(FPCore (x y z t a b) :precision binary64 (/ (- (+ (* (+ x y) z) (* (+ t y) a)) (* y b)) (+ (+ x t) y)))
double code(double x, double y, double z, double t, double a, double b) { return ((((x + y) * z) + ((t + y) * a)) - (y * b)) / ((x + t) + y); }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t, a, b) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t real(8), intent (in) :: a real(8), intent (in) :: b code = ((((x + y) * z) + ((t + y) * a)) - (y * b)) / ((x + t) + y) end function
public static double code(double x, double y, double z, double t, double a, double b) { return ((((x + y) * z) + ((t + y) * a)) - (y * b)) / ((x + t) + y); }
def code(x, y, z, t, a, b): return ((((x + y) * z) + ((t + y) * a)) - (y * b)) / ((x + t) + y)
function code(x, y, z, t, a, b) return Float64(Float64(Float64(Float64(Float64(x + y) * z) + Float64(Float64(t + y) * a)) - Float64(y * b)) / Float64(Float64(x + t) + y)) end
function tmp = code(x, y, z, t, a, b) tmp = ((((x + y) * z) + ((t + y) * a)) - (y * b)) / ((x + t) + y); end
code[x_, y_, z_, t_, a_, b_] := N[(N[(N[(N[(N[(x + y), $MachinePrecision] * z), $MachinePrecision] + N[(N[(t + y), $MachinePrecision] * a), $MachinePrecision]), $MachinePrecision] - N[(y * b), $MachinePrecision]), $MachinePrecision] / N[(N[(x + t), $MachinePrecision] + y), $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ \frac{\left(\left(x + y\right) \cdot z + \left(t + y\right) \cdot a\right) - y \cdot b}{\left(x + t\right) + y} \end{array}
Sampling outcomes in binary64 precision:
Herbie found 18 alternatives:
Alternative | Accuracy | Speedup |
---|
(FPCore (x y z t a b) :precision binary64 (/ (- (+ (* (+ x y) z) (* (+ t y) a)) (* y b)) (+ (+ x t) y)))
double code(double x, double y, double z, double t, double a, double b) { return ((((x + y) * z) + ((t + y) * a)) - (y * b)) / ((x + t) + y); }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t, a, b) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t real(8), intent (in) :: a real(8), intent (in) :: b code = ((((x + y) * z) + ((t + y) * a)) - (y * b)) / ((x + t) + y) end function
public static double code(double x, double y, double z, double t, double a, double b) { return ((((x + y) * z) + ((t + y) * a)) - (y * b)) / ((x + t) + y); }
def code(x, y, z, t, a, b): return ((((x + y) * z) + ((t + y) * a)) - (y * b)) / ((x + t) + y)
function code(x, y, z, t, a, b) return Float64(Float64(Float64(Float64(Float64(x + y) * z) + Float64(Float64(t + y) * a)) - Float64(y * b)) / Float64(Float64(x + t) + y)) end
function tmp = code(x, y, z, t, a, b) tmp = ((((x + y) * z) + ((t + y) * a)) - (y * b)) / ((x + t) + y); end
code[x_, y_, z_, t_, a_, b_] := N[(N[(N[(N[(N[(x + y), $MachinePrecision] * z), $MachinePrecision] + N[(N[(t + y), $MachinePrecision] * a), $MachinePrecision]), $MachinePrecision] - N[(y * b), $MachinePrecision]), $MachinePrecision] / N[(N[(x + t), $MachinePrecision] + y), $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ \frac{\left(\left(x + y\right) \cdot z + \left(t + y\right) \cdot a\right) - y \cdot b}{\left(x + t\right) + y} \end{array}
(FPCore (x y z t a b) :precision binary64 (let* ((t_1 (+ (+ y x) t)) (t_2 (/ (+ y x) t_1)) (t_3 (/ y t_1)) (t_4 (* (- (+ (/ (+ t y) t_1) (* (/ z a) t_2)) (* (/ b a) t_3)) a))) (if (<= a -1.45e-12) t_4 (if (<= a -1e-200) (fma t_2 z (/ (fma (+ t y) a (* (- b) y)) t_1)) (if (<= a 2e-48) (- (/ (fma (+ t y) a (* (+ y x) z)) t_1) (* b t_3)) t_4)))))
double code(double x, double y, double z, double t, double a, double b) { double t_1 = (y + x) + t; double t_2 = (y + x) / t_1; double t_3 = y / t_1; double t_4 = ((((t + y) / t_1) + ((z / a) * t_2)) - ((b / a) * t_3)) * a; double tmp; if (a <= -1.45e-12) { tmp = t_4; } else if (a <= -1e-200) { tmp = fma(t_2, z, (fma((t + y), a, (-b * y)) / t_1)); } else if (a <= 2e-48) { tmp = (fma((t + y), a, ((y + x) * z)) / t_1) - (b * t_3); } else { tmp = t_4; } return tmp; }
function code(x, y, z, t, a, b) t_1 = Float64(Float64(y + x) + t) t_2 = Float64(Float64(y + x) / t_1) t_3 = Float64(y / t_1) t_4 = Float64(Float64(Float64(Float64(Float64(t + y) / t_1) + Float64(Float64(z / a) * t_2)) - Float64(Float64(b / a) * t_3)) * a) tmp = 0.0 if (a <= -1.45e-12) tmp = t_4; elseif (a <= -1e-200) tmp = fma(t_2, z, Float64(fma(Float64(t + y), a, Float64(Float64(-b) * y)) / t_1)); elseif (a <= 2e-48) tmp = Float64(Float64(fma(Float64(t + y), a, Float64(Float64(y + x) * z)) / t_1) - Float64(b * t_3)); else tmp = t_4; end return tmp end
