(FPCore (x y z t a) :precision binary64 (+ x (* y (/ (- z t) (- z a)))))
double code(double x, double y, double z, double t, double a) { return x + (y * ((z - t) / (z - a))); }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t, a) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t real(8), intent (in) :: a code = x + (y * ((z - t) / (z - a))) end function
public static double code(double x, double y, double z, double t, double a) { return x + (y * ((z - t) / (z - a))); }
def code(x, y, z, t, a): return x + (y * ((z - t) / (z - a)))
function code(x, y, z, t, a) return Float64(x + Float64(y * Float64(Float64(z - t) / Float64(z - a)))) end
function tmp = code(x, y, z, t, a) tmp = x + (y * ((z - t) / (z - a))); end
code[x_, y_, z_, t_, a_] := N[(x + N[(y * N[(N[(z - t), $MachinePrecision] / N[(z - a), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ x + y \cdot \frac{z - t}{z - a} \end{array}
Sampling outcomes in binary64 precision:
Herbie found 11 alternatives:
Alternative | Accuracy | Speedup |
---|
(FPCore (x y z t a) :precision binary64 (+ x (* y (/ (- z t) (- z a)))))
double code(double x, double y, double z, double t, double a) { return x + (y * ((z - t) / (z - a))); }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t, a) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t real(8), intent (in) :: a code = x + (y * ((z - t) / (z - a))) end function
public static double code(double x, double y, double z, double t, double a) { return x + (y * ((z - t) / (z - a))); }
def code(x, y, z, t, a): return x + (y * ((z - t) / (z - a)))
function code(x, y, z, t, a) return Float64(x + Float64(y * Float64(Float64(z - t) / Float64(z - a)))) end
function tmp = code(x, y, z, t, a) tmp = x + (y * ((z - t) / (z - a))); end
code[x_, y_, z_, t_, a_] := N[(x + N[(y * N[(N[(z - t), $MachinePrecision] / N[(z - a), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ x + y \cdot \frac{z - t}{z - a} \end{array}
(FPCore (x y z t a) :precision binary64 (+ x (* y (/ (- z t) (- z a)))))
double code(double x, double y, double z, double t, double a) { return x + (y * ((z - t) / (z - a))); }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t, a) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t real(8), intent (in) :: a code = x + (y * ((z - t) / (z - a))) end function
public static double code(double x, double y, double z, double t, double a) { return x + (y * ((z - t) / (z - a))); }
def code(x, y, z, t, a): return x + (y * ((z - t) / (z - a)))
function code(x, y, z, t, a) return Float64(x + Float64(y * Float64(Float64(z - t) / Float64(z - a)))) end
function tmp = code(x, y, z, t, a) tmp = x + (y * ((z - t) / (z - a))); end
code[x_, y_, z_, t_, a_] := N[(x + N[(y * N[(N[(z - t), $MachinePrecision] / N[(z - a), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ x + y \cdot \frac{z - t}{z - a} \end{array}
Initial program 98.3%
(FPCore (x y z t a) :precision binary64 (let* ((t_1 (/ (- z t) (- z a))) (t_2 (fma t (/ y a) x))) (if (<= t_1 5e-102) t_2 (if (<= t_1 1e+19) (fma y (/ z (- z a)) x) (if (<= t_1 2e+132) t_2 (/ (* t y) (+ (- z) a)))))))
