = Float64(Float64(x * 11.6144) - 0.743571) t_710 = Float64(2.09738 - t_49) t_711 = fmax(t_606, t_71) t_712 = Float64(Float64(y * 1.21951) + 2.17851) t_713 = sqrt(Float64((t_272 ^ 2.0) + (t_78 ^ 2.0))) t_714 = Float64(Float64(y * 8.13008) - 4.6) t_715 = fmax(t_253, t_714) t_716 = sqrt(Float64((t_714 ^ 2.0) + (t_331 ^ 2.0))) t_717 = Float64(2.2175 + Float64(x * 2.23577)) t_718 = Float64(3.1825 + Float64(x * 4.47154)) t_719 = Float64(-t_557) t_720 = Float64(2.457 + Float64(x * 8.13008)) t_721 = Float64(-t_720) t_722 = Float64(Float64(y * 8.13008) - 0.625) t_723 = sqrt(Float64((Float64(Float64(x * 8.13008) - 5.7775) ^ 2.0) + t_176)) t_724 = Float64(t_723 - 0.275) t_725 = Float64(-t_37) t_726 = sqrt(Float64(t_456 + (Float64(Float64(x * 8.13008) - Float64(1.71336 + Float64(y * 2.32288))) ^ 2.0))) t_727 = Float64(Float64(0.7335 + Float64(y * 2.03252)) + Float64(x * 4.47154)) t_728 = Float64(8.97857 + Float64(x * 11.6144)) t_729 = Float64(0.37375 - Float64(y * 5.28455)) t_730 = Float64(2.0 + Float64(y * 8.13008)) t_731 = sqrt(Float64((Float64(4.517 + Float64(x * 8.13008)) ^ 2.0) + t_158)) t_732 = Float64(t_731 - 0.275) t_733 = Float64(1.5125 + Float64(y * 8.13008)) t_734 = sqrt(Float64((Float64(0.0670004 + Float64(x * 8.13008)) ^ 2.0) + t_361)) t_735 = Float64(0.575 - Float64(y * 8.13008)) t_736 = Float64(Float64(x * 8.13008) - 6.6385) t_737 = Float64(Float64(x * 8.13008) - 7.87551) t_738 = sqrt(Float64(t_695 + (t_737 ^ 2.0))) t_739 = Float64(Float64(x * 8.13008) - 5.9955) t_740 = sqrt(Float64(t_695 + (t_739 ^ 2.0))) t_741 = Float64(7.025 + Float64(x * 8.13008)) ^ 2.0 t_742 = Float64(Float64(x * 8.13008) - 1.8305) t_743 = Float64(-t_691) t_744 = Float64(1.36223 + Float64(x * 4.47154)) t_745 = Float64(t_744 - Float64(y * 2.64228)) t_746 = Float64(Float64(y * 2.64228) - t_744) t_747 = Float64(1.65 + Float64(y * 8.13008)) t_748 = fmax(t_47, Float64(-t_747)) t_749 = t_747 ^ 2.0 t_750 = sqrt(Float64(t_749 + (t_400 ^ 2.0))) t_751 = sqrt(Float64(t_749 + (t_736 ^ 2.0))) t_752 = sqrt(Float64((Float64(0.354001 + Float64(x * 8.13008)) ^ 2.0) + t_158)) t_753 = Float64(t_752 - 0.275) t_754 = sqrt(Float64((Float64(Float64(x * 8.13008) - 1.951) ^ 2.0) + t_158)) t_755 = Float64(4.925 - Float64(y * 8.13008)) t_756 = t_200 ^ 2.0 t_757 = sqrt(Float64(t_756 + (t_742 ^ 2.0))) t_758 = Float64(Float64(y * 8.13008) - 0.575) t_759 = fmax(t_379, t_758) t_760 = t_758 ^ 2.0 t_761 = sqrt(Float64(t_760 + (Float64(4.45 + Float64(x * 8.13008)) ^ 2.0))) t_762 = sqrt(Float64(t_760 + (Float64(Float64(x * 8.13008) - 2.6955) ^ 2.0))) t_763 = sqrt(Float64(t_7 + t_760)) t_764 = Float64(t_763 - 0.275) t_765 = sqrt(Float64(t_760 + (Float64(3.15 + Float64(x * 8.13008)) ^ 2.0))) t_766 = sqrt(Float64(t_760 + (Float64(5.1 + Float64(x * 8.13008)) ^ 2.0))) t_767 = sqrt(Float64(t_760 + (Float64(Float64(x * 8.13008) - 2.0455) ^ 2.0))) t_768 = Float64(t_767 - 0.275) t_769 = sqrt(Float64(t_760 + (t_582 ^ 2.0))) t_770 = sqrt(Float64(t_760 + (Float64(1.3 + Float64(x * 8.13008)) ^ 2.0))) t_771 = sqrt(Float64(t_760 + (Float64(Float64(x * 8.13008) - Float64(Float64(y * 2.32288) + 6.90979)) ^ 2.0))) t_772 = sqrt(Float64(t_760 + (Float64(7.075 + Float64(x * 8.13008)) ^ 2.0))) t_773 = sqrt(Float64(t_760 + (Float64(Float64(x * 8.13008) - 3.933) ^ 2.0))) t_774 = Float64(t_773 - 0.275) t_775 = sqrt(Float64(t_176 + (Float64(Float64(x * 8.13008) - 7.77751) ^ 2.0))) t_776 = Float64(Float64(x * 8.13008) - 1.183) t_777 = Float64(2.48625 + Float64(y * 5.28455)) t_778 = Float64(-t_777) t_779 = fmax(t_90, t_182) t_780 = Float64(3.785 + Float64(y * 8.13008)) t_781 = sqrt(Float64((Float64(3.207 + Float64(x * 8.13008)) ^ 2.0) + t_529)) t_782 = Float64(Float64(x * 8.13008) - 0.9705) t_783 = Float64(Float64(y * 8.13008) - 3.7) t_784 = t_632 ^ 2.0 t_785 = Float64(-t_21) t_786 = fmax(t_203, t_785) t_787 = Float64(Float64(1.30475 + Float64(y * 1.82927)) + Float64(x * 4.47154)) t_788 = sqrt(Float64(t_760 + (Float64(0.6 + Float64(x * 8.13008)) ^ 2.0))) t_789 = Float64(t_788 - 0.275) t_790 = Float64(Float64(0.8881 + Float64(y * 2.64228)) + Float64(x * 4.47154)) t_791 = Float64(-t_790) t_792 = Float64(3.0055 - Float64(x * 8.13008)) t_793 = Float64(5.975 + Float64(x * 8.13008)) t_794 = sqrt(Float64((Float64(Float64(x * 8.13008) - 7.12751) ^ 2.0) + t_176)) t_795 = Float64(t_794 - 0.275) t_796 = fmax(t_684, t_735) t_797 = Float64(0.525 + Float64(y * 8.13008)) t_798 = Float64(-t_797) t_799 = t_797 ^ 2.0 t_800 = sqrt(Float64((Float64(1.5495 + Float64(x * 8.13008)) ^ 2.0) + t_799)) t_801 = sqrt(Float64((Float64(Float64(4.13393 + Float64(x * 8.13008)) - Float64(y * 2.32288)) ^ 2.0) + t_799)) t_802 = sqrt(Float64((Float64(Float64(0.11593 + Float64(x * 8.13008)) - Float64(y * 2.32288)) ^ 2.0) + t_799)) t_803 = sqrt(Float64(t_799 + (Float64(Float64(x * 8.13008) - 4.306) ^ 2.0))) t_804 = sqrt(Float64((Float64(6.525 + Float64(x * 8.13008)) ^ 2.0) + t_799)) t_805 = sqrt(Float64((Float64(0.969501 + Float64(x * 8.13008)) ^ 2.0) + t_799)) t_806 = fmax(t_503, t_600) t_807 = Float64(3.6 + Float64(x * 8.13008)) t_808 = Float64(t_49 - 1.82238) t_809 = Float64(t_511 - Float64(y * 2.84553)) t_810 = Float64(-Float64(1.2445 + Float64(x * 8.13008))) t_811 = Float64(0.737225 + Float64(x * 2.27642)) t_812 = Float64(Float64(x * 4.47154) - t_520) t_813 = Float64(4.925 + Float64(x * 8.13008)) t_814 = Float64(Float64(x * 8.13008) - 2.751) t_815 = sqrt(Float64(t_615 + (Float64(Float64(x * 8.13008) - 2.221) ^ 2.0))) t_816 = Float64(t_815 - 0.275) t_817 = Float64(1.7272 + Float64(y * 3.41463)) t_818 = Float64(0.54 + Float64(y * 2.19512)) t_819 = Float64(1.53565 + Float64(y * 2.84553)) t_820 = Float64(t_819 - Float64(x * 4.47154)) t_821 = Float64(-Float64(4.62 + Float64(x * 8.13008))) t_822 = Float64(3.233 - Float64(x * 8.13008)) t_823 = sqrt(Float64(t_54 + (t_188 ^ 2.0))) t_824 = Float64(-Float64(0.492001 + Float64(x * 8.13008))) t_825 = Float64(3.825 + Float64(y * 8.13008)) t_826 = t_825 ^ 2.0 t_827 = sqrt(Float64(t_826 + (Float64(Float64(x * 8.13008) - 3.776) ^ 2.0))) t_828 = sqrt(Float64(t_826 + (Float64(Float64(x * 8.13008) - 1.468) ^ 2.0))) t_829 = Float64(t_828 - 0.275) t_830 = sqrt(Float64(t_826 + (Float64(5.437 + Float64(x * 8.13008)) ^ 2.0))) t_831 = sqrt(Float64(t_826 + (Float64(Float64(x * 8.13008) - 0.167999) ^ 2.0))) t_832 = sqrt(Float64(t_826 + (Float64(Float64(5.97857 + Float64(x * 8.13008)) - Float64(y * 2.32288)) ^ 2.0))) t_833 = sqrt(Float64(t_826 + (t_293 ^ 2.0))) t_834 = sqrt(Float64(t_826 + (Float64(Float64(x * 8.13008) - Float64(Float64(y * 2.32288) + 5.57243)) ^ 2.0))) t_835 = sqrt(Float64(t_826 + (Float64(Float64(2.66557 + Float64(x * 8.13008)) - Float64(y * 2.32288)) ^ 2.0))) t_836 = sqrt(Float64(t_826 + (Float64(3.082 + Float64(x * 8.13008)) ^ 2.0))) t_837 = Float64(t_831 - 0.275) t_838 = sqrt(Float64(t_826 + (Float64(0.482 + Float64(x * 8.13008)) ^ 2.0))) t_839 = Float64(t_838 - 0.275) t_840 = sqrt(Float64(t_826 + (Float64(Float64(x * 8.13008) - 0.818) ^ 2.0))) t_841 = sqrt(Float64(t_826 + (t_547 ^ 2.0))) t_842 = sqrt(Float64(t_826 + t_7)) t_843 = Float64(t_842 - 0.275) t_844 = Float64(2.675 + Float64(y * 8.13008)) t_845 = Float64(-t_844) t_846 = Float64(1.44223 + Float64(x * 4.47154)) t_847 = Float64(t_846 - Float64(y * 1.82927)) t_848 = Float64(Float64(y * 1.82927) - t_846) t_849 = Float64(Float64(x * 8.13008) - 5.431) t_850 = Float64(3.825 - Float64(y * 8.13008)) t_851 = fmax(t_850, t_154) t_852 = Float64(Float64(y * 1.21951) + 1.23609) t_853 = Float64(1.18065 + Float64(y * 2.03252)) t_854 = Float64(Float64(x * 4.47154) - t_562) t_855 = Float64(2.48475 + Float64(x * 4.47154)) t_856 = Float64(t_855 - Float64(y * 1.82927)) t_857 = Float64(Float64(y * 1.82927) - t_855) t_858 = Float64(-t_489) t_859 = Float64(-Float64(3.357 + Float64(x * 8.13008))) t_860 = Float64(Float64(1.6416 + Float64(y * 2.64228)) + Float64(x * 4.47154)) t_861 = Float64(-t_860) t_862 = Float64(Float64(y * 2.64228) + 3.29243) t_863 = Float64(Float64(x * 4.47154) - t_862) t_864 = Float64(t_862 - Float64(x * 4.47154)) t_865 = Float64(1.00286 + Float64(x * 11.6144)) t_866 = Float64(Float64(x * 5.42005) - 2.00117) t_867 = Float64(Float64(x * 4.47154) - t_819) t_868 = Float64(Float64(x * 1.01626) + 2.92488) t_869 = Float64(Float64(y * 1.82927) + Float64(x * 4.47154)) t_870 = sqrt(Float64(t_456 + t_108)) t_871 = Float64(Float64(x * 8.13008) - 1.3305) t_872 = sqrt(Float64(t_756 + (t_871 ^ 2.0))) t_873 = Float64(Float64(y * 2.64228) + 3.1519) t_874 = Float64(Float64(x * 4.47154) - t_873) t_875 = Float64(t_873 - Float64(x * 4.47154)) t_876 = sqrt(Float64(t_54 + (Float64(Float64(x * 8.13008) - 3.8055) ^ 2.0))) t_877 = Float64(0.571825 + Float64(y * 1.21951)) t_878 = Float64(4.55 + Float64(y * 8.13008)) t_879 = Float64(0.525 - Float64(y * 0.813008)) t_880 = Float64(5.275 + Float64(x * 8.13008)) t_881 = Float64(-t_880) t_882 = fmax(t_666, t_825) t_883 = sqrt(Float64(t_826 + (t_129 ^ 2.0))) t_884 = Float64(4.7 + Float64(x * 8.13008)) t_885 = Float64(4.925 + Float64(y * 8.13008)) t_886 = t_885 ^ 2.0 t_887 = sqrt(Float64(t_886 + (Float64(0.867001 + Float64(x * 8.13008)) ^ 2.0))) t_888 = sqrt(Float64(t_886 + (Float64(Float64(x * 8.13008) - 4.2705) ^ 2.0))) t_889 = sqrt(Float64(t_886 + (Float64(Float64(x * 8.13008) - 4.9205) ^ 2.0))) t_890 = sqrt(Float64(t_886 + (Float64(1.767 + Float64(x * 8.13008)) ^ 2.0))) t_891 = sqrt(Float64(t_886 + (Float64(Float64(x * 8.13008) - 3.6205) ^ 2.0))) t_892 = sqrt(Float64(t_886 + (t_776 ^ 2.0))) t_893 = Float64(t_892 - 0.275) t_894 = sqrt(Float64(t_886 + (t_813 ^ 2.0))) t_895 = Float64(t_894 - 0.275) t_896 = sqrt(Float64(t_886 + (t_139 ^ 2.0))) t_897 = sqrt(Float64(t_886 + (t_70 ^ 2.0))) t_898 = Float64(t_897 - 0.275) t_899 = Float64(-t_825) t_900 = Float64(6.201 - Float64(x * 8.13008)) t_901 = Float64(0.4625 - Float64(y * 8.13008)) t_902 = fmax(t_722, t_901) t_903 = Float64(4.6455 - Float64(x * 8.13008)) t_904 = Float64(Float64(x * 8.13008) - 5.558) t_905 = Float64(4.65 + Float64(y * 8.13008)) t_906 = fmax(t_905, Float64(-t_885)) t_907 = fmax(t_343, t_905) t_908 = fmax(t_666, t_583) t_909 = Float64(3.497 + Float64(x * 8.13008)) t_910 = sqrt(Float64(t_176 + (Float64(4.995 + Float64(x * 8.13008)) ^ 2.0))) t_911 = Float64(t_910 - 0.275) t_912 = Float64(Float64(y * 2.03252) + Float64(x * 4.47154)) t_913 = fmax(t_343, t_885) t_914 = Float64(Float64(Float64(x * 2.23577) + 3.865) + Float64(y * 4.06504)) t_915 = fmax(t_3, Float64(5.7 - Float64(y * 8.13008))) t_916 = t_596 ^ 2.0 t_917 = sqrt(Float64(t_916 + (t_542 ^ 2.0))) t_918 = sqrt(Float64(t_916 + (t_322 ^ 2.0))) t_919 = Float64(t_55 - 0.275) t_920 = Float64(Float64(Float64(y * 2.03252) + 2.7575) + Float64(x * 4.47154)) t_921 = Float64(Float64(Float64(y * 2.03252) + 2.18935) + Float64(x * 4.47154)) t_922 = Float64(0.5025 + Float64(y * 2.03252)) t_923 = Float64(2.662 + Float64(x * 8.13008)) t_924 = Float64(-t_923) t_925 = Float64(Float64(y * 8.13008) - 3.6) ^ 2.0 t_926 = Float64(-t_491) t_927 = Float64(Float64(y * 8.13008) - 1.675) ^ 2.0 t_928 = sqrt(Float64((Float64(Float64(x * 8.13008) - 6.133) ^ 2.0) + t_927)) t_929 = sqrt(Float64(t_927 + (t_124 ^ 2.0))) t_930 = sqrt(Float64(t_927 + (Float64(Float64(x * 8.13008) - 0.224999) ^ 2.0))) t_931 = sqrt(Float64(t_927 + (Float64(Float64(x * 8.13008) - 2.775) ^ 2.0))) t_932 = sqrt(Float64((Float64(6.375 + Float64(x * 8.13008)) ^ 2.0) + t_927)) t_933 = sqrt(Float64(t_741 + t_927)) t_934 = sqrt(Float64(t_927 + (Float64(1.9 + Float64(x * 8.13008)) ^ 2.0))) t_935 = sqrt(Float64(t_927 + (Float64(Float64(x * 8.13008) - 6.783) ^ 2.0))) t_936 = Float64(t_935 - 0.275) t_937 = Float64(-Float64(3.425 + Float64(x * 8.13008))) t_938 = Float64(Float64(x * 1.01626) + 1.13813) t_939 = Float64(Float64(y * 8.13008) - 1.3) t_940 = fmax(t_939, t_379) t_941 = fmax(t_939, Float64(0.55 - Float64(y * 8.13008))) t_942 = sqrt(Float64(t_760 + (Float64(Float64(x * 8.13008) - 6.3705) ^ 2.0))) t_943 = Float64(-t_14) t_944 = Float64(0.592 + Float64(x * 8.13008)) t_945 = sqrt(Float64(t_760 + (t_481 ^ 2.0))) t_946 = Float64(6.2385 - Float64(x * 8.13008)) t_947 = Float64(7.47551 - Float64(x * 8.13008)) t_948 = Float64(5.5955 - Float64(x * 8.13008)) t_949 = t_645 ^ 2.0 t_950 = sqrt(Float64(t_949 + (Float64(Float64(x * 8.13008) - 0.7685) ^ 2.0))) t_951 = sqrt(Float64(t_949 + (Float64(Float64(x * 8.13008) - 1.0185) ^ 2.0))) t_952 = Float64(-Float64(0.267001 + Float64(x * 8.13008))) t_953 = Float64(1.4305 - Float64(x * 8.13008)) t_954 = sqrt(Float64(t_826 + (Float64(Float64(x * 8.13008) - 5.156) ^ 2.0))) t_955 = Float64(2.7765 - Float64(x * 5.42005)) t_956 = Float64(t_15 - Float64(y * 1.82927)) t_957 = Float64(-Float64(2.887 + Float64(x * 8.13008))) t_958 = fmax(t_381, t_16) t_959 = Float64(t_622 - 0.275) t_960 = Float64(t_624 - Float64(y * 2.64228)) t_961 = Float64(1.01 + Float64(x * 4.47154)) t_962 = sqrt(Float64(t_826 + (t_721 ^ 2.0))) t_963 = Float64(0.461601 + Float64(x * 4.47154)) t_964 = Float64(t_963 - Float64(y * 2.64228)) t_965 = Float64(Float64(y * 2.64228) - t_963) t_966 = Float64(t_351 - Float64(x * 4.47154)) t_967 = Float64(3.23375 - Float64(y * 5.28455)) t_968 = Float64(2.5725 - Float64(x * 8.13008)) t_969 = Float64(3.20125 + Float64(y * 5.28455)) t_970 = Float64(-t_969) t_971 = Float64(-Float64(3.875 + Float64(y * 8.13008))) t_972 = fmax(t_780, t_971) t_973 = Float64(0.775551 + Float64(y * 2.84553)) t_974 = Float64(Float64(x * 4.47154) - t_973) t_975 = Float64(t_973 - Float64(x * 4.47154)) t_976 = Float64(2.775 - Float64(y * 8.13008)) t_977 = Float64(Float64(x * 11.6144) - 5.05) t_978 = Float64(t_22 - 2.11243) t_979 = Float64(Float64(x + y) * 4.06504) t_980 = Float64(2.4935 + t_979) t_981 = Float64(0.0709989 + t_979) t_982 = Float64(0.635 + Float64(y * 8.13008)) ^ 2.0 t_983 = Float64(1.55 + Float64(y * 8.13008)) t_984 = t_983 ^ 2.0 t_985 = sqrt(Float64(t_984 + (Float64(2.712 + Float64(x * 8.13008)) ^ 2.0))) t_986 = sqrt(Float64(t_984 + (Float64(2.462 + Float64(x * 8.13008)) ^ 2.0))) t_987 = fmax(t_377, t_983) t_988 = Float64(6.025 + Float64(y * 8.13008)) ^ 2.0 t_989 = sqrt(Float64(t_988 + (Float64(Float64(x * 8.13008) - 4.683) ^ 2.0))) t_990 = sqrt(Float64((Float64(1.842 + Float64(x * 8.13008)) ^ 2.0) + t_988)) t_991 = sqrt(Float64(t_988 + (Float64(Float64(x * 8.13008) - 0.00799847) ^ 2.0))) t_992 = sqrt(Float64((t_785 ^ 2.0) + t_988)) t_993 = sqrt(Float64(t_988 + (t_660 ^ 2.0))) t_994 = sqrt(Float64(t_988 + (Float64(Float64(x * 8.13008) - 4.033) ^ 2.0))) t_995 = Float64(0.542376 + Float64(y * 2.03252)) t_996 = t_337 ^ 2.0 t_997 = Float64(4.975 - Float64(y * 8.13008)) t_998 = Float64(t_49 - 4.12055) t_999 = Float64(-Float64(0.229501 + Float64(x * 8.13008))) t_1000 = sqrt(Float64(t_741 + t_176)) t_1001 = Float64(t_1000 - 0.275) t_1002 = sqrt(Float64(t_615 + (Float64(4.325 + Float64(x * 8.13008)) ^ 2.0))) t_1003 = Float64(Float64(x * 4.47154) - t_647) t_1004 = Float64(-Float64(4.1 + Float64(x * 8.13008))) t_1005 = Float64(Float64(x * 4.47154) - t_504) t_1006 = Float64(Float64(x * 8.13008) - 4.051) t_1007 = Float64(Float64(0.5925 + Float64(x * 2.23577)) + Float64(y * 4.06504)) t_1008 = Float64(3.3775 + Float64(x * 4.47154)) t_1009 = Float64(t_1008 - Float64(y * 2.84553)) t_1010 = Float64(Float64(y * 2.84553) - t_1008) t_1011 = Float64(Float64(y * 0.813008) - 0.36) t_1012 = fmax(t_379, t_722) t_1013 = Float64(Float64(Float64(y * 2.03252) + 3.61) + Float64(x * 4.47154)) t_1014 = Float64(Float64(x + y) * 2.23577) t_1015 = Float64(0.570488 + t_1014) t_1016 = Float64(t_1014 + 2.48875) t_1017 = Float64(0.625 - Float64(y * 8.13008)) t_1018 = Float64(Float64(y * 0.813008) - 0.25) t_1019 = Float64(Float64(y * 1.21951) + 1.30319) t_1020 = Float64(Float64(x * 8.13008) - 4.5455) t_1021 = Float64(0.8325 + Float64(y * 2.03252)) t_1022 = fmax(t_216, t_3) return fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmax(fmax(fmax(fmax(fmax(t_21, Float64(-t_322)), Float64(0.175 - t_992)), Float64(t_992 - 0.275)), t_325), t_503), fmax(fmax(fmax(Float64(4.025 + Float64(x * 8.13008)), Float64(-Float64(4.125 + Float64(x * 8.13008)))), t_325), t_503)), fmax(fmax(fmax(Float64(4.275 + Float64(x * 8.13008)), Float64(-Float64(4.375 + Float64(x * 8.13008)))), t_325), t_503)), fmax(fmax(fmax(Float64(5.5 + Float64(y * 8.13008)), Float64(-t_82)), t_179), t_274)), fmax(fmax(fmax(Float64(-Float64(5.4 + Float64(y * 8.13008))), t_884), t_30), t_325)), fmax(fmax(fmax(t_884, t_30), t_335), t_503)), fmax(fmax(fmax(Float64(4.9 + Float64(x * 8.13008)), Float64(-Float64(5.0 + Float64(x * 8.13008)))), t_325), t_503)), fmax(fmax(t_344, Float64(5.7205 - Float64(x * 8.13008))), Float64(Float64(x * 8.13008) - 5.8205))), fmax(fmax(fmax(t_905, Float64(-Float64(4.75 + Float64(y * 8.13008)))), t_139), t_226)), fmax(fmax(fmax(t_343, t_139), t_226), Float64(5.1 + Float64(y * 8.13008)))), fmax(fmax(t_820, Float64(Float64(x * 4.47154) - t_232)), t_545)), fmax(fmax(Float64(-t_58), t_194), t_414)), fmax(fmax(t_58, t_674), t_413)), fmax(fmax(t_674, t_921), t_544)), fmax(fmax(t_194, Float64(-t_921)), t_545)), fmax(Float64(0.175 - t_990), Float64(t_990 - 0.275))), fmax(fmax(fmax(Float64(2.475 + Float64(x * 8.13008)), Float64(-Float64(2.575 + Float64(x * 8.13008)))), t_82), t_503)), fmax(fmax(fmax(fmax(fmax(t_560, Float64(-Float64(3.67857 + Float64(x * 11.6144)))), Float64(0.45 - sqrt(Float64(t_502 + (Float64(3.91072 + Float64(x * 14.518)) ^ 2.0))))), Float64(sqrt(Float64(t_502 + (t_560 ^ 2.0))) - 0.55)), t_82), t_503)), fmax(fmax(fmax(Float64(-t_203), Float64(2.675 + Float64(x * 8.13008))), t_325), t_503)), fmax(fmax(t_786, t_82), t_611)), fmax(fmax(t_786, t_335), t_503)), fmax(Float64(-fmin(Float64(sqrt(Float64((Float64(1.33245 - Float64(x * 3.61337)) ^ 2.0) + (Float64(-Float64(4.815 + Float64(y * 8.13008))) ^ 2.0))) - 0.0625), fmax(fmax(fmax(t_163, t_307), t_435), Float64(Float64(x * 5.42005) - 2.16367)))), Float64(sqrt(Float64((Float64(-t_307) ^ 2.0) + (t_435 ^ 2.0))) - 0.1625))), fmax(Float64(-fmin(fmax(fmax(fmax(Float64(-t_705), t_866), Float64(1.83867 - Float64(x * 5.42005))), t_43), Float64(sqrt(Float64((Float64(5.035 + Float64(y * 8.13008)) ^ 2.0) + (Float64(Float64(x * 3.61337) - 1.33578) ^ 2.0))) - 0.0625))), Float64(sqrt(Float64((t_705 ^ 2.0) + (t_866 ^ 2.0))) - 0.1625))), fmax(fmax(fmax(t_183, Float64(-t_272)), Float64(Float64(x * 8.13008) - 1.808)), Float64(1.708 - Float64(x * 8.13008)))), fmax(fmax(fmax(t_878, Float64(-t_905)), t_78), t_138)), fmax(fmax(fmax(fmax(fmax(t_343, t_272), t_78), t_138), Float64(0.15 - t_713)), Float64(t_713 - 0.25))), fmax(fmax(fmax(fmax(t_344, Float64(4.8205 - Float64(x * 8.13008))), Float64(Float64(x * 8.13008) - 5.5455)), Float64(0.175 - t_896)), Float64(t_896 - 0.275))), fmax(fmax(fmax(t_343, t_43), t_278), Float64(5.0955 - Float64(x * 8.13008)))), fmax(fmax(t_907, Float64(Float64(x * 8.13008) - 4.7455)), t_903)), fmax(fmax(fmax(fmax(fmax(t_905, t_278), t_903), Float64(-t_43)), Float64(0.175 - t_889)), Float64(t_889 - 0.275))), fmax(fmax(t_907, t_1020), Float64(4.4455 - Float64(x * 8.13008)))), fmax(fmax(t_906, Float64(Float64(x * 8.13008) - 4.0955)), t_463)), fmax(fmax(fmax(fmax(t_913, t_1020), t_463), Float64(0.175 - t_888)), Float64(t_888 - 0.275))), fmax(Float64(0.175 - t_891), Float64(t_891 - 0.275))), fmax(fmax(fmax(t_343, Float64(0.142001 + Float64(x * 8.13008))), Float64(-Float64(0.242001 + Float64(x * 8.13008)))), t_360)), fmax(fmax(fmax(t_343, Float64(0.392001 + Float64(x * 8.13008))), t_824), t_62)), fmax(fmax(fmax(fmax(t_878, t_824), Float64(Float64(x * 8.13008) - 0.157999)), fmin(fmax(Float64(0.075 - t_734), Float64(t_734 - 0.175)), fmax(Float64(0.075 - t_363), Float64(t_363 - 0.175)))), t_693)), fmax(fmax(t_907, t_944), Float64(-Float64(0.692001 + Float64(x * 8.13008))))), fmax(fmax(t_906, Float64(1.042 + Float64(x * 8.13008))), t_425)), fmax(fmax(fmax(fmax(t_913, t_944), t_425), Float64(0.175 - t_887)), Float64(t_887 - 0.275))), fmax(fmax(t_344, Float64(1.267 + Float64(x * 8.13008))), Float64(-Float64(1.367 + Float64(x * 8.13008))))), fmax(fmax(fmax(t_905, Float64(-Float64(5.575 + Float64(y * 8.13008)))), Float64(1.942 + Float64(x * 8.13008))), Float64(-Float64(2.042 + Float64(x * 8.13008))))), fmax(t_893, fmin(fmax(fmax(t_164, Float64(Float64(x * 8.13008) - 1.458)), Float64(0.958001 - Float64(x * 8.13008))), fmax(fmax(t_893, Float64(-fmin(fmax(fmax(t_969, Float64(Float64(x * 2.23577) - t_316)), Float64(-t_643)), fmax(fmax(t_643, Float64(t_316 - Float64(x * 2.23577))), t_970)))), Float64(0.175 - t_892))))), fmax(fmax(t_389, Float64(Float64(x * 8.13008) - 0.808001)), Float64(0.708 - Float64(x * 8.13008)))), fmax(fmax(t_389, Float64(Float64(x * 8.13008) - 0.558001)), Float64(0.458 - Float64(x * 8.13008)))), fmax(fmax(fmax(t_343, t_62), Float64(Float64(x * 8.13008) - 0.308001)), t_397)), fmax(fmax(fmax(fmax(t_878, t_397), t_693), Float64(Float64(x * 8.13008) - 0.858)), fmin(fmax(Float64(0.075 - t_362), Float64(t_362 - 0.175)), fmax(Float64(0.075 - t_576), Float64(t_576 - 0.175))))), fmax(fmax(t_389, Float64(Float64(x * 8.13008) - 0.108)), Float64(0.00799942 - Float64(x * 8.13008)))), fmax(Float64(0.175 - t_890), Float64(t_890 - 0.275))), fmax(fmax(t_37, t_220), Float64(-t_405))), fmax(fmax(t_725, t_219), t_405)), fmax(fmax(t_725, t_1013), t_135)), fmax(fmax(t_37, Float64(-t_1013)), t_408)), fmax(t_895, fmin(fmax(fmax(t_164, Float64(4.65 + Float64(x * 8.13008))), Float64(-t_143)), fmax(fmax(t_895, Float64(-fmin(fmax(fmax(t_969, Float64(t_659 - Float64(y * 1.21951))), Float64(-t_914)), fmax(fmax(t_970, t_914), Float64(Float64(y * 1.21951) - t_659))))), Float64(0.175 - t_894))))), fmax(fmax(t_669, Float64(7.531 - Float64(x * 8.13008))), Float64(Float64(x * 8.13008) - 7.631))), fmax(fmax(t_237, t_547), t_675)), fmax(fmax(fmax(t_666, t_547), t_675), t_9)), fmax(fmax(fmax(fmax(t_669, Float64(6.631 - Float64(x * 8.13008))), Float64(Float64(x * 8.13008) - 7.356)), Float64(0.175 - t_841)), Float64(t_841 - 0.275))), fmax(fmax(t_907, Float64(3.1 + Float64(x * 8.13008))), Float64(-Float64(3.2 + Float64(x * 8.13008))))), fmax(fmax(fmax(fmax(t_907, t_690), Float64(-Float64(4.57143 + Float64(x * 11.6144)))), Float64(0.45 - sqrt(Float64(t_342 + (Float64(5.02679 + Float64(x * 14.518)) ^ 2.0))))), Float64(sqrt(Float64(t_342 + (t_690 ^ 2.0))) - 0.55))), fmax(t_898, fmin(fmax(fmax(t_164, t_303), Float64(-t_481)), fmax(fmax(t_898, Float64(-fmin(fmax(fmax(t_969, Float64(t_110 - Float64(y * 1.21951))), Float64(-t_249)), fmax(fmax(t_970, t_249), Float64(Float64(y * 1.21951) - t_110))))), Float64(0.175 - t_897))))), fmax(fmax(t_220, Float64(t_961 - Float64(y * 2.03252))), t_114)), fmax(fmax(t_219, t_308), Float64(Float64(y * 2.03252) - t_961))), fmax(fmax(t_308, t_135), Float64(Float64(y * 2.03252) - t_630))), fmax(fmax(t_114, Float64(t_630 - Float64(y * 2.03252))), t_408)), Float64(sqrt(Float64((Float64(6.225 + Float64(y * 8.13008)) ^ 2.0) + (t_388 ^ 2.0))) - 0.075)), fmax(fmax(fmax(fmax(Float64(-fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmax(fmax(t_390, Float64(Float64(x * 4.06504) - 2.829)), Float64(-t_981)), fmax(fmax(t_981, Float64(2.829 - Float64(x * 4.06504))), Float64(-t_390))), fmax(fmax(Float64(Float64(x * 8.13008) - t_439), Float64(-Float64(Float64(0.0706995 + Float64(y * 2.60163)) + Float64(x * 2.84553)))), Float64(t_125 - Float64(x * 5.28455)))), fmax(fmax(Float64(Float64(x * 5.28455) - t_125), Float64(Float64(0.0706992 + Float64(y * 2.60163)) + Float64(x * 2.84553))), Float64(t_439 - Float64(x * 8.13008)))), fmax(fmax(Float64(-t_85), Float64(1.8053 - Float64(x * 2.84553))), Float64(t_444 - 0.171801))), fmax(fmax(t_85, Float64(0.171801 - t_444)), Float64(Float64(x * 2.84553) - 1.8053))), fmax(fmax(t_31, Float64(Float64(x * 4.47154) - t_279)), Float64(2.8369 - Float64(x * 4.47154)))), fmax(fmax(Float64(Float64(x * 4.47154) - 2.8369), Float64(t_279 - Float64(x * 4.47154))), Float64(-t_31)))), t_325), t_503), t_904), Float64(5.058 - Float64(x * 8.13008)))), fmax(Float64(0.175 - t_989), Float64(t_989 - 0.275))), fmax(Float64(0.175 - t_994), Float64(t_994 - 0.275))), fmax(fmax(fmax(Float64(Float64(x * 8.13008) - 3.233), Float64(3.133 - Float64(x * 8.13008))), t_325), t_503)), fmax(fmax(fmax(t_82, t_611), t_660), t_822)), fmax(fmax(fmax(t_660, t_822), t_335), t_503)), fmax(fmax(fmax(fmax(fmax(Float64(Float64(x * 8.13008) - 4.133), Float64(3.408 - Float64(x * 8.13008))), Float64(0.175 - t_993)), Float64(t_993 - 0.275)), t_325), t_503)), fmax(fmax(Float64(-t_99), t_240), t_553)), fmax(fmax(t_99, t_552), t_239)), fmax(fmax(fmax(fmax(t_291, Float64(5.65 + Float64(y * 8.13008))), Float64(-t_600)), Float64(Float64(x * 8.13008) - 1.733)), fmin(fmax(Float64(0.075 - t_602), Float64(t_602 - 0.175)), fmax(Float64(0.075 - t_604), Float64(t_604 - 0.175))))), fmax(fmax(fmax(t_503, t_198), t_297), Float64(0.182999 - Float64(x * 8.13008)))), fmax(fmax(fmax(t_82, t_503), Float64(0.167001 + Float64(x * 8.13008))), t_952)), fmax(fmax(fmax(fmax(fmax(t_82, t_297), t_952), Float64(-t_198)), Float64(0.175 - t_991)), Float64(t_991 - 0.275))), fmax(fmax(Float64(Float64(x * 4.47154) - t_111), t_251), t_414)), fmax(fmax(t_485, Float64(t_111 - Float64(x * 4.47154))), t_413)), fmax(fmax(t_485, Float64(t_853 - Float64(x * 4.47154))), t_544)), fmax(fmax(t_251, Float64(Float64(x * 4.47154) - t_853)), t_545)), fmax(fmax(Float64(-t_309), t_489), t_414)), fmax(fmax(t_309, t_858), t_413)), fmax(fmax(t_858, t_75), t_544)), fmax(fmax(t_489, Float64(-t_75)), t_545)), fmax(fmax(Float64(Float64(x * 4.47154) - t_569), t_820), t_414)), fmax(fmax(t_867, Float64(t_569 - Float64(x * 4.47154))), t_413)), fmax(fmax(t_867, Float64(t_232 - Float64(x * 4.47154))), t_544)), fmax(fmax(t_552, t_413), t_320)), fmax(fmax(t_553, t_572), t_414)), fmax(fmax(t_240, t_414), t_875)), fmax(fmax(t_239, t_413), t_874)), fmax(fmax(t_320, t_874), t_544)), fmax(fmax(t_572, t_875), t_545)), fmax(fmax(t_414, Float64(-t_574)), t_790)), fmax(fmax(t_413, t_574), t_791)), fmax(fmax(t_544, t_791), t_273)), fmax(fmax(t_545, t_790), Float64(-t_273))), fmax(fmax(t_806, Float64(Float64(x * 8.13008) - 1.683)), Float64(1.583 - Float64(x * 8.13008)))), fmax(fmax(t_806, Float64(Float64(x * 8.13008) - 1.433)), Float64(1.333 - Float64(x * 8.13008)))), fmax(fmax(fmax(t_503, Float64(5.775 + Float64(y * 8.13008))), t_776), t_291)), fmax(fmax(fmax(t_32, Float64(Float64(x * 8.13008) - 1.498)), Float64(1.398 - Float64(x * 8.13008))), t_338)), fmax(fmax(fmax(t_32, Float64(Float64(x * 8.13008) - 1.248)), Float64(1.148 - Float64(x * 8.13008))), t_338)), fmax(fmax(fmax(Float64(2.475 + Float64(y * 8.13008)), Float64(Float64(x * 8.13008) - 0.998001)), t_282), t_338)), fmax(fmax(fmax(fmax(t_282, Float64(-t_32)), Float64(Float64(x * 8.13008) - 1.548)), fmin(fmax(Float64(0.075 - t_141), Float64(t_141 - 0.175)), fmax(Float64(0.075 - t_527), Float64(t_527 - 0.175)))), t_5)), fmax(Float64(0.175 - t_537), Float64(t_537 - 0.275))), fmax(fmax(fmax(t_0, Float64(-Float64(0.00200015 + Float64(x * 8.13008)))), t_338), t_528)), fmax(fmax(fmax(Float64(0.352 + Float64(x * 8.13008)), t_555), t_338), t_730)), fmax(fmax(fmax(fmax(fmax(t_0, t_555), Float64(0.175 - t_536)), Float64(t_536 - 0.275)), t_557), t_683)), fmax(fmax(fmax(fmax(fmax(Float64(0.175 - t_535), Float64(t_535 - 0.275)), t_557), t_476), t_605), t_845)), fmax(fmax(fmax(Float64(Float64(x * 8.13008) - 3.0105), Float64(2.9105 - Float64(x * 8.13008))), t_338), t_557)), Float64(sqrt(Float64(t_477 + (Float64(Float64(x * 8.13008) - 2.9605) ^ 2.0))) - 0.075)), fmax(Float64(-fmin(fmax(fmax(fmax(t_246, t_385), t_482), Float64(Float64(x * 5.42005) - 1.39033)), Float64(sqrt(Float64((Float64(-Float64(2.615 + Float64(y * 8.13008))) ^ 2.0) + (Float64(0.81689 - Float64(x * 3.61337)) ^ 2.0))) - 0.0625))), Float64(sqrt(Float64((Float64(-t_385) ^ 2.0) + (t_482 ^ 2.0))) - 0.1625))), fmax(Float64(-fmin(fmax(fmax(fmax(Float64(-t_211), t_310), Float64(1.06533 - Float64(x * 5.42005))), t_844), Float64(sqrt(Float64((Float64(2.835 + Float64(y * 8.13008)) ^ 2.0) + (Float64(Float64(x * 3.61337) - 0.820223) ^ 2.0))) - 0.0625))), Float64(sqrt(Float64((t_211 ^ 2.0) + (t_310 ^ 2.0))) - 0.1625))), fmax(fmax(fmax(fmax(fmax(Float64(0.175 - t_781), Float64(t_781 - 0.275)), t_171), t_270), t_557), t_845)), fmax(fmax(fmax(Float64(3.607 + Float64(x * 8.13008)), Float64(-Float64(3.707 + Float64(x * 8.13008)))), t_338), t_557)), Float64(sqrt(Float64(t_477 + (Float64(3.657 + Float64(x * 8.13008)) ^ 2.0))) - 0.075)), fmax(fmax(fmax(t_32, Float64(3.852 + Float64(x * 8.13008))), Float64(-Float64(3.952 + Float64(x * 8.13008)))), t_338)), fmax(Float64(0.175 - t_530), Float64(t_530 - 0.275))), fmax(fmax(fmax(Float64(4.662 + Float64(x * 8.13008)), Float64(-Float64(4.762 + Float64(x * 8.13008)))), t_730), t_131)), fmax(fmax(t_580, t_5), t_719)), fmax(fmax(fmax(fmax(t_580, Float64(0.15 - t_403)), Float64(t_403 - 0.25)), t_338), t_130)), fmax(fmax(fmax(Float64(5.27 + Float64(x * 8.13008)), Float64(-Float64(5.37 + Float64(x * 8.13008)))), t_338), t_557)), fmax(fmax(fmax(Float64(0.702 + Float64(x * 8.13008)), Float64(-Float64(0.802 + Float64(x * 8.13008)))), t_730), t_131)), fmax(fmax(t_591, t_5), t_719)), fmax(fmax(fmax(fmax(t_591, Float64(0.15 - t_590)), Float64(t_590 - 0.25)), t_338), t_130)), fmax(fmax(fmax(t_32, Float64(1.072 + Float64(x * 8.13008))), Float64(-Float64(1.172 + Float64(x * 8.13008)))), t_338)), fmax(Float64(0.175 - t_532), Float64(t_532 - 0.275))), fmax(fmax(fmax(t_671, Float64(1.882 + Float64(x * 8.13008))), Float64(-Float64(1.982 + Float64(x * 8.13008)))), t_338)), fmax(fmax(fmax(Float64(-Float64(2.55 + Float64(y * 8.13008))), t_471), t_598), t_557)), fmax(fmax(fmax(fmax(fmax(t_471, t_598), Float64(-t_671)), Float64(0.15 - t_672)), Float64(t_672 - 0.25)), t_730)), fmax(fmax(fmax(t_171, Float64(-Float64(3.032 + Float64(x * 8.13008)))), t_338), t_844)), fmax(fmax(fmax(Float64(3.382 + Float64(x * 8.13008)), t_270), t_338), t_557)), fmax(fmax(t_608, t_736), t_946)), fmax(fmax(fmax(fmax(fmax(t_736, t_946), t_377), Float64(0.15 - t_751)), Float64(t_751 - 0.25)), t_747)), fmax(fmax(t_607, Float64(Float64(x * 8.13008) - 6.1135)), Float64(6.0135 - Float64(x * 8.13008)))), Float64(sqrt(Float64((Float64(1.2 + Float64(y * 8.13008)) ^ 2.0) + (Float64(Float64(x * 8.13008) - 6.0635) ^ 2.0))) - 0.075)), fmax(fmax(t_208, t_352), t_563)), fmax(fmax(t_207, t_854), t_966)), fmax(fmax(t_854, t_115), t_261)), fmax(fmax(t_563, t_490), t_567)), fmax(fmax(t_352, t_567), t_864)), fmax(fmax(t_966, t_115), t_863)), fmax(fmax(t_261, t_863), t_264)), fmax(fmax(t_490, t_864), t_498)), fmax(fmax(t_567, Float64(2.24743 - t_869)), t_978)), fmax(fmax(fmax(fmax(fmax(t_391, Float64(-Float64(7.67143 + Float64(x * 11.6144)))), Float64(0.45 - sqrt(Float64(t_996 + (Float64(8.90179 + Float64(x * 14.518)) ^ 2.0))))), Float64(sqrt(Float64(t_996 + (t_391 ^ 2.0))) - 0.55)), t_338), t_557)), fmax(t_539, fmin(fmax(fmax(fmax(Float64(5.47 + Float64(x * 8.13008)), Float64(-Float64(5.97 + Float64(x * 8.13008)))), t_399), t_246), fmax(fmax(t_539, Float64(-fmin(fmax(fmax(Float64(t_26 - Float64(y * 1.21951)), Float64(-t_180)), t_333), fmax(fmax(t_180, Float64(Float64(y * 1.21951) - t_26)), t_650)))), Float64(0.175 - t_538))))), fmax(fmax(Float64(-fmin(fmax(fmax(Float64(Float64(y * 2.23577) - Float64(1.02163 + Float64(x * 2.27642))), t_517), Float64(-t_1016)), fmax(fmax(t_1016, Float64(-t_517)), Float64(Float64(1.02162 + Float64(x * 2.27642)) - Float64(y * 2.23577))))), Float64(0.175 - t_657)), Float64(t_657 - 0.275))), fmax(fmax(t_748, Float64(Float64(x * 8.13008) - 6.4885)), Float64(6.3885 - Float64(x * 8.13008)))), fmax(fmax(fmax(fmax(t_662, Float64(0.175 - t_823)), Float64(t_823 - 0.275)), Float64(Float64(x * 8.13008) - 3.9055)), Float64(3.1805 - Float64(x * 8.13008)))), fmax(fmax(fmax(fmax(fmax(Float64(-fmin(fmax(fmax(Float64(Float64(x * 2.84553) - t_195), Float64(-t_368)), Float64(t_681 - Float64(x * 1.01626))), fmax(fmax(t_368, Float64(Float64(x * 1.01626) - t_681)), Float64(t_195 - Float64(x * 2.84553))))), t_292), Float64(-Float64(2.05 + Float64(y * 8.13008)))), Float64(Float64(x * 8.13008) - 2.0805)), Float64(1.9305 - Float64(x * 8.13008))), Float64(sqrt(Float64((Float64(0.608333 + Float64(y * 2.71003)) ^ 2.0) + (Float64(Float64(x * 8.13008) - 2.0055) ^ 2.0))) - 0.075))), Float64(sqrt(Float64((t_292 ^ 2.0) + (Float64(Float64(x * 8.13008) - 2.0305) ^ 2.0))) - 0.075)), fmax(fmax(t_378, Float64(Float64(x * 8.13008) - 1.6805)), Float64(1.5805 - Float64(x * 8.13008)))), fmax(fmax(fmax(t_606, t_742), t_953), t_71)), fmax(fmax(fmax(fmax(fmax(t_47, t_742), t_953), t_483), Float64(0.15 - t_757)), Float64(t_757 - 0.25))), fmax(fmax(t_378, Float64(Float64(x * 8.13008) - 1.1805)), Float64(1.0805 - Float64(x * 8.13008)))), fmax(fmax(t_115, t_432), Float64(t_869 - 2.24743))), fmax(fmax(t_264, t_432), Float64(t_869 - 2.30243))), fmax(fmax(t_498, t_978), Float64(2.30243 - t_869))), fmax(fmax(t_607, Float64(Float64(x * 8.13008) - 4.2805)), Float64(4.1805 - Float64(x * 8.13008)))), fmax(fmax(fmax(fmax(t_607, t_631), Float64(5.97215 - Float64(x * 11.6144))), Float64(0.45 - sqrt(Float64(t_376 + (Float64(Float64(x * 14.518) - 8.15268) ^ 2.0))))), Float64(sqrt(Float64(t_376 + (t_631 ^ 2.0))) - 0.55))), fmax(fmax(t_607, t_706), Float64(3.9805 - Float64(x * 8.13008)))), fmax(fmax(fmax(t_606, Float64(-t_53)), Float64(Float64(x * 8.13008) - 3.6305)), t_321)), fmax(fmax(fmax(fmax(fmax(t_377, t_706), t_321), t_53), Float64(0.175 - t_876)), Float64(t_876 - 0.275))), fmax(fmax(t_662, Float64(Float64(x * 8.13008) - 3.0055)), Float64(2.9055 - Float64(x * 8.13008)))), fmax(fmax(t_711, t_188), t_792)), fmax(fmax(fmax(t_377, t_188), t_792), t_80)), fmax(Float64(0.175 - t_834), Float64(t_834 - 0.275))), fmax(fmax(t_882, t_1006), Float64(3.951 - Float64(x * 8.13008)))), fmax(fmax(t_669, Float64(Float64(x * 8.13008) - 3.601)), t_401)), fmax(fmax(fmax(fmax(fmax(t_235, t_1006), t_401), t_899), Float64(0.175 - t_827)), Float64(t_827 - 0.275))), fmax(fmax(t_586, Float64(Float64(x * 8.13008) - 3.251)), Float64(3.151 - Float64(x * 8.13008)))), fmax(fmax(t_236, t_346), t_450)), fmax(fmax(fmax(fmax(t_908, t_346), t_450), Float64(0.15 - t_585)), Float64(t_585 - 0.25))), fmax(fmax(t_667, Float64(Float64(x * 8.13008) - 1.943)), Float64(1.843 - Float64(x * 8.13008)))), fmax(fmax(fmax(fmax(t_667, t_4), Float64(2.63286 - Float64(x * 11.6144))), Float64(0.45 - sqrt(Float64(t_665 + (Float64(Float64(x * 14.518) - 3.97857) ^ 2.0))))), Float64(sqrt(Float64(t_665 + (t_4 ^ 2.0))) - 0.55))), fmax(fmax(t_667, Float64(Float64(x * 8.13008) - 6.981)), Float64(6.881 - Float64(x * 8.13008)))), Float64(sqrt(Float64((Float64(3.4 + Float64(y * 8.13008)) ^ 2.0) + (Float64(Float64(x * 8.13008) - 6.931) ^ 2.0))) - 0.075)), fmax(fmax(t_669, Float64(6.656 - Float64(x * 8.13008))), Float64(Float64(x * 8.13008) - 6.756))), fmax(fmax(t_237, t_293), t_421)), fmax(fmax(t_670, t_293), t_421)), fmax(fmax(fmax(fmax(t_669, Float64(5.756 - Float64(x * 8.13008))), Float64(Float64(x * 8.13008) - 6.481)), Float64(0.175 - t_833)), Float64(t_833 - 0.275))), fmax(fmax(t_692, t_849), Float64(5.331 - Float64(x * 8.13008)))), fmax(fmax(t_667, Float64(Float64(x * 8.13008) - 4.981)), t_298)), fmax(fmax(fmax(fmax(fmax(t_235, t_849), t_298), t_743), Float64(0.175 - t_954)), Float64(t_954 - 0.275))), fmax(fmax(t_668, Float64(Float64(x * 8.13008) - 4.761)), Float64(4.661 - Float64(x * 8.13008)))), fmax(fmin(fmax(fmax(Float64(0.175 - t_831), t_837), Float64(-fmin(fmax(fmax(t_777, Float64(Float64(x * 2.23577) - t_20)), Float64(-t_165)), fmax(fmax(t_778, t_165), Float64(t_20 - Float64(x * 2.23577)))))), fmax(fmax(t_972, Float64(Float64(x * 8.13008) - 0.443)), Float64(-Float64(0.0570004 + Float64(x * 8.13008))))), t_837)), fmax(t_839, fmin(fmax(fmax(fmax(Float64(0.207 + Float64(x * 8.13008)), Float64(-Float64(0.707 + Float64(x * 8.13008)))), t_780), t_971), fmax(fmax(t_839, Float64(-fmin(fmax(fmax(Float64(Float64(x * 2.23577) - t_877), Float64(-t_77)), t_777), fmax(fmax(t_77, Float64(t_877 - Float64(x * 2.23577))), t_778)))), Float64(0.175 - t_838))))), fmax(fmax(t_669, Float64(-t_644)), Float64(0.857 + Float64(x * 8.13008)))), fmax(fmax(t_237, t_129), t_644)), fmax(fmax(t_670, t_129), t_644)), fmax(fmax(fmax(fmax(t_669, Float64(-Float64(1.857 + Float64(x * 8.13008)))), t_128), Float64(0.175 - t_883)), Float64(t_883 - 0.275))), fmax(fmax(t_669, Float64(-t_275)), Float64(2.182 + Float64(x * 8.13008)))), fmax(fmax(t_237, t_275), t_721)), fmax(fmax(t_670, t_275), t_721)), fmax(t_829, fmin(fmax(fmax(t_972, Float64(Float64(x * 8.13008) - 1.743)), Float64(1.243 - Float64(x * 8.13008))), fmax(fmax(t_829, Float64(-fmin(fmax(fmax(t_777, Float64(Float64(x * 2.23577) - t_284)), Float64(-t_451)), fmax(fmax(t_451, Float64(t_284 - Float64(x * 2.23577))), t_778)))), Float64(0.175 - t_828))))), fmax(fmax(fmax(t_235, Float64(-Float64(4.475 + Float64(y * 8.13008)))), Float64(Float64(x * 8.13008) - 0.643001)), Float64(0.543 - Float64(x * 8.13008)))), fmax(Float64(0.175 - t_840), Float64(t_840 - 0.275))), fmax(fmax(fmax(fmax(fmax(Float64(sqrt(Float64((Float64(4.937 + Float64(x * 8.13008)) ^ 2.0) + (Float64(1.34167 + Float64(y * 2.71003)) ^ 2.0))) - 0.075), Float64(-fmin(fmax(fmax(Float64(t_196 - Float64(y * 0.813008)), Float64(-t_365)), Float64(t_599 - Float64(x * 1.01626))), fmax(fmax(Float64(Float64(x * 1.01626) - t_599), t_365), Float64(Float64(y * 0.813008) - t_196))))), t_63), Float64(-Float64(4.25 + Float64(y * 8.13008)))), Float64(4.862 + Float64(x * 8.13008))), Float64(-Float64(5.012 + Float64(x * 8.13008))))), Float64(sqrt(Float64((t_63 ^ 2.0) + (t_579 ^ 2.0))) - 0.075)), fmax(fmax(t_882, t_42), Float64(-Float64(5.262 + Float64(x * 8.13008))))), fmax(fmax(t_669, Float64(5.612 + Float64(x * 8.13008))), t_561)), fmax(fmax(fmax(fmax(fmax(t_235, t_899), t_42), t_561), Float64(0.175 - t_830)), Float64(t_830 - 0.275))), fmax(fmax(t_586, Float64(5.962 + Float64(x * 8.13008))), Float64(-Float64(6.062 + Float64(x * 8.13008))))), fmax(fmax(t_236, t_109), t_204)), fmax(fmax(fmax(fmax(t_908, t_109), t_204), Float64(0.15 - t_698)), Float64(t_698 - 0.25))), fmax(fmax(t_667, Float64(6.57 + Float64(x * 8.13008))), Float64(-Float64(6.67 + Float64(x * 8.13008))))), fmax(fmax(fmax(fmax(t_669, t_720), Float64(-Float64(3.182 + Float64(x * 8.13008)))), Float64(0.175 - t_962)), Float64(t_962 - 0.275))), fmax(fmax(t_692, t_262), Float64(-Float64(2.907 + Float64(x * 8.13008))))), fmax(fmax(t_667, Float64(3.257 + Float64(x * 8.13008))), t_859)), fmax(fmax(fmax(fmax(fmax(t_235, t_743), t_262), t_859), Float64(0.175 - t_836)), Float64(t_836 - 0.275))), fmax(fmax(t_668, Float64(3.477 + Float64(x * 8.13008))), Float64(-Float64(3.577 + Float64(x * 8.13008))))), fmax(Float64(0.175 - t_835), Float64(t_835 - 0.275))), fmax(fmin(fmax(fmax(t_534, Float64(-fmin(fmax(fmax(t_333, Float64(Float64(x * 2.23577) - t_712)), Float64(0.228514 - t_25)), fmax(fmax(Float64(t_25 - 0.228514), Float64(t_712 - Float64(x * 2.23577))), t_650)))), Float64(0.175 - t_533)), fmax(fmax(fmax(t_399, t_246), Float64(Float64(x * 8.13008) - 6.23551)), Float64(5.73551 - Float64(x * 8.13008)))), t_534)), fmax(fmax(fmax(t_338, t_27), Float64(5.4355 - Float64(x * 8.13008))), t_528)), fmax(fmax(fmax(t_338, t_730), Float64(Float64(x * 8.13008) - 5.0855)), t_510)), fmax(fmax(fmax(fmax(fmax(t_27, t_510), t_557), t_683), Float64(0.175 - t_531)), Float64(t_531 - 0.275))), fmax(fmax(fmax(t_730, t_131), Float64(Float64(x * 8.13008) - 4.7355)), Float64(4.6355 - Float64(x * 8.13008)))), fmax(fmax(fmax(t_5, t_719), t_91), t_185)), fmax(fmax(fmax(fmax(fmax(t_338, t_130), t_91), t_185), Float64(0.15 - t_658)), Float64(t_658 - 0.25))), fmax(fmax(fmax(t_338, t_844), t_476), Float64(3.5855 - Float64(x * 8.13008)))), fmax(fmax(fmax(t_338, t_557), Float64(Float64(x * 8.13008) - 3.2355)), t_605)), fmax(fmax(fmax(fmax(t_667, t_728), Float64(-Float64(9.52857 + Float64(x * 11.6144)))), Float64(0.45 - sqrt(Float64(t_665 + (Float64(11.2232 + Float64(x * 14.518)) ^ 2.0))))), Float64(sqrt(Float64(t_665 + (t_728 ^ 2.0))) - 0.55))), fmax(fmax(t_668, Float64(6.79 + Float64(x * 8.13008))), Float64(-Float64(6.89 + Float64(x * 8.13008))))), fmax(Float64(0.175 - t_832), Float64(t_832 - 0.275))), fmax(t_843, fmin(fmax(fmax(t_972, t_294), t_419), fmax(fmax(t_843, Float64(-fmin(fmax(fmax(t_777, Float64(t_106 - Float64(y * 1.21951))), Float64(-t_243)), fmax(fmax(t_778, t_243), Float64(Float64(y * 1.21951) - t_106))))), Float64(0.175 - t_842))))), fmax(fmax(t_848, t_66), t_155)), fmax(fmax(t_847, t_427), t_478)), fmax(fmax(t_427, t_746), t_956)), fmax(fmax(t_155, t_745), t_247)), fmax(fmax(t_848, t_745), t_429)), fmax(fmax(t_847, t_746), t_699)), fmax(fmax(t_427, Float64(-t_17)), t_160)), fmax(fmax(t_155, t_17), t_433)), fmax(fmax(t_429, t_433), t_628)), fmax(fmax(t_699, t_160), Float64(-t_628))), fmax(fmax(fmax(Float64(3.5325 + Float64(x * 8.13008)), Float64(-Float64(3.6325 + Float64(x * 8.13008)))), t_491), t_633)), fmax(fmax(fmax(fmax(fmax(t_119, Float64(-Float64(5.18929 + Float64(x * 11.6144)))), Float64(0.45 - sqrt(Float64((Float64(5.79911 + Float64(x * 14.518)) ^ 2.0) + t_784)))), Float64(sqrt(Float64((t_119 ^ 2.0) + t_784)) - 0.55)), t_491), t_633)), fmax(fmax(fmax(Float64(3.7575 + Float64(x * 8.13008)), Float64(-Float64(3.8575 + Float64(x * 8.13008)))), t_491), t_633)), Float64(sqrt(Float64((Float64(3.8075 + Float64(x * 8.13008)) ^ 2.0) + t_2)) - 0.075)), fmax(fmax(fmax(Float64(4.0025 + Float64(x * 8.13008)), Float64(-Float64(4.1025 + Float64(x * 8.13008)))), t_633), t_645)), fmax(fmax(fmax(Float64(Float64(x * 8.13008) - 0.0154991), Float64(-Float64(0.084501 + Float64(x * 8.13008)))), t_633), t_645)), fmax(Float64(0.175 - t_802), Float64(t_802 - 0.275))), fmax(fmax(fmax(t_181, Float64(-Float64(0.794501 + Float64(x * 8.13008)))), t_797), t_633)), fmax(fmax(fmax(Float64(1.1445 + Float64(x * 8.13008)), t_810), t_34), t_633)), fmax(fmax(fmax(fmax(fmax(t_181, t_810), t_798), Float64(0.175 - t_805)), Float64(t_805 - 0.275)), t_491)), fmax(fmax(Float64(-fmin(fmax(fmax(Float64(Float64(y * 2.23577) - t_345), t_453), Float64(-t_1015)), fmax(fmax(t_1015, Float64(-t_453)), Float64(t_345 - Float64(y * 2.23577))))), Float64(0.175 - t_800)), Float64(t_800 - 0.275))), fmax(fmax(t_498, t_956), t_478)), fmax(fmax(t_264, t_66), t_247)), fmax(fmax(fmax(fmax(fmax(t_798, t_52), t_191), Float64(0.175 - t_804)), Float64(t_804 - 0.275)), t_491)), fmax(fmax(fmax(Float64(-t_60), Float64(7.05 + Float64(x * 8.13008))), Float64(-Float64(7.15 + Float64(x * 8.13008)))), t_34)), fmax(fmax(fmax(t_549, t_679), t_926), t_10)), fmax(fmax(fmax(fmax(fmax(t_60, t_549), t_679), Float64(0.15 - t_550)), Float64(t_550 - 0.25)), t_633)), fmax(fmax(t_941, Float64(Float64(x * 8.13008) - 7.72551)), Float64(7.62551 - Float64(x * 8.13008)))), fmax(fmax(t_424, t_737), t_947)), fmax(fmax(fmax(fmax(fmax(t_737, t_947), t_299), t_379), Float64(0.15 - t_738)), Float64(t_738 - 0.25))), fmax(fmax(fmax(t_379, Float64(Float64(y * 8.13008) - 0.65)), Float64(Float64(x * 8.13008) - 7.35551)), Float64(7.25551 - Float64(x * 8.13008)))), fmax(Float64(0.175 - t_771), Float64(t_771 - 0.275))), fmax(Float64(0.175 - t_801), Float64(t_801 - 0.275))), fmax(Float64(-fmin(fmax(fmax(fmax(t_168, Float64(3.575 + Float64(x * 5.42005))), t_313), t_437), Float64(sqrt(Float64((Float64(-Float64(2.49333 + Float64(x * 3.61337))) ^ 2.0) + t_76)) - 0.0625))), Float64(sqrt(Float64((t_168 ^ 2.0) + t_500)) - 0.1625))), fmax(Float64(-fmin(fmax(fmax(fmax(t_167, Float64(-Float64(3.9 + Float64(x * 5.42005)))), t_213), t_394), Float64(sqrt(Float64((Float64(2.49 + Float64(x * 3.61337)) ^ 2.0) + t_982)) - 0.0625))), Float64(sqrt(Float64((t_167 ^ 2.0) + t_395)) - 0.1625))), fmax(fmax(fmax(Float64(-Float64(6.075 + Float64(x * 8.13008))), t_793), t_491), t_633)), Float64(sqrt(Float64((Float64(6.025 + Float64(x * 8.13008)) ^ 2.0) + t_2)) - 0.075)), fmax(fmax(fmax(t_52, Float64(-Float64(6.35 + Float64(x * 8.13008)))), t_797), t_633)), fmax(fmax(fmax(Float64(6.7 + Float64(x * 8.13008)), t_191), t_34), t_633)), fmax(Float64(-fmin(Float64(sqrt(Float64(t_218 + (Float64(Float64(x * 3.61337) - 2.02467) ^ 2.0))) - 0.0625), fmax(fmax(t_902, t_35), Float64(2.872 - Float64(x * 5.42005))))), Float64(sqrt(Float64(t_406 + (t_35 ^ 2.0))) - 0.1625))), fmax(t_774, fmin(fmax(fmax(t_410, Float64(Float64(x * 8.13008) - 4.208)), Float64(3.708 - Float64(x * 8.13008))), fmax(fmax(t_774, Float64(-fmin(fmax(fmax(t_97, Float64(Float64(x * 2.23577) - t_229)), Float64(1.32095 - t_25)), fmax(fmax(Float64(t_25 - 1.32095), Float64(t_229 - Float64(x * 2.23577))), t_729)))), Float64(0.175 - t_773))))), fmax(Float64(-fmin(fmax(fmax(fmax(t_234, Float64(Float64(x * 5.42005) - 2.372)), t_409), t_469), Float64(sqrt(Float64((Float64(1.47133 - Float64(x * 3.61337)) ^ 2.0) + t_61)) - 0.0625))), Float64(sqrt(Float64((t_234 ^ 2.0) + t_366)) - 0.1625))), fmax(fmax(t_759, t_680), Float64(6.5455 - Float64(x * 8.13008)))), fmax(fmax(t_940, Float64(Float64(x * 8.13008) - 6.19551)), t_241)), fmax(fmax(fmax(fmax(fmax(t_680, t_241), t_684), t_735), Float64(0.175 - t_942)), Float64(t_942 - 0.275))), fmax(fmax(t_941, Float64(Float64(x * 8.13008) - 5.8455)), Float64(5.7455 - Float64(x * 8.13008)))), fmax(fmax(t_424, t_739), t_948)), fmax(fmax(fmax(fmax(t_380, t_739), t_948), Float64(0.15 - t_740)), Float64(t_740 - 0.25))), fmax(Float64(-fmin(fmax(fmax(t_470, t_72), Float64(Float64(x * 5.42005) - 3.197)), Float64(sqrt(Float64(t_61 + (Float64(2.02133 - Float64(x * 3.61337)) ^ 2.0))) - 0.0625))), Float64(sqrt(Float64(t_366 + (t_72 ^ 2.0))) - 0.1625))), fmax(Float64(-fmin(fmax(fmax(t_902, Float64(0.788667 - Float64(x * 5.42005))), t_256), Float64(sqrt(Float64(t_218 + (Float64(Float64(x * 3.61337) - 0.635778) ^ 2.0))) - 0.0625))), Float64(sqrt(Float64(t_406 + (t_256 ^ 2.0))) - 0.1625))), fmax(fmax(t_685, Float64(Float64(x * 8.13008) - 0.125)), Float64(0.0249996 - Float64(x * 8.13008)))), fmax(fmax(fmax(fmax(t_685, t_704), Float64(0.0357141 - Float64(x * 11.6144))), Float64(0.45 - sqrt(Float64(t_169 + (Float64(Float64(x * 14.518) - 0.732143) ^ 2.0))))), Float64(sqrt(Float64(t_169 + (t_704 ^ 2.0))) - 0.55))), fmax(fmax(t_685, Float64(0.1 + Float64(x * 8.13008))), Float64(-Float64(0.2 + Float64(x * 8.13008))))), Float64(sqrt(Float64((Float64(Float64(y * 8.13008) - 1.0) ^ 2.0) + t_465)) - 0.075)), fmax(t_789, fmin(fmax(fmax(t_410, Float64(0.325 + Float64(x * 8.13008))), Float64(-Float64(0.825 + Float64(x * 8.13008)))), fmax(fmax(t_789, Float64(-fmin(fmax(fmax(t_97, Float64(t_81 - Float64(y * 1.21951))), Float64(0.0743749 - t_25)), fmax(fmax(t_729, Float64(t_25 - 0.0743749)), Float64(Float64(y * 1.21951) - t_81))))), Float64(0.175 - t_788))))), fmax(Float64(-fmin(fmax(fmax(fmax(t_28, Float64(2.047 - Float64(x * 5.42005))), t_722), t_901), Float64(sqrt(Float64(t_218 + (Float64(Float64(x * 3.61337) - 1.47467) ^ 2.0))) - 0.0625))), Float64(sqrt(Float64(t_406 + (t_28 ^ 2.0))) - 0.1625))), fmax(fmax(t_1012, t_36), Float64(2.8705 - Float64(x * 8.13008)))), fmax(fmax(t_685, Float64(Float64(x * 8.13008) - 2.5205)), t_448)), fmax(fmax(fmax(fmax(fmax(t_684, t_36), t_448), t_1017), Float64(0.175 - t_762)), Float64(t_762 - 0.275))), fmax(t_768, fmin(fmax(fmax(t_410, Float64(Float64(x * 8.13008) - 2.3205)), Float64(1.8205 - Float64(x * 8.13008))), fmax(fmax(t_768, Float64(-fmin(fmax(fmax(t_97, Float64(Float64(x * 2.23577) - t_663)), Float64(0.801888 - t_25)), fmax(fmax(t_729, Float64(t_25 - 0.801888)), Float64(t_663 - Float64(x * 2.23577)))))), Float64(0.175 - t_767))))), fmax(Float64(-fmin(fmax(fmax(t_470, t_543), Float64(Float64(x * 5.42005) - 1.11367)), Float64(sqrt(Float64(t_61 + (Float64(0.632445 - Float64(x * 3.61337)) ^ 2.0))) - 0.0625))), Float64(sqrt(Float64(t_366 + (t_543 ^ 2.0))) - 0.1625))), fmax(Float64(sqrt(Float64((Float64(-t_733) ^ 2.0) + (t_8 ^ 2.0))) - 0.1625), Float64(-fmin(fmax(fmax(fmax(t_420, t_733), t_8), Float64(0.233001 + Float64(x * 5.42005))), Float64(sqrt(Float64((Float64(-Float64(1.515 + Float64(y * 8.13008))) ^ 2.0) + (Float64(-Float64(0.265334 + Float64(x * 3.61337))) ^ 2.0))) - 0.0625))))), fmax(Float64(-fmin(fmax(fmax(fmax(Float64(1.575 + Float64(y * 8.13008)), Float64(-t_67)), t_156), Float64(-Float64(0.558001 + Float64(x * 5.42005)))), Float64(sqrt(Float64((Float64(1.735 + Float64(y * 8.13008)) ^ 2.0) + (Float64(0.262 + Float64(x * 3.61337)) ^ 2.0))) - 0.0625))), Float64(sqrt(Float64((t_67 ^ 2.0) + (t_156 ^ 2.0))) - 0.1625))), fmax(fmax(t_208, Float64(t_430 - Float64(y * 1.82927))), t_625)), fmax(fmax(t_207, t_960), t_431)), fmax(fmax(t_115, t_960), t_210)), fmax(fmax(t_567, t_625), t_434)), fmax(fmax(t_567, Float64(Float64(0.5966 + Float64(x * 4.47154)) - Float64(y * 1.82927))), t_965)), fmax(fmax(t_115, t_431), t_964)), fmax(fmax(t_264, t_210), t_964)), fmax(fmax(t_498, t_434), t_965)), fmax(fmax(t_567, Float64(-t_636)), t_860)), fmax(fmax(t_115, t_861), t_636)), fmax(fmax(t_264, t_861), t_315)), fmax(fmax(t_498, t_860), Float64(-t_315))), fmax(fmax(t_711, t_871), t_23)), fmax(fmax(fmax(fmax(fmax(t_47, t_483), t_871), t_23), Float64(0.15 - t_872)), Float64(t_872 - 0.25))), fmax(fmax(t_987, Float64(Float64(x * 8.13008) - 0.8105)), Float64(0.7105 - Float64(x * 8.13008)))), fmax(Float64(0.175 - t_398), Float64(t_398 - 0.275))), fmax(fmax(t_748, Float64(Float64(x * 8.13008) - 0.000499725)), Float64(-Float64(0.0995007 + Float64(x * 8.13008))))), fmax(fmax(t_608, t_400), t_509)), fmax(fmax(fmax(fmax(fmax(t_377, t_747), t_400), t_509), Float64(0.15 - t_750)), Float64(t_750 - 0.25))), fmax(fmax(fmax(t_662, Float64(-fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmax(fmax(Float64(t_222 - Float64(y * 3.25203)), Float64(-t_407)), t_516), fmax(fmax(t_407, Float64(Float64(y * 3.25203) - t_222)), Float64(-t_516))), fmax(fmax(t_93, t_137), Float64(-t_980))), fmax(fmax(t_980, Float64(-t_137)), Float64(-t_93))), fmax(fmax(Float64(t_909 - Float64(y * 0.813008)), Float64(-t_44)), Float64(Float64(y * 3.41463) - t_224))), fmax(fmax(Float64(t_224 - Float64(y * 3.41463)), t_44), Float64(Float64(y * 0.813008) - t_909))), fmax(fmax(Float64(-t_818), Float64(-t_48)), t_145)), fmax(fmax(t_818, t_48), Float64(-t_145))))), Float64(3.687 + Float64(x * 8.13008))), Float64(-Float64(4.187 + Float64(x * 8.13008))))), fmax(fmax(t_987, Float64(4.307 + Float64(x * 8.13008))), Float64(-Float64(4.407 + Float64(x * 8.13008))))), fmax(Float64(0.175 - t_358), Float64(t_358 - 0.275))), fmax(t_919, fmin(fmax(fmax(fmax(Float64(1.585 + Float64(y * 8.13008)), t_420), Float64(4.967 + Float64(x * 8.13008))), Float64(-Float64(5.467 + Float64(x * 8.13008)))), fmax(fmax(t_919, Float64(-fmin(fmax(fmax(t_295, Float64(t_475 - Float64(y * 1.21951))), Float64(-t_686)), fmax(fmax(t_686, Float64(Float64(y * 1.21951) - t_475)), Float64(-t_295))))), Float64(0.175 - t_55))))), fmax(fmax(t_607, Float64(5.875 + Float64(x * 8.13008))), Float64(-t_793))), fmax(fmax(fmax(t_377, Float64(2.287 + Float64(x * 8.13008))), Float64(-Float64(2.387 + Float64(x * 8.13008)))), t_983)), fmax(fmax(t_987, Float64(2.537 + Float64(x * 8.13008))), Float64(-Float64(2.637 + Float64(x * 8.13008))))), fmax(fmax(fmax(t_377, Float64(1.375 + Float64(y * 8.13008))), Float64(2.787 + Float64(x * 8.13008))), t_957)), fmax(fmax(fmax(fmax(t_423, t_957), Float64(-t_983)), Float64(2.237 + Float64(x * 8.13008))), fmin(fmax(Float64(0.075 - t_986), Float64(t_986 - 0.175)), fmax(Float64(0.075 - t_985), Float64(t_985 - 0.175))))), fmax(fmax(fmax(fmax(fmax(Float64(-fmin(fmax(fmax(Float64(Float64(x * 2.84553) - t_263), Float64(0.681276 - t_492)), Float64(t_637 - Float64(x * 1.01626))), fmax(fmax(Float64(Float64(x * 1.01626) - t_637), Float64(t_492 - 0.681276)), Float64(t_263 - Float64(x * 2.84553))))), t_120), Float64(-Float64(0.95 + Float64(y * 8.13008)))), Float64(Float64(x * 8.13008) - 5.289)), Float64(5.139 - Float64(x * 8.13008))), Float64(sqrt(Float64((Float64(0.241667 + Float64(y * 2.71003)) ^ 2.0) + (Float64(Float64(x * 8.13008) - 5.214) ^ 2.0))) - 0.075))), Float64(sqrt(Float64((t_120 ^ 2.0) + (Float64(Float64(x * 8.13008) - 5.239) ^ 2.0))) - 0.075)), fmax(fmax(fmax(t_491, Float64(Float64(x * 8.13008) - 4.781)), Float64(4.681 - Float64(x * 8.13008))), t_633)), fmax(fmax(fmax(fmax(fmax(t_491, t_329), Float64(6.68715 - Float64(x * 11.6144))), Float64(0.45 - sqrt(Float64(t_784 + (Float64(Float64(x * 14.518) - 9.04643) ^ 2.0))))), Float64(sqrt(Float64(t_784 + (t_329 ^ 2.0))) - 0.55)), t_633)), fmax(Float64(0.175 - t_803), Float64(t_803 - 0.275))), fmax(fmax(fmax(fmax(t_607, t_29), Float64(-Float64(8.53571 + Float64(x * 11.6144)))), Float64(0.45 - sqrt(Float64(t_376 + (Float64(9.98214 + Float64(x * 14.518)) ^ 2.0))))), Float64(sqrt(Float64(t_376 + (t_29 ^ 2.0))) - 0.55))), fmax(fmax(t_662, t_90), t_182)), fmax(fmax(fmax(t_606, t_653), t_71), t_519)), fmax(fmax(fmax(t_377, t_653), t_80), t_519)), fmax(fmax(fmax(fmax(t_662, t_45), Float64(-t_653)), Float64(0.175 - t_656)), Float64(t_656 - 0.275))), fmax(fmax(t_635, Float64(Float64(x * 8.13008) - 7.28901)), Float64(7.18901 - Float64(x * 8.13008)))), fmax(fmax(t_635, Float64(Float64(x * 8.13008) - 7.03901)), Float64(6.93901 - Float64(x * 8.13008)))), fmax(fmax(fmax(Float64(Float64(y * 8.13008) - 4.76837e-7), t_926), Float64(Float64(x * 8.13008) - 6.81401)), Float64(6.71401 - Float64(x * 8.13008)))), fmax(fmax(fmax(t_34, Float64(0.1 - Float64(y * 8.13008))), t_98), t_192)), fmax(fmax(fmax(t_633, t_98), t_192), Float64(0.7 + Float64(y * 8.13008)))), fmax(fmax(t_635, Float64(Float64(x * 8.13008) - 6.41401)), Float64(6.314 - Float64(x * 8.13008)))), fmax(fmax(t_634, Float64(Float64(x * 8.13008) - 2.1185)), Float64(2.0185 - Float64(x * 8.13008)))), Float64(sqrt(Float64(t_2 + (Float64(Float64(x * 8.13008) - 2.0685) ^ 2.0))) - 0.075)), fmax(fmax(t_646, Float64(Float64(x * 8.13008) - 1.1935)), Float64(1.0935 - Float64(x * 8.13008)))), fmax(fmax(t_646, Float64(Float64(x * 8.13008) - 0.943501)), Float64(0.8435 - Float64(x * 8.13008)))), fmax(fmax(fmax(t_633, Float64(0.275 + Float64(y * 8.13008))), Float64(Float64(x * 8.13008) - 0.693501)), t_64)), fmax(fmax(fmax(fmax(t_64, t_10), Float64(-t_645)), Float64(Float64(x * 8.13008) - 1.2435)), fmin(fmax(Float64(0.075 - t_951), Float64(t_951 - 0.175)), fmax(Float64(0.075 - t_950), Float64(t_950 - 0.175))))), fmax(fmax(t_634, Float64(Float64(x * 8.13008) - 0.2355)), Float64(0.1355 - Float64(x * 8.13008)))), fmax(fmax(fmax(t_248, Float64(Float64(x * 8.13008) - 3.781)), t_633), Float64(3.681 - Float64(x * 8.13008)))), fmax(fmax(fmax(t_491, Float64(-Float64(0.35 + Float64(y * 8.13008)))), t_73), t_162)), fmax(fmax(fmax(fmax(fmax(t_34, t_73), t_162), Float64(-t_248)), Float64(0.15 - t_701)), Float64(t_701 - 0.25))), fmax(Float64(-fmin(fmax(fmax(fmax(t_313, t_437), t_387), Float64(Float64(x * 5.42005) - 1.82067)), Float64(sqrt(Float64(t_76 + (Float64(1.10378 - Float64(x * 3.61337)) ^ 2.0))) - 0.0625))), Float64(sqrt(Float64(t_500 + (t_387 ^ 2.0))) - 0.1625))), fmax(Float64(-fmin(fmax(fmax(fmax(t_213, t_394), t_593), Float64(1.49567 - Float64(x * 5.42005))), Float64(sqrt(Float64(t_982 + (Float64(Float64(x * 3.61337) - 1.10711) ^ 2.0))) - 0.0625))), Float64(sqrt(Float64(t_395 + (t_593 ^ 2.0))) - 0.1625))), fmax(fmax(fmax(fmax(t_634, t_709), Float64(0.193571 - Float64(x * 11.6144))), Float64(0.45 - sqrt(Float64(t_784 + (Float64(Float64(x * 14.518) - 0.929465) ^ 2.0))))), Float64(sqrt(Float64(t_784 + (t_709 ^ 2.0))) - 0.55))), 100000000.0), fmax(t_795, fmin(fmax(fmax(t_578, Float64(Float64(x * 8.13008) - 7.40251)), Float64(6.90251 - Float64(x * 8.13008))), fmax(fmax(t_795, Float64(-fmin(fmax(fmax(t_277, Float64(Float64(x * 2.23577) - t_446)), Float64(3.29944 - t_25)), fmax(fmax(Float64(t_25 - 3.29944), Float64(t_446 - Float64(x * 2.23577))), t_39)))), Float64(0.175 - t_794))))), fmax(fmax(t_223, Float64(Float64(x * 4.47154) - t_340)), t_521)), fmax(fmax(t_812, Float64(t_340 - Float64(x * 4.47154))), t_1018)), fmax(fmax(t_812, t_94), Float64(t_225 - Float64(x * 4.47154)))), fmax(fmax(t_521, Float64(Float64(x * 4.47154) - t_225)), t_523)), fmax(fmax(t_223, Float64(4.14638 - t_912)), t_50)), fmax(fmax(t_1018, t_231), Float64(t_912 - 4.14638))), fmax(fmax(t_94, t_231), Float64(t_912 - 4.20138))), fmax(fmax(t_523, t_50), Float64(4.20138 - t_912))), fmax(fmax(Float64(-t_57), t_193), t_359)), fmax(fmax(t_57, t_597), t_673)), fmax(fmax(t_597, t_920), t_102)), fmax(fmax(t_193, Float64(-t_920)), t_369)), fmax(Float64(0.175 - t_932), Float64(t_932 - 0.275))), fmax(fmax(fmax(t_242, Float64(-Float64(6.85 + Float64(x * 8.13008)))), t_559), t_687)), fmax(fmax(fmax(t_679, Float64(7.2 + Float64(x * 8.13008))), t_687), t_153)), fmax(fmax(fmax(fmax(fmax(t_679, t_242), Float64(0.175 - t_933)), Float64(t_933 - 0.275)), t_68), t_153)), fmax(fmax(t_383, t_480), Float64(7.95251 - Float64(x * 8.13008)))), fmax(fmax(t_958, Float64(Float64(x * 8.13008) - 7.60251)), t_205)), fmax(fmax(fmax(fmax(fmax(t_480, t_16), t_205), t_626), Float64(0.175 - t_775)), Float64(t_775 - 0.275))), fmax(fmax(t_384, t_306), Float64(3.0225 - Float64(x * 8.13008)))), fmax(fmax(fmax(t_381, Float64(Float64(x * 8.13008) - 2.6725)), t_968), t_74)), fmax(fmax(fmax(fmax(fmax(t_16, t_968), Float64(0.175 - t_493)), Float64(t_493 - 0.275)), t_976), t_306)), fmax(fmax(t_223, Float64(Float64(x * 4.47154) - t_170)), t_324)), fmax(fmax(t_1018, t_573), Float64(t_170 - Float64(x * 4.47154)))), fmax(fmax(t_94, t_573), Float64(t_995 - Float64(x * 4.47154)))), fmax(fmax(t_523, t_324), Float64(Float64(x * 4.47154) - t_995))), fmax(fmax(t_223, Float64(1.79238 - t_912)), t_440)), fmax(fmax(t_1018, t_710), Float64(t_912 - 1.79238))), fmax(fmax(t_94, t_710), Float64(t_912 - 1.84738))), fmax(fmax(t_523, t_440), Float64(1.84738 - t_912))), fmax(fmax(t_223, Float64(Float64(x * 4.47154) - t_441)), t_648)), fmax(fmax(t_1018, t_1003), Float64(t_441 - Float64(x * 4.47154)))), fmax(fmax(t_94, t_1003), Float64(t_215 - Float64(x * 4.47154)))), fmax(fmax(t_523, t_648), Float64(Float64(x * 4.47154) - t_215))), fmax(fmax(t_223, Float64(1.51738 - t_912)), t_808)), fmax(fmax(t_1018, t_87), Float64(t_912 - 1.51738))), fmax(fmax(t_94, t_87), Float64(t_912 - 1.57238))), fmax(fmax(t_523, t_808), Float64(1.57238 - t_912))), fmax(t_724, fmin(fmax(fmax(t_578, Float64(Float64(x * 8.13008) - 6.0525)), Float64(5.5525 - Float64(x * 8.13008))), fmax(fmax(t_724, Float64(-fmin(fmax(fmax(t_277, Float64(Float64(x * 2.23577) - t_1019)), Float64(2.92819 - t_25)), fmax(fmax(t_39, Float64(t_25 - 2.92819)), Float64(t_1019 - Float64(x * 2.23577)))))), Float64(0.175 - t_723))))), fmax(fmax(t_384, t_524), Float64(4.5525 - Float64(x * 8.13008)))), fmax(fmax(t_382, Float64(Float64(x * 8.13008) - 4.2025)), t_146)), fmax(fmax(fmax(fmax(fmax(t_16, t_524), t_146), t_976), Float64(0.175 - t_546)), Float64(t_546 - 0.275))), fmax(fmax(Float64(-fmin(fmax(fmax(Float64(t_367 - Float64(x * 2.27642)), Float64(Float64(x * 4.5122) - 2.26024)), Float64(1.80744 - t_1014)), fmax(fmax(Float64(t_1014 - 1.80744), Float64(2.26024 - Float64(x * 4.5122))), Float64(Float64(x * 2.27642) - t_367)))), Float64(0.175 - t_178)), Float64(t_178 - 0.275))), fmax(fmax(t_958, Float64(Float64(x * 8.13008) - 3.3975)), Float64(3.2975 - Float64(x * 8.13008)))), Float64(sqrt(Float64(t_104 + (Float64(Float64(x * 8.13008) - 3.3475) ^ 2.0))) - 0.075)), fmax(Float64(-fmin(fmax(fmax(fmax(t_577, Float64(Float64(y * 8.13008) - 2.8875)), t_943), Float64(0.355 + Float64(x * 5.42005))), Float64(sqrt(Float64((Float64(2.885 - Float64(y * 8.13008)) ^ 2.0) + (Float64(-Float64(0.346667 + Float64(x * 3.61337))) ^ 2.0))) - 0.0625))), Float64(sqrt(Float64((Float64(2.8875 - Float64(y * 8.13008)) ^ 2.0) + (t_943 ^ 2.0))) - 0.1625))), fmax(Float64(-fmin(fmax(fmax(fmax(t_245, Float64(2.6625 - Float64(y * 8.13008))), t_14), Float64(-Float64(0.68 + Float64(x * 5.42005)))), Float64(sqrt(Float64((Float64(Float64(y * 8.13008) - 2.665) ^ 2.0) + (Float64(0.343334 + Float64(x * 3.61337)) ^ 2.0))) - 0.0625))), Float64(sqrt(Float64((Float64(Float64(y * 8.13008) - 2.6625) ^ 2.0) + (t_14 ^ 2.0))) - 0.1625))), fmax(fmax(t_958, t_18), Float64(-Float64(1.22 + Float64(x * 8.13008))))), fmax(fmax(fmax(t_16, t_976), Float64(1.57 + Float64(x * 8.13008))), t_565)), fmax(fmax(fmax(fmax(t_384, t_18), t_565), Float64(0.175 - t_177)), Float64(t_177 - 0.275))), fmax(fmax(t_642, Float64(1.77 + Float64(x * 8.13008))), Float64(-Float64(1.87 + Float64(x * 8.13008))))), fmax(fmax(t_642, Float64(2.02 + Float64(x * 8.13008))), Float64(-Float64(2.12 + Float64(x * 8.13008))))), fmax(fmax(fmax(fmax(fmax(Float64(-fmin(fmax(fmax(Float64(Float64(0.0958748 + Float64(x * 2.84553)) - Float64(y * 0.813008)), Float64(1.26444 - t_492)), Float64(Float64(y * 4.87805) - t_396)), fmax(fmax(Float64(t_396 - Float64(y * 4.87805)), Float64(t_492 - 1.26444)), Float64(Float64(y * 0.813008) - Float64(0.095875 + Float64(x * 2.84553)))))), t_24), Float64(2.35 - Float64(y * 8.13008))), Float64(Float64(x * 8.13008) - 0.5475)), Float64(0.3975 - Float64(x * 8.13008))), Float64(sqrt(Float64((Float64(Float64(y * 2.71003) - 0.858333) ^ 2.0) + (Float64(Float64(x * 8.13008) - 0.4725) ^ 2.0))) - 0.075))), Float64(sqrt(Float64((t_24 ^ 2.0) + (Float64(Float64(x * 8.13008) - 0.4975) ^ 2.0))) - 0.075)), fmax(fmax(Float64(-fmin(fmax(fmax(Float64(Float64(y * 2.23577) - t_811), Float64(Float64(x * 4.5122) - 0.203962)), Float64(0.788562 - t_1014)), fmax(fmax(Float64(t_1014 - 0.788562), Float64(0.203962 - Float64(x * 4.5122))), Float64(t_811 - Float64(y * 2.23577))))), Float64(0.175 - t_513)), Float64(t_513 - 0.275))), fmax(fmax(t_958, Float64(0.3075 + Float64(x * 8.13008))), Float64(-Float64(0.4075 + Float64(x * 8.13008))))), Float64(sqrt(Float64(t_104 + (Float64(0.357501 + Float64(x * 8.13008)) ^ 2.0))) - 0.075)), fmax(fmax(t_382, Float64(3.845 + Float64(x * 8.13008))), Float64(-Float64(3.945 + Float64(x * 8.13008))))), fmax(fmax(t_383, t_230), Float64(-Float64(4.17 + Float64(x * 8.13008))))), fmax(fmax(t_958, Float64(4.52 + Float64(x * 8.13008))), t_821)), fmax(fmax(fmax(fmax(fmax(t_16, t_626), t_230), t_821), Float64(0.175 - t_356)), Float64(t_356 - 0.275))), fmax(t_911, fmin(fmax(fmax(t_578, Float64(4.72 + Float64(x * 8.13008))), Float64(-Float64(5.22 + Float64(x * 8.13008)))), fmax(fmax(t_911, Float64(-fmin(fmax(fmax(t_277, Float64(t_150 - Float64(y * 1.21951))), Float64(-t_289)), fmax(fmax(t_39, t_289), Float64(Float64(y * 1.21951) - t_150))))), Float64(0.175 - t_910))))), fmax(fmax(t_223, Float64(t_12 - Float64(y * 2.03252))), t_152)), fmax(fmax(t_1018, t_372), Float64(Float64(y * 2.03252) - t_12))), fmax(fmax(t_94, t_372), Float64(Float64(y * 2.03252) - t_694))), fmax(fmax(t_523, t_152), Float64(t_694 - Float64(y * 2.03252)))), fmax(fmax(t_223, Float64(-t_197)), t_373)), fmax(fmax(fmax(t_381, Float64(Float64(y * 8.13008) - 3.025)), Float64(2.27 + Float64(x * 8.13008))), t_69)), fmax(fmax(fmax(fmax(t_69, Float64(Float64(y * 8.13008) - 3.15)), Float64(2.85 - Float64(y * 8.13008))), Float64(1.72 + Float64(x * 8.13008))), fmin(fmax(Float64(0.075 - t_640), Float64(t_640 - 0.175)), fmax(Float64(0.075 - t_641), Float64(t_641 - 0.175))))), fmax(fmax(t_369, t_117), t_258)), fmax(fmax(t_488, t_566), t_102)), fmax(fmax(t_488, t_1018), t_857)), fmax(fmax(t_258, t_856), t_223)), fmax(fmax(t_223, t_117), t_318)), fmax(fmax(t_1018, t_566), t_568)), fmax(fmax(t_94, t_857), t_568)), fmax(fmax(t_523, t_856), t_318)), fmax(fmax(t_223, Float64(-t_121)), t_267)), fmax(fmax(t_1018, t_121), t_571)), fmax(fmax(t_94, t_571), t_787)), fmax(fmax(t_523, t_267), Float64(-t_787))), fmax(fmax(fmax(t_684, Float64(-Float64(4.725 + Float64(x * 8.13008)))), Float64(-Float64(0.0749998 + Float64(y * 8.13008)))), Float64(4.625 + Float64(x * 8.13008)))), fmax(Float64(0.175 - t_761), Float64(t_761 - 0.275))), fmax(fmax(t_685, t_442), Float64(-t_813))), fmax(fmax(t_796, t_880), t_84)), fmax(fmax(fmax(fmax(t_759, t_442), t_84), Float64(0.175 - t_766)), Float64(t_766 - 0.275))), fmax(fmax(t_940, Float64(-t_38)), Float64(6.175 + Float64(x * 8.13008)))), fmax(fmax(fmax(t_684, Float64(0.75 - Float64(y * 8.13008))), t_582), t_38)), fmax(fmax(fmax(t_379, t_582), t_38), Float64(Float64(y * 8.13008) - 0.4))), fmax(fmax(fmax(fmax(t_940, t_581), Float64(-Float64(7.175 + Float64(x * 8.13008)))), Float64(0.175 - t_769)), Float64(t_769 - 0.275))), fmax(fmax(fmax(t_379, t_190), t_722), Float64(-t_549))), fmax(fmax(t_685, t_144), t_227)), fmax(fmax(t_759, t_525), Float64(-Float64(1.125 + Float64(x * 8.13008))))), fmax(fmax(t_940, Float64(1.475 + Float64(x * 8.13008))), t_147)), fmax(fmax(fmax(fmax(t_796, t_525), t_147), Float64(0.175 - t_770)), Float64(t_770 - 0.275))), fmax(fmax(t_941, Float64(1.825 + Float64(x * 8.13008))), Float64(-Float64(1.925 + Float64(x * 8.13008))))), fmax(fmax(t_424, t_364), t_415)), fmax(fmax(fmax(fmax(t_380, t_364), t_415), Float64(0.15 - t_696)), Float64(t_696 - 0.25))), fmax(fmax(t_1012, t_290), Float64(-Float64(2.975 + Float64(x * 8.13008))))), fmax(fmax(t_685, Float64(3.325 + Float64(x * 8.13008))), t_937)), fmax(fmax(fmax(fmax(fmax(t_684, t_1017), t_290), t_937), Float64(0.175 - t_765)), Float64(t_765 - 0.275))), fmax(Float64(0.175 - t_945), Float64(t_945 - 0.275))), fmax(fmax(t_689, Float64(Float64(x * 8.13008) - 5.958)), t_426)), fmax(fmax(fmax(fmax(fmax(t_68, Float64(0.175 - t_928)), Float64(t_928 - 0.275)), t_304), t_153), t_426)), fmax(fmax(fmax(t_388, Float64(5.633 - Float64(x * 8.13008))), t_687), t_153)), Float64(sqrt(Float64((Float64(Float64(y * 8.13008) - 2.1) ^ 2.0) + (Float64(Float64(x * 8.13008) - 5.683) ^ 2.0))) - 0.075)), fmax(fmax(fmax(t_484, Float64(Float64(x * 8.13008) - 5.508)), Float64(5.408 - Float64(x * 8.13008))), t_687)), fmax(fmax(fmax(t_484, Float64(Float64(x * 8.13008) - 5.258)), Float64(5.158 - Float64(x * 8.13008))), t_687)), fmax(fmax(fmax(Float64(Float64(y * 8.13008) - 1.925), Float64(Float64(x * 8.13008) - 5.008)), t_702), t_687)), fmax(fmax(fmax(fmax(t_702, t_118), Float64(1.75 - Float64(y * 8.13008))), t_904), fmin(fmax(Float64(0.075 - t_496), Float64(t_496 - 0.175)), fmax(Float64(0.075 - t_495), Float64(t_495 - 0.175))))), fmax(fmax(fmax(fmax(fmax(t_190, t_684), t_1017), t_227), Float64(0.175 - t_772)), Float64(t_772 - 0.275))), fmax(t_764, fmin(fmax(fmax(fmax(t_294, t_419), t_286), t_409), fmax(fmax(t_764, Float64(-fmin(fmax(fmax(t_97, Float64(t_79 - Float64(y * 1.21951))), Float64(-t_186)), fmax(fmax(t_729, t_186), Float64(Float64(y * 1.21951) - t_79))))), Float64(0.175 - t_763))))), fmax(t_936, fmin(fmax(fmax(fmax(Float64(Float64(y * 8.13008) - 1.715), Float64(1.625 - Float64(y * 8.13008))), Float64(Float64(x * 8.13008) - 7.058)), Float64(6.558 - Float64(x * 8.13008))), fmax(fmax(t_936, Float64(-fmin(fmax(fmax(Float64(Float64(y * 5.28455) - 1.08875), Float64(Float64(x * 2.23577) - t_336)), Float64(2.6547 - t_25)), fmax(fmax(Float64(t_25 - 2.6547), Float64(t_336 - Float64(x * 2.23577))), Float64(1.08875 - Float64(y * 5.28455)))))), Float64(0.175 - t_935))))), fmax(fmax(fmax(t_559, t_687), t_304), Float64(6.308 - Float64(x * 8.13008)))), fmax(Float64(t_931 - 0.275), Float64(0.175 - t_931))), fmax(fmax(t_359, Float64(Float64(x * 4.47154) - t_1021)), t_96)), fmax(fmax(t_228, Float64(t_1021 - Float64(x * 4.47154))), t_673)), fmax(fmax(t_228, t_102), Float64(t_526 - Float64(x * 4.47154)))), fmax(fmax(t_96, Float64(Float64(x * 4.47154) - t_526)), t_369)), fmax(fmax(t_359, Float64(1.4775 - t_912)), t_148)), fmax(fmax(t_673, t_357), Float64(t_912 - 1.4775))), fmax(fmax(t_102, t_357), Float64(t_912 - 1.5325))), fmax(fmax(t_369, t_148), Float64(1.5325 - t_912))), fmax(fmax(t_359, Float64(Float64(x * 4.47154) - t_149)), t_288)), fmax(fmax(t_673, t_554), Float64(t_149 - Float64(x * 4.47154)))), fmax(fmax(t_102, t_554), Float64(t_922 - Float64(x * 4.47154)))), fmax(fmax(t_369, t_288), Float64(Float64(x * 4.47154) - t_922))), fmax(fmax(t_359, Float64(1.2025 - t_912)), t_418)), fmax(fmax(t_673, t_682), Float64(t_912 - 1.2025))), fmax(fmax(t_102, t_682), Float64(t_912 - 1.2575))), fmax(fmax(t_369, t_418), Float64(1.2575 - t_912))), fmax(Float64(0.175 - t_930), Float64(t_930 - 0.275))), fmax(fmax(fmax(fmax(t_687, Float64(-fmin(fmin(fmin(fmin(fmin(fmin(fmin(fmax(fmax(Float64(Float64(y * 4.06504) - 1.2), Float64(Float64(x * 4.06504) - 2.104)), Float64(3.054 - t_979)), fmax(fmax(Float64(t_979 - 3.054), Float64(2.104 - Float64(x * 4.06504))), Float64(1.2 - Float64(y * 4.06504)))), fmax(fmax(Float64(Float64(x * 8.13008) - t_428), Float64(1.8858 - t_697)), Float64(t_817 - Float64(x * 5.28455)))), fmax(fmax(Float64(Float64(x * 5.28455) - t_817), Float64(t_697 - 1.8858)), Float64(t_428 - Float64(x * 8.13008)))), fmax(fmax(Float64(0.351 - Float64(y * 2.19512)), Float64(1.2978 - Float64(x * 2.84553))), Float64(t_444 - 1.7433))), fmax(fmax(Float64(1.7433 - t_444), Float64(Float64(x * 2.84553) - 1.2978)), Float64(Float64(y * 2.19512) - 0.351))), fmax(fmax(Float64(Float64(y * 3.25203) - 0.96), Float64(Float64(x * 4.47154) - t_353)), Float64(2.0394 - Float64(x * 4.47154)))), fmax(fmax(Float64(Float64(x * 4.47154) - 2.0394), Float64(t_353 - Float64(x * 4.47154))), Float64(0.96 - Float64(y * 3.25203)))))), t_1), Float64(Float64(x * 8.13008) - 4.108)), Float64(3.608 - Float64(x * 8.13008)))), fmax(fmax(t_689, Float64(Float64(x * 8.13008) - 3.25)), Float64(3.15 - Float64(x * 8.13008)))), fmax(fmax(fmax(fmax(t_689, t_977), Float64(4.5 - Float64(x * 11.6144))), Float64(0.45 - sqrt(Float64(t_269 + (Float64(Float64(x * 14.518) - 6.3125) ^ 2.0))))), Float64(sqrt(Float64(t_269 + (t_977 ^ 2.0))) - 0.55))), fmax(fmax(fmax(t_153, t_124), t_173), Float64(1.85 - Float64(y * 8.13008)))), fmax(fmax(fmax(t_687, t_124), t_575), t_173)), fmax(fmax(fmax(fmax(t_688, t_123), Float64(-Float64(3.275 + Float64(x * 8.13008)))), Float64(0.175 - t_929)), Float64(t_929 - 0.275))), fmax(fmax(fmax(t_1, Float64(2.3 - Float64(y * 8.13008))), t_807), t_1004)), fmax(fmax(fmax(t_687, t_575), t_807), t_1004)), fmax(fmax(fmax(t_481, t_687), t_1), Float64(-Float64(3.9 + Float64(x * 8.13008))))), fmax(fmax(t_359, Float64(t_718 - Float64(y * 2.03252))), t_1010)), fmax(fmax(t_673, t_1009), Float64(Float64(y * 2.03252) - t_718))), fmax(fmax(t_102, t_1009), Float64(Float64(y * 2.03252) - t_447))), fmax(fmax(t_369, t_1010), Float64(t_447 - Float64(y * 2.03252)))), fmax(fmax(t_359, Float64(-t_40)), t_184)), fmax(fmax(t_673, t_40), t_449)), fmax(fmax(t_102, t_449), t_651)), fmax(fmax(t_369, t_184), Float64(-t_651))), fmax(fmax(t_359, Float64(t_187 - Float64(y * 2.03252))), t_355)), fmax(fmax(t_673, t_594), Float64(Float64(y * 2.03252) - t_187))), fmax(fmax(t_102, t_594), Float64(Float64(y * 2.03252) - t_6))), fmax(fmax(t_369, t_355), Float64(t_6 - Float64(y * 2.03252)))), fmax(fmax(fmax(Float64(1.65 - Float64(y * 8.13008)), Float64(0.300001 + Float64(x * 8.13008))), t_1), Float64(-Float64(0.400001 + Float64(x * 8.13008))))), fmax(fmax(fmax(t_464, t_118), Float64(1.95 - Float64(y * 8.13008))), t_100)), fmax(fmax(fmax(fmax(fmax(t_464, t_687), t_100), t_556), Float64(0.15 - t_676)), Float64(t_676 - 0.25))), fmax(fmax(fmax(fmax(fmax(Float64(-fmin(fmax(fmax(Float64(t_558 - Float64(y * 0.813008)), Float64(0.281875 - t_492)), Float64(Float64(y * 4.87805) - t_938)), fmax(fmax(Float64(t_938 - Float64(y * 4.87805)), Float64(t_492 - 0.281875)), Float64(Float64(y * 0.813008) - t_558)))), t_296), Float64(1.25 - Float64(y * 8.13008))), Float64(1.375 + Float64(x * 8.13008))), Float64(-Float64(1.525 + Float64(x * 8.13008)))), Float64(sqrt(Float64((Float64(Float64(y * 2.71003) - 0.491667) ^ 2.0) + (Float64(1.45 + Float64(x * 8.13008)) ^ 2.0))) - 0.075))), Float64(sqrt(Float64((t_296 ^ 2.0) + (Float64(1.425 + Float64(x * 8.13008)) ^ 2.0))) - 0.075)), fmax(Float64(0.175 - t_934), Float64(t_934 - 0.275))), fmax(fmax(t_688, Float64(-t_173)), Float64(2.275 + Float64(x * 8.13008)))), fmax(fmax(fmax(fmax(fmax(Float64(t_754 - 0.275), t_206), t_305), Float64(0.175 - t_754)), t_486), t_627)), fmax(fmax(fmax(t_19, Float64(Float64(x * 8.13008) - 1.556)), Float64(1.456 - Float64(x * 8.13008))), t_259)), fmax(Float64(0.175 - t_436), Float64(t_436 - 0.275))), fmax(fmax(fmax(fmax(fmax(Float64(-fmin(fmax(fmax(Float64(t_497 - Float64(y * 0.813008)), Float64(2.27973 - t_492)), Float64(Float64(y * 4.87805) - t_868)), fmax(fmax(Float64(t_868 - Float64(y * 4.87805)), Float64(t_492 - 2.27973)), Float64(Float64(y * 0.813008) - t_497)))), t_271), Float64(4.55 - Float64(y * 8.13008))), Float64(Float64(x * 8.13008) - 0.171)), Float64(0.0209999 - Float64(x * 8.13008))), Float64(sqrt(Float64((Float64(Float64(y * 2.71003) - 1.59167) ^ 2.0) + (Float64(Float64(x * 8.13008) - 0.0959997) ^ 2.0))) - 0.075))), Float64(sqrt(Float64((t_271 ^ 2.0) + (Float64(Float64(x * 8.13008) - 0.121) ^ 2.0))) - 0.075)), fmax(fmax(t_879, t_998), Float64(3.65055 - t_912))), fmax(fmax(Float64(Float64(x * 4.47154) - t_330), t_505), t_649)), fmax(fmax(t_1005, Float64(t_330 - Float64(x * 4.47154))), t_86)), fmax(fmax(t_1005, Float64(Float64(0.970551 + Float64(y * 2.03252)) - Float64(x * 4.47154))), t_404)), fmax(fmax(t_505, Float64(Float64(x * 4.47154) - Float64(0.970552 + Float64(y * 2.03252)))), t_879)), fmax(fmax(Float64(3.32055 - t_912), t_88), t_649)), fmax(fmax(t_281, Float64(t_912 - 3.32055)), t_86)), fmax(fmax(t_281, Float64(t_912 - 3.37555)), t_404)), fmax(fmax(t_88, Float64(3.37555 - t_912)), t_879)), fmax(fmax(fmax(Float64(2.751 - Float64(x * 8.13008)), Float64(Float64(x * 8.13008) - 2.851)), t_283), t_259)), fmax(fmax(fmax(t_592, t_652), t_814), t_486)), fmax(fmax(fmax(t_652, t_814), t_46), t_259)), fmax(fmax(fmax(fmax(fmax(Float64(1.851 - Float64(x * 8.13008)), Float64(Float64(x * 8.13008) - 2.576)), Float64(0.175 - t_661)), Float64(t_661 - 0.275)), t_283), t_259)), fmax(fmax(fmax(t_206, Float64(2.126 - Float64(x * 8.13008))), t_233), t_259)), fmax(fmax(fmax(Float64(Float64(x * 8.13008) - 1.776), t_305), t_259), t_486)), fmax(fmax(fmax(Float64(4.6 - Float64(y * 8.13008)), Float64(1.862 + Float64(x * 8.13008))), Float64(-Float64(1.962 + Float64(x * 8.13008)))), t_486)), Float64(sqrt(Float64((Float64(Float64(y * 8.13008) - 5.4) ^ 2.0) + (Float64(1.912 + Float64(x * 8.13008)) ^ 2.0))) - 0.075)), fmax(fmax(fmax(t_923, Float64(-Float64(2.762 + Float64(x * 8.13008)))), t_283), t_259)), fmax(fmax(fmax(t_592, t_370), t_924), t_486)), fmax(fmax(fmax(t_46, t_370), t_924), t_259)), fmax(fmax(fmax(fmax(fmax(Float64(1.762 + Float64(x * 8.13008)), Float64(-t_370)), Float64(0.175 - t_371)), Float64(t_371 - 0.275)), t_283), t_259)), fmax(fmax(fmax(t_19, Float64(2.882 + Float64(x * 8.13008))), Float64(-Float64(2.982 + Float64(x * 8.13008)))), t_259)), fmax(Float64(0.175 - t_199), Float64(t_199 - 0.275))), fmax(t_753, fmin(fmax(fmax(fmax(Float64(0.0790005 + Float64(x * 8.13008)), Float64(-Float64(0.579001 + Float64(x * 8.13008)))), t_612), t_755), fmax(fmax(t_753, Float64(-fmin(fmax(fmax(Float64(t_252 - Float64(y * 1.21951)), Float64(2.34202 - t_25)), t_487), fmax(fmax(Float64(t_25 - 2.34202), Float64(Float64(y * 1.21951) - t_252)), t_967)))), Float64(0.175 - t_752))))), fmax(fmax(fmax(Float64(0.987 + Float64(x * 8.13008)), Float64(-Float64(1.087 + Float64(x * 8.13008)))), t_259), t_486)), fmax(fmax(fmax(fmax(fmax(t_865, Float64(-Float64(1.55286 + Float64(x * 11.6144)))), Float64(0.45 - sqrt(Float64(t_314 + (Float64(1.25357 + Float64(x * 14.518)) ^ 2.0))))), Float64(sqrt(Float64(t_314 + (t_865 ^ 2.0))) - 0.55)), t_259), t_486)), fmax(fmax(fmax(t_122, Float64(-Float64(1.287 + Float64(x * 8.13008)))), t_259), t_486)), fmax(fmax(fmax(Float64(1.637 + Float64(x * 8.13008)), t_708), t_997), t_486)), fmax(fmax(fmax(fmax(fmax(t_122, t_708), Float64(0.175 - t_326)), Float64(t_326 - 0.275)), t_259), t_157)), fmax(fmax(fmax(fmax(fmax(Float64(4.325 - Float64(y * 8.13008)), Float64(1.587 + Float64(x * 8.13008))), Float64(-t_331)), Float64(0.175 - t_716)), Float64(t_716 - 0.275)), t_714)), fmax(fmax(fmax(t_132, t_216), t_334), t_445)), fmax(fmax(fmax(t_216, Float64(Float64(x * 8.13008) - 6.3305)), Float64(6.2305 - Float64(x * 8.13008))), t_89)), fmax(fmax(Float64(-fmin(fmax(fmax(Float64(Float64(y * 2.23577) - t_518), Float64(Float64(x * 4.5122) - 2.94178)), Float64(3.05264 - t_1014)), fmax(fmax(Float64(t_1014 - 3.05264), Float64(2.94178 - Float64(x * 4.5122))), Float64(t_518 - Float64(y * 2.23577))))), Float64(0.175 - t_461)), Float64(t_461 - 0.275))), fmax(fmax(t_1022, Float64(Float64(x * 8.13008) - 4.6255)), Float64(4.5255 - Float64(x * 8.13008)))), Float64(sqrt(Float64(t_411 + (Float64(Float64(x * 8.13008) - 4.5755) ^ 2.0))) - 0.075)), fmax(fmax(t_915, t_56), Float64(4.3005 - Float64(x * 8.13008)))), fmax(Float64(0.175 - t_468), Float64(t_468 - 0.275))), fmax(fmax(fmax(fmax(fmax(t_56, t_101), Float64(3.8505 - Float64(x * 8.13008))), Float64(0.175 - t_474)), Float64(t_474 - 0.275)), t_283)), fmax(t_732, fmin(fmax(fmax(fmax(Float64(4.242 + Float64(x * 8.13008)), Float64(-Float64(4.742 + Float64(x * 8.13008)))), t_612), t_755), fmax(fmax(t_732, Float64(-fmin(fmax(fmax(Float64(t_105 - Float64(y * 1.21951)), Float64(1.1972 - t_25)), t_487), fmax(fmax(Float64(t_25 - 1.1972), Float64(Float64(y * 1.21951) - t_105)), t_967)))), Float64(0.175 - t_731))))), fmax(fmax(fmax(t_143, Float64(-Float64(5.25 + Float64(x * 8.13008)))), t_259), t_486)), fmax(fmax(fmax(fmax(fmax(t_244, Float64(-Float64(7.5 + Float64(x * 11.6144)))), Float64(0.45 - sqrt(Float64(t_314 + (Float64(8.6875 + Float64(x * 14.518)) ^ 2.0))))), Float64(sqrt(Float64(t_314 + (t_244 ^ 2.0))) - 0.55)), t_259), t_486)), fmax(t_301, fmin(fmax(fmax(fmax(Float64(5.35 + Float64(x * 8.13008)), Float64(-Float64(5.85 + Float64(x * 8.13008)))), t_612), t_755), fmax(fmax(t_301, Float64(-fmin(fmax(fmax(Float64(t_564 - Float64(y * 1.21951)), Float64(0.8925 - t_25)), t_487), fmax(fmax(Float64(t_25 - 0.8925), Float64(Float64(y * 1.21951) - t_564)), t_967)))), Float64(0.175 - t_300))))), fmax(fmax(fmax(t_311, Float64(-Float64(6.15 + Float64(x * 8.13008)))), t_259), t_157)), fmax(fmax(t_779, t_283), t_259)), fmax(fmax(fmax(fmax(fmax(t_182, t_311), Float64(0.175 - t_655)), Float64(t_655 - 0.275)), t_997), t_486)), fmax(fmax(fmax(t_89, t_570), t_334), t_445)), fmax(fmax(t_915, t_782), Float64(0.8705 - Float64(x * 8.13008)))), fmax(Float64(0.175 - t_459), Float64(t_459 - 0.275))), fmax(fmax(fmax(fmax(fmax(t_101, t_782), Float64(0.4205 - Float64(x * 8.13008))), Float64(0.175 - t_473)), Float64(t_473 - 0.275)), t_283)), fmax(fmax(t_1022, t_327), Float64(0.220499 - Float64(x * 8.13008)))), fmax(fmax(fmax(t_3, Float64(0.129501 + Float64(x * 8.13008))), t_999), t_126)), fmax(fmax(fmax(fmax(t_455, t_327), t_999), Float64(0.175 - t_506)), Float64(t_506 - 0.275))), fmax(Float64(0.175 - t_457), Float64(t_457 - 0.275))), fmax(fmax(t_1022, Float64(1.2375 + Float64(x * 8.13008))), Float64(-Float64(1.3375 + Float64(x * 8.13008))))), fmax(fmax(fmax(fmax(t_1022, t_133), Float64(-Float64(1.91072 + Float64(x * 11.6144)))), Float64(0.45 - sqrt(Float64(t_587 + (Float64(1.70089 + Float64(x * 14.518)) ^ 2.0))))), Float64(sqrt(Float64(t_587 + (t_133 ^ 2.0))) - 0.55))), fmax(fmax(t_350, Float64(Float64(x * 8.13008) - 3.7305)), Float64(3.6305 - Float64(x * 8.13008)))), fmax(Float64(0.175 - t_726), Float64(t_726 - 0.275))), fmax(fmax(t_350, Float64(Float64(x * 8.13008) - 3.0705)), Float64(2.9705 - Float64(x * 8.13008)))), fmax(fmax(t_350, Float64(Float64(x * 8.13008) - 2.8205)), Float64(2.7205 - Float64(x * 8.13008)))), fmax(fmax(fmax(t_216, Float64(Float64(y * 8.13008) - 6.325)), Float64(Float64(x * 8.13008) - 2.5705)), t_189)), fmax(fmax(fmax(fmax(t_189, t_540), Float64(6.15 - Float64(y * 8.13008))), Float64(Float64(x * 8.13008) - 3.1205)), fmin(fmax(Float64(0.075 - t_349), Float64(t_349 - 0.175)), fmax(Float64(0.075 - t_548), Float64(t_548 - 0.175))))), fmax(fmax(t_455, t_103), Float64(1.5205 - Float64(x * 8.13008)))), fmax(fmax(t_422, Float64(Float64(x * 8.13008) - 1.1705)), t_603)), fmax(fmax(fmax(fmax(fmax(t_3, t_103), t_603), t_126), Float64(0.175 - t_458)), Float64(t_458 - 0.275))), fmax(fmin(fmax(fmax(fmax(t_850, Float64(Float64(x * 8.13008) - 6.4085)), Float64(5.9085 - Float64(x * 8.13008))), t_154), fmax(fmax(Float64(-fmin(fmax(fmax(t_610, Float64(Float64(x * 2.23577) - t_852)), Float64(3.57609 - t_25)), fmax(fmax(Float64(t_25 - 3.57609), Float64(t_852 - Float64(x * 2.23577))), t_302))), Float64(0.175 - t_622)), t_959)), t_959)), fmax(fmax(t_254, Float64(Float64(x * 8.13008) - 5.7585)), Float64(5.6585 - Float64(x * 8.13008)))), fmax(fmax(t_254, Float64(Float64(x * 8.13008) - 5.5085)), Float64(5.4085 - Float64(x * 8.13008)))), fmax(fmax(fmax(t_253, Float64(Float64(y * 8.13008) - 4.125)), Float64(Float64(x * 8.13008) - 5.2585)), t_312)), fmax(fmax(fmax(fmax(t_312, Float64(Float64(y * 8.13008) - 4.25)), Float64(3.95 - Float64(y * 8.13008))), Float64(Float64(x * 8.13008) - 5.8085)), fmin(fmax(Float64(0.075 - t_266), Float64(t_266 - 0.175)), fmax(Float64(0.075 - t_707), Float64(t_707 - 0.175))))), fmax(fmax(t_1018, t_197), t_374)), fmax(fmax(t_94, t_374), t_392)), fmax(fmax(t_523, t_373), Float64(-t_392))), fmax(fmax(t_642, Float64(6.09 + Float64(x * 8.13008))), Float64(-Float64(6.19 + Float64(x * 8.13008))))), fmax(Float64(0.175 - t_328), Float64(t_328 - 0.275))), fmax(t_1001, fmin(fmax(fmax(t_578, t_242), Float64(-t_144)), fmax(fmax(t_1001, Float64(-fmin(fmax(fmax(t_277, Float64(t_717 - Float64(y * 1.21951))), Float64(-t_1007)), fmax(fmax(t_39, t_1007), Float64(Float64(y * 1.21951) - t_717))))), Float64(0.175 - t_1000))))), fmax(fmax(fmax(t_294, t_381), t_175), Float64(-Float64(7.55 + Float64(x * 8.13008))))), fmax(fmax(t_382, Float64(7.9 + Float64(x * 8.13008))), t_33)), fmax(fmax(fmax(fmax(fmax(t_294, t_16), t_976), t_33), Float64(0.175 - t_514)), Float64(t_514 - 0.275))), fmax(fmax(fmax(fmax(t_715, Float64(2.121 - Float64(x * 8.13008))), Float64(Float64(x * 8.13008) - 2.846)), Float64(0.175 - t_621)), Float64(t_621 - 0.275))), fmax(t_816, fmin(fmax(fmax(t_851, Float64(Float64(x * 8.13008) - 2.496)), Float64(1.996 - Float64(x * 8.13008))), fmax(fmax(t_816, Float64(-fmin(fmax(fmax(t_610, Float64(Float64(x * 2.23577) - t_51)), Float64(2.50015 - t_25)), fmax(fmax(t_302, Float64(t_25 - 2.50015)), Float64(t_51 - Float64(x * 2.23577)))))), Float64(0.175 - t_815))))), fmax(fmax(fmax(t_253, Float64(Float64(x * 8.13008) - 1.588)), Float64(1.488 - Float64(x * 8.13008))), t_59)), fmax(fmax(fmax(fmax(fmax(t_253, t_416), Float64(2.12571 - Float64(x * 11.6144))), Float64(0.45 - sqrt(Float64(t_925 + (Float64(Float64(x * 14.518) - 3.34464) ^ 2.0))))), Float64(sqrt(Float64(t_925 + (t_416 ^ 2.0))) - 0.55)), t_59)), fmax(fmax(fmax(t_253, Float64(Float64(x * 8.13008) - 1.363)), Float64(1.263 - Float64(x * 8.13008))), t_59)), Float64(sqrt(Float64((Float64(Float64(y * 8.13008) - 4.3) ^ 2.0) + (Float64(Float64(x * 8.13008) - 1.313) ^ 2.0))) - 0.075)), fmax(fmax(fmax(t_253, t_609), Float64(1.038 - Float64(x * 8.13008))), t_59)), fmax(Float64(t_616 - 0.275), Float64(0.175 - t_616))), fmax(Float64(-fmin(fmax(fmax(fmax(t_850, Float64(Float64(y * 8.13008) - 3.9875)), t_955), Float64(Float64(x * 5.42005) - 2.939)), Float64(sqrt(Float64((Float64(3.985 - Float64(y * 8.13008)) ^ 2.0) + (Float64(1.84933 - Float64(x * 3.61337)) ^ 2.0))) - 0.0625))), Float64(sqrt(Float64((Float64(3.9875 - Float64(y * 8.13008)) ^ 2.0) + (t_955 ^ 2.0))) - 0.1625))), fmax(Float64(-fmin(fmax(fmax(fmax(Float64(Float64(y * 8.13008) - 3.925), Float64(3.7625 - Float64(y * 8.13008))), t_700), Float64(2.614 - Float64(x * 5.42005))), Float64(sqrt(Float64((Float64(Float64(y * 8.13008) - 3.765) ^ 2.0) + (Float64(Float64(x * 3.61337) - 1.85267) ^ 2.0))) - 0.0625))), Float64(sqrt(Float64((Float64(Float64(y * 8.13008) - 3.7625) ^ 2.0) + (t_700 ^ 2.0))) - 0.1625))), fmax(fmax(t_715, Float64(3.021 - Float64(x * 8.13008))), Float64(Float64(x * 8.13008) - 3.121))), fmax(fmax(fmax(t_59, Float64(4.05 - Float64(y * 8.13008))), t_522), t_499)), fmax(fmax(fmax(t_253, t_522), t_499), t_783)), fmax(fmax(fmax(fmax(t_255, t_212), Float64(-Float64(1.67143 + Float64(x * 11.6144)))), Float64(0.45 - sqrt(Float64(t_925 + (Float64(1.40179 + Float64(x * 14.518)) ^ 2.0))))), Float64(sqrt(Float64(t_925 + (t_212 ^ 2.0))) - 0.55))), fmax(t_620, fmin(fmax(fmax(t_851, Float64(1.97 + Float64(x * 8.13008))), Float64(-Float64(2.47 + Float64(x * 8.13008)))), fmax(fmax(t_620, Float64(-fmin(fmax(fmax(t_610, Float64(t_507 - Float64(y * 1.21951))), Float64(1.272 - t_25)), fmax(fmax(t_302, Float64(t_25 - 1.272)), Float64(Float64(y * 1.21951) - t_507))))), Float64(0.175 - t_619))))), fmax(fmax(t_217, Float64(t_332 - Float64(y * 2.03252))), t_512)), fmax(fmax(t_809, Float64(Float64(y * 2.03252) - t_332)), t_1011)), fmax(fmax(t_809, t_134), Float64(Float64(y * 2.03252) - t_221))), fmax(fmax(t_512, Float64(t_221 - Float64(y * 2.03252))), t_515)), fmax(fmax(t_217, Float64(-t_727)), t_41)), fmax(fmax(t_1011, t_727), t_285)), fmax(fmax(t_134, t_285), t_452)), fmax(fmax(t_515, t_41), Float64(-t_452))), fmax(fmax(t_254, Float64(3.34 + Float64(x * 8.13008))), Float64(-Float64(3.44 + Float64(x * 8.13008))))), fmax(fmax(fmax(t_412, Float64(Float64(x * 8.13008) - 0.688)), t_595), t_59)), fmax(fmax(fmax(fmax(t_614, t_609), t_595), Float64(0.175 - t_617)), Float64(t_617 - 0.275))), fmax(fmax(fmax(t_59, Float64(3.225 - Float64(y * 8.13008))), Float64(Float64(x * 8.13008) - 0.487999)), Float64(0.387999 - Float64(x * 8.13008)))), fmax(Float64(0.175 - t_618), Float64(t_618 - 0.275))), fmax(t_678, fmin(fmax(fmax(t_851, Float64(0.162001 + Float64(x * 8.13008))), Float64(-Float64(0.662001 + Float64(x * 8.13008)))), fmax(fmax(t_678, Float64(-fmin(fmax(fmax(t_610, Float64(t_13 - Float64(y * 1.21951))), Float64(1.7692 - t_25)), fmax(fmax(t_302, Float64(t_25 - 1.7692)), Float64(Float64(y * 1.21951) - t_13))))), Float64(0.175 - t_677))))), fmax(fmax(t_255, Float64(1.07 + Float64(x * 8.13008))), Float64(-Float64(1.17 + Float64(x * 8.13008))))), fmax(fmin(fmax(fmax(Float64(-fmin(fmax(fmax(t_487, Float64(Float64(x * 2.23577) - t_479)), Float64(4.04153 - t_25)), fmax(fmax(Float64(t_25 - 4.04153), Float64(t_479 - Float64(x * 2.23577))), t_967))), Float64(0.175 - t_159)), t_386), fmax(fmax(fmax(t_612, t_755), Float64(Float64(x * 8.13008) - 6.101)), Float64(5.601 - Float64(x * 8.13008)))), t_386)), fmax(fmax(fmax(t_112, Float64(5.301 - Float64(x * 8.13008))), t_259), t_157)), fmax(fmax(fmax(t_283, Float64(Float64(x * 8.13008) - 4.951)), t_629), t_259)), fmax(fmax(fmax(fmax(fmax(t_112, t_629), t_997), Float64(0.175 - t_166)), Float64(t_166 - 0.275)), t_486)), fmax(fmax(t_649, Float64(Float64(x * 4.47154) - t_703)), t_975)), fmax(fmax(t_974, Float64(t_703 - Float64(x * 4.47154))), t_86)), fmax(fmax(t_974, t_404), Float64(t_438 - Float64(x * 4.47154)))), fmax(fmax(t_975, Float64(Float64(x * 4.47154) - t_438)), t_879)), fmax(fmax(t_649, Float64(3.59555 - t_912)), t_998)), fmax(fmax(t_86, t_172), Float64(t_912 - 3.59555))), fmax(fmax(t_404, t_172), Float64(t_912 - 3.65055))), fmax(Float64(0.175 - t_623), Float64(t_623 - 0.275))), fmax(fmax(t_614, t_174), Float64(-Float64(4.15 + Float64(x * 8.13008))))), fmax(fmax(fmax(t_179, t_274), t_253), t_714)), fmax(fmax(fmax(fmax(fmax(t_274, t_412), t_59), t_174), Float64(0.175 - t_1002)), Float64(t_1002 - 0.275))), fmax(fmax(fmax(t_714, Float64(4.5 - Float64(y * 8.13008))), t_443), t_508)), fmax(fmax(fmax(t_253, t_783), t_443), t_508)), fmax(fmax(t_715, t_45), Float64(-Float64(5.7 + Float64(x * 8.13008))))), fmax(fmax(fmax(t_233, t_259), t_276), Float64(6.651 - Float64(x * 8.13008)))), fmax(fmax(fmax(t_259, t_486), Float64(Float64(x * 8.13008) - 6.30101)), t_900)), fmax(fmax(fmax(fmax(fmax(t_276, t_486), t_900), t_627), Float64(0.175 - t_339)), Float64(t_339 - 0.275))), fmax(fmax(fmax(fmax(t_127, t_92), t_136), Float64(0.175 - t_460)), Float64(t_460 - 0.275))), fmax(fmax(t_588, Float64(3.825 + Float64(x * 8.13008))), Float64(-Float64(3.925 + Float64(x * 8.13008))))), fmax(fmax(t_541, t_322), t_142)), fmax(fmax(fmax(fmax(fmax(t_216, t_322), t_142), t_596), Float64(0.15 - t_918)), Float64(t_918 - 0.25))), fmax(fmax(t_588, Float64(5.025 + Float64(x * 8.13008))), Float64(-Float64(5.125 + Float64(x * 8.13008))))), fmax(fmax(t_541, t_542), t_881)), fmax(fmax(fmax(fmax(fmax(t_216, t_596), t_542), t_881), Float64(0.15 - t_917)), Float64(t_917 - 0.25))), fmax(fmax(t_417, t_3), Float64(-Float64(5.475 + Float64(x * 8.13008))))), fmax(fmax(t_127, Float64(5.825 + Float64(x * 8.13008))), t_11)), fmax(fmax(fmax(fmax(t_417, t_454), t_11), Float64(0.175 - t_462)), Float64(t_462 - 0.275))), fmax(fmax(t_779, t_216), t_89)), fmax(fmax(fmax(t_519, t_89), t_570), t_107)), fmax(fmax(fmax(t_519, t_3), t_107), Float64(6.25 - Float64(y * 8.13008)))), fmax(fmax(fmax(t_519, t_132), t_216), t_107)), fmax(Float64(-fmin(fmax(fmax(fmax(Float64(6.025 - Float64(y * 8.13008)), Float64(Float64(y * 8.13008) - 6.1875)), t_202), Float64(1.425 + Float64(x * 5.42005))), Float64(sqrt(Float64((Float64(6.185 - Float64(y * 8.13008)) ^ 2.0) + (Float64(-Float64(1.06 + Float64(x * 3.61337))) ^ 2.0))) - 0.0625))), Float64(sqrt(Float64((Float64(6.1875 - Float64(y * 8.13008)) ^ 2.0) + (t_202 ^ 2.0))) - 0.1625))), fmax(Float64(-fmin(fmax(fmax(fmax(Float64(Float64(y * 8.13008) - 6.125), Float64(5.9625 - Float64(y * 8.13008))), t_201), Float64(-Float64(1.75 + Float64(x * 5.42005)))), Float64(sqrt(Float64((Float64(Float64(y * 8.13008) - 5.965) ^ 2.0) + (Float64(1.05667 + Float64(x * 3.61337)) ^ 2.0))) - 0.0625))), Float64(sqrt(Float64((Float64(Float64(y * 8.13008) - 5.9625) ^ 2.0) + (t_201 ^ 2.0))) - 0.1625))), fmax(fmax(t_1022, Float64(2.75 + Float64(x * 8.13008))), Float64(-Float64(2.85 + Float64(x * 8.13008))))), Float64(sqrt(Float64(t_411 + (Float64(2.8 + Float64(x * 8.13008)) ^ 2.0))) - 0.075)), fmax(fmax(t_455, t_92), Float64(-Float64(3.125 + Float64(x * 8.13008))))), fmax(fmax(t_422, Float64(3.475 + Float64(x * 8.13008))), t_136)), fmax(fmax(fmax(fmax(t_45, t_216), t_89), Float64(-t_107)), fmin(fmax(Float64(0.175 - t_870), Float64(t_870 - 0.275)), fmax(Float64(0.175 - t_214), Float64(t_214 - 0.275))))) end
function tmp = code(x, y) t_0 = (x * 8.13008) - 0.0979996; t_1 = (y * 8.13008) - 2.4; t_2 = (0.0999999 + (y * 8.13008)) ^ 2.0; t_3 = (y * 8.13008) - 6.35; t_4 = (x * 11.6144) - 3.18286; t_5 = 2.35 + (y * 8.13008); t_6 = 3.5125 + (x * 4.47154); t_7 = (7.725 + (x * 8.13008)) ^ 2.0; t_8 = -(0.3955 + (x * 5.42005)); t_9 = 4.0 + (y * 8.13008); t_10 = 0.15 + (y * 8.13008); t_11 = -(5.925 + (x * 8.13008)); t_12 = 3.716 + (x * 4.47154); t_13 = 0.5708 + (x * 2.23577); t_14 = 0.5175 + (x * 5.42005); t_15 = 1.38723 + (x * 4.47154); t_16 = (y * 8.13008) - 3.05; t_17 = (1.80223 + (y * 1.82927)) + (x * 4.47154); t_18 = 1.12 + (x * 8.13008); t_19 = (y * 8.13008) - 5.05; t_20 = 0.750575 + (y * 1.21951); t_21 = 2.95 + (x * 8.13008); t_22 = (y * 2.64228) + (x * 4.47154); t_23 = 0.9305 - (x * 8.13008); t_24 = (y * 8.13008) - 2.575; t_25 = (x * 2.23577) + (y * 4.06504); t_26 = 1.0405 + (x * 2.23577); t_27 = (x * 8.13008) - 5.5355; t_28 = (x * 5.42005) - 2.2095; t_29 = 7.98571 + (x * 11.6144); t_30 = -(5.2 + (x * 8.13008)); t_31 = 2.12 + (y * 3.25203); t_32 = 2.65 + (y * 8.13008); t_33 = -(8.0 + (x * 8.13008)); t_34 = (y * 8.13008) - 0.2; t_35 = (x * 5.42005) - 3.0345; t_36 = (x * 8.13008) - 2.9705; t_37 = ((y * 2.84553) + 4.13) + (x * 4.47154); t_38 = 6.275 + (x * 8.13008); t_39 = 1.80375 - (y * 5.28455); t_40 = ((y * 2.03252) + 2.5375) + (x * 4.47154); t_41 = (0.318501 + (y * 2.84553)) + (x * 4.47154); t_42 = 5.162 + (x * 8.13008); t_43 = 4.875 + (y * 8.13008); t_44 = (1.89845 + (y * 2.60163)) + (x * 2.84553); t_45 = 5.6 + (x * 8.13008); t_46 = (y * 8.13008) - 4.8; t_47 = 0.9 + (y * 8.13008); t_48 = 1.43045 + (x * 2.84553); t_49 = (y * 2.84553) + (x * 4.47154); t_50 = t_49 - 4.45138; t_51 = 0.16015 + (y * 1.21951); t_52 = 6.25 + (x * 8.13008); t_53 = 1.625 + (y * 8.13008); t_54 = t_53 ^ 2.0; t_55 = sqrt((t_54 + ((5.242 + (x * 8.13008)) ^ 2.0))); t_56 = (x * 8.13008) - 4.4005; t_57 = ((y * 2.03252) + 2.8125) + (x * 4.47154); t_58 = ((y * 2.03252) + 2.24435) + (x * 4.47154); t_59 = (y * 8.13008) - 4.15; t_60 = 0.55 + (y * 8.13008); t_61 = (0.685 - (y * 8.13008)) ^ 2.0; t_62 = 4.675 + (y * 8.13008); t_63 = 4.025 + (y * 8.13008); t_64 = 0.5935 - (x * 8.13008); t_65 = 1.30723 + (x * 4.47154); t_66 = t_65 - (y * 2.64228); t_67 = 1.7375 + (y * 8.13008); t_68 = 1.725 - (y * 8.13008); t_69 = -(2.37 + (x * 8.13008)); t_70 = 3.575 + (x * 8.13008); t_71 = -(1.45 + (y * 8.13008)); t_72 = 3.0345 - (x * 5.42005); t_73 = (x * 8.13008) - 3.931; t_74 = (y * 8.13008) - 3.5; t_75 = (1.91435 + (y * 2.03252)) + (x * 4.47154); t_76 = -(0.415 + (y * 8.13008)) ^ 2.0; t_77 = (2.09318 + (x * 2.23577)) + (y * 4.06504); t_78 = (x * 8.13008) - 1.958; t_79 = 2.08 + (x * 2.23577); t_80 = 1.8 + (y * 8.13008); t_81 = 0.120625 + (x * 2.23577); t_82 = 5.75 + (y * 8.13008); t_83 = 5.375 + (x * 8.13008); t_84 = -t_83; t_85 = 1.728 + (y * 2.19512); t_86 = (y * 0.813008) - 0.47; t_87 = 1.82238 - t_49; t_88 = t_49 - 3.84555; t_89 = (y * 8.13008) - 6.8; t_90 = 6.5 + (x * 8.13008); t_91 = (x * 8.13008) - 4.8855; t_92 = 3.025 + (x * 8.13008); t_93 = 0.45 + (y * 4.06504); t_94 = (y * 0.813008) - 0.305; t_95 = 0.6375 + (y * 2.84553); t_96 = t_95 - (x * 4.47154); t_97 = (y * 5.28455) - 0.37375; t_98 = (x * 8.13008) - 6.61401; t_99 = 0.685 + (y * 0.813008); t_100 = -(0.550001 + (x * 8.13008)); t_101 = 5.425 - (y * 8.13008); t_102 = (y * 0.813008) - 0.195; t_103 = (x * 8.13008) - 1.6205; t_104 = ((y * 8.13008) - 3.2) ^ 2.0; t_105 = 1.8578 + (x * 2.23577); t_106 = 1.42 + (x * 2.23577); t_107 = 6.3 + (x * 8.13008); t_108 = t_107 ^ 2.0; t_109 = 5.812 + (x * 8.13008); t_110 = 0.11375 + (x * 2.23577); t_111 = 1.23565 + (y * 2.03252); t_112 = (x * 8.13008) - 5.401; t_113 = 0.545 + (x * 4.47154); t_114 = (y * 2.84553) - t_113; t_115 = 0.19 + (y * 0.813008); t_116 = 2.42975 + (x * 4.47154); t_117 = t_116 - (y * 1.82927); t_118 = (y * 8.13008) - 2.05; t_119 = 4.63929 + (x * 11.6144); t_120 = 0.725 + (y * 8.13008); t_121 = (1.35975 + (y * 1.82927)) + (x * 4.47154); t_122 = 1.187 + (x * 8.13008); t_123 = 2.55 + (x * 8.13008); t_124 = -t_123; t_125 = (y * 3.41463) + 5.9037; t_126 = 6.075 - (y * 8.13008); t_127 = max(t_3, t_126); t_128 = 1.132 + (x * 8.13008); t_129 = -t_128; t_130 = 2.75 + (y * 8.13008); t_131 = -t_130; t_132 = (y * 8.13008) - 5.9; t_133 = 1.36071 + (x * 11.6144); t_134 = (y * 0.813008) - 0.415; t_135 = 0.465 + (y * 0.813008); t_136 = -t_70; t_137 = 1.7935 + (x * 4.06504); t_138 = 1.558 - (x * 8.13008); t_139 = 5.54551 - (x * 8.13008); t_140 = t_32 ^ 2.0; t_141 = sqrt((t_140 + (((x * 8.13008) - 1.323) ^ 2.0))); t_142 = -(4.075 + (x * 8.13008)); t_143 = 5.15 + (x * 8.13008); t_144 = 7.25 + (x * 8.13008); t_145 = (1.87595 + (y * 2.19512)) + (x * 2.84553); t_146 = 4.1025 - (x * 8.13008); t_147 = -(1.575 + (x * 8.13008)); t_148 = t_49 - 1.6725; t_149 = 0.5575 + (y * 2.03252); t_150 = 1.65925 + (x * 2.23577); t_151 = 4.021 + (x * 4.47154); t_152 = (y * 2.84553) - t_151; t_153 = (y * 8.13008) - 1.95; t_154 = (y * 8.13008) - 3.915; t_155 = 0.08 + (y * 0.813008); t_156 = 0.395501 + (x * 5.42005); t_157 = (y * 8.13008) - 4.975; t_158 = t_157 ^ 2.0; t_159 = sqrt((t_158 + (((x * 8.13008) - 5.826) ^ 2.0))); t_160 = (1.82723 + (y * 2.64228)) + (x * 4.47154); t_161 = (y * 8.13008) - 3.95; t_162 = 3.531 - (x * 8.13008); t_163 = -(4.975 + (y * 8.13008)); t_164 = max((4.885 + (y * 8.13008)), t_163); t_165 = (1.91443 + (x * 2.23577)) + (y * 4.06504); t_166 = sqrt(((((x * 8.13008) - 5.126) ^ 2.0) + t_158)); t_167 = 3.7375 + (x * 5.42005); t_168 = -t_167; t_169 = ((y * 8.13008) - 0.3) ^ 2.0; t_170 = 0.597376 + (y * 2.03252); t_171 = 2.932 + (x * 8.13008); t_172 = 4.12055 - t_49; t_173 = 2.375 + (x * 8.13008); t_174 = 4.05 + (x * 8.13008); t_175 = (y * 8.13008) - 2.775; t_176 = t_175 ^ 2.0; t_177 = sqrt((t_176 + ((1.395 + (x * 8.13008)) ^ 2.0))); t_178 = sqrt((t_176 + (((x * 8.13008) - 3.7975) ^ 2.0))); t_179 = 4.5 + (x * 8.13008); t_180 = ((x * 2.23577) + 2.9905) + (y * 4.06504); t_181 = 0.6945 + (x * 8.13008); t_182 = -(6.6 + (x * 8.13008)); t_183 = 4.2 + (y * 8.13008); t_184 = (2.3425 + (y * 2.84553)) + (x * 4.47154); t_185 = 4.4855 - (x * 8.13008); t_186 = (1.885 + (x * 2.23577)) + (y * 4.06504); t_187 = 3.4575 + (x * 4.47154); t_188 = (x * 8.13008) - 3.1805; t_189 = 2.4705 - (x * 8.13008); t_190 = 6.8 + (x * 8.13008); t_191 = -t_190; t_192 = 6.11401 - (x * 8.13008); t_193 = (2.6175 + (y * 2.84553)) + (x * 4.47154); t_194 = (2.81935 + (y * 2.84553)) + (x * 4.47154); t_195 = (y * 0.813008) + 0.880675; t_196 = 1.3292 + (x * 2.84553); t_197 = ((y * 2.03252) + 2.521) + (x * 4.47154); t_198 = 5.975 + (y * 8.13008); t_199 = sqrt(((((4.58486 + (x * 8.13008)) - (y * 2.32288)) ^ 2.0) + t_158)); t_200 = 1.15 + (y * 8.13008); t_201 = 1.5875 + (x * 5.42005); t_202 = -t_201; t_203 = 2.775 + (x * 8.13008); t_204 = -(6.212 + (x * 8.13008)); t_205 = 7.50251 - (x * 8.13008); t_206 = (x * 8.13008) - 2.226; t_207 = 0.245 + (y * 0.813008); t_208 = -t_207; t_209 = 0.6516 + (x * 4.47154); t_210 = (y * 1.82927) - t_209; t_211 = 2.8375 + (y * 8.13008); t_212 = 1.12143 + (x * 11.6144); t_213 = 0.475 + (y * 8.13008); t_214 = sqrt((t_108 + (((y * 8.13008) - 6.525) ^ 2.0))); t_215 = 0.267376 + (y * 2.03252); t_216 = 5.8 - (y * 8.13008); t_217 = 0.36 - (y * 0.813008); t_218 = ((y * 8.13008) - 0.465) ^ 2.0; t_219 = 0.52 + (y * 0.813008); t_220 = -t_219; t_221 = 2.5335 + (x * 4.47154); t_222 = 1.66785 + (x * 4.47154); t_223 = 0.25 - (y * 0.813008); t_224 = 1.95355 + (x * 5.28455); t_225 = (y * 2.03252) + 2.89638; t_226 = (x * 8.13008) - 5.7205; t_227 = -(7.35 + (x * 8.13008)); t_228 = (x * 4.47154) - t_95; t_229 = 1.12595 + (y * 1.21951); t_230 = 4.07 + (x * 8.13008); t_231 = 4.45138 - t_49; t_232 = 0.90565 + (y * 2.03252); t_233 = (y * 8.13008) - 5.025; t_234 = 2.2095 - (x * 5.42005); t_235 = 3.55 + (y * 8.13008); t_236 = max((3.45 + (y * 8.13008)), -t_235); t_237 = max(t_235, -(3.65 + (y * 8.13008))); t_238 = (y * 1.82927) + 2.5769; t_239 = t_238 - (x * 4.47154); t_240 = (x * 4.47154) - t_238; t_241 = 6.0955 - (x * 8.13008); t_242 = 6.75 + (x * 8.13008); t_243 = t_25 + 4.085; t_244 = 6.95 + (x * 11.6144); t_245 = (y * 8.13008) - 2.825; t_246 = -(2.775 + (y * 8.13008)); t_247 = (y * 1.82927) - t_15; t_248 = 0.0499997 + (y * 8.13008); t_249 = ((x * 2.23577) + 3.49375) + (y * 4.06504); t_250 = 1.81065 + (y * 2.84553); t_251 = t_250 - (x * 4.47154); t_252 = 0.712975 + (x * 2.23577); t_253 = 3.6 - (y * 8.13008); t_254 = max(t_161, t_253); t_255 = max(t_253, t_59); t_256 = (x * 5.42005) - 0.951167; t_257 = 2.67975 + (x * 4.47154); t_258 = (y * 2.64228) - t_257; t_259 = 4.7 - (y * 8.13008); t_260 = (y * 1.82927) + 3.10243; t_261 = t_260 - (x * 4.47154); t_262 = 2.807 + (x * 8.13008); t_263 = (y * 0.813008) + 1.89365; t_264 = 0.135 + (y * 0.813008); t_265 = t_161 ^ 2.0; t_266 = sqrt((t_265 + (((x * 8.13008) - 5.5835) ^ 2.0))); t_267 = (1.05475 + (y * 2.64228)) + (x * 4.47154); t_268 = ((x * 8.13008) - 0.695499) ^ 2.0; t_269 = ((y * 8.13008) - 1.4) ^ 2.0; t_270 = -(3.482 + (x * 8.13008)); t_271 = (y * 8.13008) - 4.775; t_272 = 4.95 + (y * 8.13008); t_273 = (0.2581 + (y * 1.82927)) + (x * 4.47154); t_274 = -(4.6 + (x * 8.13008)); t_275 = 2.282 + (x * 8.13008); t_276 = (x * 8.13008) - 6.75101; t_277 = (y * 5.28455) - 1.80375; t_278 = (x * 8.13008) - 5.1955; t_279 = (y * 3.25203) + 5.1769; t_280 = t_130 ^ 2.0; t_281 = 3.84555 - t_49; t_282 = 0.898001 - (x * 8.13008); t_283 = (y * 8.13008) - 5.7; t_284 = 1.10808 + (y * 1.21951); t_285 = -t_41; t_286 = (y * 8.13008) - 0.615; t_287 = 0.3625 + (y * 2.84553); t_288 = t_287 - (x * 4.47154); t_289 = (0.03425 + (x * 2.23577)) + (y * 4.06504); t_290 = 2.875 + (x * 8.13008); t_291 = 1.083 - (x * 8.13008); t_292 = 1.825 + (y * 8.13008); t_293 = 6.48101 - (x * 8.13008); t_294 = 7.45 + (x * 8.13008); t_295 = 1.05625 + (y * 5.28455); t_296 = (y * 8.13008) - 1.475; t_297 = (x * 8.13008) - 0.282999; t_298 = 4.881 - (x * 8.13008); t_299 = (y * 8.13008) - 0.55; t_300 = sqrt((((5.625 + (x * 8.13008)) ^ 2.0) + t_158)); t_301 = t_300 - 0.275; t_302 = 2.51875 - (y * 5.28455); t_303 = 3.3 + (x * 8.13008); t_304 = (x * 8.13008) - 6.408; t_305 = 1.676 - (x * 8.13008); t_306 = (x * 8.13008) - 3.1225; t_307 = 4.8125 + (y * 8.13008); t_308 = t_113 - (y * 2.84553); t_309 = (1.96935 + (y * 2.03252)) + (x * 4.47154); t_310 = (x * 5.42005) - 1.22783; t_311 = 6.05 + (x * 8.13008); t_312 = 5.1585 - (x * 8.13008); t_313 = -(0.575 + (y * 8.13008)); t_314 = ((y * 8.13008) - 4.7) ^ 2.0; t_315 = (1.4516 + (y * 1.82927)) + (x * 4.47154); t_316 = 1.1947 + (y * 1.21951); t_317 = 2.73475 + (x * 4.47154); t_318 = (y * 2.64228) - t_317; t_319 = (y * 1.82927) + 2.5219; t_320 = t_319 - (x * 4.47154); t_321 = 3.5305 - (x * 8.13008); t_322 = 3.675 + (x * 8.13008); t_323 = 0.292376 + (y * 2.84553); t_324 = t_323 - (x * 4.47154); t_325 = 5.3 + (y * 8.13008); t_326 = sqrt((((1.462 + (x * 8.13008)) ^ 2.0) + t_158)); t_327 = (x * 8.13008) - 0.320499; t_328 = sqrt((t_176 + (((7.16429 + (x * 8.13008)) - (y * 2.32288)) ^ 2.0))); t_329 = (x * 11.6144) - 7.23715; t_330 = 1.02555 + (y * 2.03252); t_331 = 2.137 + (x * 8.13008); t_332 = 2.4785 + (x * 4.47154); t_333 = 1.77125 + (y * 5.28455); t_334 = (x * 8.13008) - 6.5305; t_335 = 6.2 + (y * 8.13008); t_336 = (y * 1.21951) + 1.7447; t_337 = 3.0 + (y * 8.13008); t_338 = -t_337; t_339 = sqrt((t_158 + (((x * 8.13008) - 6.476) ^ 2.0))); t_340 = (y * 2.03252) + 2.95138; t_341 = 5.2 + (y * 8.13008); t_342 = t_341 ^ 2.0; t_343 = -t_341; t_344 = max(t_183, t_343); t_345 = 0.289485 + (x * 2.27642); t_346 = (x * 8.13008) - 3.401; t_347 = (y * 8.13008) - 6.15; t_348 = t_347 ^ 2.0; t_349 = sqrt((t_348 + (((x * 8.13008) - 2.8955) ^ 2.0))); t_350 = max(t_216, t_347); t_351 = (y * 1.82927) + 3.15743; t_352 = (x * 4.47154) - t_351; t_353 = 1.2994 + (y * 3.25203); t_354 = 3.6525 + (x * 4.47154); t_355 = (y * 2.84553) - t_354; t_356 = sqrt((t_176 + ((4.345 + (x * 8.13008)) ^ 2.0))); t_357 = 1.6725 - t_49; t_358 = sqrt((t_54 + (((4.12414 + (x * 8.13008)) - (y * 2.32288)) ^ 2.0))); t_359 = 0.14 - (y * 0.813008); t_360 = 4.85 + (y * 8.13008); t_361 = t_360 ^ 2.0; t_362 = sqrt((t_361 + (((x * 8.13008) - 0.633) ^ 2.0))); t_363 = sqrt((((0.317 + (x * 8.13008)) ^ 2.0) + t_361)); t_364 = 1.675 + (x * 8.13008); t_365 = ((x * 1.82927) + 3.2527) + (y * 4.06504); t_366 = (0.6875 - (y * 8.13008)) ^ 2.0; t_367 = 0.300176 + (y * 2.23577); t_368 = (0.590637 + (x * 1.82927)) + (y * 4.06504); t_369 = 0.195 - (y * 0.813008); t_370 = 2.487 + (x * 8.13008); t_371 = sqrt(((t_370 ^ 2.0) + t_158)); t_372 = t_151 - (y * 2.84553); t_373 = (2.216 + (y * 2.84553)) + (x * 4.47154); t_374 = -t_373; t_375 = 1.9 + (y * 8.13008); t_376 = t_375 ^ 2.0; t_377 = -t_375; t_378 = max(t_377, t_200); t_379 = 0.3 - (y * 8.13008); t_380 = max(t_299, t_379); t_381 = 2.5 - (y * 8.13008); t_382 = max(t_381, t_74); t_383 = max(t_245, t_381); t_384 = max(t_381, t_175); t_385 = 2.6125 + (y * 8.13008); t_386 = t_159 - 0.275; t_387 = 1.65817 - (x * 5.42005); t_388 = (x * 8.13008) - 5.733; t_389 = max(t_343, t_360); t_390 = 2.65 + (y * 4.06504); t_391 = 7.12143 + (x * 11.6144); t_392 = ((y * 2.03252) + 2.466) + (x * 4.47154); t_393 = 0.6375 + (y * 8.13008); t_394 = -t_393; t_395 = t_393 ^ 2.0; t_396 = (x * 1.01626) + 1.55781; t_397 = 0.208 - (x * 8.13008); t_398 = sqrt((t_54 + (((x * 8.13008) - (0.993357 + (y * 2.32288))) ^ 2.0))); t_399 = 2.685 + (y * 8.13008); t_400 = (x * 8.13008) - 0.150499; t_401 = 3.501 - (x * 8.13008); t_402 = 4.512 + (x * 8.13008); t_403 = sqrt(((t_402 ^ 2.0) + t_280)); t_404 = (y * 0.813008) - 0.525; t_405 = ((y * 2.03252) + 3.665) + (x * 4.47154); t_406 = ((y * 8.13008) - 0.4625) ^ 2.0; t_407 = 2.24785 + (x * 4.47154); t_408 = -t_135; t_409 = 0.525 - (y * 8.13008); t_410 = max(t_286, t_409); t_411 = ((y * 8.13008) - 6.5) ^ 2.0; t_412 = 3.875 - (y * 8.13008); t_413 = 0.63 + (y * 0.813008); t_414 = -t_413; t_415 = -(2.075 + (x * 8.13008)); t_416 = (x * 11.6144) - 2.67571; t_417 = max(t_83, t_216); t_418 = t_49 - 1.3975; t_419 = -(7.95 + (x * 8.13008)); t_420 = -(1.675 + (y * 8.13008)); t_421 = (x * 8.13008) - 6.656; t_422 = max(t_216, t_89); t_423 = 1.25 + (y * 8.13008); t_424 = max(((y * 8.13008) - 0.95), (0.85 - (y * 8.13008))); t_425 = -(1.142 + (x * 8.13008)); t_426 = 5.858 - (x * 8.13008); t_427 = -t_155; t_428 = (y * 0.813008) + 3.968; t_429 = 0.025 + (y * 0.813008); t_430 = 0.596601 + (x * 4.47154); t_431 = (y * 1.82927) - t_430; t_432 = 2.11243 - t_22; t_433 = -t_160; t_434 = t_209 - (y * 1.82927); t_435 = 2.00117 - (x * 5.42005); t_436 = sqrt(((((0.146856 + (x * 8.13008)) - (y * 2.32288)) ^ 2.0) + t_158)); t_437 = 0.4125 + (y * 8.13008); t_438 = 1.24555 + (y * 2.03252); t_439 = (y * 0.813008) + 6.188; t_440 = t_49 - 2.09738; t_441 = 0.322376 + (y * 2.03252); t_442 = 4.825 + (x * 8.13008); t_443 = 5.4 + (x * 8.13008); t_444 = (y * 2.19512) + (x * 2.84553); t_445 = 6.0305 - (x * 8.13008); t_446 = (y * 1.21951) + 1.67444; t_447 = 3.2375 + (x * 4.47154); t_448 = 2.4205 - (x * 8.13008); t_449 = -t_184; t_450 = 3.001 - (x * 8.13008); t_451 = (1.55693 + (x * 2.23577)) + (y * 4.06504); t_452 = (0.6785 + (y * 2.03252)) + (x * 4.47154); t_453 = 0.707348 + (x * 4.5122); t_454 = (y * 8.13008) - 6.075; t_455 = max(t_216, t_454); t_456 = t_454 ^ 2.0; t_457 = sqrt((t_456 + ((0.604501 + (x * 8.13008)) ^ 2.0))); t_458 = sqrt((t_456 + (((x * 8.13008) - 1.3455) ^ 2.0))); t_459 = sqrt((t_456 + t_268)); t_460 = sqrt((t_456 + (t_303 ^ 2.0))); t_461 = sqrt((t_456 + (((x * 8.13008) - 5.0255) ^ 2.0))); t_462 = sqrt((t_456 + ((5.65 + (x * 8.13008)) ^ 2.0))); t_463 = 3.9955 - (x * 8.13008); t_464 = 0.150001 + (x * 8.13008); t_465 = t_464 ^ 2.0; t_466 = 3.1 + (y * 8.13008); t_467 = ((x * 8.13008) - 4.1255) ^ 2.0; t_468 = sqrt((t_456 + t_467)); t_469 = (y * 8.13008) - 0.6875; t_470 = max(t_409, t_469); t_471 = 1.732 + (x * 8.13008); t_472 = t_283 ^ 2.0; t_473 = sqrt((t_472 + t_268)); t_474 = sqrt((t_467 + t_472)); t_475 = 1.06718 + (x * 2.23577); t_476 = (x * 8.13008) - 3.6855; t_477 = (2.3 + (y * 8.13008)) ^ 2.0; t_478 = (y * 2.64228) - t_65; t_479 = 0.986526 + (y * 1.21951); t_480 = (x * 8.13008) - 8.05251; t_481 = 3.8 + (x * 8.13008); t_482 = 1.22783 - (x * 5.42005); t_483 = -t_200; t_484 = (y * 8.13008) - 1.75; t_485 = (x * 4.47154) - t_250; t_486 = (y * 8.13008) - 5.25; t_487 = (y * 5.28455) - 3.23375; t_488 = t_257 - (y * 2.64228); t_489 = (2.54435 + (y * 2.84553)) + (x * 4.47154); t_490 = (x * 4.47154) - t_260; t_491 = 0.25 + (y * 8.13008); t_492 = (x * 1.82927) + (y * 4.06504); t_493 = sqrt((t_176 + (((x * 8.13008) - 2.8475) ^ 2.0))); t_494 = t_484 ^ 2.0; t_495 = sqrt((t_494 + (((x * 8.13008) - 5.083) ^ 2.0))); t_496 = sqrt((t_494 + (((x * 8.13008) - 5.333) ^ 2.0))); t_497 = 0.44765 + (x * 2.84553); t_498 = -t_264; t_499 = (x * 8.13008) - 3.021; t_500 = -t_437 ^ 2.0; t_501 = 6.3 + (y * 8.13008); t_502 = t_501 ^ 2.0; t_503 = -t_501; t_504 = 0.500551 + (y * 2.84553); t_505 = t_504 - (x * 4.47154); t_506 = sqrt((t_456 + (((x * 8.13008) - 0.0454988) ^ 2.0))); t_507 = 1.068 + (x * 2.23577); t_508 = -(5.9 + (x * 8.13008)); t_509 = -(0.249501 + (x * 8.13008)); t_510 = 4.9855 - (x * 8.13008); t_511 = 2.8935 + (x * 4.47154); t_512 = (y * 2.84553) - t_511; t_513 = sqrt((t_176 + (((x * 8.13008) - 0.0924997) ^ 2.0))); t_514 = sqrt((t_7 + t_176)); t_515 = 0.415 - (y * 0.813008); t_516 = 0.36 + (y * 3.25203); t_517 = 3.35775 + (x * 4.5122); t_518 = 0.263484 + (x * 2.27642); t_519 = -t_90; t_520 = 2.64638 + (y * 2.84553); t_521 = t_520 - (x * 4.47154); t_522 = 2.846 - (x * 8.13008); t_523 = 0.305 - (y * 0.813008); t_524 = (x * 8.13008) - 4.6525; t_525 = 1.025 + (x * 8.13008); t_526 = 0.7775 + (y * 2.03252); t_527 = sqrt((t_140 + (((x * 8.13008) - 1.073) ^ 2.0))); t_528 = 2.725 + (y * 8.13008); t_529 = t_528 ^ 2.0; t_530 = sqrt(((((3.35486 + (x * 8.13008)) - (y * 2.32288)) ^ 2.0) + t_529)); t_531 = sqrt(((((x * 8.13008) - 5.2605) ^ 2.0) + t_529)); t_532 = sqrt(((((0.574857 + (x * 8.13008)) - (y * 2.32288)) ^ 2.0) + t_529)); t_533 = sqrt((t_529 + (((x * 8.13008) - 5.9605) ^ 2.0))); t_534 = t_533 - 0.275; t_535 = sqrt(((((x * 8.13008) - 3.4105) ^ 2.0) + t_529)); t_536 = sqrt((((0.177 + (x * 8.13008)) ^ 2.0) + t_529)); t_537 = sqrt(((((x * 8.13008) - 0.523) ^ 2.0) + t_529)); t_538 = sqrt((((5.745 + (x * 8.13008)) ^ 2.0) + t_529)); t_539 = t_538 - 0.275; t_540 = (y * 8.13008) - 6.45; t_541 = max(t_540, (6.35 - (y * 8.13008))); t_542 = 4.875 + (x * 8.13008); t_543 = 0.951167 - (x * 5.42005); t_544 = 0.575 + (y * 0.813008); t_545 = -t_544; t_546 = sqrt((t_176 + (((x * 8.13008) - 4.3775) ^ 2.0))); t_547 = 7.35601 - (x * 8.13008); t_548 = sqrt((t_348 + (((x * 8.13008) - 2.6455) ^ 2.0))); t_549 = 6.9 + (x * 8.13008); t_550 = sqrt(((t_60 ^ 2.0) + (t_549 ^ 2.0))); t_551 = (y * 2.64228) + 3.2069; t_552 = (x * 4.47154) - t_551; t_553 = t_551 - (x * 4.47154); t_554 = (x * 4.47154) - t_287; t_555 = -(0.452 + (x * 8.13008)); t_556 = (y * 8.13008) - 1.65; t_557 = 2.45 + (y * 8.13008); t_558 = 0.65875 + (x * 2.84553); t_559 = (y * 8.13008) - 1.725; t_560 = 3.12857 + (x * 11.6144); t_561 = -(5.712 + (x * 8.13008)); t_562 = (y * 2.64228) + 3.34743; t_563 = t_562 - (x * 4.47154); t_564 = 2.1625 + (x * 2.23577); t_565 = -(1.67 + (x * 8.13008)); t_566 = (y * 1.82927) - t_116; t_567 = -t_115; t_568 = t_317 - (y * 2.64228); t_569 = 0.96065 + (y * 2.03252); t_570 = 6.7 - (y * 8.13008); t_571 = -t_267; t_572 = (x * 4.47154) - t_319; t_573 = (x * 4.47154) - t_323; t_574 = (0.3131 + (y * 1.82927)) + (x * 4.47154); t_575 = (y * 8.13008) - 1.5; t_576 = sqrt((t_361 + (((x * 8.13008) - 0.383) ^ 2.0))); t_577 = 2.725 - (y * 8.13008); t_578 = max(((y * 8.13008) - 2.815), t_577); t_579 = 4.912 + (x * 8.13008); t_580 = max(t_402, -t_579); t_581 = 6.45 + (x * 8.13008); t_582 = -t_581; t_583 = 3.85 + (y * 8.13008); t_584 = t_583 ^ 2.0; t_585 = sqrt((t_584 + (t_346 ^ 2.0))); t_586 = max(t_466, -t_583); t_587 = ((y * 8.13008) - 5.8) ^ 2.0; t_588 = max(t_89, (6.05 - (y * 8.13008))); t_589 = 0.552 + (x * 8.13008); t_590 = sqrt(((t_589 ^ 2.0) + t_280)); t_591 = max(t_589, -(0.952 + (x * 8.13008))); t_592 = 5.15 - (y * 8.13008); t_593 = (x * 5.42005) - 1.65817; t_594 = t_354 - (y * 2.84553); t_595 = 0.587999 - (x * 8.13008); t_596 = (y * 8.13008) - 6.05; t_597 = -t_193; t_598 = -(2.132 + (x * 8.13008)); t_599 = 1.726 + (y * 4.87805); t_600 = 5.95 + (y * 8.13008); t_601 = t_600 ^ 2.0; t_602 = sqrt((t_601 + (((x * 8.13008) - 1.508) ^ 2.0))); t_603 = 1.0705 - (x * 8.13008); t_604 = sqrt((t_601 + (((x * 8.13008) - 1.258) ^ 2.0))); t_605 = 3.1355 - (x * 8.13008); t_606 = 1.35 + (y * 8.13008); t_607 = max(t_377, t_606); t_608 = max(t_423, -t_606); t_609 = (x * 8.13008) - 1.138; t_610 = (y * 5.28455) - 2.51875; t_611 = -(5.85 + (y * 8.13008)); t_612 = (y * 8.13008) - 5.015; t_613 = (y * 8.13008) - 3.875; t_614 = max(t_253, t_613); t_615 = t_613 ^ 2.0; t_616 = sqrt(((((x * 8.13008) - 4.7835) ^ 2.0) + t_615)); t_617 = sqrt((t_615 + (((x * 8.13008) - 0.862999) ^ 2.0))); t_618 = sqrt((t_615 + (((x * 8.13008) - 0.212998) ^ 2.0))); t_619 = sqrt((t_615 + ((2.245 + (x * 8.13008)) ^ 2.0))); t_620 = t_619 - 0.275; t_621 = sqrt((t_615 + (t_522 ^ 2.0))); t_622 = sqrt((t_615 + (((x * 8.13008) - 6.1335) ^ 2.0))); t_623 = sqrt((t_615 + (((4.72857 + (x * 8.13008)) - (y * 2.32288)) ^ 2.0))); t_624 = 0.4066 + (x * 4.47154); t_625 = (y * 2.64228) - t_624; t_626 = 2.825 - (y * 8.13008); t_627 = 5.025 - (y * 8.13008); t_628 = (1.74723 + (y * 1.82927)) + (x * 4.47154); t_629 = 4.851 - (x * 8.13008); t_630 = 1.065 + (x * 4.47154); t_631 = (x * 11.6144) - 6.52214; t_632 = 0.8 + (y * 8.13008); t_633 = -t_632; t_634 = max(t_491, t_633); t_635 = max(t_34, t_633); t_636 = (1.5066 + (y * 1.82927)) + (x * 4.47154); t_637 = 1.01488 + (y * 4.87805); t_638 = (y * 8.13008) - 2.85; t_639 = t_638 ^ 2.0; t_640 = sqrt((t_639 + ((1.945 + (x * 8.13008)) ^ 2.0))); t_641 = sqrt((t_639 + ((2.195 + (x * 8.13008)) ^ 2.0))); t_642 = max(t_381, t_638); t_643 = (2.1853 + (x * 2.23577)) + (y * 4.06504); t_644 = 0.957 + (x * 8.13008); t_645 = 0.45 + (y * 8.13008); t_646 = max(t_633, t_645); t_647 = 0.0173756 + (y * 2.84553); t_648 = t_647 - (x * 4.47154); t_649 = 0.47 - (y * 0.813008); t_650 = -t_333; t_651 = ((y * 2.03252) + 2.4825) + (x * 4.47154); t_652 = 2.576 - (x * 8.13008); t_653 = 6.325 + (x * 8.13008); t_654 = t_653 ^ 2.0; t_655 = sqrt((t_654 + t_158)); t_656 = sqrt((t_654 + t_54)); t_657 = sqrt((t_654 + t_529)); t_658 = sqrt((t_280 + (t_91 ^ 2.0))); t_659 = 0.485 + (x * 2.23577); t_660 = (x * 8.13008) - 3.408; t_661 = sqrt(((t_652 ^ 2.0) + t_158)); t_662 = max(t_377, t_47); t_663 = 0.606888 + (y * 1.21951); t_664 = 4.1 + (y * 8.13008); t_665 = t_664 ^ 2.0; t_666 = -t_664; t_667 = max(t_666, t_235); t_668 = max(t_666, (3.75 + (y * 8.13008))); t_669 = max(t_466, t_666); t_670 = max(t_666, t_9); t_671 = 2.25 + (y * 8.13008); t_672 = sqrt(((t_671 ^ 2.0) + (t_471 ^ 2.0))); t_673 = (y * 0.813008) - 0.14; t_674 = -t_194; t_675 = (x * 8.13008) - 7.531; t_676 = sqrt((t_465 + (t_556 ^ 2.0))); t_677 = sqrt((t_615 + ((0.437001 + (x * 8.13008)) ^ 2.0))); t_678 = t_677 - 0.275; t_679 = -(7.3 + (x * 8.13008)); t_680 = (x * 8.13008) - 6.6455; t_681 = 1.27381 + (y * 4.87805); t_682 = 1.3975 - t_49; t_683 = -t_528; t_684 = (y * 8.13008) - 0.85; t_685 = max(t_379, t_684); t_686 = ((x * 2.23577) + 2.30217) + (y * 4.06504); t_687 = 1.4 - (y * 8.13008); t_688 = max(t_687, t_1); t_689 = max(t_687, t_153); t_690 = 4.02143 + (x * 11.6144); t_691 = 3.775 + (y * 8.13008); t_692 = max(t_666, t_691); t_693 = -t_360; t_694 = 3.771 + (x * 4.47154); t_695 = t_299 ^ 2.0; t_696 = sqrt((t_695 + (t_364 ^ 2.0))); t_697 = (y * 2.60163) + (x * 2.84553); t_698 = sqrt((t_584 + (t_109 ^ 2.0))); t_699 = -t_429; t_700 = (x * 5.42005) - 2.7765; t_701 = sqrt(((t_248 ^ 2.0) + (t_73 ^ 2.0))); t_702 = 4.908 - (x * 8.13008); t_703 = 1.30055 + (y * 2.03252); t_704 = (x * 11.6144) - 0.585714; t_705 = 5.0375 + (y * 8.13008); t_706 = (x * 8.13008) - 4.0805; t_707 = sqrt((t_265 + (((x * 8.13008) - 5.3335) ^ 2.0))); t_708 = -(1.737 + (x * 8.13008)); t_709 = (x * 11.6144) - 0.743571; t_710 = 2.09738 - t_49; t_711 = max(t_606, t_71); t_712 = (y * 1.21951) + 2.17851; t_713 = sqrt(((t_272 ^ 2.0) + (t_78 ^ 2.0))); t_714 = (y * 8.13008) - 4.6; t_715 = max(t_253, t_714); t_716 = sqrt(((t_714 ^ 2.0) + (t_331 ^ 2.0))); t_717 = 2.2175 + (x * 2.23577); t_718 = 3.1825 + (x * 4.47154); t_719 = -t_557; t_720 = 2.457 + (x * 8.13008); t_721 = -t_720; t_722 = (y * 8.13008) - 0.625; t_723 = sqrt(((((x * 8.13008) - 5.7775) ^ 2.0) + t_176)); t_724 = t_723 - 0.275; t_725 = -t_37; t_726 = sqrt((t_456 + (((x * 8.13008) - (1.71336 + (y * 2.32288))) ^ 2.0))); t_727 = (0.7335 + (y * 2.03252)) + (x * 4.47154); t_728 = 8.97857 + (x * 11.6144); t_729 = 0.37375 - (y * 5.28455); t_730 = 2.0 + (y * 8.13008); t_731 = sqrt((((4.517 + (x * 8.13008)) ^ 2.0) + t_158)); t_732 = t_731 - 0.275; t_733 = 1.5125 + (y * 8.13008); t_734 = sqrt((((0.0670004 + (x * 8.13008)) ^ 2.0) + t_361)); t_735 = 0.575 - (y * 8.13008); t_736 = (x * 8.13008) - 6.6385; t_737 = (x * 8.13008) - 7.87551; t_738 = sqrt((t_695 + (t_737 ^ 2.0))); t_739 = (x * 8.13008) - 5.9955; t_740 = sqrt((t_695 + (t_739 ^ 2.0))); t_741 = (7.025 + (x * 8.13008)) ^ 2.0; t_742 = (x * 8.13008) - 1.8305; t_743 = -t_691; t_744 = 1.36223 + (x * 4.47154); t_745 = t_744 - (y * 2.64228); t_746 = (y * 2.64228) - t_744; t_747 = 1.65 + (y * 8.13008); t_748 = max(t_47, -t_747); t_749 = t_747 ^ 2.0; t_750 = sqrt((t_749 + (t_400 ^ 2.0))); t_751 = sqrt((t_749 + (t_736 ^ 2.0))); t_752 = sqrt((((0.354001 + (x * 8.13008)) ^ 2.0) + t_158)); t_753 = t_752 - 0.275; t_754 = sqrt(((((x * 8.13008) - 1.951) ^ 2.0) + t_158)); t_755 = 4.925 - (y * 8.13008); t_756 = t_200 ^ 2.0; t_757 = sqrt((t_756 + (t_742 ^ 2.0))); t_758 = (y * 8.13008) - 0.575; t_759 = max(t_379, t_758); t_760 = t_758 ^ 2.0; t_761 = sqrt((t_760 + ((4.45 + (x * 8.13008)) ^ 2.0))); t_762 = sqrt((t_760 + (((x * 8.13008) - 2.6955) ^ 2.0))); t_763 = sqrt((t_7 + t_760)); t_764 = t_763 - 0.275; t_765 = sqrt((t_760 + ((3.15 + (x * 8.13008)) ^ 2.0))); t_766 = sqrt((t_760 + ((5.1 + (x * 8.13008)) ^ 2.0))); t_767 = sqrt((t_760 + (((x * 8.13008) - 2.0455) ^ 2.0))); t_768 = t_767 - 0.275; t_769 = sqrt((t_760 + (t_582 ^ 2.0))); t_770 = sqrt((t_760 + ((1.3 + (x * 8.13008)) ^ 2.0))); t_771 = sqrt((t_760 + (((x * 8.13008) - ((y * 2.32288) + 6.90979)) ^ 2.0))); t_772 = sqrt((t_760 + ((7.075 + (x * 8.13008)) ^ 2.0))); t_773 = sqrt((t_760 + (((x * 8.13008) - 3.933) ^ 2.0))); t_774 = t_773 - 0.275; t_775 = sqrt((t_176 + (((x * 8.13008) - 7.77751) ^ 2.0))); t_776 = (x * 8.13008) - 1.183; t_777 = 2.48625 + (y * 5.28455); t_778 = -t_777; t_779 = max(t_90, t_182); t_780 = 3.785 + (y * 8.13008); t_781 = sqrt((((3.207 + (x * 8.13008)) ^ 2.0) + t_529)); t_782 = (x * 8.13008) - 0.9705; t_783 = (y * 8.13008) - 3.7; t_784 = t_632 ^ 2.0; t_785 = -t_21; t_786 = max(t_203, t_785); t_787 = (1.30475 + (y * 1.82927)) + (x * 4.47154); t_788 = sqrt((t_760 + ((0.6 + (x * 8.13008)) ^ 2.0))); t_789 = t_788 - 0.275; t_790 = (0.8881 + (y * 2.64228)) + (x * 4.47154); t_791 = -t_790; t_792 = 3.0055 - (x * 8.13008); t_793 = 5.975 + (x * 8.13008); t_794 = sqrt(((((x * 8.13008) - 7.12751) ^ 2.0) + t_176)); t_795 = t_794 - 0.275; t_796 = max(t_684, t_735); t_797 = 0.525 + (y * 8.13008); t_798 = -t_797; t_799 = t_797 ^ 2.0; t_800 = sqrt((((1.5495 + (x * 8.13008)) ^ 2.0) + t_799)); t_801 = sqrt(((((4.13393 + (x * 8.13008)) - (y * 2.32288)) ^ 2.0) + t_799)); t_802 = sqrt(((((0.11593 + (x * 8.13008)) - (y * 2.32288)) ^ 2.0) + t_799)); t_803 = sqrt((t_799 + (((x * 8.13008) - 4.306) ^ 2.0))); t_804 = sqrt((((6.525 + (x * 8.13008)) ^ 2.0) + t_799)); t_805 = sqrt((((0.969501 + (x * 8.13008)) ^ 2.0) + t_799)); t_806 = max(t_503, t_600); t_807 = 3.6 + (x * 8.13008); t_808 = t_49 - 1.82238; t_809 = t_511 - (y * 2.84553); t_810 = -(1.2445 + (x * 8.13008)); t_811 = 0.737225 + (x * 2.27642); t_812 = (x * 4.47154) - t_520; t_813 = 4.925 + (x * 8.13008); t_814 = (x * 8.13008) - 2.751; t_815 = sqrt((t_615 + (((x * 8.13008) - 2.221) ^ 2.0))); t_816 = t_815 - 0.275; t_817 = 1.7272 + (y * 3.41463); t_818 = 0.54 + (y * 2.19512); t_819 = 1.53565 + (y * 2.84553); t_820 = t_819 - (x * 4.47154); t_821 = -(4.62 + (x * 8.13008)); t_822 = 3.233 - (x * 8.13008); t_823 = sqrt((t_54 + (t_188 ^ 2.0))); t_824 = -(0.492001 + (x * 8.13008)); t_825 = 3.825 + (y * 8.13008); t_826 = t_825 ^ 2.0; t_827 = sqrt((t_826 + (((x * 8.13008) - 3.776) ^ 2.0))); t_828 = sqrt((t_826 + (((x * 8.13008) - 1.468) ^ 2.0))); t_829 = t_828 - 0.275; t_830 = sqrt((t_826 + ((5.437 + (x * 8.13008)) ^ 2.0))); t_831 = sqrt((t_826 + (((x * 8.13008) - 0.167999) ^ 2.0))); t_832 = sqrt((t_826 + (((5.97857 + (x * 8.13008)) - (y * 2.32288)) ^ 2.0))); t_833 = sqrt((t_826 + (t_293 ^ 2.0))); t_834 = sqrt((t_826 + (((x * 8.13008) - ((y * 2.32288) + 5.57243)) ^ 2.0))); t_835 = sqrt((t_826 + (((2.66557 + (x * 8.13008)) - (y * 2.32288)) ^ 2.0))); t_836 = sqrt((t_826 + ((3.082 + (x * 8.13008)) ^ 2.0))); t_837 = t_831 - 0.275; t_838 = sqrt((t_826 + ((0.482 + (x * 8.13008)) ^ 2.0))); t_839 = t_838 - 0.275; t_840 = sqrt((t_826 + (((x * 8.13008) - 0.818) ^ 2.0))); t_841 = sqrt((t_826 + (t_547 ^ 2.0))); t_842 = sqrt((t_826 + t_7)); t_843 = t_842 - 0.275; t_844 = 2.675 + (y * 8.13008); t_845 = -t_844; t_846 = 1.44223 + (x * 4.47154); t_847 = t_846 - (y * 1.82927); t_848 = (y * 1.82927) - t_846; t_849 = (x * 8.13008) - 5.431; t_850 = 3.825 - (y * 8.13008); t_851 = max(t_850, t_154); t_852 = (y * 1.21951) + 1.23609; t_853 = 1.18065 + (y * 2.03252); t_854 = (x * 4.47154) - t_562; t_855 = 2.48475 + (x * 4.47154); t_856 = t_855 - (y * 1.82927); t_857 = (y * 1.82927) - t_855; t_858 = -t_489; t_859 = -(3.357 + (x * 8.13008)); t_860 = (1.6416 + (y * 2.64228)) + (x * 4.47154); t_861 = -t_860; t_862 = (y * 2.64228) + 3.29243; t_863 = (x * 4.47154) - t_862; t_864 = t_862 - (x * 4.47154); t_865 = 1.00286 + (x * 11.6144); t_866 = (x * 5.42005) - 2.00117; t_867 = (x * 4.47154) - t_819; t_868 = (x * 1.01626) + 2.92488; t_869 = (y * 1.82927) + (x * 4.47154); t_870 = sqrt((t_456 + t_108)); t_871 = (x * 8.13008) - 1.3305; t_872 = sqrt((t_756 + (t_871 ^ 2.0))); t_873 = (y * 2.64228) + 3.1519; t_874 = (x * 4.47154) - t_873; t_875 = t_873 - (x * 4.47154); t_876 = sqrt((t_54 + (((x * 8.13008) - 3.8055) ^ 2.0))); t_877 = 0.571825 + (y * 1.21951); t_878 = 4.55 + (y * 8.13008); t_879 = 0.525 - (y * 0.813008); t_880 = 5.275 + (x * 8.13008); t_881 = -t_880; t_882 = max(t_666, t_825); t_883 = sqrt((t_826 + (t_129 ^ 2.0))); t_884 = 4.7 + (x * 8.13008); t_885 = 4.925 + (y * 8.13008); t_886 = t_885 ^ 2.0; t_887 = sqrt((t_886 + ((0.867001 + (x * 8.13008)) ^ 2.0))); t_888 = sqrt((t_886 + (((x * 8.13008) - 4.2705) ^ 2.0))); t_889 = sqrt((t_886 + (((x * 8.13008) - 4.9205) ^ 2.0))); t_890 = sqrt((t_886 + ((1.767 + (x * 8.13008)) ^ 2.0))); t_891 = sqrt((t_886 + (((x * 8.13008) - 3.6205) ^ 2.0))); t_892 = sqrt((t_886 + (t_776 ^ 2.0))); t_893 = t_892 - 0.275; t_894 = sqrt((t_886 + (t_813 ^ 2.0))); t_895 = t_894 - 0.275; t_896 = sqrt((t_886 + (t_139 ^ 2.0))); t_897 = sqrt((t_886 + (t_70 ^ 2.0))); t_898 = t_897 - 0.275; t_899 = -t_825; t_900 = 6.201 - (x * 8.13008); t_901 = 0.4625 - (y * 8.13008); t_902 = max(t_722, t_901); t_903 = 4.6455 - (x * 8.13008); t_904 = (x * 8.13008) - 5.558; t_905 = 4.65 + (y * 8.13008); t_906 = max(t_905, -t_885); t_907 = max(t_343, t_905); t_908 = max(t_666, t_583); t_909 = 3.497 + (x * 8.13008); t_910 = sqrt((t_176 + ((4.995 + (x * 8.13008)) ^ 2.0))); t_911 = t_910 - 0.275; t_912 = (y * 2.03252) + (x * 4.47154); t_913 = max(t_343, t_885); t_914 = ((x * 2.23577) + 3.865) + (y * 4.06504); t_915 = max(t_3, (5.7 - (y * 8.13008))); t_916 = t_596 ^ 2.0; t_917 = sqrt((t_916 + (t_542 ^ 2.0))); t_918 = sqrt((t_916 + (t_322 ^ 2.0))); t_919 = t_55 - 0.275; t_920 = ((y * 2.03252) + 2.7575) + (x * 4.47154); t_921 = ((y * 2.03252) + 2.18935) + (x * 4.47154); t_922 = 0.5025 + (y * 2.03252); t_923 = 2.662 + (x * 8.13008); t_924 = -t_923; t_925 = ((y * 8.13008) - 3.6) ^ 2.0; t_926 = -t_491; t_927 = ((y * 8.13008) - 1.675) ^ 2.0; t_928 = sqrt(((((x * 8.13008) - 6.133) ^ 2.0) + t_927)); t_929 = sqrt((t_927 + (t_124 ^ 2.0))); t_930 = sqrt((t_927 + (((x * 8.13008) - 0.224999) ^ 2.0))); t_931 = sqrt((t_927 + (((x * 8.13008) - 2.775) ^ 2.0))); t_932 = sqrt((((6.375 + (x * 8.13008)) ^ 2.0) + t_927)); t_933 = sqrt((t_741 + t_927)); t_934 = sqrt((t_927 + ((1.9 + (x * 8.13008)) ^ 2.0))); t_935 = sqrt((t_927 + (((x * 8.13008) - 6.783) ^ 2.0))); t_936 = t_935 - 0.275; t_937 = -(3.425 + (x * 8.13008)); t_938 = (x * 1.01626) + 1.13813; t_939 = (y * 8.13008) - 1.3; t_940 = max(t_939, t_379); t_941 = max(t_939, (0.55 - (y * 8.13008))); t_942 = sqrt((t_760 + (((x * 8.13008) - 6.3705) ^ 2.0))); t_943 = -t_14; t_944 = 0.592 + (x * 8.13008); t_945 = sqrt((t_760 + (t_481 ^ 2.0))); t_946 = 6.2385 - (x * 8.13008); t_947 = 7.47551 - (x * 8.13008); t_948 = 5.5955 - (x * 8.13008); t_949 = t_645 ^ 2.0; t_950 = sqrt((t_949 + (((x * 8.13008) - 0.7685) ^ 2.0))); t_951 = sqrt((t_949 + (((x * 8.13008) - 1.0185) ^ 2.0))); t_952 = -(0.267001 + (x * 8.13008)); t_953 = 1.4305 - (x * 8.13008); t_954 = sqrt((t_826 + (((x * 8.13008) - 5.156) ^ 2.0))); t_955 = 2.7765 - (x * 5.42005); t_956 = t_15 - (y * 1.82927); t_957 = -(2.887 + (x * 8.13008)); t_958 = max(t_381, t_16); t_959 = t_622 - 0.275; t_960 = t_624 - (y * 2.64228); t_961 = 1.01 + (x * 4.47154); t_962 = sqrt((t_826 + (t_721 ^ 2.0))); t_963 = 0.461601 + (x * 4.47154); t_964 = t_963 - (y * 2.64228); t_965 = (y * 2.64228) - t_963; t_966 = t_351 - (x * 4.47154); t_967 = 3.23375 - (y * 5.28455); t_968 = 2.5725 - (x * 8.13008); t_969 = 3.20125 + (y * 5.28455); t_970 = -t_969; t_971 = -(3.875 + (y * 8.13008)); t_972 = max(t_780, t_971); t_973 = 0.775551 + (y * 2.84553); t_974 = (x * 4.47154) - t_973; t_975 = t_973 - (x * 4.47154); t_976 = 2.775 - (y * 8.13008); t_977 = (x * 11.6144) - 5.05; t_978 = t_22 - 2.11243; t_979 = (x + y) * 4.06504; t_980 = 2.4935 + t_979; t_981 = 0.0709989 + t_979; t_982 = (0.635 + (y * 8.13008)) ^ 2.0; t_983 = 1.55 + (y * 8.13008); t_984 = t_983 ^ 2.0; t_985 = sqrt((t_984 + ((2.712 + (x * 8.13008)) ^ 2.0))); t_986 = sqrt((t_984 + ((2.462 + (x * 8.13008)) ^ 2.0))); t_987 = max(t_377, t_983); t_988 = (6.025 + (y * 8.13008)) ^ 2.0; t_989 = sqrt((t_988 + (((x * 8.13008) - 4.683) ^ 2.0))); t_990 = sqrt((((1.842 + (x * 8.13008)) ^ 2.0) + t_988)); t_991 = sqrt((t_988 + (((x * 8.13008) - 0.00799847) ^ 2.0))); t_992 = sqrt(((t_785 ^ 2.0) + t_988)); t_993 = sqrt((t_988 + (t_660 ^ 2.0))); t_994 = sqrt((t_988 + (((x * 8.13008) - 4.033) ^ 2.0))); t_995 = 0.542376 + (y * 2.03252); t_996 = t_337 ^ 2.0; t_997 = 4.975 - (y * 8.13008); t_998 = t_49 - 4.12055; t_999 = -(0.229501 + (x * 8.13008)); t_1000 = sqrt((t_741 + t_176)); t_1001 = t_1000 - 0.275; t_1002 = sqrt((t_615 + ((4.325 + (x * 8.13008)) ^ 2.0))); t_1003 = (x * 4.47154) - t_647; t_1004 = -(4.1 + (x * 8.13008)); t_1005 = (x * 4.47154) - t_504; t_1006 = (x * 8.13008) - 4.051; t_1007 = (0.5925 + (x * 2.23577)) + (y * 4.06504); t_1008 = 3.3775 + (x * 4.47154); t_1009 = t_1008 - (y * 2.84553); t_1010 = (y * 2.84553) - t_1008; t_1011 = (y * 0.813008) - 0.36; t_1012 = max(t_379, t_722); t_1013 = ((y * 2.03252) + 3.61) + (x * 4.47154); t_1014 = (x + y) * 2.23577; t_1015 = 0.570488 + t_1014; t_1016 = t_1014 + 2.48875; t_1017 = 0.625 - (y * 8.13008); t_1018 = (y * 0.813008) - 0.25; t_1019 = (y * 1.21951) + 1.30319; t_1020 = (x * 8.13008) - 4.5455; t_1021 = 0.8325 + (y * 2.03252); t_1022 = max(t_216, t_3); tmp = min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(min(max(max(max(max(max(t_21, -t_322), (0.175 - t_992)), (t_992 - 0.275)), t_325), t_503), max(max(max((4.025 + (x * 8.13008)), -(4.125 + (x * 8.13008))), t_325), t_503)), max(max(max((4.275 + (x * 8.13008)), -(4.375 + (x * 8.13008))), t_325), t_503)), max(max(max((5.5 + (y * 8.13008)), -t_82), t_179), t_274)), max(max(max(-(5.4 + (y * 8.13008)), t_884), t_30), t_325)), max(max(max(t_884, t_30), t_335), t_503)), max(max(max((4.9 + (x * 8.13008)), -(5.0 + (x * 8.13008))), t_325), t_503)), max(max(t_344, (5.7205 - (x * 8.13008))), ((x * 8.13008) - 5.8205))), max(max(max(t_905, -(4.75 + (y * 8.13008))), t_139), t_226)), max(max(max(t_343, t_139), t_226), (5.1 + (y * 8.13008)))), max(max(t_820, ((x * 4.47154) - t_232)), t_545)), max(max(-t_58, t_194), t_414)), max(max(t_58, t_674), t_413)), max(max(t_674, t_921), t_544)), max(max(t_194, -t_921), t_545)), max((0.175 - t_990), (t_990 - 0.275))), max(max(max((2.475 + (x * 8.13008)), -(2.575 + (x * 8.13008))), t_82), t_503)), max(max(max(max(max(t_560, -(3.67857 + (x * 11.6144))), (0.45 - sqrt((t_502 + ((3.91072 + (x * 14.518)) ^ 2.0))))), (sqrt((t_502 + (t_560 ^ 2.0))) - 0.55)), t_82), t_503)), max(max(max(-t_203, (2.675 + (x * 8.13008))), t_325), t_503)), max(max(t_786, t_82), t_611)), max(max(t_786, t_335), t_503)), max(-min((sqrt((((1.33245 - (x * 3.61337)) ^ 2.0) + (-(4.815 + (y * 8.13008)) ^ 2.0))) - 0.0625), max(max(max(t_163, t_307), t_435), ((x * 5.42005) - 2.16367))), (sqrt(((-t_307 ^ 2.0) + (t_435 ^ 2.0))) - 0.1625))), max(-min(max(max(max(-t_705, t_866), (1.83867 - (x * 5.42005))), t_43), (sqrt((((5.035 + (y * 8.13008)) ^ 2.0) + (((x * 3.61337) - 1.33578) ^ 2.0))) - 0.0625)), (sqrt(((t_705 ^ 2.0) + (t_866 ^ 2.0))) - 0.1625))), max(max(max(t_183, -t_272), ((x * 8.13008) - 1.808)), (1.708 - (x * 8.13008)))), max(max(max(t_878, -t_905), t_78), t_138)), max(max(max(max(max(t_343, t_272), t_78), t_138), (0.15 - t_713)), (t_713 - 0.25))), max(max(max(max(t_344, (4.8205 - (x * 8.13008))), ((x * 8.13008) - 5.5455)), (0.175 - t_896)), (t_896 - 0.275))), max(max(max(t_343, t_43), t_278), (5.0955 - (x * 8.13008)))), max(max(t_907, ((x * 8.13008) - 4.7455)), t_903)), max(max(max(max(max(t_905, t_278), t_903), -t_43), (0.175 - t_889)), (t_889 - 0.275))), max(max(t_907, t_1020), (4.4455 - (x * 8.13008)))), max(max(t_906, ((x * 8.13008) - 4.0955)), t_463)), max(max(max(max(t_913, t_1020), t_463), (0.175 - t_888)), (t_888 - 0.275))), max((0.175 - t_891), (t_891 - 0.275))), max(max(max(t_343, (0.142001 + (x * 8.13008))), -(0.242001 + (x * 8.13008))), t_360)), max(max(max(t_343, (0.392001 + (x * 8.13008))), t_824), t_62)), max(max(max(max(t_878, t_824), ((x * 8.13008) - 0.157999)), min(max((0.075 - t_734), (t_734 - 0.175)), max((0.075 - t_363), (t_363 - 0.175)))), t_693)), max(max(t_907, t_944), -(0.692001 + (x * 8.13008)))), max(max(t_906, (1.042 + (x * 8.13008))), t_425)), max(max(max(max(t_913, t_944), t_425), (0.175 - t_887)), (t_887 - 0.275))), max(max(t_344, (1.267 + (x * 8.13008))), -(1.367 + (x * 8.13008)))), max(max(max(t_905, -(5.575 + (y * 8.13008))), (1.942 + (x * 8.13008))), -(2.042 + (x * 8.13008)))), max(t_893, min(max(max(t_164, ((x * 8.13008) - 1.458)), (0.958001 - (x * 8.13008))), max(max(t_893, -min(max(max(t_969, ((x * 2.23577) - t_316)), -t_643), max(max(t_643, (t_316 - (x * 2.23577))), t_970))), (0.175 - t_892))))), max(max(t_389, ((x * 8.13008) - 0.808001)), (0.708 - (x * 8.13008)))), max(max(t_389, ((x * 8.13008) - 0.558001)), (0.458 - (x * 8.13008)))), max(max(max(t_343, t_62), ((x * 8.13008) - 0.308001)), t_397)), max(max(max(max(t_878, t_397), t_693), ((x * 8.13008) - 0.858)), min(max((0.075 - t_362), (t_362 - 0.175)), max((0.075 - t_576), (t_576 - 0.175))))), max(max(t_389, ((x * 8.13008) - 0.108)), (0.00799942 - (x * 8.13008)))), max((0.175 - t_890), (t_890 - 0.275))), max(max(t_37, t_220), -t_405)), max(max(t_725, t_219), t_405)), max(max(t_725, t_1013), t_135)), max(max(t_37, -t_1013), t_408)), max(t_895, min(max(max(t_164, (4.65 + (x * 8.13008))), -t_143), max(max(t_895, -min(max(max(t_969, (t_659 - (y * 1.21951))), -t_914), max(max(t_970, t_914), ((y * 1.21951) - t_659)))), (0.175 - t_894))))), max(max(t_669, (7.531 - (x * 8.13008))), ((x * 8.13008) - 7.631))), max(max(t_237, t_547), t_675)), max(max(max(t_666, t_547), t_675), t_9)), max(max(max(max(t_669, (6.631 - (x * 8.13008))), ((x * 8.13008) - 7.356)), (0.175 - t_841)), (t_841 - 0.275))), max(max(t_907, (3.1 + (x * 8.13008))), -(3.2 + (x * 8.13008)))), max(max(max(max(t_907, t_690), -(4.57143 + (x * 11.6144))), (0.45 - sqrt((t_342 + ((5.02679 + (x * 14.518)) ^ 2.0))))), (sqrt((t_342 + (t_690 ^ 2.0))) - 0.55))), max(t_898, min(max(max(t_164, t_303), -t_481), max(max(t_898, -min(max(max(t_969, (t_110 - (y * 1.21951))), -t_249), max(max(t_970, t_249), ((y * 1.21951) - t_110)))), (0.175 - t_897))))), max(max(t_220, (t_961 - (y * 2.03252))), t_114)), max(max(t_219, t_308), ((y * 2.03252) - t_961))), max(max(t_308, t_135), ((y * 2.03252) - t_630))), max(max(t_114, (t_630 - (y * 2.03252))), t_408)), (sqrt((((6.225 + (y * 8.13008)) ^ 2.0) + (t_388 ^ 2.0))) - 0.075)), max(max(max(max(-min(min(min(min(min(min(min(max(max(t_390, ((x * 4.06504) - 2.829)), -t_981), max(max(t_981, (2.829 - (x * 4.06504))), -t_390)), max(max(((x * 8.13008) - t_439), -((0.0706995 + (y * 2.60163)) + (x * 2.84553))), (t_125 - (x * 5.28455)))), max(max(((x * 5.28455) - t_125), ((0.0706992 + (y * 2.60163)) + (x * 2.84553))), (t_439 - (x * 8.13008)))), max(max(-t_85, (1.8053 - (x * 2.84553))), (t_444 - 0.171801))), max(max(t_85, (0.171801 - t_444)), ((x * 2.84553) - 1.8053))), max(max(t_31, ((x * 4.47154) - t_279)), (2.8369 - (x * 4.47154)))), max(max(((x * 4.47154) - 2.8369), (t_279 - (x * 4.47154))), -t_31)), t_325), t_503), t_904), (5.058 - (x * 8.13008)))), max((0.175 - t_989), (t_989 - 0.275))), max((0.175 - t_994), (t_994 - 0.275))), max(max(max(((x * 8.13008) - 3.233), (3.133 - (x * 8.13008))), t_325), t_503)), max(max(max(t_82, t_611), t_660), t_822)), max(max(max(t_660, t_822), t_335), t_503)), max(max(max(max(max(((x * 8.13008) - 4.133), (3.408 - (x * 8.13008))), (0.175 - t_993)), (t_993 - 0.275)), t_325), t_503)), max(max(-t_99, t_240), t_553)), max(max(t_99, t_552), t_239)), max(max(max(max(t_291, (5.65 + (y * 8.13008))), -t_600), ((x * 8.13008) - 1.733)), min(max((0.075 - t_602), (t_602 - 0.175)), max((0.075 - t_604), (t_604 - 0.175))))), max(max(max(t_503, t_198), t_297), (0.182999 - (x * 8.13008)))), max(max(max(t_82, t_503), (0.167001 + (x * 8.13008))), t_952)), max(max(max(max(max(t_82, t_297), t_952), -t_198), (0.175 - t_991)), (t_991 - 0.275))), max(max(((x * 4.47154) - t_111), t_251), t_414)), max(max(t_485, (t_111 - (x * 4.47154))), t_413)), max(max(t_485, (t_853 - (x * 4.47154))), t_544)), max(max(t_251, ((x * 4.47154) - t_853)), t_545)), max(max(-t_309, t_489), t_414)), max(max(t_309, t_858), t_413)), max(max(t_858, t_75), t_544)), max(max(t_489, -t_75), t_545)), max(max(((x * 4.47154) - t_569), t_820), t_414)), max(max(t_867, (t_569 - (x * 4.47154))), t_413)), max(max(t_867, (t_232 - (x * 4.47154))), t_544)), max(max(t_552, t_413), t_320)), max(max(t_553, t_572), t_414)), max(max(t_240, t_414), t_875)), max(max(t_239, t_413), t_874)), max(max(t_320, t_874), t_544)), max(max(t_572, t_875), t_545)), max(max(t_414, -t_574), t_790)), max(max(t_413, t_574), t_791)), max(max(t_544, t_791), t_273)), max(max(t_545, t_790), -t_273)), max(max(t_806, ((x * 8.13008) - 1.683)), (1.583 - (x * 8.13008)))), max(max(t_806, ((x * 8.13008) - 1.433)), (1.333 - (x * 8.13008)))), max(max(max(t_503, (5.775 + (y * 8.13008))), t_776), t_291)), max(max(max(t_32, ((x * 8.13008) - 1.498)), (1.398 - (x * 8.13008))), t_338)), max(max(max(t_32, ((x * 8.13008) - 1.248)), (1.148 - (x * 8.13008))), t_338)), max(max(max((2.475 + (y * 8.13008)), ((x * 8.13008) - 0.998001)), t_282), t_338)), max(max(max(max(t_282, -t_32), ((x * 8.13008) - 1.548)), min(max((0.075 - t_141), (t_141 - 0.175)), max((0.075 - t_527), (t_527 - 0.175)))), t_5)), max((0.175 - t_537), (t_537 - 0.275))), max(max(max(t_0, -(0.00200015 + (x * 8.13008))), t_338), t_528)), max(max(max((0.352 + (x * 8.13008)), t_555), t_338), t_730)), max(max(max(max(max(t_0, t_555), (0.175 - t_536)), (t_536 - 0.275)), t_557), t_683)), max(max(max(max(max((0.175 - t_535), (t_535 - 0.275)), t_557), t_476), t_605), t_845)), max(max(max(((x * 8.13008) - 3.0105), (2.9105 - (x * 8.13008))), t_338), t_557)), (sqrt((t_477 + (((x * 8.13008) - 2.9605) ^ 2.0))) - 0.075)), max(-min(max(max(max(t_246, t_385), t_482), ((x * 5.42005) - 1.39033)), (sqrt(((-(2.615 + (y * 8.13008)) ^ 2.0) + ((0.81689 - (x * 3.61337)) ^ 2.0))) - 0.0625)), (sqrt(((-t_385 ^ 2.0) + (t_482 ^ 2.0))) - 0.1625))), max(-min(max(max(max(-t_211, t_310), (1.06533 - (x * 5.42005))), t_844), (sqrt((((2.835 + (y * 8.13008)) ^ 2.0) + (((x * 3.61337) - 0.820223) ^ 2.0))) - 0.0625)), (sqrt(((t_211 ^ 2.0) + (t_310 ^ 2.0))) - 0.1625))), max(max(max(max(max((0.175 - t_781), (t_781 - 0.275)), t_171), t_270), t_557), t_845)), max(max(max((3.607 + (x * 8.13008)), -(3.707 + (x * 8.13008))), t_338), t_557)), (sqrt((t_477 + ((3.657 + (x * 8.13008)) ^ 2.0))) - 0.075)), max(max(max(t_32, (3.852 + (x * 8.13008))), -(3.952 + (x * 8.13008))), t_338)), max((0.175 - t_530), (t_530 - 0.275))), max(max(max((4.662 + (x * 8.13008)), -(4.762 + (x * 8.13008))), t_730), t_131)), max(max(t_580, t_5), t_719)), max(max(max(max(t_580, (0.15 - t_403)), (t_403 - 0.25)), t_338), t_130)), max(max(max((5.27 + (x * 8.13008)), -(5.37 + (x * 8.13008))), t_338), t_557)), max(max(max((0.702 + (x * 8.13008)), -(0.802 + (x * 8.13008))), t_730), t_131)), max(max(t_591, t_5), t_719)), max(max(max(max(t_591, (0.15 - t_590)), (t_590 - 0.25)), t_338), t_130)), max(max(max(t_32, (1.072 + (x * 8.13008))), -(1.172 + (x * 8.13008))), t_338)), max((0.175 - t_532), (t_532 - 0.275))), max(max(max(t_671, (1.882 + (x * 8.13008))), -(1.982 + (x * 8.13008))), t_338)), max(max(max(-(2.55 + (y * 8.13008)), t_471), t_598), t_557)), max(max(max(max(max(t_471, t_598), -t_671), (0.15 - t_672)), (t_672 - 0.25)), t_730)), max(max(max(t_171, -(3.032 + (x * 8.13008))), t_338), t_844)), max(max(max((3.382 + (x * 8.13008)), t_270), t_338), t_557)), max(max(t_608, t_736), t_946)), max(max(max(max(max(t_736, t_946), t_377), (0.15 - t_751)), (t_751 - 0.25)), t_747)), max(max(t_607, ((x * 8.13008) - 6.1135)), (6.0135 - (x * 8.13008)))), (sqrt((((1.2 + (y * 8.13008)) ^ 2.0) + (((x * 8.13008) - 6.0635) ^ 2.0))) - 0.075)), max(max(t_208, t_352), t_563)), max(max(t_207, t_854), t_966)), max(max(t_854, t_115), t_261)), max(max(t_563, t_490), t_567)), max(max(t_352, t_567), t_864)), max(max(t_966, t_115), t_863)), max(max(t_261, t_863), t_264)), max(max(t_490, t_864), t_498)), max(max(t_567, (2.24743 - t_869)), t_978)), max(max(max(max(max(t_391, -(7.67143 + (x * 11.6144))), (0.45 - sqrt((t_996 + ((8.90179 + (x * 14.518)) ^ 2.0))))), (sqrt((t_996 + (t_391 ^ 2.0))) - 0.55)), t_338), t_557)), max(t_539, min(max(max(max((5.47 + (x * 8.13008)), -(5.97 + (x * 8.13008))), t_399), t_246), max(max(t_539, -min(max(max((t_26 - (y * 1.21951)), -t_180), t_333), max(max(t_180, ((y * 1.21951) - t_26)), t_650))), (0.175 - t_538))))), max(max(-min(max(max(((y * 2.23577) - (1.02163 + (x * 2.27642))), t_517), -t_1016), max(max(t_1016, -t_517), ((1.02162 + (x * 2.27642)) - (y * 2.23577)))), (0.175 - t_657)), (t_657 - 0.275))), max(max(t_748, ((x * 8.13008) - 6.4885)), (6.3885 - (x * 8.13008)))), max(max(max(max(t_662, (0.175 - t_823)), (t_823 - 0.275)), ((x * 8.13008) - 3.9055)), (3.1805 - (x * 8.13008)))), max(max(max(max(max(-min(max(max(((x * 2.84553) - t_195), -t_368), (t_681 - (x * 1.01626))), max(max(t_368, ((x * 1.01626) - t_681)), (t_195 - (x * 2.84553)))), t_292), -(2.05 + (y * 8.13008))), ((x * 8.13008) - 2.0805)), (1.9305 - (x * 8.13008))), (sqrt((((0.608333 + (y * 2.71003)) ^ 2.0) + (((x * 8.13008) - 2.0055) ^ 2.0))) - 0.075))), (sqrt(((t_292 ^ 2.0) + (((x * 8.13008) - 2.0305) ^ 2.0))) - 0.075)), max(max(t_378, ((x * 8.13008) - 1.6805)), (1.5805 - (x * 8.13008)))), max(max(max(t_606, t_742), t_953), t_71)), max(max(max(max(max(t_47, t_742), t_953), t_483), (0.15 - t_757)), (t_757 - 0.25))), max(max(t_378, ((x * 8.13008) - 1.1805)), (1.0805 - (x * 8.13008)))), max(max(t_115, t_432), (t_869 - 2.24743))), max(max(t_264, t_432), (t_869 - 2.30243))), max(max(t_498, t_978), (2.30243 - t_869))), max(max(t_607, ((x * 8.13008) - 4.2805)), (4.1805 - (x * 