code[x_, y_, z_, t_, a_, b_] := Block[{t$95$1 = N[(N[(y + x), $MachinePrecision] + t), $MachinePrecision]}, Block[{t$95$2 = N[(N[(y + x), $MachinePrecision] / t$95$1), $MachinePrecision]}, Block[{t$95$3 = N[(y / t$95$1), $MachinePrecision]}, Block[{t$95$4 = N[(N[(N[(N[(N[(t + y), $MachinePrecision] / t$95$1), $MachinePrecision] + N[(N[(z / a), $MachinePrecision] * t$95$2), $MachinePrecision]), $MachinePrecision] - N[(N[(b / a), $MachinePrecision] * t$95$3), $MachinePrecision]), $MachinePrecision] * a), $MachinePrecision]}, If[LessEqual[a, -1.45e-12], t$95$4, If[LessEqual[a, -1e-200], N[(t$95$2 * z + N[(N[(N[(t + y), $MachinePrecision] * a + N[((-b) * y), $MachinePrecision]), $MachinePrecision] / t$95$1), $MachinePrecision]), $MachinePrecision], If[LessEqual[a, 2e-48], N[(N[(N[(N[(t + y), $MachinePrecision] * a + N[(N[(y + x), $MachinePrecision] * z), $MachinePrecision]), $MachinePrecision] / t$95$1), $MachinePrecision] - N[(b * t$95$3), $MachinePrecision]), $MachinePrecision], t$95$4]]]]]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \left(y + x\right) + t\\ t_2 := \frac{y + x}{t\_1}\\ t_3 := \frac{y}{t\_1}\\ t_4 := \left(\left(\frac{t + y}{t\_1} + \frac{z}{a} \cdot t\_2\right) - \frac{b}{a} \cdot t\_3\right) \cdot a\\ \mathbf{if}\;a \leq -1.45 \cdot 10^{-12}:\\ \;\;\;\;t\_4\\ \mathbf{elif}\;a \leq -1 \cdot 10^{-200}:\\ \;\;\;\;\mathsf{fma}\left(t\_2, z, \frac{\mathsf{fma}\left(t + y, a, \left(-b\right) \cdot y\right)}{t\_1}\right)\\ \mathbf{elif}\;a \leq 2 \cdot 10^{-48}:\\ \;\;\;\;\frac{\mathsf{fma}\left(t + y, a, \left(y + x\right) \cdot z\right)}{t\_1} - b \cdot t\_3\\ \mathbf{else}:\\ \;\;\;\;t\_4\\ \end{array} \end{array}
if a < -1.4500000000000001e-12 or 1.9999999999999999e-48 < a
Initial program 50.5%
Taylor expanded in a around inf
*-commutative
N/A
lower-*.f64
N/A
Applied rewrites99.9%
if -1.4500000000000001e-12 < a < -9.9999999999999998e-201
Initial program 80.7%
Applied rewrites95.1%
if -9.9999999999999998e-201 < a < 1.9999999999999999e-48
Initial program 72.6%
Applied rewrites85.3%
Final simplification95.8%
(FPCore (x y z t a b) :precision binary64 (let* ((t_1 (+ (+ y x) t)) (t_2 (/ (- (+ (* (+ x y) z) (* (+ t y) a)) (* y b)) (+ (+ x t) y)))) (if (or (<= t_2 (- INFINITY)) (not (<= t_2 1e+202))) (- (+ a z) b) (fma (/ (+ t y) t_1) a (/ (fma (+ y x) z (* (- b) y)) t_1)))))
double code(double x, double y, double z, double t, double a, double b) { double t_1 = (y + x) + t; double t_2 = ((((x + y) * z) + ((t + y) * a)) - (y * b)) / ((x + t) + y); double tmp; if ((t_2 <= -((double) INFINITY)) || !(t_2 <= 1e+202)) { tmp = (a + z) - b; } else { tmp = fma(((t + y) / t_1), a, (fma((y + x), z, (-b * y)) / t_1)); } return tmp; }
function code(x, y, z, t, a, b) t_1 = Float64(Float64(y + x) + t) t_2 = Float64(Float64(Float64(Float64(Float64(x + y) * z) + Float64(Float64(t + y) * a)) - Float64(y * b)) / Float64(Float64(x + t) + y)) tmp = 0.0 if ((t_2 <= Float64(-Inf)) || !(t_2 <= 1e+202)) tmp = Float64(Float64(a + z) - b); else tmp = fma(Float64(Float64(t + y) / t_1), a, Float64(fma(Float64(y + x), z, Float64(Float64(-b) * y)) / t_1)); end return tmp end
code[x_, y_, z_, t_, a_, b_] := Block[{t$95$1 = N[(N[(y + x), $MachinePrecision] + t), $MachinePrecision]}, Block[{t$95$2 = N[(N[(N[(N[(N[(x + y), $MachinePrecision] * z), $MachinePrecision] + N[(N[(t + y), $MachinePrecision] * a), $MachinePrecision]), $MachinePrecision] - N[(y * b), $MachinePrecision]), $MachinePrecision] / N[(N[(x + t), $MachinePrecision] + y), $MachinePrecision]), $MachinePrecision]}, If[Or[LessEqual[t$95$2, (-Infinity)], N[Not[LessEqual[t$95$2, 1e+202]], $MachinePrecision]], N[(N[(a + z), $MachinePrecision] - b), $MachinePrecision], N[(N[(N[(t + y), $MachinePrecision] / t$95$1), $MachinePrecision] * a + N[(N[(N[(y + x), $MachinePrecision] * z + N[((-b) * y), $MachinePrecision]), $MachinePrecision] / t$95$1), $MachinePrecision]), $MachinePrecision]]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \left(y + x\right) + t\\ t_2 := \frac{\left(\left(x + y\right) \cdot z + \left(t + y\right) \cdot a\right) - y \cdot b}{\left(x + t\right) + y}\\ \mathbf{if}\;t\_2 \leq -\infty \lor \neg \left(t\_2 \leq 10^{+202}\right):\\ \;\;\;\;\left(a + z\right) - b\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(\frac{t + y}{t\_1}, a, \frac{\mathsf{fma}\left(y + x, z, \left(-b\right) \cdot y\right)}{t\_1}\right)\\ \end{array} \end{array}
if (/.f64 (-.f64 (+.f64 (*.f64 (+.f64 x y) z) (*.f64 (+.f64 t y) a)) (*.f64 y b)) (+.f64 (+.f64 x t) y)) < -inf.0 or 9.999999999999999e201 < (/.f64 (-.f64 (+.f64 (*.f64 (+.f64 x y) z) (*.f64 (+.f64 t y) a)) (*.f64 y b)) (+.f64 (+.f64 x t) y))
Initial program 13.3%
Taylor expanded in y around inf
lower--.f64
N/A
lower-+.f64
75.4
Applied rewrites75.4%