double code(double x, double y, double z, double t, double a) { double t_1 = (z - t) / (z - a); double t_2 = fma(t, (y / a), x); double tmp; if (t_1 <= 5e-102) { tmp = t_2; } else if (t_1 <= 1e+19) { tmp = fma(y, (z / (z - a)), x); } else if (t_1 <= 2e+132) { tmp = t_2; } else { tmp = (t * y) / (-z + a); } return tmp; }
function code(x, y, z, t, a) t_1 = Float64(Float64(z - t) / Float64(z - a)) t_2 = fma(t, Float64(y / a), x) tmp = 0.0 if (t_1 <= 5e-102) tmp = t_2; elseif (t_1 <= 1e+19) tmp = fma(y, Float64(z / Float64(z - a)), x); elseif (t_1 <= 2e+132) tmp = t_2; else tmp = Float64(Float64(t * y) / Float64(Float64(-z) + a)); end return tmp end
code[x_, y_, z_, t_, a_] := Block[{t$95$1 = N[(N[(z - t), $MachinePrecision] / N[(z - a), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$2 = N[(t * N[(y / a), $MachinePrecision] + x), $MachinePrecision]}, If[LessEqual[t$95$1, 5e-102], t$95$2, If[LessEqual[t$95$1, 1e+19], N[(y * N[(z / N[(z - a), $MachinePrecision]), $MachinePrecision] + x), $MachinePrecision], If[LessEqual[t$95$1, 2e+132], t$95$2, N[(N[(t * y), $MachinePrecision] / N[((-z) + a), $MachinePrecision]), $MachinePrecision]]]]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \frac{z - t}{z - a}\\ t_2 := \mathsf{fma}\left(t, \frac{y}{a}, x\right)\\ \mathbf{if}\;t\_1 \leq 5 \cdot 10^{-102}:\\ \;\;\;\;t\_2\\ \mathbf{elif}\;t\_1 \leq 10^{+19}:\\ \;\;\;\;\mathsf{fma}\left(y, \frac{z}{z - a}, x\right)\\ \mathbf{elif}\;t\_1 \leq 2 \cdot 10^{+132}:\\ \;\;\;\;t\_2\\ \mathbf{else}:\\ \;\;\;\;\frac{t \cdot y}{\left(-z\right) + a}\\ \end{array} \end{array}
if (/.f64 (-.f64 z t) (-.f64 z a)) < 5.00000000000000026e-102 or 1e19 < (/.f64 (-.f64 z t) (-.f64 z a)) < 1.99999999999999998e132
Initial program 98.9%
Taylor expanded in z around 0
+-commutative
N/A
associate-/l*
N/A
lower-fma.f64
N/A
lower-/.f64
82.0
Applied rewrites82.0%
if 5.00000000000000026e-102 < (/.f64 (-.f64 z t) (-.f64 z a)) < 1e19
Initial program 99.9%
Taylor expanded in t around 0
+-commutative
N/A
associate-/l*
N/A
lower-fma.f64
N/A
lower-/.f64
N/A
lift--.f64
95.9
Applied rewrites95.9%
if 1.99999999999999998e132 < (/.f64 (-.f64 z t) (-.f64 z a))
Initial program 88.0%
Taylor expanded in t around inf
associate-*r/
N/A
lower-/.f64
N/A
associate-*r*
N/A
lower-*.f64
N/A
mul-1-neg
N/A
lower-neg.f64
N/A
lift--.f64
96.2
Applied rewrites96.2%
Final simplification89.5%
(FPCore (x y z t a) :precision binary64 (let* ((t_1 (/ (- z t) (- z a))) (t_2 (fma t (/ y a) x))) (if (<= t_1 5e-102) t_2 (if (<= t_1 1e+19) (fma y (/ z (- z a)) x) (if (<= t_1 5e+165) t_2 (/ (* (- t) y) z))))))
double code(double x, double y, double z, double t, double a) { double t_1 = (z - t) / (z - a); double t_2 = fma(t, (y / a), x); double tmp; if (t_1 <= 5e-102) { tmp = t_2; } else if (t_1 <= 1e+19) { tmp = fma(y, (z / (z - a)), x); } else if (t_1 <= 5e+165) { tmp = t_2; } else { tmp = (-t * y) / z; } return tmp; }
function code(x, y, z, t, a) t_1 = Float64(Float64(z - t) / Float64(z - a)) t_2 = fma(t, Float64(y / a), x) tmp = 0.0 if (t_1 <= 5e-102) tmp = t_2; elseif (t_1 <= 1e+19) tmp = fma(y, Float64(z / Float64(z - a)), x); elseif (t_1 <= 5e+165) tmp = t_2; else tmp = Float64(Float64(Float64(-t) * y) / z); end return tmp end