8.13008)))), max(max(max(max(t_607, t_631), (5.97215 - (x * 11.6144))), (0.45 - sqrt((t_376 + (((x * 14.518) - 8.15268) ^ 2.0))))), (sqrt((t_376 + (t_631 ^ 2.0))) - 0.55))), max(max(t_607, t_706), (3.9805 - (x * 8.13008)))), max(max(max(t_606, -t_53), ((x * 8.13008) - 3.6305)), t_321)), max(max(max(max(max(t_377, t_706), t_321), t_53), (0.175 - t_876)), (t_876 - 0.275))), max(max(t_662, ((x * 8.13008) - 3.0055)), (2.9055 - (x * 8.13008)))), max(max(t_711, t_188), t_792)), max(max(max(t_377, t_188), t_792), t_80)), max((0.175 - t_834), (t_834 - 0.275))), max(max(t_882, t_1006), (3.951 - (x * 8.13008)))), max(max(t_669, ((x * 8.13008) - 3.601)), t_401)), max(max(max(max(max(t_235, t_1006), t_401), t_899), (0.175 - t_827)), (t_827 - 0.275))), max(max(t_586, ((x * 8.13008) - 3.251)), (3.151 - (x * 8.13008)))), max(max(t_236, t_346), t_450)), max(max(max(max(t_908, t_346), t_450), (0.15 - t_585)), (t_585 - 0.25))), max(max(t_667, ((x * 8.13008) - 1.943)), (1.843 - (x * 8.13008)))), max(max(max(max(t_667, t_4), (2.63286 - (x * 11.6144))), (0.45 - sqrt((t_665 + (((x * 14.518) - 3.97857) ^ 2.0))))), (sqrt((t_665 + (t_4 ^ 2.0))) - 0.55))), max(max(t_667, ((x * 8.13008) - 6.981)), (6.881 - (x * 8.13008)))), (sqrt((((3.4 + (y * 8.13008)) ^ 2.0) + (((x * 8.13008) - 6.931) ^ 2.0))) - 0.075)), max(max(t_669, (6.656 - (x * 8.13008))), ((x * 8.13008) - 6.756))), max(max(t_237, t_293), t_421)), max(max(t_670, t_293), t_421)), max(max(max(max(t_669, (5.756 - (x * 8.13008))), ((x * 8.13008) - 6.481)), (0.175 - t_833)), (t_833 - 0.275))), max(max(t_692, t_849), (5.331 - (x * 8.13008)))), max(max(t_667, ((x * 8.13008) - 4.981)), t_298)), max(max(max(max(max(t_235, t_849), t_298), t_743), (0.175 - t_954)), (t_954 - 0.275))), max(max(t_668, ((x * 8.13008) - 4.761)), (4.661 - (x * 8.13008)))), max(min(max(max((0.175 - t_831), t_837), -min(max(max(t_777, ((x * 2.23577) - t_20)), -t_165), max(max(t_778, t_165), (t_20 - (x * 2.23577))))), max(max(t_972, ((x * 8.13008) - 0.443)), -(0.0570004 + (x * 8.13008)))), t_837)), max(t_839, min(max(max(max((0.207 + (x * 8.13008)), -(0.707 + (x * 8.13008))), t_780), t_971), max(max(t_839, -min(max(max(((x * 2.23577) - t_877), -t_77), t_777), max(max(t_77, (t_877 - (x * 2.23577))), t_778))), (0.175 - t_838))))), max(max(t_669, -t_644), (0.857 + (x * 8.13008)))), max(max(t_237, t_129), t_644)), max(max(t_670, t_129), t_644)), max(max(max(max(t_669, -(1.857 + (x * 8.13008))), t_128), (0.175 - t_883)), (t_883 - 0.275))), max(max(t_669, -t_275), (2.182 + (x * 8.13008)))), max(max(t_237, t_275), t_721)), max(max(t_670, t_275), t_721)), max(t_829, min(max(max(t_972, ((x * 8.13008) - 1.743)), (1.243 - (x * 8.13008))), max(max(t_829, -min(max(max(t_777, ((x * 2.23577) - t_284)), -t_451), max(max(t_451, (t_284 - (x * 2.23577))), t_778))), (0.175 - t_828))))), max(max(max(t_235, -(4.475 + (y * 8.13008))), ((x * 8.13008) - 0.643001)), (0.543 - (x * 8.13008)))), max((0.175 - t_840), (t_840 - 0.275))), max(max(max(max(max((sqrt((((4.937 + (x * 8.13008)) ^ 2.0) + ((1.34167 + (y * 2.71003)) ^ 2.0))) - 0.075), -min(max(max((t_196 - (y * 0.813008)), -t_365), (t_599 - (x * 1.01626))), max(max(((x * 1.01626) - t_599), t_365), ((y * 0.813008) - t_196)))), t_63), -(4.25 + (y * 8.13008))), (4.862 + (x * 8.13008))), -(5.012 + (x * 8.13008)))), (sqrt(((t_63 ^ 2.0) + (t_579 ^ 2.0))) - 0.075)), max(max(t_882, t_42), -(5.262 + (x * 8.13008)))), max(max(t_669, (5.612 + (x * 8.13008))), t_561)), max(max(max(max(max(t_235, t_899), t_42), t_561), (0.175 - t_830)), (t_830 - 0.275))), max(max(t_586, (5.962 + (x * 8.13008))), -(6.062 + (x * 8.13008)))), max(max(t_236, t_109), t_204)), max(max(max(max(t_908, t_109), t_204), (0.15 - t_698)), (t_698 - 0.25))), max(max(t_667, (6.57 + (x * 8.13008))), -(6.67 + (x * 8.13008)))), max(max(max(max(t_669, t_720), -(3.182 + (x * 8.13008))), (0.175 - t_962)), (t_962 - 0.275))), max(max(t_692, t_262), -(2.907 + (x * 8.13008)))), max(max(t_667, (3.257 + (x * 8.13008))), t_859)), max(max(max(max(max(t_235, t_743), t_262), t_859), (0.175 - t_836)), (t_836 - 0.275))), max(max(t_668, (3.477 + (x * 8.13008))), -(3.577 + (x * 8.13008)))), max((0.175 - t_835), (t_835 - 0.275))), max(min(max(max(t_534, -min(max(max(t_333, ((x * 2.23577) - t_712)), (0.228514 - t_25)), max(max((t_25 - 0.228514), (t_712 - (x * 2.23577))), t_650))), (0.175 - t_533)), max(max(max(t_399, t_246), ((x * 8.13008) - 6.23551)), (5.73551 - (x * 8.13008)))), t_534)), max(max(max(t_338, t_27), (5.4355 - (x * 8.13008))), t_528)), max(max(max(t_338, t_730), ((x * 8.13008) - 5.0855)), t_510)), max(max(max(max(max(t_27, t_510), t_557), t_683), (0.175 - t_531)), (t_531 - 0.275))), max(max(max(t_730, t_131), ((x * 8.13008) - 4.7355)), (4.6355 - (x * 8.13008)))), max(max(max(t_5, t_719), t_91), t_185)), max(max(max(max(max(t_338, t_130), t_91), t_185), (0.15 - t_658)), (t_658 - 0.25))), max(max(max(t_338, t_844), t_476), (3.5855 - (x * 8.13008)))), max(max(max(t_338, t_557), ((x * 8.13008) - 3.2355)), t_605)), max(max(max(max(t_667, t_728), -(9.52857 + (x * 11.6144))), (0.45 - sqrt((t_665 + ((11.2232 + (x * 14.518)) ^ 2.0))))), (sqrt((t_665 + (t_728 ^ 2.0))) - 0.55))), max(max(t_668, (6.79 + (x * 8.13008))), -(6.89 + (x * 8.13008)))), max((0.175 - t_832), (t_832 - 0.275))), max(t_843, min(max(max(t_972, t_294), t_419), max(max(t_843, -min(max(max(t_777, (t_106 - (y * 1.21951))), -t_243), max(max(t_778, t_243), ((y * 1.21951) - t_106)))), (0.175 - t_842))))), max(max(t_848, t_66), t_155)), max(max(t_847, t_427), t_478)), max(max(t_427, t_746), t_956)), max(max(t_155, t_745), t_247)), max(max(t_848, t_745), t_429)), max(max(t_847, t_746), t_699)), max(max(t_427, -t_17), t_160)), max(max(t_155, t_17), t_433)), max(max(t_429, t_433), t_628)), max(max(t_699, t_160), -t_628)), max(max(max((3.5325 + (x * 8.13008)), -(3.6325 + (x * 8.13008))), t_491), t_633)), max(max(max(max(max(t_119, -(5.18929 + (x * 11.6144))), (0.45 - sqrt((((5.79911 + (x * 14.518)) ^ 2.0) + t_784)))), (sqrt(((t_119 ^ 2.0) + t_784)) - 0.55)), t_491), t_633)), max(max(max((3.7575 + (x * 8.13008)), -(3.8575 + (x * 8.13008))), t_491), t_633)), (sqrt((((3.8075 + (x * 8.13008)) ^ 2.0) + t_2)) - 0.075)), max(max(max((4.0025 + (x * 8.13008)), -(4.1025 + (x * 8.13008))), t_633), t_645)), max(max(max(((x * 8.13008) - 0.0154991), -(0.084501 + (x * 8.13008))), t_633), t_645)), max((0.175 - t_802), (t_802 - 0.275))), max(max(max(t_181, -(0.794501 + (x * 8.13008))), t_797), t_633)), max(max(max((1.1445 + (x * 8.13008)), t_810), t_34), t_633)), max(max(max(max(max(t_181, t_810), t_798), (0.175 - t_805)), (t_805 - 0.275)), t_491)), max(max(-min(max(max(((y * 2.23577) - t_345), t_453), -t_1015), max(max(t_1015, -t_453), (t_345 - (y * 2.23577)))), (0.175 - t_800)), (t_800 - 0.275))), max(max(t_498, t_956), t_478)), max(max(t_264, t_66), t_247)), max(max(max(max(max(t_798, t_52), t_191), (0.175 - t_804)), (t_804 - 0.275)), t_491)), max(max(max(-t_60, (7.05 + (x * 8.13008))), -(7.15 + (x * 8.13008))), t_34)), max(max(max(t_549, t_679), t_926), t_10)), max(max(max(max(max(t_60, t_549), t_679), (0.15 - t_550)), (t_550 - 0.25)), t_633)), max(max(t_941, ((x * 8.13008) - 7.72551)), (7.62551 - (x * 8.13008)))), max(max(t_424, t_737), t_947)), max(max(max(max(max(t_737, t_947), t_299), t_379), (0.15 - t_738)), (t_738 - 0.25))), max(max(max(t_379, ((y * 8.13008) - 0.65)), ((x * 8.13008) - 7.35551)), (7.25551 - (x * 8.13008)))), max((0.175 - t_771), (t_771 - 0.275))), max((0.175 - t_801), (t_801 - 0.275))), max(-min(max(max(max(t_168, (3.575 + (x * 5.42005))), t_313), t_437), (sqrt(((-(2.49333 + (x * 3.61337)) ^ 2.0) + t_76)) - 0.0625)), (sqrt(((t_168 ^ 2.0) + t_500)) - 0.1625))), max(-min(max(max(max(t_167, -(3.9 + (x * 5.42005))), t_213), t_394), (sqrt((((2.49 + (x * 3.61337)) ^ 2.0) + t_982)) - 0.0625)), (sqrt(((t_167 ^ 2.0) + t_395)) - 0.1625))), max(max(max(-(6.075 + (x * 8.13008)), t_793), t_491), t_633)), (sqrt((((6.025 + (x * 8.13008)) ^ 2.0) + t_2)) - 0.075)), max(max(max(t_52, -(6.35 + (x * 8.13008))), t_797), t_633)), max(max(max((6.7 + (x * 8.13008)), t_191), t_34), t_633)), max(-min((sqrt((t_218 + (((x * 3.61337) - 2.02467) ^ 2.0))) - 0.0625), max(max(t_902, t_35), (2.872 - (x * 5.42005)))), (sqrt((t_406 + (t_35 ^ 2.0))) - 0.1625))), max(t_774, min(max(max(t_410, ((x * 8.13008) - 4.208)), (3.708 - (x * 8.13008))), max(max(t_774, -min(max(max(t_97, ((x * 2.23577) - t_229)), (1.32095 - t_25)), max(max((t_25 - 1.32095), (t_229 - (x * 2.23577))), t_729))), (0.175 - t_773))))), max(-min(max(max(max(t_234, ((x * 5.42005) - 2.372)), t_409), t_469), (sqrt((((1.47133 - (x * 3.61337)) ^ 2.0) + t_61)) - 0.0625)), (sqrt(((t_234 ^ 2.0) + t_366)) - 0.1625))), max(max(t_759, t_680), (6.5455 - (x * 8.13008)))), max(max(t_940, ((x * 8.13008) - 6.19551)), t_241)), max(max(max(max(max(t_680, t_241), t_684), t_735), (0.175 - t_942)), (t_942 - 0.275))), max(max(t_941, ((x * 8.13008) - 5.8455)), (5.7455 - (x * 8.13008)))), max(max(t_424, t_739), t_948)), max(max(max(max(t_380, t_739), t_948), (0.15 - t_740)), (t_740 - 0.25))), max(-min(max(max(t_470, t_72), ((x * 5.42005) - 3.197)), (sqrt((t_61 + ((2.02133 - (x * 3.61337)) ^ 2.0))) - 0.0625)), (sqrt((t_366 + (t_72 ^ 2.0))) - 0.1625))), max(-min(max(max(t_902, (0.788667 - (x * 5.42005))), t_256), (sqrt((t_218 + (((x * 3.61337) - 0.635778) ^ 2.0))) - 0.0625)), (sqrt((t_406 + (t_256 ^ 2.0))) - 0.1625))), max(max(t_685, ((x * 8.13008) - 0.125)), (0.0249996 - (x * 8.13008)))), max(max(max(max(t_685, t_704), (0.0357141 - (x * 11.6144))), (0.45 - sqrt((t_169 + (((x * 14.518) - 0.732143) ^ 2.0))))), (sqrt((t_169 + (t_704 ^ 2.0))) - 0.55))), max(max(t_685, (0.1 + (x * 8.13008))), -(0.2 + (x * 8.13008)))), (sqrt(((((y * 8.13008) - 1.0) ^ 2.0) + t_465)) - 0.075)), max(t_789, min(max(max(t_410, (0.325 + (x * 8.13008))), -(0.825 + (x * 8.13008))), max(max(t_789, -min(max(max(t_97, (t_81 - (y * 1.21951))), (0.0743749 - t_25)), max(max(t_729, (t_25 - 0.0743749)), ((y * 1.21951) - t_81)))), (0.175 - t_788))))), max(-min(max(max(max(t_28, (2.047 - (x * 5.42005))), t_722), t_901), (sqrt((t_218 + (((x * 3.61337) - 1.47467) ^ 2.0))) - 0.0625)), (sqrt((t_406 + (t_28 ^ 2.0))) - 0.1625))), max(max(t_1012, t_36), (2.8705 - (x * 8.13008)))), max(max(t_685, ((x * 8.13008) - 2.5205)), t_448)), max(max(max(max(max(t_684, t_36), t_448), t_1017), (0.175 - t_762)), (t_762 - 0.275))), max(t_768, min(max(max(t_410, ((x * 8.13008) - 2.3205)), (1.8205 - (x * 8.13008))), max(max(t_768, -min(max(max(t_97, ((x * 2.23577) - t_663)), (0.801888 - t_25)), max(max(t_729, (t_25 - 0.801888)), (t_663 - (x * 2.23577))))), (0.175 - t_767))))), max(-min(max(max(t_470, t_543), ((x * 5.42005) - 1.11367)), (sqrt((t_61 + ((0.632445 - (x * 3.61337)) ^ 2.0))) - 0.0625)), (sqrt((t_366 + (t_543 ^ 2.0))) - 0.1625))), max((sqrt(((-t_733 ^ 2.0) + (t_8 ^ 2.0))) - 0.1625), -min(max(max(max(t_420, t_733), t_8), (0.233001 + (x * 5.42005))), (sqrt(((-(1.515 + (y * 8.13008)) ^ 2.0) + (-(0.265334 + (x * 3.61337)) ^ 2.0))) - 0.0625)))), max(-min(max(max(max((1.575 + (y * 8.13008)), -t_67), t_156), -(0.558001 + (x * 5.42005))), (sqrt((((1.735 + (y * 8.13008)) ^ 2.0) + ((0.262 + (x * 3.61337)) ^ 2.0))) - 0.0625)), (sqrt(((t_67 ^ 2.0) + (t_156 ^ 2.0))) - 0.1625))), max(max(t_208, (t_430 - (y * 1.82927))), t_625)), max(max(t_207, t_960), t_431)), max(max(t_115, t_960), t_210)), max(max(t_567, t_625), t_434)), max(max(t_567, ((0.5966 + (x * 4.47154)) - (y * 1.82927))), t_965)), max(max(t_115, t_431), t_964)), max(max(t_264, t_210), t_964)), max(max(t_498, t_434), t_965)), max(max(t_567, -t_636), t_860)), max(max(t_115, t_861), t_636)), max(max(t_264, t_861), t_315)), max(max(t_498, t_860), -t_315)), max(max(t_711, t_871), t_23)), max(max(max(max(max(t_47, t_483), t_871), t_23), (0.15 - t_872)), (t_872 - 0.25))), max(max(t_987, ((x * 8.13008) - 0.8105)), (0.7105 - (x * 8.13008)))), max((0.175 - t_398), (t_398 - 0.275))), max(max(t_748, ((x * 8.13008) - 0.000499725)), -(0.0995007 + (x * 8.13008)))), max(max(t_608, t_400), t_509)), max(max(max(max(max(t_377, t_747), t_400), t_509), (0.15 - t_750)), (t_750 - 0.25))), max(max(max(t_662, -min(min(min(min(min(min(min(max(max((t_222 - (y * 3.25203)), -t_407), t_516), max(max(t_407, ((y * 3.25203) - t_222)), -t_516)), max(max(t_93, t_137), -t_980)), max(max(t_980, -t_137), -t_93)), max(max((t_909 - (y * 0.813008)), -t_44), ((y * 3.41463) - t_224))), max(max((t_224 - (y * 3.41463)), t_44), ((y * 0.813008) - t_909))), max(max(-t_818, -t_48), t_145)), max(max(t_818, t_48), -t_145))), (3.687 + (x * 8.13008))), -(4.187 + (x * 8.13008)))), max(max(t_987, (4.307 + (x * 8.13008))), -(4.407 + (x * 8.13008)))), max((0.175 - t_358), (t_358 - 0.275))), max(t_919, min(max(max(max((1.585 + (y * 8.13008)), t_420), (4.967 + (x * 8.13008))), -(5.467 + (x * 8.13008))), max(max(t_919, -min(max(max(t_295, (t_475 - (y * 1.21951))), -t_686), max(max(t_686, ((y * 1.21951) - t_475)), -t_295))), (0.175 - t_55))))), max(max(t_607, (5.875 + (x * 8.13008))), -t_793)), max(max(max(t_377, (2.287 + (x * 8.13008))), -(2.387 + (x * 8.13008))), t_983)), max(max(t_987, (2.537 + (x * 8.13008))), -(2.637 + (x * 8.13008)))), max(max(max(t_377, (1.375 + (y * 8.13008))), (2.787 + (x * 8.13008))), t_957)), max(max(max(max(t_423, t_957), -t_983), (2.237 + (x * 8.13008))), min(max((0.075 - t_986), (t_986 - 0.175)), max((0.075 - t_985), (t_985 - 0.175))))), max(max(max(max(max(-min(max(max(((x * 2.84553) - t_263), (0.681276 - t_492)), (t_637 - (x * 1.01626))), max(max(((x * 1.01626) - t_637), (t_492 - 0.681276)), (t_263 - (x * 2.84553)))), t_120), -(0.95 + (y * 8.13008))), ((x * 8.13008) - 5.289)), (5.139 - (x * 8.13008))), (sqrt((((0.241667 + (y * 2.71003)) ^ 2.0) + (((x * 8.13008) - 5.214) ^ 2.0))) - 0.075))), (sqrt(((t_120 ^ 2.0) + (((x * 8.13008) - 5.239) ^ 2.0))) - 0.075)), max(max(max(t_491, ((x * 8.13008) - 4.781)), (4.681 - (x * 8.13008))), t_633)), max(max(max(max(max(t_491, t_329), (6.68715 - (x * 11.6144))), (0.45 - sqrt((t_784 + (((x * 14.518) - 9.04643) ^ 2.0))))), (sqrt((t_784 + (t_329 ^ 2.0))) - 0.55)), t_633)), max((0.175 - t_803), (t_803 - 0.275))), max(max(max(max(t_607, t_29), -(8.53571 + (x * 11.6144))), (0.45 - sqrt((t_376 + ((9.98214 + (x * 14.518)) ^ 2.0))))), (sqrt((t_376 + (t_29 ^ 2.0))) - 0.55))), max(max(t_662, t_90), t_182)), max(max(max(t_606, t_653), t_71), t_519)), max(max(max(t_377, t_653), t_80), t_519)), max(max(max(max(t_662, t_45), -t_653), (0.175 - t_656)), (t_656 - 0.275))), max(max(t_635, ((x * 8.13008) - 7.28901)), (7.18901 - (x * 8.13008)))), max(max(t_635, ((x * 8.13008) - 7.03901)), (6.93901 - (x * 8.13008)))), max(max(max(((y * 8.13008) - 4.76837e-7), t_926), ((x * 8.13008) - 6.81401)), (6.71401 - (x * 8.13008)))), max(max(max(t_34, (0.1 - (y * 8.13008))), t_98), t_192)), max(max(max(t_633, t_98), t_192), (0.7 + (y * 8.13008)))), max(max(t_635, ((x * 8.13008) - 6.41401)), (6.314 - (x * 8.13008)))), max(max(t_634, ((x * 8.13008) - 2.1185)), (2.0185 - (x * 8.13008)))), (sqrt((t_2 + (((x * 8.13008) - 2.0685) ^ 2.0))) - 0.075)), max(max(t_646, ((x * 8.13008) - 1.1935)), (1.0935 - (x * 8.13008)))), max(max(t_646, ((x * 8.13008) - 0.943501)), (0.8435 - (x * 8.13008)))), max(max(max(t_633, (0.275 + (y * 8.13008))), ((x * 8.13008) - 0.693501)), t_64)), max(max(max(max(t_64, t_10), -t_645), ((x * 8.13008) - 1.2435)), min(max((0.075 - t_951), (t_951 - 0.175)), max((0.075 - t_950), (t_950 - 0.175))))), max(max(t_634, ((x * 8.13008) - 0.2355)), (0.1355 - (x * 8.13008)))), max(max(max(t_248, ((x * 8.13008) - 3.781)), t_633), (3.681 - (x * 8.13008)))), max(max(max(t_491, -(0.35 + (y * 8.13008))), t_73), t_162)), max(max(max(max(max(t_34, t_73), t_162), -t_248), (0.15 - t_701)), (t_701 - 0.25))), max(-min(max(max(max(t_313, t_437), t_387), ((x * 5.42005) - 1.82067)), (sqrt((t_76 + ((1.10378 - (x * 3.61337)) ^ 2.0))) - 0.0625)), (sqrt((t_500 + (t_387 ^ 2.0))) - 0.1625))), max(-min(max(max(max(t_213, t_394), t_593), (1.49567 - (x * 5.42005))), (sqrt((t_982 + (((x * 3.61337) - 1.10711) ^ 2.0))) - 0.0625)), (sqrt((t_395 + (t_593 ^ 2.0))) - 0.1625))), max(max(max(max(t_634, t_709), (0.193571 - (x * 11.6144))), (0.45 - sqrt((t_784 + (((x * 14.518) - 0.929465) ^ 2.0))))), (sqrt((t_784 + (t_709 ^ 2.0))) - 0.55))), 100000000.0), max(t_795, min(max(max(t_578, ((x * 8.13008) - 7.40251)), (6.90251 - (x * 8.13008))), max(max(t_795, -min(max(max(t_277, ((x * 2.23577) - t_446)), (3.29944 - t_25)), max(max((t_25 - 3.29944), (t_446 - (x * 2.23577))), t_39))), (0.175 - t_794))))), max(max(t_223, ((x * 4.47154) - t_340)), t_521)), max(max(t_812, (t_340 - (x * 4.47154))), t_1018)), max(max(t_812, t_94), (t_225 - (x * 4.47154)))), max(max(t_521, ((x * 4.47154) - t_225)), t_523)), max(max(t_223, (4.14638 - t_912)), t_50)), max(max(t_1018, t_231), (t_912 - 4.14638))), max(max(t_94, t_231), (t_912 - 4.20138))), max(max(t_523, t_50), (4.20138 - t_912))), max(max(-t_57, t_193), t_359)), max(max(t_57, t_597), t_673)), max(max(t_597, t_920), t_102)), max(max(t_193, -t_920), t_369)), max((0.175 - t_932), (t_932 - 0.275))), max(max(max(t_242, -(6.85 + (x * 8.13008))), t_559), t_687)), max(max(max(t_679, (7.2 + (x * 8.13008))), t_687), t_153)), max(max(max(max(max(t_679, t_242), (0.175 - t_933)), (t_933 - 0.275)), t_68), t_153)), max(max(t_383, t_480), (7.95251 - (x * 8.13008)))), max(max(t_958, ((x * 8.13008) - 7.60251)), t_205)), max(max(max(max(max(t_480, t_16), t_205), t_626), (0.175 - t_775)), (t_775 - 0.275))), max(max(t_384, t_306), (3.0225 - (x * 8.13008)))), max(max(max(t_381, ((x * 8.13008) - 2.6725)), t_968), t_74)), max(max(max(max(max(t_16, t_968), (0.175 - t_493)), (t_493 - 0.275)), t_976), t_306)), max(max(t_223, ((x * 4.47154) - t_170)), t_324)), max(max(t_1018, t_573), (t_170 - (x * 4.47154)))), max(max(t_94, t_573), (t_995 - (x * 4.47154)))), max(max(t_523, t_324), ((x * 4.47154) - t_995))), max(max(t_223, (1.79238 - t_912)), t_440)), max(max(t_1018, t_710), (t_912 - 1.79238))), max(max(t_94, t_710), (t_912 - 1.84738))), max(max(t_523, t_440), (1.84738 - t_912))), max(max(t_223, ((x * 4.47154) - t_441)), t_648)), max(max(t_1018, t_1003), (t_441 - (x * 4.47154)))), max(max(t_94, t_1003), (t_215 - (x * 4.47154)))), max(max(t_523, t_648), ((x * 4.47154) - t_215))), max(max(t_223, (1.51738 - t_912)), t_808)), max(max(t_1018, t_87), (t_912 - 1.51738))), max(max(t_94, t_87), (t_912 - 1.57238))), max(max(t_523, t_808), (1.57238 - t_912))), max(t_724, min(max(max(t_578, ((x * 8.13008) - 6.0525)), (5.5525 - (x * 8.13008))), max(max(t_724, -min(max(max(t_277, ((x * 2.23577) - t_1019)), (2.92819 - t_25)), max(max(t_39, (t_25 - 2.92819)), (t_1019 - (x * 2.23577))))), (0.175 - t_723))))), max(max(t_384, t_524), (4.5525 - (x * 8.13008)))), max(max(t_382, ((x * 8.13008) - 4.2025)), t_146)), max(max(max(max(max(t_16, t_524), t_146), t_976), (0.175 - t_546)), (t_546 - 0.275))), max(max(-min(max(max((t_367 - (x * 2.27642)), ((x * 4.5122) - 2.26024)), (1.80744 - t_1014)), max(max((t_1014 - 1.80744), (2.26024 - (x * 4.5122))), ((x * 2.27642) - t_367))), (0.175 - t_178)), (t_178 - 0.275))), max(max(t_958, ((x * 8.13008) - 3.3975)), (3.2975 - (x * 8.13008)))), (sqrt((t_104 + (((x * 8.13008) - 3.3475) ^ 2.0))) - 0.075)), max(-min(max(max(max(t_577, ((y * 8.13008) - 2.8875)), t_943), (0.355 + (x * 5.42005))), (sqrt((((2.885 - (y * 8.13008)) ^ 2.0) + (-(0.346667 + (x * 3.61337)) ^ 2.0))) - 0.0625)), (sqrt((((2.8875 - (y * 8.13008)) ^ 2.0) + (t_943 ^ 2.0))) - 0.1625))), max(-min(max(max(max(t_245, (2.6625 - (y * 8.13008))), t_14), -(0.68 + (x * 5.42005))), (sqrt(((((y * 8.13008) - 2.665) ^ 2.0) + ((0.343334 + (x * 3.61337)) ^ 2.0))) - 0.0625)), (sqrt(((((y * 8.13008) - 2.6625) ^ 2.0) + (t_14 ^ 2.0))) - 0.1625))), max(max(t_958, t_18), -(1.22 + (x * 8.13008)))), max(max(max(t_16, t_976), (1.57 + (x * 8.13008))), t_565)), max(max(max(max(t_384, t_18), t_565), (0.175 - t_177)), (t_177 - 0.275))), max(max(t_642, (1.77 + (x * 8.13008))), -(1.87 + (x * 8.13008)))), max(max(t_642, (2.02 + (x * 8.13008))), -(2.12 + (x * 8.13008)))), max(max(max(max(max(-min(max(max(((0.0958748 + (x * 2.84553)) - (y * 0.813008)), (1.26444 - t_492)), ((y * 4.87805) - t_396)), max(max((t_396 - (y * 4.87805)), (t_492 - 1.26444)), ((y * 0.813008) - (0.095875 + (x * 2.84553))))), t_24), (2.35 - (y * 8.13008))), ((x * 8.13008) - 0.5475)), (0.3975 - (x * 8.13008))), (sqrt(((((y * 2.71003) - 0.858333) ^ 2.0) + (((x * 8.13008) - 0.4725) ^ 2.0))) - 0.075))), (sqrt(((t_24 ^ 2.0) + (((x * 8.13008) - 0.4975) ^ 2.0))) - 0.075)), max(max(-min(max(max(((y * 2.23577) - t_811), ((x * 4.5122) - 0.203962)), (0.788562 - t_1014)), max(max((t_1014 - 0.788562), (0.203962 - (x * 4.5122))), (t_811 - (y * 2.23577)))), (0.175 - t_513)), (t_513 - 0.275))), max(max(t_958, (0.3075 + (x * 8.13008))), -(0.4075 + (x * 8.13008)))), (sqrt((t_104 + ((0.357501 + (x * 8.13008)) ^ 2.0))) - 0.075)), max(max(t_382, (3.845 + (x * 8.13008))), -(3.945 + (x * 8.13008)))), max(max(t_383, t_230), -(4.17 + (x * 8.13008)))), max(max(t_958, (4.52 + (x * 8.13008))), t_821)), max(max(max(max(max(t_16, t_626), t_230), t_821), (0.175 - t_356)), (t_356 - 0.275))), max(t_911, min(max(max(t_578, (4.72 + (x * 8.13008))), -(5.22 + (x * 8.13008))), max(max(t_911, -min(max(max(t_277, (t_150 - (y * 1.21951))), -t_289), max(max(t_39, t_289), ((y * 1.21951) - t_150)))), (0.175 - t_910))))), max(max(t_223, (t_12 - (y * 2.03252))), t_152)), max(max(t_1018, t_372), ((y * 2.03252) - t_12))), max(max(t_94, t_372), ((y * 2.03252) - t_694))), max(max(t_523, t_152), (t_694 - (y * 2.03252)))), max(max(t_223, -t_197), t_373)), max(max(max(t_381, ((y * 8.13008) - 3.025)), (2.27 + (x * 8.13008))), t_69)), max(max(max(max(t_69, ((y * 8.13008) - 3.15)), (2.85 - (y * 8.13008))), (1.72 + (x * 8.13008))), min(max((0.075 - t_640), (t_640 - 0.175)), max((0.075 - t_641), (t_641 - 0.175))))), max(max(t_369, t_117), t_258)), max(max(t_488, t_566), t_102)), max(max(t_488, t_1018), t_857)), max(max(t_258, t_856), t_223)), max(max(t_223, t_117), t_318)), max(max(t_1018, t_566), t_568)), max(max(t_94, t_857), t_568)), max(max(t_523, t_856), t_318)), max(max(t_223, -t_121), t_267)), max(max(t_1018, t_121), t_571)), max(max(t_94, t_571), t_787)), max(max(t_523, t_267), -t_787)), max(max(max(t_684, -(4.725 + (x * 8.13008))), -(0.0749998 + (y * 8.13008))), (4.625 + (x * 8.13008)))), max((0.175 - t_761), (t_761 - 0.275))), max(max(t_685, t_442), -t_813)), max(max(t_796, t_880), t_84)), max(max(max(max(t_759, t_442), t_84), (0.175 - t_766)), (t_766 - 0.275))), max(max(t_940, -t_38), (6.175 + (x * 8.13008)))), max(max(max(t_684, (0.75 - (y * 8.13008))), t_582), t_38)), max(max(max(t_379, t_582), t_38), ((y * 8.13008) - 0.4))), max(max(max(max(t_940, t_581), -(7.175 + (x * 8.13008))), (0.175 - t_769)), (t_769 - 0.275))), max(max(max(t_379, t_190), t_722), -t_549)), max(max(t_685, t_144), t_227)), max(max(t_759, t_525), -(1.125 + (x * 8.13008)))), max(max(t_940, (1.475 + (x * 8.13008))), t_147)), max(max(max(max(t_796, t_525), t_147), (0.175 - t_770)), (t_770 - 0.275))), max(max(t_941, (1.825 + (x * 8.13008))), -(1.925 + (x * 8.13008)))), max(max(t_424, t_364), t_415)), max(max(max(max(t_380, t_364), t_415), (0.15 - t_696)), (t_696 - 0.25))), max(max(t_1012, t_290), -(2.975 + (x * 8.13008)))), max(max(t_685, (3.325 + (x * 8.13008))), t_937)), max(max(max(max(max(t_684, t_1017), t_290), t_937), (0.175 - t_765)), (t_765 - 0.275))), max((0.175 - t_945), (t_945 - 0.275))), max(max(t_689, ((x * 8.13008) - 5.958)), t_426)), max(max(max(max(max(t_68, (0.175 - t_928)), (t_928 - 0.275)), t_304), t_153), t_426)), max(max(max(t_388, (5.633 - (x * 8.13008))), t_687), t_153)), (sqrt(((((y * 8.13008) - 2.1) ^ 2.0) + (((x * 8.13008) - 5.683) ^ 2.0))) - 0.075)), max(max(max(t_484, ((x * 8.13008) - 5.508)), (5.408 - (x * 8.13008))), t_687)), max(max(max(t_484, ((x * 8.13008) - 5.258)), (5.158 - (x * 8.13008))), t_687)), max(max(max(((y * 8.13008) - 1.925), ((x * 8.13008) - 5.008)), t_702), t_687)), max(max(max(max(t_702, t_118), (1.75 - (y * 8.13008))), t_904), min(max((0.075 - t_496), (t_496 - 0.175)), max((0.075 - t_495), (t_495 - 0.175))))), max(max(max(max(max(t_190, t_684), t_1017), t_227), (0.175 - t_772)), (t_772 - 0.275))), max(t_764, min(max(max(max(t_294, t_419), t_286), t_409), max(max(t_764, -min(max(max(t_97, (t_79 - (y * 1.21951))), -t_186), max(max(t_729, t_186), ((y * 1.21951) - t_79)))), (0.175 - t_763))))), max(t_936, min(max(max(max(((y * 8.13008) - 1.715), (1.625 - (y * 8.13008))), ((x * 8.13008) - 7.058)), (6.558 - (x * 8.13008))), max(max(t_936, -min(max(max(((y * 5.28455) - 1.08875), ((x * 2.23577) - t_336)), (2.6547 - t_25)), max(max((t_25 - 2.6547), (t_336 - (x * 2.23577))), (1.08875 - (y * 5.28455))))), (0.175 - t_935))))), max(max(max(t_559, t_687), t_304), (6.308 - (x * 8.13008)))), max((t_931 - 0.275), (0.175 - t_931))), max(max(t_359, ((x * 4.47154) - t_1021)), t_96)), max(max(t_228, (t_1021 - (x * 4.47154))), t_673)), max(max(t_228, t_102), (t_526 - (x * 4.47154)))), max(max(t_96, ((x * 4.47154) - t_526)), t_369)), max(max(t_359, (1.4775 - t_912)), t_148)), max(max(t_673, t_357), (t_912 - 1.4775))), max(max(t_102, t_357), (t_912 - 1.5325))), max(max(t_369, t_148), (1.5325 - t_912))), max(max(t_359, ((x * 4.47154) - t_149)), t_288)), max(max(t_673, t_554), (t_149 - (x * 4.47154)))), max(max(t_102, t_554), (t_922 - (x * 4.47154)))), max(max(t_369, t_288), ((x * 4.47154) - t_922))), max(max(t_359, (1.2025 - t_912)), t_418)), max(max(t_673, t_682), (t_912 - 1.2025))), max(max(t_102, t_682), (t_912 - 1.2575))), max(max(t_369, t_418), (1.2575 - t_912))), max((0.175 - t_930), (t_930 - 0.275))), max(max(max(max(t_687, -min(min(min(min(min(min(min(max(max(((y * 4.06504) - 1.2), ((x * 4.06504) - 2.104)), (3.054 - t_979)), max(max((t_979 - 3.054), (2.104 - (x * 4.06504))), (1.2 - (y * 4.06504)))), max(max(((x * 8.13008) - t_428), (1.8858 - t_697)), (t_817 - (x * 5.28455)))), max(max(((x * 5.28455) - t_817), (t_697 - 1.8858)), (t_428 - (x * 8.13008)))), max(max((0.351 - (y * 2.19512)), (1.2978 - (x * 2.84553))), (t_444 - 1.7433))), max(max((1.7433 - t_444), ((x * 2.84553) - 1.2978)), ((y * 2.19512) - 0.351))), max(max(((y * 3.25203) - 0.96), ((x * 4.47154) - t_353)), (2.0394 - (x * 4.47154)))), max(max(((x * 4.47154) - 2.0394), (t_353 - (x * 4.47154))), (0.96 - (y * 3.25203))))), t_1), ((x * 8.13008) - 4.108)), (3.608 - (x * 8.13008)))), max(max(t_689, ((x * 8.13008) - 3.25)), (3.15 - (x * 8.13008)))), max(max(max(max(t_689, t_977), (4.5 - (x * 11.6144))), (0.45 - sqrt((t_269 + (((x * 14.518) - 6.3125) ^ 2.0))))), (sqrt((t_269 + (t_977 ^ 2.0))) - 0.55))), max(max(max(t_153, t_124), t_173), (1.85 - (y * 8.13008)))), max(max(max(t_687, t_124), t_575), t_173)), max(max(max(max(t_688, t_123), -(3.275 + (x * 8.13008))), (0.175 - t_929)), (t_929 - 0.275))), max(max(max(t_1, (2.3 - (y * 8.13008))), t_807), t_1004)), max(max(max(t_687, t_575), t_807), t_1004)), max(max(max(t_481, t_687), t_1), -(3.9 + (x * 8.13008)))), max(max(t_359, (t_718 - (y * 2.03252))), t_1010)), max(max(t_673, t_1009), ((y * 2.03252) - t_718))), max(max(t_102, t_1009), ((y * 2.03252) - t_447))), max(max(t_369, t_1010), (t_447 - (y * 2.03252)))), max(max(t_359, -t_40), t_184)), max(max(t_673, t_40), t_449)), max(max(t_102, t_449), t_651)), max(max(t_369, t_184), -t_651)), max(max(t_359, (t_187 - (y * 2.03252))), t_355)), max(max(t_673, t_594), ((y * 2.03252) - t_187))), max(max(t_102, t_594), ((y * 2.03252) - t_6))), max(max(t_369, t_355), (t_6 - (y * 2.03252)))), max(max(max((1.65 - (y * 8.13008)), (0.300001 + (x * 8.13008))), t_1), -(0.400001 + (x * 8.13008)))), max(max(max(t_464, t_118), (1.95 - (y * 8.13008))), t_100)), max(max(max(max(max(t_464, t_687), t_100), t_556), (0.15 - t_676)), (t_676 - 0.25))), max(max(max(max(max(-min(max(max((t_558 - (y * 0.813008)), (0.281875 - t_492)), ((y * 4.87805) - t_938)), max(max((t_938 - (y * 4.87805)), (t_492 - 0.281875)), ((y * 0.813008) - t_558))), t_296), (1.25 - (y * 8.13008))), (1.375 + (x * 8.13008))), -(1.525 + (x * 8.13008))), (sqrt(((((y * 2.71003) - 0.491667) ^ 2.0) + ((1.45 + (x * 8.13008)) ^ 2.0))) - 0.075))), (sqrt(((t_296 ^ 2.0) + ((1.425 + (x * 8.13008)) ^ 2.0))) - 0.075)), max((0.175 - t_934), (t_934 - 0.275))), max(max(t_688, -t_173), (2.275 + (x * 8.13008)))), max(max(max(max(max((t_754 - 0.275), t_206), t_305), (0.175 - t_754)), t_486), t_627)), max(max(max(t_19, ((x * 8.13008) - 1.556)), (1.456 - (x * 8.13008))), t_259)), max((0.175 - t_436), (t_436 - 0.275))), max(max(max(max(max(-min(max(max((t_497 - (y * 0.813008)), (2.27973 - t_492)), ((y * 4.87805) - t_868)), max(max((t_868 - (y * 4.87805)), (t_492 - 2.27973)), ((y * 0.813008) - t_497))), t_271), (4.55 - (y * 8.13008))), ((x * 8.13008) - 0.171)), (0.0209999 - (x * 8.13008))), (sqrt(((((y * 2.71003) - 1.59167) ^ 2.0) + (((x * 8.13008) - 0.0959997) ^ 2.0))) - 0.075))), (sqrt(((t_271 ^ 2.0) + (((x * 8.13008) - 0.121) ^ 2.0))) - 0.075)), max(max(t_879, t_998), (3.65055 - t_912))), max(max(((x * 4.47154) - t_330), t_505), t_649)), max(max(t_1005, (t_330 - (x * 4.47154))), t_86)), max(max(t_1005, ((0.970551 + (y * 2.03252)) - (x * 4.47154))), t_404)), max(max(t_505, ((x * 4.47154) - (0.970552 + (y * 2.03252)))), t_879)), max(max((3.32055 - t_912), t_88), t_649)), max(max(t_281, (t_912 - 3.32055)), t_86)), max(max(t_281, (t_912 - 3.37555)), t_404)), max(max(t_88, (3.37555 - t_912)), t_879)), max(max(max((2.751 - (x * 8.13008)), ((x * 8.13008) - 2.851)), t_283), t_259)), max(max(max(t_592, t_652), t_814), t_486)), max(max(max(t_652, t_814), t_46), t_259)), max(max(max(max(max((1.851 - (x * 8.13008)), ((x * 8.13008) - 2.576)), (0.175 - t_661)), (t_661 - 0.275)), t_283), t_259)), max(max(max(t_206, (2.126 - (x * 8.13008))), t_233), t_259)), max(max(max(((x * 8.13008) - 1.776), t_305), t_259), t_486)), max(max(max((4.6 - (y * 8.13008)), (1.862 + (x * 8.13008))), -(1.962 + (x * 8.13008))), t_486)), (sqrt(((((y * 8.13008) - 5.4) ^ 2.0) + ((1.912 + (x * 8.13008)) ^ 2.0))) - 0.075)), max(max(max(t_923, -(2.762 + (x * 8.13008))), t_283), t_259)), max(max(max(t_592, t_370), t_924), t_486)), max(max(max(t_46, t_370), t_924), t_259)), max(max(max(max(max((1.762 + (x * 8.13008)), -t_370), (0.175 - t_371)), (t_371 - 0.275)), t_283), t_259)), max(max(max(t_19, (2.882 + (x * 8.13008))), -(2.982 + (x * 8.13008))), t_259)), max((0.175 - t_199), (t_199 - 0.275))), max(t_753, min(max(max(max((0.0790005 + (x * 8.13008)), -(0.579001 + (x * 8.13008))), t_612), t_755), max(max(t_753, -min(max(max((t_252 - (y * 1.21951)), (2.34202 - t_25)), t_487), max(max((t_25 - 2.34202), ((y * 1.21951) - t_252)), t_967))), (0.175 - t_752))))), max(max(max((0.987 + (x * 8.13008)), -(1.087 + (x * 8.13008))), t_259), t_486)), max(max(max(max(max(t_865, -(1.55286 + (x * 11.6144))), (0.45 - sqrt((t_314 + ((1.25357 + (x * 14.518)) ^ 2.0))))), (sqrt((t_314 + (t_865 ^ 2.0))) - 0.55)), t_259), t_486)), max(max(max(t_122, -(1.287 + (x * 8.13008))), t_259), t_486)), max(max(max((1.637 + (x * 8.13008)), t_708), t_997), t_486)), max(max(max(max(max(t_122, t_708), (0.175 - t_326)), (t_326 - 0.275)), t_259), t_157)), max(max(max(max(max((4.325 - (y * 8.13008)), (1.587 + (x * 8.13008))), -t_331), (0.175 - t_716)), (t_716 - 0.275)), t_714)), max(max(max(t_132, t_216), t_334), t_445)), max(max(max(t_216, ((x * 8.13008) - 6.3305)), (6.2305 - (x * 8.13008))), t_89)), max(max(-min(max(max(((y * 2.23577) - t_518), ((x * 4.5122) - 2.94178)), (3.05264 - t_1014)), max(max((t_1014 - 3.05264), (2.94178 - (x * 4.5122))), (t_518 - (y * 2.23577)))), (0.175 - t_461)), (t_461 - 0.275))), max(max(t_1022, ((x * 8.13008) - 4.6255)), (4.5255 - (x * 8.13008)))), (sqrt((t_411 + (((x * 8.13008) - 4.5755) ^ 2.0))) - 0.075)), max(max(t_915, t_56), (4.3005 - (x * 8.13008)))), max((0.175 - t_468), (t_468 - 0.275))), max(max(max(max(max(t_56, t_101), (3.8505 - (x * 8.13008))), (0.175 - t_474)), (t_474 - 0.275)), t_283)), max(t_732, min(max(max(max((4.242 + (x * 8.13008)), -(4.742 + (x * 8.13008))), t_612), t_755), max(max(t_732, -min(max(max((t_105 - (y * 1.21951)), (1.1972 - t_25)), t_487), max(max((t_25 - 1.1972), ((y * 1.21951) - t_105)), t_967))), (0.175 - t_731))))), max(max(max(t_143, -(5.25 + (x * 8.13008))), t_259), t_486)), max(max(max(max(max(t_244, -(7.5 + (x * 11.6144))), (0.45 - sqrt((t_314 + ((8.6875 + (x * 14.518)) ^ 2.0))))), (sqrt((t_314 + (t_244 ^ 2.0))) - 0.55)), t_259), t_486)), max(t_301, min(max(max(max((5.35 + (x * 8.13008)), -(5.85 + (x * 8.13008))), t_612), t_755), max(max(t_301, -min(max(max((t_564 - (y * 1.21951)), (0.8925 - t_25)), t_487), max(max((t_25 - 0.8925), ((y * 1.21951) - t_564)), t_967))), (0.175 - t_300))))), max(max(max(t_311, -(6.15 + (x * 8.13008))), t_259), t_157)), max(max(t_779, t_283), t_259)), max(max(max(max(max(t_182, t_311), (0.175 - t_655)), (t_655 - 0.275)), t_997), t_486)), max(max(max(t_89, t_570), t_334), t_445)), max(max(t_915, t_782), (0.8705 - (x * 8.13008)))), max((0.175 - t_459), (t_459 - 0.275))), max(max(max(max(max(t_101, t_782), (0.4205 - (x * 8.13008))), (0.175 - t_473)), (t_473 - 0.275)), t_283)), max(max(t_1022, t_327), (0.220499 - (x * 8.13008)))), max(max(max(t_3, (0.129501 + (x * 8.13008))), t_999), t_126)), max(max(max(max(t_455, t_327), t_999), (0.175 - t_506)), (t_506 - 0.275))), max((0.175 - t_457), (t_457 - 0.275))), max(max(t_1022, (1.2375 + (x * 8.13008))), -(1.3375 + (x * 8.13008)))), max(max(max(max(t_1022, t_133), -(1.91072 + (x * 11.6144))), (0.45 - sqrt((t_587 + ((1.70089 + (x * 14.518)) ^ 2.0))))), (sqrt((t_587 + (t_133 ^ 2.0))) - 0.55))), max(max(t_350, ((x * 8.13008) - 3.7305)), (3.6305 - (x * 8.13008)))), max((0.175 - t_726), (t_726 - 0.275))), max(max(t_350, ((x * 8.13008) - 3.0705)), (2.9705 - (x * 8.13008)))), max(max(t_350, ((x * 8.13008) - 2.8205)), (2.7205 - (x * 8.13008)))), max(max(max(t_216, ((y * 8.13008) - 6.325)), ((x * 8.13008) - 2.5705)), t_189)), max(max(max(max(t_189, t_540), (6.15 - (y * 8.13008))), ((x * 8.13008) - 3.1205)), min(max((0.075 - t_349), (t_349 - 0.175)), max((0.075 - t_548), (t_548 - 0.175))))), max(max(t_455, t_103), (1.5205 - (x * 8.13008)))), max(max(t_422, ((x * 8.13008) - 1.1705)), t_603)), max(max(max(max(max(t_3, t_103), t_603), t_126), (0.175 - t_458)), (t_458 - 0.275))), max(min(max(max(max(t_850, ((x * 8.13008) - 6.4085)), (5.9085 - (x * 8.13008))), t_154), max(max(-min(max(max(t_610, ((x * 2.23577) - t_852)), (3.57609 - t_25)), max(max((t_25 - 3.57609), (t_852 - (x * 2.23577))), t_302)), (0.175 - t_622)), t_959)), t_959)), max(max(t_254, ((x * 8.13008) - 5.7585)), (5.6585 - (x * 8.13008)))), max(max(t_254, ((x * 8.13008) - 5.5085)), (5.4085 - (x * 8.13008)))), max(max(max(t_253, ((y * 8.13008) - 4.125)), ((x * 8.13008) - 5.2585)), t_312)), max(max(max(max(t_312, ((y * 8.13008) - 4.25)), (3.95 - (y * 8.13008))), ((x * 8.13008) - 5.8085)), min(max((0.075 - t_266), (t_266 - 0.175)), max((0.075 - t_707), (t_707 - 0.175))))), max(max(t_1018, t_197), t_374)), max(max(t_94, t_374), t_392)), max(max(t_523, t_373), -t_392)), max(max(t_642, (6.09 + (x * 8.13008))), -(6.19 + (x * 8.13008)))), max((0.175 - t_328), (t_328 - 0.275))), max(t_1001, min(max(max(t_578, t_242), -t_144), max(max(t_1001, -min(max(max(t_277, (t_717 - (y * 1.21951))), -t_1007), max(max(t_39, t_1007), ((y * 1.21951) - t_717)))), (0.175 - t_1000))))), max(max(max(t_294, t_381), t_175), -(7.55 + (x * 8.13008)))), max(max(t_382, (7.9 + (x * 8.13008))), t_33)), max(max(max(max(max(t_294, t_16), t_976), t_33), (0.175 - t_514)), (t_514 - 0.275))), max(max(max(max(t_715, (2.121 - (x * 8.13008))), ((x * 8.13008) - 2.846)), (0.175 - t_621)), (t_621 - 0.275))), max(t_816, min(max(max(t_851, ((x * 8.13008) - 2.496)), (1.996 - (x * 8.13008))), max(max(t_816, -min(max(max(t_610, ((x * 2.23577) - t_51)), (2.50015 - t_25)), max(max(t_302, (t_25 - 2.50015)), (t_51 - (x * 2.23577))))), (0.175 - t_815))))), max(max(max(t_253, ((x * 8.13008) - 1.588)), (1.488 - (x * 8.13008))), t_59)), max(max(max(max(max(t_253, t_416), (2.12571 - (x * 11.6144))), (0.45 - sqrt((t_925 + (((x * 14.518) - 3.34464) ^ 2.0))))), (sqrt((t_925 + (t_416 ^ 2.0))) - 0.55)), t_59)), max(max(max(t_253, ((x * 8.13008) - 1.363)), (1.263 - (x * 8.13008))), t_59)), (sqrt(((((y * 8.13008) - 4.3) ^ 2.0) + (((x * 8.13008) - 1.313) ^ 2.0))) - 0.075)), max(max(max(t_253, t_609), (1.038 - (x * 8.13008))), t_59)), max((t_616 - 0.275), (0.175 - t_616))), max(-min(max(max(max(t_850, ((y * 8.13008) - 3.9875)), t_955), ((x * 5.42005) - 2.939)), (sqrt((((3.985 - (y * 8.13008)) ^ 2.0) + ((1.84933 - (x * 3.61337)) ^ 2.0))) - 0.0625)), (sqrt((((3.9875 - (y * 8.13008)) ^ 2.0) + (t_955 ^ 2.0))) - 0.1625))), max(-min(max(max(max(((y * 8.13008) - 3.925), (3.7625 - (y * 8.13008))), t_700), (2.614 - (x * 5.42005))), (sqrt(((((y * 8.13008) - 3.765) ^ 2.0) + (((x * 3.61337) - 1.85267) ^ 2.0))) - 0.0625)), (sqrt(((((y * 8.13008) - 3.7625) ^ 2.0) + (t_700 ^ 2.0))) - 0.1625))), max(max(t_715, (3.021 - (x * 8.13008))), ((x * 8.13008) - 3.121))), max(max(max(t_59, (4.05 - (y * 8.13008))), t_522), t_499)), max(max(max(t_253, t_522), t_499), t_783)), max(max(max(max(t_255, t_212), -(1.67143 + (x * 11.6144))), (0.45 - sqrt((t_925 + ((1.40179 + (x * 14.518)) ^ 2.0))))), (sqrt((t_925 + (t_212 ^ 2.0))) - 0.55))), max(t_620, min(max(max(t_851, (1.97 + (x * 8.13008))), -(2.47 + (x * 8.13008))), max(max(t_620, -min(max(max(t_610, (t_507 - (y * 1.21951))), (1.272 - t_25)), max(max(t_302, (t_25 - 1.272)), ((y * 1.21951) - t_507)))), (0.175 - t_619))))), max(max(t_217, (t_332 - (y * 2.03252))), t_512)), max(max(t_809, ((y * 2.03252) - t_332)), t_1011)), max(max(t_809, t_134), ((y * 2.03252) - t_221))), max(max(t_512, (t_221 - (y * 2.03252))), t_515)), max(max(t_217, -t_727), t_41)), max(max(t_1011, t_727), t_285)), max(max(t_134, t_285), t_452)), max(max(t_515, t_41), -t_452)), max(max(t_254, (3.34 + (x * 8.13008))), -(3.44 + (x * 8.13008)))), max(max(max(t_412, ((x * 8.13008) - 0.688)), t_595), t_59)), max(max(max(max(t_614, t_609), t_595), (0.175 - t_617)), (t_617 - 0.275))), max(max(max(t_59, (3.225 - (y * 8.13008))), ((x * 8.13008) - 0.487999)), (0.387999 - (x * 8.13008)))), max((0.175 - t_618), (t_618 - 0.275))), max(t_678, min(max(max(t_851, (0.162001 + (x * 8.13008))), -(0.662001 + (x * 8.13008))), max(max(t_678, -min(max(max(t_610, (t_13 - (y * 1.21951))), (1.7692 - t_25)), max(max(t_302, (t_25 - 1.7692)), ((y * 1.21951) - t_13)))), (0.175 - t_677))))), max(max(t_255, (1.07 + (x * 8.13008))), -(1.17 + (x * 8.13008)))), max(min(max(max(-min(max(max(t_487, ((x * 2.23577) - t_479)), (4.04153 - t_25)), max(max((t_25 - 4.04153), (t_479 - (x * 2.23577))), t_967)), (0.175 - t_159)), t_386), max(max(max(t_612, t_755), ((x * 8.13008) - 6.101)), (5.601 - (x * 8.13008)))), t_386)), max(max(max(t_112, (5.301 - (x * 8.13008))), t_259), t_157)), max(max(max(t_283, ((x * 8.13008) - 4.951)), t_629), t_259)), max(max(max(max(max(t_112, t_629), t_997), (0.175 - t_166)), (t_166 - 0.275)), t_486)), max(max(t_649, ((x * 4.47154) - t_703)), t_975)), max(max(t_974, (t_703 - (x * 4.47154))), t_86)), max(max(t_974, t_404), (t_438 - (x * 4.47154)))), max(max(t_975, ((x * 4.47154) - t_438)), t_879)), max(max(t_649, (3.59555 - t_912)), t_998)), max(max(t_86, t_172), (t_912 - 3.59555))), max(max(t_404, t_172), (t_912 - 3.65055))), max((0.175 - t_623), (t_623 - 0.275))), max(max(t_614, t_174), -(4.15 + (x * 8.13008)))), max(max(max(t_179, t_274), t_253), t_714)), max(max(max(max(max(t_274, t_412), t_59), t_174), (0.175 - t_1002)), (t_1002 - 0.275))), max(max(max(t_714, (4.5 - (y * 8.13008))), t_443), t_508)), max(max(max(t_253, t_783), t_443), t_508)), max(max(t_715, t_45), -(5.7 + (x * 8.13008)))), max(max(max(t_233, t_259), t_276), (6.651 - (x * 8.13008)))), max(max(max(t_259, t_486), ((x * 8.13008) - 6.30101)), t_900)), max(max(max(max(max(t_276, t_486), t_900), t_627), (0.175 - t_339)), (t_339 - 0.275))), max(max(max(max(t_127, t_92), t_136), (0.175 - t_460)), (t_460 - 0.275))), max(max(t_588, (3.825 + (x * 8.13008))), -(3.925 + (x * 8.13008)))), max(max(t_541, t_322), t_142)), max(max(max(max(max(t_216, t_322), t_142), t_596), (0.15 - t_918)), (t_918 - 0.25))), max(max(t_588, (5.025 + (x * 8.13008))), -(5.125 + (x * 8.13008)))), max(max(t_541, t_542), t_881)), max(max(max(max(max(t_216, t_596), t_542), t_881), (0.15 - t_917)), (t_917 - 0.25))), max(max(t_417, t_3), -(5.475 + (x * 8.13008)))), max(max(t_127, (5.825 + (x * 8.13008))), t_11)), max(max(max(max(t_417, t_454), t_11), (0.175 - t_462)), (t_462 - 0.275))), max(max(t_779, t_216), t_89)), max(max(max(t_519, t_89), t_570), t_107)), max(max(max(t_519, t_3), t_107), (6.25 - (y * 8.13008)))), max(max(max(t_519, t_132), t_216), t_107)), max(-min(max(max(max((6.025 - (y * 8.13008)), ((y * 8.13008) - 6.1875)), t_202), (1.425 + (x * 5.42005))), (sqrt((((6.185 - (y * 8.13008)) ^ 2.0) + (-(1.06 + (x * 3.61337)) ^ 2.0))) - 0.0625)), (sqrt((((6.1875 - (y * 8.13008)) ^ 2.0) + (t_202 ^ 2.0))) - 0.1625))), max(-min(max(max(max(((y * 8.13008) - 6.125), (5.9625 - (y * 8.13008))), t_201), -(1.75 + (x * 5.42005))), (sqrt(((((y * 8.13008) - 5.965) ^ 2.0) + ((1.05667 + (x * 3.61337)) ^ 2.0))) - 0.0625)), (sqrt(((((y * 8.13008) - 5.9625) ^ 2.0) + (t_201 ^ 2.0))) - 0.1625))), max(max(t_1022, (2.75 + (x * 8.13008))), -(2.85 + (x * 8.13008)))), (sqrt((t_411 + ((2.8 + (x * 8.13008)) ^ 2.0))) - 0.075)), max(max(t_455, t_92), -(3.125 + (x * 8.13008)))), max(max(t_422, (3.475 + (x * 8.13008))), t_136)), max(max(max(max(t_45, t_216), t_89), -t_107), min(max((0.175 - t_870), (t_870 - 0.275)), max((0.175 - t_214), (t_214 - 0.275))))); end
code[x_, y_] := Block[{t$95$0 = N[(N[(x * 8.13008), $MachinePrecision] - 0.0979996), $MachinePrecision]}, Block[{t$95$1 = N[(N[(y * 8.13008), $MachinePrecision] - 2.4), $MachinePrecision]}, Block[{t$95$2 = N[Power[N[(0.0999999 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]}, Block[{t$95$3 = N[(N[(y * 8.13008), $MachinePrecision] - 6.35), $MachinePrecision]}, Block[{t$95$4 = N[(N[(x * 11.6144), $MachinePrecision] - 3.18286), $MachinePrecision]}, Block[{t$95$5 = N[(2.35 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$6 = N[(3.5125 + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$7 = N[Power[N[(7.725 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]}, Block[{t$95$8 = (-N[(0.3955 + N[(x * 5.42005), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$9 = N[(4.0 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$10 = N[(0.15 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$11 = (-N[(5.925 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$12 = N[(3.716 + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$13 = N[(0.5708 + N[(x * 2.23577), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$14 = N[(0.5175 + N[(x * 5.42005), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$15 = N[(1.38723 + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$16 = N[(N[(y * 8.13008), $MachinePrecision] - 3.05), $MachinePrecision]}, Block[{t$95$17 = N[(N[(1.80223 + N[(y * 1.82927), $MachinePrecision]), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$18 = N[(1.12 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$19 = N[(N[(y * 8.13008), $MachinePrecision] - 5.05), $MachinePrecision]}, Block[{t$95$20 = N[(0.750575 + N[(y * 1.21951), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$21 = N[(2.95 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$22 = N[(N[(y * 2.64228), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$23 = N[(0.9305 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$24 = N[(N[(y * 8.13008), $MachinePrecision] - 2.575), $MachinePrecision]}, Block[{t$95$25 = N[(N[(x * 2.23577), $MachinePrecision] + N[(y * 4.06504), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$26 = N[(1.0405 + N[(x * 2.23577), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$27 = N[(N[(x * 8.13008), $MachinePrecision] - 5.5355), $MachinePrecision]}, Block[{t$95$28 = N[(N[(x * 5.42005), $MachinePrecision] - 2.2095), $MachinePrecision]}, Block[{t$95$29 = N[(7.98571 + N[(x * 11.6144), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$30 = (-N[(5.2 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$31 = N[(2.12 + N[(y * 3.25203), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$32 = N[(2.65 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$33 = (-N[(8.0 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$34 = N[(N[(y * 8.13008), $MachinePrecision] - 0.2), $MachinePrecision]}, Block[{t$95$35 = N[(N[(x * 5.42005), $MachinePrecision] - 3.0345), $MachinePrecision]}, Block[{t$95$36 = N[(N[(x * 8.13008), $MachinePrecision] - 2.9705), $MachinePrecision]}, Block[{t$95$37 = N[(N[(N[(y * 2.84553), $MachinePrecision] + 4.13), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$38 = N[(6.275 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$39 = N[(1.80375 - N[(y * 5.28455), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$40 = N[(N[(N[(y * 2.03252), $MachinePrecision] + 2.5375), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$41 = N[(N[(0.318501 + N[(y * 2.84553), $MachinePrecision]), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$42 = N[(5.162 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$43 = N[(4.875 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$44 = N[(N[(1.89845 + N[(y * 2.60163), $MachinePrecision]), $MachinePrecision] + N[(x * 2.84553), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$45 = N[(5.6 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$46 = N[(N[(y * 8.13008), $MachinePrecision] - 4.8), $MachinePrecision]}, Block[{t$95$47 = N[(0.9 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$48 = N[(1.43045 + N[(x * 2.84553), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$49 = N[(N[(y * 2.84553), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$50 = N[(t$95$49 - 4.45138), $MachinePrecision]}, Block[{t$95$51 = N[(0.16015 + N[(y * 1.21951), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$52 = N[(6.25 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$53 = N[(1.625 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$54 = N[Power[t$95$53, 2.0], $MachinePrecision]}, Block[{t$95$55 = N[Sqrt[N[(t$95$54 + N[Power[N[(5.242 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$56 = N[(N[(x * 8.13008), $MachinePrecision] - 4.4005), $MachinePrecision]}, Block[{t$95$57 = N[(N[(N[(y * 2.03252), $MachinePrecision] + 2.8125), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$58 = N[(N[(N[(y * 2.03252), $MachinePrecision] + 2.24435), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$59 = N[(N[(y * 8.13008), $MachinePrecision] - 4.15), $MachinePrecision]}, Block[{t$95$60 = N[(0.55 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$61 = N[Power[N[(0.685 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]}, Block[{t$95$62 = N[(4.675 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$63 = N[(4.025 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$64 = N[(0.5935 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$65 = N[(1.30723 + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$66 = N[(t$95$65 - N[(y * 2.64228), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$67 = N[(1.7375 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$68 = N[(1.725 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$69 = (-N[(2.37 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$70 = N[(3.575 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$71 = (-N[(1.45 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$72 = N[(3.0345 - N[(x * 5.42005), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$73 = N[(N[(x * 8.13008), $MachinePrecision] - 3.931), $MachinePrecision]}, Block[{t$95$74 = N[(N[(y * 8.13008), $MachinePrecision] - 3.5), $MachinePrecision]}, Block[{t$95$75 = N[(N[(1.91435 + N[(y * 2.03252), $MachinePrecision]), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$76 = N[Power[(-N[(0.415 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]), 2.0], $MachinePrecision]}, Block[{t$95$77 = N[(N[(2.09318 + N[(x * 2.23577), $MachinePrecision]), $MachinePrecision] + N[(y * 4.06504), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$78 = N[(N[(x * 8.13008), $MachinePrecision] - 1.958), $MachinePrecision]}, Block[{t$95$79 = N[(2.08 + N[(x * 2.23577), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$80 = N[(1.8 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$81 = N[(0.120625 + N[(x * 2.23577), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$82 = N[(5.75 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$83 = N[(5.375 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$84 = (-t$95$83)}, Block[{t$95$85 = N[(1.728 + N[(y * 2.19512), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$86 = N[(N[(y * 0.813008), $MachinePrecision] - 0.47), $MachinePrecision]}, Block[{t$95$87 = N[(1.82238 - t$95$49), $MachinePrecision]}, Block[{t$95$88 = N[(t$95$49 - 3.84555), $MachinePrecision]}, Block[{t$95$89 = N[(N[(y * 8.13008), $MachinePrecision] - 6.8), $MachinePrecision]}, Block[{t$95$90 = N[(6.5 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$91 = N[(N[(x * 8.13008), $MachinePrecision] - 4.8855), $MachinePrecision]}, Block[{t$95$92 = N[(3.025 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$93 = N[(0.45 + N[(y * 4.06504), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$94 = N[(N[(y * 0.813008), $MachinePrecision] - 0.305), $MachinePrecision]}, Block[{t$95$95 = N[(0.6375 + N[(y * 2.84553), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$96 = N[(t$95$95 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$97 = N[(N[(y * 5.28455), $MachinePrecision] - 0.37375), $MachinePrecision]}, Block[{t$95$98 = N[(N[(x * 8.13008), $MachinePrecision] - 6.61401), $MachinePrecision]}, Block[{t$95$99 = N[(0.685 + N[(y * 0.813008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$100 = (-N[(0.550001 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$101 = N[(5.425 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$102 = N[(N[(y * 0.813008), $MachinePrecision] - 0.195), $MachinePrecision]}, Block[{t$95$103 = N[(N[(x * 8.13008), $MachinePrecision] - 1.6205), $MachinePrecision]}, Block[{t$95$104 = N[Power[N[(N[(y * 8.13008), $MachinePrecision] - 3.2), $MachinePrecision], 2.0], $MachinePrecision]}, Block[{t$95$105 = N[(1.8578 + N[(x * 2.23577), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$106 = N[(1.42 + N[(x * 2.23577), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$107 = N[(6.3 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$108 = N[Power[t$95$107, 2.0], $MachinePrecision]}, Block[{t$95$109 = N[(5.812 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$110 = N[(0.11375 + N[(x * 2.23577), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$111 = N[(1.23565 + N[(y * 2.03252), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$112 = N[(N[(x * 8.13008), $MachinePrecision] - 5.401), $MachinePrecision]}, Block[{t$95$113 = N[(0.545 + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$114 = N[(N[(y * 2.84553), $MachinePrecision] - t$95$113), $MachinePrecision]}, Block[{t$95$115 = N[(0.19 + N[(y * 0.813008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$116 = N[(2.42975 + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$117 = N[(t$95$116 - N[(y * 1.82927), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$118 = N[(N[(y * 8.13008), $MachinePrecision] - 2.05), $MachinePrecision]}, Block[{t$95$119 = N[(4.63929 + N[(x * 11.6144), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$120 = N[(0.725 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$121 = N[(N[(1.35975 + N[(y * 1.82927), $MachinePrecision]), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$122 = N[(1.187 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$123 = N[(2.55 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$124 = (-t$95$123)}, Block[{t$95$125 = N[(N[(y * 3.41463), $MachinePrecision] + 5.9037), $MachinePrecision]}, Block[{t$95$126 = N[(6.075 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$127 = N[Max[t$95$3, t$95$126], $MachinePrecision]}, Block[{t$95$128 = N[(1.132 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$129 = (-t$95$128)}, Block[{t$95$130 = N[(2.75 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$131 = (-t$95$130)}, Block[{t$95$132 = N[(N[(y * 8.13008), $MachinePrecision] - 5.9), $MachinePrecision]}, Block[{t$95$133 = N[(1.36071 + N[(x * 11.6144), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$134 = N[(N[(y * 0.813008), $MachinePrecision] - 0.415), $MachinePrecision]}, Block[{t$95$135 = N[(0.465 + N[(y * 0.813008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$136 = (-t$95$70)}, Block[{t$95$137 = N[(1.7935 + N[(x * 4.06504), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$138 = N[(1.558 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$139 = N[(5.54551 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$140 = N[Power[t$95$32, 2.0], $MachinePrecision]}, Block[{t$95$141 = N[Sqrt[N[(t$95$140 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 1.323), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$142 = (-N[(4.075 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$143 = N[(5.15 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$144 = N[(7.25 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$145 = N[(N[(1.87595 + N[(y * 2.19512), $MachinePrecision]), $MachinePrecision] + N[(x * 2.84553), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$146 = N[(4.1025 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$147 = (-N[(1.575 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$148 = N[(t$95$49 - 1.6725), $MachinePrecision]}, Block[{t$95$149 = N[(0.5575 + N[(y * 2.03252), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$150 = N[(1.65925 + N[(x * 2.23577), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$151 = N[(4.021 + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$152 = N[(N[(y * 2.84553), $MachinePrecision] - t$95$151), $MachinePrecision]}, Block[{t$95$153 = N[(N[(y * 8.13008), $MachinePrecision] - 1.95), $MachinePrecision]}, Block[{t$95$154 = N[(N[(y * 8.13008), $MachinePrecision] - 3.915), $MachinePrecision]}, Block[{t$95$155 = N[(0.08 + N[(y * 0.813008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$156 = N[(0.395501 + N[(x * 5.42005), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$157 = N[(N[(y * 8.13008), $MachinePrecision] - 4.975), $MachinePrecision]}, Block[{t$95$158 = N[Power[t$95$157, 2.0], $MachinePrecision]}, Block[{t$95$159 = N[Sqrt[N[(t$95$158 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 5.826), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$160 = N[(N[(1.82723 + N[(y * 2.64228), $MachinePrecision]), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$161 = N[(N[(y * 8.13008), $MachinePrecision] - 3.95), $MachinePrecision]}, Block[{t$95$162 = N[(3.531 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$163 = (-N[(4.975 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$164 = N[Max[N[(4.885 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision], t$95$163], $MachinePrecision]}, Block[{t$95$165 = N[(N[(1.91443 + N[(x * 2.23577), $MachinePrecision]), $MachinePrecision] + N[(y * 4.06504), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$166 = N[Sqrt[N[(N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 5.126), $MachinePrecision], 2.0], $MachinePrecision] + t$95$158), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$167 = N[(3.7375 + N[(x * 5.42005), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$168 = (-t$95$167)}, Block[{t$95$169 = N[Power[N[(N[(y * 8.13008), $MachinePrecision] - 0.3), $MachinePrecision], 2.0], $MachinePrecision]}, Block[{t$95$170 = N[(0.597376 + N[(y * 2.03252), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$171 = N[(2.932 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$172 = N[(4.12055 - t$95$49), $MachinePrecision]}, Block[{t$95$173 = N[(2.375 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$174 = N[(4.05 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$175 = N[(N[(y * 8.13008), $MachinePrecision] - 2.775), $MachinePrecision]}, Block[{t$95$176 = N[Power[t$95$175, 2.0], $MachinePrecision]}, Block[{t$95$177 = N[Sqrt[N[(t$95$176 + N[Power[N[(1.395 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$178 = N[Sqrt[N[(t$95$176 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 3.7975), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$179 = N[(4.5 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$180 = N[(N[(N[(x * 2.23577), $MachinePrecision] + 2.9905), $MachinePrecision] + N[(y * 4.06504), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$181 = N[(0.6945 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$182 = (-N[(6.6 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$183 = N[(4.2 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$184 = N[(N[(2.3425 + N[(y * 2.84553), $MachinePrecision]), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$185 = N[(4.4855 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$186 = N[(N[(1.885 + N[(x * 2.23577), $MachinePrecision]), $MachinePrecision] + N[(y * 4.06504), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$187 = N[(3.4575 + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$188 = N[(N[(x * 8.13008), $MachinePrecision] - 3.1805), $MachinePrecision]}, Block[{t$95$189 = N[(2.4705 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$190 = N[(6.8 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$191 = (-t$95$190)}, Block[{t$95$192 = N[(6.11401 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$193 = N[(N[(2.6175 + N[(y * 2.84553), $MachinePrecision]), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$194 = N[(N[(2.81935 + N[(y * 2.84553), $MachinePrecision]), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$195 = N[(N[(y * 0.813008), $MachinePrecision] + 0.880675), $MachinePrecision]}, Block[{t$95$196 = N[(1.3292 + N[(x * 2.84553), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$197 = N[(N[(N[(y * 2.03252), $MachinePrecision] + 2.521), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$198 = N[(5.975 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$199 = N[Sqrt[N[(N[Power[N[(N[(4.58486 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision] - N[(y * 2.32288), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + t$95$158), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$200 = N[(1.15 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$201 = N[(1.5875 + N[(x * 5.42005), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$202 = (-t$95$201)}, Block[{t$95$203 = N[(2.775 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$204 = (-N[(6.212 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$205 = N[(7.50251 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$206 = N[(N[(x * 8.13008), $MachinePrecision] - 2.226), $MachinePrecision]}, Block[{t$95$207 = N[(0.245 + N[(y * 0.813008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$208 = (-t$95$207)}, Block[{t$95$209 = N[(0.6516 + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$210 = N[(N[(y * 1.82927), $MachinePrecision] - t$95$209), $MachinePrecision]}, Block[{t$95$211 = N[(2.8375 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$212 = N[(1.12143 + N[(x * 11.6144), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$213 = N[(0.475 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$214 = N[Sqrt[N[(t$95$108 + N[Power[N[(N[(y * 8.13008), $MachinePrecision] - 6.525), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$215 = N[(0.267376 + N[(y * 2.03252), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$216 = N[(5.8 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$217 = N[(0.36 - N[(y * 0.813008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$218 = N[Power[N[(N[(y * 8.13008), $MachinePrecision] - 0.465), $MachinePrecision], 2.0], $MachinePrecision]}, Block[{t$95$219 = N[(0.52 + N[(y * 0.813008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$220 = (-t$95$219)}, Block[{t$95$221 = N[(2.5335 + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$222 = N[(1.66785 + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$223 = N[(0.25 - N[(y * 0.813008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$224 = N[(1.95355 + N[(x * 5.28455), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$225 = N[(N[(y * 2.03252), $MachinePrecision] + 2.89638), $MachinePrecision]}, Block[{t$95$226 = N[(N[(x * 8.13008), $MachinePrecision] - 5.7205), $MachinePrecision]}, Block[{t$95$227 = (-N[(7.35 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$228 = N[(N[(x * 4.47154), $MachinePrecision] - t$95$95), $MachinePrecision]}, Block[{t$95$229 = N[(1.12595 + N[(y * 1.21951), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$230 = N[(4.07 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$231 = N[(4.45138 - t$95$49), $MachinePrecision]}, Block[{t$95$232 = N[(0.90565 + N[(y * 2.03252), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$233 = N[(N[(y * 8.13008), $MachinePrecision] - 5.025), $MachinePrecision]}, Block[{t$95$234 = N[(2.2095 - N[(x * 5.42005), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$235 = N[(3.55 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$236 = N[Max[N[(3.45 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision], (-t$95$235)], $MachinePrecision]}, Block[{t$95$237 = N[Max[t$95$235, (-N[(3.65 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]}, Block[{t$95$238 = N[(N[(y * 1.82927), $MachinePrecision] + 2.5769), $MachinePrecision]}, Block[{t$95$239 = N[(t$95$238 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$240 = N[(N[(x * 4.47154), $MachinePrecision] - t$95$238), $MachinePrecision]}, Block[{t$95$241 = N[(6.0955 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$242 = N[(6.75 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$243 = N[(t$95$25 + 4.085), $MachinePrecision]}, Block[{t$95$244 = N[(6.95 + N[(x * 11.6144), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$245 = N[(N[(y * 8.13008), $MachinePrecision] - 2.825), $MachinePrecision]}, Block[{t$95$246 = (-N[(2.775 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$247 = N[(N[(y * 1.82927), $MachinePrecision] - t$95$15), $MachinePrecision]}, Block[{t$95$248 = N[(0.0499997 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$249 = N[(N[(N[(x * 2.23577), $MachinePrecision] + 3.49375), $MachinePrecision] + N[(y * 4.06504), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$250 = N[(1.81065 + N[(y * 2.84553), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$251 = N[(t$95$250 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$252 = N[(0.712975 + N[(x * 2.23577), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$253 = N[(3.6 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$254 = N[Max[t$95$161, t$95$253], $MachinePrecision]}, Block[{t$95$255 = N[Max[t$95$253, t$95$59], $MachinePrecision]}, Block[{t$95$256 = N[(N[(x * 5.42005), $MachinePrecision] - 0.951167), $MachinePrecision]}, Block[{t$95$257 = N[(2.67975 + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$258 = N[(N[(y * 2.64228), $MachinePrecision] - t$95$257), $MachinePrecision]}, Block[{t$95$259 = N[(4.7 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$260 = N[(N[(y * 1.82927), $MachinePrecision] + 3.10243), $MachinePrecision]}, Block[{t$95$261 = N[(t$95$260 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$262 = N[(2.807 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$263 = N[(N[(y * 0.813008), $MachinePrecision] + 1.89365), $MachinePrecision]}, Block[{t$95$264 = N[(0.135 + N[(y * 0.813008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$265 = N[Power[t$95$161, 2.0], $MachinePrecision]}, Block[{t$95$266 = N[Sqrt[N[(t$95$265 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 5.5835), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$267 = N[(N[(1.05475 + N[(y * 2.64228), $MachinePrecision]), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$268 = N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 0.695499), $MachinePrecision], 2.0], $MachinePrecision]}, Block[{t$95$269 = N[Power[N[(N[(y * 8.13008), $MachinePrecision] - 1.4), $MachinePrecision], 2.0], $MachinePrecision]}, Block[{t$95$270 = (-N[(3.482 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$271 = N[(N[(y * 8.13008), $MachinePrecision] - 4.775), $MachinePrecision]}, Block[{t$95$272 = N[(4.95 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$273 = N[(N[(0.2581 + N[(y * 1.82927), $MachinePrecision]), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$274 = (-N[(4.6 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$275 = N[(2.282 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$276 = N[(N[(x * 8.13008), $MachinePrecision] - 6.75101), $MachinePrecision]}, Block[{t$95$277 = N[(N[(y * 5.28455), $MachinePrecision] - 1.80375), $MachinePrecision]}, Block[{t$95$278 = N[(N[(x * 8.13008), $MachinePrecision] - 5.1955), $MachinePrecision]}, Block[{t$95$279 = N[(N[(y * 3.25203), $MachinePrecision] + 5.1769), $MachinePrecision]}, Block[{t$95$280 = N[Power[t$95$130, 2.0], $MachinePrecision]}, Block[{t$95$281 = N[(3.84555 - t$95$49), $MachinePrecision]}, Block[{t$95$282 = N[(0.898001 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$283 = N[(N[(y * 8.13008), $MachinePrecision] - 5.7), $MachinePrecision]}, Block[{t$95$284 = N[(1.10808 + N[(y * 1.21951), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$285 = (-t$95$41)}, Block[{t$95$286 = N[(N[(y * 8.13008), $MachinePrecision] - 0.615), $MachinePrecision]}, Block[{t$95$287 = N[(0.3625 + N[(y * 2.84553), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$288 = N[(t$95$287 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$289 = N[(N[(0.03425 + N[(x * 2.23577), $MachinePrecision]), $MachinePrecision] + N[(y * 4.06504), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$290 = N[(2.875 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$291 = N[(1.083 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$292 = N[(1.825 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$293 = N[(6.48101 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$294 = N[(7.45 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$295 = N[(1.05625 + N[(y * 5.28455), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$296 = N[(N[(y * 8.13008), $MachinePrecision] - 1.475), $MachinePrecision]}, Block[{t$95$297 = N[(N[(x * 8.13008), $MachinePrecision] - 0.282999), $MachinePrecision]}, Block[{t$95$298 = N[(4.881 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$299 = N[(N[(y * 8.13008), $MachinePrecision] - 0.55), $MachinePrecision]}, Block[{t$95$300 = N[Sqrt[N[(N[Power[N[(5.625 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + t$95$158), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$301 = N[(t$95$300 - 0.275), $MachinePrecision]}, Block[{t$95$302 = N[(2.51875 - N[(y * 5.28455), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$303 = N[(3.3 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$304 = N[(N[(x * 8.13008), $MachinePrecision] - 6.408), $MachinePrecision]}, Block[{t$95$305 = N[(1.676 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$306 = N[(N[(x * 8.13008), $MachinePrecision] - 3.1225), $MachinePrecision]}, Block[{t$95$307 = N[(4.8125 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$308 = N[(t$95$113 - N[(y * 2.84553), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$309 = N[(N[(1.96935 + N[(y * 2.03252), $MachinePrecision]), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$310 = N[(N[(x * 5.42005), $MachinePrecision] - 1.22783), $MachinePrecision]}, Block[{t$95$311 = N[(6.05 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$312 = N[(5.1585 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$313 = (-N[(0.575 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$314 = N[Power[N[(N[(y * 8.13008), $MachinePrecision] - 4.7), $MachinePrecision], 2.0], $MachinePrecision]}, Block[{t$95$315 = N[(N[(1.4516 + N[(y * 1.82927), $MachinePrecision]), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$316 = N[(1.1947 + N[(y * 1.21951), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$317 = N[(2.73475 + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$318 = N[(N[(y * 2.64228), $MachinePrecision] - t$95$317), $MachinePrecision]}, Block[{t$95$319 = N[(N[(y * 1.82927), $MachinePrecision] + 2.5219), $MachinePrecision]}, Block[{t$95$320 = N[(t$95$319 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$321 = N[(3.5305 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$322 = N[(3.675 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$323 = N[(0.292376 + N[(y * 2.84553), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$324 = N[(t$95$323 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$325 = N[(5.3 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$326 = N[Sqrt[N[(N[Power[N[(1.462 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + t$95$158), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$327 = N[(N[(x * 8.13008), $MachinePrecision] - 0.320499), $MachinePrecision]}, Block[{t$95$328 = N[Sqrt[N[(t$95$176 + N[Power[N[(N[(7.16429 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision] - N[(y * 2.32288), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$329 = N[(N[(x * 11.6144), $MachinePrecision] - 7.23715), $MachinePrecision]}, Block[{t$95$330 = N[(1.02555 + N[(y * 2.03252), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$331 = N[(2.137 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$332 = N[(2.4785 + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$333 = N[(1.77125 + N[(y * 5.28455), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$334 = N[(N[(x * 8.13008), $MachinePrecision] - 6.5305), $MachinePrecision]}, Block[{t$95$335 = N[(6.2 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$336 = N[(N[(y * 1.21951), $MachinePrecision] + 1.7447), $MachinePrecision]}, Block[{t$95$337 = N[(3.0 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$338 = (-t$95$337)}, Block[{t$95$339 = N[Sqrt[N[(t$95$158 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 6.476), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$340 = N[(N[(y * 2.03252), $MachinePrecision] + 2.95138), $MachinePrecision]}, Block[{t$95$341 = N[(5.2 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$342 = N[Power[t$95$341, 2.0], $MachinePrecision]}, Block[{t$95$343 = (-t$95$341)}, Block[{t$95$344 = N[Max[t$95$183, t$95$343], $MachinePrecision]}, Block[{t$95$345 = N[(0.289485 + N[(x * 2.27642), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$346 = N[(N[(x * 8.13008), $MachinePrecision] - 3.401), $MachinePrecision]}, Block[{t$95$347 = N[(N[(y * 8.13008), $MachinePrecision] - 6.15), $MachinePrecision]}, Block[{t$95$348 = N[Power[t$95$347, 2.0], $MachinePrecision]}, Block[{t$95$349 = N[Sqrt[N[(t$95$348 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 2.8955), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$350 = N[Max[t$95$216, t$95$347], $MachinePrecision]}, Block[{t$95$351 = N[(N[(y * 1.82927), $MachinePrecision] + 3.15743), $MachinePrecision]}, Block[{t$95$352 = N[(N[(x * 4.47154), $MachinePrecision] - t$95$351), $MachinePrecision]}, Block[{t$95$353 = N[(1.2994 + N[(y * 3.25203), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$354 = N[(3.6525 + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$355 = N[(N[(y * 2.84553), $MachinePrecision] - t$95$354), $MachinePrecision]}, Block[{t$95$356 = N[Sqrt[N[(t$95$176 + N[Power[N[(4.345 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$357 = N[(1.6725 - t$95$49), $MachinePrecision]}, Block[{t$95$358 = N[Sqrt[N[(t$95$54 + N[Power[N[(N[(4.12414 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision] - N[(y * 2.32288), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$359 = N[(0.14 - N[(y * 0.813008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$360 = N[(4.85 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$361 = N[Power[t$95$360, 2.0], $MachinePrecision]}, Block[{t$95$362 = N[Sqrt[N[(t$95$361 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 0.633), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$363 = N[Sqrt[N[(N[Power[N[(0.317 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + t$95$361), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$364 = N[(1.675 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$365 = N[(N[(N[(x * 1.82927), $MachinePrecision] + 3.2527), $MachinePrecision] + N[(y * 4.06504), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$366 = N[Power[N[(0.6875 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]}, Block[{t$95$367 = N[(0.300176 + N[(y * 2.23577), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$368 = N[(N[(0.590637 + N[(x * 1.82927), $MachinePrecision]), $MachinePrecision] + N[(y * 4.06504), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$369 = N[(0.195 - N[(y * 0.813008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$370 = N[(2.487 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$371 = N[Sqrt[N[(N[Power[t$95$370, 2.0], $MachinePrecision] + t$95$158), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$372 = N[(t$95$151 - N[(y * 2.84553), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$373 = N[(N[(2.216 + N[(y * 2.84553), $MachinePrecision]), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$374 = (-t$95$373)}, Block[{t$95$375 = N[(1.9 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$376 = N[Power[t$95$375, 2.0], $MachinePrecision]}, Block[{t$95$377 = (-t$95$375)}, Block[{t$95$378 = N[Max[t$95$377, t$95$200], $MachinePrecision]}, Block[{t$95$379 = N[(0.3 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$380 = N[Max[t$95$299, t$95$379], $MachinePrecision]}, Block[{t$95$381 = N[(2.5 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$382 = N[Max[t$95$381, t$95$74], $MachinePrecision]}, Block[{t$95$383 = N[Max[t$95$245, t$95$381], $MachinePrecision]}, Block[{t$95$384 = N[Max[t$95$381, t$95$175], $MachinePrecision]}, Block[{t$95$385 = N[(2.6125 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$386 = N[(t$95$159 - 0.275), $MachinePrecision]}, Block[{t$95$387 = N[(1.65817 - N[(x * 5.42005), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$388 = N[(N[(x * 8.13008), $MachinePrecision] - 5.733), $MachinePrecision]}, Block[{t$95$389 = N[Max[t$95$343, t$95$360], $MachinePrecision]}, Block[{t$95$390 = N[(2.65 + N[(y * 4.06504), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$391 = N[(7.12143 + N[(x * 11.6144), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$392 = N[(N[(N[(y * 2.03252), $MachinePrecision] + 2.466), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$393 = N[(0.6375 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$394 = (-t$95$393)}, Block[{t$95$395 = N[Power[t$95$393, 2.0], $MachinePrecision]}, Block[{t$95$396 = N[(N[(x * 1.01626), $MachinePrecision] + 1.55781), $MachinePrecision]}, Block[{t$95$397 = N[(0.208 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$398 = N[Sqrt[N[(t$95$54 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - N[(0.993357 + N[(y * 2.32288), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$399 = N[(2.685 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$400 = N[(N[(x * 8.13008), $MachinePrecision] - 0.150499), $MachinePrecision]}, Block[{t$95$401 = N[(3.501 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$402 = N[(4.512 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$403 = N[Sqrt[N[(N[Power[t$95$402, 2.0], $MachinePrecision] + t$95$280), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$404 = N[(N[(y * 0.813008), $MachinePrecision] - 0.525), $MachinePrecision]}, Block[{t$95$405 = N[(N[(N[(y * 2.03252), $MachinePrecision] + 3.665), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$406 = N[Power[N[(N[(y * 8.13008), $MachinePrecision] - 0.4625), $MachinePrecision], 2.0], $MachinePrecision]}, Block[{t$95$407 = N[(2.24785 + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$408 = (-t$95$135)}, Block[{t$95$409 = N[(0.525 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$410 = N[Max[t$95$286, t$95$409], $MachinePrecision]}, Block[{t$95$411 = N[Power[N[(N[(y * 8.13008), $MachinePrecision] - 6.5), $MachinePrecision], 2.0], $MachinePrecision]}, Block[{t$95$412 = N[(3.875 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$413 = N[(0.63 + N[(y * 0.813008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$414 = (-t$95$413)}, Block[{t$95$415 = (-N[(2.075 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$416 = N[(N[(x * 11.6144), $MachinePrecision] - 2.67571), $MachinePrecision]}, Block[{t$95$417 = N[Max[t$95$83, t$95$216], $MachinePrecision]}, Block[{t$95$418 = N[(t$95$49 - 1.3975), $MachinePrecision]}, Block[{t$95$419 = (-N[(7.95 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$420 = (-N[(1.675 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$421 = N[(N[(x * 8.13008), $MachinePrecision] - 6.656), $MachinePrecision]}, Block[{t$95$422 = N[Max[t$95$216, t$95$89], $MachinePrecision]}, Block[{t$95$423 = N[(1.25 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$424 = N[Max[N[(N[(y * 8.13008), $MachinePrecision] - 0.95), $MachinePrecision], N[(0.85 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$425 = (-N[(1.142 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$426 = N[(5.858 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$427 = (-t$95$155)}, Block[{t$95$428 = N[(N[(y * 0.813008), $MachinePrecision] + 3.968), $MachinePrecision]}, Block[{t$95$429 = N[(0.025 + N[(y * 0.813008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$430 = N[(0.596601 + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$431 = N[(N[(y * 1.82927), $MachinePrecision] - t$95$430), $MachinePrecision]}, Block[{t$95$432 = N[(2.11243 - t$95$22), $MachinePrecision]}, Block[{t$95$433 = (-t$95$160)}, Block[{t$95$434 = N[(t$95$209 - N[(y * 1.82927), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$435 = N[(2.00117 - N[(x * 5.42005), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$436 = N[Sqrt[N[(N[Power[N[(N[(0.146856 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision] - N[(y * 2.32288), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + t$95$158), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$437 = N[(0.4125 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$438 = N[(1.24555 + N[(y * 2.03252), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$439 = N[(N[(y * 0.813008), $MachinePrecision] + 6.188), $MachinePrecision]}, Block[{t$95$440 = N[(t$95$49 - 2.09738), $MachinePrecision]}, Block[{t$95$441 = N[(0.322376 + N[(y * 2.03252), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$442 = N[(4.825 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$443 = N[(5.4 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$444 = N[(N[(y * 2.19512), $MachinePrecision] + N[(x * 2.84553), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$445 = N[(6.0305 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$446 = N[(N[(y * 1.21951), $MachinePrecision] + 1.67444), $MachinePrecision]}, Block[{t$95$447 = N[(3.2375 + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$448 = N[(2.4205 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$449 = (-t$95$184)}, Block[{t$95$450 = N[(3.001 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$451 = N[(N[(1.55693 + N[(x * 2.23577), $MachinePrecision]), $MachinePrecision] + N[(y * 4.06504), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$452 = N[(N[(0.6785 + N[(y * 2.03252), $MachinePrecision]), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$453 = N[(0.707348 + N[(x * 4.5122), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$454 = N[(N[(y * 8.13008), $MachinePrecision] - 6.075), $MachinePrecision]}, Block[{t$95$455 = N[Max[t$95$216, t$95$454], $MachinePrecision]}, Block[{t$95$456 = N[Power[t$95$454, 2.0], $MachinePrecision]}, Block[{t$95$457 = N[Sqrt[N[(t$95$456 + N[Power[N[(0.604501 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$458 = N[Sqrt[N[(t$95$456 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 1.3455), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$459 = N[Sqrt[N[(t$95$456 + t$95$268), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$460 = N[Sqrt[N[(t$95$456 + N[Power[t$95$303, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$461 = N[Sqrt[N[(t$95$456 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 5.0255), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$462 = N[Sqrt[N[(t$95$456 + N[Power[N[(5.65 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$463 = N[(3.9955 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$464 = N[(0.150001 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$465 = N[Power[t$95$464, 2.0], $MachinePrecision]}, Block[{t$95$466 = N[(3.1 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$467 = N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 4.1255), $MachinePrecision], 2.0], $MachinePrecision]}, Block[{t$95$468 = N[Sqrt[N[(t$95$456 + t$95$467), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$469 = N[(N[(y * 8.13008), $MachinePrecision] - 0.6875), $MachinePrecision]}, Block[{t$95$470 = N[Max[t$95$409, t$95$469], $MachinePrecision]}, Block[{t$95$471 = N[(1.732 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$472 = N[Power[t$95$283, 2.0], $MachinePrecision]}, Block[{t$95$473 = N[Sqrt[N[(t$95$472 + t$95$268), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$474 = N[Sqrt[N[(t$95$467 + t$95$472), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$475 = N[(1.06718 + N[(x * 2.23577), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$476 = N[(N[(x * 8.13008), $MachinePrecision] - 3.6855), $MachinePrecision]}, Block[{t$95$477 = N[Power[N[(2.3 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]}, Block[{t$95$478 = N[(N[(y * 2.64228), $MachinePrecision] - t$95$65), $MachinePrecision]}, Block[{t$95$479 = N[(0.986526 + N[(y * 1.21951), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$480 = N[(N[(x * 8.13008), $MachinePrecision] - 8.05251), $MachinePrecision]}, Block[{t$95$481 = N[(3.8 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$482 = N[(1.22783 - N[(x * 5.42005), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$483 = (-t$95$200)}, Block[{t$95$484 = N[(N[(y * 8.13008), $MachinePrecision] - 1.75), $MachinePrecision]}, Block[{t$95$485 = N[(N[(x * 4.47154), $MachinePrecision] - t$95$250), $MachinePrecision]}, Block[{t$95$486 = N[(N[(y * 8.13008), $MachinePrecision] - 5.25), $MachinePrecision]}, Block[{t$95$487 = N[(N[(y * 5.28455), $MachinePrecision] - 3.23375), $MachinePrecision]}, Block[{t$95$488 = N[(t$95$257 - N[(y * 2.64228), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$489 = N[(N[(2.54435 + N[(y * 2.84553), $MachinePrecision]), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$490 = N[(N[(x * 4.47154), $MachinePrecision] - t$95$260), $MachinePrecision]}, Block[{t$95$491 = N[(0.25 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$492 = N[(N[(x * 1.82927), $MachinePrecision] + N[(y * 4.06504), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$493 = N[Sqrt[N[(t$95$176 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 2.8475), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$494 = N[Power[t$95$484, 2.0], $MachinePrecision]}, Block[{t$95$495 = N[Sqrt[N[(t$95$494 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 5.083), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$496 = N[Sqrt[N[(t$95$494 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 5.333), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$497 = N[(0.44765 + N[(x * 2.84553), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$498 = (-t$95$264)}, Block[{t$95$499 = N[(N[(x * 8.13008), $MachinePrecision] - 3.021), $MachinePrecision]}, Block[{t$95$500 = N[Power[(-t$95$437), 2.0], $MachinePrecision]}, Block[{t$95$501 = N[(6.3 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$502 = N[Power[t$95$501, 2.0], $MachinePrecision]}, Block[{t$95$503 = (-t$95$501)}, Block[{t$95$504 = N[(0.500551 + N[(y * 2.84553), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$505 = N[(t$95$504 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$506 = N[Sqrt[N[(t$95$456 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 0.0454988), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$507 = N[(1.068 + N[(x * 2.23577), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$508 = (-N[(5.9 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$509 = (-N[(0.249501 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$510 = N[(4.9855 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$511 = N[(2.8935 + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$512 = N[(N[(y * 2.84553), $MachinePrecision] - t$95$511), $MachinePrecision]}, Block[{t$95$513 = N[Sqrt[N[(t$95$176 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 0.0924997), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$514 = N[Sqrt[N[(t$95$7 + t$95$176), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$515 = N[(0.415 - N[(y * 0.813008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$516 = N[(0.36 + N[(y * 3.25203), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$517 = N[(3.35775 + N[(x * 4.5122), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$518 = N[(0.263484 + N[(x * 2.27642), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$519 = (-t$95$90)}, Block[{t$95$520 = N[(2.64638 + N[(y * 2.84553), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$521 = N[(t$95$520 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$522 = N[(2.846 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$523 = N[(0.305 - N[(y * 0.813008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$524 = N[(N[(x * 8.13008), $MachinePrecision] - 4.6525), $MachinePrecision]}, Block[{t$95$525 = N[(1.025 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$526 = N[(0.7775 + N[(y * 2.03252), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$527 = N[Sqrt[N[(t$95$140 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 1.073), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$528 = N[(2.725 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$529 = N[Power[t$95$528, 2.0], $MachinePrecision]}, Block[{t$95$530 = N[Sqrt[N[(N[Power[N[(N[(3.35486 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision] - N[(y * 2.32288), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + t$95$529), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$531 = N[Sqrt[N[(N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 5.2605), $MachinePrecision], 2.0], $MachinePrecision] + t$95$529), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$532 = N[Sqrt[N[(N[Power[N[(N[(0.574857 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision] - N[(y * 2.32288), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + t$95$529), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$533 = N[Sqrt[N[(t$95$529 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 5.9605), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$534 = N[(t$95$533 - 0.275), $MachinePrecision]}, Block[{t$95$535 = N[Sqrt[N[(N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 3.4105), $MachinePrecision], 2.0], $MachinePrecision] + t$95$529), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$536 = N[Sqrt[N[(N[Power[N[(0.177 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + t$95$529), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$537 = N[Sqrt[N[(N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 0.523), $MachinePrecision], 2.0], $MachinePrecision] + t$95$529), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$538 = N[Sqrt[N[(N[Power[N[(5.745 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + t$95$529), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$539 = N[(t$95$538 - 0.275), $MachinePrecision]}, Block[{t$95$540 = N[(N[(y * 8.13008), $MachinePrecision] - 6.45), $MachinePrecision]}, Block[{t$95$541 = N[Max[t$95$540, N[(6.35 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$542 = N[(4.875 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$543 = N[(0.951167 - N[(x * 5.42005), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$544 = N[(0.575 + N[(y * 0.813008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$545 = (-t$95$544)}, Block[{t$95$546 = N[Sqrt[N[(t$95$176 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 4.3775), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$547 = N[(7.35601 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$548 = N[Sqrt[N[(t$95$348 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 2.6455), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$549 = N[(6.9 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$550 = N[Sqrt[N[(N[Power[t$95$60, 2.0], $MachinePrecision] + N[Power[t$95$549, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$551 = N[(N[(y * 2.64228), $MachinePrecision] + 3.2069), $MachinePrecision]}, Block[{t$95$552 = N[(N[(x * 4.47154), $MachinePrecision] - t$95$551), $MachinePrecision]}, Block[{t$95$553 = N[(t$95$551 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$554 = N[(N[(x * 4.47154), $MachinePrecision] - t$95$287), $MachinePrecision]}, Block[{t$95$555 = (-N[(0.452 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$556 = N[(N[(y * 8.13008), $MachinePrecision] - 1.65), $MachinePrecision]}, Block[{t$95$557 = N[(2.45 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$558 = N[(0.65875 + N[(x * 2.84553), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$559 = N[(N[(y * 8.13008), $MachinePrecision] - 1.725), $MachinePrecision]}, Block[{t$95$560 = N[(3.12857 + N[(x * 11.6144), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$561 = (-N[(5.712 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$562 = N[(N[(y * 2.64228), $MachinePrecision] + 3.34743), $MachinePrecision]}, Block[{t$95$563 = N[(t$95$562 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$564 = N[(2.1625 + N[(x * 2.23577), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$565 = (-N[(1.67 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$566 = N[(N[(y * 1.82927), $MachinePrecision] - t$95$116), $MachinePrecision]}, Block[{t$95$567 = (-t$95$115)}, Block[{t$95$568 = N[(t$95$317 - N[(y * 2.64228), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$569 = N[(0.96065 + N[(y * 2.03252), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$570 = N[(6.7 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$571 = (-t$95$267)}, Block[{t$95$572 = N[(N[(x * 4.47154), $MachinePrecision] - t$95$319), $MachinePrecision]}, Block[{t$95$573 = N[(N[(x * 4.47154), $MachinePrecision] - t$95$323), $MachinePrecision]}, Block[{t$95$574 = N[(N[(0.3131 + N[(y * 1.82927), $MachinePrecision]), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$575 = N[(N[(y * 8.13008), $MachinePrecision] - 1.5), $MachinePrecision]}, Block[{t$95$576 = N[Sqrt[N[(t$95$361 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 0.383), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$577 = N[(2.725 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$578 = N[Max[N[(N[(y * 8.13008), $MachinePrecision] - 2.815), $MachinePrecision], t$95$577], $MachinePrecision]}, Block[{t$95$579 = N[(4.912 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$580 = N[Max[t$95$402, (-t$95$579)], $MachinePrecision]}, Block[{t$95$581 = N[(6.45 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$582 = (-t$95$581)}, Block[{t$95$583 = N[(3.85 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$584 = N[Power[t$95$583, 2.0], $MachinePrecision]}, Block[{t$95$585 = N[Sqrt[N[(t$95$584 + N[Power[t$95$346, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$586 = N[Max[t$95$466, (-t$95$583)], $MachinePrecision]}, Block[{t$95$587 = N[Power[N[(N[(y * 8.13008), $MachinePrecision] - 5.8), $MachinePrecision], 2.0], $MachinePrecision]}, Block[{t$95$588 = N[Max[t$95$89, N[(6.05 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$589 = N[(0.552 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$590 = N[Sqrt[N[(N[Power[t$95$589, 2.0], $MachinePrecision] + t$95$280), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$591 = N[Max[t$95$589, (-N[(0.952 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]}, Block[{t$95$592 = N[(5.15 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$593 = N[(N[(x * 5.42005), $MachinePrecision] - 1.65817), $MachinePrecision]}, Block[{t$95$594 = N[(t$95$354 - N[(y * 2.84553), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$595 = N[(0.587999 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$596 = N[(N[(y * 8.13008), $MachinePrecision] - 6.05), $MachinePrecision]}, Block[{t$95$597 = (-t$95$193)}, Block[{t$95$598 = (-N[(2.132 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$599 = N[(1.726 + N[(y * 4.87805), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$600 = N[(5.95 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$601 = N[Power[t$95$600, 2.0], $MachinePrecision]}, Block[{t$95$602 = N[Sqrt[N[(t$95$601 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 1.508), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$603 = N[(1.0705 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$604 = N[Sqrt[N[(t$95$601 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 1.258), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$605 = N[(3.1355 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$606 = N[(1.35 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$607 = N[Max[t$95$377, t$95$606], $MachinePrecision]}, Block[{t$95$608 = N[Max[t$95$423, (-t$95$606)], $MachinePrecision]}, Block[{t$95$609 = N[(N[(x * 8.13008), $MachinePrecision] - 1.138), $MachinePrecision]}, Block[{t$95$610 = N[(N[(y * 5.28455), $MachinePrecision] - 2.51875), $MachinePrecision]}, Block[{t$95$611 = (-N[(5.85 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$612 = N[(N[(y * 8.13008), $MachinePrecision] - 5.015), $MachinePrecision]}, Block[{t$95$613 = N[(N[(y * 8.13008), $MachinePrecision] - 3.875), $MachinePrecision]}, Block[{t$95$614 = N[Max[t$95$253, t$95$613], $MachinePrecision]}, Block[{t$95$615 = N[Power[t$95$613, 2.0], $MachinePrecision]}, Block[{t$95$616 = N[Sqrt[N[(N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 4.7835), $MachinePrecision], 2.0], $MachinePrecision] + t$95$615), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$617 = N[Sqrt[N[(t$95$615 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 0.862999), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$618 = N[Sqrt[N[(t$95$615 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 0.212998), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$619 = N[Sqrt[N[(t$95$615 + N[Power[N[(2.245 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$620 = N[(t$95$619 - 0.275), $MachinePrecision]}, Block[{t$95$621 = N[Sqrt[N[(t$95$615 + N[Power[t$95$522, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$622 = N[Sqrt[N[(t$95$615 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 6.1335), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$623 = N[Sqrt[N[(t$95$615 + N[Power[N[(N[(4.72857 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision] - N[(y * 2.32288), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$624 = N[(0.4066 + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$625 = N[(N[(y * 2.64228), $MachinePrecision] - t$95$624), $MachinePrecision]}, Block[{t$95$626 = N[(2.825 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$627 = N[(5.025 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$628 = N[(N[(1.74723 + N[(y * 1.82927), $MachinePrecision]), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$629 = N[(4.851 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$630 = N[(1.065 + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$631 = N[(N[(x * 11.6144), $MachinePrecision] - 6.52214), $MachinePrecision]}, Block[{t$95$632 = N[(0.8 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$633 = (-t$95$632)}, Block[{t$95$634 = N[Max[t$95$491, t$95$633], $MachinePrecision]}, Block[{t$95$635 = N[Max[t$95$34, t$95$633], $MachinePrecision]}, Block[{t$95$636 = N[(N[(1.5066 + N[(y * 1.82927), $MachinePrecision]), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$637 = N[(1.01488 + N[(y * 4.87805), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$638 = N[(N[(y * 8.13008), $MachinePrecision] - 2.85), $MachinePrecision]}, Block[{t$95$639 = N[Power[t$95$638, 2.0], $MachinePrecision]}, Block[{t$95$640 = N[Sqrt[N[(t$95$639 + N[Power[N[(1.945 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$641 = N[Sqrt[N[(t$95$639 + N[Power[N[(2.195 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$642 = N[Max[t$95$381, t$95$638], $MachinePrecision]}, Block[{t$95$643 = N[(N[(2.1853 + N[(x * 2.23577), $MachinePrecision]), $MachinePrecision] + N[(y * 4.06504), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$644 = N[(0.957 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$645 = N[(0.45 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$646 = N[Max[t$95$633, t$95$645], $MachinePrecision]}, Block[{t$95$647 = N[(0.0173756 + N[(y * 2.84553), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$648 = N[(t$95$647 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$649 = N[(0.47 - N[(y * 0.813008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$650 = (-t$95$333)}, Block[{t$95$651 = N[(N[(N[(y * 2.03252), $MachinePrecision] + 2.4825), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$652 = N[(2.576 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$653 = N[(6.325 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$654 = N[Power[t$95$653, 2.0], $MachinePrecision]}, Block[{t$95$655 = N[Sqrt[N[(t$95$654 + t$95$158), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$656 = N[Sqrt[N[(t$95$654 + t$95$54), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$657 = N[Sqrt[N[(t$95$654 + t$95$529), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$658 = N[Sqrt[N[(t$95$280 + N[Power[t$95$91, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$659 = N[(0.485 + N[(x * 2.23577), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$660 = N[(N[(x * 8.13008), $MachinePrecision] - 3.408), $MachinePrecision]}, Block[{t$95$661 = N[Sqrt[N[(N[Power[t$95$652, 2.0], $MachinePrecision] + t$95$158), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$662 = N[Max[t$95$377, t$95$47], $MachinePrecision]}, Block[{t$95$663 = N[(0.606888 + N[(y * 1.21951), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$664 = N[(4.1 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$665 = N[Power[t$95$664, 2.0], $MachinePrecision]}, Block[{t$95$666 = (-t$95$664)}, Block[{t$95$667 = N[Max[t$95$666, t$95$235], $MachinePrecision]}, Block[{t$95$668 = N[Max[t$95$666, N[(3.75 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$669 = N[Max[t$95$466, t$95$666], $MachinePrecision]}, Block[{t$95$670 = N[Max[t$95$666, t$95$9], $MachinePrecision]}, Block[{t$95$671 = N[(2.25 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$672 = N[Sqrt[N[(N[Power[t$95$671, 2.0], $MachinePrecision] + N[Power[t$95$471, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$673 = N[(N[(y * 0.813008), $MachinePrecision] - 0.14), $MachinePrecision]}, Block[{t$95$674 = (-t$95$194)}, Block[{t$95$675 = N[(N[(x * 8.13008), $MachinePrecision] - 7.531), $MachinePrecision]}, Block[{t$95$676 = N[Sqrt[N[(t$95$465 + N[Power[t$95$556, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$677 = N[Sqrt[N[(t$95$615 + N[Power[N[(0.437001 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$678 = N[(t$95$677 - 0.275), $MachinePrecision]}, Block[{t$95$679 = (-N[(7.3 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$680 = N[(N[(x * 8.13008), $MachinePrecision] - 6.6455), $MachinePrecision]}, Block[{t$95$681 = N[(1.27381 + N[(y * 4.87805), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$682 = N[(1.3975 - t$95$49), $MachinePrecision]}, Block[{t$95$683 = (-t$95$528)}, Block[{t$95$684 = N[(N[(y * 8.13008), $MachinePrecision] - 0.85), $MachinePrecision]}, Block[{t$95$685 = N[Max[t$95$379, t$95$684], $MachinePrecision]}, Block[{t$95$686 = N[(N[(N[(x * 2.23577), $MachinePrecision] + 2.30217), $MachinePrecision] + N[(y * 4.06504), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$687 = N[(1.4 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$688 = N[Max[t$95$687, t$95$1], $MachinePrecision]}, Block[{t$95$689 = N[Max[t$95$687, t$95$153], $MachinePrecision]}, Block[{t$95$690 = N[(4.02143 + N[(x * 11.6144), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$691 = N[(3.775 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$692 = N[Max[t$95$666, t$95$691], $MachinePrecision]}, Block[{t$95$693 = (-t$95$360)}, Block[{t$95$694 = N[(3.771 + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$695 = N[Power[t$95$299, 2.0], $MachinePrecision]}, Block[{t$95$696 = N[Sqrt[N[(t$95$695 + N[Power[t$95$364, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$697 = N[(N[(y * 2.60163), $MachinePrecision] + N[(x * 2.84553), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$698 = N[Sqrt[N[(t$95$584 + N[Power[t$95$109, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$699 = (-t$95$429)}, Block[{t$95$700 = N[(N[(x * 5.42005), $MachinePrecision] - 2.7765), $MachinePrecision]}, Block[{t$95$701 = N[Sqrt[N[(N[Power[t$95$248, 2.0], $MachinePrecision] + N[Power[t$95$73, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$702 = N[(4.908 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$703 = N[(1.30055 + N[(y * 2.03252), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$704 = N[(N[(x * 11.6144), $MachinePrecision] - 0.585714), $MachinePrecision]}, Block[{t$95$705 = N[(5.0375 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$706 = N[(N[(x * 8.13008), $MachinePrecision] - 4.0805), $MachinePrecision]}, Block[{t$95$707 = N[Sqrt[N[(t$95$265 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 5.3335), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$708 = (-N[(1.737 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$709 = N[(N[(x * 11.6144), $MachinePrecision] - 0.743571), $MachinePrecision]}, Block[{t$95$710 = N[(2.09738 - t$95$49), $MachinePrecision]}, Block[{t$95$711 = N[Max[t$95$606, t$95$71], $MachinePrecision]}, Block[{t$95$712 = N[(N[(y * 1.21951), $MachinePrecision] + 2.17851), $MachinePrecision]}, Block[{t$95$713 = N[Sqrt[N[(N[Power[t$95$272, 2.0], $MachinePrecision] + N[Power[t$95$78, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$714 = N[(N[(y * 8.13008), $MachinePrecision] - 4.6), $MachinePrecision]}, Block[{t$95$715 = N[Max[t$95$253, t$95$714], $MachinePrecision]}, Block[{t$95$716 = N[Sqrt[N[(N[Power[t$95$714, 2.0], $MachinePrecision] + N[Power[t$95$331, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$717 = N[(2.2175 + N[(x * 2.23577), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$718 = N[(3.1825 + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$719 = (-t$95$557)}, Block[{t$95$720 = N[(2.457 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$721 = (-t$95$720)}, Block[{t$95$722 = N[(N[(y * 8.13008), $MachinePrecision] - 0.625), $MachinePrecision]}, Block[{t$95$723 = N[Sqrt[N[(N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 5.7775), $MachinePrecision], 2.0], $MachinePrecision] + t$95$176), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$724 = N[(t$95$723 - 0.275), $MachinePrecision]}, Block[{t$95$725 = (-t$95$37)}, Block[{t$95$726 = N[Sqrt[N[(t$95$456 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - N[(1.71336 + N[(y * 2.32288), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$727 = N[(N[(0.7335 + N[(y * 2.03252), $MachinePrecision]), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$728 = N[(8.97857 + N[(x * 11.6144), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$729 = N[(0.37375 - N[(y * 5.28455), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$730 = N[(2.0 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$731 = N[Sqrt[N[(N[Power[N[(4.517 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + t$95$158), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$732 = N[(t$95$731 - 0.275), $MachinePrecision]}, Block[{t$95$733 = N[(1.5125 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$734 = N[Sqrt[N[(N[Power[N[(0.0670004 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + t$95$361), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$735 = N[(0.575 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$736 = N[(N[(x * 8.13008), $MachinePrecision] - 6.6385), $MachinePrecision]}, Block[{t$95$737 = N[(N[(x * 8.13008), $MachinePrecision] - 7.87551), $MachinePrecision]}, Block[{t$95$738 = N[Sqrt[N[(t$95$695 + N[Power[t$95$737, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$739 = N[(N[(x * 8.13008), $MachinePrecision] - 5.9955), $MachinePrecision]}, Block[{t$95$740 = N[Sqrt[N[(t$95$695 + N[Power[t$95$739, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$741 = N[Power[N[(7.025 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]}, Block[{t$95$742 = N[(N[(x * 8.13008), $MachinePrecision] - 1.8305), $MachinePrecision]}, Block[{t$95$743 = (-t$95$691)}, Block[{t$95$744 = N[(1.36223 + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$745 = N[(t$95$744 - N[(y * 2.64228), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$746 = N[(N[(y * 2.64228), $MachinePrecision] - t$95$744), $MachinePrecision]}, Block[{t$95$747 = N[(1.65 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$748 = N[Max[t$95$47, (-t$95$747)], $MachinePrecision]}, Block[{t$95$749 = N[Power[t$95$747, 2.0], $MachinePrecision]}, Block[{t$95$750 = N[Sqrt[N[(t$95$749 + N[Power[t$95$400, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$751 = N[Sqrt[N[(t$95$749 + N[Power[t$95$736, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$752 = N[Sqrt[N[(N[Power[N[(0.354001 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + t$95$158), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$753 = N[(t$95$752 - 0.275), $MachinePrecision]}, Block[{t$95$754 = N[Sqrt[N[(N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 1.951), $MachinePrecision], 2.0], $MachinePrecision] + t$95$158), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$755 = N[(4.925 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$756 = N[Power[t$95$200, 2.0], $MachinePrecision]}, Block[{t$95$757 = N[Sqrt[N[(t$95$756 + N[Power[t$95$742, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$758 = N[(N[(y * 8.13008), $MachinePrecision] - 0.575), $MachinePrecision]}, Block[{t$95$759 = N[Max[t$95$379, t$95$758], $MachinePrecision]}, Block[{t$95$760 = N[Power[t$95$758, 2.0], $MachinePrecision]}, Block[{t$95$761 = N[Sqrt[N[(t$95$760 + N[Power[N[(4.45 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$762 = N[Sqrt[N[(t$95$760 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 2.6955), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$763 = N[Sqrt[N[(t$95$7 + t$95$760), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$764 = N[(t$95$763 - 0.275), $MachinePrecision]}, Block[{t$95$765 = N[Sqrt[N[(t$95$760 + N[Power[N[(3.15 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$766 = N[Sqrt[N[(t$95$760 + N[Power[N[(5.1 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$767 = N[Sqrt[N[(t$95$760 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 2.0455), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$768 = N[(t$95$767 - 0.275), $MachinePrecision]}, Block[{t$95$769 = N[Sqrt[N[(t$95$760 + N[Power[t$95$582, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$770 = N[Sqrt[N[(t$95$760 + N[Power[N[(1.3 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$771 = N[Sqrt[N[(t$95$760 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - N[(N[(y * 2.32288), $MachinePrecision] + 6.90979), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$772 = N[Sqrt[N[(t$95$760 + N[Power[N[(7.075 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$773 = N[Sqrt[N[(t$95$760 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 3.933), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$774 = N[(t$95$773 - 0.275), $MachinePrecision]}, Block[{t$95$775 = N[Sqrt[N[(t$95$176 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 7.77751), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$776 = N[(N[(x * 8.13008), $MachinePrecision] - 1.183), $MachinePrecision]}, Block[{t$95$777 = N[(2.48625 + N[(y * 5.28455), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$778 = (-t$95$777)}, Block[{t$95$779 = N[Max[t$95$90, t$95$182], $MachinePrecision]}, Block[{t$95$780 = N[(3.785 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$781 = N[Sqrt[N[(N[Power[N[(3.207 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + t$95$529), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$782 = N[(N[(x * 8.13008), $MachinePrecision] - 0.9705), $MachinePrecision]}, Block[{t$95$783 = N[(N[(y * 8.13008), $MachinePrecision] - 3.7), $MachinePrecision]}, Block[{t$95$784 = N[Power[t$95$632, 2.0], $MachinePrecision]}, Block[{t$95$785 = (-t$95$21)}, Block[{t$95$786 = N[Max[t$95$203, t$95$785], $MachinePrecision]}, Block[{t$95$787 = N[(N[(1.30475 + N[(y * 1.82927), $MachinePrecision]), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$788 = N[Sqrt[N[(t$95$760 + N[Power[N[(0.6 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$789 = N[(t$95$788 - 0.275), $MachinePrecision]}, Block[{t$95$790 = N[(N[(0.8881 + N[(y * 2.64228), $MachinePrecision]), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$791 = (-t$95$790)}, Block[{t$95$792 = N[(3.0055 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$793 = N[(5.975 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$794 = N[Sqrt[N[(N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 7.12751), $MachinePrecision], 2.0], $MachinePrecision] + t$95$176), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$795 = N[(t$95$794 - 0.275), $MachinePrecision]}, Block[{t$95$796 = N[Max[t$95$684, t$95$735], $MachinePrecision]}, Block[{t$95$797 = N[(0.525 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$798 = (-t$95$797)}, Block[{t$95$799 = N[Power[t$95$797, 2.0], $MachinePrecision]}, Block[{t$95$800 = N[Sqrt[N[(N[Power[N[(1.5495 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + t$95$799), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$801 = N[Sqrt[N[(N[Power[N[(N[(4.13393 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision] - N[(y * 2.32288), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + t$95$799), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$802 = N[Sqrt[N[(N[Power[N[(N[(0.11593 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision] - N[(y * 2.32288), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + t$95$799), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$803 = N[Sqrt[N[(t$95$799 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 4.306), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$804 = N[Sqrt[N[(N[Power[N[(6.525 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + t$95$799), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$805 = N[Sqrt[N[(N[Power[N[(0.969501 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + t$95$799), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$806 = N[Max[t$95$503, t$95$600], $MachinePrecision]}, Block[{t$95$807 = N[(3.6 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$808 = N[(t$95$49 - 1.82238), $MachinePrecision]}, Block[{t$95$809 = N[(t$95$511 - N[(y * 2.84553), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$810 = (-N[(1.2445 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$811 = N[(0.737225 + N[(x * 2.27642), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$812 = N[(N[(x * 4.47154), $MachinePrecision] - t$95$520), $MachinePrecision]}, Block[{t$95$813 = N[(4.925 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$814 = N[(N[(x * 8.13008), $MachinePrecision] - 2.751), $MachinePrecision]}, Block[{t$95$815 = N[Sqrt[N[(t$95$615 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 2.221), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$816 = N[(t$95$815 - 0.275), $MachinePrecision]}, Block[{t$95$817 = N[(1.7272 + N[(y * 3.41463), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$818 = N[(0.54 + N[(y * 2.19512), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$819 = N[(1.53565 + N[(y * 2.84553), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$820 = N[(t$95$819 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$821 = (-N[(4.62 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$822 = N[(3.233 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$823 = N[Sqrt[N[(t$95$54 + N[Power[t$95$188, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$824 = (-N[(0.492001 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$825 = N[(3.825 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$826 = N[Power[t$95$825, 2.0], $MachinePrecision]}, Block[{t$95$827 = N[Sqrt[N[(t$95$826 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 3.776), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$828 = N[Sqrt[N[(t$95$826 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 1.468), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$829 = N[(t$95$828 - 0.275), $MachinePrecision]}, Block[{t$95$830 = N[Sqrt[N[(t$95$826 + N[Power[N[(5.437 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$831 = N[Sqrt[N[(t$95$826 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 0.167999), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$832 = N[Sqrt[N[(t$95$826 + N[Power[N[(N[(5.97857 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision] - N[(y * 2.32288), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$833 = N[Sqrt[N[(t$95$826 + N[Power[t$95$293, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$834 = N[Sqrt[N[(t$95$826 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - N[(N[(y * 2.32288), $MachinePrecision] + 5.57243), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$835 = N[Sqrt[N[(t$95$826 + N[Power[N[(N[(2.66557 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision] - N[(y * 2.32288), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$836 = N[Sqrt[N[(t$95$826 + N[Power[N[(3.082 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$837 = N[(t$95$831 - 0.275), $MachinePrecision]}, Block[{t$95$838 = N[Sqrt[N[(t$95$826 + N[Power[N[(0.482 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$839 = N[(t$95$838 - 0.275), $MachinePrecision]}, Block[{t$95$840 = N[Sqrt[N[(t$95$826 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 0.818), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$841 = N[Sqrt[N[(t$95$826 + N[Power[t$95$547, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$842 = N[Sqrt[N[(t$95$826 + t$95$7), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$843 = N[(t$95$842 - 0.275), $MachinePrecision]}, Block[{t$95$844 = N[(2.675 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$845 = (-t$95$844)}, Block[{t$95$846 = N[(1.44223 + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$847 = N[(t$95$846 - N[(y * 1.82927), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$848 = N[(N[(y * 1.82927), $MachinePrecision] - t$95$846), $MachinePrecision]}, Block[{t$95$849 = N[(N[(x * 8.13008), $MachinePrecision] - 5.431), $MachinePrecision]}, Block[{t$95$850 = N[(3.825 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$851 = N[Max[t$95$850, t$95$154], $MachinePrecision]}, Block[{t$95$852 = N[(N[(y * 1.21951), $MachinePrecision] + 1.23609), $MachinePrecision]}, Block[{t$95$853 = N[(1.18065 + N[(y * 2.03252), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$854 = N[(N[(x * 4.47154), $MachinePrecision] - t$95$562), $MachinePrecision]}, Block[{t$95$855 = N[(2.48475 + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$856 = N[(t$95$855 - N[(y * 1.82927), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$857 = N[(N[(y * 1.82927), $MachinePrecision] - t$95$855), $MachinePrecision]}, Block[{t$95$858 = (-t$95$489)}, Block[{t$95$859 = (-N[(3.357 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$860 = N[(N[(1.6416 + N[(y * 2.64228), $MachinePrecision]), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$861 = (-t$95$860)}, Block[{t$95$862 = N[(N[(y * 2.64228), $MachinePrecision] + 3.29243), $MachinePrecision]}, Block[{t$95$863 = N[(N[(x * 4.47154), $MachinePrecision] - t$95$862), $MachinePrecision]}, Block[{t$95$864 = N[(t$95$862 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$865 = N[(1.00286 + N[(x * 11.6144), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$866 = N[(N[(x * 5.42005), $MachinePrecision] - 2.00117), $MachinePrecision]}, Block[{t$95$867 = N[(N[(x * 4.47154), $MachinePrecision] - t$95$819), $MachinePrecision]}, Block[{t$95$868 = N[(N[(x * 1.01626), $MachinePrecision] + 2.92488), $MachinePrecision]}, Block[{t$95$869 = N[(N[(y * 1.82927), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$870 = N[Sqrt[N[(t$95$456 + t$95$108), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$871 = N[(N[(x * 8.13008), $MachinePrecision] - 1.3305), $MachinePrecision]}, Block[{t$95$872 = N[Sqrt[N[(t$95$756 + N[Power[t$95$871, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$873 = N[(N[(y * 2.64228), $MachinePrecision] + 3.1519), $MachinePrecision]}, Block[{t$95$874 = N[(N[(x * 4.47154), $MachinePrecision] - t$95$873), $MachinePrecision]}, Block[{t$95$875 = N[(t$95$873 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$876 = N[Sqrt[N[(t$95$54 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 3.8055), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$877 = N[(0.571825 + N[(y * 1.21951), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$878 = N[(4.55 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$879 = N[(0.525 - N[(y * 0.813008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$880 = N[(5.275 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$881 = (-t$95$880)}, Block[{t$95$882 = N[Max[t$95$666, t$95$825], $MachinePrecision]}, Block[{t$95$883 = N[Sqrt[N[(t$95$826 + N[Power[t$95$129, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$884 = N[(4.7 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$885 = N[(4.925 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$886 = N[Power[t$95$885, 2.0], $MachinePrecision]}, Block[{t$95$887 = N[Sqrt[N[(t$95$886 + N[Power[N[(0.867001 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$888 = N[Sqrt[N[(t$95$886 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 4.2705), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$889 = N[Sqrt[N[(t$95$886 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 4.9205), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$890 = N[Sqrt[N[(t$95$886 + N[Power[N[(1.767 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$891 = N[Sqrt[N[(t$95$886 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 3.6205), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$892 = N[Sqrt[N[(t$95$886 + N[Power[t$95$776, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$893 = N[(t$95$892 - 0.275), $MachinePrecision]}, Block[{t$95$894 = N[Sqrt[N[(t$95$886 + N[Power[t$95$813, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$895 = N[(t$95$894 - 0.275), $MachinePrecision]}, Block[{t$95$896 = N[Sqrt[N[(t$95$886 + N[Power[t$95$139, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$897 = N[Sqrt[N[(t$95$886 + N[Power[t$95$70, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$898 = N[(t$95$897 - 0.275), $MachinePrecision]}, Block[{t$95$899 = (-t$95$825)}, Block[{t$95$900 = N[(6.201 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$901 = N[(0.4625 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$902 = N[Max[t$95$722, t$95$901], $MachinePrecision]}, Block[{t$95$903 = N[(4.6455 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$904 = N[(N[(x * 8.13008), $MachinePrecision] - 5.558), $MachinePrecision]}, Block[{t$95$905 = N[(4.65 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$906 = N[Max[t$95$905, (-t$95$885)], $MachinePrecision]}, Block[{t$95$907 = N[Max[t$95$343, t$95$905], $MachinePrecision]}, Block[{t$95$908 = N[Max[t$95$666, t$95$583], $MachinePrecision]}, Block[{t$95$909 = N[(3.497 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$910 = N[Sqrt[N[(t$95$176 + N[Power[N[(4.995 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$911 = N[(t$95$910 - 0.275), $MachinePrecision]}, Block[{t$95$912 = N[(N[(y * 2.03252), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$913 = N[Max[t$95$343, t$95$885], $MachinePrecision]}, Block[{t$95$914 = N[(N[(N[(x * 2.23577), $MachinePrecision] + 3.865), $MachinePrecision] + N[(y * 4.06504), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$915 = N[Max[t$95$3, N[(5.7 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$916 = N[Power[t$95$596, 2.0], $MachinePrecision]}, Block[{t$95$917 = N[Sqrt[N[(t$95$916 + N[Power[t$95$542, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$918 = N[Sqrt[N[(t$95$916 + N[Power[t$95$322, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$919 = N[(t$95$55 - 0.275), $MachinePrecision]}, Block[{t$95$920 = N[(N[(N[(y * 2.03252), $MachinePrecision] + 2.7575), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$921 = N[(N[(N[(y * 2.03252), $MachinePrecision] + 2.18935), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$922 = N[(0.5025 + N[(y * 2.03252), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$923 = N[(2.662 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$924 = (-t$95$923)}, Block[{t$95$925 = N[Power[N[(N[(y * 8.13008), $MachinePrecision] - 3.6), $MachinePrecision], 2.0], $MachinePrecision]}, Block[{t$95$926 = (-t$95$491)}, Block[{t$95$927 = N[Power[N[(N[(y * 8.13008), $MachinePrecision] - 1.675), $MachinePrecision], 2.0], $MachinePrecision]}, Block[{t$95$928 = N[Sqrt[N[(N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 6.133), $MachinePrecision], 2.0], $MachinePrecision] + t$95$927), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$929 = N[Sqrt[N[(t$95$927 + N[Power[t$95$124, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$930 = N[Sqrt[N[(t$95$927 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 0.224999), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$931 = N[Sqrt[N[(t$95$927 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 2.775), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$932 = N[Sqrt[N[(N[Power[N[(6.375 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + t$95$927), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$933 = N[Sqrt[N[(t$95$741 + t$95$927), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$934 = N[Sqrt[N[(t$95$927 + N[Power[N[(1.9 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$935 = N[Sqrt[N[(t$95$927 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 6.783), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$936 = N[(t$95$935 - 0.275), $MachinePrecision]}, Block[{t$95$937 = (-N[(3.425 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$938 = N[(N[(x * 1.01626), $MachinePrecision] + 1.13813), $MachinePrecision]}, Block[{t$95$939 = N[(N[(y * 8.13008), $MachinePrecision] - 1.3), $MachinePrecision]}, Block[{t$95$940 = N[Max[t$95$939, t$95$379], $MachinePrecision]}, Block[{t$95$941 = N[Max[t$95$939, N[(0.55 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$942 = N[Sqrt[N[(t$95$760 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 6.3705), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$943 = (-t$95$14)}, Block[{t$95$944 = N[(0.592 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$945 = N[Sqrt[N[(t$95$760 + N[Power[t$95$481, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$946 = N[(6.2385 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$947 = N[(7.47551 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$948 = N[(5.5955 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$949 = N[Power[t$95$645, 2.0], $MachinePrecision]}, Block[{t$95$950 = N[Sqrt[N[(t$95$949 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 0.7685), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$951 = N[Sqrt[N[(t$95$949 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 1.0185), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$952 = (-N[(0.267001 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$953 = N[(1.4305 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$954 = N[Sqrt[N[(t$95$826 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 5.156), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$955 = N[(2.7765 - N[(x * 5.42005), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$956 = N[(t$95$15 - N[(y * 1.82927), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$957 = (-N[(2.887 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$958 = N[Max[t$95$381, t$95$16], $MachinePrecision]}, Block[{t$95$959 = N[(t$95$622 - 0.275), $MachinePrecision]}, Block[{t$95$960 = N[(t$95$624 - N[(y * 2.64228), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$961 = N[(1.01 + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$962 = N[Sqrt[N[(t$95$826 + N[Power[t$95$721, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$963 = N[(0.461601 + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$964 = N[(t$95$963 - N[(y * 2.64228), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$965 = N[(N[(y * 2.64228), $MachinePrecision] - t$95$963), $MachinePrecision]}, Block[{t$95$966 = N[(t$95$351 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$967 = N[(3.23375 - N[(y * 5.28455), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$968 = N[(2.5725 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$969 = N[(3.20125 + N[(y * 5.28455), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$970 = (-t$95$969)}, Block[{t$95$971 = (-N[(3.875 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$972 = N[Max[t$95$780, t$95$971], $MachinePrecision]}, Block[{t$95$973 = N[(0.775551 + N[(y * 2.84553), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$974 = N[(N[(x * 4.47154), $MachinePrecision] - t$95$973), $MachinePrecision]}, Block[{t$95$975 = N[(t$95$973 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$976 = N[(2.775 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$977 = N[(N[(x * 11.6144), $MachinePrecision] - 5.05), $MachinePrecision]}, Block[{t$95$978 = N[(t$95$22 - 2.11243), $MachinePrecision]}, Block[{t$95$979 = N[(N[(x + y), $MachinePrecision] * 4.06504), $MachinePrecision]}, Block[{t$95$980 = N[(2.4935 + t$95$979), $MachinePrecision]}, Block[{t$95$981 = N[(0.0709989 + t$95$979), $MachinePrecision]}, Block[{t$95$982 = N[Power[N[(0.635 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]}, Block[{t$95$983 = N[(1.55 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$984 = N[Power[t$95$983, 2.0], $MachinePrecision]}, Block[{t$95$985 = N[Sqrt[N[(t$95$984 + N[Power[N[(2.712 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$986 = N[Sqrt[N[(t$95$984 + N[Power[N[(2.462 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$987 = N[Max[t$95$377, t$95$983], $MachinePrecision]}, Block[{t$95$988 = N[Power[N[(6.025 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]}, Block[{t$95$989 = N[Sqrt[N[(t$95$988 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 4.683), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$990 = N[Sqrt[N[(N[Power[N[(1.842 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + t$95$988), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$991 = N[Sqrt[N[(t$95$988 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 0.00799847), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$992 = N[Sqrt[N[(N[Power[t$95$785, 2.0], $MachinePrecision] + t$95$988), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$993 = N[Sqrt[N[(t$95$988 + N[Power[t$95$660, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$994 = N[Sqrt[N[(t$95$988 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 4.033), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$995 = N[(0.542376 + N[(y * 2.03252), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$996 = N[Power[t$95$337, 2.0], $MachinePrecision]}, Block[{t$95$997 = N[(4.975 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$998 = N[(t$95$49 - 4.12055), $MachinePrecision]}, Block[{t$95$999 = (-N[(0.229501 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$1000 = N[Sqrt[N[(t$95$741 + t$95$176), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$1001 = N[(t$95$1000 - 0.275), $MachinePrecision]}, Block[{t$95$1002 = N[Sqrt[N[(t$95$615 + N[Power[N[(4.325 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, Block[{t$95$1003 = N[(N[(x * 4.47154), $MachinePrecision] - t$95$647), $MachinePrecision]}, Block[{t$95$1004 = (-N[(4.1 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])}, Block[{t$95$1005 = N[(N[(x * 4.47154), $MachinePrecision] - t$95$504), $MachinePrecision]}, Block[{t$95$1006 = N[(N[(x * 8.13008), $MachinePrecision] - 4.051), $MachinePrecision]}, Block[{t$95$1007 = N[(N[(0.5925 + N[(x * 2.23577), $MachinePrecision]), $MachinePrecision] + N[(y * 4.06504), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$1008 = N[(3.3775 + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$1009 = N[(t$95$1008 - N[(y * 2.84553), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$1010 = N[(N[(y * 2.84553), $MachinePrecision] - t$95$1008), $MachinePrecision]}, Block[{t$95$1011 = N[(N[(y * 0.813008), $MachinePrecision] - 0.36), $MachinePrecision]}, Block[{t$95$1012 = N[Max[t$95$379, t$95$722], $MachinePrecision]}, Block[{t$95$1013 = N[(N[(N[(y * 2.03252), $MachinePrecision] + 3.61), $MachinePrecision] + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$1014 = N[(N[(x + y), $MachinePrecision] * 2.23577), $MachinePrecision]}, Block[{t$95$1015 = N[(0.570488 + t$95$1014), $MachinePrecision]}, Block[{t$95$1016 = N[(t$95$1014 + 2.48875), $MachinePrecision]}, Block[{t$95$1017 = N[(0.625 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$1018 = N[(N[(y * 0.813008), $MachinePrecision] - 0.25), $MachinePrecision]}, Block[{t$95$1019 = N[(N[(y * 1.21951), $MachinePrecision] + 1.30319), $MachinePrecision]}, Block[{t$95$1020 = N[(N[(x * 8.13008), $MachinePrecision] - 4.5455), $MachinePrecision]}, Block[{t$95$1021 = N[(0.8325 + N[(y * 2.03252), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$1022 = N[Max[t$95$216, t$95$3], $MachinePrecision]}, N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Max[N[Max[N[Max[N[Max[N[Max[t$95$21, (-t$95$322)], $MachinePrecision], N[(0.175 - t$95$992), $MachinePrecision]], $MachinePrecision], N[(t$95$992 - 0.275), $MachinePrecision]], $MachinePrecision], t$95$325], $MachinePrecision], t$95$503], $MachinePrecision], N[Max[N[Max[N[Max[N[(4.025 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], (-N[(4.125 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$325], $MachinePrecision], t$95$503], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[(4.275 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], (-N[(4.375 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$325], $MachinePrecision], t$95$503], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[(5.5 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision], (-t$95$82)], $MachinePrecision], t$95$179], $MachinePrecision], t$95$274], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[(-N[(5.4 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]), t$95$884], $MachinePrecision], t$95$30], $MachinePrecision], t$95$325], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$884, t$95$30], $MachinePrecision], t$95$335], $MachinePrecision], t$95$503], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[(4.9 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], (-N[(5.0 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$325], $MachinePrecision], t$95$503], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$344, N[(5.7205 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 5.8205), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$905, (-N[(4.75 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$139], $MachinePrecision], t$95$226], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$343, t$95$139], $MachinePrecision], t$95$226], $MachinePrecision], N[(5.1 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$820, N[(N[(x * 4.47154), $MachinePrecision] - t$95$232), $MachinePrecision]], $MachinePrecision], t$95$545], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[(-t$95$58), t$95$194], $MachinePrecision], t$95$414], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$58, t$95$674], $MachinePrecision], t$95$413], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$674, t$95$921], $MachinePrecision], t$95$544], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$194, (-t$95$921)], $MachinePrecision], t$95$545], $MachinePrecision]], $MachinePrecision], N[Max[N[(0.175 - t$95$990), $MachinePrecision], N[(t$95$990 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[(2.475 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], (-N[(2.575 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$82], $MachinePrecision], t$95$503], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$560, (-N[(3.67857 + N[(x * 11.6144), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], N[(0.45 - N[Sqrt[N[(t$95$502 + N[Power[N[(3.91072 + N[(x * 14.518), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(t$95$502 + N[Power[t$95$560, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.55), $MachinePrecision]], $MachinePrecision], t$95$82], $MachinePrecision], t$95$503], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[(-t$95$203), N[(2.675 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$325], $MachinePrecision], t$95$503], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$786, t$95$82], $MachinePrecision], t$95$611], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$786, t$95$335], $MachinePrecision], t$95$503], $MachinePrecision]], $MachinePrecision], N[Max[(-N[Min[N[(N[Sqrt[N[(N[Power[N[(1.33245 - N[(x * 3.61337), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + N[Power[(-N[(4.815 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]), 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.0625), $MachinePrecision], N[Max[N[Max[N[Max[t$95$163, t$95$307], $MachinePrecision], t$95$435], $MachinePrecision], N[(N[(x * 5.42005), $MachinePrecision] - 2.16367), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]), N[(N[Sqrt[N[(N[Power[(-t$95$307), 2.0], $MachinePrecision] + N[Power[t$95$435, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.1625), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[(-N[Min[N[Max[N[Max[N[Max[(-t$95$705), t$95$866], $MachinePrecision], N[(1.83867 - N[(x * 5.42005), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$43], $MachinePrecision], N[(N[Sqrt[N[(N[Power[N[(5.035 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[(N[(x * 3.61337), $MachinePrecision] - 1.33578), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.0625), $MachinePrecision]], $MachinePrecision]), N[(N[Sqrt[N[(N[Power[t$95$705, 2.0], $MachinePrecision] + N[Power[t$95$866, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.1625), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$183, (-t$95$272)], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 1.808), $MachinePrecision]], $MachinePrecision], N[(1.708 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$878, (-t$95$905)], $MachinePrecision], t$95$78], $MachinePrecision], t$95$138], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$343, t$95$272], $MachinePrecision], t$95$78], $MachinePrecision], t$95$138], $MachinePrecision], N[(0.15 - t$95$713), $MachinePrecision]], $MachinePrecision], N[(t$95$713 - 0.25), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$344, N[(4.8205 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 5.5455), $MachinePrecision]], $MachinePrecision], N[(0.175 - t$95$896), $MachinePrecision]], $MachinePrecision], N[(t$95$896 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$343, t$95$43], $MachinePrecision], t$95$278], $MachinePrecision], N[(5.0955 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$907, N[(N[(x * 8.13008), $MachinePrecision] - 4.7455), $MachinePrecision]], $MachinePrecision], t$95$903], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$905, t$95$278], $MachinePrecision], t$95$903], $MachinePrecision], (-t$95$43)], $MachinePrecision], N[(0.175 - t$95$889), $MachinePrecision]], $MachinePrecision], N[(t$95$889 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$907, t$95$1020], $MachinePrecision], N[(4.4455 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$906, N[(N[(x * 8.13008), $MachinePrecision] - 4.0955), $MachinePrecision]], $MachinePrecision], t$95$463], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$913, t$95$1020], $MachinePrecision], t$95$463], $MachinePrecision], N[(0.175 - t$95$888), $MachinePrecision]], $MachinePrecision], N[(t$95$888 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[(0.175 - t$95$891), $MachinePrecision], N[(t$95$891 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$343, N[(0.142001 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(0.242001 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$360], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$343, N[(0.392001 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$824], $MachinePrecision], t$95$62], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$878, t$95$824], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 