if -inf.0 < (/.f64 (-.f64 (+.f64 (*.f64 (+.f64 x y) z) (*.f64 (+.f64 t y) a)) (*.f64 y b)) (+.f64 (+.f64 x t) y)) < 9.999999999999999e201
Initial program 99.7%
Applied rewrites99.8%
Final simplification88.6%
(FPCore (x y z t a b) :precision binary64 (let* ((t_1 (+ (+ x t) y)) (t_2 (/ (- (+ (* (+ x y) z) (* (+ t y) a)) (* y b)) t_1))) (if (or (<= t_2 (- INFINITY)) (not (<= t_2 1e+202))) (- (+ a z) b) (/ (fma (+ y x) z (fma (+ t y) a (* (- b) y))) t_1))))
double code(double x, double y, double z, double t, double a, double b) { double t_1 = (x + t) + y; double t_2 = ((((x + y) * z) + ((t + y) * a)) - (y * b)) / t_1; double tmp; if ((t_2 <= -((double) INFINITY)) || !(t_2 <= 1e+202)) { tmp = (a + z) - b; } else { tmp = fma((y + x), z, fma((t + y), a, (-b * y))) / t_1; } return tmp; }
function code(x, y, z, t, a, b) t_1 = Float64(Float64(x + t) + y) t_2 = Float64(Float64(Float64(Float64(Float64(x + y) * z) + Float64(Float64(t + y) * a)) - Float64(y * b)) / t_1) tmp = 0.0 if ((t_2 <= Float64(-Inf)) || !(t_2 <= 1e+202)) tmp = Float64(Float64(a + z) - b); else tmp = Float64(fma(Float64(y + x), z, fma(Float64(t + y), a, Float64(Float64(-b) * y))) / t_1); end return tmp end
code[x_, y_, z_, t_, a_, b_] := Block[{t$95$1 = N[(N[(x + t), $MachinePrecision] + y), $MachinePrecision]}, Block[{t$95$2 = N[(N[(N[(N[(N[(x + y), $MachinePrecision] * z), $MachinePrecision] + N[(N[(t + y), $MachinePrecision] * a), $MachinePrecision]), $MachinePrecision] - N[(y * b), $MachinePrecision]), $MachinePrecision] / t$95$1), $MachinePrecision]}, If[Or[LessEqual[t$95$2, (-Infinity)], N[Not[LessEqual[t$95$2, 1e+202]], $MachinePrecision]], N[(N[(a + z), $MachinePrecision] - b), $MachinePrecision], N[(N[(N[(y + x), $MachinePrecision] * z + N[(N[(t + y), $MachinePrecision] * a + N[((-b) * y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / t$95$1), $MachinePrecision]]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \left(x + t\right) + y\\ t_2 := \frac{\left(\left(x + y\right) \cdot z + \left(t + y\right) \cdot a\right) - y \cdot b}{t\_1}\\ \mathbf{if}\;t\_2 \leq -\infty \lor \neg \left(t\_2 \leq 10^{+202}\right):\\ \;\;\;\;\left(a + z\right) - b\\ \mathbf{else}:\\ \;\;\;\;\frac{\mathsf{fma}\left(y + x, z, \mathsf{fma}\left(t + y, a, \left(-b\right) \cdot y\right)\right)}{t\_1}\\ \end{array} \end{array}
if (/.f64 (-.f64 (+.f64 (*.f64 (+.f64 x y) z) (*.f64 (+.f64 t y) a)) (*.f64 y b)) (+.f64 (+.f64 x t) y)) < -inf.0 or 9.999999999999999e201 < (/.f64 (-.f64 (+.f64 (*.f64 (+.f64 x y) z) (*.f64 (+.f64 t y) a)) (*.f64 y b)) (+.f64 (+.f64 x t) y))
Initial program 13.3%
Taylor expanded in y around inf
lower--.f64
N/A
lower-+.f64
75.4
Applied rewrites75.4%
if -inf.0 < (/.f64 (-.f64 (+.f64 (*.f64 (+.f64 x y) z) (*.f64 (+.f64 t y) a)) (*.f64 y b)) (+.f64 (+.f64 x t) y)) < 9.999999999999999e201
Initial program 99.7%
lift--.f64
N/A
lift-+.f64
N/A
lift-+.f64
N/A
lift-*.f64
N/A
lift-+.f64
N/A
lift-*.f64
N/A
associate--l+
N/A
*-commutative
N/A
lift-*.f64
N/A
*-commutative
N/A
lower-fma.f64
N/A
+-commutative
N/A
lower-+.f64
N/A
fp-cancel-sub-sign-inv
N/A
*-commutative
N/A
mul-1-neg
N/A
associate-*r*
N/A
mul-1-neg
N/A
lower-fma.f64
N/A
lift-+.f64
N/A
mul-1-neg
N/A
associate-*r*
N/A
lower-*.f64
N/A
mul-1-neg
N/A
lower-neg.f64
99.7
Applied rewrites99.7%
Final simplification88.6%
(FPCore (x y z t a b) :precision binary64 (let* ((t_1 (+ (+ x t) y)) (t_2 (/ (- (+ (* (+ x y) z) (* (+ t y) a)) (* y b)) t_1))) (if (or (<= t_2 -2e+180) (not (<= t_2 1e+202))) (- (+ a z) b) (/ (fma (+ t y) a (* (+ y x) z)) t_1))))
double code(double x, double y, double z, double t, double a, double b) { double t_1 = (x + t) + y; double t_2 = ((((x + y) * z) + ((t + y) * a)) - (y * b)) / t_1; double tmp; if ((t_2 <= -2e+180) || !(t_2 <= 1e+202)) { tmp = (a + z) - b; } else { tmp = fma((t + y), a, ((y + x) * z)) / t_1; } return tmp; }
function code(x, y, z, t, a, b) t_1 = Float64(Float64(x + t) + y) t_2 = Float64(Float64(Float64(Float64(Float64(x + y) * z) + Float64(Float64(t + y) * a)) - Float64(y * b)) / t_1) tmp = 0.0 if ((t_2 <= -2e+180) || !(t_2 <= 1e+202)) tmp = Float64(Float64(a + z) - b); else tmp = Float64(fma(Float64(t + y), a, Float64(Float64(y + x) * z)) / t_1); end return tmp end