code[x_, y_, z_, t_, a_] := Block[{t$95$1 = N[(N[(z - t), $MachinePrecision] / N[(z - a), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$2 = N[(t * N[(y / a), $MachinePrecision] + x), $MachinePrecision]}, If[LessEqual[t$95$1, 5e-102], t$95$2, If[LessEqual[t$95$1, 1e+19], N[(y * N[(z / N[(z - a), $MachinePrecision]), $MachinePrecision] + x), $MachinePrecision], If[LessEqual[t$95$1, 5e+165], t$95$2, N[(N[((-t) * y), $MachinePrecision] / z), $MachinePrecision]]]]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \frac{z - t}{z - a}\\ t_2 := \mathsf{fma}\left(t, \frac{y}{a}, x\right)\\ \mathbf{if}\;t\_1 \leq 5 \cdot 10^{-102}:\\ \;\;\;\;t\_2\\ \mathbf{elif}\;t\_1 \leq 10^{+19}:\\ \;\;\;\;\mathsf{fma}\left(y, \frac{z}{z - a}, x\right)\\ \mathbf{elif}\;t\_1 \leq 5 \cdot 10^{+165}:\\ \;\;\;\;t\_2\\ \mathbf{else}:\\ \;\;\;\;\frac{\left(-t\right) \cdot y}{z}\\ \end{array} \end{array}
if (/.f64 (-.f64 z t) (-.f64 z a)) < 5.00000000000000026e-102 or 1e19 < (/.f64 (-.f64 z t) (-.f64 z a)) < 4.9999999999999997e165
Initial program 98.9%
Taylor expanded in z around 0
+-commutative
N/A
associate-/l*
N/A
lower-fma.f64
N/A
lower-/.f64
82.3
Applied rewrites82.3%
if 5.00000000000000026e-102 < (/.f64 (-.f64 z t) (-.f64 z a)) < 1e19
Initial program 99.9%
Taylor expanded in t around 0
+-commutative
N/A
associate-/l*
N/A
lower-fma.f64
N/A
lower-/.f64
N/A
lift--.f64
95.9
Applied rewrites95.9%
if 4.9999999999999997e165 < (/.f64 (-.f64 z t) (-.f64 z a))
Initial program 87.0%
Taylor expanded in a around 0
+-commutative
N/A
associate-/l*
N/A
lower-fma.f64
N/A
lower-/.f64
N/A
lift--.f64
69.9
Applied rewrites69.9%
Taylor expanded in z around 0
mul-1-neg
N/A
lower-neg.f64
N/A
lower-/.f64
N/A
lift-*.f64
74.3
Applied rewrites74.3%
Final simplification87.6%
(FPCore (x y z t a) :precision binary64 (let* ((t_1 (/ (- z t) (- z a))) (t_2 (fma t (/ y a) x))) (if (<= t_1 1e-12) t_2 (if (<= t_1 1e+19) (+ x y) (if (<= t_1 5e+165) t_2 (/ (* (- t) y) z))))))
double code(double x, double y, double z, double t, double a) { double t_1 = (z - t) / (z - a); double t_2 = fma(t, (y / a), x); double tmp; if (t_1 <= 1e-12) { tmp = t_2; } else if (t_1 <= 1e+19) { tmp = x + y; } else if (t_1 <= 5e+165) { tmp = t_2; } else { tmp = (-t * y) / z; } return tmp; }
function code(x, y, z, t, a) t_1 = Float64(Float64(z - t) / Float64(z - a)) t_2 = fma(t, Float64(y / a), x) tmp = 0.0 if (t_1 <= 1e-12) tmp = t_2; elseif (t_1 <= 1e+19) tmp = Float64(x + y); elseif (t_1 <= 5e+165) tmp = t_2; else tmp = Float64(Float64(Float64(-t) * y) / z); end return tmp end
code[x_, y_, z_, t_, a_] := Block[{t$95$1 = N[(N[(z - t), $MachinePrecision] / N[(z - a), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$2 = N[(t * N[(y / a), $MachinePrecision] + x), $MachinePrecision]}, If[LessEqual[t$95$1, 1e-12], t$95$2, If[LessEqual[t$95$1, 1e+19], N[(x + y), $MachinePrecision], If[LessEqual[t$95$1, 5e+165], t$95$2, N[(N[((-t) * y), $MachinePrecision] / z), $MachinePrecision]]]]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \frac{z - t}{z - a}\\ t_2 := \mathsf{fma}\left(t, \frac{y}{a}, x\right)\\ \mathbf{if}\;t\_1 \leq 10^{-12}:\\ \;\;\;\;t\_2\\ \mathbf{elif}\;t\_1 \leq 10^{+19}:\\ \;\;\;\;x + y\\ \mathbf{elif}\;t\_1 \leq 5 \cdot 10^{+165}:\\ \;\;\;\;t\_2\\ \mathbf{else}:\\ \;\;\;\;\frac{\left(-t\right) \cdot y}{z}\\ \end{array} \end{array}