0.157999), $MachinePrecision]], $MachinePrecision], N[Min[N[Max[N[(0.075 - t$95$734), $MachinePrecision], N[(t$95$734 - 0.175), $MachinePrecision]], $MachinePrecision], N[Max[N[(0.075 - t$95$363), $MachinePrecision], N[(t$95$363 - 0.175), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision], t$95$693], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$907, t$95$944], $MachinePrecision], (-N[(0.692001 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$906, N[(1.042 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$425], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$913, t$95$944], $MachinePrecision], t$95$425], $MachinePrecision], N[(0.175 - t$95$887), $MachinePrecision]], $MachinePrecision], N[(t$95$887 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$344, N[(1.267 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(1.367 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$905, (-N[(5.575 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], N[(1.942 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(2.042 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[Max[t$95$893, N[Min[N[Max[N[Max[t$95$164, N[(N[(x * 8.13008), $MachinePrecision] - 1.458), $MachinePrecision]], $MachinePrecision], N[(0.958001 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$893, (-N[Min[N[Max[N[Max[t$95$969, N[(N[(x * 2.23577), $MachinePrecision] - t$95$316), $MachinePrecision]], $MachinePrecision], (-t$95$643)], $MachinePrecision], N[Max[N[Max[t$95$643, N[(t$95$316 - N[(x * 2.23577), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$970], $MachinePrecision]], $MachinePrecision])], $MachinePrecision], N[(0.175 - t$95$892), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$389, N[(N[(x * 8.13008), $MachinePrecision] - 0.808001), $MachinePrecision]], $MachinePrecision], N[(0.708 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$389, N[(N[(x * 8.13008), $MachinePrecision] - 0.558001), $MachinePrecision]], $MachinePrecision], N[(0.458 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$343, t$95$62], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 0.308001), $MachinePrecision]], $MachinePrecision], t$95$397], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$878, t$95$397], $MachinePrecision], t$95$693], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 0.858), $MachinePrecision]], $MachinePrecision], N[Min[N[Max[N[(0.075 - t$95$362), $MachinePrecision], N[(t$95$362 - 0.175), $MachinePrecision]], $MachinePrecision], N[Max[N[(0.075 - t$95$576), $MachinePrecision], N[(t$95$576 - 0.175), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$389, N[(N[(x * 8.13008), $MachinePrecision] - 0.108), $MachinePrecision]], $MachinePrecision], N[(0.00799942 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[(0.175 - t$95$890), $MachinePrecision], N[(t$95$890 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$37, t$95$220], $MachinePrecision], (-t$95$405)], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$725, t$95$219], $MachinePrecision], t$95$405], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$725, t$95$1013], $MachinePrecision], t$95$135], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$37, (-t$95$1013)], $MachinePrecision], t$95$408], $MachinePrecision]], $MachinePrecision], N[Max[t$95$895, N[Min[N[Max[N[Max[t$95$164, N[(4.65 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-t$95$143)], $MachinePrecision], N[Max[N[Max[t$95$895, (-N[Min[N[Max[N[Max[t$95$969, N[(t$95$659 - N[(y * 1.21951), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-t$95$914)], $MachinePrecision], N[Max[N[Max[t$95$970, t$95$914], $MachinePrecision], N[(N[(y * 1.21951), $MachinePrecision] - t$95$659), $MachinePrecision]], $MachinePrecision]], $MachinePrecision])], $MachinePrecision], N[(0.175 - t$95$894), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$669, N[(7.531 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 7.631), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$237, t$95$547], $MachinePrecision], t$95$675], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$666, t$95$547], $MachinePrecision], t$95$675], $MachinePrecision], t$95$9], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$669, N[(6.631 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 7.356), $MachinePrecision]], $MachinePrecision], N[(0.175 - t$95$841), $MachinePrecision]], $MachinePrecision], N[(t$95$841 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$907, N[(3.1 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(3.2 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$907, t$95$690], $MachinePrecision], (-N[(4.57143 + N[(x * 11.6144), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], N[(0.45 - N[Sqrt[N[(t$95$342 + N[Power[N[(5.02679 + N[(x * 14.518), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(t$95$342 + N[Power[t$95$690, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.55), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[t$95$898, N[Min[N[Max[N[Max[t$95$164, t$95$303], $MachinePrecision], (-t$95$481)], $MachinePrecision], N[Max[N[Max[t$95$898, (-N[Min[N[Max[N[Max[t$95$969, N[(t$95$110 - N[(y * 1.21951), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-t$95$249)], $MachinePrecision], N[Max[N[Max[t$95$970, t$95$249], $MachinePrecision], N[(N[(y * 1.21951), $MachinePrecision] - t$95$110), $MachinePrecision]], $MachinePrecision]], $MachinePrecision])], $MachinePrecision], N[(0.175 - t$95$897), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$220, N[(t$95$961 - N[(y * 2.03252), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$114], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$219, t$95$308], $MachinePrecision], N[(N[(y * 2.03252), $MachinePrecision] - t$95$961), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$308, t$95$135], $MachinePrecision], N[(N[(y * 2.03252), $MachinePrecision] - t$95$630), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$114, N[(t$95$630 - N[(y * 2.03252), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$408], $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(N[Power[N[(6.225 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + N[Power[t$95$388, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.075), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[(-N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Max[N[Max[t$95$390, N[(N[(x * 4.06504), $MachinePrecision] - 2.829), $MachinePrecision]], $MachinePrecision], (-t$95$981)], $MachinePrecision], N[Max[N[Max[t$95$981, N[(2.829 - N[(x * 4.06504), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-t$95$390)], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[(N[(x * 8.13008), $MachinePrecision] - t$95$439), $MachinePrecision], (-N[(N[(0.0706995 + N[(y * 2.60163), $MachinePrecision]), $MachinePrecision] + N[(x * 2.84553), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], N[(t$95$125 - N[(x * 5.28455), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[(N[(x * 5.28455), $MachinePrecision] - t$95$125), $MachinePrecision], N[(N[(0.0706992 + N[(y * 2.60163), $MachinePrecision]), $MachinePrecision] + N[(x * 2.84553), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(t$95$439 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[(-t$95$85), N[(1.8053 - N[(x * 2.84553), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(t$95$444 - 0.171801), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$85, N[(0.171801 - t$95$444), $MachinePrecision]], $MachinePrecision], N[(N[(x * 2.84553), $MachinePrecision] - 1.8053), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$31, N[(N[(x * 4.47154), $MachinePrecision] - t$95$279), $MachinePrecision]], $MachinePrecision], N[(2.8369 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[(N[(x * 4.47154), $MachinePrecision] - 2.8369), $MachinePrecision], N[(t$95$279 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-t$95$31)], $MachinePrecision]], $MachinePrecision]), t$95$325], $MachinePrecision], t$95$503], $MachinePrecision], t$95$904], $MachinePrecision], N[(5.058 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[(0.175 - t$95$989), $MachinePrecision], N[(t$95$989 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[(0.175 - t$95$994), $MachinePrecision], N[(t$95$994 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[(N[(x * 8.13008), $MachinePrecision] - 3.233), $MachinePrecision], N[(3.133 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$325], $MachinePrecision], t$95$503], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$82, t$95$611], $MachinePrecision], t$95$660], $MachinePrecision], t$95$822], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$660, t$95$822], $MachinePrecision], t$95$335], $MachinePrecision], t$95$503], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[N[(N[(x * 8.13008), $MachinePrecision] - 4.133), $MachinePrecision], N[(3.408 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(0.175 - t$95$993), $MachinePrecision]], $MachinePrecision], N[(t$95$993 - 0.275), $MachinePrecision]], $MachinePrecision], t$95$325], $MachinePrecision], t$95$503], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[(-t$95$99), t$95$240], $MachinePrecision], t$95$553], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$99, t$95$552], $MachinePrecision], t$95$239], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$291, N[(5.65 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-t$95$600)], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 1.733), $MachinePrecision]], $MachinePrecision], N[Min[N[Max[N[(0.075 - t$95$602), $MachinePrecision], N[(t$95$602 - 0.175), $MachinePrecision]], $MachinePrecision], N[Max[N[(0.075 - t$95$604), $MachinePrecision], N[(t$95$604 - 0.175), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$503, t$95$198], $MachinePrecision], t$95$297], $MachinePrecision], N[(0.182999 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$82, t$95$503], $MachinePrecision], N[(0.167001 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$952], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$82, t$95$297], $MachinePrecision], t$95$952], $MachinePrecision], (-t$95$198)], $MachinePrecision], N[(0.175 - t$95$991), $MachinePrecision]], $MachinePrecision], N[(t$95$991 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[(N[(x * 4.47154), $MachinePrecision] - t$95$111), $MachinePrecision], t$95$251], $MachinePrecision], t$95$414], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$485, N[(t$95$111 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$413], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$485, N[(t$95$853 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$544], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$251, N[(N[(x * 4.47154), $MachinePrecision] - t$95$853), $MachinePrecision]], $MachinePrecision], t$95$545], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[(-t$95$309), t$95$489], $MachinePrecision], t$95$414], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$309, t$95$858], $MachinePrecision], t$95$413], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$858, t$95$75], $MachinePrecision], t$95$544], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$489, (-t$95$75)], $MachinePrecision], t$95$545], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[(N[(x * 4.47154), $MachinePrecision] - t$95$569), $MachinePrecision], t$95$820], $MachinePrecision], t$95$414], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$867, N[(t$95$569 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$413], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$867, N[(t$95$232 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$544], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$552, t$95$413], $MachinePrecision], t$95$320], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$553, t$95$572], $MachinePrecision], t$95$414], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$240, t$95$414], $MachinePrecision], t$95$875], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$239, t$95$413], $MachinePrecision], t$95$874], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$320, t$95$874], $MachinePrecision], t$95$544], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$572, t$95$875], $MachinePrecision], t$95$545], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$414, (-t$95$574)], $MachinePrecision], t$95$790], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$413, t$95$574], $MachinePrecision], t$95$791], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$544, t$95$791], $MachinePrecision], t$95$273], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$545, t$95$790], $MachinePrecision], (-t$95$273)], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$806, N[(N[(x * 8.13008), $MachinePrecision] - 1.683), $MachinePrecision]], $MachinePrecision], N[(1.583 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$806, N[(N[(x * 8.13008), $MachinePrecision] - 1.433), $MachinePrecision]], $MachinePrecision], N[(1.333 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$503, N[(5.775 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$776], $MachinePrecision], t$95$291], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$32, N[(N[(x * 8.13008), $MachinePrecision] - 1.498), $MachinePrecision]], $MachinePrecision], N[(1.398 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$338], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$32, N[(N[(x * 8.13008), $MachinePrecision] - 1.248), $MachinePrecision]], $MachinePrecision], N[(1.148 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$338], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[(2.475 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 0.998001), $MachinePrecision]], $MachinePrecision], t$95$282], $MachinePrecision], t$95$338], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$282, (-t$95$32)], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 1.548), $MachinePrecision]], $MachinePrecision], N[Min[N[Max[N[(0.075 - t$95$141), $MachinePrecision], N[(t$95$141 - 0.175), $MachinePrecision]], $MachinePrecision], N[Max[N[(0.075 - t$95$527), $MachinePrecision], N[(t$95$527 - 0.175), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision], t$95$5], $MachinePrecision]], $MachinePrecision], N[Max[N[(0.175 - t$95$537), $MachinePrecision], N[(t$95$537 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$0, (-N[(0.00200015 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$338], $MachinePrecision], t$95$528], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[(0.352 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], t$95$555], $MachinePrecision], t$95$338], $MachinePrecision], t$95$730], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$0, t$95$555], $MachinePrecision], N[(0.175 - t$95$536), $MachinePrecision]], $MachinePrecision], N[(t$95$536 - 0.275), $MachinePrecision]], $MachinePrecision], t$95$557], $MachinePrecision], t$95$683], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[N[(0.175 - t$95$535), $MachinePrecision], N[(t$95$535 - 0.275), $MachinePrecision]], $MachinePrecision], t$95$557], $MachinePrecision], t$95$476], $MachinePrecision], t$95$605], $MachinePrecision], t$95$845], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[(N[(x * 8.13008), $MachinePrecision] - 3.0105), $MachinePrecision], N[(2.9105 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$338], $MachinePrecision], t$95$557], $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(t$95$477 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 2.9605), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.075), $MachinePrecision]], $MachinePrecision], N[Max[(-N[Min[N[Max[N[Max[N[Max[t$95$246, t$95$385], $MachinePrecision], t$95$482], $MachinePrecision], N[(N[(x * 5.42005), $MachinePrecision] - 1.39033), $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(N[Power[(-N[(2.615 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]), 2.0], $MachinePrecision] + N[Power[N[(0.81689 - N[(x * 3.61337), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.0625), $MachinePrecision]], $MachinePrecision]), N[(N[Sqrt[N[(N[Power[(-t$95$385), 2.0], $MachinePrecision] + N[Power[t$95$482, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.1625), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[(-N[Min[N[Max[N[Max[N[Max[(-t$95$211), t$95$310], $MachinePrecision], N[(1.06533 - N[(x * 5.42005), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$844], $MachinePrecision], N[(N[Sqrt[N[(N[Power[N[(2.835 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[(N[(x * 3.61337), $MachinePrecision] - 0.820223), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.0625), $MachinePrecision]], $MachinePrecision]), N[(N[Sqrt[N[(N[Power[t$95$211, 2.0], $MachinePrecision] + N[Power[t$95$310, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.1625), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[N[(0.175 - t$95$781), $MachinePrecision], N[(t$95$781 - 0.275), $MachinePrecision]], $MachinePrecision], t$95$171], $MachinePrecision], t$95$270], $MachinePrecision], t$95$557], $MachinePrecision], t$95$845], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[(3.607 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], (-N[(3.707 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$338], $MachinePrecision], t$95$557], $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(t$95$477 + N[Power[N[(3.657 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.075), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$32, N[(3.852 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(3.952 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$338], $MachinePrecision]], $MachinePrecision], N[Max[N[(0.175 - t$95$530), $MachinePrecision], N[(t$95$530 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[(4.662 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], (-N[(4.762 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$730], $MachinePrecision], t$95$131], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$580, t$95$5], $MachinePrecision], t$95$719], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$580, N[(0.15 - t$95$403), $MachinePrecision]], $MachinePrecision], N[(t$95$403 - 0.25), $MachinePrecision]], $MachinePrecision], t$95$338], $MachinePrecision], t$95$130], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[(5.27 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], (-N[(5.37 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$338], $MachinePrecision], t$95$557], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[(0.702 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], (-N[(0.802 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$730], $MachinePrecision], t$95$131], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$591, t$95$5], $MachinePrecision], t$95$719], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$591, N[(0.15 - t$95$590), $MachinePrecision]], $MachinePrecision], N[(t$95$590 - 0.25), $MachinePrecision]], $MachinePrecision], t$95$338], $MachinePrecision], t$95$130], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$32, N[(1.072 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(1.172 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$338], $MachinePrecision]], $MachinePrecision], N[Max[N[(0.175 - t$95$532), $MachinePrecision], N[(t$95$532 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$671, N[(1.882 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(1.982 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$338], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[(-N[(2.55 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]), t$95$471], $MachinePrecision], t$95$598], $MachinePrecision], t$95$557], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$471, t$95$598], $MachinePrecision], (-t$95$671)], $MachinePrecision], N[(0.15 - t$95$672), $MachinePrecision]], $MachinePrecision], N[(t$95$672 - 0.25), $MachinePrecision]], $MachinePrecision], t$95$730], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$171, (-N[(3.032 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$338], $MachinePrecision], t$95$844], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[(3.382 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], t$95$270], $MachinePrecision], t$95$338], $MachinePrecision], t$95$557], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$608, t$95$736], $MachinePrecision], t$95$946], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$736, t$95$946], $MachinePrecision], t$95$377], $MachinePrecision], N[(0.15 - t$95$751), $MachinePrecision]], $MachinePrecision], N[(t$95$751 - 0.25), $MachinePrecision]], $MachinePrecision], t$95$747], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$607, N[(N[(x * 8.13008), $MachinePrecision] - 6.1135), $MachinePrecision]], $MachinePrecision], N[(6.0135 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(N[Power[N[(1.2 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 6.0635), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.075), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$208, t$95$352], $MachinePrecision], t$95$563], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$207, t$95$854], $MachinePrecision], t$95$966], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$854, t$95$115], $MachinePrecision], t$95$261], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$563, t$95$490], $MachinePrecision], t$95$567], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$352, t$95$567], $MachinePrecision], t$95$864], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$966, t$95$115], $MachinePrecision], t$95$863], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$261, t$95$863], $MachinePrecision], t$95$264], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$490, t$95$864], $MachinePrecision], t$95$498], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$567, N[(2.24743 - t$95$869), $MachinePrecision]], $MachinePrecision], t$95$978], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$391, (-N[(7.67143 + N[(x * 11.6144), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], N[(0.45 - N[Sqrt[N[(t$95$996 + N[Power[N[(8.90179 + N[(x * 14.518), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(t$95$996 + N[Power[t$95$391, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.55), $MachinePrecision]], $MachinePrecision], t$95$338], $MachinePrecision], t$95$557], $MachinePrecision]], $MachinePrecision], N[Max[t$95$539, N[Min[N[Max[N[Max[N[Max[N[(5.47 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], (-N[(5.97 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$399], $MachinePrecision], t$95$246], $MachinePrecision], N[Max[N[Max[t$95$539, (-N[Min[N[Max[N[Max[N[(t$95$26 - N[(y * 1.21951), $MachinePrecision]), $MachinePrecision], (-t$95$180)], $MachinePrecision], t$95$333], $MachinePrecision], N[Max[N[Max[t$95$180, N[(N[(y * 1.21951), $MachinePrecision] - t$95$26), $MachinePrecision]], $MachinePrecision], t$95$650], $MachinePrecision]], $MachinePrecision])], $MachinePrecision], N[(0.175 - t$95$538), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[(-N[Min[N[Max[N[Max[N[(N[(y * 2.23577), $MachinePrecision] - N[(1.02163 + N[(x * 2.27642), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], t$95$517], $MachinePrecision], (-t$95$1016)], $MachinePrecision], N[Max[N[Max[t$95$1016, (-t$95$517)], $MachinePrecision], N[(N[(1.02162 + N[(x * 2.27642), $MachinePrecision]), $MachinePrecision] - N[(y * 2.23577), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]), N[(0.175 - t$95$657), $MachinePrecision]], $MachinePrecision], N[(t$95$657 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$748, N[(N[(x * 8.13008), $MachinePrecision] - 6.4885), $MachinePrecision]], $MachinePrecision], N[(6.3885 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$662, N[(0.175 - t$95$823), $MachinePrecision]], $MachinePrecision], N[(t$95$823 - 0.275), $MachinePrecision]], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 3.9055), $MachinePrecision]], $MachinePrecision], N[(3.1805 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[(-N[Min[N[Max[N[Max[N[(N[(x * 2.84553), $MachinePrecision] - t$95$195), $MachinePrecision], (-t$95$368)], $MachinePrecision], N[(t$95$681 - N[(x * 1.01626), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$368, N[(N[(x * 1.01626), $MachinePrecision] - t$95$681), $MachinePrecision]], $MachinePrecision], N[(t$95$195 - N[(x * 2.84553), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]), t$95$292], $MachinePrecision], (-N[(2.05 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 2.0805), $MachinePrecision]], $MachinePrecision], N[(1.9305 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(N[Power[N[(0.608333 + N[(y * 2.71003), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 2.0055), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.075), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(N[Power[t$95$292, 2.0], $MachinePrecision] + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 2.0305), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.075), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$378, N[(N[(x * 8.13008), $MachinePrecision] - 1.6805), $MachinePrecision]], $MachinePrecision], N[(1.5805 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$606, t$95$742], $MachinePrecision], t$95$953], $MachinePrecision], t$95$71], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$47, t$95$742], $MachinePrecision], t$95$953], $MachinePrecision], t$95$483], $MachinePrecision], N[(0.15 - t$95$757), $MachinePrecision]], $MachinePrecision], N[(t$95$757 - 0.25), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$378, N[(N[(x * 8.13008), $MachinePrecision] - 1.1805), $MachinePrecision]], $MachinePrecision], N[(1.0805 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$115, t$95$432], $MachinePrecision], N[(t$95$869 - 2.24743), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$264, t$95$432], $MachinePrecision], N[(t$95$869 - 2.30243), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$498, t$95$978], $MachinePrecision], N[(2.30243 - t$95$869), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$607, N[(N[(x * 8.13008), $MachinePrecision] - 4.2805), $MachinePrecision]], $MachinePrecision], N[(4.1805 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$607, t$95$631], $MachinePrecision], N[(5.97215 - N[(x * 11.6144), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(0.45 - N[Sqrt[N[(t$95$376 + N[Power[N[(N[(x * 14.518), $MachinePrecision] - 8.15268), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(t$95$376 + N[Power[t$95$631, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.55), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$607, t$95$706], $MachinePrecision], N[(3.9805 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$606, (-t$95$53)], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 3.6305), $MachinePrecision]], $MachinePrecision], t$95$321], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$377, t$95$706], $MachinePrecision], t$95$321], $MachinePrecision], t$95$53], $MachinePrecision], N[(0.175 - t$95$876), $MachinePrecision]], $MachinePrecision], N[(t$95$876 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$662, N[(N[(x * 8.13008), $MachinePrecision] - 3.0055), $MachinePrecision]], $MachinePrecision], N[(2.9055 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$711, t$95$188], $MachinePrecision], t$95$792], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$377, t$95$188], $MachinePrecision], t$95$792], $MachinePrecision], t$95$80], $MachinePrecision]], $MachinePrecision], N[Max[N[(0.175 - t$95$834), $MachinePrecision], N[(t$95$834 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$882, t$95$1006], $MachinePrecision], N[(3.951 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$669, N[(N[(x * 8.13008), $MachinePrecision] - 3.601), $MachinePrecision]], $MachinePrecision], t$95$401], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$235, t$95$1006], $MachinePrecision], t$95$401], $MachinePrecision], t$95$899], $MachinePrecision], N[(0.175 - t$95$827), $MachinePrecision]], $MachinePrecision], N[(t$95$827 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$586, N[(N[(x * 8.13008), $MachinePrecision] - 3.251), $MachinePrecision]], $MachinePrecision], N[(3.151 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$236, t$95$346], $MachinePrecision], t$95$450], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$908, t$95$346], $MachinePrecision], t$95$450], $MachinePrecision], N[(0.15 - t$95$585), $MachinePrecision]], $MachinePrecision], N[(t$95$585 - 0.25), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$667, N[(N[(x * 8.13008), $MachinePrecision] - 1.943), $MachinePrecision]], $MachinePrecision], N[(1.843 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$667, t$95$4], $MachinePrecision], N[(2.63286 - N[(x * 11.6144), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(0.45 - N[Sqrt[N[(t$95$665 + N[Power[N[(N[(x * 14.518), $MachinePrecision] - 3.97857), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(t$95$665 + N[Power[t$95$4, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.55), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$667, N[(N[(x * 8.13008), $MachinePrecision] - 6.981), $MachinePrecision]], $MachinePrecision], N[(6.881 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(N[Power[N[(3.4 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 6.931), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.075), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$669, N[(6.656 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 6.756), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$237, t$95$293], $MachinePrecision], t$95$421], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$670, t$95$293], $MachinePrecision], t$95$421], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$669, N[(5.756 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 6.481), $MachinePrecision]], $MachinePrecision], N[(0.175 - t$95$833), $MachinePrecision]], $MachinePrecision], N[(t$95$833 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$692, t$95$849], $MachinePrecision], N[(5.331 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$667, N[(N[(x * 8.13008), $MachinePrecision] - 4.981), $MachinePrecision]], $MachinePrecision], t$95$298], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$235, t$95$849], $MachinePrecision], t$95$298], $MachinePrecision], t$95$743], $MachinePrecision], N[(0.175 - t$95$954), $MachinePrecision]], $MachinePrecision], N[(t$95$954 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$668, N[(N[(x * 8.13008), $MachinePrecision] - 4.761), $MachinePrecision]], $MachinePrecision], N[(4.661 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Min[N[Max[N[Max[N[(0.175 - t$95$831), $MachinePrecision], t$95$837], $MachinePrecision], (-N[Min[N[Max[N[Max[t$95$777, N[(N[(x * 2.23577), $MachinePrecision] - t$95$20), $MachinePrecision]], $MachinePrecision], (-t$95$165)], $MachinePrecision], N[Max[N[Max[t$95$778, t$95$165], $MachinePrecision], N[(t$95$20 - N[(x * 2.23577), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision])], $MachinePrecision], N[Max[N[Max[t$95$972, N[(N[(x * 8.13008), $MachinePrecision] - 0.443), $MachinePrecision]], $MachinePrecision], (-N[(0.0570004 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], t$95$837], $MachinePrecision]], $MachinePrecision], N[Max[t$95$839, N[Min[N[Max[N[Max[N[Max[N[(0.207 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], (-N[(0.707 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$780], $MachinePrecision], t$95$971], $MachinePrecision], N[Max[N[Max[t$95$839, (-N[Min[N[Max[N[Max[N[(N[(x * 2.23577), $MachinePrecision] - t$95$877), $MachinePrecision], (-t$95$77)], $MachinePrecision], t$95$777], $MachinePrecision], N[Max[N[Max[t$95$77, N[(t$95$877 - N[(x * 2.23577), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$778], $MachinePrecision]], $MachinePrecision])], $MachinePrecision], N[(0.175 - t$95$838), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$669, (-t$95$644)], $MachinePrecision], N[(0.857 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$237, t$95$129], $MachinePrecision], t$95$644], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$670, t$95$129], $MachinePrecision], t$95$644], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$669, (-N[(1.857 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$128], $MachinePrecision], N[(0.175 - t$95$883), $MachinePrecision]], $MachinePrecision], N[(t$95$883 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$669, (-t$95$275)], $MachinePrecision], N[(2.182 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$237, t$95$275], $MachinePrecision], t$95$721], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$670, t$95$275], $MachinePrecision], t$95$721], $MachinePrecision]], $MachinePrecision], N[Max[t$95$829, N[Min[N[Max[N[Max[t$95$972, N[(N[(x * 8.13008), $MachinePrecision] - 1.743), $MachinePrecision]], $MachinePrecision], N[(1.243 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$829, (-N[Min[N[Max[N[Max[t$95$777, N[(N[(x * 2.23577), $MachinePrecision] - t$95$284), $MachinePrecision]], $MachinePrecision], (-t$95$451)], $MachinePrecision], N[Max[N[Max[t$95$451, N[(t$95$284 - N[(x * 2.23577), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$778], $MachinePrecision]], $MachinePrecision])], $MachinePrecision], N[(0.175 - t$95$828), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$235, (-N[(4.475 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 0.643001), $MachinePrecision]], $MachinePrecision], N[(0.543 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[(0.175 - t$95$840), $MachinePrecision], N[(t$95$840 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[N[(N[Sqrt[N[(N[Power[N[(4.937 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[(1.34167 + N[(y * 2.71003), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.075), $MachinePrecision], (-N[Min[N[Max[N[Max[N[(t$95$196 - N[(y * 0.813008), $MachinePrecision]), $MachinePrecision], (-t$95$365)], $MachinePrecision], N[(t$95$599 - N[(x * 1.01626), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[(N[(x * 1.01626), $MachinePrecision] - t$95$599), $MachinePrecision], t$95$365], $MachinePrecision], N[(N[(y * 0.813008), $MachinePrecision] - t$95$196), $MachinePrecision]], $MachinePrecision]], $MachinePrecision])], $MachinePrecision], t$95$63], $MachinePrecision], (-N[(4.25 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], N[(4.862 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(5.012 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(N[Power[t$95$63, 2.0], $MachinePrecision] + N[Power[t$95$579, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.075), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$882, t$95$42], $MachinePrecision], (-N[(5.262 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$669, N[(5.612 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$561], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$235, t$95$899], $MachinePrecision], t$95$42], $MachinePrecision], t$95$561], $MachinePrecision], N[(0.175 - t$95$830), $MachinePrecision]], $MachinePrecision], N[(t$95$830 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$586, N[(5.962 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(6.062 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$236, t$95$109], $MachinePrecision], t$95$204], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$908, t$95$109], $MachinePrecision], t$95$204], $MachinePrecision], N[(0.15 - t$95$698), $MachinePrecision]], $MachinePrecision], N[(t$95$698 - 0.25), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$667, N[(6.57 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(6.67 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$669, t$95$720], $MachinePrecision], (-N[(3.182 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], N[(0.175 - t$95$962), $MachinePrecision]], $MachinePrecision], N[(t$95$962 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$692, t$95$262], $MachinePrecision], (-N[(2.907 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$667, N[(3.257 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$859], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$235, t$95$743], $MachinePrecision], t$95$262], $MachinePrecision], t$95$859], $MachinePrecision], N[(0.175 - t$95$836), $MachinePrecision]], $MachinePrecision], N[(t$95$836 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$668, N[(3.477 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(3.577 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[Max[N[(0.175 - t$95$835), $MachinePrecision], N[(t$95$835 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Min[N[Max[N[Max[t$95$534, (-N[Min[N[Max[N[Max[t$95$333, N[(N[(x * 2.23577), $MachinePrecision] - t$95$712), $MachinePrecision]], $MachinePrecision], N[(0.228514 - t$95$25), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[(t$95$25 - 0.228514), $MachinePrecision], N[(t$95$712 - N[(x * 2.23577), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$650], $MachinePrecision]], $MachinePrecision])], $MachinePrecision], N[(0.175 - t$95$533), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$399, t$95$246], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 6.23551), $MachinePrecision]], $MachinePrecision], N[(5.73551 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], t$95$534], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$338, t$95$27], $MachinePrecision], N[(5.4355 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$528], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$338, t$95$730], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 5.0855), $MachinePrecision]], $MachinePrecision], t$95$510], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$27, t$95$510], $MachinePrecision], t$95$557], $MachinePrecision], t$95$683], $MachinePrecision], N[(0.175 - t$95$531), $MachinePrecision]], $MachinePrecision], N[(t$95$531 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$730, t$95$131], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 4.7355), $MachinePrecision]], $MachinePrecision], N[(4.6355 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$5, t$95$719], $MachinePrecision], t$95$91], $MachinePrecision], t$95$185], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$338, t$95$130], $MachinePrecision], t$95$91], $MachinePrecision], t$95$185], $MachinePrecision], N[(0.15 - t$95$658), $MachinePrecision]], $MachinePrecision], N[(t$95$658 - 0.25), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$338, t$95$844], $MachinePrecision], t$95$476], $MachinePrecision], N[(3.5855 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$338, t$95$557], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 3.2355), $MachinePrecision]], $MachinePrecision], t$95$605], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$667, t$95$728], $MachinePrecision], (-N[(9.52857 + N[(x * 11.6144), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], N[(0.45 - N[Sqrt[N[(t$95$665 + N[Power[N[(11.2232 + N[(x * 14.518), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(t$95$665 + N[Power[t$95$728, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.55), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$668, N[(6.79 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(6.89 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[Max[N[(0.175 - t$95$832), $MachinePrecision], N[(t$95$832 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[t$95$843, N[Min[N[Max[N[Max[t$95$972, t$95$294], $MachinePrecision], t$95$419], $MachinePrecision], N[Max[N[Max[t$95$843, (-N[Min[N[Max[N[Max[t$95$777, N[(t$95$106 - N[(y * 1.21951), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-t$95$243)], $MachinePrecision], N[Max[N[Max[t$95$778, t$95$243], $MachinePrecision], N[(N[(y * 1.21951), $MachinePrecision] - t$95$106), $MachinePrecision]], $MachinePrecision]], $MachinePrecision])], $MachinePrecision], N[(0.175 - t$95$842), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$848, t$95$66], $MachinePrecision], t$95$155], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$847, t$95$427], $MachinePrecision], t$95$478], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$427, t$95$746], $MachinePrecision], t$95$956], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$155, t$95$745], $MachinePrecision], t$95$247], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$848, t$95$745], $MachinePrecision], t$95$429], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$847, t$95$746], $MachinePrecision], t$95$699], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$427, (-t$95$17)], $MachinePrecision], t$95$160], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$155, t$95$17], $MachinePrecision], t$95$433], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$429, t$95$433], $MachinePrecision], t$95$628], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$699, t$95$160], $MachinePrecision], (-t$95$628)], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[(3.5325 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], (-N[(3.6325 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$491], $MachinePrecision], t$95$633], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$119, (-N[(5.18929 + N[(x * 11.6144), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], N[(0.45 - N[Sqrt[N[(N[Power[N[(5.79911 + N[(x * 14.518), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + t$95$784), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(N[Power[t$95$119, 2.0], $MachinePrecision] + t$95$784), $MachinePrecision]], $MachinePrecision] - 0.55), $MachinePrecision]], $MachinePrecision], t$95$491], $MachinePrecision], t$95$633], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[(3.7575 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], (-N[(3.8575 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$491], $MachinePrecision], t$95$633], $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(N[Power[N[(3.8075 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + t$95$2), $MachinePrecision]], $MachinePrecision] - 0.075), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[(4.0025 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], (-N[(4.1025 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$633], $MachinePrecision], t$95$645], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[(N[(x * 8.13008), $MachinePrecision] - 0.0154991), $MachinePrecision], (-N[(0.084501 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$633], $MachinePrecision], t$95$645], $MachinePrecision]], $MachinePrecision], N[Max[N[(0.175 - t$95$802), $MachinePrecision], N[(t$95$802 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$181, (-N[(0.794501 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$797], $MachinePrecision], t$95$633], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[(1.1445 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], t$95$810], $MachinePrecision], t$95$34], $MachinePrecision], t$95$633], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$181, t$95$810], $MachinePrecision], t$95$798], $MachinePrecision], N[(0.175 - t$95$805), $MachinePrecision]], $MachinePrecision], N[(t$95$805 - 0.275), $MachinePrecision]], $MachinePrecision], t$95$491], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[(-N[Min[N[Max[N[Max[N[(N[(y * 2.23577), $MachinePrecision] - t$95$345), $MachinePrecision], t$95$453], $MachinePrecision], (-t$95$1015)], $MachinePrecision], N[Max[N[Max[t$95$1015, (-t$95$453)], $MachinePrecision], N[(t$95$345 - N[(y * 2.23577), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]), N[(0.175 - t$95$800), $MachinePrecision]], $MachinePrecision], N[(t$95$800 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$498, t$95$956], $MachinePrecision], t$95$478], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$264, t$95$66], $MachinePrecision], t$95$247], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$798, t$95$52], $MachinePrecision], t$95$191], $MachinePrecision], N[(0.175 - t$95$804), $MachinePrecision]], $MachinePrecision], N[(t$95$804 - 0.275), $MachinePrecision]], $MachinePrecision], t$95$491], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[(-t$95$60), N[(7.05 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(7.15 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$34], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$549, t$95$679], $MachinePrecision], t$95$926], $MachinePrecision], t$95$10], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$60, t$95$549], $MachinePrecision], t$95$679], $MachinePrecision], N[(0.15 - t$95$550), $MachinePrecision]], $MachinePrecision], N[(t$95$550 - 0.25), $MachinePrecision]], $MachinePrecision], t$95$633], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$941, N[(N[(x * 8.13008), $MachinePrecision] - 7.72551), $MachinePrecision]], $MachinePrecision], N[(7.62551 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$424, t$95$737], $MachinePrecision], t$95$947], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$737, t$95$947], $MachinePrecision], t$95$299], $MachinePrecision], t$95$379], $MachinePrecision], N[(0.15 - t$95$738), $MachinePrecision]], $MachinePrecision], N[(t$95$738 - 0.25), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$379, N[(N[(y * 8.13008), $MachinePrecision] - 0.65), $MachinePrecision]], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 7.35551), $MachinePrecision]], $MachinePrecision], N[(7.25551 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[(0.175 - t$95$771), $MachinePrecision], N[(t$95$771 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[(0.175 - t$95$801), $MachinePrecision], N[(t$95$801 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[(-N[Min[N[Max[N[Max[N[Max[t$95$168, N[(3.575 + N[(x * 5.42005), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$313], $MachinePrecision], t$95$437], $MachinePrecision], N[(N[Sqrt[N[(N[Power[(-N[(2.49333 + N[(x * 3.61337), $MachinePrecision]), $MachinePrecision]), 2.0], $MachinePrecision] + t$95$76), $MachinePrecision]], $MachinePrecision] - 0.0625), $MachinePrecision]], $MachinePrecision]), N[(N[Sqrt[N[(N[Power[t$95$168, 2.0], $MachinePrecision] + t$95$500), $MachinePrecision]], $MachinePrecision] - 0.1625), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[(-N[Min[N[Max[N[Max[N[Max[t$95$167, (-N[(3.9 + N[(x * 5.42005), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$213], $MachinePrecision], t$95$394], $MachinePrecision], N[(N[Sqrt[N[(N[Power[N[(2.49 + N[(x * 3.61337), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + t$95$982), $MachinePrecision]], $MachinePrecision] - 0.0625), $MachinePrecision]], $MachinePrecision]), N[(N[Sqrt[N[(N[Power[t$95$167, 2.0], $MachinePrecision] + t$95$395), $MachinePrecision]], $MachinePrecision] - 0.1625), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[(-N[(6.075 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]), t$95$793], $MachinePrecision], t$95$491], $MachinePrecision], t$95$633], $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(N[Power[N[(6.025 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + t$95$2), $MachinePrecision]], $MachinePrecision] - 0.075), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$52, (-N[(6.35 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$797], $MachinePrecision], t$95$633], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[(6.7 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], t$95$191], $MachinePrecision], t$95$34], $MachinePrecision], t$95$633], $MachinePrecision]], $MachinePrecision], N[Max[(-N[Min[N[(N[Sqrt[N[(t$95$218 + N[Power[N[(N[(x * 3.61337), $MachinePrecision] - 2.02467), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.0625), $MachinePrecision], N[Max[N[Max[t$95$902, t$95$35], $MachinePrecision], N[(2.872 - N[(x * 5.42005), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]), N[(N[Sqrt[N[(t$95$406 + N[Power[t$95$35, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.1625), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[t$95$774, N[Min[N[Max[N[Max[t$95$410, N[(N[(x * 8.13008), $MachinePrecision] - 4.208), $MachinePrecision]], $MachinePrecision], N[(3.708 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$774, (-N[Min[N[Max[N[Max[t$95$97, N[(N[(x * 2.23577), $MachinePrecision] - t$95$229), $MachinePrecision]], $MachinePrecision], N[(1.32095 - t$95$25), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[(t$95$25 - 1.32095), $MachinePrecision], N[(t$95$229 - N[(x * 2.23577), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$729], $MachinePrecision]], $MachinePrecision])], $MachinePrecision], N[(0.175 - t$95$773), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[(-N[Min[N[Max[N[Max[N[Max[t$95$234, N[(N[(x * 5.42005), $MachinePrecision] - 2.372), $MachinePrecision]], $MachinePrecision], t$95$409], $MachinePrecision], t$95$469], $MachinePrecision], N[(N[Sqrt[N[(N[Power[N[(1.47133 - N[(x * 3.61337), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + t$95$61), $MachinePrecision]], $MachinePrecision] - 0.0625), $MachinePrecision]], $MachinePrecision]), N[(N[Sqrt[N[(N[Power[t$95$234, 2.0], $MachinePrecision] + t$95$366), $MachinePrecision]], $MachinePrecision] - 0.1625), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$759, t$95$680], $MachinePrecision], N[(6.5455 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$940, N[(N[(x * 8.13008), $MachinePrecision] - 6.19551), $MachinePrecision]], $MachinePrecision], t$95$241], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$680, t$95$241], $MachinePrecision], t$95$684], $MachinePrecision], t$95$735], $MachinePrecision], N[(0.175 - t$95$942), $MachinePrecision]], $MachinePrecision], N[(t$95$942 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$941, N[(N[(x * 8.13008), $MachinePrecision] - 5.8455), $MachinePrecision]], $MachinePrecision], N[(5.7455 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$424, t$95$739], $MachinePrecision], t$95$948], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$380, t$95$739], $MachinePrecision], t$95$948], $MachinePrecision], N[(0.15 - t$95$740), $MachinePrecision]], $MachinePrecision], N[(t$95$740 - 0.25), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[(-N[Min[N[Max[N[Max[t$95$470, t$95$72], $MachinePrecision], N[(N[(x * 5.42005), $MachinePrecision] - 3.197), $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(t$95$61 + N[Power[N[(2.02133 - N[(x * 3.61337), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.0625), $MachinePrecision]], $MachinePrecision]), N[(N[Sqrt[N[(t$95$366 + N[Power[t$95$72, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.1625), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[(-N[Min[N[Max[N[Max[t$95$902, N[(0.788667 - N[(x * 5.42005), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$256], $MachinePrecision], N[(N[Sqrt[N[(t$95$218 + N[Power[N[(N[(x * 3.61337), $MachinePrecision] - 0.635778), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.0625), $MachinePrecision]], $MachinePrecision]), N[(N[Sqrt[N[(t$95$406 + N[Power[t$95$256, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.1625), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$685, N[(N[(x * 8.13008), $MachinePrecision] - 0.125), $MachinePrecision]], $MachinePrecision], N[(0.0249996 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$685, t$95$704], $MachinePrecision], N[(0.0357141 - N[(x * 11.6144), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(0.45 - N[Sqrt[N[(t$95$169 + N[Power[N[(N[(x * 14.518), $MachinePrecision] - 0.732143), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(t$95$169 + N[Power[t$95$704, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.55), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$685, N[(0.1 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(0.2 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(N[Power[N[(N[(y * 8.13008), $MachinePrecision] - 1.0), $MachinePrecision], 2.0], $MachinePrecision] + t$95$465), $MachinePrecision]], $MachinePrecision] - 0.075), $MachinePrecision]], $MachinePrecision], N[Max[t$95$789, N[Min[N[Max[N[Max[t$95$410, N[(0.325 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(0.825 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], N[Max[N[Max[t$95$789, (-N[Min[N[Max[N[Max[t$95$97, N[(t$95$81 - N[(y * 1.21951), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(0.0743749 - t$95$25), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$729, N[(t$95$25 - 0.0743749), $MachinePrecision]], $MachinePrecision], N[(N[(y * 1.21951), $MachinePrecision] - t$95$81), $MachinePrecision]], $MachinePrecision]], $MachinePrecision])], $MachinePrecision], N[(0.175 - t$95$788), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[(-N[Min[N[Max[N[Max[N[Max[t$95$28, N[(2.047 - N[(x * 5.42005), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$722], $MachinePrecision], t$95$901], $MachinePrecision], N[(N[Sqrt[N[(t$95$218 + N[Power[N[(N[(x * 3.61337), $MachinePrecision] - 1.47467), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.0625), $MachinePrecision]], $MachinePrecision]), N[(N[Sqrt[N[(t$95$406 + N[Power[t$95$28, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.1625), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$1012, t$95$36], $MachinePrecision], N[(2.8705 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$685, N[(N[(x * 8.13008), $MachinePrecision] - 2.5205), $MachinePrecision]], $MachinePrecision], t$95$448], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$684, t$95$36], $MachinePrecision], t$95$448], $MachinePrecision], t$95$1017], $MachinePrecision], N[(0.175 - t$95$762), $MachinePrecision]], $MachinePrecision], N[(t$95$762 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[t$95$768, N[Min[N[Max[N[Max[t$95$410, N[(N[(x * 8.13008), $MachinePrecision] - 2.3205), $MachinePrecision]], $MachinePrecision], N[(1.8205 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$768, (-N[Min[N[Max[N[Max[t$95$97, N[(N[(x * 2.23577), $MachinePrecision] - t$95$663), $MachinePrecision]], $MachinePrecision], N[(0.801888 - t$95$25), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$729, N[(t$95$25 - 0.801888), $MachinePrecision]], $MachinePrecision], N[(t$95$663 - N[(x * 2.23577), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision])], $MachinePrecision], N[(0.175 - t$95$767), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[(-N[Min[N[Max[N[Max[t$95$470, t$95$543], $MachinePrecision], N[(N[(x * 5.42005), $MachinePrecision] - 1.11367), $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(t$95$61 + N[Power[N[(0.632445 - N[(x * 3.61337), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.0625), $MachinePrecision]], $MachinePrecision]), N[(N[Sqrt[N[(t$95$366 + N[Power[t$95$543, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.1625), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[(N[Sqrt[N[(N[Power[(-t$95$733), 2.0], $MachinePrecision] + N[Power[t$95$8, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.1625), $MachinePrecision], (-N[Min[N[Max[N[Max[N[Max[t$95$420, t$95$733], $MachinePrecision], t$95$8], $MachinePrecision], N[(0.233001 + N[(x * 5.42005), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(N[Power[(-N[(1.515 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]), 2.0], $MachinePrecision] + N[Power[(-N[(0.265334 + N[(x * 3.61337), $MachinePrecision]), $MachinePrecision]), 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.0625), $MachinePrecision]], $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[Max[(-N[Min[N[Max[N[Max[N[Max[N[(1.575 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision], (-t$95$67)], $MachinePrecision], t$95$156], $MachinePrecision], (-N[(0.558001 + N[(x * 5.42005), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], N[(N[Sqrt[N[(N[Power[N[(1.735 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[(0.262 + N[(x * 3.61337), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.0625), $MachinePrecision]], $MachinePrecision]), N[(N[Sqrt[N[(N[Power[t$95$67, 2.0], $MachinePrecision] + N[Power[t$95$156, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.1625), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$208, N[(t$95$430 - N[(y * 1.82927), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$625], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$207, t$95$960], $MachinePrecision], t$95$431], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$115, t$95$960], $MachinePrecision], t$95$210], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$567, t$95$625], $MachinePrecision], t$95$434], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$567, N[(N[(0.5966 + N[(x * 4.47154), $MachinePrecision]), $MachinePrecision] - N[(y * 1.82927), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$965], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$115, t$95$431], $MachinePrecision], t$95$964], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$264, t$95$210], $MachinePrecision], t$95$964], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$498, t$95$434], $MachinePrecision], t$95$965], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$567, (-t$95$636)], $MachinePrecision], t$95$860], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$115, t$95$861], $MachinePrecision], t$95$636], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$264, t$95$861], $MachinePrecision], t$95$315], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$498, t$95$860], $MachinePrecision], (-t$95$315)], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$711, t$95$871], $MachinePrecision], t$95$23], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$47, t$95$483], $MachinePrecision], t$95$871], $MachinePrecision], t$95$23], $MachinePrecision], N[(0.15 - t$95$872), $MachinePrecision]], $MachinePrecision], N[(t$95$872 - 0.25), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$987, N[(N[(x * 8.13008), $MachinePrecision] - 0.8105), $MachinePrecision]], $MachinePrecision], N[(0.7105 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[(0.175 - t$95$398), $MachinePrecision], N[(t$95$398 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$748, N[(N[(x * 8.13008), $MachinePrecision] - 0.000499725), $MachinePrecision]], $MachinePrecision], (-N[(0.0995007 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$608, t$95$400], $MachinePrecision], t$95$509], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$377, t$95$747], $MachinePrecision], t$95$400], $MachinePrecision], t$95$509], $MachinePrecision], N[(0.15 - t$95$750), $MachinePrecision]], $MachinePrecision], N[(t$95$750 - 0.25), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$662, (-N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Max[N[Max[N[(t$95$222 - N[(y * 3.25203), $MachinePrecision]), $MachinePrecision], (-t$95$407)], $MachinePrecision], t$95$516], $MachinePrecision], N[Max[N[Max[t$95$407, N[(N[(y * 3.25203), $MachinePrecision] - t$95$222), $MachinePrecision]], $MachinePrecision], (-t$95$516)], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$93, t$95$137], $MachinePrecision], (-t$95$980)], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$980, (-t$95$137)], $MachinePrecision], (-t$95$93)], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[(t$95$909 - N[(y * 0.813008), $MachinePrecision]), $MachinePrecision], (-t$95$44)], $MachinePrecision], N[(N[(y * 3.41463), $MachinePrecision] - t$95$224), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[(t$95$224 - N[(y * 3.41463), $MachinePrecision]), $MachinePrecision], t$95$44], $MachinePrecision], N[(N[(y * 0.813008), $MachinePrecision] - t$95$909), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[(-t$95$818), (-t$95$48)], $MachinePrecision], t$95$145], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$818, t$95$48], $MachinePrecision], (-t$95$145)], $MachinePrecision]], $MachinePrecision])], $MachinePrecision], N[(3.687 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(4.187 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$987, N[(4.307 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(4.407 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[Max[N[(0.175 - t$95$358), $MachinePrecision], N[(t$95$358 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[t$95$919, N[Min[N[Max[N[Max[N[Max[N[(1.585 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision], t$95$420], $MachinePrecision], N[(4.967 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(5.467 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], N[Max[N[Max[t$95$919, (-N[Min[N[Max[N[Max[t$95$295, N[(t$95$475 - N[(y * 1.21951), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-t$95$686)], $MachinePrecision], N[Max[N[Max[t$95$686, N[(N[(y * 1.21951), $MachinePrecision] - t$95$475), $MachinePrecision]], $MachinePrecision], (-t$95$295)], $MachinePrecision]], $MachinePrecision])], $MachinePrecision], N[(0.175 - t$95$55), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$607, N[(5.875 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-t$95$793)], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$377, N[(2.287 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(2.387 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$983], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$987, N[(2.537 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(2.637 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$377, N[(1.375 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(2.787 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$957], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$423, t$95$957], $MachinePrecision], (-t$95$983)], $MachinePrecision], N[(2.237 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[Min[N[Max[N[(0.075 - t$95$986), $MachinePrecision], N[(t$95$986 - 0.175), $MachinePrecision]], $MachinePrecision], N[Max[N[(0.075 - t$95$985), $MachinePrecision], N[(t$95$985 - 0.175), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[(-N[Min[N[Max[N[Max[N[(N[(x * 2.84553), $MachinePrecision] - t$95$263), $MachinePrecision], N[(0.681276 - t$95$492), $MachinePrecision]], $MachinePrecision], N[(t$95$637 - N[(x * 1.01626), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[(N[(x * 1.01626), $MachinePrecision] - t$95$637), $MachinePrecision], N[(t$95$492 - 0.681276), $MachinePrecision]], $MachinePrecision], N[(t$95$263 - N[(x * 2.84553), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]), t$95$120], $MachinePrecision], (-N[(0.95 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 5.289), $MachinePrecision]], $MachinePrecision], N[(5.139 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(N[Power[N[(0.241667 + N[(y * 2.71003), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 5.214), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.075), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(N[Power[t$95$120, 2.0], $MachinePrecision] + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 5.239), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.075), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$491, N[(N[(x * 8.13008), $MachinePrecision] - 4.781), $MachinePrecision]], $MachinePrecision], N[(4.681 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$633], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$491, t$95$329], $MachinePrecision], N[(6.68715 - N[(x * 11.6144), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(0.45 - N[Sqrt[N[(t$95$784 + N[Power[N[(N[(x * 14.518), $MachinePrecision] - 9.04643), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(t$95$784 + N[Power[t$95$329, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.55), $MachinePrecision]], $MachinePrecision], t$95$633], $MachinePrecision]], $MachinePrecision], N[Max[N[(0.175 - t$95$803), $MachinePrecision], N[(t$95$803 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$607, t$95$29], $MachinePrecision], (-N[(8.53571 + N[(x * 11.6144), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], N[(0.45 - N[Sqrt[N[(t$95$376 + N[Power[N[(9.98214 + N[(x * 14.518), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(t$95$376 + N[Power[t$95$29, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.55), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$662, t$95$90], $MachinePrecision], t$95$182], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$606, t$95$653], $MachinePrecision], t$95$71], $MachinePrecision], t$95$519], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$377, t$95$653], $MachinePrecision], t$95$80], $MachinePrecision], t$95$519], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$662, t$95$45], $MachinePrecision], (-t$95$653)], $MachinePrecision], N[(0.175 - t$95$656), $MachinePrecision]], $MachinePrecision], N[(t$95$656 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$635, N[(N[(x * 8.13008), $MachinePrecision] - 7.28901), $MachinePrecision]], $MachinePrecision], N[(7.18901 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$635, N[(N[(x * 8.13008), $MachinePrecision] - 7.03901), $MachinePrecision]], $MachinePrecision], N[(6.93901 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[(N[(y * 8.13008), $MachinePrecision] - 4.76837e-7), $MachinePrecision], t$95$926], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 6.81401), $MachinePrecision]], $MachinePrecision], N[(6.71401 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$34, N[(0.1 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$98], $MachinePrecision], t$95$192], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$633, t$95$98], $MachinePrecision], t$95$192], $MachinePrecision], N[(0.7 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$635, N[(N[(x * 8.13008), $MachinePrecision] - 6.41401), $MachinePrecision]], $MachinePrecision], N[(6.314 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$634, N[(N[(x * 8.13008), $MachinePrecision] - 2.1185), $MachinePrecision]], $MachinePrecision], N[(2.0185 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(t$95$2 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 2.0685), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.075), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$646, N[(N[(x * 8.13008), $MachinePrecision] - 1.1935), $MachinePrecision]], $MachinePrecision], N[(1.0935 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$646, N[(N[(x * 8.13008), $MachinePrecision] - 0.943501), $MachinePrecision]], $MachinePrecision], N[(0.8435 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$633, N[(0.275 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 0.693501), $MachinePrecision]], $MachinePrecision], t$95$64], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$64, t$95$10], $MachinePrecision], (-t$95$645)], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 1.2435), $MachinePrecision]], $MachinePrecision], N[Min[N[Max[N[(0.075 - t$95$951), $MachinePrecision], N[(t$95$951 - 0.175), $MachinePrecision]], $MachinePrecision], N[Max[N[(0.075 - t$95$950), $MachinePrecision], N[(t$95$950 - 0.175), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$634, N[(N[(x * 8.13008), $MachinePrecision] - 0.2355), $MachinePrecision]], $MachinePrecision], N[(0.1355 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$248, N[(N[(x * 8.13008), $MachinePrecision] - 3.781), $MachinePrecision]], $MachinePrecision], t$95$633], $MachinePrecision], N[(3.681 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$491, (-N[(0.35 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$73], $MachinePrecision], t$95$162], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$34, t$95$73], $MachinePrecision], t$95$162], $MachinePrecision], (-t$95$248)], $MachinePrecision], N[(0.15 - t$95$701), $MachinePrecision]], $MachinePrecision], N[(t$95$701 - 0.25), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[(-N[Min[N[Max[N[Max[N[Max[t$95$313, t$95$437], $MachinePrecision], t$95$387], $MachinePrecision], N[(N[(x * 5.42005), $MachinePrecision] - 1.82067), $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(t$95$76 + N[Power[N[(1.10378 - N[(x * 3.61337), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.0625), $MachinePrecision]], $MachinePrecision]), N[(N[Sqrt[N[(t$95$500 + N[Power[t$95$387, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.1625), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[(-N[Min[N[Max[N[Max[N[Max[t$95$213, t$95$394], $MachinePrecision], t$95$593], $MachinePrecision], N[(1.49567 - N[(x * 