code[x_, y_, z_, t_, a_, b_] := Block[{t$95$1 = N[(N[(x + t), $MachinePrecision] + y), $MachinePrecision]}, Block[{t$95$2 = N[(N[(N[(N[(N[(x + y), $MachinePrecision] * z), $MachinePrecision] + N[(N[(t + y), $MachinePrecision] * a), $MachinePrecision]), $MachinePrecision] - N[(y * b), $MachinePrecision]), $MachinePrecision] / t$95$1), $MachinePrecision]}, If[Or[LessEqual[t$95$2, -2e+180], N[Not[LessEqual[t$95$2, 1e+202]], $MachinePrecision]], N[(N[(a + z), $MachinePrecision] - b), $MachinePrecision], N[(N[(N[(t + y), $MachinePrecision] * a + N[(N[(y + x), $MachinePrecision] * z), $MachinePrecision]), $MachinePrecision] / t$95$1), $MachinePrecision]]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \left(x + t\right) + y\\ t_2 := \frac{\left(\left(x + y\right) \cdot z + \left(t + y\right) \cdot a\right) - y \cdot b}{t\_1}\\ \mathbf{if}\;t\_2 \leq -2 \cdot 10^{+180} \lor \neg \left(t\_2 \leq 10^{+202}\right):\\ \;\;\;\;\left(a + z\right) - b\\ \mathbf{else}:\\ \;\;\;\;\frac{\mathsf{fma}\left(t + y, a, \left(y + x\right) \cdot z\right)}{t\_1}\\ \end{array} \end{array}
if (/.f64 (-.f64 (+.f64 (*.f64 (+.f64 x y) z) (*.f64 (+.f64 t y) a)) (*.f64 y b)) (+.f64 (+.f64 x t) y)) < -2e180 or 9.999999999999999e201 < (/.f64 (-.f64 (+.f64 (*.f64 (+.f64 x y) z) (*.f64 (+.f64 t y) a)) (*.f64 y b)) (+.f64 (+.f64 x t) y))
Initial program 21.4%
Taylor expanded in y around inf
lower--.f64
N/A
lower-+.f64
74.0
Applied rewrites74.0%
if -2e180 < (/.f64 (-.f64 (+.f64 (*.f64 (+.f64 x y) z) (*.f64 (+.f64 t y) a)) (*.f64 y b)) (+.f64 (+.f64 x t) y)) < 9.999999999999999e201
Initial program 99.7%
Taylor expanded in b around 0
*-commutative
N/A
lower-fma.f64
N/A
lift-+.f64
N/A
*-commutative
N/A
lift-*.f64
N/A
+-commutative
N/A
lower-+.f64
78.6
Applied rewrites78.6%
Final simplification76.3%
(FPCore (x y z t a b) :precision binary64 (let* ((t_1 (/ (- (+ (* (+ x y) z) (* (+ t y) a)) (* y b)) (+ (+ x t) y)))) (if (or (<= t_1 -2e+180) (not (<= t_1 1e+202))) (- (+ a z) b) (/ (fma a t (* z x)) (+ t x)))))
double code(double x, double y, double z, double t, double a, double b) { double t_1 = ((((x + y) * z) + ((t + y) * a)) - (y * b)) / ((x + t) + y); double tmp; if ((t_1 <= -2e+180) || !(t_1 <= 1e+202)) { tmp = (a + z) - b; } else { tmp = fma(a, t, (z * x)) / (t + x); } return tmp; }
function code(x, y, z, t, a, b) t_1 = Float64(Float64(Float64(Float64(Float64(x + y) * z) + Float64(Float64(t + y) * a)) - Float64(y * b)) / Float64(Float64(x + t) + y)) tmp = 0.0 if ((t_1 <= -2e+180) || !(t_1 <= 1e+202)) tmp = Float64(Float64(a + z) - b); else tmp = Float64(fma(a, t, Float64(z * x)) / Float64(t + x)); end return tmp end
code[x_, y_, z_, t_, a_, b_] := Block[{t$95$1 = N[(N[(N[(N[(N[(x + y), $MachinePrecision] * z), $MachinePrecision] + N[(N[(t + y), $MachinePrecision] * a), $MachinePrecision]), $MachinePrecision] - N[(y * b), $MachinePrecision]), $MachinePrecision] / N[(N[(x + t), $MachinePrecision] + y), $MachinePrecision]), $MachinePrecision]}, If[Or[LessEqual[t$95$1, -2e+180], N[Not[LessEqual[t$95$1, 1e+202]], $MachinePrecision]], N[(N[(a + z), $MachinePrecision] - b), $MachinePrecision], N[(N[(a * t + N[(z * x), $MachinePrecision]), $MachinePrecision] / N[(t + x), $MachinePrecision]), $MachinePrecision]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \frac{\left(\left(x + y\right) \cdot z + \left(t + y\right) \cdot a\right) - y \cdot b}{\left(x + t\right) + y}\\ \mathbf{if}\;t\_1 \leq -2 \cdot 10^{+180} \lor \neg \left(t\_1 \leq 10^{+202}\right):\\ \;\;\;\;\left(a + z\right) - b\\ \mathbf{else}:\\ \;\;\;\;\frac{\mathsf{fma}\left(a, t, z \cdot x\right)}{t + x}\\ \end{array} \end{array}
if (/.f64 (-.f64 (+.f64 (*.f64 (+.f64 x y) z) (*.f64 (+.f64 t y) a)) (*.f64 y b)) (+.f64 (+.f64 x t) y)) < -2e180 or 9.999999999999999e201 < (/.f64 (-.f64 (+.f64 (*.f64 (+.f64 x y) z) (*.f64 (+.f64 t y) a)) (*.f64 y b)) (+.f64 (+.f64 x t) y))
Initial program 21.4%
Taylor expanded in y around inf
lower--.f64
N/A
lower-+.f64
74.0
Applied rewrites74.0%
if -2e180 < (/.f64 (-.f64 (+.f64 (*.f64 (+.f64 x y) z) (*.f64 (+.f64 t y) a)) (*.f64 y b)) (+.f64 (+.f64 x t) y)) < 9.999999999999999e201
Initial program 99.7%
Taylor expanded in y around 0
lower-/.f64
N/A
lower-fma.f64
N/A
*-commutative
N/A
lower-*.f64
N/A
lower-+.f64
61.5
Applied rewrites61.5%
Final simplification67.8%
(FPCore (x y z t a b) :precision binary64 (let* ((t_1 (+ (+ y x) t)) (t_2 (/ (+ y x) t_1)) (t_3 (/ y t_1))) (if (or (<= a -9e-89) (not (<= a 6e-88))) (* (- (+ (/ (+ t y) t_1) (* (/ z a) t_2)) (* (/ b a) t_3)) a) (* (- (+ t_2 (/ (/ (* (+ t y) a) z) t_1)) (* (/ b z) t_3)) z))))
double code(double x, double y, double z, double t, double a, double b) { double t_1 = (y + x) + t; double t_2 = (y + x) / t_1; double t_3 = y / t_1; double tmp; if ((a <= -9e-89) || !(a <= 6e-88)) { tmp = ((((t + y) / t_1) + ((z / a) * t_2)) - ((b / a) * t_3)) * a; } else { tmp = ((t_2 + ((((t + y) * a) / z) / t_1)) - ((b / z) * t_3)) * z; } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t, a, b) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t real(8), intent (in) :: a real(8), intent (in) :: b real(8) :: t_1 real(8) :: t_2 real(8) :: t_3 real(8) :: tmp t_1 = (y + x) + t t_2 = (y + x) / t_1 t_3 = y / t_1 if ((a <= (-9d-89)) .or. (.not. (a <= 6d-88))) then tmp = ((((t + y) / t_1) + ((z / a) * t_2)) - ((b / a) * t_3)) * a else tmp = ((t_2 + ((((t + y) * a) / z) / t_1)) - ((b / z) * t_3)) * z end if code = tmp end function