if (/.f64 (-.f64 z t) (-.f64 z a)) < 9.9999999999999998e-13 or 1e19 < (/.f64 (-.f64 z t) (-.f64 z a)) < 4.9999999999999997e165
Initial program 99.0%
Taylor expanded in z around 0
+-commutative
N/A
associate-/l*
N/A
lower-fma.f64
N/A
lower-/.f64
81.5
Applied rewrites81.5%
if 9.9999999999999998e-13 < (/.f64 (-.f64 z t) (-.f64 z a)) < 1e19
Initial program 100.0%
Taylor expanded in z around inf
Applied rewrites95.9%
if 4.9999999999999997e165 < (/.f64 (-.f64 z t) (-.f64 z a))
Initial program 87.0%
Taylor expanded in a around 0
+-commutative
N/A
associate-/l*
N/A
lower-fma.f64
N/A
lower-/.f64
N/A
lift--.f64
69.9
Applied rewrites69.9%
Taylor expanded in z around 0
mul-1-neg
N/A
lower-neg.f64
N/A
lower-/.f64
N/A
lift-*.f64
74.3
Applied rewrites74.3%
Final simplification86.4%
(FPCore (x y z t a) :precision binary64 (let* ((t_1 (/ (- z t) (- z a))) (t_2 (fma t (/ y a) x))) (if (<= t_1 1e-12) t_2 (if (<= t_1 1e+19) (+ x y) (if (<= t_1 5e+165) t_2 (* (- t) (/ y z)))))))
double code(double x, double y, double z, double t, double a) { double t_1 = (z - t) / (z - a); double t_2 = fma(t, (y / a), x); double tmp; if (t_1 <= 1e-12) { tmp = t_2; } else if (t_1 <= 1e+19) { tmp = x + y; } else if (t_1 <= 5e+165) { tmp = t_2; } else { tmp = -t * (y / z); } return tmp; }
function code(x, y, z, t, a) t_1 = Float64(Float64(z - t) / Float64(z - a)) t_2 = fma(t, Float64(y / a), x) tmp = 0.0 if (t_1 <= 1e-12) tmp = t_2; elseif (t_1 <= 1e+19) tmp = Float64(x + y); elseif (t_1 <= 5e+165) tmp = t_2; else tmp = Float64(Float64(-t) * Float64(y / z)); end return tmp end
code[x_, y_, z_, t_, a_] := Block[{t$95$1 = N[(N[(z - t), $MachinePrecision] / N[(z - a), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$2 = N[(t * N[(y / a), $MachinePrecision] + x), $MachinePrecision]}, If[LessEqual[t$95$1, 1e-12], t$95$2, If[LessEqual[t$95$1, 1e+19], N[(x + y), $MachinePrecision], If[LessEqual[t$95$1, 5e+165], t$95$2, N[((-t) * N[(y / z), $MachinePrecision]), $MachinePrecision]]]]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \frac{z - t}{z - a}\\ t_2 := \mathsf{fma}\left(t, \frac{y}{a}, x\right)\\ \mathbf{if}\;t\_1 \leq 10^{-12}:\\ \;\;\;\;t\_2\\ \mathbf{elif}\;t\_1 \leq 10^{+19}:\\ \;\;\;\;x + y\\ \mathbf{elif}\;t\_1 \leq 5 \cdot 10^{+165}:\\ \;\;\;\;t\_2\\ \mathbf{else}:\\ \;\;\;\;\left(-t\right) \cdot \frac{y}{z}\\ \end{array} \end{array}
if (/.f64 (-.f64 z t) (-.f64 z a)) < 9.9999999999999998e-13 or 1e19 < (/.f64 (-.f64 z t) (-.f64 z a)) < 4.9999999999999997e165
Initial program 99.0%
Taylor expanded in z around 0
+-commutative
N/A
associate-/l*
N/A
lower-fma.f64
N/A
lower-/.f64
81.5
Applied rewrites81.5%
if 9.9999999999999998e-13 < (/.f64 (-.f64 z t) (-.f64 z a)) < 1e19
Initial program 100.0%
Taylor expanded in z around inf
Applied rewrites95.9%
if 4.9999999999999997e165 < (/.f64 (-.f64 z t) (-.f64 z a))
Initial program 87.0%
Taylor expanded in a around 0
+-commutative
N/A
associate-/l*
N/A
lower-fma.f64
N/A
lower-/.f64
N/A
lift--.f64
69.9
Applied rewrites69.9%
Taylor expanded in x around 0
associate-*r/
N/A
*-commutative
N/A
lower-*.f64
N/A
lift-/.f64
N/A
lift--.f64
69.9
Applied rewrites69.9%
Taylor expanded in z around 0