5.42005), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(t$95$982 + N[Power[N[(N[(x * 3.61337), $MachinePrecision] - 1.10711), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.0625), $MachinePrecision]], $MachinePrecision]), N[(N[Sqrt[N[(t$95$395 + N[Power[t$95$593, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.1625), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$634, t$95$709], $MachinePrecision], N[(0.193571 - N[(x * 11.6144), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(0.45 - N[Sqrt[N[(t$95$784 + N[Power[N[(N[(x * 14.518), $MachinePrecision] - 0.929465), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(t$95$784 + N[Power[t$95$709, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.55), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], 100000000.0], $MachinePrecision], N[Max[t$95$795, N[Min[N[Max[N[Max[t$95$578, N[(N[(x * 8.13008), $MachinePrecision] - 7.40251), $MachinePrecision]], $MachinePrecision], N[(6.90251 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$795, (-N[Min[N[Max[N[Max[t$95$277, N[(N[(x * 2.23577), $MachinePrecision] - t$95$446), $MachinePrecision]], $MachinePrecision], N[(3.29944 - t$95$25), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[(t$95$25 - 3.29944), $MachinePrecision], N[(t$95$446 - N[(x * 2.23577), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$39], $MachinePrecision]], $MachinePrecision])], $MachinePrecision], N[(0.175 - t$95$794), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$223, N[(N[(x * 4.47154), $MachinePrecision] - t$95$340), $MachinePrecision]], $MachinePrecision], t$95$521], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$812, N[(t$95$340 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$1018], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$812, t$95$94], $MachinePrecision], N[(t$95$225 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$521, N[(N[(x * 4.47154), $MachinePrecision] - t$95$225), $MachinePrecision]], $MachinePrecision], t$95$523], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$223, N[(4.14638 - t$95$912), $MachinePrecision]], $MachinePrecision], t$95$50], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$1018, t$95$231], $MachinePrecision], N[(t$95$912 - 4.14638), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$94, t$95$231], $MachinePrecision], N[(t$95$912 - 4.20138), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$523, t$95$50], $MachinePrecision], N[(4.20138 - t$95$912), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[(-t$95$57), t$95$193], $MachinePrecision], t$95$359], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$57, t$95$597], $MachinePrecision], t$95$673], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$597, t$95$920], $MachinePrecision], t$95$102], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$193, (-t$95$920)], $MachinePrecision], t$95$369], $MachinePrecision]], $MachinePrecision], N[Max[N[(0.175 - t$95$932), $MachinePrecision], N[(t$95$932 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$242, (-N[(6.85 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$559], $MachinePrecision], t$95$687], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$679, N[(7.2 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$687], $MachinePrecision], t$95$153], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$679, t$95$242], $MachinePrecision], N[(0.175 - t$95$933), $MachinePrecision]], $MachinePrecision], N[(t$95$933 - 0.275), $MachinePrecision]], $MachinePrecision], t$95$68], $MachinePrecision], t$95$153], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$383, t$95$480], $MachinePrecision], N[(7.95251 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$958, N[(N[(x * 8.13008), $MachinePrecision] - 7.60251), $MachinePrecision]], $MachinePrecision], t$95$205], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$480, t$95$16], $MachinePrecision], t$95$205], $MachinePrecision], t$95$626], $MachinePrecision], N[(0.175 - t$95$775), $MachinePrecision]], $MachinePrecision], N[(t$95$775 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$384, t$95$306], $MachinePrecision], N[(3.0225 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$381, N[(N[(x * 8.13008), $MachinePrecision] - 2.6725), $MachinePrecision]], $MachinePrecision], t$95$968], $MachinePrecision], t$95$74], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$16, t$95$968], $MachinePrecision], N[(0.175 - t$95$493), $MachinePrecision]], $MachinePrecision], N[(t$95$493 - 0.275), $MachinePrecision]], $MachinePrecision], t$95$976], $MachinePrecision], t$95$306], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$223, N[(N[(x * 4.47154), $MachinePrecision] - t$95$170), $MachinePrecision]], $MachinePrecision], t$95$324], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$1018, t$95$573], $MachinePrecision], N[(t$95$170 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$94, t$95$573], $MachinePrecision], N[(t$95$995 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$523, t$95$324], $MachinePrecision], N[(N[(x * 4.47154), $MachinePrecision] - t$95$995), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$223, N[(1.79238 - t$95$912), $MachinePrecision]], $MachinePrecision], t$95$440], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$1018, t$95$710], $MachinePrecision], N[(t$95$912 - 1.79238), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$94, t$95$710], $MachinePrecision], N[(t$95$912 - 1.84738), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$523, t$95$440], $MachinePrecision], N[(1.84738 - t$95$912), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$223, N[(N[(x * 4.47154), $MachinePrecision] - t$95$441), $MachinePrecision]], $MachinePrecision], t$95$648], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$1018, t$95$1003], $MachinePrecision], N[(t$95$441 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$94, t$95$1003], $MachinePrecision], N[(t$95$215 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$523, t$95$648], $MachinePrecision], N[(N[(x * 4.47154), $MachinePrecision] - t$95$215), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$223, N[(1.51738 - t$95$912), $MachinePrecision]], $MachinePrecision], t$95$808], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$1018, t$95$87], $MachinePrecision], N[(t$95$912 - 1.51738), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$94, t$95$87], $MachinePrecision], N[(t$95$912 - 1.57238), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$523, t$95$808], $MachinePrecision], N[(1.57238 - t$95$912), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[t$95$724, N[Min[N[Max[N[Max[t$95$578, N[(N[(x * 8.13008), $MachinePrecision] - 6.0525), $MachinePrecision]], $MachinePrecision], N[(5.5525 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$724, (-N[Min[N[Max[N[Max[t$95$277, N[(N[(x * 2.23577), $MachinePrecision] - t$95$1019), $MachinePrecision]], $MachinePrecision], N[(2.92819 - t$95$25), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$39, N[(t$95$25 - 2.92819), $MachinePrecision]], $MachinePrecision], N[(t$95$1019 - N[(x * 2.23577), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision])], $MachinePrecision], N[(0.175 - t$95$723), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$384, t$95$524], $MachinePrecision], N[(4.5525 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$382, N[(N[(x * 8.13008), $MachinePrecision] - 4.2025), $MachinePrecision]], $MachinePrecision], t$95$146], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$16, t$95$524], $MachinePrecision], t$95$146], $MachinePrecision], t$95$976], $MachinePrecision], N[(0.175 - t$95$546), $MachinePrecision]], $MachinePrecision], N[(t$95$546 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[(-N[Min[N[Max[N[Max[N[(t$95$367 - N[(x * 2.27642), $MachinePrecision]), $MachinePrecision], N[(N[(x * 4.5122), $MachinePrecision] - 2.26024), $MachinePrecision]], $MachinePrecision], N[(1.80744 - t$95$1014), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[(t$95$1014 - 1.80744), $MachinePrecision], N[(2.26024 - N[(x * 4.5122), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[(x * 2.27642), $MachinePrecision] - t$95$367), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]), N[(0.175 - t$95$178), $MachinePrecision]], $MachinePrecision], N[(t$95$178 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$958, N[(N[(x * 8.13008), $MachinePrecision] - 3.3975), $MachinePrecision]], $MachinePrecision], N[(3.2975 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(t$95$104 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 3.3475), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.075), $MachinePrecision]], $MachinePrecision], N[Max[(-N[Min[N[Max[N[Max[N[Max[t$95$577, N[(N[(y * 8.13008), $MachinePrecision] - 2.8875), $MachinePrecision]], $MachinePrecision], t$95$943], $MachinePrecision], N[(0.355 + N[(x * 5.42005), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(N[Power[N[(2.885 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + N[Power[(-N[(0.346667 + N[(x * 3.61337), $MachinePrecision]), $MachinePrecision]), 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.0625), $MachinePrecision]], $MachinePrecision]), N[(N[Sqrt[N[(N[Power[N[(2.8875 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + N[Power[t$95$943, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.1625), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[(-N[Min[N[Max[N[Max[N[Max[t$95$245, N[(2.6625 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$14], $MachinePrecision], (-N[(0.68 + N[(x * 5.42005), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], N[(N[Sqrt[N[(N[Power[N[(N[(y * 8.13008), $MachinePrecision] - 2.665), $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[(0.343334 + N[(x * 3.61337), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.0625), $MachinePrecision]], $MachinePrecision]), N[(N[Sqrt[N[(N[Power[N[(N[(y * 8.13008), $MachinePrecision] - 2.6625), $MachinePrecision], 2.0], $MachinePrecision] + N[Power[t$95$14, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.1625), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$958, t$95$18], $MachinePrecision], (-N[(1.22 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$16, t$95$976], $MachinePrecision], N[(1.57 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$565], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$384, t$95$18], $MachinePrecision], t$95$565], $MachinePrecision], N[(0.175 - t$95$177), $MachinePrecision]], $MachinePrecision], N[(t$95$177 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$642, N[(1.77 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(1.87 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$642, N[(2.02 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(2.12 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[(-N[Min[N[Max[N[Max[N[(N[(0.0958748 + N[(x * 2.84553), $MachinePrecision]), $MachinePrecision] - N[(y * 0.813008), $MachinePrecision]), $MachinePrecision], N[(1.26444 - t$95$492), $MachinePrecision]], $MachinePrecision], N[(N[(y * 4.87805), $MachinePrecision] - t$95$396), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[(t$95$396 - N[(y * 4.87805), $MachinePrecision]), $MachinePrecision], N[(t$95$492 - 1.26444), $MachinePrecision]], $MachinePrecision], N[(N[(y * 0.813008), $MachinePrecision] - N[(0.095875 + N[(x * 2.84553), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]), t$95$24], $MachinePrecision], N[(2.35 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 0.5475), $MachinePrecision]], $MachinePrecision], N[(0.3975 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(N[Power[N[(N[(y * 2.71003), $MachinePrecision] - 0.858333), $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 0.4725), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.075), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(N[Power[t$95$24, 2.0], $MachinePrecision] + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 0.4975), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.075), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[(-N[Min[N[Max[N[Max[N[(N[(y * 2.23577), $MachinePrecision] - t$95$811), $MachinePrecision], N[(N[(x * 4.5122), $MachinePrecision] - 0.203962), $MachinePrecision]], $MachinePrecision], N[(0.788562 - t$95$1014), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[(t$95$1014 - 0.788562), $MachinePrecision], N[(0.203962 - N[(x * 4.5122), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(t$95$811 - N[(y * 2.23577), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]), N[(0.175 - t$95$513), $MachinePrecision]], $MachinePrecision], N[(t$95$513 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$958, N[(0.3075 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(0.4075 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(t$95$104 + N[Power[N[(0.357501 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.075), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$382, N[(3.845 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(3.945 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$383, t$95$230], $MachinePrecision], (-N[(4.17 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$958, N[(4.52 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$821], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$16, t$95$626], $MachinePrecision], t$95$230], $MachinePrecision], t$95$821], $MachinePrecision], N[(0.175 - t$95$356), $MachinePrecision]], $MachinePrecision], N[(t$95$356 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[t$95$911, N[Min[N[Max[N[Max[t$95$578, N[(4.72 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(5.22 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], N[Max[N[Max[t$95$911, (-N[Min[N[Max[N[Max[t$95$277, N[(t$95$150 - N[(y * 1.21951), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-t$95$289)], $MachinePrecision], N[Max[N[Max[t$95$39, t$95$289], $MachinePrecision], N[(N[(y * 1.21951), $MachinePrecision] - t$95$150), $MachinePrecision]], $MachinePrecision]], $MachinePrecision])], $MachinePrecision], N[(0.175 - t$95$910), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$223, N[(t$95$12 - N[(y * 2.03252), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$152], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$1018, t$95$372], $MachinePrecision], N[(N[(y * 2.03252), $MachinePrecision] - t$95$12), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$94, t$95$372], $MachinePrecision], N[(N[(y * 2.03252), $MachinePrecision] - t$95$694), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$523, t$95$152], $MachinePrecision], N[(t$95$694 - N[(y * 2.03252), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$223, (-t$95$197)], $MachinePrecision], t$95$373], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$381, N[(N[(y * 8.13008), $MachinePrecision] - 3.025), $MachinePrecision]], $MachinePrecision], N[(2.27 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$69], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$69, N[(N[(y * 8.13008), $MachinePrecision] - 3.15), $MachinePrecision]], $MachinePrecision], N[(2.85 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(1.72 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[Min[N[Max[N[(0.075 - t$95$640), $MachinePrecision], N[(t$95$640 - 0.175), $MachinePrecision]], $MachinePrecision], N[Max[N[(0.075 - t$95$641), $MachinePrecision], N[(t$95$641 - 0.175), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$369, t$95$117], $MachinePrecision], t$95$258], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$488, t$95$566], $MachinePrecision], t$95$102], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$488, t$95$1018], $MachinePrecision], t$95$857], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$258, t$95$856], $MachinePrecision], t$95$223], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$223, t$95$117], $MachinePrecision], t$95$318], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$1018, t$95$566], $MachinePrecision], t$95$568], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$94, t$95$857], $MachinePrecision], t$95$568], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$523, t$95$856], $MachinePrecision], t$95$318], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$223, (-t$95$121)], $MachinePrecision], t$95$267], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$1018, t$95$121], $MachinePrecision], t$95$571], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$94, t$95$571], $MachinePrecision], t$95$787], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$523, t$95$267], $MachinePrecision], (-t$95$787)], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$684, (-N[(4.725 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], (-N[(0.0749998 + N[(y * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], N[(4.625 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[(0.175 - t$95$761), $MachinePrecision], N[(t$95$761 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$685, t$95$442], $MachinePrecision], (-t$95$813)], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$796, t$95$880], $MachinePrecision], t$95$84], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$759, t$95$442], $MachinePrecision], t$95$84], $MachinePrecision], N[(0.175 - t$95$766), $MachinePrecision]], $MachinePrecision], N[(t$95$766 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$940, (-t$95$38)], $MachinePrecision], N[(6.175 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$684, N[(0.75 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$582], $MachinePrecision], t$95$38], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$379, t$95$582], $MachinePrecision], t$95$38], $MachinePrecision], N[(N[(y * 8.13008), $MachinePrecision] - 0.4), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$940, t$95$581], $MachinePrecision], (-N[(7.175 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], N[(0.175 - t$95$769), $MachinePrecision]], $MachinePrecision], N[(t$95$769 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$379, t$95$190], $MachinePrecision], t$95$722], $MachinePrecision], (-t$95$549)], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$685, t$95$144], $MachinePrecision], t$95$227], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$759, t$95$525], $MachinePrecision], (-N[(1.125 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$940, N[(1.475 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$147], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$796, t$95$525], $MachinePrecision], t$95$147], $MachinePrecision], N[(0.175 - t$95$770), $MachinePrecision]], $MachinePrecision], N[(t$95$770 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$941, N[(1.825 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(1.925 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$424, t$95$364], $MachinePrecision], t$95$415], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$380, t$95$364], $MachinePrecision], t$95$415], $MachinePrecision], N[(0.15 - t$95$696), $MachinePrecision]], $MachinePrecision], N[(t$95$696 - 0.25), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$1012, t$95$290], $MachinePrecision], (-N[(2.975 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$685, N[(3.325 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$937], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$684, t$95$1017], $MachinePrecision], t$95$290], $MachinePrecision], t$95$937], $MachinePrecision], N[(0.175 - t$95$765), $MachinePrecision]], $MachinePrecision], N[(t$95$765 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[(0.175 - t$95$945), $MachinePrecision], N[(t$95$945 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$689, N[(N[(x * 8.13008), $MachinePrecision] - 5.958), $MachinePrecision]], $MachinePrecision], t$95$426], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$68, N[(0.175 - t$95$928), $MachinePrecision]], $MachinePrecision], N[(t$95$928 - 0.275), $MachinePrecision]], $MachinePrecision], t$95$304], $MachinePrecision], t$95$153], $MachinePrecision], t$95$426], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$388, N[(5.633 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$687], $MachinePrecision], t$95$153], $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(N[Power[N[(N[(y * 8.13008), $MachinePrecision] - 2.1), $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 5.683), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.075), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$484, N[(N[(x * 8.13008), $MachinePrecision] - 5.508), $MachinePrecision]], $MachinePrecision], N[(5.408 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$687], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$484, N[(N[(x * 8.13008), $MachinePrecision] - 5.258), $MachinePrecision]], $MachinePrecision], N[(5.158 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$687], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[(N[(y * 8.13008), $MachinePrecision] - 1.925), $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 5.008), $MachinePrecision]], $MachinePrecision], t$95$702], $MachinePrecision], t$95$687], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$702, t$95$118], $MachinePrecision], N[(1.75 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$904], $MachinePrecision], N[Min[N[Max[N[(0.075 - t$95$496), $MachinePrecision], N[(t$95$496 - 0.175), $MachinePrecision]], $MachinePrecision], N[Max[N[(0.075 - t$95$495), $MachinePrecision], N[(t$95$495 - 0.175), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$190, t$95$684], $MachinePrecision], t$95$1017], $MachinePrecision], t$95$227], $MachinePrecision], N[(0.175 - t$95$772), $MachinePrecision]], $MachinePrecision], N[(t$95$772 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[t$95$764, N[Min[N[Max[N[Max[N[Max[t$95$294, t$95$419], $MachinePrecision], t$95$286], $MachinePrecision], t$95$409], $MachinePrecision], N[Max[N[Max[t$95$764, (-N[Min[N[Max[N[Max[t$95$97, N[(t$95$79 - N[(y * 1.21951), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-t$95$186)], $MachinePrecision], N[Max[N[Max[t$95$729, t$95$186], $MachinePrecision], N[(N[(y * 1.21951), $MachinePrecision] - t$95$79), $MachinePrecision]], $MachinePrecision]], $MachinePrecision])], $MachinePrecision], N[(0.175 - t$95$763), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[t$95$936, N[Min[N[Max[N[Max[N[Max[N[(N[(y * 8.13008), $MachinePrecision] - 1.715), $MachinePrecision], N[(1.625 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 7.058), $MachinePrecision]], $MachinePrecision], N[(6.558 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$936, (-N[Min[N[Max[N[Max[N[(N[(y * 5.28455), $MachinePrecision] - 1.08875), $MachinePrecision], N[(N[(x * 2.23577), $MachinePrecision] - t$95$336), $MachinePrecision]], $MachinePrecision], N[(2.6547 - t$95$25), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[(t$95$25 - 2.6547), $MachinePrecision], N[(t$95$336 - N[(x * 2.23577), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(1.08875 - N[(y * 5.28455), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision])], $MachinePrecision], N[(0.175 - t$95$935), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$559, t$95$687], $MachinePrecision], t$95$304], $MachinePrecision], N[(6.308 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[(t$95$931 - 0.275), $MachinePrecision], N[(0.175 - t$95$931), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$359, N[(N[(x * 4.47154), $MachinePrecision] - t$95$1021), $MachinePrecision]], $MachinePrecision], t$95$96], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$228, N[(t$95$1021 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$673], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$228, t$95$102], $MachinePrecision], N[(t$95$526 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$96, N[(N[(x * 4.47154), $MachinePrecision] - t$95$526), $MachinePrecision]], $MachinePrecision], t$95$369], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$359, N[(1.4775 - t$95$912), $MachinePrecision]], $MachinePrecision], t$95$148], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$673, t$95$357], $MachinePrecision], N[(t$95$912 - 1.4775), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$102, t$95$357], $MachinePrecision], N[(t$95$912 - 1.5325), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$369, t$95$148], $MachinePrecision], N[(1.5325 - t$95$912), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$359, N[(N[(x * 4.47154), $MachinePrecision] - t$95$149), $MachinePrecision]], $MachinePrecision], t$95$288], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$673, t$95$554], $MachinePrecision], N[(t$95$149 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$102, t$95$554], $MachinePrecision], N[(t$95$922 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$369, t$95$288], $MachinePrecision], N[(N[(x * 4.47154), $MachinePrecision] - t$95$922), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$359, N[(1.2025 - t$95$912), $MachinePrecision]], $MachinePrecision], t$95$418], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$673, t$95$682], $MachinePrecision], N[(t$95$912 - 1.2025), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$102, t$95$682], $MachinePrecision], N[(t$95$912 - 1.2575), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$369, t$95$418], $MachinePrecision], N[(1.2575 - t$95$912), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[(0.175 - t$95$930), $MachinePrecision], N[(t$95$930 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$687, (-N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Min[N[Max[N[Max[N[(N[(y * 4.06504), $MachinePrecision] - 1.2), $MachinePrecision], N[(N[(x * 4.06504), $MachinePrecision] - 2.104), $MachinePrecision]], $MachinePrecision], N[(3.054 - t$95$979), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[(t$95$979 - 3.054), $MachinePrecision], N[(2.104 - N[(x * 4.06504), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(1.2 - N[(y * 4.06504), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[(N[(x * 8.13008), $MachinePrecision] - t$95$428), $MachinePrecision], N[(1.8858 - t$95$697), $MachinePrecision]], $MachinePrecision], N[(t$95$817 - N[(x * 5.28455), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[(N[(x * 5.28455), $MachinePrecision] - t$95$817), $MachinePrecision], N[(t$95$697 - 1.8858), $MachinePrecision]], $MachinePrecision], N[(t$95$428 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[(0.351 - N[(y * 2.19512), $MachinePrecision]), $MachinePrecision], N[(1.2978 - N[(x * 2.84553), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(t$95$444 - 1.7433), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[(1.7433 - t$95$444), $MachinePrecision], N[(N[(x * 2.84553), $MachinePrecision] - 1.2978), $MachinePrecision]], $MachinePrecision], N[(N[(y * 2.19512), $MachinePrecision] - 0.351), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[(N[(y * 3.25203), $MachinePrecision] - 0.96), $MachinePrecision], N[(N[(x * 4.47154), $MachinePrecision] - t$95$353), $MachinePrecision]], $MachinePrecision], N[(2.0394 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[(N[(x * 4.47154), $MachinePrecision] - 2.0394), $MachinePrecision], N[(t$95$353 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(0.96 - N[(y * 3.25203), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision])], $MachinePrecision], t$95$1], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 4.108), $MachinePrecision]], $MachinePrecision], N[(3.608 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$689, N[(N[(x * 8.13008), $MachinePrecision] - 3.25), $MachinePrecision]], $MachinePrecision], N[(3.15 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$689, t$95$977], $MachinePrecision], N[(4.5 - N[(x * 11.6144), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(0.45 - N[Sqrt[N[(t$95$269 + N[Power[N[(N[(x * 14.518), $MachinePrecision] - 6.3125), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(t$95$269 + N[Power[t$95$977, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.55), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$153, t$95$124], $MachinePrecision], t$95$173], $MachinePrecision], N[(1.85 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$687, t$95$124], $MachinePrecision], t$95$575], $MachinePrecision], t$95$173], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$688, t$95$123], $MachinePrecision], (-N[(3.275 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], N[(0.175 - t$95$929), $MachinePrecision]], $MachinePrecision], N[(t$95$929 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$1, N[(2.3 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$807], $MachinePrecision], t$95$1004], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$687, t$95$575], $MachinePrecision], t$95$807], $MachinePrecision], t$95$1004], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$481, t$95$687], $MachinePrecision], t$95$1], $MachinePrecision], (-N[(3.9 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$359, N[(t$95$718 - N[(y * 2.03252), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$1010], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$673, t$95$1009], $MachinePrecision], N[(N[(y * 2.03252), $MachinePrecision] - t$95$718), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$102, t$95$1009], $MachinePrecision], N[(N[(y * 2.03252), $MachinePrecision] - t$95$447), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$369, t$95$1010], $MachinePrecision], N[(t$95$447 - N[(y * 2.03252), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$359, (-t$95$40)], $MachinePrecision], t$95$184], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$673, t$95$40], $MachinePrecision], t$95$449], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$102, t$95$449], $MachinePrecision], t$95$651], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$369, t$95$184], $MachinePrecision], (-t$95$651)], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$359, N[(t$95$187 - N[(y * 2.03252), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$355], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$673, t$95$594], $MachinePrecision], N[(N[(y * 2.03252), $MachinePrecision] - t$95$187), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$102, t$95$594], $MachinePrecision], N[(N[(y * 2.03252), $MachinePrecision] - t$95$6), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$369, t$95$355], $MachinePrecision], N[(t$95$6 - N[(y * 2.03252), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[(1.65 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision], N[(0.300001 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$1], $MachinePrecision], (-N[(0.400001 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$464, t$95$118], $MachinePrecision], N[(1.95 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$100], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$464, t$95$687], $MachinePrecision], t$95$100], $MachinePrecision], t$95$556], $MachinePrecision], N[(0.15 - t$95$676), $MachinePrecision]], $MachinePrecision], N[(t$95$676 - 0.25), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[(-N[Min[N[Max[N[Max[N[(t$95$558 - N[(y * 0.813008), $MachinePrecision]), $MachinePrecision], N[(0.281875 - t$95$492), $MachinePrecision]], $MachinePrecision], N[(N[(y * 4.87805), $MachinePrecision] - t$95$938), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[(t$95$938 - N[(y * 4.87805), $MachinePrecision]), $MachinePrecision], N[(t$95$492 - 0.281875), $MachinePrecision]], $MachinePrecision], N[(N[(y * 0.813008), $MachinePrecision] - t$95$558), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]), t$95$296], $MachinePrecision], N[(1.25 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(1.375 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(1.525 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], N[(N[Sqrt[N[(N[Power[N[(N[(y * 2.71003), $MachinePrecision] - 0.491667), $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[(1.45 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.075), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(N[Power[t$95$296, 2.0], $MachinePrecision] + N[Power[N[(1.425 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.075), $MachinePrecision]], $MachinePrecision], N[Max[N[(0.175 - t$95$934), $MachinePrecision], N[(t$95$934 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$688, (-t$95$173)], $MachinePrecision], N[(2.275 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[N[(t$95$754 - 0.275), $MachinePrecision], t$95$206], $MachinePrecision], t$95$305], $MachinePrecision], N[(0.175 - t$95$754), $MachinePrecision]], $MachinePrecision], t$95$486], $MachinePrecision], t$95$627], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$19, N[(N[(x * 8.13008), $MachinePrecision] - 1.556), $MachinePrecision]], $MachinePrecision], N[(1.456 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$259], $MachinePrecision]], $MachinePrecision], N[Max[N[(0.175 - t$95$436), $MachinePrecision], N[(t$95$436 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[(-N[Min[N[Max[N[Max[N[(t$95$497 - N[(y * 0.813008), $MachinePrecision]), $MachinePrecision], N[(2.27973 - t$95$492), $MachinePrecision]], $MachinePrecision], N[(N[(y * 4.87805), $MachinePrecision] - t$95$868), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[(t$95$868 - N[(y * 4.87805), $MachinePrecision]), $MachinePrecision], N[(t$95$492 - 2.27973), $MachinePrecision]], $MachinePrecision], N[(N[(y * 0.813008), $MachinePrecision] - t$95$497), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]), t$95$271], $MachinePrecision], N[(4.55 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 0.171), $MachinePrecision]], $MachinePrecision], N[(0.0209999 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(N[Power[N[(N[(y * 2.71003), $MachinePrecision] - 1.59167), $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 0.0959997), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.075), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(N[Power[t$95$271, 2.0], $MachinePrecision] + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 0.121), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.075), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$879, t$95$998], $MachinePrecision], N[(3.65055 - t$95$912), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[(N[(x * 4.47154), $MachinePrecision] - t$95$330), $MachinePrecision], t$95$505], $MachinePrecision], t$95$649], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$1005, N[(t$95$330 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$86], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$1005, N[(N[(0.970551 + N[(y * 2.03252), $MachinePrecision]), $MachinePrecision] - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$404], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$505, N[(N[(x * 4.47154), $MachinePrecision] - N[(0.970552 + N[(y * 2.03252), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$879], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[(3.32055 - t$95$912), $MachinePrecision], t$95$88], $MachinePrecision], t$95$649], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$281, N[(t$95$912 - 3.32055), $MachinePrecision]], $MachinePrecision], t$95$86], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$281, N[(t$95$912 - 3.37555), $MachinePrecision]], $MachinePrecision], t$95$404], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$88, N[(3.37555 - t$95$912), $MachinePrecision]], $MachinePrecision], t$95$879], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[(2.751 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 2.851), $MachinePrecision]], $MachinePrecision], t$95$283], $MachinePrecision], t$95$259], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$592, t$95$652], $MachinePrecision], t$95$814], $MachinePrecision], t$95$486], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$652, t$95$814], $MachinePrecision], t$95$46], $MachinePrecision], t$95$259], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[N[(1.851 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 2.576), $MachinePrecision]], $MachinePrecision], N[(0.175 - t$95$661), $MachinePrecision]], $MachinePrecision], N[(t$95$661 - 0.275), $MachinePrecision]], $MachinePrecision], t$95$283], $MachinePrecision], t$95$259], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$206, N[(2.126 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$233], $MachinePrecision], t$95$259], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[(N[(x * 8.13008), $MachinePrecision] - 1.776), $MachinePrecision], t$95$305], $MachinePrecision], t$95$259], $MachinePrecision], t$95$486], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[(4.6 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision], N[(1.862 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(1.962 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$486], $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(N[Power[N[(N[(y * 8.13008), $MachinePrecision] - 5.4), $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[(1.912 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.075), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$923, (-N[(2.762 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$283], $MachinePrecision], t$95$259], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$592, t$95$370], $MachinePrecision], t$95$924], $MachinePrecision], t$95$486], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$46, t$95$370], $MachinePrecision], t$95$924], $MachinePrecision], t$95$259], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[N[(1.762 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], (-t$95$370)], $MachinePrecision], N[(0.175 - t$95$371), $MachinePrecision]], $MachinePrecision], N[(t$95$371 - 0.275), $MachinePrecision]], $MachinePrecision], t$95$283], $MachinePrecision], t$95$259], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$19, N[(2.882 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(2.982 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$259], $MachinePrecision]], $MachinePrecision], N[Max[N[(0.175 - t$95$199), $MachinePrecision], N[(t$95$199 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[t$95$753, N[Min[N[Max[N[Max[N[Max[N[(0.0790005 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], (-N[(0.579001 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$612], $MachinePrecision], t$95$755], $MachinePrecision], N[Max[N[Max[t$95$753, (-N[Min[N[Max[N[Max[N[(t$95$252 - N[(y * 1.21951), $MachinePrecision]), $MachinePrecision], N[(2.34202 - t$95$25), $MachinePrecision]], $MachinePrecision], t$95$487], $MachinePrecision], N[Max[N[Max[N[(t$95$25 - 2.34202), $MachinePrecision], N[(N[(y * 1.21951), $MachinePrecision] - t$95$252), $MachinePrecision]], $MachinePrecision], t$95$967], $MachinePrecision]], $MachinePrecision])], $MachinePrecision], N[(0.175 - t$95$752), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[(0.987 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], (-N[(1.087 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$259], $MachinePrecision], t$95$486], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$865, (-N[(1.55286 + N[(x * 11.6144), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], N[(0.45 - N[Sqrt[N[(t$95$314 + N[Power[N[(1.25357 + N[(x * 14.518), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(t$95$314 + N[Power[t$95$865, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.55), $MachinePrecision]], $MachinePrecision], t$95$259], $MachinePrecision], t$95$486], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$122, (-N[(1.287 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$259], $MachinePrecision], t$95$486], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[(1.637 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], t$95$708], $MachinePrecision], t$95$997], $MachinePrecision], t$95$486], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$122, t$95$708], $MachinePrecision], N[(0.175 - t$95$326), $MachinePrecision]], $MachinePrecision], N[(t$95$326 - 0.275), $MachinePrecision]], $MachinePrecision], t$95$259], $MachinePrecision], t$95$157], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[N[(4.325 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision], N[(1.587 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-t$95$331)], $MachinePrecision], N[(0.175 - t$95$716), $MachinePrecision]], $MachinePrecision], N[(t$95$716 - 0.275), $MachinePrecision]], $MachinePrecision], t$95$714], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$132, t$95$216], $MachinePrecision], t$95$334], $MachinePrecision], t$95$445], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$216, N[(N[(x * 8.13008), $MachinePrecision] - 6.3305), $MachinePrecision]], $MachinePrecision], N[(6.2305 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$89], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[(-N[Min[N[Max[N[Max[N[(N[(y * 2.23577), $MachinePrecision] - t$95$518), $MachinePrecision], N[(N[(x * 4.5122), $MachinePrecision] - 2.94178), $MachinePrecision]], $MachinePrecision], N[(3.05264 - t$95$1014), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[(t$95$1014 - 3.05264), $MachinePrecision], N[(2.94178 - N[(x * 4.5122), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(t$95$518 - N[(y * 2.23577), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]), N[(0.175 - t$95$461), $MachinePrecision]], $MachinePrecision], N[(t$95$461 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$1022, N[(N[(x * 8.13008), $MachinePrecision] - 4.6255), $MachinePrecision]], $MachinePrecision], N[(4.5255 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(t$95$411 + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 4.5755), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.075), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$915, t$95$56], $MachinePrecision], N[(4.3005 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[(0.175 - t$95$468), $MachinePrecision], N[(t$95$468 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$56, t$95$101], $MachinePrecision], N[(3.8505 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(0.175 - t$95$474), $MachinePrecision]], $MachinePrecision], N[(t$95$474 - 0.275), $MachinePrecision]], $MachinePrecision], t$95$283], $MachinePrecision]], $MachinePrecision], N[Max[t$95$732, N[Min[N[Max[N[Max[N[Max[N[(4.242 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], (-N[(4.742 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$612], $MachinePrecision], t$95$755], $MachinePrecision], N[Max[N[Max[t$95$732, (-N[Min[N[Max[N[Max[N[(t$95$105 - N[(y * 1.21951), $MachinePrecision]), $MachinePrecision], N[(1.1972 - t$95$25), $MachinePrecision]], $MachinePrecision], t$95$487], $MachinePrecision], N[Max[N[Max[N[(t$95$25 - 1.1972), $MachinePrecision], N[(N[(y * 1.21951), $MachinePrecision] - t$95$105), $MachinePrecision]], $MachinePrecision], t$95$967], $MachinePrecision]], $MachinePrecision])], $MachinePrecision], N[(0.175 - t$95$731), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$143, (-N[(5.25 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$259], $MachinePrecision], t$95$486], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$244, (-N[(7.5 + N[(x * 11.6144), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], N[(0.45 - N[Sqrt[N[(t$95$314 + N[Power[N[(8.6875 + N[(x * 14.518), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(t$95$314 + N[Power[t$95$244, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.55), $MachinePrecision]], $MachinePrecision], t$95$259], $MachinePrecision], t$95$486], $MachinePrecision]], $MachinePrecision], N[Max[t$95$301, N[Min[N[Max[N[Max[N[Max[N[(5.35 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], (-N[(5.85 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$612], $MachinePrecision], t$95$755], $MachinePrecision], N[Max[N[Max[t$95$301, (-N[Min[N[Max[N[Max[N[(t$95$564 - N[(y * 1.21951), $MachinePrecision]), $MachinePrecision], N[(0.8925 - t$95$25), $MachinePrecision]], $MachinePrecision], t$95$487], $MachinePrecision], N[Max[N[Max[N[(t$95$25 - 0.8925), $MachinePrecision], N[(N[(y * 1.21951), $MachinePrecision] - t$95$564), $MachinePrecision]], $MachinePrecision], t$95$967], $MachinePrecision]], $MachinePrecision])], $MachinePrecision], N[(0.175 - t$95$300), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$311, (-N[(6.15 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], t$95$259], $MachinePrecision], t$95$157], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$779, t$95$283], $MachinePrecision], t$95$259], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$182, t$95$311], $MachinePrecision], N[(0.175 - t$95$655), $MachinePrecision]], $MachinePrecision], N[(t$95$655 - 0.275), $MachinePrecision]], $MachinePrecision], t$95$997], $MachinePrecision], t$95$486], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$89, t$95$570], $MachinePrecision], t$95$334], $MachinePrecision], t$95$445], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$915, t$95$782], $MachinePrecision], N[(0.8705 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[(0.175 - t$95$459), $MachinePrecision], N[(t$95$459 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$101, t$95$782], $MachinePrecision], N[(0.4205 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(0.175 - t$95$473), $MachinePrecision]], $MachinePrecision], N[(t$95$473 - 0.275), $MachinePrecision]], $MachinePrecision], t$95$283], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$1022, t$95$327], $MachinePrecision], N[(0.220499 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$3, N[(0.129501 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$999], $MachinePrecision], t$95$126], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$455, t$95$327], $MachinePrecision], t$95$999], $MachinePrecision], N[(0.175 - t$95$506), $MachinePrecision]], $MachinePrecision], N[(t$95$506 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[(0.175 - t$95$457), $MachinePrecision], N[(t$95$457 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$1022, N[(1.2375 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(1.3375 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$1022, t$95$133], $MachinePrecision], (-N[(1.91072 + N[(x * 11.6144), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], N[(0.45 - N[Sqrt[N[(t$95$587 + N[Power[N[(1.70089 + N[(x * 14.518), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(t$95$587 + N[Power[t$95$133, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.55), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$350, N[(N[(x * 8.13008), $MachinePrecision] - 3.7305), $MachinePrecision]], $MachinePrecision], N[(3.6305 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[(0.175 - t$95$726), $MachinePrecision], N[(t$95$726 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$350, N[(N[(x * 8.13008), $MachinePrecision] - 3.0705), $MachinePrecision]], $MachinePrecision], N[(2.9705 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$350, N[(N[(x * 8.13008), $MachinePrecision] - 2.8205), $MachinePrecision]], $MachinePrecision], N[(2.7205 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$216, N[(N[(y * 8.13008), $MachinePrecision] - 6.325), $MachinePrecision]], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 2.5705), $MachinePrecision]], $MachinePrecision], t$95$189], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$189, t$95$540], $MachinePrecision], N[(6.15 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 3.1205), $MachinePrecision]], $MachinePrecision], N[Min[N[Max[N[(0.075 - t$95$349), $MachinePrecision], N[(t$95$349 - 0.175), $MachinePrecision]], $MachinePrecision], N[Max[N[(0.075 - t$95$548), $MachinePrecision], N[(t$95$548 - 0.175), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$455, t$95$103], $MachinePrecision], N[(1.5205 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$422, N[(N[(x * 8.13008), $MachinePrecision] - 1.1705), $MachinePrecision]], $MachinePrecision], t$95$603], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$3, t$95$103], $MachinePrecision], t$95$603], $MachinePrecision], t$95$126], $MachinePrecision], N[(0.175 - t$95$458), $MachinePrecision]], $MachinePrecision], N[(t$95$458 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Min[N[Max[N[Max[N[Max[t$95$850, N[(N[(x * 8.13008), $MachinePrecision] - 6.4085), $MachinePrecision]], $MachinePrecision], N[(5.9085 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$154], $MachinePrecision], N[Max[N[Max[(-N[Min[N[Max[N[Max[t$95$610, N[(N[(x * 2.23577), $MachinePrecision] - t$95$852), $MachinePrecision]], $MachinePrecision], N[(3.57609 - t$95$25), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[(t$95$25 - 3.57609), $MachinePrecision], N[(t$95$852 - N[(x * 2.23577), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$302], $MachinePrecision]], $MachinePrecision]), N[(0.175 - t$95$622), $MachinePrecision]], $MachinePrecision], t$95$959], $MachinePrecision]], $MachinePrecision], t$95$959], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$254, N[(N[(x * 8.13008), $MachinePrecision] - 5.7585), $MachinePrecision]], $MachinePrecision], N[(5.6585 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$254, N[(N[(x * 8.13008), $MachinePrecision] - 5.5085), $MachinePrecision]], $MachinePrecision], N[(5.4085 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$253, N[(N[(y * 8.13008), $MachinePrecision] - 4.125), $MachinePrecision]], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 5.2585), $MachinePrecision]], $MachinePrecision], t$95$312], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$312, N[(N[(y * 8.13008), $MachinePrecision] - 4.25), $MachinePrecision]], $MachinePrecision], N[(3.95 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 5.8085), $MachinePrecision]], $MachinePrecision], N[Min[N[Max[N[(0.075 - t$95$266), $MachinePrecision], N[(t$95$266 - 0.175), $MachinePrecision]], $MachinePrecision], N[Max[N[(0.075 - t$95$707), $MachinePrecision], N[(t$95$707 - 0.175), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$1018, t$95$197], $MachinePrecision], t$95$374], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$94, t$95$374], $MachinePrecision], t$95$392], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$523, t$95$373], $MachinePrecision], (-t$95$392)], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$642, N[(6.09 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(6.19 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[Max[N[(0.175 - t$95$328), $MachinePrecision], N[(t$95$328 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[t$95$1001, N[Min[N[Max[N[Max[t$95$578, t$95$242], $MachinePrecision], (-t$95$144)], $MachinePrecision], N[Max[N[Max[t$95$1001, (-N[Min[N[Max[N[Max[t$95$277, N[(t$95$717 - N[(y * 1.21951), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-t$95$1007)], $MachinePrecision], N[Max[N[Max[t$95$39, t$95$1007], $MachinePrecision], N[(N[(y * 1.21951), $MachinePrecision] - t$95$717), $MachinePrecision]], $MachinePrecision]], $MachinePrecision])], $MachinePrecision], N[(0.175 - t$95$1000), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$294, t$95$381], $MachinePrecision], t$95$175], $MachinePrecision], (-N[(7.55 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$382, N[(7.9 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$33], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$294, t$95$16], $MachinePrecision], t$95$976], $MachinePrecision], t$95$33], $MachinePrecision], N[(0.175 - t$95$514), $MachinePrecision]], $MachinePrecision], N[(t$95$514 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$715, N[(2.121 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 2.846), $MachinePrecision]], $MachinePrecision], N[(0.175 - t$95$621), $MachinePrecision]], $MachinePrecision], N[(t$95$621 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[t$95$816, N[Min[N[Max[N[Max[t$95$851, N[(N[(x * 8.13008), $MachinePrecision] - 2.496), $MachinePrecision]], $MachinePrecision], N[(1.996 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$816, (-N[Min[N[Max[N[Max[t$95$610, N[(N[(x * 2.23577), $MachinePrecision] - t$95$51), $MachinePrecision]], $MachinePrecision], N[(2.50015 - t$95$25), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$302, N[(t$95$25 - 2.50015), $MachinePrecision]], $MachinePrecision], N[(t$95$51 - N[(x * 2.23577), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision])], $MachinePrecision], N[(0.175 - t$95$815), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$253, N[(N[(x * 8.13008), $MachinePrecision] - 1.588), $MachinePrecision]], $MachinePrecision], N[(1.488 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$59], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$253, t$95$416], $MachinePrecision], N[(2.12571 - N[(x * 11.6144), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(0.45 - N[Sqrt[N[(t$95$925 + N[Power[N[(N[(x * 14.518), $MachinePrecision] - 3.34464), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(t$95$925 + N[Power[t$95$416, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.55), $MachinePrecision]], $MachinePrecision], t$95$59], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$253, N[(N[(x * 8.13008), $MachinePrecision] - 1.363), $MachinePrecision]], $MachinePrecision], N[(1.263 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$59], $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(N[Power[N[(N[(y * 8.13008), $MachinePrecision] - 4.3), $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[(N[(x * 8.13008), $MachinePrecision] - 1.313), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.075), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$253, t$95$609], $MachinePrecision], N[(1.038 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$59], $MachinePrecision]], $MachinePrecision], N[Max[N[(t$95$616 - 0.275), $MachinePrecision], N[(0.175 - t$95$616), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[(-N[Min[N[Max[N[Max[N[Max[t$95$850, N[(N[(y * 8.13008), $MachinePrecision] - 3.9875), $MachinePrecision]], $MachinePrecision], t$95$955], $MachinePrecision], N[(N[(x * 5.42005), $MachinePrecision] - 2.939), $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(N[Power[N[(3.985 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[(1.84933 - N[(x * 3.61337), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.0625), $MachinePrecision]], $MachinePrecision]), N[(N[Sqrt[N[(N[Power[N[(3.9875 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + N[Power[t$95$955, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.1625), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[(-N[Min[N[Max[N[Max[N[Max[N[(N[(y * 8.13008), $MachinePrecision] - 3.925), $MachinePrecision], N[(3.7625 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$700], $MachinePrecision], N[(2.614 - N[(x * 5.42005), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(N[Power[N[(N[(y * 8.13008), $MachinePrecision] - 3.765), $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[(N[(x * 3.61337), $MachinePrecision] - 1.85267), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.0625), $MachinePrecision]], $MachinePrecision]), N[(N[Sqrt[N[(N[Power[N[(N[(y * 8.13008), $MachinePrecision] - 3.7625), $MachinePrecision], 2.0], $MachinePrecision] + N[Power[t$95$700, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.1625), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$715, N[(3.021 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 3.121), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$59, N[(4.05 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$522], $MachinePrecision], t$95$499], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$253, t$95$522], $MachinePrecision], t$95$499], $MachinePrecision], t$95$783], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$255, t$95$212], $MachinePrecision], (-N[(1.67143 + N[(x * 11.6144), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], N[(0.45 - N[Sqrt[N[(t$95$925 + N[Power[N[(1.40179 + N[(x * 14.518), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(t$95$925 + N[Power[t$95$212, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.55), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[t$95$620, N[Min[N[Max[N[Max[t$95$851, N[(1.97 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(2.47 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], N[Max[N[Max[t$95$620, (-N[Min[N[Max[N[Max[t$95$610, N[(t$95$507 - N[(y * 1.21951), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(1.272 - t$95$25), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$302, N[(t$95$25 - 1.272), $MachinePrecision]], $MachinePrecision], N[(N[(y * 1.21951), $MachinePrecision] - t$95$507), $MachinePrecision]], $MachinePrecision]], $MachinePrecision])], $MachinePrecision], N[(0.175 - t$95$619), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$217, N[(t$95$332 - N[(y * 2.03252), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$512], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$809, N[(N[(y * 2.03252), $MachinePrecision] - t$95$332), $MachinePrecision]], $MachinePrecision], t$95$1011], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$809, t$95$134], $MachinePrecision], N[(N[(y * 2.03252), $MachinePrecision] - t$95$221), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$512, N[(t$95$221 - N[(y * 2.03252), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$515], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$217, (-t$95$727)], $MachinePrecision], t$95$41], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$1011, t$95$727], $MachinePrecision], t$95$285], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$134, t$95$285], $MachinePrecision], t$95$452], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$515, t$95$41], $MachinePrecision], (-t$95$452)], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$254, N[(3.34 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(3.44 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$412, N[(N[(x * 8.13008), $MachinePrecision] - 0.688), $MachinePrecision]], $MachinePrecision], t$95$595], $MachinePrecision], t$95$59], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$614, t$95$609], $MachinePrecision], t$95$595], $MachinePrecision], N[(0.175 - t$95$617), $MachinePrecision]], $MachinePrecision], N[(t$95$617 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$59, N[(3.225 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 0.487999), $MachinePrecision]], $MachinePrecision], N[(0.387999 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[(0.175 - t$95$618), $MachinePrecision], N[(t$95$618 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[t$95$678, N[Min[N[Max[N[Max[t$95$851, N[(0.162001 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(0.662001 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], N[Max[N[Max[t$95$678, (-N[Min[N[Max[N[Max[t$95$610, N[(t$95$13 - N[(y * 1.21951), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(1.7692 - t$95$25), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$302, N[(t$95$25 - 1.7692), $MachinePrecision]], $MachinePrecision], N[(N[(y * 1.21951), $MachinePrecision] - t$95$13), $MachinePrecision]], $MachinePrecision]], $MachinePrecision])], $MachinePrecision], N[(0.175 - t$95$677), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$255, N[(1.07 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(1.17 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[Max[N[Min[N[Max[N[Max[(-N[Min[N[Max[N[Max[t$95$487, N[(N[(x * 2.23577), $MachinePrecision] - t$95$479), $MachinePrecision]], $MachinePrecision], N[(4.04153 - t$95$25), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[(t$95$25 - 4.04153), $MachinePrecision], N[(t$95$479 - N[(x * 2.23577), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$967], $MachinePrecision]], $MachinePrecision]), N[(0.175 - t$95$159), $MachinePrecision]], $MachinePrecision], t$95$386], $MachinePrecision], N[Max[N[Max[N[Max[t$95$612, t$95$755], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 6.101), $MachinePrecision]], $MachinePrecision], N[(5.601 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], t$95$386], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$112, N[(5.301 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$259], $MachinePrecision], t$95$157], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$283, N[(N[(x * 8.13008), $MachinePrecision] - 4.951), $MachinePrecision]], $MachinePrecision], t$95$629], $MachinePrecision], t$95$259], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$112, t$95$629], $MachinePrecision], t$95$997], $MachinePrecision], N[(0.175 - t$95$166), $MachinePrecision]], $MachinePrecision], N[(t$95$166 - 0.275), $MachinePrecision]], $MachinePrecision], t$95$486], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$649, N[(N[(x * 4.47154), $MachinePrecision] - t$95$703), $MachinePrecision]], $MachinePrecision], t$95$975], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$974, N[(t$95$703 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$86], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$974, t$95$404], $MachinePrecision], N[(t$95$438 - N[(x * 4.47154), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$975, N[(N[(x * 4.47154), $MachinePrecision] - t$95$438), $MachinePrecision]], $MachinePrecision], t$95$879], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$649, N[(3.59555 - t$95$912), $MachinePrecision]], $MachinePrecision], t$95$998], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$86, t$95$172], $MachinePrecision], N[(t$95$912 - 3.59555), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$404, t$95$172], $MachinePrecision], N[(t$95$912 - 3.65055), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[(0.175 - t$95$623), $MachinePrecision], N[(t$95$623 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$614, t$95$174], $MachinePrecision], (-N[(4.15 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$179, t$95$274], $MachinePrecision], t$95$253], $MachinePrecision], t$95$714], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$274, t$95$412], $MachinePrecision], t$95$59], $MachinePrecision], t$95$174], $MachinePrecision], N[(0.175 - t$95$1002), $MachinePrecision]], $MachinePrecision], N[(t$95$1002 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$714, N[(4.5 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$443], $MachinePrecision], t$95$508], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$253, t$95$783], $MachinePrecision], t$95$443], $MachinePrecision], t$95$508], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$715, t$95$45], $MachinePrecision], (-N[(5.7 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$233, t$95$259], $MachinePrecision], t$95$276], $MachinePrecision], N[(6.651 - N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$259, t$95$486], $MachinePrecision], N[(N[(x * 8.13008), $MachinePrecision] - 6.30101), $MachinePrecision]], $MachinePrecision], t$95$900], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$276, t$95$486], $MachinePrecision], t$95$900], $MachinePrecision], t$95$627], $MachinePrecision], N[(0.175 - t$95$339), $MachinePrecision]], $MachinePrecision], N[(t$95$339 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$127, t$95$92], $MachinePrecision], t$95$136], $MachinePrecision], N[(0.175 - t$95$460), $MachinePrecision]], $MachinePrecision], N[(t$95$460 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$588, N[(3.825 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(3.925 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$541, t$95$322], $MachinePrecision], t$95$142], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$216, t$95$322], $MachinePrecision], t$95$142], $MachinePrecision], t$95$596], $MachinePrecision], N[(0.15 - t$95$918), $MachinePrecision]], $MachinePrecision], N[(t$95$918 - 0.25), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$588, N[(5.025 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(5.125 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$541, t$95$542], $MachinePrecision], t$95$881], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[N[Max[t$95$216, t$95$596], $MachinePrecision], t$95$542], $MachinePrecision], t$95$881], $MachinePrecision], N[(0.15 - t$95$917), $MachinePrecision]], $MachinePrecision], N[(t$95$917 - 0.25), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$417, t$95$3], $MachinePrecision], (-N[(5.475 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$127, N[(5.825 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$11], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$417, t$95$454], $MachinePrecision], t$95$11], $MachinePrecision], N[(0.175 - t$95$462), $MachinePrecision]], $MachinePrecision], N[(t$95$462 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$779, t$95$216], $MachinePrecision], t$95$89], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$519, t$95$89], $MachinePrecision], t$95$570], $MachinePrecision], t$95$107], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$519, t$95$3], $MachinePrecision], t$95$107], $MachinePrecision], N[(6.25 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[t$95$519, t$95$132], $MachinePrecision], t$95$216], $MachinePrecision], t$95$107], $MachinePrecision]], $MachinePrecision], N[Max[(-N[Min[N[Max[N[Max[N[Max[N[(6.025 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision], N[(N[(y * 8.13008), $MachinePrecision] - 6.1875), $MachinePrecision]], $MachinePrecision], t$95$202], $MachinePrecision], N[(1.425 + N[(x * 5.42005), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(N[Power[N[(6.185 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + N[Power[(-N[(1.06 + N[(x * 3.61337), $MachinePrecision]), $MachinePrecision]), 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.0625), $MachinePrecision]], $MachinePrecision]), N[(N[Sqrt[N[(N[Power[N[(6.1875 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] + N[Power[t$95$202, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.1625), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[(-N[Min[N[Max[N[Max[N[Max[N[(N[(y * 8.13008), $MachinePrecision] - 6.125), $MachinePrecision], N[(5.9625 - N[(y * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$201], $MachinePrecision], (-N[(1.75 + N[(x * 5.42005), $MachinePrecision]), $MachinePrecision])], $MachinePrecision], N[(N[Sqrt[N[(N[Power[N[(N[(y * 8.13008), $MachinePrecision] - 5.965), $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[(1.05667 + N[(x * 3.61337), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.0625), $MachinePrecision]], $MachinePrecision]), N[(N[Sqrt[N[(N[Power[N[(N[(y * 8.13008), $MachinePrecision] - 5.9625), $MachinePrecision], 2.0], $MachinePrecision] + N[Power[t$95$201, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.1625), $MachinePrecision]], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$1022, N[(2.75 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], (-N[(2.85 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[(N[Sqrt[N[(t$95$411 + N[Power[N[(2.8 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - 0.075), $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$455, t$95$92], $MachinePrecision], (-N[(3.125 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision])], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[t$95$422, N[(3.475 + N[(x * 8.13008), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], t$95$136], $MachinePrecision]], $MachinePrecision], N[Max[N[Max[N[Max[N[Max[t$95$45, t$95$216], $MachinePrecision], t$95$89], $MachinePrecision], (-t$95$107)], $MachinePrecision], N[Min[N[Max[N[(0.175 - t$95$870), $MachinePrecision], N[(t$95$870 - 0.275), $MachinePrecision]], $MachinePrecision], N[Max[N[(0.175 - t$95$214), $MachinePrecision], N[(t$95$214 - 0.275), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision]], $MachinePrecision]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