public static double code(double x, double y, double z, double t, double a, double b) { double t_1 = (y + x) + t; double t_2 = (y + x) / t_1; double t_3 = y / t_1; double tmp; if ((a <= -9e-89) || !(a <= 6e-88)) { tmp = ((((t + y) / t_1) + ((z / a) * t_2)) - ((b / a) * t_3)) * a; } else { tmp = ((t_2 + ((((t + y) * a) / z) / t_1)) - ((b / z) * t_3)) * z; } return tmp; }
def code(x, y, z, t, a, b): t_1 = (y + x) + t t_2 = (y + x) / t_1 t_3 = y / t_1 tmp = 0 if (a <= -9e-89) or not (a <= 6e-88): tmp = ((((t + y) / t_1) + ((z / a) * t_2)) - ((b / a) * t_3)) * a else: tmp = ((t_2 + ((((t + y) * a) / z) / t_1)) - ((b / z) * t_3)) * z return tmp
function code(x, y, z, t, a, b) t_1 = Float64(Float64(y + x) + t) t_2 = Float64(Float64(y + x) / t_1) t_3 = Float64(y / t_1) tmp = 0.0 if ((a <= -9e-89) || !(a <= 6e-88)) tmp = Float64(Float64(Float64(Float64(Float64(t + y) / t_1) + Float64(Float64(z / a) * t_2)) - Float64(Float64(b / a) * t_3)) * a); else tmp = Float64(Float64(Float64(t_2 + Float64(Float64(Float64(Float64(t + y) * a) / z) / t_1)) - Float64(Float64(b / z) * t_3)) * z); end return tmp end
function tmp_2 = code(x, y, z, t, a, b) t_1 = (y + x) + t; t_2 = (y + x) / t_1; t_3 = y / t_1; tmp = 0.0; if ((a <= -9e-89) || ~((a <= 6e-88))) tmp = ((((t + y) / t_1) + ((z / a) * t_2)) - ((b / a) * t_3)) * a; else tmp = ((t_2 + ((((t + y) * a) / z) / t_1)) - ((b / z) * t_3)) * z; end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_] := Block[{t$95$1 = N[(N[(y + x), $MachinePrecision] + t), $MachinePrecision]}, Block[{t$95$2 = N[(N[(y + x), $MachinePrecision] / t$95$1), $MachinePrecision]}, Block[{t$95$3 = N[(y / t$95$1), $MachinePrecision]}, If[Or[LessEqual[a, -9e-89], N[Not[LessEqual[a, 6e-88]], $MachinePrecision]], N[(N[(N[(N[(N[(t + y), $MachinePrecision] / t$95$1), $MachinePrecision] + N[(N[(z / a), $MachinePrecision] * t$95$2), $MachinePrecision]), $MachinePrecision] - N[(N[(b / a), $MachinePrecision] * t$95$3), $MachinePrecision]), $MachinePrecision] * a), $MachinePrecision], N[(N[(N[(t$95$2 + N[(N[(N[(N[(t + y), $MachinePrecision] * a), $MachinePrecision] / z), $MachinePrecision] / t$95$1), $MachinePrecision]), $MachinePrecision] - N[(N[(b / z), $MachinePrecision] * t$95$3), $MachinePrecision]), $MachinePrecision] * z), $MachinePrecision]]]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \left(y + x\right) + t\\ t_2 := \frac{y + x}{t\_1}\\ t_3 := \frac{y}{t\_1}\\ \mathbf{if}\;a \leq -9 \cdot 10^{-89} \lor \neg \left(a \leq 6 \cdot 10^{-88}\right):\\ \;\;\;\;\left(\left(\frac{t + y}{t\_1} + \frac{z}{a} \cdot t\_2\right) - \frac{b}{a} \cdot t\_3\right) \cdot a\\ \mathbf{else}:\\ \;\;\;\;\left(\left(t\_2 + \frac{\frac{\left(t + y\right) \cdot a}{z}}{t\_1}\right) - \frac{b}{z} \cdot t\_3\right) \cdot z\\ \end{array} \end{array}
if a < -8.9999999999999998e-89 or 5.9999999999999999e-88 < a
Initial program 55.5%
Taylor expanded in a around inf
*-commutative
N/A
lower-*.f64
N/A
Applied rewrites97.8%
if -8.9999999999999998e-89 < a < 5.9999999999999999e-88
Initial program 71.3%
Taylor expanded in z around inf
*-commutative
N/A
lower-*.f64
N/A
Applied rewrites88.4%
Final simplification95.0%
(FPCore (x y z t a b) :precision binary64 (let* ((t_1 (- (+ a z) b))) (if (<= y -1.3e+93) t_1 (if (<= y -8.2e-115) (- a (* b (/ y (+ (+ y x) t)))) (if (<= y 1.72e-59) (/ (fma a t (* z x)) (+ t x)) (if (<= y 2.3e+24) (/ (* t_1 y) (+ (+ x t) y)) t_1))))))
double code(double x, double y, double z, double t, double a, double b) { double t_1 = (a + z) - b; double tmp; if (y <= -1.3e+93) { tmp = t_1; } else if (y <= -8.2e-115) { tmp = a - (b * (y / ((y + x) + t))); } else if (y <= 1.72e-59) { tmp = fma(a, t, (z * x)) / (t + x); } else if (y <= 2.3e+24) { tmp = (t_1 * y) / ((x + t) + y); } else { tmp = t_1; } return tmp; }
function code(x, y, z, t, a, b) t_1 = Float64(Float64(a + z) - b) tmp = 0.0 if (y <= -1.3e+93) tmp = t_1; elseif (y <= -8.2e-115) tmp = Float64(a - Float64(b * Float64(y / Float64(Float64(y + x) + t)))); elseif (y <= 1.72e-59) tmp = Float64(fma(a, t, Float64(z * x)) / Float64(t + x)); elseif (y <= 2.3e+24) tmp = Float64(Float64(t_1 * y) / Float64(Float64(x + t) + y)); else tmp = t_1; end return tmp end