mul-1-neg
N/A
lower-neg.f64
N/A
lift-/.f64
N/A
*-commutative
N/A
lower-*.f64
74.3
Applied rewrites74.3%
lift-*.f64
N/A
lift-/.f64
N/A
*-commutative
N/A
associate-/l*
N/A
lower-*.f64
N/A
lower-/.f64
74.3
Applied rewrites74.3%
Final simplification86.4%
(FPCore (x y z t a) :precision binary64 (let* ((t_1 (/ (- z t) (- z a)))) (if (or (<= t_1 -100000000000.0) (not (<= t_1 50000.0))) (* (- z t) (/ y (- z a))) (+ x (* y (/ z (- z a)))))))
double code(double x, double y, double z, double t, double a) { double t_1 = (z - t) / (z - a); double tmp; if ((t_1 <= -100000000000.0) || !(t_1 <= 50000.0)) { tmp = (z - t) * (y / (z - a)); } else { tmp = x + (y * (z / (z - a))); } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t, a) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t real(8), intent (in) :: a real(8) :: t_1 real(8) :: tmp t_1 = (z - t) / (z - a) if ((t_1 <= (-100000000000.0d0)) .or. (.not. (t_1 <= 50000.0d0))) then tmp = (z - t) * (y / (z - a)) else tmp = x + (y * (z / (z - a))) end if code = tmp end function
public static double code(double x, double y, double z, double t, double a) { double t_1 = (z - t) / (z - a); double tmp; if ((t_1 <= -100000000000.0) || !(t_1 <= 50000.0)) { tmp = (z - t) * (y / (z - a)); } else { tmp = x + (y * (z / (z - a))); } return tmp; }
def code(x, y, z, t, a): t_1 = (z - t) / (z - a) tmp = 0 if (t_1 <= -100000000000.0) or not (t_1 <= 50000.0): tmp = (z - t) * (y / (z - a)) else: tmp = x + (y * (z / (z - a))) return tmp
function code(x, y, z, t, a) t_1 = Float64(Float64(z - t) / Float64(z - a)) tmp = 0.0 if ((t_1 <= -100000000000.0) || !(t_1 <= 50000.0)) tmp = Float64(Float64(z - t) * Float64(y / Float64(z - a))); else tmp = Float64(x + Float64(y * Float64(z / Float64(z - a)))); end return tmp end
function tmp_2 = code(x, y, z, t, a) t_1 = (z - t) / (z - a); tmp = 0.0; if ((t_1 <= -100000000000.0) || ~((t_1 <= 50000.0))) tmp = (z - t) * (y / (z - a)); else tmp = x + (y * (z / (z - a))); end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_] := Block[{t$95$1 = N[(N[(z - t), $MachinePrecision] / N[(z - a), $MachinePrecision]), $MachinePrecision]}, If[Or[LessEqual[t$95$1, -100000000000.0], N[Not[LessEqual[t$95$1, 50000.0]], $MachinePrecision]], N[(N[(z - t), $MachinePrecision] * N[(y / N[(z - a), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[(x + N[(y * N[(z / N[(z - a), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \frac{z - t}{z - a}\\ \mathbf{if}\;t\_1 \leq -100000000000 \lor \neg \left(t\_1 \leq 50000\right):\\ \;\;\;\;\left(z - t\right) \cdot \frac{y}{z - a}\\ \mathbf{else}:\\ \;\;\;\;x + y \cdot \frac{z}{z - a}\\ \end{array} \end{array}
if (/.f64 (-.f64 z t) (-.f64 z a)) < -1e11 or 5e4 < (/.f64 (-.f64 z t) (-.f64 z a))
Initial program 95.2%
Taylor expanded in x around 0
lower-/.f64
N/A
*-commutative
N/A
lower-*.f64
N/A
lift--.f64
N/A
lift--.f64
68.5
Applied rewrites68.5%
lift--.f64
N/A
lift-/.f64
N/A
lift--.f64
N/A
lift-*.f64
N/A
associate-/l*
N/A
lower-*.f64
N/A
lift--.f64
N/A
lift-/.f64
N/A
lift--.f64
78.6
Applied rewrites78.6%
if -1e11 < (/.f64 (-.f64 z t) (-.f64 z a)) < 5e4
Initial program 99.8%
Taylor expanded in z around inf
Applied rewrites94.0%
Final simplification89.1%