\begin{array}{l} \\ \begin{array}{l} t_0 := x \cdot 8.13008 - 0.0979996\\ t_1 := y \cdot 8.13008 - 2.4\\ t_2 := {\left(0.0999999 + y \cdot 8.13008\right)}^{2}\\ t_3 := y \cdot 8.13008 - 6.35\\ t_4 := x \cdot 11.6144 - 3.18286\\ t_5 := 2.35 + y \cdot 8.13008\\ t_6 := 3.5125 + x \cdot 4.47154\\ t_7 := {\left(7.725 + x \cdot 8.13008\right)}^{2}\\ t_8 := -\left(0.3955 + x \cdot 5.42005\right)\\ t_9 := 4 + y \cdot 8.13008\\ t_10 := 0.15 + y \cdot 8.13008\\ t_11 := -\left(5.925 + x \cdot 8.13008\right)\\ t_12 := 3.716 + x \cdot 4.47154\\ t_13 := 0.5708 + x \cdot 2.23577\\ t_14 := 0.5175 + x \cdot 5.42005\\ t_15 := 1.38723 + x \cdot 4.47154\\ t_16 := y \cdot 8.13008 - 3.05\\ t_17 := \left(1.80223 + y \cdot 1.82927\right) + x \cdot 4.47154\\ t_18 := 1.12 + x \cdot 8.13008\\ t_19 := y \cdot 8.13008 - 5.05\\ t_20 := 0.750575 + y \cdot 1.21951\\ t_21 := 2.95 + x \cdot 8.13008\\ t_22 := y \cdot 2.64228 + x \cdot 4.47154\\ t_23 := 0.9305 - x \cdot 8.13008\\ t_24 := y \cdot 8.13008 - 2.575\\ t_25 := x \cdot 2.23577 + y \cdot 4.06504\\ t_26 := 1.0405 + x \cdot 2.23577\\ t_27 := x \cdot 8.13008 - 5.5355\\ t_28 := x \cdot 5.42005 - 2.2095\\ t_29 := 7.98571 + x \cdot 11.6144\\ t_30 := -\left(5.2 + x \cdot 8.13008\right)\\ t_31 := 2.12 + y \cdot 3.25203\\ t_32 := 2.65 + y \cdot 8.13008\\ t_33 := -\left(8 + x \cdot 8.13008\right)\\ t_34 := y \cdot 8.13008 - 0.2\\ t_35 := x \cdot 5.42005 - 3.0345\\ t_36 := x \cdot 8.13008 - 2.9705\\ t_37 := \left(y \cdot 2.84553 + 4.13\right) + x \cdot 4.47154\\ t_38 := 6.275 + x \cdot 8.13008\\ t_39 := 1.80375 - y \cdot 5.28455\\ t_40 := \left(y \cdot 2.03252 + 2.5375\right) + x \cdot 4.47154\\ t_41 := \left(0.318501 + y \cdot 2.84553\right) + x \cdot 4.47154\\ t_42 := 5.162 + x \cdot 8.13008\\ t_43 := 4.875 + y \cdot 8.13008\\ t_44 := \left(1.89845 + y \cdot 2.60163\right) + x \cdot 2.84553\\ t_45 := 5.6 + x \cdot 8.13008\\ t_46 := y \cdot 8.13008 - 4.8\\ t_47 := 0.9 + y \cdot 8.13008\\ t_48 := 1.43045 + x \cdot 2.84553\\ t_49 := y \cdot 2.84553 + x \cdot 4.47154\\ t_50 := t\_49 - 4.45138\\ t_51 := 0.16015 + y \cdot 1.21951\\ t_52 := 6.25 + x \cdot 8.13008\\ t_53 := 1.625 + y \cdot 8.13008\\ t_54 := {t\_53}^{2}\\ t_55 := \sqrt{t\_54 + {\left(5.242 + x \cdot 8.13008\right)}^{2}}\\ t_56 := x \cdot 8.13008 - 4.4005\\ t_57 := \left(y \cdot 2.03252 + 2.8125\right) + x \cdot 4.47154\\ t_58 := \left(y \cdot 2.03252 + 2.24435\right) + x \cdot 4.47154\\ t_59 := y \cdot 8.13008 - 4.15\\ t_60 := 0.55 + y \cdot 8.13008\\ t_61 := {\left(0.685 - y \cdot 8.13008\right)}^{2}\\ t_62 := 4.675 + y \cdot 8.13008\\ t_63 := 4.025 + y \cdot 8.13008\\ t_64 := 0.5935 - x \cdot 8.13008\\ t_65 := 1.30723 + x \cdot 4.47154\\ t_66 := t\_65 - y \cdot 2.64228\\ t_67 := 1.7375 + y \cdot 8.13008\\ t_68 := 1.725 - y \cdot 8.13008\\ t_69 := -\left(2.37 + x \cdot 8.13008\right)\\ t_70 := 3.575 + x \cdot 8.13008\\ t_71 := -\left(1.45 + y \cdot 8.13008\right)\\ t_72 := 3.0345 - x \cdot 5.42005\\ t_73 := x \cdot 8.13008 - 3.931\\ t_74 := y \cdot 8.13008 - 3.5\\ t_75 := \left(1.91435 + y \cdot 2.03252\right) + x \cdot 4.47154\\ t_76 := {\left(-\left(0.415 + y \cdot 8.13008\right)\right)}^{2}\\ t_77 := \left(2.09318 + x \cdot 2.23577\right) + y \cdot 4.06504\\ t_78 := x \cdot 8.13008 - 1.958\\ t_79 := 2.08 + x \cdot 2.23577\\ t_80 := 1.8 + y \cdot 8.13008\\ t_81 := 0.120625 + x \cdot 2.23577\\ t_82 := 5.75 + y \cdot 8.13008\\ t_83 := 5.375 + x \cdot 8.13008\\ t_84 := -t\_83\\ t_85 := 1.728 + y \cdot 2.19512\\ t_86 := y \cdot 0.813008 - 0.47\\ t_87 := 1.82238 - t\_49\\ t_88 := t\_49 - 3.84555\\ t_89 := y \cdot 8.13008 - 6.8\\ t_90 := 6.5 + x \cdot 8.13008\\ t_91 := x \cdot 8.13008 - 4.8855\\ t_92 := 3.025 + x \cdot 8.13008\\ t_93 := 0.45 + y \cdot 4.06504\\ t_94 := y \cdot 0.813008 - 0.305\\ t_95 := 0.6375 + y \cdot 2.84553\\ t_96 := t\_95 - x \cdot 4.47154\\ t_97 := y \cdot 5.28455 - 0.37375\\ t_98 := x \cdot 8.13008 - 6.61401\\ t_99 := 0.685 + y \cdot 0.813008\\ t_100 := -\left(0.550001 + x \cdot 8.13008\right)\\ t_101 := 5.425 - y \cdot 8.13008\\ t_102 := y \cdot 0.813008 - 0.195\\ t_103 := x \cdot 8.13008 - 1.6205\\ t_104 := {\left(y \cdot 8.13008 - 3.2\right)}^{2}\\ t_105 := 1.8578 + x \cdot 2.23577\\ t_106 := 1.42 + x \cdot 2.23577\\ t_107 := 6.3 + x \cdot 8.13008\\ t_108 := {t\_107}^{2}\\ t_109 := 5.812 + x \cdot 8.13008\\ t_110 := 0.11375 + x \cdot 2.23577\\ t_111 := 1.23565 + y \cdot 2.03252\\ t_112 := x \cdot 8.13008 - 5.401\\ t_113 := 0.545 + x \cdot 4.47154\\ t_114 := y \cdot 2.84553 - t\_113\\ t_115 := 0.19 + y \cdot 0.813008\\ t_116 := 2.42975 + x \cdot 4.47154\\ t_117 := t\_116 - y \cdot 1.82927\\ t_118 := y \cdot 8.13008 - 2.05\\ t_119 := 4.63929 + x \cdot 11.6144\\ t_120 := 0.725 + y \cdot 8.13008\\ t_121 := \left(1.35975 + y \cdot 1.82927\right) + x \cdot 4.47154\\ t_122 := 1.187 + x \cdot 8.13008\\ t_123 := 2.55 + x \cdot 8.13008\\ t_124 := -t\_123\\ t_125 := y \cdot 3.41463 + 5.9037\\ t_126 := 6.075 - y \cdot 8.13008\\ t_127 := \mathsf{max}\left(t\_3, t\_126\right)\\ t_128 := 1.132 + x \cdot 8.13008\\ t_129 := -t\_128\\ t_130 := 2.75 + y \cdot 8.13008\\ t_131 := -t\_130\\ t_132 := y \cdot 8.13008 - 5.9\\ t_133 := 1.36071 + x \cdot 11.6144\\ t_134 := y \cdot 0.813008 - 0.415\\ t_135 := 0.465 + y \cdot 0.813008\\ t_136 := -t\_70\\ t_137 := 1.7935 + x \cdot 4.06504\\ t_138 := 1.558 - x \cdot 8.13008\\ t_139 := 5.54551 - x \cdot 8.13008\\ t_140 := {t\_32}^{2}\\ t_141 := \sqrt{t\_140 + {\left(x \cdot 8.13008 - 1.323\right)}^{2}}\\ t_142 := -\left(4.075 + x \cdot 8.13008\right)\\ t_143 := 5.15 + x \cdot 8.13008\\ t_144 := 7.25 + x \cdot 8.13008\\ t_145 := \left(1.87595 + y \cdot 2.19512\right) + x \cdot 2.84553\\ t_146 := 4.1025 - x \cdot 8.13008\\ t_147 := -\left(1.575 + x \cdot 8.13008\right)\\ t_148 := t\_49 - 1.6725\\ t_149 := 0.5575 + y \cdot 2.03252\\ t_150 := 1.65925 + x \cdot 2.23577\\ t_151 := 4.021 + x \cdot 4.47154\\ t_152 := y \cdot 2.84553 - t\_151\\ t_153 := y \cdot 8.13008 - 1.95\\ t_154 := y \cdot 8.13008 - 3.915\\ t_155 := 0.08 + y \cdot 0.813008\\ t_156 := 0.395501 + x \cdot 5.42005\\ t_157 := y \cdot 8.13008 - 4.975\\ t_158 := {t\_157}^{2}\\ t_159 := \sqrt{t\_158 + {\left(x \cdot 8.13008 - 5.826\right)}^{2}}\\ t_160 := \left(1.82723 + y \cdot 2.64228\right) + x \cdot 4.47154\\ t_161 := y \cdot 8.13008 - 3.95\\ t_162 := 3.531 - x \cdot 8.13008\\ t_163 := -\left(4.975 + y \cdot 8.13008\right)\\ t_164 := \mathsf{max}\left(4.885 + y \cdot 8.13008, t\_163\right)\\ t_165 := \left(1.91443 + x \cdot 2.23577\right) + y \cdot 4.06504\\ t_166 := \sqrt{{\left(x \cdot 8.13008 - 5.126\right)}^{2} + t\_158}\\ t_167 := 3.7375 + x \cdot 5.42005\\ t_168 := -t\_167\\ t_169 := {\left(y \cdot 8.13008 - 0.3\right)}^{2}\\ t_170 := 0.597376 + y \cdot 2.03252\\ t_171 := 2.932 + x \cdot 8.13008\\ t_172 := 4.12055 - t\_49\\ t_173 := 2.375 + x \cdot 8.13008\\ t_174 := 4.05 + x \cdot 8.13008\\ t_175 := y \cdot 8.13008 - 2.775\\ t_176 := {t\_175}^{2}\\ t_177 := \sqrt{t\_176 + {\left(1.395 + x \cdot 8.13008\right)}^{2}}\\ t_178 := \sqrt{t\_176 + {\left(x \cdot 8.13008 - 3.7975\right)}^{2}}\\ t_179 := 4.5 + x \cdot 8.13008\\ t_180 := \left(x \cdot 2.23577 + 2.9905\right) + y \cdot 4.06504\\ t_181 := 0.6945 + x \cdot 8.13008\\ t_182 := -\left(6.6 + x \cdot 8.13008\right)\\ t_183 := 4.2 + y \cdot 8.13008\\ t_184 := \left(2.3425 + y \cdot 2.84553\right) + x \cdot 4.47154\\ t_185 := 4.4855 - x \cdot 8.13008\\ t_186 := \left(1.885 + x \cdot 2.23577\right) + y \cdot 4.06504\\ t_187 := 3.4575 + x \cdot 4.47154\\ t_188 := x \cdot 8.13008 - 3.1805\\ t_189 := 2.4705 - x \cdot 8.13008\\ t_190 := 6.8 + x \cdot 8.13008\\ t_191 := -t\_190\\ t_192 := 6.11401 - x \cdot 8.13008\\ t_193 := \left(2.6175 + y \cdot 2.84553\right) + x \cdot 4.47154\\ t_194 := \left(2.81935 + y \cdot 2.84553\right) + x \cdot 4.47154\\ t_195 := y \cdot 0.813008 + 0.880675\\ t_196 := 1.3292 + x \cdot 2.84553\\ t_197 := \left(y \cdot 2.03252 + 2.521\right) + x \cdot 4.47154\\ t_198 := 5.975 + y \cdot 8.13008\\ t_199 := \sqrt{{\left(\left(4.58486 + x \cdot 8.13008\right) - y \cdot 2.32288\right)}^{2} + t\_158}\\ t_200 := 1.15 + y \cdot 8.13008\\ t_201 := 1.5875 + x \cdot 5.42005\\ t_202 := -t\_201\\ t_203 := 2.775 + x \cdot 8.13008\\ t_204 := -\left(6.212 + x \cdot 8.13008\right)\\ t_205 := 7.50251 - x \cdot 8.13008\\ t_206 := x \cdot 8.13008 - 2.226\\ t_207 := 0.245 + y \cdot 0.813008\\ t_208 := -t\_207\\ t_209 := 0.6516 + x \cdot 4.47154\\ t_210 := y \cdot 1.82927 - t\_209\\ t_211 := 2.8375 + y \cdot 8.13008\\ t_212 := 1.12143 + x \cdot 11.6144\\ t_213 := 0.475 + y \cdot 8.13008\\ t_214 := \sqrt{t\_108 + {\left(y \cdot 8.13008 - 6.525\right)}^{2}}\\ t_215 := 0.267376 + y \cdot 2.03252\\ t_216 := 5.8 - y \cdot 8.13008\\ t_217 := 0.36 - y \cdot 0.813008\\ t_218 := {\left(y \cdot 8.13008 - 0.465\right)}^{2}\\ t_219 := 0.52 + y \cdot 0.813008\\ t_220 := -t\_219\\ t_221 := 2.5335 + x \cdot 4.47154\\ t_222 := 1.66785 + x \cdot 4.47154\\ t_223 := 0.25 - y \cdot 0.813008\\ t_224 := 1.95355 + x \cdot 5.28455\\ t_225 := y \cdot 2.03252 + 2.89638\\ t_226 := x \cdot 8.13008 - 5.7205\\ t_227 := -\left(7.35 + x \cdot 8.13008\right)\\ t_228 := x \cdot 4.47154 - t\_95\\ t_229 := 1.12595 + y \cdot 1.21951\\ t_230 := 4.07 + x \cdot 8.13008\\ t_231 := 4.45138 - t\_49\\ t_232 := 0.90565 + y \cdot 2.03252\\ t_233 := y \cdot 8.13008 - 5.025\\ t_234 := 2.2095 - x \cdot 5.42005\\ t_235 := 3.55 + y \cdot 8.13008\\ t_236 := \mathsf{max}\left(3.45 + y \cdot 8.13008, -t\_235\right)\\ t_237 := \mathsf{max}\left(t\_235, -\left(3.65 + y \cdot 8.13008\right)\right)\\ t_238 := y \cdot 1.82927 + 2.5769\\ t_239 := t\_238 - x \cdot 4.47154\\ t_240 := x \cdot 4.47154 - t\_238\\ t_241 := 6.0955 - x \cdot 8.13008\\ t_242 := 6.75 + x \cdot 8.13008\\ t_243 := t\_25 + 4.085\\ t_244 := 6.95 + x \cdot 11.6144\\ t_245 := y \cdot 8.13008 - 2.825\\ t_246 := -\left(2.775 + y \cdot 8.13008\right)\\ t_247 := y \cdot 1.82927 - t\_15\\ t_248 := 0.0499997 + y \cdot 8.13008\\ t_249 := \left(x \cdot 2.23577 + 3.49375\right) + y \cdot 4.06504\\ t_250 := 1.81065 + y \cdot 2.84553\\ t_251 := t\_250 - x \cdot 4.47154\\ t_252 := 0.712975 + x \cdot 2.23577\\ t_253 := 3.6 - y \cdot 8.13008\\ t_254 := \mathsf{max}\left(t\_161, t\_253\right)\\ t_255 := \mathsf{max}\left(t\_253, t\_59\right)\\ t_256 := x \cdot 5.42005 - 0.951167\\ t_257 := 2.67975 + x \cdot 4.47154\\ t_258 := y \cdot 2.64228 - t\_257\\ t_259 := 4.7 - y \cdot 8.13008\\ t_260 := y \cdot 1.82927 + 3.10243\\ t_261 := t\_260 - x \cdot 4.47154\\ t_262 := 2.807 + x \cdot 8.13008\\ t_263 := y \cdot 0.813008 + 1.89365\\ t_264 := 0.135 + y \cdot 0.813008\\ t_265 := {t\_161}^{2}\\ t_266 := \sqrt{t\_265 + {\left(x \cdot 8.13008 - 5.5835\right)}^{2}}\\ t_267 := \left(1.05475 + y \cdot 2.64228\right) + x \cdot 4.47154\\ t_268 := {\left(x \cdot 8.13008 - 0.695499\right)}^{2}\\ t_269 := {\left(y \cdot 8.13008 - 1.4\right)}^{2}\\ t_270 := -\left(3.482 + x \cdot 8.13008\right)\\ t_271 := y \cdot 8.13008 - 4.775\\ t_272 := 4.95 + y \cdot 8.13008\\ t_273 := \left(0.2581 + y \cdot 1.82927\right) + x \cdot 4.47154\\ t_274 := -\left(4.6 + x \cdot 8.13008\right)\\ t_275 := 2.282 + x \cdot 8.13008\\ t_276 := x \cdot 8.13008 - 6.75101\\ t_277 := y \cdot 5.28455 - 1.80375\\ t_278 := x \cdot 8.13008 - 5.1955\\ t_279 := y \cdot 3.25203 + 5.1769\\ t_280 := {t\_130}^{2}\\ t_281 := 3.84555 - t\_49\\ t_282 := 0.898001 - x \cdot 8.13008\\ t_283 := y \cdot 8.13008 - 5.7\\ t_284 := 1.10808 + y \cdot 1.21951\\ t_285 := -t\_41\\ t_286 := y \cdot 8.13008 - 0.615\\ t_287 := 0.3625 + y \cdot 2.84553\\ t_288 := t\_287 - x \cdot 4.47154\\ t_289 := \left(0.03425 + x \cdot 2.23577\right) + y \cdot 4.06504\\ t_290 := 2.875 + x \cdot 8.13008\\ t_291 := 1.083 - x \cdot 8.13008\\ t_292 := 1.825 + y \cdot 8.13008\\ t_293 := 6.48101 - x \cdot 8.13008\\ t_294 := 7.45 + x \cdot 8.13008\\ t_295 := 1.05625 + y \cdot 5.28455\\ t_296 := y \cdot 8.13008 - 1.475\\ t_297 := x \cdot 8.13008 - 0.282999\\ t_298 := 4.881 - x \cdot 8.13008\\ t_299 := y \cdot 8.13008 - 0.55\\ t_300 := \sqrt{{\left(5.625 + x \cdot 8.13008\right)}^{2} + t\_158}\\ t_301 := t\_300 - 0.275\\ t_302 := 2.51875 - y \cdot 5.28455\\ t_303 := 3.3 + x \cdot 8.13008\\ t_304 := x \cdot 8.13008 - 6.408\\ t_305 := 1.676 - x \cdot 8.13008\\ t_306 := x \cdot 8.13008 - 3.1225\\ t_307 := 4.8125 + y \cdot 8.13008\\ t_308 := t\_113 - y \cdot 2.84553\\ t_309 := \left(1.96935 + y \cdot 2.03252\right) + x \cdot 4.47154\\ t_310 := x \cdot 5.42005 - 1.22783\\ t_311 := 6.05 + x \cdot 8.13008\\ t_312 := 5.1585 - x \cdot 8.13008\\ t_313 := -\left(0.575 + y \cdot 8.13008\right)\\ t_314 := {\left(y \cdot 8.13008 - 4.7\right)}^{2}\\ t_315 := \left(1.4516 + y \cdot 1.82927\right) + x \cdot 4.47154\\ t_316 := 1.1947 + y \cdot 1.21951\\ t_317 := 2.73475 + x \cdot 4.47154\\ t_318 := y \cdot 2.64228 - t\_317\\ t_319 := y \cdot 1.82927 + 2.5219\\ t_320 := t\_319 - x \cdot 4.47154\\ t_321 := 3.5305 - x \cdot 8.13008\\ t_322 := 3.675 + x \cdot 8.13008\\ t_323 := 0.292376 + y \cdot 2.84553\\ t_324 := t\_323 - x \cdot 4.47154\\ t_325 := 5.3 + y \cdot 8.13008\\ t_326 := \sqrt{{\left(1.462 + x \cdot 8.13008\right)}^{2} + t\_158}\\ t_327 := x \cdot 8.13008 - 0.320499\\ t_328 := \sqrt{t\_176 + {\left(\left(7.16429 + x \cdot 8.13008\right) - y \cdot 2.32288\right)}^{2}}\\ t_329 := x \cdot 11.6144 - 7.23715\\ t_330 := 1.02555 + y \cdot 2.03252\\ t_331 := 2.137 + x \cdot 8.13008\\ t_332 := 2.4785 + x \cdot 4.47154\\ t_333 := 1.77125 + y \cdot 5.28455\\ t_334 := x \cdot 8.13008 - 6.5305\\ t_335 := 6.2 + y \cdot 8.13008\\ t_336 := y \cdot 1.21951 + 1.7447\\ t_337 := 3 + y \cdot 8.13008\\ t_338 := -t\_337\\ t_339 := \sqrt{t\_158 + {\left(x \cdot 8.13008 - 6.476\right)}^{2}}\\ t_340 := y \cdot 2.03252 + 2.95138\\ t_341 := 5.2 + y \cdot 8.13008\\ t_342 := {t\_341}^{2}\\ t_343 := -t\_341\\ t_344 := \mathsf{max}\left(t\_183, t\_343\right)\\ t_345 := 0.289485 + x \cdot 2.27642\\ t_346 := x \cdot 8.13008 - 3.401\\ t_347 := y \cdot 8.13008 - 6.15\\ t_348 := {t\_347}^{2}\\ t_349 := \sqrt{t\_348 + {\left(x \cdot 8.13008 - 2.8955\right)}^{2}}\\ t_350 := \mathsf{max}\left(t\_216, t\_347\right)\\ t_351 := y \cdot 1.82927 + 3.15743\\ t_352 := x \cdot 4.47154 - t\_351\\ t_353 := 1.2994 + y \cdot 3.25203\\ t_354 := 3.6525 + x \cdot 4.47154\\ t_355 := y \cdot 2.84553 - t\_354\\ t_356 := \sqrt{t\_176 + {\left(4.345 + x \cdot 8.13008\right)}^{2}}\\ t_357 := 1.6725 - t\_49\\ t_358 := \sqrt{t\_54 + {\left(\left(4.12414 + x \cdot 8.13008\right) - y \cdot 2.32288\right)}^{2}}\\ t_359 := 0.14 - y \cdot 0.813008\\ t_360 := 4.85 + y \cdot 8.13008\\ t_361 := {t\_360}^{2}\\ t_362 := \sqrt{t\_361 + {\left(x \cdot 8.13008 - 0.633\right)}^{2}}\\ t_363 := \sqrt{{\left(0.317 + x \cdot 8.13008\right)}^{2} + t\_361}\\ t_364 := 1.675 + x \cdot 8.13008\\ t_365 := \left(x \cdot 1.82927 + 3.2527\right) + y \cdot 4.06504\\ t_366 := {\left(0.6875 - y \cdot 8.13008\right)}^{2}\\ t_367 := 0.300176 + y \cdot 2.23577\\ t_368 := \left(0.590637 + x \cdot 1.82927\right) + y \cdot 4.06504\\ t_369 := 0.195 - y \cdot 0.813008\\ t_370 := 2.487 + x \cdot 8.13008\\ t_371 := \sqrt{{t\_370}^{2} + t\_158}\\ t_372 := t\_151 - y \cdot 2.84553\\ t_373 := \left(2.216 + y \cdot 2.84553\right) + x \cdot 4.47154\\ t_374 := -t\_373\\ t_375 := 1.9 + y \cdot 8.13008\\ t_376 := {t\_375}^{2}\\ t_377 := -t\_375\\ t_378 := \mathsf{max}\left(t\_377, t\_200\right)\\ t_379 := 0.3 - y \cdot 8.13008\\ t_380 := \mathsf{max}\left(t\_299, t\_379\right)\\ t_381 := 2.5 - y \cdot 8.13008\\ t_382 := \mathsf{max}\left(t\_381, t\_74\right)\\ t_383 := \mathsf{max}\left(t\_245, t\_381\right)\\ t_384 := \mathsf{max}\left(t\_381, t\_175\right)\\ t_385 := 2.6125 + y \cdot 8.13008\\ t_386 := t\_159 - 0.275\\ t_387 := 1.65817 - x \cdot 5.42005\\ t_388 := x \cdot 8.13008 - 5.733\\ t_389 := \mathsf{max}\left(t\_343, t\_360\right)\\ t_390 := 2.65 + y \cdot 4.06504\\ t_391 := 7.12143 + x \cdot 11.6144\\ t_392 := \left(y \cdot 2.03252 + 2.466\right) + x \cdot 4.47154\\ t_393 := 0.6375 + y \cdot 8.13008\\ t_394 := -t\_393\\ t_395 := {t\_393}^{2}\\ t_396 := x \cdot 1.01626 + 1.55781\\ t_397 := 0.208 - x \cdot 8.13008\\ t_398 := \sqrt{t\_54 + {\left(x \cdot 8.13008 - \left(0.993357 + y \cdot 2.32288\right)\right)}^{2}}\\ t_399 := 2.685 + y \cdot 8.13008\\ t_400 := x \cdot 8.13008 - 0.150499\\ t_401 := 3.501 - x \cdot 8.13008\\ t_402 := 4.512 + x \cdot 8.13008\\ t_403 := \sqrt{{t\_402}^{2} + t\_280}\\ t_404 := y \cdot 0.813008 - 0.525\\ t_405 := \left(y \cdot 2.03252 + 3.665\right) + x \cdot 4.47154\\ t_406 := {\left(y \cdot 8.13008 - 0.4625\right)}^{2}\\ t_407 := 2.24785 + x \cdot 4.47154\\ t_408 := -t\_135\\ t_409 := 0.525 - y \cdot 8.13008\\ t_410 := \mathsf{max}\left(t\_286, t\_409\right)\\ t_411 := {\left(y \cdot 8.13008 - 6.5\right)}^{2}\\ t_412 := 3.875 - y \cdot 8.13008\\ t_413 := 0.63 + y \cdot 0.813008\\ t_414 := -t\_413\\ t_415 := -\left(2.075 + x \cdot 8.13008\right)\\ t_416 := x \cdot 11.6144 - 2.67571\\ t_417 := \mathsf{max}\left(t\_83, t\_216\right)\\ t_418 := t\_49 - 1.3975\\ t_419 := -\left(7.95 + x \cdot 8.13008\right)\\ t_420 := -\left(1.675 + y \cdot 8.13008\right)\\ t_421 := x \cdot 8.13008 - 6.656\\ t_422 := \mathsf{max}\left(t\_216, t\_89\right)\\ t_423 := 1.25 + y \cdot 8.13008\\ t_424 := \mathsf{max}\left(y \cdot 8.13008 - 0.95, 0.85 - y \cdot 8.13008\right)\\ t_425 := -\left(1.142 + x \cdot 8.13008\right)\\ t_426 := 5.858 - x \cdot 8.13008\\ t_427 := -t\_155\\ t_428 := y \cdot 0.813008 + 3.968\\ t_429 := 0.025 + y \cdot 0.813008\\ t_430 := 0.596601 + x \cdot 4.47154\\ t_431 := y \cdot 1.82927 - t\_430\\ t_432 := 2.11243 - t\_22\\ t_433 := -t\_160\\ t_434 := t\_209 - y \cdot 1.82927\\ t_435 := 2.00117 - x \cdot 5.42005\\ t_436 := \sqrt{{\left(\left(0.146856 + x \cdot 8.13008\right) - y \cdot 2.32288\right)}^{2} + t\_158}\\ t_437 := 0.4125 + y \cdot 8.13008\\ t_438 := 1.24555 + y \cdot 2.03252\\ t_439 := y \cdot 0.813008 + 6.188\\ t_440 := t\_49 - 2.09738\\ t_441 := 0.322376 + y \cdot 2.03252\\ t_442 := 4.825 + x \cdot 8.13008\\ t_443 := 5.4 + x \cdot 8.13008\\ t_444 := y \cdot 2.19512 + x \cdot 2.84553\\ t_445 := 6.0305 - x \cdot 8.13008\\ t_446 := y \cdot 1.21951 + 1.67444\\ t_447 := 3.2375 + x \cdot 4.47154\\ t_448 := 2.4205 - x \cdot 8.13008\\ t_449 := -t\_184\\ t_450 := 3.001 - x \cdot 8.13008\\ t_451 := \left(1.55693 + x \cdot 2.23577\right) + y \cdot 4.06504\\ t_452 := \left(0.6785 + y \cdot 2.03252\right) + x \cdot 4.47154\\ t_453 := 0.707348 + x \cdot 4.5122\\ t_454 := y \cdot 8.13008 - 6.075\\ t_455 := \mathsf{max}\left(t\_216, t\_454\right)\\ t_456 := {t\_454}^{2}\\ t_457 := \sqrt{t\_456 + {\left(0.604501 + x \cdot 8.13008\right)}^{2}}\\ t_458 := \sqrt{t\_456 + {\left(x \cdot 8.13008 - 1.3455\right)}^{2}}\\ t_459 := \sqrt{t\_456 + t\_268}\\ t_460 := \sqrt{t\_456 + {t\_303}^{2}}\\ t_461 := \sqrt{t\_456 + {\left(x \cdot 8.13008 - 5.0255\right)}^{2}}\\ t_462 := \sqrt{t\_456 + {\left(5.65 + x \cdot 8.13008\right)}^{2}}\\ t_463 := 3.9955 - x \cdot 8.13008\\ t_464 := 0.150001 + x \cdot 8.13008\\ t_465 := {t\_464}^{2}\\ t_466 := 3.1 + y \cdot 8.13008\\ t_467 := {\left(x \cdot 8.13008 - 4.1255\right)}^{2}\\ t_468 := \sqrt{t\_456 + t\_467}\\ t_469 := y \cdot 8.13008 - 0.6875\\ t_470 := \mathsf{max}\left(t\_409, t\_469\right)\\ t_471 := 1.732 + x \cdot 8.13008\\ t_472 := {t\_283}^{2}\\ t_473 := \sqrt{t\_472 + t\_268}\\ t_474 := \sqrt{t\_467 + t\_472}\\ t_475 := 1.06718 + x \cdot 2.23577\\ t_476 := x \cdot 8.13008 - 3.6855\\ t_477 := {\left(2.3 + y \cdot 8.13008\right)}^{2}\\ t_478 := y \cdot 2.64228 - t\_65\\ t_479 := 0.986526 + y \cdot 1.21951\\ t_480 := x \cdot 8.13008 - 8.05251\\ t_481 := 3.8 + x \cdot 8.13008\\ t_482 := 1.22783 - x \cdot 5.42005\\ t_483 := -t\_200\\ t_484 := y \cdot 8.13008 - 1.75\\ t_485 := x \cdot 4.47154 - t\_250\\ t_486 := y \cdot 8.13008 - 5.25\\ t_487 := y \cdot 5.28455 - 3.23375\\ t_488 := t\_257 - y \cdot 2.64228\\ t_489 := \left(2.54435 + y \cdot 2.84553\right) + x \cdot 4.47154\\ t_490 := x \cdot 4.47154 - t\_260\\ t_491 := 0.25 + y \cdot 8.13008\\ t_492 := x \cdot 1.82927 + y \cdot 4.06504\\ t_493 := \sqrt{t\_176 + {\left(x \cdot 8.13008 - 2.8475\right)}^{2}}\\ t_494 := {t\_484}^{2}\\ t_495 := \sqrt{t\_494 + {\left(x \cdot 8.13008 - 5.083\right)}^{2}}\\ t_496 := \sqrt{t\_494 + {\left(x \cdot 8.13008 - 5.333\right)}^{2}}\\ t_497 := 0.44765 + x \cdot 2.84553\\ t_498 := -t\_264\\ t_499 := x \cdot 8.13008 - 3.021\\ t_500 := {\left(-t\_437\right)}^{2}\\ t_501 := 6.3 + y \cdot 8.13008\\ t_502 := {t\_501}^{2}\\ t_503 := -t\_501\\ t_504 := 0.500551 + y \cdot 2.84553\\ t_505 := t\_504 - x \cdot 4.47154\\ t_506 := \sqrt{t\_456 + {\left(x \cdot 8.13008 - 0.0454988\right)}^{2}}\\ t_507 := 1.068 + x \cdot 2.23577\\ t_508 := -\left(5.9 + x \cdot 8.13008\right)\\ t_509 := -\left(0.249501 + x \cdot 8.13008\right)\\ t_510 := 4.9855 - x \cdot 8.13008\\ t_511 := 2.8935 + x \cdot 4.47154\\ t_512 := y \cdot 2.84553 - t\_511\\ t_513 := \sqrt{t\_176 + {\left(x \cdot 8.13008 - 0.0924997\right)}^{2}}\\ t_514 := \sqrt{t\_7 + t\_176}\\ t_515 := 0.415 - y \cdot 0.813008\\ t_516 := 0.36 + y \cdot 3.25203\\ t_517 := 3.35775 + x \cdot 4.5122\\ t_518 := 0.263484 + x \cdot 2.27642\\ t_519 := -t\_90\\ t_520 := 2.64638 + y \cdot 2.84553\\ t_521 := t\_520 - x \cdot 4.47154\\ t_522 := 2.846 - x \cdot 8.13008\\ t_523 := 0.305 - y \cdot 0.813008\\ t_524 := x \cdot 8.13008 - 4.6525\\ t_525 := 1.025 + x \cdot 8.13008\\ t_526 := 0.7775 + y \cdot 2.03252\\ t_527 := \sqrt{t\_140 + {\left(x \cdot 8.13008 - 1.073\right)}^{2}}\\ t_528 := 2.725 + y \cdot 8.13008\\ t_529 := {t\_528}^{2}\\ t_530 := \sqrt{{\left(\left(3.35486 + x \cdot 8.13008\right) - y \cdot 2.32288\right)}^{2} + t\_529}\\ t_531 := \sqrt{{\left(x \cdot 8.13008 - 5.2605\right)}^{2} + t\_529}\\ t_532 := \sqrt{{\left(\left(0.574857 + x \cdot 8.13008\right) - y \cdot 2.32288\right)}^{2} + t\_529}\\ t_533 := \sqrt{t\_529 + {\left(x \cdot 8.13008 - 5.9605\right)}^{2}}\\ t_534 := t\_533 - 0.275\\ t_535 := \sqrt{{\left(x \cdot 8.13008 - 3.4105\right)}^{2} + t\_529}\\ t_536 := \sqrt{{\left(0.177 + x \cdot 8.13008\right)}^{2} + t\_529}\\ t_537 := \sqrt{{\left(x \cdot 8.13008 - 0.523\right)}^{2} + t\_529}\\ t_538 := \sqrt{{\left(5.745 + x \cdot 8.13008\right)}^{2} + t\_529}\\ t_539 := t\_538 - 0.275\\ t_540 := y \cdot 8.13008 - 6.45\\ t_541 := \mathsf{max}\left(t\_540, 6.35 - y \cdot 8.13008\right)\\ t_542 := 4.875 + x \cdot 8.13008\\ t_543 := 0.951167 - x \cdot 5.42005\\ t_544 := 0.575 + y \cdot 0.813008\\ t_545 := -t\_544\\ t_546 := \sqrt{t\_176 + {\left(x \cdot 8.13008 - 4.3775\right)}^{2}}\\ t_547 := 7.35601 - x \cdot 8.13008\\ t_548 := \sqrt{t\_348 + {\left(x \cdot 8.13008 - 2.6455\right)}^{2}}\\ t_549 := 6.9 + x \cdot 8.13008\\ t_550 := \sqrt{{t\_60}^{2} + {t\_549}^{2}}\\ t_551 := y \cdot 2.64228 + 3.2069\\ t_552 := x \cdot 4.47154 - t\_551\\ t_553 := t\_551 - x \cdot 4.47154\\ t_554 := x \cdot 4.47154 - t\_287\\ t_555 := -\left(0.452 + x \cdot 8.13008\right)\\ t_556 := y \cdot 8.13008 - 1.65\\ t_557 := 2.45 + y \cdot 8.13008\\ t_558 := 0.65875 + x \cdot 2.84553\\ t_559 := y \cdot 8.13008 - 1.725\\ t_560 := 3.12857 + x \cdot 11.6144\\ t_561 := -\left(5.712 + x \cdot 8.13008\right)\\ t_562 := y \cdot 2.64228 + 3.34743\\ t_563 := t\_562 - x \cdot 4.47154\\ t_564 := 2.1625 + x \cdot 2.23577\\ t_565 := -\left(1.67 + x \cdot 8.13008\right)\\ t_566 := y \cdot 1.82927 - t\_116\\ t_567 := -t\_115\\ t_568 := t\_317 - y \cdot 2.64228\\ t_569 := 0.96065 + y \cdot 2.03252\\ t_570 := 6.7 - y \cdot 8.13008\\ t_571 := -t\_267\\ t_572 := x \cdot 4.47154 - t\_319\\ t_573 := x \cdot 4.47154 - t\_323\\ t_574 := \left(0.3131 + y \cdot 1.82927\right) + x \cdot 4.47154\\ t_575 := y \cdot 8.13008 - 1.5\\ t_576 := \sqrt{t\_361 + {\left(x \cdot 8.13008 - 0.383\right)}^{2}}\\ t_577 := 2.725 - y \cdot 8.13008\\ t_578 := \mathsf{max}\left(y \cdot 8.13008 - 2.815, t\_577\right)\\ t_579 := 4.912 + x \cdot 8.13008\\ t_580 := \mathsf{max}\left(t\_402, -t\_579\right)\\ t_581 := 6.45 + x \cdot 8.13008\\ t_582 := -t\_581\\ t_583 := 3.85 + y \cdot 8.13008\\ t_584 := {t\_583}^{2}\\ t_585 := \sqrt{t\_584 + {t\_346}^{2}}\\ t_586 := \mathsf{max}\left(t\_466, -t\_583\right)\\ t_587 := {\left(y \cdot 8.13008 - 5.8\right)}^{2}\\ t_588 := \mathsf{max}\left(t\_89, 6.05 - y \cdot 8.13008\right)\\ t_589 := 0.552 + x \cdot 8.13008\\ t_590 := \sqrt{{t\_589}^{2} + t\_280}\\ t_591 := \mathsf{max}\left(t\_589, -\left(0.952 + x \cdot 8.13008\right)\right)\\ t_592 := 5.15 - y \cdot 8.13008\\ t_593 := x \cdot 5.42005 - 1.65817\\ t_594 := t\_354 - y \cdot 2.84553\\ t_595 := 0.587999 - x \cdot 8.13008\\ t_596 := y \cdot 8.13008 - 6.05\\ t_597 := -t\_193\\ t_598 := -\left(2.132 + x \cdot 8.13008\right)\\ t_599 := 1.726 + y \cdot 4.87805\\ t_600 := 5.95 + y \cdot 8.13008\\ t_601 := {t\_600}^{2}\\ t_602 := \sqrt{t\_601 + {\left(x \cdot 8.13008 - 1.508\right)}^{2}}\\ t_603 := 1.0705 - x \cdot 8.13008\\ t_604 := \sqrt{t\_601 + {\left(x \cdot 8.13008 - 1.258\right)}^{2}}\\ t_605 := 3.1355 - x \cdot 8.13008\\ t_606 := 1.35 + y \cdot 8.13008\\ t_607 := \mathsf{max}\left(t\_377, t\_606\right)\\ t_608 := \mathsf{max}\left(t\_423, -t\_606\right)\\ t_609 := x \cdot 8.13008 - 1.138\\ t_610 := y \cdot 5.28455 - 2.51875\\ t_611 := -\left(5.85 + y \cdot 8.13008\right)\\ t_612 := y \cdot 8.13008 - 5.015\\ t_613 := y \cdot 8.13008 - 3.875\\ t_614 := \mathsf{max}\left(t\_253, t\_613\right)\\ t_615 := {t\_613}^{2}\\ t_616 := \sqrt{{\left(x \cdot 8.13008 - 4.7835\right)}^{2} + t\_615}\\ t_617 := \sqrt{t\_615 + {\left(x \cdot 8.13008 - 0.862999\right)}^{2}}\\ t_618 := \sqrt{t\_615 + {\left(x \cdot 8.13008 - 0.212998\right)}^{2}}\\ t_619 := \sqrt{t\_615 + {\left(2.245 + x \cdot 8.13008\right)}^{2}}\\ t_620 := t\_619 - 0.275\\ t_621 := \sqrt{t\_615 + {t\_522}^{2}}\\ t_622 := \sqrt{t\_615 + {\left(x \cdot 8.13008 - 6.1335\right)}^{2}}\\ t_623 := \sqrt{t\_615 + {\left(\left(4.72857 + x \cdot 8.13008\right) - y \cdot 2.32288\right)}^{2}}\\ t_624 := 0.4066 + x \cdot 4.47154\\ t_625 := y \cdot 2.64228 - t\_624\\ t_626 := 2.825 - y \cdot 8.13008\\ t_627 := 5.025 - y \cdot 8.13008\\ t_628 := \left(1.74723 + y \cdot 1.82927\right) + x \cdot 4.47154\\ t_629 := 4.851 - x \cdot 8.13008\\ t_630 := 1.065 + x \cdot 4.47154\\ t_631 := x \cdot 11.6144 - 6.52214\\ t_632 := 0.8 + y \cdot 8.13008\\ t_633 := -t\_632\\ t_634 := \mathsf{max}\left(t\_491, t\_633\right)\\ t_635 := \mathsf{max}\left(t\_34, t\_633\right)\\ t_636 := \left(1.5066 + y \cdot 1.82927\right) + x \cdot 4.47154\\ t_637 := 1.01488 + y \cdot 4.87805\\ t_638 := y \cdot 8.13008 - 2.85\\ t_639 := {t\_638}^{2}\\ t_640 := \sqrt{t\_639 + {\left(1.945 + x \cdot 8.13008\right)}^{2}}\\ t_641 := \sqrt{t\_639 + {\left(2.195 + x \cdot 8.13008\right)}^{2}}\\ t_642 := \mathsf{max}\left(t\_381, t\_638\right)\\ t_643 := \left(2.1853 + x \cdot 2.23577\right) + y \cdot 4.06504\\ t_644 := 0.957 + x \cdot 8.13008\\ t_645 := 0.45 + y \cdot 8.13008\\ t_646 := \mathsf{max}\left(t\_633, t\_645\right)\\ t_647 := 0.0173756 + y \cdot 2.84553\\ t_648 := t\_647 - x \cdot 4.47154\\ t_649 := 0.47 - y \cdot 0.813008\\ t_650 := -t\_333\\ t_651 := \left(y \cdot 2.03252 + 2.4825\right) + x \cdot 4.47154\\ t_652 := 2.576 - x \cdot 8.13008\\ t_653 := 6.325 + x \cdot 8.13008\\ t_654 := {t\_653}^{2}\\ t_655 := \sqrt{t\_654 + t\_158}\\ t_656 := \sqrt{t\_654 + t\_54}\\ t_657 := \sqrt{t\_654 + t\_529}\\ t_658 := \sqrt{t\_280 + {t\_91}^{2}}\\ t_659 := 0.485 + x \cdot 2.23577\\ t_660 := x \cdot 8.13008 - 3.408\\ t_661 := \sqrt{{t\_652}^{2} + t\_158}\\ t_662 := \mathsf{max}\left(t\_377, t\_47\right)\\ t_663 := 0.606888 + y \cdot 1.21951\\ t_664 := 4.1 + y \cdot 8.13008\\ t_665 := {t\_664}^{2}\\ t_666 := -t\_664\\ t_667 := \mathsf{max}\left(t\_666, t\_235\right)\\ t_668 := \mathsf{max}\left(t\_666, 3.75 + y \cdot 8.13008\right)\\ t_669 := \mathsf{max}\left(t\_466, t\_666\right)\\ t_670 := \mathsf{max}\left(t\_666, t\_9\right)\\ t_671 := 2.25 + y \cdot 8.13008\\ t_672 := \sqrt{{t\_671}^{2} + {t\_471}^{2}}\\ t_673 := y \cdot 0.813008 - 0.14\\ t_674 := -t\_194\\ t_675 := x \cdot 8.13008 - 7.531\\ t_676 := \sqrt{t\_465 + {t\_556}^{2}}\\ t_677 := \sqrt{t\_615 + {\left(0.437001 + x \cdot 8.13008\right)}^{2}}\\ t_678 := t\_677 - 0.275\\ t_679 := -\left(7.3 + x \cdot 8.13008\right)\\ t_680 := x \cdot 8.13008 - 6.6455\\ t_681 := 1.27381 + y \cdot 4.87805\\ t_682 := 1.3975 - t\_49\\ t_683 := -t\_528\\ t_684 := y \cdot 8.13008 - 0.85\\ t_685 := \mathsf{max}\left(t\_379, t\_684\right)\\ t_686 := \left(x \cdot 2.23577 + 2.30217\right) + y \cdot 4.06504\\ t_687 := 1.4 - y \cdot 8.13008\\ t_688 := \mathsf{max}\left(t\_687, t\_1\right)\\ t_689 := \mathsf{max}\left(t\_687, t\_153\right)\\ t_690 := 4.02143 + x \cdot 11.6144\\ t_691 := 3.775 + y \cdot 8.13008\\ t_692 := \mathsf{max}\left(t\_666, t\_691\right)\\ t_693 := -t\_360\\ t_694 := 3.771 + x \cdot 4.47154\\ t_695 := {t\_299}^{2}\\ t_696 := \sqrt{t\_695 + {t\_364}^{2}}\\ t_697 := y \cdot 2.60163 + x \cdot 2.84553\\ t_698 := \sqrt{t\_584 + {t\_109}^{2}}\\ t_699 := -t\_429\\ t_700 := x \cdot 5.42005 - 2.7765\\ t_701 := \sqrt{{t\_248}^{2} + {t\_73}^{2}}\\ t_702 := 4.908 - x \cdot 8.13008\\ t_703 := 1.30055 + y \cdot 2.03252\\ t_704 := x \cdot 11.6144 - 0.585714\\ t_705 := 5.0375 + y \cdot 8.13008\\ t_706 := x \cdot 8.13008 - 4.0805\\ t_707 := \sqrt{t\_265 + {\left(x \cdot 8.13008 - 5.3335\right)}^{2}}\\ t_708 := -\left(1.737 + x \cdot 8.13008\right)\\ t_709 := x \cdot 11.6144 - 0.743571\\ t_710 := 2.09738 - t\_49\\ t_711 := \mathsf{max}\left(t\_606, t\_71\right)\\ t_712 := y \cdot 1.21951 + 2.17851\\ t_713 := \sqrt{{t\_272}^{2} + {t\_78}^{2}}\\ t_714 := y \cdot 8.13008 - 4.6\\ t_715 := \mathsf{max}\left(t\_253, t\_714\right)\\ t_716 := \sqrt{{t\_714}^{2} + {t\_331}^{2}}\\ t_717 := 2.2175 + x \cdot 2.23577\\ t_718 := 3.1825 + x \cdot 4.47154\\ t_719 := -t\_557\\ t_720 := 2.457 + x \cdot 8.13008\\ t_721 := -t\_720\\ t_722 := y \cdot 8.13008 - 0.625\\ t_723 := \sqrt{{\left(x \cdot 8.13008 - 5.7775\right)}^{2} + t\_176}\\ t_724 := t\_723 - 0.275\\ t_725 := -t\_37\\ t_726 := \sqrt{t\_456 + {\left(x \cdot 8.13008 - \left(1.71336 + y \cdot 2.32288\right)\right)}^{2}}\\ t_727 := \left(0.7335 + y \cdot 2.03252\right) + x \cdot 4.47154\\ t_728 := 8.97857 + x \cdot 11.6144\\ t_729 := 0.37375 - y \cdot 5.28455\\ t_730 := 2 + y \cdot 8.13008\\ t_731 := \sqrt{{\left(4.517 + x \cdot 8.13008\right)}^{2} + t\_158}\\ t_732 := t\_731 - 0.275\\ t_733 := 1.5125 + y \cdot 8.13008\\ t_734 := \sqrt{{\left(0.0670004 + x \cdot 8.13008\right)}^{2} + t\_361}\\ t_735 := 0.575 - y \cdot 8.13008\\ t_736 := x \cdot 8.13008 - 6.6385\\ t_737 := x \cdot 8.13008 - 7.87551\\ t_738 := \sqrt{t\_695 + {t\_737}^{2}}\\ t_739 := x \cdot 8.13008 - 5.9955\\ t_740 := \sqrt{t\_695 + {t\_739}^{2}}\\ t_741 := {\left(7.025 + x \cdot 8.13008\right)}^{2}\\ t_742 := x \cdot 8.13008 - 1.8305\\ t_743 := -t\_691\\ t_744 := 1.36223 + x \cdot 4.47154\\ t_745 := t\_744 - y \cdot 2.64228\\ t_746 := y \cdot 2.64228 - t\_744\\ t_747 := 1.65 + y \cdot 8.13008\\ t_748 := \mathsf{max}\left(t\_47, -t\_747\right)\\ t_749 := {t\_747}^{2}\\ t_750 := \sqrt{t\_749 + {t\_400}^{2}}\\ t_751 := \sqrt{t\_749 + {t\_736}^{2}}\\ t_752 := \sqrt{{\left(0.354001 + x \cdot 8.13008\right)}^{2} + t\_158}\\ t_753 := t\_752 - 0.275\\ t_754 := \sqrt{{\left(x \cdot 8.13008 - 1.951\right)}^{2} + t\_158}\\ t_755 := 4.925 - y \cdot 8.13008\\ t_756 := {t\_200}^{2}\\ t_757 := \sqrt{t\_756 + {t\_742}^{2}}\\ t_758 := y \cdot 8.13008 - 0.575\\ t_759 := \mathsf{max}\left(t\_379, t\_758\right)\\ t_760 := {t\_758}^{2}\\ t_761 := \sqrt{t\_760 + {\left(4.45 + x \cdot 8.13008\right)}^{2}}\\ t_762 := \sqrt{t\_760 + {\left(x \cdot 8.13008 - 2.6955\right)}^{2}}\\ t_763 := \sqrt{t\_7 + t\_760}\\ t_764 := t\_763 - 0.275\\ t_765 := \sqrt{t\_760 + {\left(3.15 + x \cdot 8.13008\right)}^{2}}\\ t_766 := \sqrt{t\_760 + {\left(5.1 + x \cdot 8.13008\right)}^{2}}\\ t_767 := \sqrt{t\_760 + {\left(x \cdot 8.13008 - 2.0455\right)}^{2}}\\ t_768 := t\_767 - 0.275\\ t_769 := \sqrt{t\_760 + {t\_582}^{2}}\\ t_770 := \sqrt{t\_760 + {\left(1.3 + x \cdot 8.13008\right)}^{2}}\\ t_771 := \sqrt{t\_760 + {\left(x \cdot 8.13008 - \left(y \cdot 2.32288 + 6.90979\right)\right)}^{2}}\\ t_772 := \sqrt{t\_760 + {\left(7.075 + x \cdot 8.13008\right)}^{2}}\\ t_773 := \sqrt{t\_760 + {\left(x \cdot 8.13008 - 3.933\right)}^{2}}\\ t_774 := t\_773 - 0.275\\ t_775 := \sqrt{t\_176 + {\left(x \cdot 8.13008 - 7.77751\right)}^{2}}\\ t_776 := x \cdot 8.13008 - 1.183\\ t_777 := 2.48625 + y \cdot 5.28455\\ t_778 := -t\_777\\ t_779 := \mathsf{max}\left(t\_90, t\_182\right)\\ t_780 := 3.785 + y \cdot 8.13008\\ t_781 := \sqrt{{\left(3.207 + x \cdot 8.13008\right)}^{2} + t\_529}\\ t_782 := x \cdot 8.13008 - 0.9705\\ t_783 := y \cdot 8.13008 - 3.7\\ t_784 := {t\_632}^{2}\\ t_785 := -t\_21\\ t_786 := \mathsf{max}\left(t\_203, t\_785\right)\\ t_787 := \left(1.30475 + y \cdot 1.82927\right) + x \cdot 4.47154\\ t_788 := \sqrt{t\_760 + {\left(0.6 + x \cdot 8.13008\right)}^{2}}\\ t_789 := t\_788 - 0.275\\ t_790 := \left(0.8881 + y \cdot 2.64228\right) + x \cdot 4.47154\\ t_791 := -t\_790\\ t_792 := 3.0055 - x \cdot 8.13008\\ t_793 := 5.975 + x \cdot 8.13008\\ t_794 := \sqrt{{\left(x \cdot 8.13008 - 7.12751\right)}^{2} + t\_176}\\ t_795 := t\_794 - 0.275\\ t_796 := \mathsf{max}\left(t\_684, t\_735\right)\\ t_797 := 0.525 + y \cdot 8.13008\\ t_798 := -t\_797\\ t_799 := {t\_797}^{2}\\ t_800 := \sqrt{{\left(1.5495 + x \cdot 8.13008\right)}^{2} + t\_799}\\ t_801 := \sqrt{{\left(\left(4.13393 + x \cdot 8.13008\right) - y \cdot 2.32288\right)}^{2} + t\_799}\\ t_802 := \sqrt{{\left(\left(0.11593 + x \cdot 8.13008\right) - y \cdot 2.32288\right)}^{2} + t\_799}\\ t_803 := \sqrt{t\_799 + {\left(x \cdot 8.13008 - 4.306\right)}^{2}}\\ t_804 := \sqrt{{\left(6.525 + x \cdot 8.13008\right)}^{2} + t\_799}\\ t_805 := \sqrt{{\left(0.969501 + x \cdot 8.13008\right)}^{2} + t\_799}\\ t_806 := \mathsf{max}\left(t\_503, t\_600\right)\\ t_807 := 3.6 + x \cdot 8.13008\\ t_808 := t\_49 - 1.82238\\ t_809 := t\_511 - y \cdot 2.84553\\ t_810 := -\left(1.2445 + x \cdot 8.13008\right)\\ t_811 := 0.737225 + x \cdot 2.27642\\ t_812 := x \cdot 4.47154 - t\_520\\ t_813 := 4.925 + x \cdot 8.13008\\ t_814 := x \cdot 8.13008 - 2.751\\ t_815 := \sqrt{t\_615 + {\left(x \cdot 8.13008 - 2.221\right)}^{2}}\\ t_816 := t\_815 - 0.275\\ t_817 := 1.7272 + y \cdot 3.41463\\ t_818 := 0.54 + y \cdot 2.19512\\ t_819 := 1.53565 + y \cdot 2.84553\\ t_820 := t\_819 - x \cdot 4.47154\\ t_821 := -\left(4.62 + x \cdot 8.13008\right)\\ t_822 := 3.233 - x \cdot 8.13008\\ t_823 := \sqrt{t\_54 + {t\_188}^{2}}\\ t_824 := -\left(0.492001 + x \cdot 8.13008\right)\\ t_825 := 3.825 + y \cdot 8.13008\\ t_826 := {t\_825}^{2}\\ t_827 := \sqrt{t\_826 + {\left(x \cdot 8.13008 - 3.776\right)}^{2}}\\ t_828 := \sqrt{t\_826 + {\left(x \cdot 8.13008 - 1.468\right)}^{2}}\\ t_829 := t\_828 - 0.275\\ t_830 := \sqrt{t\_826 + {\left(5.437 + x \cdot 8.13008\right)}^{2}}\\ t_831 := \sqrt{t\_826 + {\left(x \cdot 8.13008 - 0.167999\right)}^{2}}\\ t_832 := \sqrt{t\_826 + {\left(\left(5.97857 + x \cdot 8.13008\right) - y \cdot 2.32288\right)}^{2}}\\ t_833 := \sqrt{t\_826 + {t\_293}^{2}}\\ t_834 := \sqrt{t\_826 + {\left(x \cdot 8.13008 - \left(y \cdot 2.32288 + 5.57243\right)\right)}^{2}}\\ t_835 := \sqrt{t\_826 + {\left(\left(2.66557 + x \cdot 8.13008\right) - y \cdot 2.32288\right)}^{2}}\\ t_836 := \sqrt{t\_826 + {\left(3.082 + x \cdot 8.13008\right)}^{2}}\\ t_837 := t\_831 - 0.275\\ t_838 := \sqrt{t\_826 + {\left(0.482 + x \cdot 8.13008\right)}^{2}}\\ t_839 := t\_838 - 0.275\\ t_840 := \sqrt{t\_826 + {\left(x \cdot 8.13008 - 0.818\right)}^{2}}\\ t_841 := \sqrt{t\_826 + {t\_547}^{2}}\\ t_842 := \sqrt{t\_826 + t\_7}\\ t_843 := t\_842 - 0.275\\ t_844 := 2.675 + y \cdot 8.13008\\ t_845 := -t\_844\\ t_846 := 1.44223 + x \cdot 4.47154\\ t_847 := t\_846 - y \cdot 1.82927\\ t_848 := y \cdot 1.82927 - t\_846\\ t_849 := x \cdot 8.13008 - 5.431\\ t_850 := 3.825 - y \cdot 8.13008\\ t_851 := \mathsf{max}\left(t\_850, t\_154\right)\\ t_852 := y \cdot 1.21951 + 1.23609\\ t_853 := 1.18065 + y \cdot 2.03252\\ t_854 := x \cdot 4.47154 - t\_562\\ t_855 := 2.48475 + x \cdot 4.47154\\ t_856 := t\_855 - y \cdot 1.82927\\ t_857 := y \cdot 1.82927 - t\_855\\ t_858 := -t\_489\\ t_859 := -\left(3.357 + x \cdot 8.13008\right)\\ t_860 := \left(1.6416 + y \cdot 2.64228\right) + x \cdot 4.47154\\ t_861 := -t\_860\\ t_862 := y \cdot 2.64228 + 3.29243\\ t_863 := x \cdot 4.47154 - t\_862\\ t_864 := t\_862 - x \cdot 4.47154\\ t_865 := 1.00286 + x \cdot 11.6144\\ t_866 := x \cdot 5.42005 - 2.00117\\ t_867 := x \cdot 4.47154 - t\_819\\ t_868 := x \cdot 1.01626 + 2.92488\\ t_869 := y \cdot 1.82927 + x \cdot 4.47154\\ t_870 := \sqrt{t\_456 + t\_108}\\ t_871 := x \cdot 8.13008 - 1.3305\\ t_872 := \sqrt{t\_756 + {t\_871}^{2}}\\ t_873 := y \cdot 2.64228 + 3.1519\\ t_874 := x \cdot 4.47154 - t\_873\\ t_875 := t\_873 - x \cdot 4.47154\\ t_876 := \sqrt{t\_54 + {\left(x \cdot 8.13008 - 3.8055\right)}^{2}}\\ t_877 := 0.571825 + y \cdot 1.21951\\ t_878 := 4.55 + y \cdot 8.13008\\ t_879 := 0.525 - y \cdot 0.813008\\ t_880 := 5.275 + x \cdot 8.13008\\ t_881 := -t\_880\\ t_882 := \mathsf{max}\left(t\_666, t\_825\right)\\ t_883 := \sqrt{t\_826 + {t\_129}^{2}}\\ t_884 := 4.7 + x \cdot 8.13008\\ t_885 := 4.925 + y \cdot 8.13008\\ t_886 := {t\_885}^{2}\\ t_887 := \sqrt{t\_886 + {\left(0.867001 + x \cdot 8.13008\right)}^{2}}\\ t_888 := \sqrt{t\_886 + {\left(x \cdot 8.13008 - 4.2705\right)}^{2}}\\ t_889 := \sqrt{t\_886 + {\left(x \cdot 8.13008 - 4.9205\right)}^{2}}\\ t_890 := \sqrt{t\_886 + {\left(1.767 + x \cdot 8.13008\right)}^{2}}\\ t_891 := \sqrt{t\_886 + {\left(x \cdot 8.13008 - 3.6205\right)}^{2}}\\ t_892 := \sqrt{t\_886 + {t\_776}^{2}}\\ t_893 := t\_892 - 0.275\\ t_894 := \sqrt{t\_886 + {t\_813}^{2}}\\ t_895 := t\_894 - 0.275\\ t_896 := \sqrt{t\_886 + {t\_139}^{2}}\\ t_897 := \sqrt{t\_886 + {t\_70}^{2}}\\ t_898 := t\_897 - 0.275\\ t_899 := -t\_825\\ t_900 := 6.201 - x \cdot 8.13008\\ t_901 := 0.4625 - y \cdot 8.13008\\ t_902 := \mathsf{max}\left(t\_722, t\_901\right)\\ t_903 := 4.6455 - x \cdot 8.13008\\ t_904 := x \cdot 8.13008 - 5.558\\ t_905 := 4.65 + y \cdot 8.13008\\ t_906 := \mathsf{max}\left(t\_905, -t\_885\right)\\ t_907 := \mathsf{max}\left(t\_343, t\_905\right)\\ t_908 := \mathsf{max}\left(t\_666, t\_583\right)\\ t_909 := 3.497 + x \cdot 8.13008\\ t_910 := \sqrt{t\_176 + {\left(4.995 + x \cdot 8.13008\right)}^{2}}\\ t_911 := t\_910 - 0.275\\ t_912 := y \cdot 2.03252 + x \cdot 4.47154\\ t_913 := \mathsf{max}\left(t\_343, t\_885\right)\\ t_914 := \left(x \cdot 2.23577 + 3.865\right) + y \cdot 4.06504\\ t_915 := \mathsf{max}\left(t\_3, 5.7 - y \cdot 8.13008\right)\\ t_916 := {t\_596}^{2}\\ t_917 := \sqrt{t\_916 + {t\_542}^{2}}\\ t_918 := \sqrt{t\_916 + {t\_322}^{2}}\\ t_919 := t\_55 - 0.275\\ t_920 := \left(y \cdot 2.03252 + 2.7575\right) + x \cdot 4.47154\\ t_921 := \left(y \cdot 2.03252 + 2.18935\right) + x \cdot 4.47154\\ t_922 := 0.5025 + y \cdot 2.03252\\ t_923 := 2.662 + x \cdot 8.13008\\ t_924 := -t\_923\\ t_925 := {\left(y \cdot 8.13008 - 3.6\right)}^{2}\\ t_926 := -t\_491\\ t_927 := {\left(y \cdot 8.13008 - 1.675\right)}^{2}\\ t_928 := \sqrt{{\left(x \cdot 8.13008 - 6.133\right)}^{2} + t\_927}\\ t_929 := \sqrt{t\_927 + {t\_124}^{2}}\\ t_930 := \sqrt{t\_927 + {\left(x \cdot 8.13008 - 0.224999\right)}^{2}}\\ t_931 := \sqrt{t\_927 + {\left(x \cdot 8.13008 - 2.775\right)}^{2}}\\ t_932 := \sqrt{{\left(6.375 + x \cdot 8.13008\right)}^{2} + t\_927}\\ t_933 := \sqrt{t\_741 + t\_927}\\ t_934 := \sqrt{t\_927 + {\left(1.9 + x \cdot 8.13008\right)}^{2}}\\ t_935 := \sqrt{t\_927 + {\left(x \cdot 8.13008 - 6.783\right)}^{2}}\\ t_936 := t\_935 - 0.275\\ t_937 := -\left(3.425 + x \cdot 8.13008\right)\\ t_938 := x \cdot 1.01626 + 1.13813\\ t_939 := y \cdot 8.13008 - 1.3\\ t_940 := \mathsf{max}\left(t\_939, t\_379\right)\\ t_941 := \mathsf{max}\left(t\_939, 0.55 - y \cdot 8.13008\right)\\ t_942 := \sqrt{t\_760 + {\left(x \cdot 8.13008 - 6.3705\right)}^{2}}\\ t_943 := -t\_14\\ t_944 := 0.592 + x \cdot 8.13008\\ t_945 := \sqrt{t\_760 + {t\_481}^{2}}\\ t_946 := 6.2385 - x \cdot 8.13008\\ t_947 := 7.47551 - x \cdot 8.13008\\ t_948 := 5.5955 - x \cdot 8.13008\\ t_949 := {t\_645}^{2}\\ t_950 := \sqrt{t\_949 + {\left(x \cdot 8.13008 - 0.7685\right)}^{2}}\\ t_951 := \sqrt{t\_949 + {\left(x \cdot 8.13008 - 1.0185\right)}^{2}}\\ t_952 := -\left(0.267001 + x \cdot 8.13008\right)\\ t_953 := 1.4305 - x \cdot 8.13008\\ t_954 := \sqrt{t\_826 + {\left(x \cdot 8.13008 - 5.156\right)}^{2}}\\ t_955 := 2.7765 - x \cdot 5.42005\\ t_956 := t\_15 - y \cdot 1.82927\\ t_957 := -\left(2.887 + x \cdot 8.13008\right)\\ t_958 := \mathsf{max}\left(t\_381, t\_16\right)\\ t_959 := t\_622 - 0.275\\ t_960 := t\_624 - y \cdot 2.64228\\ t_961 := 1.01 + x \cdot 4.47154\\ t_962 := \sqrt{t\_826 + {t\_721}^{2}}\\ t_963 := 0.461601 + x \cdot 4.47154\\ t_964 := t\_963 - y \cdot 2.64228\\ t_965 := y \cdot 2.64228 - t\_963\\ t_966 := t\_351 - x \cdot 4.47154\\ t_967 := 3.23375 - y \cdot 5.28455\\ t_968 := 2.5725 - x \cdot 8.13008\\ t_969 := 3.20125 + y \cdot 5.28455\\ t_970 := -t\_969\\ t_971 := -\left(3.875 + y \cdot 8.13008\right)\\ t_972 := \mathsf{max}\left(t\_780, t\_971\right)\\ t_973 := 0.775551 + y \cdot 2.84553\\ t_974 := x \cdot 4.47154 - t\_973\\ t_975 := t\_973 - x \cdot 4.47154\\ t_976 := 2.775 - y \cdot 8.13008\\ t_977 := x \cdot 11.6144 - 5.05\\ t_978 := t\_22 - 2.11243\\ t_979 := \left(x + y\right) \cdot 4.06504\\ t_980 := 2.4935 + t\_979\\ t_981 := 0.0709989 + t\_979\\ t_982 := {\left(0.635 + y \cdot 8.13008\right)}^{2}\\ t_983 := 1.55 + y \cdot 8.13008\\ t_984 := {t\_983}^{2}\\ t_985 := \sqrt{t\_984 + {\left(2.712 + x \cdot 8.13008\right)}^{2}}\\ t_986 := \sqrt{t\_984 + {\left(2.462 + x \cdot 8.13008\right)}^{2}}\\ t_987 := \mathsf{max}\left(t\_377, t\_983\right)\\ t_988 := {\left(6.025 + y \cdot 8.13008\right)}^{2}\\ t_989 := \sqrt{t\_988 + {\left(x \cdot 8.13008 - 4.683\right)}^{2}}\\ t_990 := \sqrt{{\left(1.842 + x \cdot 8.13008\right)}^{2} + t\_988}\\ t_991 := \sqrt{t\_988 + {\left(x \cdot 8.13008 - 0.00799847\right)}^{2}}\\ t_992 := \sqrt{{t\_785}^{2} + t\_988}\\ t_993 := \sqrt{t\_988 + {t\_660}^{2}}\\ t_994 := \sqrt{t\_988 + {\left(x \cdot 8.13008 - 4.033\right)}^{2}}\\ t_995 := 0.542376 + y \cdot 2.03252\\ t_996 := {t\_337}^{2}\\ t_997 := 4.975 - y \cdot 8.13008\\ t_998 := t\_49 - 4.12055\\ t_999 := -\left(0.229501 + x \cdot 8.13008\right)\\ t_1000 := \sqrt{t\_741 + t\_176}\\ t_1001 := t\_1000 - 0.275\\ t_1002 := \sqrt{t\_615 + {\left(4.325 + x \cdot 8.13008\right)}^{2}}\\ t_1003 := x \cdot 4.47154 - t\_647\\ t_1004 := -\left(4.1 + x \cdot 8.13008\right)\\ t_1005 := x \cdot 4.47154 - t\_504\\ t_1006 := x \cdot 8.13008 - 4.051\\ t_1007 := \left(0.5925 + x \cdot 2.23577\right) + y \cdot 4.06504\\ t_1008 := 3.3775 + x \cdot 4.47154\\ t_1009 := t\_1008 - y \cdot 2.84553\\ t_1010 := y \cdot 2.84553 - t\_1008\\ t_1011 := y \cdot 0.813008 - 0.36\\ t_1012 := \mathsf{max}\left(t\_379, t\_722\right)\\ t_1013 := \left(y \cdot 2.03252 + 3.61\right) + x \cdot 4.47154\\ t_1014 := \left(x + y\right) \cdot 2.23577\\ t_1015 := 0.570488 + t\_1014\\ t_1016 := t\_1014 + 2.48875\\ t_1017 := 0.625 - y \cdot 8.13008\\ t_1018 := y \cdot 0.813008 - 0.25\\ t_1019 := y \cdot 1.21951 + 1.30319\\ t_1020 := x \cdot 8.13008 - 4.5455\\ t_1021 := 0.8325 + y \cdot 2.03252\\ t_1022 := \mathsf{max}\left(t\_216, t\_3\right)\\ \mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_21, -t\_322\right), 0.175 - t\_992\right), t\_992 - 0.275\right), t\_325\right), t\_503\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(4.025 + x \cdot 8.13008, -\left(4.125 + x \cdot 8.13008\right)\right), t\_325\right), t\_503\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(4.275 + x \cdot 8.13008, -\left(4.375 + x \cdot 8.13008\right)\right), t\_325\right), t\_503\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(5.5 + y \cdot 8.13008, -t\_82\right), t\_179\right), t\_274\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(-\left(5.4 + y \cdot 8.13008\right), t\_884\right), t\_30\right), t\_325\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_884, t\_30\right), t\_335\right), t\_503\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(4.9 + x \cdot 8.13008, -\left(5 + x \cdot 8.13008\right)\right), t\_325\right), t\_503\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_344, 5.7205 - x \cdot 8.13008\right), x \cdot 8.13008 - 5.8205\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_905, -\left(4.75 + y \cdot 8.13008\right)\right), t\_139\right), t\_226\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_343, t\_139\right), t\_226\right), 5.1 + y \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_820, x \cdot 4.47154 - t\_232\right), t\_545\right)\right), \mathsf{max}\left(\mathsf{max}\left(-t\_58, t\_194\right), t\_414\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_58, t\_674\right), t\_413\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_674, t\_921\right), t\_544\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_194, -t\_921\right), t\_545\right)\right), \mathsf{max}\left(0.175 - t\_990, t\_990 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(2.475 + x \cdot 8.13008, -\left(2.575 + x \cdot 8.13008\right)\right), t\_82\right), t\_503\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_560, -\left(3.67857 + x \cdot 11.6144\right)\right), 0.45 - \sqrt{t\_502 + {\left(3.91072 + x \cdot 14.518\right)}^{2}}\right), \sqrt{t\_502 + {t\_560}^{2}} - 0.55\right), t\_82\right), t\_503\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(-t\_203, 2.675 + x \cdot 8.13008\right), t\_325\right), t\_503\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_786, t\_82\right), t\_611\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_786, t\_335\right), t\_503\right)\right), \mathsf{max}\left(-\mathsf{min}\left(\sqrt{{\left(1.33245 - x \cdot 3.61337\right)}^{2} + {\left(-\left(4.815 + y \cdot 8.13008\right)\right)}^{2}} - 0.0625, \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_163, t\_307\right), t\_435\right), x \cdot 5.42005 - 2.16367\right)\right), \sqrt{{\left(-t\_307\right)}^{2} + {t\_435}^{2}} - 0.1625\right)\right), \mathsf{max}\left(-\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(-t\_705, t\_866\right), 1.83867 - x \cdot 5.42005\right), t\_43\right), \sqrt{{\left(5.035 + y \cdot 8.13008\right)}^{2} + {\left(x \cdot 3.61337 - 1.33578\right)}^{2}} - 0.0625\right), \sqrt{{t\_705}^{2} + {t\_866}^{2}} - 0.1625\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_183, -t\_272\right), x \cdot 8.13008 - 1.808\right), 1.708 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_878, -t\_905\right), t\_78\right), t\_138\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_343, t\_272\right), t\_78\right), t\_138\right), 0.15 - t\_713\right), t\_713 - 0.25\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_344, 4.8205 - x \cdot 8.13008\right), x \cdot 8.13008 - 5.5455\right), 0.175 - t\_896\right), t\_896 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_343, t\_43\right), t\_278\right), 5.0955 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_907, x \cdot 8.13008 - 4.7455\right), t\_903\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_905, t\_278\right), t\_903\right), -t\_43\right), 0.175 - t\_889\right), t\_889 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_907, t\_1020\right), 4.4455 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_906, x \cdot 8.13008 - 4.0955\right), t\_463\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_913, t\_1020\right), t\_463\right), 0.175 - t\_888\right), t\_888 - 0.275\right)\right), \mathsf{max}\left(0.175 - t\_891, t\_891 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_343, 0.142001 + x \cdot 8.13008\right), -\left(0.242001 + x \cdot 8.13008\right)\right), t\_360\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_343, 0.392001 + x \cdot 8.13008\right), t\_824\right), t\_62\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_878, t\_824\right), x \cdot 8.13008 - 0.157999\right), \mathsf{min}\left(\mathsf{max}\left(0.075 - t\_734, t\_734 - 0.175\right), \mathsf{max}\left(0.075 - t\_363, t\_363 - 0.175\right)\right)\right), t\_693\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_907, t\_944\right), -\left(0.692001 + x \cdot 8.13008\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_906, 1.042 + x \cdot 8.13008\right), t\_425\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_913, t\_944\right), t\_425\right), 0.175 - t\_887\right), t\_887 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_344, 1.267 + x \cdot 8.13008\right), -\left(1.367 + x \cdot 8.13008\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_905, -\left(5.575 + y \cdot 8.13008\right)\right), 1.942 + x \cdot 8.13008\right), -\left(2.042 + x \cdot 8.13008\right)\right)\right), \mathsf{max}\left(t\_893, \mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_164, x \cdot 8.13008 - 1.458\right), 0.958001 - x \cdot 8.13008\right), \mathsf{max}\left(\mathsf{max}\left(t\_893, -\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_969, x \cdot 2.23577 - t\_316\right), -t\_643\right), \mathsf{max}\left(\mathsf{max}\left(t\_643, t\_316 - x \cdot 2.23577\right), t\_970\right)\right)\right), 0.175 - t\_892\right)\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_389, x \cdot 8.13008 - 0.808001\right), 0.708 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_389, x \cdot 8.13008 - 0.558001\right), 0.458 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_343, t\_62\right), x \cdot 8.13008 - 0.308001\right), t\_397\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_878, t\_397\right), t\_693\right), x \cdot 8.13008 - 0.858\right), \mathsf{min}\left(\mathsf{max}\left(0.075 - t\_362, t\_362 - 0.175\right), \mathsf{max}\left(0.075 - t\_576, t\_576 - 0.175\right)\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_389, x \cdot 8.13008 - 0.108\right), 0.00799942 - x \cdot 8.13008\right)\right), \mathsf{max}\left(0.175 - t\_890, t\_890 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_37, t\_220\right), -t\_405\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_725, t\_219\right), t\_405\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_725, t\_1013\right), t\_135\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_37, -t\_1013\right), t\_408\right)\right), \mathsf{max}\left(t\_895, \mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_164, 4.65 + x \cdot 8.13008\right), -t\_143\right), \mathsf{max}\left(\mathsf{max}\left(t\_895, -\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_969, t\_659 - y \cdot 1.21951\right), -t\_914\right), \mathsf{max}\left(\mathsf{max}\left(t\_970, t\_914\right), y \cdot 1.21951 - t\_659\right)\right)\right), 0.175 - t\_894\right)\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_669, 7.531 - x \cdot 8.13008\right), x \cdot 8.13008 - 7.631\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_237, t\_547\right), t\_675\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_666, t\_547\right), t\_675\right), t\_9\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_669, 6.631 - x \cdot 8.13008\right), x \cdot 8.13008 - 7.356\right), 0.175 - t\_841\right), t\_841 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_907, 3.1 + x \cdot 8.13008\right), -\left(3.2 + x \cdot 8.13008\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_907, t\_690\right), -\left(4.57143 + x \cdot 11.6144\right)\right), 0.45 - \sqrt{t\_342 + {\left(5.02679 + x \cdot 14.518\right)}^{2}}\right), \sqrt{t\_342 + {t\_690}^{2}} - 0.55\right)\right), \mathsf{max}\left(t\_898, \mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_164, t\_303\right), -t\_481\right), \mathsf{max}\left(\mathsf{max}\left(t\_898, -\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_969, t\_110 - y \cdot 1.21951\right), -t\_249\right), \mathsf{max}\left(\mathsf{max}\left(t\_970, t\_249\right), y \cdot 1.21951 - t\_110\right)\right)\right), 0.175 - t\_897\right)\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_220, t\_961 - y \cdot 2.03252\right), t\_114\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_219, t\_308\right), y \cdot 2.03252 - t\_961\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_308, t\_135\right), y \cdot 2.03252 - t\_630\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_114, t\_630 - y \cdot 2.03252\right), t\_408\right)\right), \sqrt{{\left(6.225 + y \cdot 8.13008\right)}^{2} + {t\_388}^{2}} - 0.075\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(-\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_390, x \cdot 4.06504 - 2.829\right), -t\_981\right), \mathsf{max}\left(\mathsf{max}\left(t\_981, 2.829 - x \cdot 4.06504\right), -t\_390\right)\right), \mathsf{max}\left(\mathsf{max}\left(x \cdot 8.13008 - t\_439, -\left(\left(0.0706995 + y \cdot 2.60163\right) + x \cdot 2.84553\right)\right), t\_125 - x \cdot 5.28455\right)\right), \mathsf{max}\left(\mathsf{max}\left(x \cdot 5.28455 - t\_125, \left(0.0706992 + y \cdot 2.60163\right) + x \cdot 2.84553\right), t\_439 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(-t\_85, 1.8053 - x \cdot 2.84553\right), t\_444 - 0.171801\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_85, 0.171801 - t\_444\right), x \cdot 2.84553 - 1.8053\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_31, x \cdot 4.47154 - t\_279\right), 2.8369 - x \cdot 4.47154\right)\right), \mathsf{max}\left(\mathsf{max}\left(x \cdot 4.47154 - 2.8369, t\_279 - x \cdot 4.47154\right), -t\_31\right)\right), t\_325\right), t\_503\right), t\_904\right), 5.058 - x \cdot 8.13008\right)\right), \mathsf{max}\left(0.175 - t\_989, t\_989 - 0.275\right)\right), \mathsf{max}\left(0.175 - t\_994, t\_994 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(x \cdot 8.13008 - 3.233, 3.133 - x \cdot 8.13008\right), t\_325\right), t\_503\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_82, t\_611\right), t\_660\right), t\_822\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_660, t\_822\right), t\_335\right), t\_503\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(x \cdot 8.13008 - 4.133, 3.408 - x \cdot 8.13008\right), 0.175 - t\_993\right), t\_993 - 0.275\right), t\_325\right), t\_503\right)\right), \mathsf{max}\left(\mathsf{max}\left(-t\_99, t\_240\right), t\_553\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_99, t\_552\right), t\_239\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_291, 5.65 + y \cdot 8.13008\right), -t\_600\right), x \cdot 8.13008 - 1.733\right), \mathsf{min}\left(\mathsf{max}\left(0.075 - t\_602, t\_602 - 0.175\right), \mathsf{max}\left(0.075 - t\_604, t\_604 - 0.175\right)\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_503, t\_198\right), t\_297\right), 0.182999 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_82, t\_503\right), 0.167001 + x \cdot 8.13008\right), t\_952\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_82, t\_297\right), t\_952\right), -t\_198\right), 0.175 - t\_991\right), t\_991 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(x \cdot 4.47154 - t\_111, t\_251\right), t\_414\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_485, t\_111 - x \cdot 4.47154\right), t\_413\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_485, t\_853 - x \cdot 4.47154\right), t\_544\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_251, x \cdot 4.47154 - t\_853\right), t\_545\right)\right), \mathsf{max}\left(\mathsf{max}\left(-t\_309, t\_489\right), t\_414\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_309, t\_858\right), t\_413\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_858, t\_75\right), t\_544\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_489, -t\_75\right), t\_545\right)\right), \mathsf{max}\left(\mathsf{max}\left(x \cdot 4.47154 - t\_569, t\_820\right), t\_414\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_867, t\_569 - x \cdot 4.47154\right), t\_413\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_867, t\_232 - x \cdot 4.47154\right), t\_544\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_552, t\_413\right), t\_320\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_553, t\_572\right), t\_414\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_240, t\_414\right), t\_875\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_239, t\_413\right), t\_874\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_320, t\_874\right), t\_544\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_572, t\_875\right), t\_545\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_414, -t\_574\right), t\_790\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_413, t\_574\right), t\_791\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_544, t\_791\right), t\_273\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_545, t\_790\right), -t\_273\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_806, x \cdot 8.13008 - 1.683\right), 1.583 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_806, x \cdot 8.13008 - 1.433\right), 1.333 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_503, 5.775 + y \cdot 8.13008\right), t\_776\right), t\_291\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_32, x \cdot 8.13008 - 1.498\right), 1.398 - x \cdot 8.13008\right), t\_338\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_32, x \cdot 8.13008 - 1.248\right), 1.148 - x \cdot 8.13008\right), t\_338\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(2.475 + y \cdot 8.13008, x \cdot 8.13008 - 0.998001\right), t\_282\right), t\_338\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_282, -t\_32\right), x \cdot 8.13008 - 1.548\right), \mathsf{min}\left(\mathsf{max}\left(0.075 - t\_141, t\_141 - 0.175\right), \mathsf{max}\left(0.075 - t\_527, t\_527 - 0.175\right)\right)\right), t\_5\right)\right), \mathsf{max}\left(0.175 - t\_537, t\_537 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_0, -\left(0.00200015 + x \cdot 8.13008\right)\right), t\_338\right), t\_528\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(0.352 + x \cdot 8.13008, t\_555\right), t\_338\right), t\_730\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_0, t\_555\right), 0.175 - t\_536\right), t\_536 - 0.275\right), t\_557\right), t\_683\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(0.175 - t\_535, t\_535 - 0.275\right), t\_557\right), t\_476\right), t\_605\right), t\_845\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(x \cdot 8.13008 - 3.0105, 2.9105 - x \cdot 8.13008\right), t\_338\right), t\_557\right)\right), \sqrt{t\_477 + {\left(x \cdot 8.13008 - 2.9605\right)}^{2}} - 0.075\right), \mathsf{max}\left(-\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_246, t\_385\right), t\_482\right), x \cdot 5.42005 - 1.39033\right), \sqrt{{\left(-\left(2.615 + y \cdot 8.13008\right)\right)}^{2} + {\left(0.81689 - x \cdot 3.61337\right)}^{2}} - 0.0625\right), \sqrt{{\left(-t\_385\right)}^{2} + {t\_482}^{2}} - 0.1625\right)\right), \mathsf{max}\left(-\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(-t\_211, t\_310\right), 1.06533 - x \cdot 5.42005\right), t\_844\right), \sqrt{{\left(2.835 + y \cdot 8.13008\right)}^{2} + {\left(x \cdot 3.61337 - 0.820223\right)}^{2}} - 0.0625\right), \sqrt{{t\_211}^{2} + {t\_310}^{2}} - 0.1625\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(0.175 - t\_781, t\_781 - 0.275\right), t\_171\right), t\_270\right), t\_557\right), t\_845\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(3.607 + x \cdot 8.13008, -\left(3.707 + x \cdot 8.13008\right)\right), t\_338\right), t\_557\right)\right), \sqrt{t\_477 + {\left(3.657 + x \cdot 8.13008\right)}^{2}} - 0.075\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_32, 3.852 + x \cdot 8.13008\right), -\left(3.952 + x \cdot 8.13008\right)\right), t\_338\right)\right), \mathsf{max}\left(0.175 - t\_530, t\_530 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(4.662 + x \cdot 8.13008, -\left(4.762 + x \cdot 8.13008\right)\right), t\_730\right), t\_131\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_580, t\_5\right), t\_719\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_580, 0.15 - t\_403\right), t\_403 - 0.25\right), t\_338\right), t\_130\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(5.27 + x \cdot 8.13008, -\left(5.37 + x \cdot 8.13008\right)\right), t\_338\right), t\_557\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(0.702 + x \cdot 8.13008, -\left(0.802 + x \cdot 8.13008\right)\right), t\_730\right), t\_131\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_591, t\_5\right), t\_719\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_591, 0.15 - t\_590\right), t\_590 - 0.25\right), t\_338\right), t\_130\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_32, 1.072 + x \cdot 8.13008\right), -\left(1.172 + x \cdot 8.13008\right)\right), t\_338\right)\right), \mathsf{max}\left(0.175 - t\_532, t\_532 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_671, 1.882 + x \cdot 8.13008\right), -\left(1.982 + x \cdot 8.13008\right)\right), t\_338\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(-\left(2.55 + y \cdot 8.13008\right), t\_471\right), t\_598\right), t\_557\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_471, t\_598\right), -t\_671\right), 0.15 - t\_672\right), t\_672 - 0.25\right), t\_730\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_171, -\left(3.032 + x \cdot 8.13008\right)\right), t\_338\right), t\_844\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(3.382 + x \cdot 8.13008, t\_270\right), t\_338\right), t\_557\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_608, t\_736\right), t\_946\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_736, t\_946\right), t\_377\right), 0.15 - t\_751\right), t\_751 - 0.25\right), t\_747\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_607, x \cdot 8.13008 - 6.1135\right), 6.0135 - x \cdot 8.13008\right)\right), \sqrt{{\left(1.2 + y \cdot 8.13008\right)}^{2} + {\left(x \cdot 8.13008 - 6.0635\right)}^{2}} - 0.075\right), \mathsf{max}\left(\mathsf{max}\left(t\_208, t\_352\right), t\_563\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_207, t\_854\right), t\_966\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_854, t\_115\right), t\_261\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_563, t\_490\right), t\_567\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_352, t\_567\right), t\_864\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_966, t\_115\right), t\_863\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_261, t\_863\right), t\_264\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_490, t\_864\right), t\_498\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_567, 2.24743 - t\_869\right), t\_978\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_391, -\left(7.67143 + x \cdot 11.6144\right)\right), 0.45 - \sqrt{t\_996 + {\left(8.90179 + x \cdot 14.518\right)}^{2}}\right), \sqrt{t\_996 + {t\_391}^{2}} - 0.55\right), t\_338\right), t\_557\right)\right), \mathsf{max}\left(t\_539, \mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(5.47 + x \cdot 8.13008, -\left(5.97 + x \cdot 8.13008\right)\right), t\_399\right), t\_246\right), \mathsf{max}\left(\mathsf{max}\left(t\_539, -\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_26 - y \cdot 1.21951, -t\_180\right), t\_333\right), \mathsf{max}\left(\mathsf{max}\left(t\_180, y \cdot 1.21951 - t\_26\right), t\_650\right)\right)\right), 0.175 - t\_538\right)\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(-\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(y \cdot 2.23577 - \left(1.02163 + x \cdot 2.27642\right), t\_517\right), -t\_1016\right), \mathsf{max}\left(\mathsf{max}\left(t\_1016, -t\_517\right), \left(1.02162 + x \cdot 2.27642\right) - y \cdot 2.23577\right)\right), 0.175 - t\_657\right), t\_657 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_748, x \cdot 8.13008 - 6.4885\right), 6.3885 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_662, 0.175 - t\_823\right), t\_823 - 0.275\right), x \cdot 8.13008 - 3.9055\right), 3.1805 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(-\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(x \cdot 2.84553 - t\_195, -t\_368\right), t\_681 - x \cdot 1.01626\right), \mathsf{max}\left(\mathsf{max}\left(t\_368, x \cdot 1.01626 - t\_681\right), t\_195 - x \cdot 2.84553\right)\right), t\_292\right), -\left(2.05 + y \cdot 8.13008\right)\right), x \cdot 8.13008 - 2.0805\right), 1.9305 - x \cdot 8.13008\right), \sqrt{{\left(0.608333 + y \cdot 2.71003\right)}^{2} + {\left(x \cdot 8.13008 - 2.0055\right)}^{2}} - 0.075\right)\right), \sqrt{{t\_292}^{2} + {\left(x \cdot 8.13008 - 2.0305\right)}^{2}} - 0.075\right), \mathsf{max}\left(\mathsf{max}\left(t\_378, x \cdot 8.13008 - 1.6805\right), 1.5805 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_606, t\_742\right), t\_953\right), t\_71\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_47, t\_742\right), t\_953\right), t\_483\right), 0.15 - t\_757\right), t\_757 - 0.25\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_378, x \cdot 8.13008 - 1.1805\right), 1.0805 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_115, t\_432\right), t\_869 - 2.24743\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_264, t\_432\right), t\_869 - 2.30243\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_498, t\_978\right), 2.30243 - t\_869\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_607, x \cdot 8.13008 - 4.2805\right), 4.1805 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_607, t\_631\right), 5.97215 - x \cdot 11.6144\right), 0.45 - \sqrt{t\_376 + {\left(x \cdot 14.518 - 8.15268\right)}^{2}}\right), \sqrt{t\_376 + {t\_631}^{2}} - 0.55\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_607, t\_706\right), 3.9805 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_606, -t\_53\right), x \cdot 8.13008 - 3.6305\right), t\_321\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_377, t\_706\right), t\_321\right), t\_53\right), 0.175 - t\_876\right), t\_876 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_662, x \cdot 8.13008 - 3.0055\right), 2.9055 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_711, t\_188\right), t\_792\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_377, t\_188\right), t\_792\right), t\_80\right)\right), \mathsf{max}\left(0.175 - t\_834, t\_834 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_882, t\_1006\right), 3.951 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_669, x \cdot 8.13008 - 3.601\right), t\_401\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_235, t\_1006\right), t\_401\right), t\_899\right), 0.175 - t\_827\right), t\_827 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_586, x \cdot 8.13008 - 3.251\right), 3.151 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_236, t\_346\right), t\_450\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_908, t\_346\right), t\_450\right), 0.15 - t\_585\right), t\_585 - 0.25\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_667, x \cdot 8.13008 - 1.943\right), 1.843 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_667, t\_4\right), 2.63286 - x \cdot 11.6144\right), 0.45 - \sqrt{t\_665 + {\left(x \cdot 14.518 - 3.97857\right)}^{2}}\right), \sqrt{t\_665 + {t\_4}^{2}} - 0.55\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_667, x \cdot 8.13008 - 6.981\right), 6.881 - x \cdot 8.13008\right)\right), \sqrt{{\left(3.4 + y \cdot 8.13008\right)}^{2} + {\left(x \cdot 8.13008 - 6.931\right)}^{2}} - 0.075\right), \mathsf{max}\left(\mathsf{max}\left(t\_669, 6.656 - x \cdot 8.13008\right), x \cdot 8.13008 - 6.756\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_237, t\_293\right), t\_421\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_670, t\_293\right), t\_421\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_669, 5.756 - x \cdot 8.13008\right), x \cdot 8.13008 - 6.481\right), 0.175 - t\_833\right), t\_833 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_692, t\_849\right), 5.331 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_667, x \cdot 8.13008 - 4.981\right), t\_298\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_235, t\_849\right), t\_298\right), t\_743\right), 0.175 - t\_954\right), t\_954 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_668, x \cdot 8.13008 - 4.761\right), 4.661 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(0.175 - t\_831, t\_837\right), -\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_777, x \cdot 2.23577 - t\_20\right), -t\_165\right), \mathsf{max}\left(\mathsf{max}\left(t\_778, t\_165\right), t\_20 - x \cdot 2.23577\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_972, x \cdot 8.13008 - 0.443\right), -\left(0.0570004 + x \cdot 8.13008\right)\right)\right), t\_837\right)\right), \mathsf{max}\left(t\_839, \mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(0.207 + x \cdot 8.13008, -\left(0.707 + x \cdot 8.13008\right)\right), t\_780\right), t\_971\right), \mathsf{max}\left(\mathsf{max}\left(t\_839, -\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(x \cdot 2.23577 - t\_877, -t\_77\right), t\_777\right), \mathsf{max}\left(\mathsf{max}\left(t\_77, t\_877 - x \cdot 2.23577\right), t\_778\right)\right)\right), 0.175 - t\_838\right)\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_669, -t\_644\right), 0.857 + x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_237, t\_129\right), t\_644\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_670, t\_129\right), t\_644\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_669, -\left(1.857 + x \cdot 8.13008\right)\right), t\_128\right), 0.175 - t\_883\right), t\_883 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_669, -t\_275\right), 2.182 + x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_237, t\_275\right), t\_721\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_670, t\_275\right), t\_721\right)\right), \mathsf{max}\left(t\_829, \mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_972, x \cdot 8.13008 - 1.743\right), 1.243 - x \cdot 8.13008\right), \mathsf{max}\left(\mathsf{max}\left(t\_829, -\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_777, x \cdot 2.23577 - t\_284\right), -t\_451\right), \mathsf{max}\left(\mathsf{max}\left(t\_451, t\_284 - x \cdot 2.23577\right), t\_778\right)\right)\right), 0.175 - t\_828\right)\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_235, -\left(4.475 + y \cdot 8.13008\right)\right), x \cdot 8.13008 - 0.643001\right), 0.543 - x \cdot 8.13008\right)\right), \mathsf{max}\left(0.175 - t\_840, t\_840 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\sqrt{{\left(4.937 + x \cdot 8.13008\right)}^{2} + {\left(1.34167 + y \cdot 2.71003\right)}^{2}} - 0.075, -\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_196 - y \cdot 0.813008, -t\_365\right), t\_599 - x \cdot 1.01626\right), \mathsf{max}\left(\mathsf{max}\left(x \cdot 1.01626 - t\_599, t\_365\right), y \cdot 0.813008 - t\_196\right)\right)\right), t\_63\right), -\left(4.25 + y \cdot 8.13008\right)\right), 4.862 + x \cdot 8.13008\right), -\left(5.012 + x \cdot 8.13008\right)\right)\right), \sqrt{{t\_63}^{2} + {t\_579}^{2}} - 0.075\right), \mathsf{max}\left(\mathsf{max}\left(t\_882, t\_42\right), -\left(5.262 + x \cdot 8.13008\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_669, 5.612 + x \cdot 8.13008\right), t\_561\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_235, t\_899\right), t\_42\right), t\_561\right), 0.175 - t\_830\right), t\_830 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_586, 5.962 + x \cdot 8.13008\right), -\left(6.062 + x \cdot 8.13008\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_236, t\_109\right), t\_204\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_908, t\_109\right), t\_204\right), 0.15 - t\_698\right), t\_698 - 0.25\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_667, 6.57 + x \cdot 8.13008\right), -\left(6.67 + x \cdot 8.13008\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_669, t\_720\right), -\left(3.182 + x \cdot 8.13008\right)\right), 0.175 - t\_962\right), t\_962 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_692, t\_262\right), -\left(2.907 + x \cdot 8.13008\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_667, 3.257 + x \cdot 8.13008\right), t\_859\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_235, t\_743\right), t\_262\right), t\_859\right), 0.175 - t\_836\right), t\_836 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_668, 3.477 + x \cdot 8.13008\right), -\left(3.577 + x \cdot 8.13008\right)\right)\right), \mathsf{max}\left(0.175 - t\_835, t\_835 - 0.275\right)\right), \mathsf{max}\left(\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_534, -\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_333, x \cdot 2.23577 - t\_712\right), 0.228514 - t\_25\right), \mathsf{max}\left(\mathsf{max}\left(t\_25 - 0.228514, t\_712 - x \cdot 2.23577\right), t\_650\right)\right)\right), 0.175 - t\_533\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_399, t\_246\right), x \cdot 8.13008 - 6.23551\right), 5.73551 - x \cdot 8.13008\right)\right), t\_534\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_338, t\_27\right), 5.4355 - x \cdot 8.13008\right), t\_528\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_338, t\_730\right), x \cdot 8.13008 - 5.0855\right), t\_510\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_27, t\_510\right), t\_557\right), t\_683\right), 0.175 - t\_531\right), t\_531 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_730, t\_131\right), x \cdot 8.13008 - 4.7355\right), 4.6355 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_5, t\_719\right), t\_91\right), t\_185\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_338, t\_130\right), t\_91\right), t\_185\right), 0.15 - t\_658\right), t\_658 - 0.25\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_338, t\_844\right), t\_476\right), 3.5855 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_338, t\_557\right), x \cdot 8.13008 - 3.2355\right), t\_605\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_667, t\_728\right), -\left(9.52857 + x \cdot 11.6144\right)\right), 0.45 - \sqrt{t\_665 + {\left(11.2232 + x \cdot 14.518\right)}^{2}}\right), \sqrt{t\_665 + {t\_728}^{2}} - 0.55\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_668, 6.79 + x \cdot 8.13008\right), -\left(6.89 + x \cdot 8.13008\right)\right)\right), \mathsf{max}\left(0.175 - t\_832, t\_832 - 0.275\right)\right), \mathsf{max}\left(t\_843, \mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_972, t\_294\right), t\_419\right), \mathsf{max}\left(\mathsf{max}\left(t\_843, -\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_777, t\_106 - y \cdot 1.21951\right), -t\_243\right), \mathsf{max}\left(\mathsf{max}\left(t\_778, t\_243\right), y \cdot 1.21951 - t\_106\right)\right)\right), 0.175 - t\_842\right)\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_848, t\_66\right), t\_155\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_847, t\_427\right), t\_478\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_427, t\_746\right), t\_956\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_155, t\_745\right), t\_247\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_848, t\_745\right), t\_429\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_847, t\_746\right), t\_699\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_427, -t\_17\right), t\_160\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_155, t\_17\right), t\_433\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_429, t\_433\right), t\_628\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_699, t\_160\right), -t\_628\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(3.5325 + x \cdot 8.13008, -\left(3.6325 + x \cdot 8.13008\right)\right), t\_491\right), t\_633\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_119, -\left(5.18929 + x \cdot 11.6144\right)\right), 0.45 - \sqrt{{\left(5.79911 + x \cdot 14.518\right)}^{2} + t\_784}\right), \sqrt{{t\_119}^{2} + t\_784} - 0.55\right), t\_491\right), t\_633\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(3.7575 + x \cdot 8.13008, -\left(3.8575 + x \cdot 8.13008\right)\right), t\_491\right), t\_633\right)\right), \sqrt{{\left(3.8075 + x \cdot 8.13008\right)}^{2} + t\_2} - 0.075\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(4.0025 + x \cdot 8.13008, -\left(4.1025 + x \cdot 8.13008\right)\right), t\_633\right), t\_645\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(x \cdot 8.13008 - 0.0154991, -\left(0.084501 + x \cdot 8.13008\right)\right), t\_633\right), t\_645\right)\right), \mathsf{max}\left(0.175 - t\_802, t\_802 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_181, -\left(0.794501 + x \cdot 8.13008\right)\right), t\_797\right), t\_633\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(1.1445 + x \cdot 8.13008, t\_810\right), t\_34\right), t\_633\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_181, t\_810\right), t\_798\right), 0.175 - t\_805\right), t\_805 - 0.275\right), t\_491\right)\right), \mathsf{max}\left(\mathsf{max}\left(-\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(y \cdot 2.23577 - t\_345, t\_453\right), -t\_1015\right), \mathsf{max}\left(\mathsf{max}\left(t\_1015, -t\_453\right), t\_345 - y \cdot 2.23577\right)\right), 0.175 - t\_800\right), t\_800 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_498, t\_956\right), t\_478\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_264, t\_66\right), t\_247\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_798, t\_52\right), t\_191\right), 0.175 - t\_804\right), t\_804 - 0.275\right), t\_491\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(-t\_60, 7.05 + x \cdot 8.13008\right), -\left(7.15 + x \cdot 8.13008\right)\right), t\_34\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_549, t\_679\right), t\_926\right), t\_10\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_60, t\_549\right), t\_679\right), 0.15 - t\_550\right), t\_550 - 0.25\right), t\_633\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_941, x \cdot 8.13008 - 7.72551\right), 7.62551 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_424, t\_737\right), t\_947\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_737, t\_947\right), t\_299\right), t\_379\right), 0.15 - t\_738\right), t\_738 - 0.25\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_379, y \cdot 8.13008 - 0.65\right), x \cdot 8.13008 - 7.35551\right), 7.25551 - x \cdot 8.13008\right)\right), \mathsf{max}\left(0.175 - t\_771, t\_771 - 0.275\right)\right), \mathsf{max}\left(0.175 - t\_801, t\_801 - 0.275\right)\right), \mathsf{max}\left(-\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_168, 3.575 + x \cdot 5.42005\right), t\_313\right), t\_437\right), \sqrt{{\left(-\left(2.49333 + x \cdot 3.61337\right)\right)}^{2} + t\_76} - 0.0625\right), \sqrt{{t\_168}^{2} + t\_500} - 0.1625\right)\right), \mathsf{max}\left(-\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_167, -\left(3.9 + x \cdot 5.42005\right)\right), t\_213\right), t\_394\right), \sqrt{{\left(2.49 + x \cdot 3.61337\right)}^{2} + t\_982} - 0.0625\right), \sqrt{{t\_167}^{2} + t\_395} - 0.1625\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(-\left(6.075 + x \cdot 8.13008\right), t\_793\right), t\_491\right), t\_633\right)\right), \sqrt{{\left(6.025 + x \cdot 8.13008\right)}^{2} + t\_2} - 0.075\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_52, -\left(6.35 + x \cdot 8.13008\right)\right), t\_797\right), t\_633\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(6.7 + x \cdot 8.13008, t\_191\right), t\_34\right), t\_633\right)\right), \mathsf{max}\left(-\mathsf{min}\left(\sqrt{t\_218 + {\left(x \cdot 3.61337 - 2.02467\right)}^{2}} - 0.0625, \mathsf{max}\left(\mathsf{max}\left(t\_902, t\_35\right), 2.872 - x \cdot 5.42005\right)\right), \sqrt{t\_406 + {t\_35}^{2}} - 0.1625\right)\right), \mathsf{max}\left(t\_774, \mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_410, x \cdot 8.13008 - 4.208\right), 3.708 - x \cdot 8.13008\right), \mathsf{max}\left(\mathsf{max}\left(t\_774, -\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_97, x \cdot 2.23577 - t\_229\right), 1.32095 - t\_25\right), \mathsf{max}\left(\mathsf{max}\left(t\_25 - 1.32095, t\_229 - x \cdot 2.23577\right), t\_729\right)\right)\right), 0.175 - t\_773\right)\right)\right)\right), \mathsf{max}\left(-\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_234, x \cdot 5.42005 - 2.372\right), t\_409\right), t\_469\right), \sqrt{{\left(1.47133 - x \cdot 3.61337\right)}^{2} + t\_61} - 0.0625\right), \sqrt{{t\_234}^{2} + t\_366} - 0.1625\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_759, t\_680\right), 6.5455 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_940, x \cdot 8.13008 - 6.19551\right), t\_241\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_680, t\_241\right), t\_684\right), t\_735\right), 0.175 - t\_942\right), t\_942 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_941, x \cdot 8.13008 - 5.8455\right), 5.7455 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_424, t\_739\right), t\_948\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_380, t\_739\right), t\_948\right), 0.15 - t\_740\right), t\_740 - 0.25\right)\right), \mathsf{max}\left(-\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_470, t\_72\right), x \cdot 5.42005 - 3.197\right), \sqrt{t\_61 + {\left(2.02133 - x \cdot 3.61337\right)}^{2}} - 0.0625\right), \sqrt{t\_366 + {t\_72}^{2}} - 0.1625\right)\right), \mathsf{max}\left(-\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_902, 0.788667 - x \cdot 5.42005\right), t\_256\right), \sqrt{t\_218 + {\left(x \cdot 3.61337 - 0.635778\right)}^{2}} - 0.0625\right), \sqrt{t\_406 + {t\_256}^{2}} - 0.1625\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_685, x \cdot 8.13008 - 0.125\right), 0.0249996 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_685, t\_704\right), 0.0357141 - x \cdot 11.6144\right), 0.45 - \sqrt{t\_169 + {\left(x \cdot 14.518 - 0.732143\right)}^{2}}\right), \sqrt{t\_169 + {t\_704}^{2}} - 0.55\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_685, 0.1 + x \cdot 8.13008\right), -\left(0.2 + x \cdot 8.13008\right)\right)\right), \sqrt{{\left(y \cdot 8.13008 - 1\right)}^{2} + t\_465} - 0.075\right), \mathsf{max}\left(t\_789, \mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_410, 0.325 + x \cdot 8.13008\right), -\left(0.825 + x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_789, -\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_97, t\_81 - y \cdot 1.21951\right), 0.0743749 - t\_25\right), \mathsf{max}\left(\mathsf{max}\left(t\_729, t\_25 - 0.0743749\right), y \cdot 1.21951 - t\_81\right)\right)\right), 0.175 - t\_788\right)\right)\right)\right), \mathsf{max}\left(-\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_28, 2.047 - x \cdot 5.42005\right), t\_722\right), t\_901\right), \sqrt{t\_218 + {\left(x \cdot 3.61337 - 1.47467\right)}^{2}} - 0.0625\right), \sqrt{t\_406 + {t\_28}^{2}} - 0.1625\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_1012, t\_36\right), 2.8705 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_685, x \cdot 8.13008 - 2.5205\right), t\_448\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_684, t\_36\right), t\_448\right), t\_1017\right), 0.175 - t\_762\right), t\_762 - 0.275\right)\right), \mathsf{max}\left(t\_768, \mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_410, x \cdot 8.13008 - 2.3205\right), 1.8205 - x \cdot 8.13008\right), \mathsf{max}\left(\mathsf{max}\left(t\_768, -\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_97, x \cdot 2.23577 - t\_663\right), 0.801888 - t\_25\right), \mathsf{max}\left(\mathsf{max}\left(t\_729, t\_25 - 0.801888\right), t\_663 - x \cdot 2.23577\right)\right)\right), 0.175 - t\_767\right)\right)\right)\right), \mathsf{max}\left(-\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_470, t\_543\right), x \cdot 5.42005 - 1.11367\right), \sqrt{t\_61 + {\left(0.632445 - x \cdot 3.61337\right)}^{2}} - 0.0625\right), \sqrt{t\_366 + {t\_543}^{2}} - 0.1625\right)\right), \mathsf{max}\left(\sqrt{{\left(-t\_733\right)}^{2} + {t\_8}^{2}} - 0.1625, -\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_420, t\_733\right), t\_8\right), 0.233001 + x \cdot 5.42005\right), \sqrt{{\left(-\left(1.515 + y \cdot 8.13008\right)\right)}^{2} + {\left(-\left(0.265334 + x \cdot 3.61337\right)\right)}^{2}} - 0.0625\right)\right)\right), \mathsf{max}\left(-\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(1.575 + y \cdot 8.13008, -t\_67\right), t\_156\right), -\left(0.558001 + x \cdot 5.42005\right)\right), \sqrt{{\left(1.735 + y \cdot 8.13008\right)}^{2} + {\left(0.262 + x \cdot 3.61337\right)}^{2}} - 0.0625\right), \sqrt{{t\_67}^{2} + {t\_156}^{2}} - 0.1625\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_208, t\_430 - y \cdot 1.82927\right), t\_625\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_207, t\_960\right), t\_431\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_115, t\_960\right), t\_210\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_567, t\_625\right), t\_434\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_567, \left(0.5966 + x \cdot 4.47154\right) - y \cdot 1.82927\right), t\_965\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_115, t\_431\right), t\_964\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_264, t\_210\right), t\_964\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_498, t\_434\right), t\_965\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_567, -t\_636\right), t\_860\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_115, t\_861\right), t\_636\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_264, t\_861\right), t\_315\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_498, t\_860\right), -t\_315\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_711, t\_871\right), t\_23\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_47, t\_483\right), t\_871\right), t\_23\right), 0.15 - t\_872\right), t\_872 - 0.25\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_987, x \cdot 8.13008 - 0.8105\right), 0.7105 - x \cdot 8.13008\right)\right), \mathsf{max}\left(0.175 - t\_398, t\_398 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_748, x \cdot 8.13008 - 0.000499725\right), -\left(0.0995007 + x \cdot 8.13008\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_608, t\_400\right), t\_509\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_377, t\_747\right), t\_400\right), t\_509\right), 0.15 - t\_750\right), t\_750 - 0.25\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_662, -\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_222 - y \cdot 3.25203, -t\_407\right), t\_516\right), \mathsf{max}\left(\mathsf{max}\left(t\_407, y \cdot 3.25203 - t\_222\right), -t\_516\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_93, t\_137\right), -t\_980\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_980, -t\_137\right), -t\_93\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_909 - y \cdot 0.813008, -t\_44\right), y \cdot 3.41463 - t\_224\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_224 - y \cdot 3.41463, t\_44\right), y \cdot 0.813008 - t\_909\right)\right), \mathsf{max}\left(\mathsf{max}\left(-t\_818, -t\_48\right), t\_145\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_818, t\_48\right), -t\_145\right)\right)\right), 3.687 + x \cdot 8.13008\right), -\left(4.187 + x \cdot 8.13008\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_987, 4.307 + x \cdot 8.13008\right), -\left(4.407 + x \cdot 8.13008\right)\right)\right), \mathsf{max}\left(0.175 - t\_358, t\_358 - 0.275\right)\right), \mathsf{max}\left(t\_919, \mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(1.585 + y \cdot 8.13008, t\_420\right), 4.967 + x \cdot 8.13008\right), -\left(5.467 + x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_919, -\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_295, t\_475 - y \cdot 1.21951\right), -t\_686\right), \mathsf{max}\left(\mathsf{max}\left(t\_686, y \cdot 1.21951 - t\_475\right), -t\_295\right)\right)\right), 0.175 - t\_55\right)\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_607, 5.875 + x \cdot 8.13008\right), -t\_793\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_377, 2.287 + x \cdot 8.13008\right), -\left(2.387 + x \cdot 8.13008\right)\right), t\_983\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_987, 2.537 + x \cdot 8.13008\right), -\left(2.637 + x \cdot 8.13008\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_377, 1.375 + y \cdot 8.13008\right), 2.787 + x \cdot 8.13008\right), t\_957\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_423, t\_957\right), -t\_983\right), 2.237 + x \cdot 8.13008\right), \mathsf{min}\left(\mathsf{max}\left(0.075 - t\_986, t\_986 - 0.175\right), \mathsf{max}\left(0.075 - t\_985, t\_985 - 0.175\right)\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(-\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(x \cdot 2.84553 - t\_263, 0.681276 - t\_492\right), t\_637 - x \cdot 1.01626\right), \mathsf{max}\left(\mathsf{max}\left(x \cdot 1.01626 - t\_637, t\_492 - 0.681276\right), t\_263 - x \cdot 2.84553\right)\right), t\_120\right), -\left(0.95 + y \cdot 8.13008\right)\right), x \cdot 8.13008 - 5.289\right), 5.139 - x \cdot 8.13008\right), \sqrt{{\left(0.241667 + y \cdot 2.71003\right)}^{2} + {\left(x \cdot 8.13008 - 5.214\right)}^{2}} - 0.075\right)\right), \sqrt{{t\_120}^{2} + {\left(x \cdot 8.13008 - 5.239\right)}^{2}} - 0.075\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_491, x \cdot 8.13008 - 4.781\right), 4.681 - x \cdot 8.13008\right), t\_633\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_491, t\_329\right), 6.68715 - x \cdot 11.6144\right), 0.45 - \sqrt{t\_784 + {\left(x \cdot 14.518 - 9.04643\right)}^{2}}\right), \sqrt{t\_784 + {t\_329}^{2}} - 0.55\right), t\_633\right)\right), \mathsf{max}\left(0.175 - t\_803, t\_803 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_607, t\_29\right), -\left(8.53571 + x \cdot 11.6144\right)\right), 0.45 - \sqrt{t\_376 + {\left(9.98214 + x \cdot 14.518\right)}^{2}}\right), \sqrt{t\_376 + {t\_29}^{2}} - 0.55\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_662, t\_90\right), t\_182\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_606, t\_653\right), t\_71\right), t\_519\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_377, t\_653\right), t\_80\right), t\_519\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_662, t\_45\right), -t\_653\right), 0.175 - t\_656\right), t\_656 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_635, x \cdot 8.13008 - 7.28901\right), 7.18901 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_635, x \cdot 8.13008 - 7.03901\right), 6.93901 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(y \cdot 8.13008 - 4.76837 \cdot 10^{-7}, t\_926\right), x \cdot 8.13008 - 6.81401\right), 6.71401 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_34, 0.1 - y \cdot 8.13008\right), t\_98\right), t\_192\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_633, t\_98\right), t\_192\right), 0.7 + y \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_635, x \cdot 8.13008 - 6.41401\right), 6.314 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_634, x \cdot 8.13008 - 2.1185\right), 2.0185 - x \cdot 8.13008\right)\right), \sqrt{t\_2 + {\left(x \cdot 8.13008 - 2.0685\right)}^{2}} - 0.075\right), \mathsf{max}\left(\mathsf{max}\left(t\_646, x \cdot 8.13008 - 1.1935\right), 1.0935 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_646, x \cdot 8.13008 - 0.943501\right), 0.8435 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_633, 0.275 + y \cdot 8.13008\right), x \cdot 8.13008 - 0.693501\right), t\_64\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_64, t\_10\right), -t\_645\right), x \cdot 8.13008 - 1.2435\right), \mathsf{min}\left(\mathsf{max}\left(0.075 - t\_951, t\_951 - 0.175\right), \mathsf{max}\left(0.075 - t\_950, t\_950 - 0.175\right)\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_634, x \cdot 8.13008 - 0.2355\right), 0.1355 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_248, x \cdot 8.13008 - 3.781\right), t\_633\right), 3.681 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_491, -\left(0.35 + y \cdot 8.13008\right)\right), t\_73\right), t\_162\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_34, t\_73\right), t\_162\right), -t\_248\right), 0.15 - t\_701\right), t\_701 - 0.25\right)\right), \mathsf{max}\left(-\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_313, t\_437\right), t\_387\right), x \cdot 5.42005 - 1.82067\right), \sqrt{t\_76 + {\left(1.10378 - x \cdot 3.61337\right)}^{2}} - 0.0625\right), \sqrt{t\_500 + {t\_387}^{2}} - 0.1625\right)\right), \mathsf{max}\left(-\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_213, t\_394\right), t\_593\right), 1.49567 - x \cdot 5.42005\right), \sqrt{t\_982 + {\left(x \cdot 3.61337 - 1.10711\right)}^{2}} - 0.0625\right), \sqrt{t\_395 + {t\_593}^{2}} - 0.1625\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_634, t\_709\right), 0.193571 - x \cdot 11.6144\right), 0.45 - \sqrt{t\_784 + {\left(x \cdot 14.518 - 0.929465\right)}^{2}}\right), \sqrt{t\_784 + {t\_709}^{2}} - 0.55\right)\right), 100000000\right), \mathsf{max}\left(t\_795, \mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_578, x \cdot 8.13008 - 7.40251\right), 6.90251 - x \cdot 8.13008\right), \mathsf{max}\left(\mathsf{max}\left(t\_795, -\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_277, x \cdot 2.23577 - t\_446\right), 3.29944 - t\_25\right), \mathsf{max}\left(\mathsf{max}\left(t\_25 - 3.29944, t\_446 - x \cdot 2.23577\right), t\_39\right)\right)\right), 0.175 - t\_794\right)\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_223, x \cdot 4.47154 - t\_340\right), t\_521\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_812, t\_340 - x \cdot 4.47154\right), t\_1018\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_812, t\_94\right), t\_225 - x \cdot 4.47154\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_521, x \cdot 4.47154 - t\_225\right), t\_523\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_223, 4.14638 - t\_912\right), t\_50\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_1018, t\_231\right), t\_912 - 4.14638\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_94, t\_231\right), t\_912 - 4.20138\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_523, t\_50\right), 4.20138 - t\_912\right)\right), \mathsf{max}\left(\mathsf{max}\left(-t\_57, t\_193\right), t\_359\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_57, t\_597\right), t\_673\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_597, t\_920\right), t\_102\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_193, -t\_920\right), t\_369\right)\right), \mathsf{max}\left(0.175 - t\_932, t\_932 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_242, -\left(6.85 + x \cdot 8.13008\right)\right), t\_559\right), t\_687\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_679, 7.2 + x \cdot 8.13008\right), t\_687\right), t\_153\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_679, t\_242\right), 0.175 - t\_933\right), t\_933 - 0.275\right), t\_68\right), t\_153\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_383, t\_480\right), 7.95251 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_958, x \cdot 8.13008 - 7.60251\right), t\_205\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_480, t\_16\right), t\_205\right), t\_626\right), 0.175 - t\_775\right), t\_775 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_384, t\_306\right), 3.0225 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_381, x \cdot 8.13008 - 2.6725\right), t\_968\right), t\_74\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_16, t\_968\right), 0.175 - t\_493\right), t\_493 - 0.275\right), t\_976\right), t\_306\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_223, x \cdot 4.47154 - t\_170\right), t\_324\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_1018, t\_573\right), t\_170 - x \cdot 4.47154\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_94, t\_573\right), t\_995 - x \cdot 4.47154\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_523, t\_324\right), x \cdot 4.47154 - t\_995\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_223, 1.79238 - t\_912\right), t\_440\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_1018, t\_710\right), t\_912 - 1.79238\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_94, t\_710\right), t\_912 - 1.84738\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_523, t\_440\right), 1.84738 - t\_912\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_223, x \cdot 4.47154 - t\_441\right), t\_648\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_1018, t\_1003\right), t\_441 - x \cdot 4.47154\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_94, t\_1003\right), t\_215 - x \cdot 4.47154\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_523, t\_648\right), x \cdot 4.47154 - t\_215\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_223, 1.51738 - t\_912\right), t\_808\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_1018, t\_87\right), t\_912 - 1.51738\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_94, t\_87\right), t\_912 - 1.57238\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_523, t\_808\right), 1.57238 - t\_912\right)\right), \mathsf{max}\left(t\_724, \mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_578, x \cdot 8.13008 - 6.0525\right), 5.5525 - x \cdot 8.13008\right), \mathsf{max}\left(\mathsf{max}\left(t\_724, -\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_277, x \cdot 2.23577 - t\_1019\right), 2.92819 - t\_25\right), \mathsf{max}\left(\mathsf{max}\left(t\_39, t\_25 - 2.92819\right), t\_1019 - x \cdot 2.23577\right)\right)\right), 0.175 - t\_723\right)\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_384, t\_524\right), 4.5525 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_382, x \cdot 8.13008 - 4.2025\right), t\_146\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_16, t\_524\right), t\_146\right), t\_976\right), 0.175 - t\_546\right), t\_546 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(-\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_367 - x \cdot 2.27642, x \cdot 4.5122 - 2.26024\right), 1.80744 - t\_1014\right), \mathsf{max}\left(\mathsf{max}\left(t\_1014 - 1.80744, 2.26024 - x \cdot 4.5122\right), x \cdot 2.27642 - t\_367\right)\right), 0.175 - t\_178\right), t\_178 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_958, x \cdot 8.13008 - 3.3975\right), 3.2975 - x \cdot 8.13008\right)\right), \sqrt{t\_104 + {\left(x \cdot 8.13008 - 3.3475\right)}^{2}} - 0.075\right), \mathsf{max}\left(-\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_577, y \cdot 8.13008 - 2.8875\right), t\_943\right), 0.355 + x \cdot 5.42005\right), \sqrt{{\left(2.885 - y \cdot 8.13008\right)}^{2} + {\left(-\left(0.346667 + x \cdot 3.61337\right)\right)}^{2}} - 0.0625\right), \sqrt{{\left(2.8875 - y \cdot 8.13008\right)}^{2} + {t\_943}^{2}} - 0.1625\right)\right), \mathsf{max}\left(-\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_245, 2.6625 - y \cdot 8.13008\right), t\_14\right), -\left(0.68 + x \cdot 5.42005\right)\right), \sqrt{{\left(y \cdot 8.13008 - 2.665\right)}^{2} + {\left(0.343334 + x \cdot 3.61337\right)}^{2}} - 0.0625\right), \sqrt{{\left(y \cdot 8.13008 - 2.6625\right)}^{2} + {t\_14}^{2}} - 0.1625\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_958, t\_18\right), -\left(1.22 + x \cdot 8.13008\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_16, t\_976\right), 1.57 + x \cdot 8.13008\right), t\_565\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_384, t\_18\right), t\_565\right), 0.175 - t\_177\right), t\_177 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_642, 1.77 + x \cdot 8.13008\right), -\left(1.87 + x \cdot 8.13008\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_642, 2.02 + x \cdot 8.13008\right), -\left(2.12 + x \cdot 8.13008\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(-\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(\left(0.0958748 + x \cdot 2.84553\right) - y \cdot 0.813008, 1.26444 - t\_492\right), y \cdot 4.87805 - t\_396\right), \mathsf{max}\left(\mathsf{max}\left(t\_396 - y \cdot 4.87805, t\_492 - 1.26444\right), y \cdot 0.813008 - \left(0.095875 + x \cdot 2.84553\right)\right)\right), t\_24\right), 2.35 - y \cdot 8.13008\right), x \cdot 8.13008 - 0.5475\right), 0.3975 - x \cdot 8.13008\right), \sqrt{{\left(y \cdot 2.71003 - 0.858333\right)}^{2} + {\left(x \cdot 8.13008 - 0.4725\right)}^{2}} - 0.075\right)\right), \sqrt{{t\_24}^{2} + {\left(x \cdot 8.13008 - 0.4975\right)}^{2}} - 0.075\right), \mathsf{max}\left(\mathsf{max}\left(-\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(y \cdot 2.23577 - t\_811, x \cdot 4.5122 - 0.203962\right), 0.788562 - t\_1014\right), \mathsf{max}\left(\mathsf{max}\left(t\_1014 - 0.788562, 0.203962 - x \cdot 4.5122\right), t\_811 - y \cdot 2.23577\right)\right), 0.175 - t\_513\right), t\_513 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_958, 0.3075 + x \cdot 8.13008\right), -\left(0.4075 + x \cdot 8.13008\right)\right)\right), \sqrt{t\_104 + {\left(0.357501 + x \cdot 8.13008\right)}^{2}} - 0.075\right), \mathsf{max}\left(\mathsf{max}\left(t\_382, 3.845 + x \cdot 8.13008\right), -\left(3.945 + x \cdot 8.13008\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_383, t\_230\right), -\left(4.17 + x \cdot 8.13008\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_958, 4.52 + x \cdot 8.13008\right), t\_821\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_16, t\_626\right), t\_230\right), t\_821\right), 0.175 - t\_356\right), t\_356 - 0.275\right)\right), \mathsf{max}\left(t\_911, \mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_578, 4.72 + x \cdot 8.13008\right), -\left(5.22 + x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_911, -\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_277, t\_150 - y \cdot 1.21951\right), -t\_289\right), \mathsf{max}\left(\mathsf{max}\left(t\_39, t\_289\right), y \cdot 1.21951 - t\_150\right)\right)\right), 0.175 - t\_910\right)\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_223, t\_12 - y \cdot 2.03252\right), t\_152\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_1018, t\_372\right), y \cdot 2.03252 - t\_12\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_94, t\_372\right), y \cdot 2.03252 - t\_694\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_523, t\_152\right), t\_694 - y \cdot 2.03252\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_223, -t\_197\right), t\_373\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_381, y \cdot 8.13008 - 3.025\right), 2.27 + x \cdot 8.13008\right), t\_69\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_69, y \cdot 8.13008 - 3.15\right), 2.85 - y \cdot 8.13008\right), 1.72 + x \cdot 8.13008\right), \mathsf{min}\left(\mathsf{max}\left(0.075 - t\_640, t\_640 - 0.175\right), \mathsf{max}\left(0.075 - t\_641, t\_641 - 0.175\right)\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_369, t\_117\right), t\_258\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_488, t\_566\right), t\_102\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_488, t\_1018\right), t\_857\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_258, t\_856\right), t\_223\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_223, t\_117\right), t\_318\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_1018, t\_566\right), t\_568\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_94, t\_857\right), t\_568\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_523, t\_856\right), t\_318\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_223, -t\_121\right), t\_267\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_1018, t\_121\right), t\_571\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_94, t\_571\right), t\_787\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_523, t\_267\right), -t\_787\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_684, -\left(4.725 + x \cdot 8.13008\right)\right), -\left(0.0749998 + y \cdot 8.13008\right)\right), 4.625 + x \cdot 8.13008\right)\right), \mathsf{max}\left(0.175 - t\_761, t\_761 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_685, t\_442\right), -t\_813\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_796, t\_880\right), t\_84\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_759, t\_442\right), t\_84\right), 0.175 - t\_766\right), t\_766 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_940, -t\_38\right), 6.175 + x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_684, 0.75 - y \cdot 8.13008\right), t\_582\right), t\_38\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_379, t\_582\right), t\_38\right), y \cdot 8.13008 - 0.4\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_940, t\_581\right), -\left(7.175 + x \cdot 8.13008\right)\right), 0.175 - t\_769\right), t\_769 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_379, t\_190\right), t\_722\right), -t\_549\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_685, t\_144\right), t\_227\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_759, t\_525\right), -\left(1.125 + x \cdot 8.13008\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_940, 1.475 + x \cdot 8.13008\right), t\_147\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_796, t\_525\right), t\_147\right), 0.175 - t\_770\right), t\_770 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_941, 1.825 + x \cdot 8.13008\right), -\left(1.925 + x \cdot 8.13008\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_424, t\_364\right), t\_415\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_380, t\_364\right), t\_415\right), 0.15 - t\_696\right), t\_696 - 0.25\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_1012, t\_290\right), -\left(2.975 + x \cdot 8.13008\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_685, 3.325 + x \cdot 8.13008\right), t\_937\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_684, t\_1017\right), t\_290\right), t\_937\right), 0.175 - t\_765\right), t\_765 - 0.275\right)\right), \mathsf{max}\left(0.175 - t\_945, t\_945 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_689, x \cdot 8.13008 - 5.958\right), t\_426\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_68, 0.175 - t\_928\right), t\_928 - 0.275\right), t\_304\right), t\_153\right), t\_426\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_388, 5.633 - x \cdot 8.13008\right), t\_687\right), t\_153\right)\right), \sqrt{{\left(y \cdot 8.13008 - 2.1\right)}^{2} + {\left(x \cdot 8.13008 - 5.683\right)}^{2}} - 0.075\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_484, x \cdot 8.13008 - 5.508\right), 5.408 - x \cdot 8.13008\right), t\_687\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_484, x \cdot 8.13008 - 5.258\right), 5.158 - x \cdot 8.13008\right), t\_687\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(y \cdot 8.13008 - 1.925, x \cdot 8.13008 - 5.008\right), t\_702\right), t\_687\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_702, t\_118\right), 1.75 - y \cdot 8.13008\right), t\_904\right), \mathsf{min}\left(\mathsf{max}\left(0.075 - t\_496, t\_496 - 0.175\right), \mathsf{max}\left(0.075 - t\_495, t\_495 - 0.175\right)\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_190, t\_684\right), t\_1017\right), t\_227\right), 0.175 - t\_772\right), t\_772 - 0.275\right)\right), \mathsf{max}\left(t\_764, \mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_294, t\_419\right), t\_286\right), t\_409\right), \mathsf{max}\left(\mathsf{max}\left(t\_764, -\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_97, t\_79 - y \cdot 1.21951\right), -t\_186\right), \mathsf{max}\left(\mathsf{max}\left(t\_729, t\_186\right), y \cdot 1.21951 - t\_79\right)\right)\right), 0.175 - t\_763\right)\right)\right)\right), \mathsf{max}\left(t\_936, \mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(y \cdot 8.13008 - 1.715, 1.625 - y \cdot 8.13008\right), x \cdot 8.13008 - 7.058\right), 6.558 - x \cdot 8.13008\right), \mathsf{max}\left(\mathsf{max}\left(t\_936, -\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(y \cdot 5.28455 - 1.08875, x \cdot 2.23577 - t\_336\right), 2.6547 - t\_25\right), \mathsf{max}\left(\mathsf{max}\left(t\_25 - 2.6547, t\_336 - x \cdot 2.23577\right), 1.08875 - y \cdot 5.28455\right)\right)\right), 0.175 - t\_935\right)\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_559, t\_687\right), t\_304\right), 6.308 - x \cdot 8.13008\right)\right), \mathsf{max}\left(t\_931 - 0.275, 0.175 - t\_931\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_359, x \cdot 4.47154 - t\_1021\right), t\_96\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_228, t\_1021 - x \cdot 4.47154\right), t\_673\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_228, t\_102\right), t\_526 - x \cdot 4.47154\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_96, x \cdot 4.47154 - t\_526\right), t\_369\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_359, 1.4775 - t\_912\right), t\_148\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_673, t\_357\right), t\_912 - 1.4775\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_102, t\_357\right), t\_912 - 1.5325\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_369, t\_148\right), 1.5325 - t\_912\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_359, x \cdot 4.47154 - t\_149\right), t\_288\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_673, t\_554\right), t\_149 - x \cdot 4.47154\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_102, t\_554\right), t\_922 - x \cdot 4.47154\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_369, t\_288\right), x \cdot 4.47154 - t\_922\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_359, 1.2025 - t\_912\right), t\_418\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_673, t\_682\right), t\_912 - 1.2025\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_102, t\_682\right), t\_912 - 1.2575\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_369, t\_418\right), 1.2575 - t\_912\right)\right), \mathsf{max}\left(0.175 - t\_930, t\_930 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_687, -\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(y \cdot 4.06504 - 1.2, x \cdot 4.06504 - 2.104\right), 3.054 - t\_979\right), \mathsf{max}\left(\mathsf{max}\left(t\_979 - 3.054, 2.104 - x \cdot 4.06504\right), 1.2 - y \cdot 4.06504\right)\right), \mathsf{max}\left(\mathsf{max}\left(x \cdot 8.13008 - t\_428, 1.8858 - t\_697\right), t\_817 - x \cdot 5.28455\right)\right), \mathsf{max}\left(\mathsf{max}\left(x \cdot 5.28455 - t\_817, t\_697 - 1.8858\right), t\_428 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(0.351 - y \cdot 2.19512, 1.2978 - x \cdot 2.84553\right), t\_444 - 1.7433\right)\right), \mathsf{max}\left(\mathsf{max}\left(1.7433 - t\_444, x \cdot 2.84553 - 1.2978\right), y \cdot 2.19512 - 0.351\right)\right), \mathsf{max}\left(\mathsf{max}\left(y \cdot 3.25203 - 0.96, x \cdot 4.47154 - t\_353\right), 2.0394 - x \cdot 4.47154\right)\right), \mathsf{max}\left(\mathsf{max}\left(x \cdot 4.47154 - 2.0394, t\_353 - x \cdot 4.47154\right), 0.96 - y \cdot 3.25203\right)\right)\right), t\_1\right), x \cdot 8.13008 - 4.108\right), 3.608 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_689, x \cdot 8.13008 - 3.25\right), 3.15 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_689, t\_977\right), 4.5 - x \cdot 11.6144\right), 0.45 - \sqrt{t\_269 + {\left(x \cdot 14.518 - 6.3125\right)}^{2}}\right), \sqrt{t\_269 + {t\_977}^{2}} - 0.55\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_153, t\_124\right), t\_173\right), 1.85 - y \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_687, t\_124\right), t\_575\right), t\_173\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_688, t\_123\right), -\left(3.275 + x \cdot 8.13008\right)\right), 0.175 - t\_929\right), t\_929 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_1, 2.3 - y \cdot 8.13008\right), t\_807\right), t\_1004\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_687, t\_575\right), t\_807\right), t\_1004\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_481, t\_687\right), t\_1\right), -\left(3.9 + x \cdot 8.13008\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_359, t\_718 - y \cdot 2.03252\right), t\_1010\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_673, t\_1009\right), y \cdot 2.03252 - t\_718\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_102, t\_1009\right), y \cdot 2.03252 - t\_447\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_369, t\_1010\right), t\_447 - y \cdot 2.03252\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_359, -t\_40\right), t\_184\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_673, t\_40\right), t\_449\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_102, t\_449\right), t\_651\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_369, t\_184\right), -t\_651\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_359, t\_187 - y \cdot 2.03252\right), t\_355\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_673, t\_594\right), y \cdot 2.03252 - t\_187\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_102, t\_594\right), y \cdot 2.03252 - t\_6\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_369, t\_355\right), t\_6 - y \cdot 2.03252\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(1.65 - y \cdot 8.13008, 0.300001 + x \cdot 8.13008\right), t\_1\right), -\left(0.400001 + x \cdot 8.13008\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_464, t\_118\right), 1.95 - y \cdot 8.13008\right), t\_100\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_464, t\_687\right), t\_100\right), t\_556\right), 0.15 - t\_676\right), t\_676 - 0.25\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(-\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_558 - y \cdot 0.813008, 0.281875 - t\_492\right), y \cdot 4.87805 - t\_938\right), \mathsf{max}\left(\mathsf{max}\left(t\_938 - y \cdot 4.87805, t\_492 - 0.281875\right), y \cdot 0.813008 - t\_558\right)\right), t\_296\right), 1.25 - y \cdot 8.13008\right), 1.375 + x \cdot 8.13008\right), -\left(1.525 + x \cdot 8.13008\right)\right), \sqrt{{\left(y \cdot 2.71003 - 0.491667\right)}^{2} + {\left(1.45 + x \cdot 8.13008\right)}^{2}} - 0.075\right)\right), \sqrt{{t\_296}^{2} + {\left(1.425 + x \cdot 8.13008\right)}^{2}} - 0.075\right), \mathsf{max}\left(0.175 - t\_934, t\_934 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_688, -t\_173\right), 2.275 + x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_754 - 0.275, t\_206\right), t\_305\right), 0.175 - t\_754\right), t\_486\right), t\_627\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_19, x \cdot 8.13008 - 1.556\right), 1.456 - x \cdot 8.13008\right), t\_259\right)\right), \mathsf{max}\left(0.175 - t\_436, t\_436 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(-\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_497 - y \cdot 0.813008, 2.27973 - t\_492\right), y \cdot 4.87805 - t\_868\right), \mathsf{max}\left(\mathsf{max}\left(t\_868 - y \cdot 4.87805, t\_492 - 2.27973\right), y \cdot 0.813008 - t\_497\right)\right), t\_271\right), 4.55 - y \cdot 8.13008\right), x \cdot 8.13008 - 0.171\right), 0.0209999 - x \cdot 8.13008\right), \sqrt{{\left(y \cdot 2.71003 - 1.59167\right)}^{2} + {\left(x \cdot 8.13008 - 0.0959997\right)}^{2}} - 0.075\right)\right), \sqrt{{t\_271}^{2} + {\left(x \cdot 8.13008 - 0.121\right)}^{2}} - 0.075\right), \mathsf{max}\left(\mathsf{max}\left(t\_879, t\_998\right), 3.65055 - t\_912\right)\right), \mathsf{max}\left(\mathsf{max}\left(x \cdot 4.47154 - t\_330, t\_505\right), t\_649\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_1005, t\_330 - x \cdot 4.47154\right), t\_86\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_1005, \left(0.970551 + y \cdot 2.03252\right) - x \cdot 4.47154\right), t\_404\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_505, x \cdot 4.47154 - \left(0.970552 + y \cdot 2.03252\right)\right), t\_879\right)\right), \mathsf{max}\left(\mathsf{max}\left(3.32055 - t\_912, t\_88\right), t\_649\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_281, t\_912 - 3.32055\right), t\_86\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_281, t\_912 - 3.37555\right), t\_404\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_88, 3.37555 - t\_912\right), t\_879\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(2.751 - x \cdot 8.13008, x \cdot 8.13008 - 2.851\right), t\_283\right), t\_259\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_592, t\_652\right), t\_814\right), t\_486\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_652, t\_814\right), t\_46\right), t\_259\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(1.851 - x \cdot 8.13008, x \cdot 8.13008 - 2.576\right), 0.175 - t\_661\right), t\_661 - 0.275\right), t\_283\right), t\_259\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_206, 2.126 - x \cdot 8.13008\right), t\_233\right), t\_259\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(x \cdot 8.13008 - 1.776, t\_305\right), t\_259\right), t\_486\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(4.6 - y \cdot 8.13008, 1.862 + x \cdot 8.13008\right), -\left(1.962 + x \cdot 8.13008\right)\right), t\_486\right)\right), \sqrt{{\left(y \cdot 8.13008 - 5.4\right)}^{2} + {\left(1.912 + x \cdot 8.13008\right)}^{2}} - 0.075\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_923, -\left(2.762 + x \cdot 8.13008\right)\right), t\_283\right), t\_259\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_592, t\_370\right), t\_924\right), t\_486\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_46, t\_370\right), t\_924\right), t\_259\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(1.762 + x \cdot 8.13008, -t\_370\right), 0.175 - t\_371\right), t\_371 - 0.275\right), t\_283\right), t\_259\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_19, 2.882 + x \cdot 8.13008\right), -\left(2.982 + x \cdot 8.13008\right)\right), t\_259\right)\right), \mathsf{max}\left(0.175 - t\_199, t\_199 - 0.275\right)\right), \mathsf{max}\left(t\_753, \mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(0.0790005 + x \cdot 8.13008, -\left(0.579001 + x \cdot 8.13008\right)\right), t\_612\right), t\_755\right), \mathsf{max}\left(\mathsf{max}\left(t\_753, -\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_252 - y \cdot 1.21951, 2.34202 - t\_25\right), t\_487\right), \mathsf{max}\left(\mathsf{max}\left(t\_25 - 2.34202, y \cdot 1.21951 - t\_252\right), t\_967\right)\right)\right), 0.175 - t\_752\right)\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(0.987 + x \cdot 8.13008, -\left(1.087 + x \cdot 8.13008\right)\right), t\_259\right), t\_486\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_865, -\left(1.55286 + x \cdot 11.6144\right)\right), 0.45 - \sqrt{t\_314 + {\left(1.25357 + x \cdot 14.518\right)}^{2}}\right), \sqrt{t\_314 + {t\_865}^{2}} - 0.55\right), t\_259\right), t\_486\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_122, -\left(1.287 + x \cdot 8.13008\right)\right), t\_259\right), t\_486\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(1.637 + x \cdot 8.13008, t\_708\right), t\_997\right), t\_486\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_122, t\_708\right), 0.175 - t\_326\right), t\_326 - 0.275\right), t\_259\right), t\_157\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(4.325 - y \cdot 8.13008, 1.587 + x \cdot 8.13008\right), -t\_331\right), 0.175 - t\_716\right), t\_716 - 0.275\right), t\_714\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_132, t\_216\right), t\_334\right), t\_445\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_216, x \cdot 8.13008 - 6.3305\right), 6.2305 - x \cdot 8.13008\right), t\_89\right)\right), \mathsf{max}\left(\mathsf{max}\left(-\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(y \cdot 2.23577 - t\_518, x \cdot 4.5122 - 2.94178\right), 3.05264 - t\_1014\right), \mathsf{max}\left(\mathsf{max}\left(t\_1014 - 3.05264, 2.94178 - x \cdot 4.5122\right), t\_518 - y \cdot 2.23577\right)\right), 0.175 - t\_461\right), t\_461 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_1022, x \cdot 8.13008 - 4.6255\right), 4.5255 - x \cdot 8.13008\right)\right), \sqrt{t\_411 + {\left(x \cdot 8.13008 - 4.5755\right)}^{2}} - 0.075\right), \mathsf{max}\left(\mathsf{max}\left(t\_915, t\_56\right), 4.3005 - x \cdot 8.13008\right)\right), \mathsf{max}\left(0.175 - t\_468, t\_468 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_56, t\_101\right), 3.8505 - x \cdot 8.13008\right), 0.175 - t\_474\right), t\_474 - 0.275\right), t\_283\right)\right), \mathsf{max}\left(t\_732, \mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(4.242 + x \cdot 8.13008, -\left(4.742 + x \cdot 8.13008\right)\right), t\_612\right), t\_755\right), \mathsf{max}\left(\mathsf{max}\left(t\_732, -\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_105 - y \cdot 1.21951, 1.1972 - t\_25\right), t\_487\right), \mathsf{max}\left(\mathsf{max}\left(t\_25 - 1.1972, y \cdot 1.21951 - t\_105\right), t\_967\right)\right)\right), 0.175 - t\_731\right)\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_143, -\left(5.25 + x \cdot 8.13008\right)\right), t\_259\right), t\_486\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_244, -\left(7.5 + x \cdot 11.6144\right)\right), 0.45 - \sqrt{t\_314 + {\left(8.6875 + x \cdot 14.518\right)}^{2}}\right), \sqrt{t\_314 + {t\_244}^{2}} - 0.55\right), t\_259\right), t\_486\right)\right), \mathsf{max}\left(t\_301, \mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(5.35 + x \cdot 8.13008, -\left(5.85 + x \cdot 8.13008\right)\right), t\_612\right), t\_755\right), \mathsf{max}\left(\mathsf{max}\left(t\_301, -\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_564 - y \cdot 1.21951, 0.8925 - t\_25\right), t\_487\right), \mathsf{max}\left(\mathsf{max}\left(t\_25 - 0.8925, y \cdot 1.21951 - t\_564\right), t\_967\right)\right)\right), 0.175 - t\_300\right)\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_311, -\left(6.15 + x \cdot 8.13008\right)\right), t\_259\right), t\_157\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_779, t\_283\right), t\_259\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_182, t\_311\right), 0.175 - t\_655\right), t\_655 - 0.275\right), t\_997\right), t\_486\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_89, t\_570\right), t\_334\right), t\_445\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_915, t\_782\right), 0.8705 - x \cdot 8.13008\right)\right), \mathsf{max}\left(0.175 - t\_459, t\_459 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_101, t\_782\right), 0.4205 - x \cdot 8.13008\right), 0.175 - t\_473\right), t\_473 - 0.275\right), t\_283\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_1022, t\_327\right), 0.220499 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_3, 0.129501 + x \cdot 8.13008\right), t\_999\right), t\_126\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_455, t\_327\right), t\_999\right), 0.175 - t\_506\right), t\_506 - 0.275\right)\right), \mathsf{max}\left(0.175 - t\_457, t\_457 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_1022, 1.2375 + x \cdot 8.13008\right), -\left(1.3375 + x \cdot 8.13008\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_1022, t\_133\right), -\left(1.91072 + x \cdot 11.6144\right)\right), 0.45 - \sqrt{t\_587 + {\left(1.70089 + x \cdot 14.518\right)}^{2}}\right), \sqrt{t\_587 + {t\_133}^{2}} - 0.55\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_350, x \cdot 8.13008 - 3.7305\right), 3.6305 - x \cdot 8.13008\right)\right), \mathsf{max}\left(0.175 - t\_726, t\_726 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_350, x \cdot 8.13008 - 3.0705\right), 2.9705 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_350, x \cdot 8.13008 - 2.8205\right), 2.7205 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_216, y \cdot 8.13008 - 6.325\right), x \cdot 8.13008 - 2.5705\right), t\_189\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_189, t\_540\right), 6.15 - y \cdot 8.13008\right), x \cdot 8.13008 - 3.1205\right), \mathsf{min}\left(\mathsf{max}\left(0.075 - t\_349, t\_349 - 0.175\right), \mathsf{max}\left(0.075 - t\_548, t\_548 - 0.175\right)\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_455, t\_103\right), 1.5205 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_422, x \cdot 8.13008 - 1.1705\right), t\_603\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_3, t\_103\right), t\_603\right), t\_126\right), 0.175 - t\_458\right), t\_458 - 0.275\right)\right), \mathsf{max}\left(\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_850, x \cdot 8.13008 - 6.4085\right), 5.9085 - x \cdot 8.13008\right), t\_154\right), \mathsf{max}\left(\mathsf{max}\left(-\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_610, x \cdot 2.23577 - t\_852\right), 3.57609 - t\_25\right), \mathsf{max}\left(\mathsf{max}\left(t\_25 - 3.57609, t\_852 - x \cdot 2.23577\right), t\_302\right)\right), 0.175 - t\_622\right), t\_959\right)\right), t\_959\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_254, x \cdot 8.13008 - 5.7585\right), 5.6585 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_254, x \cdot 8.13008 - 5.5085\right), 5.4085 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_253, y \cdot 8.13008 - 4.125\right), x \cdot 8.13008 - 5.2585\right), t\_312\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_312, y \cdot 8.13008 - 4.25\right), 3.95 - y \cdot 8.13008\right), x \cdot 8.13008 - 5.8085\right), \mathsf{min}\left(\mathsf{max}\left(0.075 - t\_266, t\_266 - 0.175\right), \mathsf{max}\left(0.075 - t\_707, t\_707 - 0.175\right)\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_1018, t\_197\right), t\_374\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_94, t\_374\right), t\_392\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_523, t\_373\right), -t\_392\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_642, 6.09 + x \cdot 8.13008\right), -\left(6.19 + x \cdot 8.13008\right)\right)\right), \mathsf{max}\left(0.175 - t\_328, t\_328 - 0.275\right)\right), \mathsf{max}\left(t\_1001, \mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_578, t\_242\right), -t\_144\right), \mathsf{max}\left(\mathsf{max}\left(t\_1001, -\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_277, t\_717 - y \cdot 1.21951\right), -t\_1007\right), \mathsf{max}\left(\mathsf{max}\left(t\_39, t\_1007\right), y \cdot 1.21951 - t\_717\right)\right)\right), 0.175 - t\_1000\right)\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_294, t\_381\right), t\_175\right), -\left(7.55 + x \cdot 8.13008\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_382, 7.9 + x \cdot 8.13008\right), t\_33\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_294, t\_16\right), t\_976\right), t\_33\right), 0.175 - t\_514\right), t\_514 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_715, 2.121 - x \cdot 8.13008\right), x \cdot 8.13008 - 2.846\right), 0.175 - t\_621\right), t\_621 - 0.275\right)\right), \mathsf{max}\left(t\_816, \mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_851, x \cdot 8.13008 - 2.496\right), 1.996 - x \cdot 8.13008\right), \mathsf{max}\left(\mathsf{max}\left(t\_816, -\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_610, x \cdot 2.23577 - t\_51\right), 2.50015 - t\_25\right), \mathsf{max}\left(\mathsf{max}\left(t\_302, t\_25 - 2.50015\right), t\_51 - x \cdot 2.23577\right)\right)\right), 0.175 - t\_815\right)\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_253, x \cdot 8.13008 - 1.588\right), 1.488 - x \cdot 8.13008\right), t\_59\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_253, t\_416\right), 2.12571 - x \cdot 11.6144\right), 0.45 - \sqrt{t\_925 + {\left(x \cdot 14.518 - 3.34464\right)}^{2}}\right), \sqrt{t\_925 + {t\_416}^{2}} - 0.55\right), t\_59\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_253, x \cdot 8.13008 - 1.363\right), 1.263 - x \cdot 8.13008\right), t\_59\right)\right), \sqrt{{\left(y \cdot 8.13008 - 4.3\right)}^{2} + {\left(x \cdot 8.13008 - 1.313\right)}^{2}} - 0.075\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_253, t\_609\right), 1.038 - x \cdot 8.13008\right), t\_59\right)\right), \mathsf{max}\left(t\_616 - 0.275, 0.175 - t\_616\right)\right), \mathsf{max}\left(-\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_850, y \cdot 8.13008 - 3.9875\right), t\_955\right), x \cdot 5.42005 - 2.939\right), \sqrt{{\left(3.985 - y \cdot 8.13008\right)}^{2} + {\left(1.84933 - x \cdot 3.61337\right)}^{2}} - 0.0625\right), \sqrt{{\left(3.9875 - y \cdot 8.13008\right)}^{2} + {t\_955}^{2}} - 0.1625\right)\right), \mathsf{max}\left(-\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(y \cdot 8.13008 - 3.925, 3.7625 - y \cdot 8.13008\right), t\_700\right), 2.614 - x \cdot 5.42005\right), \sqrt{{\left(y \cdot 8.13008 - 3.765\right)}^{2} + {\left(x \cdot 3.61337 - 1.85267\right)}^{2}} - 0.0625\right), \sqrt{{\left(y \cdot 8.13008 - 3.7625\right)}^{2} + {t\_700}^{2}} - 0.1625\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_715, 3.021 - x \cdot 8.13008\right), x \cdot 8.13008 - 3.121\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_59, 4.05 - y \cdot 8.13008\right), t\_522\right), t\_499\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_253, t\_522\right), t\_499\right), t\_783\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_255, t\_212\right), -\left(1.67143 + x \cdot 11.6144\right)\right), 0.45 - \sqrt{t\_925 + {\left(1.40179 + x \cdot 14.518\right)}^{2}}\right), \sqrt{t\_925 + {t\_212}^{2}} - 0.55\right)\right), \mathsf{max}\left(t\_620, \mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_851, 1.97 + x \cdot 8.13008\right), -\left(2.47 + x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_620, -\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_610, t\_507 - y \cdot 1.21951\right), 1.272 - t\_25\right), \mathsf{max}\left(\mathsf{max}\left(t\_302, t\_25 - 1.272\right), y \cdot 1.21951 - t\_507\right)\right)\right), 0.175 - t\_619\right)\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_217, t\_332 - y \cdot 2.03252\right), t\_512\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_809, y \cdot 2.03252 - t\_332\right), t\_1011\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_809, t\_134\right), y \cdot 2.03252 - t\_221\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_512, t\_221 - y \cdot 2.03252\right), t\_515\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_217, -t\_727\right), t\_41\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_1011, t\_727\right), t\_285\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_134, t\_285\right), t\_452\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_515, t\_41\right), -t\_452\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_254, 3.34 + x \cdot 8.13008\right), -\left(3.44 + x \cdot 8.13008\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_412, x \cdot 8.13008 - 0.688\right), t\_595\right), t\_59\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_614, t\_609\right), t\_595\right), 0.175 - t\_617\right), t\_617 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_59, 3.225 - y \cdot 8.13008\right), x \cdot 8.13008 - 0.487999\right), 0.387999 - x \cdot 8.13008\right)\right), \mathsf{max}\left(0.175 - t\_618, t\_618 - 0.275\right)\right), \mathsf{max}\left(t\_678, \mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_851, 0.162001 + x \cdot 8.13008\right), -\left(0.662001 + x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_678, -\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_610, t\_13 - y \cdot 1.21951\right), 1.7692 - t\_25\right), \mathsf{max}\left(\mathsf{max}\left(t\_302, t\_25 - 1.7692\right), y \cdot 1.21951 - t\_13\right)\right)\right), 0.175 - t\_677\right)\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_255, 1.07 + x \cdot 8.13008\right), -\left(1.17 + x \cdot 8.13008\right)\right)\right), \mathsf{max}\left(\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(-\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(t\_487, x \cdot 2.23577 - t\_479\right), 4.04153 - t\_25\right), \mathsf{max}\left(\mathsf{max}\left(t\_25 - 4.04153, t\_479 - x \cdot 2.23577\right), t\_967\right)\right), 0.175 - t\_159\right), t\_386\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_612, t\_755\right), x \cdot 8.13008 - 6.101\right), 5.601 - x \cdot 8.13008\right)\right), t\_386\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_112, 5.301 - x \cdot 8.13008\right), t\_259\right), t\_157\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_283, x \cdot 8.13008 - 4.951\right), t\_629\right), t\_259\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_112, t\_629\right), t\_997\right), 0.175 - t\_166\right), t\_166 - 0.275\right), t\_486\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_649, x \cdot 4.47154 - t\_703\right), t\_975\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_974, t\_703 - x \cdot 4.47154\right), t\_86\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_974, t\_404\right), t\_438 - x \cdot 4.47154\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_975, x \cdot 4.47154 - t\_438\right), t\_879\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_649, 3.59555 - t\_912\right), t\_998\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_86, t\_172\right), t\_912 - 3.59555\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_404, t\_172\right), t\_912 - 3.65055\right)\right), \mathsf{max}\left(0.175 - t\_623, t\_623 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_614, t\_174\right), -\left(4.15 + x \cdot 8.13008\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_179, t\_274\right), t\_253\right), t\_714\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_274, t\_412\right), t\_59\right), t\_174\right), 0.175 - t\_1002\right), t\_1002 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_714, 4.5 - y \cdot 8.13008\right), t\_443\right), t\_508\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_253, t\_783\right), t\_443\right), t\_508\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_715, t\_45\right), -\left(5.7 + x \cdot 8.13008\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_233, t\_259\right), t\_276\right), 6.651 - x \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_259, t\_486\right), x \cdot 8.13008 - 6.30101\right), t\_900\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_276, t\_486\right), t\_900\right), t\_627\right), 0.175 - t\_339\right), t\_339 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_127, t\_92\right), t\_136\right), 0.175 - t\_460\right), t\_460 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_588, 3.825 + x \cdot 8.13008\right), -\left(3.925 + x \cdot 8.13008\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_541, t\_322\right), t\_142\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_216, t\_322\right), t\_142\right), t\_596\right), 0.15 - t\_918\right), t\_918 - 0.25\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_588, 5.025 + x \cdot 8.13008\right), -\left(5.125 + x \cdot 8.13008\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_541, t\_542\right), t\_881\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_216, t\_596\right), t\_542\right), t\_881\right), 0.15 - t\_917\right), t\_917 - 0.25\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_417, t\_3\right), -\left(5.475 + x \cdot 8.13008\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_127, 5.825 + x \cdot 8.13008\right), t\_11\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_417, t\_454\right), t\_11\right), 0.175 - t\_462\right), t\_462 - 0.275\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_779, t\_216\right), t\_89\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_519, t\_89\right), t\_570\right), t\_107\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_519, t\_3\right), t\_107\right), 6.25 - y \cdot 8.13008\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_519, t\_132\right), t\_216\right), t\_107\right)\right), \mathsf{max}\left(-\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(6.025 - y \cdot 8.13008, y \cdot 8.13008 - 6.1875\right), t\_202\right), 1.425 + x \cdot 5.42005\right), \sqrt{{\left(6.185 - y \cdot 8.13008\right)}^{2} + {\left(-\left(1.06 + x \cdot 3.61337\right)\right)}^{2}} - 0.0625\right), \sqrt{{\left(6.1875 - y \cdot 8.13008\right)}^{2} + {t\_202}^{2}} - 0.1625\right)\right), \mathsf{max}\left(-\mathsf{min}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(y \cdot 8.13008 - 6.125, 5.9625 - y \cdot 8.13008\right), t\_201\right), -\left(1.75 + x \cdot 5.42005\right)\right), \sqrt{{\left(y \cdot 8.13008 - 5.965\right)}^{2} + {\left(1.05667 + x \cdot 3.61337\right)}^{2}} - 0.0625\right), \sqrt{{\left(y \cdot 8.13008 - 5.9625\right)}^{2} + {t\_201}^{2}} - 0.1625\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_1022, 2.75 + x \cdot 8.13008\right), -\left(2.85 + x \cdot 8.13008\right)\right)\right), \sqrt{t\_411 + {\left(2.8 + x \cdot 8.13008\right)}^{2}} - 0.075\right), \mathsf{max}\left(\mathsf{max}\left(t\_455, t\_92\right), -\left(3.125 + x \cdot 8.13008\right)\right)\right), \mathsf{max}\left(\mathsf{max}\left(t\_422, 3.475 + x \cdot 8.13008\right), t\_136\right)\right), \mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(\mathsf{max}\left(t\_45, t\_216\right), t\_89\right), -t\_107\right), \mathsf{min}\left(\mathsf{max}\left(0.175 - t\_870, t\_870 - 0.275\right), \mathsf{max}\left(0.175 - t\_214, t\_214 - 0.275\right)\right)\right)\right) \end{array} \end{array}
Use the --timeout
flag to change the timeout.