code[x_, y_, z_, t_, a_, b_] := Block[{t$95$1 = N[(N[(a + z), $MachinePrecision] - b), $MachinePrecision]}, If[LessEqual[y, -1.3e+93], t$95$1, If[LessEqual[y, -8.2e-115], N[(a - N[(b * N[(y / N[(N[(y + x), $MachinePrecision] + t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], If[LessEqual[y, 1.72e-59], N[(N[(a * t + N[(z * x), $MachinePrecision]), $MachinePrecision] / N[(t + x), $MachinePrecision]), $MachinePrecision], If[LessEqual[y, 2.3e+24], N[(N[(t$95$1 * y), $MachinePrecision] / N[(N[(x + t), $MachinePrecision] + y), $MachinePrecision]), $MachinePrecision], t$95$1]]]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \left(a + z\right) - b\\ \mathbf{if}\;y \leq -1.3 \cdot 10^{+93}:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;y \leq -8.2 \cdot 10^{-115}:\\ \;\;\;\;a - b \cdot \frac{y}{\left(y + x\right) + t}\\ \mathbf{elif}\;y \leq 1.72 \cdot 10^{-59}:\\ \;\;\;\;\frac{\mathsf{fma}\left(a, t, z \cdot x\right)}{t + x}\\ \mathbf{elif}\;y \leq 2.3 \cdot 10^{+24}:\\ \;\;\;\;\frac{t\_1 \cdot y}{\left(x + t\right) + y}\\ \mathbf{else}:\\ \;\;\;\;t\_1\\ \end{array} \end{array}
if y < -1.3e93 or 2.2999999999999999e24 < y
Initial program 35.8%
Taylor expanded in y around inf
lower--.f64
N/A
lower-+.f64
81.4
Applied rewrites81.4%
if -1.3e93 < y < -8.1999999999999993e-115
Initial program 72.6%
Applied rewrites72.8%
Taylor expanded in t around inf
Applied rewrites63.4%
if -8.1999999999999993e-115 < y < 1.72e-59
Initial program 78.3%
Taylor expanded in y around 0
lower-/.f64
N/A
lower-fma.f64
N/A
*-commutative
N/A
lower-*.f64
N/A
lower-+.f64
70.9
Applied rewrites70.9%
if 1.72e-59 < y < 2.2999999999999999e24
Initial program 74.8%
Taylor expanded in y around inf
*-commutative
N/A
lower-*.f64
N/A
lower--.f64
N/A
lower-+.f64
54.2
Applied rewrites54.2%
Final simplification72.4%
(FPCore (x y z t a b) :precision binary64 (let* ((t_1 (- (+ a z) b))) (if (<= y -1.3e+93) t_1 (if (<= y -8.2e-115) (- a (* b (/ y (+ (+ y x) t)))) (if (<= y 1.45e+18) (/ (fma a t (* z x)) (+ t x)) t_1)))))
double code(double x, double y, double z, double t, double a, double b) { double t_1 = (a + z) - b; double tmp; if (y <= -1.3e+93) { tmp = t_1; } else if (y <= -8.2e-115) { tmp = a - (b * (y / ((y + x) + t))); } else if (y <= 1.45e+18) { tmp = fma(a, t, (z * x)) / (t + x); } else { tmp = t_1; } return tmp; }
function code(x, y, z, t, a, b) t_1 = Float64(Float64(a + z) - b) tmp = 0.0 if (y <= -1.3e+93) tmp = t_1; elseif (y <= -8.2e-115) tmp = Float64(a - Float64(b * Float64(y / Float64(Float64(y + x) + t)))); elseif (y <= 1.45e+18) tmp = Float64(fma(a, t, Float64(z * x)) / Float64(t + x)); else tmp = t_1; end return tmp end
code[x_, y_, z_, t_, a_, b_] := Block[{t$95$1 = N[(N[(a + z), $MachinePrecision] - b), $MachinePrecision]}, If[LessEqual[y, -1.3e+93], t$95$1, If[LessEqual[y, -8.2e-115], N[(a - N[(b * N[(y / N[(N[(y + x), $MachinePrecision] + t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], If[LessEqual[y, 1.45e+18], N[(N[(a * t + N[(z * x), $MachinePrecision]), $MachinePrecision] / N[(t + x), $MachinePrecision]), $MachinePrecision], t$95$1]]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \left(a + z\right) - b\\ \mathbf{if}\;y \leq -1.3 \cdot 10^{+93}:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;y \leq -8.2 \cdot 10^{-115}:\\ \;\;\;\;a - b \cdot \frac{y}{\left(y + x\right) + t}\\ \mathbf{elif}\;y \leq 1.45 \cdot 10^{+18}:\\ \;\;\;\;\frac{\mathsf{fma}\left(a, t, z \cdot x\right)}{t + x}\\ \mathbf{else}:\\ \;\;\;\;t\_1\\ \end{array} \end{array}
if y < -1.3e93 or 1.45e18 < y
Initial program 36.7%
Taylor expanded in y around inf
lower--.f64
N/A
lower-+.f64
80.1
Applied rewrites80.1%
if -1.3e93 < y < -8.1999999999999993e-115
Initial program 72.6%
Applied rewrites72.8%
Taylor expanded in t around inf
Applied rewrites63.4%
if -8.1999999999999993e-115 < y < 1.45e18
Initial program 78.0%
Taylor expanded in y around 0
lower-/.f64
N/A
lower-fma.f64
N/A
*-commutative
N/A
lower-*.f64
N/A
lower-+.f64
64.3
Applied rewrites64.3%
Final simplification70.6%
(FPCore (x y z t a b) :precision binary64 (let* ((t_1 (- (+ a z) b))) (if (<= y -3.6e+67) t_1 (if (<= y 9e-146) (* (/ (+ t y) (+ t (+ x y))) a) (if (<= y 1.66e+19) (fma (/ (* b y) x) -1.0 z) t_1)))))
double code(double x, double y, double z, double t, double a, double b) { double t_1 = (a + z) - b; double tmp; if (y <= -3.6e+67) { tmp = t_1; } else if (y <= 9e-146) { tmp = ((t + y) / (t + (x + y))) * a; } else if (y <= 1.66e+19) { tmp = fma(((b * y) / x), -1.0, z); } else { tmp = t_1; } return tmp; }
function code(x, y, z, t, a, b) t_1 = Float64(Float64(a + z) - b) tmp = 0.0 if (y <= -3.6e+67) tmp = t_1; elseif (y <= 9e-146) tmp = Float64(Float64(Float64(t + y) / Float64(t + Float64(x + y))) * a); elseif (y <= 1.66e+19) tmp = fma(Float64(Float64(b * y) / x), -1.0, z); else tmp = t_1; end return tmp end