(FPCore (x y z t a) :precision binary64 (let* ((t_1 (/ (- z t) (- z a)))) (if (or (<= t_1 -100000000000.0) (not (<= t_1 50000.0))) (* (- z t) (/ y (- z a))) (fma y (/ z (- z a)) x))))
double code(double x, double y, double z, double t, double a) { double t_1 = (z - t) / (z - a); double tmp; if ((t_1 <= -100000000000.0) || !(t_1 <= 50000.0)) { tmp = (z - t) * (y / (z - a)); } else { tmp = fma(y, (z / (z - a)), x); } return tmp; }
function code(x, y, z, t, a) t_1 = Float64(Float64(z - t) / Float64(z - a)) tmp = 0.0 if ((t_1 <= -100000000000.0) || !(t_1 <= 50000.0)) tmp = Float64(Float64(z - t) * Float64(y / Float64(z - a))); else tmp = fma(y, Float64(z / Float64(z - a)), x); end return tmp end
code[x_, y_, z_, t_, a_] := Block[{t$95$1 = N[(N[(z - t), $MachinePrecision] / N[(z - a), $MachinePrecision]), $MachinePrecision]}, If[Or[LessEqual[t$95$1, -100000000000.0], N[Not[LessEqual[t$95$1, 50000.0]], $MachinePrecision]], N[(N[(z - t), $MachinePrecision] * N[(y / N[(z - a), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[(y * N[(z / N[(z - a), $MachinePrecision]), $MachinePrecision] + x), $MachinePrecision]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \frac{z - t}{z - a}\\ \mathbf{if}\;t\_1 \leq -100000000000 \lor \neg \left(t\_1 \leq 50000\right):\\ \;\;\;\;\left(z - t\right) \cdot \frac{y}{z - a}\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(y, \frac{z}{z - a}, x\right)\\ \end{array} \end{array}
if (/.f64 (-.f64 z t) (-.f64 z a)) < -1e11 or 5e4 < (/.f64 (-.f64 z t) (-.f64 z a))
Initial program 95.2%
Taylor expanded in x around 0
lower-/.f64
N/A
*-commutative
N/A
lower-*.f64
N/A
lift--.f64
N/A
lift--.f64
68.5
Applied rewrites68.5%
lift--.f64
N/A
lift-/.f64
N/A
lift--.f64
N/A
lift-*.f64
N/A
associate-/l*
N/A
lower-*.f64
N/A
lift--.f64
N/A
lift-/.f64
N/A
lift--.f64
78.6
Applied rewrites78.6%
if -1e11 < (/.f64 (-.f64 z t) (-.f64 z a)) < 5e4
Initial program 99.8%
Taylor expanded in t around 0
+-commutative
N/A
associate-/l*
N/A
lower-fma.f64
N/A
lower-/.f64
N/A
lift--.f64
94.0
Applied rewrites94.0%
Final simplification89.1%
(FPCore (x y z t a) :precision binary64 (let* ((t_1 (/ (- z t) (- z a)))) (if (or (<= t_1 1e-12) (not (<= t_1 1e+19))) (fma t (/ y a) x) (+ x y))))
double code(double x, double y, double z, double t, double a) { double t_1 = (z - t) / (z - a); double tmp; if ((t_1 <= 1e-12) || !(t_1 <= 1e+19)) { tmp = fma(t, (y / a), x); } else { tmp = x + y; } return tmp; }
function code(x, y, z, t, a) t_1 = Float64(Float64(z - t) / Float64(z - a)) tmp = 0.0 if ((t_1 <= 1e-12) || !(t_1 <= 1e+19)) tmp = fma(t, Float64(y / a), x); else tmp = Float64(x + y); end return tmp end
code[x_, y_, z_, t_, a_] := Block[{t$95$1 = N[(N[(z - t), $MachinePrecision] / N[(z - a), $MachinePrecision]), $MachinePrecision]}, If[Or[LessEqual[t$95$1, 1e-12], N[Not[LessEqual[t$95$1, 1e+19]], $MachinePrecision]], N[(t * N[(y / a), $MachinePrecision] + x), $MachinePrecision], N[(x + y), $MachinePrecision]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \frac{z - t}{z - a}\\ \mathbf{if}\;t\_1 \leq 10^{-12} \lor \neg \left(t\_1 \leq 10^{+19}\right):\\ \;\;\;\;\mathsf{fma}\left(t, \frac{y}{a}, x\right)\\ \mathbf{else}:\\ \;\;\;\;x + y\\ \end{array} \end{array}