code[x_, y_, z_, t_, a_, b_] := Block[{t$95$1 = N[(N[(a + z), $MachinePrecision] - b), $MachinePrecision]}, If[LessEqual[y, -3.6e+67], t$95$1, If[LessEqual[y, 9e-146], N[(N[(N[(t + y), $MachinePrecision] / N[(t + N[(x + y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] * a), $MachinePrecision], If[LessEqual[y, 1.66e+19], N[(N[(N[(b * y), $MachinePrecision] / x), $MachinePrecision] * -1.0 + z), $MachinePrecision], t$95$1]]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \left(a + z\right) - b\\ \mathbf{if}\;y \leq -3.6 \cdot 10^{+67}:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;y \leq 9 \cdot 10^{-146}:\\ \;\;\;\;\frac{t + y}{t + \left(x + y\right)} \cdot a\\ \mathbf{elif}\;y \leq 1.66 \cdot 10^{+19}:\\ \;\;\;\;\mathsf{fma}\left(\frac{b \cdot y}{x}, -1, z\right)\\ \mathbf{else}:\\ \;\;\;\;t\_1\\ \end{array} \end{array}
if y < -3.5999999999999999e67 or 1.66e19 < y
Initial program 38.4%
Taylor expanded in y around inf
lower--.f64
N/A
lower-+.f64
80.3
Applied rewrites80.3%
if -3.5999999999999999e67 < y < 9.0000000000000001e-146
Initial program 74.6%
Taylor expanded in a around inf
*-commutative
N/A
lower-*.f64
N/A
Applied rewrites85.0%
Taylor expanded in a around inf
div-add-rev
N/A
lower-/.f64
N/A
lift-+.f64
N/A
lower-+.f64
N/A
lower-+.f64
51.6
Applied rewrites51.6%
if 9.0000000000000001e-146 < y < 1.66e19
Initial program 84.2%
Taylor expanded in x around -inf
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
N/A
Applied rewrites54.1%
Taylor expanded in b around inf
lift-*.f64
51.5
Applied rewrites51.5%
Final simplification63.9%
(FPCore (x y z t a b) :precision binary64 (if (or (<= x -5e+78) (not (<= x 1.28e+213))) (+ z (* t (/ (- a z) x))) (- (+ a z) b)))
double code(double x, double y, double z, double t, double a, double b) { double tmp; if ((x <= -5e+78) || !(x <= 1.28e+213)) { tmp = z + (t * ((a - z) / x)); } else { tmp = (a + z) - b; } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t, a, b) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t real(8), intent (in) :: a real(8), intent (in) :: b real(8) :: tmp if ((x <= (-5d+78)) .or. (.not. (x <= 1.28d+213))) then tmp = z + (t * ((a - z) / x)) else tmp = (a + z) - b end if code = tmp end function
public static double code(double x, double y, double z, double t, double a, double b) { double tmp; if ((x <= -5e+78) || !(x <= 1.28e+213)) { tmp = z + (t * ((a - z) / x)); } else { tmp = (a + z) - b; } return tmp; }
def code(x, y, z, t, a, b): tmp = 0 if (x <= -5e+78) or not (x <= 1.28e+213): tmp = z + (t * ((a - z) / x)) else: tmp = (a + z) - b return tmp
function code(x, y, z, t, a, b) tmp = 0.0 if ((x <= -5e+78) || !(x <= 1.28e+213)) tmp = Float64(z + Float64(t * Float64(Float64(a - z) / x))); else tmp = Float64(Float64(a + z) - b); end return tmp end
function tmp_2 = code(x, y, z, t, a, b) tmp = 0.0; if ((x <= -5e+78) || ~((x <= 1.28e+213))) tmp = z + (t * ((a - z) / x)); else tmp = (a + z) - b; end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_] := If[Or[LessEqual[x, -5e+78], N[Not[LessEqual[x, 1.28e+213]], $MachinePrecision]], N[(z + N[(t * N[(N[(a - z), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[(N[(a + z), $MachinePrecision] - b), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;x \leq -5 \cdot 10^{+78} \lor \neg \left(x \leq 1.28 \cdot 10^{+213}\right):\\ \;\;\;\;z + t \cdot \frac{a - z}{x}\\ \mathbf{else}:\\ \;\;\;\;\left(a + z\right) - b\\ \end{array} \end{array}
if x < -4.99999999999999984e78 or 1.2799999999999999e213 < x
Initial program 58.1%
Taylor expanded in y around 0
lower-/.f64
N/A
lower-fma.f64
N/A
*-commutative
N/A
lower-*.f64
N/A
lower-+.f64
45.5
Applied rewrites45.5%
Taylor expanded in t around 0
lower-+.f64
N/A
lower-*.f64
N/A
sub-div
N/A
lower-/.f64
N/A
lower--.f64
61.4
Applied rewrites61.4%
if -4.99999999999999984e78 < x < 1.2799999999999999e213
Initial program 60.9%
Taylor expanded in y around inf
lower--.f64
N/A
lower-+.f64
61.6
Applied rewrites61.6%
Final simplification61.6%
(FPCore (x y z t a b) :precision binary64 (if (or (<= t -1.35e+70) (not (<= t 2.6e+118))) (+ a (* x (/ (- z a) t))) (- (+ a z) b)))
double code(double x, double y, double z, double t, double a, double b) { double tmp; if ((t <= -1.35e+70) || !(t <= 2.6e+118)) { tmp = a + (x * ((z - a) / t)); } else { tmp = (a + z) - b; } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t, a, b) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t real(8), intent (in) :: a real(8), intent (in) :: b real(8) :: tmp if ((t <= (-1.35d+70)) .or. (.not. (t <= 2.6d+118))) then tmp = a + (x * ((z - a) / t)) else tmp = (a + z) - b end if code = tmp end function