if (/.f64 (-.f64 z t) (-.f64 z a)) < 9.9999999999999998e-13 or 1e19 < (/.f64 (-.f64 z t) (-.f64 z a))
Initial program 97.4%
Taylor expanded in z around 0
+-commutative
N/A
associate-/l*
N/A
lower-fma.f64
N/A
lower-/.f64
76.3
Applied rewrites76.3%
if 9.9999999999999998e-13 < (/.f64 (-.f64 z t) (-.f64 z a)) < 1e19
Initial program 100.0%
Taylor expanded in z around inf
Applied rewrites95.9%
Final simplification83.7%
(FPCore (x y z t a) :precision binary64 (let* ((t_1 (* y (/ (- z t) (- z a))))) (if (<= t_1 -2e+67) y (if (<= t_1 1e+100) x y))))
double code(double x, double y, double z, double t, double a) { double t_1 = y * ((z - t) / (z - a)); double tmp; if (t_1 <= -2e+67) { tmp = y; } else if (t_1 <= 1e+100) { tmp = x; } else { tmp = y; } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t, a) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t real(8), intent (in) :: a real(8) :: t_1 real(8) :: tmp t_1 = y * ((z - t) / (z - a)) if (t_1 <= (-2d+67)) then tmp = y else if (t_1 <= 1d+100) then tmp = x else tmp = y end if code = tmp end function
public static double code(double x, double y, double z, double t, double a) { double t_1 = y * ((z - t) / (z - a)); double tmp; if (t_1 <= -2e+67) { tmp = y; } else if (t_1 <= 1e+100) { tmp = x; } else { tmp = y; } return tmp; }
def code(x, y, z, t, a): t_1 = y * ((z - t) / (z - a)) tmp = 0 if t_1 <= -2e+67: tmp = y elif t_1 <= 1e+100: tmp = x else: tmp = y return tmp
function code(x, y, z, t, a) t_1 = Float64(y * Float64(Float64(z - t) / Float64(z - a))) tmp = 0.0 if (t_1 <= -2e+67) tmp = y; elseif (t_1 <= 1e+100) tmp = x; else tmp = y; end return tmp end
function tmp_2 = code(x, y, z, t, a) t_1 = y * ((z - t) / (z - a)); tmp = 0.0; if (t_1 <= -2e+67) tmp = y; elseif (t_1 <= 1e+100) tmp = x; else tmp = y; end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_] := Block[{t$95$1 = N[(y * N[(N[(z - t), $MachinePrecision] / N[(z - a), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$1, -2e+67], y, If[LessEqual[t$95$1, 1e+100], x, y]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := y \cdot \frac{z - t}{z - a}\\ \mathbf{if}\;t\_1 \leq -2 \cdot 10^{+67}:\\ \;\;\;\;y\\ \mathbf{elif}\;t\_1 \leq 10^{+100}:\\ \;\;\;\;x\\ \mathbf{else}:\\ \;\;\;\;y\\ \end{array} \end{array}
if (*.f64 y (/.f64 (-.f64 z t) (-.f64 z a))) < -1.99999999999999997e67 or 1.00000000000000002e100 < (*.f64 y (/.f64 (-.f64 z t) (-.f64 z a)))
Initial program 95.9%
Taylor expanded in a around 0
+-commutative
N/A
associate-/l*
N/A
lower-fma.f64
N/A
lower-/.f64
N/A
lift--.f64
68.1
Applied rewrites68.1%
Taylor expanded in x around 0
associate-*r/
N/A
*-commutative
N/A
lower-*.f64
N/A
lift-/.f64
N/A
lift--.f64
64.0
Applied rewrites64.0%
Taylor expanded in z around inf
Applied rewrites33.8%
if -1.99999999999999997e67 < (*.f64 y (/.f64 (-.f64 z t) (-.f64 z a))) < 1.00000000000000002e100
Initial program 99.8%
Taylor expanded in x around inf
Applied rewrites73.3%
(FPCore (x y z t a) :precision binary64 (if (<= (/ (- z t) (- z a)) 6.2e-36) x (+ x y)))
double code(double x, double y, double z, double t, double a) { double tmp; if (((z - t) / (z - a)) <= 6.2e-36) { tmp = x; } else { tmp = x + y; } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t, a) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t real(8), intent (in) :: a real(8) :: tmp if (((z - t) / (z - a)) <= 6.2d-36) then tmp = x else tmp = x + y end if code = tmp end function
public static double code(double x, double y, double z, double t, double a) { double tmp; if (((z - t) / (z - a)) <= 6.2e-36) { tmp = x; } else { tmp = x + y; } return tmp; }
def code(x, y, z, t, a): tmp = 0 if ((z - t) / (z - a)) <= 6.2e-36: tmp = x else: tmp = x + y return tmp
function code(x, y, z, t, a) tmp = 0.0 if (Float64(Float64(z - t) / Float64(z - a)) <= 6.2e-36) tmp = x; else tmp = Float64(x + y); end return tmp end
function tmp_2 = code(x, y, z, t, a) tmp = 0.0; if (((z - t) / (z - a)) <= 6.2e-36) tmp = x; else tmp = x + y; end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_] := If[LessEqual[N[(N[(z - t), $MachinePrecision] / N[(z - a), $MachinePrecision]), $MachinePrecision], 6.2e-36], x, N[(x + y), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;\frac{z - t}{z - a} \leq 6.2 \cdot 10^{-36}:\\ \;\;\;\;x\\ \mathbf{else}:\\ \;\;\;\;x + y\\ \end{array} \end{array}
if (/.f64 (-.f64 z t) (-.f64 z a)) < 6.1999999999999997e-36
Initial program 98.9%
Taylor expanded in x around inf
Applied rewrites62.5%
if 6.1999999999999997e-36 < (/.f64 (-.f64 z t) (-.f64 z a))
Initial program 98.0%
Taylor expanded in z around inf
Applied rewrites72.6%
(FPCore (x y z t a) :precision binary64 x)
double code(double x, double y, double z, double t, double a) { return x; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t, a) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t real(8), intent (in) :: a code = x end function
public static double code(double x, double y, double z, double t, double a) { return x; }
def code(x, y, z, t, a): return x
function code(x, y, z, t, a) return x end
function tmp = code(x, y, z, t, a) tmp = x; end
code[x_, y_, z_, t_, a_] := x
\begin{array}{l} \\ x \end{array}
Initial program 98.3%
Taylor expanded in x around inf
Applied rewrites49.6%
(FPCore (x y z t a) :precision binary64 (+ x (/ y (/ (- z a) (- z t)))))
double code(double x, double y, double z, double t, double a) { return x + (y / ((z - a) / (z - t))); }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t, a) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t real(8), intent (in) :: a code = x + (y / ((z - a) / (z - t))) end function
public static double code(double x, double y, double z, double t, double a) { return x + (y / ((z - a) / (z - t))); }
def code(x, y, z, t, a): return x + (y / ((z - a) / (z - t)))
function code(x, y, z, t, a) return Float64(x + Float64(y / Float64(Float64(z - a) / Float64(z - t)))) end
function tmp = code(x, y, z, t, a) tmp = x + (y / ((z - a) / (z - t))); end
code[x_, y_, z_, t_, a_] := N[(x + N[(y / N[(N[(z - a), $MachinePrecision] / N[(z - t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ x + \frac{y}{\frac{z - a}{z - t}} \end{array}
herbie shell --seed 2025061
(FPCore (x y z t a)
:name "Graphics.Rendering.Plot.Render.Plot.Axis:renderAxisLine from plot-0.2.3.4, A"
:precision binary64
:alt
(! :herbie-platform default (+ x (/ y (/ (- z a) (- z t)))))
(+ x (* y (/ (- z t) (- z a)))))