public static double code(double x, double y, double z, double t, double a, double b) { double tmp; if ((t <= -1.35e+70) || !(t <= 2.6e+118)) { tmp = a + (x * ((z - a) / t)); } else { tmp = (a + z) - b; } return tmp; }
def code(x, y, z, t, a, b): tmp = 0 if (t <= -1.35e+70) or not (t <= 2.6e+118): tmp = a + (x * ((z - a) / t)) else: tmp = (a + z) - b return tmp
function code(x, y, z, t, a, b) tmp = 0.0 if ((t <= -1.35e+70) || !(t <= 2.6e+118)) tmp = Float64(a + Float64(x * Float64(Float64(z - a) / t))); else tmp = Float64(Float64(a + z) - b); end return tmp end
function tmp_2 = code(x, y, z, t, a, b) tmp = 0.0; if ((t <= -1.35e+70) || ~((t <= 2.6e+118))) tmp = a + (x * ((z - a) / t)); else tmp = (a + z) - b; end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_] := If[Or[LessEqual[t, -1.35e+70], N[Not[LessEqual[t, 2.6e+118]], $MachinePrecision]], N[(a + N[(x * N[(N[(z - a), $MachinePrecision] / t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[(N[(a + z), $MachinePrecision] - b), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;t \leq -1.35 \cdot 10^{+70} \lor \neg \left(t \leq 2.6 \cdot 10^{+118}\right):\\ \;\;\;\;a + x \cdot \frac{z - a}{t}\\ \mathbf{else}:\\ \;\;\;\;\left(a + z\right) - b\\ \end{array} \end{array}
if t < -1.35e70 or 2.60000000000000016e118 < t
Initial program 50.3%
Taylor expanded in y around 0
lower-/.f64
N/A
lower-fma.f64
N/A
*-commutative
N/A
lower-*.f64
N/A
lower-+.f64
41.3
Applied rewrites41.3%
Taylor expanded in x around 0
lower-+.f64
N/A
lower-*.f64
N/A
sub-div
N/A
lower-/.f64
N/A
lower--.f64
60.3
Applied rewrites60.3%
if -1.35e70 < t < 2.60000000000000016e118
Initial program 65.9%
Taylor expanded in y around inf
lower--.f64
N/A
lower-+.f64
61.6
Applied rewrites61.6%
Final simplification61.1%
(FPCore (x y z t a b) :precision binary64 (if (<= x -5e+103) (* z (/ (+ x y) (+ t (+ x y)))) (if (<= x 1.28e+213) (- (+ a z) b) (+ z (* t (/ (- a z) x))))))
double code(double x, double y, double z, double t, double a, double b) { double tmp; if (x <= -5e+103) { tmp = z * ((x + y) / (t + (x + y))); } else if (x <= 1.28e+213) { tmp = (a + z) - b; } else { tmp = z + (t * ((a - z) / x)); } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t, a, b) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t real(8), intent (in) :: a real(8), intent (in) :: b real(8) :: tmp if (x <= (-5d+103)) then tmp = z * ((x + y) / (t + (x + y))) else if (x <= 1.28d+213) then tmp = (a + z) - b else tmp = z + (t * ((a - z) / x)) end if code = tmp end function
public static double code(double x, double y, double z, double t, double a, double b) { double tmp; if (x <= -5e+103) { tmp = z * ((x + y) / (t + (x + y))); } else if (x <= 1.28e+213) { tmp = (a + z) - b; } else { tmp = z + (t * ((a - z) / x)); } return tmp; }
def code(x, y, z, t, a, b): tmp = 0 if x <= -5e+103: tmp = z * ((x + y) / (t + (x + y))) elif x <= 1.28e+213: tmp = (a + z) - b else: tmp = z + (t * ((a - z) / x)) return tmp
function code(x, y, z, t, a, b) tmp = 0.0 if (x <= -5e+103) tmp = Float64(z * Float64(Float64(x + y) / Float64(t + Float64(x + y)))); elseif (x <= 1.28e+213) tmp = Float64(Float64(a + z) - b); else tmp = Float64(z + Float64(t * Float64(Float64(a - z) / x))); end return tmp end
function tmp_2 = code(x, y, z, t, a, b) tmp = 0.0; if (x <= -5e+103) tmp = z * ((x + y) / (t + (x + y))); elseif (x <= 1.28e+213) tmp = (a + z) - b; else tmp = z + (t * ((a - z) / x)); end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_] := If[LessEqual[x, -5e+103], N[(z * N[(N[(x + y), $MachinePrecision] / N[(t + N[(x + y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], If[LessEqual[x, 1.28e+213], N[(N[(a + z), $MachinePrecision] - b), $MachinePrecision], N[(z + N[(t * N[(N[(a - z), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;x \leq -5 \cdot 10^{+103}:\\ \;\;\;\;z \cdot \frac{x + y}{t + \left(x + y\right)}\\ \mathbf{elif}\;x \leq 1.28 \cdot 10^{+213}:\\ \;\;\;\;\left(a + z\right) - b\\ \mathbf{else}:\\ \;\;\;\;z + t \cdot \frac{a - z}{x}\\ \end{array} \end{array}
if x < -5e103
Initial program 75.6%
Applied rewrites78.3%
Taylor expanded in z around inf
lower-*.f64
N/A
div-add-rev
N/A
lower-/.f64
N/A
lower-+.f64
N/A
lower-+.f64
N/A
lower-+.f64
60.2
Applied rewrites60.2%
if -5e103 < x < 1.2799999999999999e213
Initial program 61.4%
Taylor expanded in y around inf
lower--.f64
N/A
lower-+.f64
61.6
Applied rewrites61.6%
if 1.2799999999999999e213 < x
Initial program 21.9%
Taylor expanded in y around 0
lower-/.f64
N/A
lower-fma.f64
N/A
*-commutative
N/A
lower-*.f64
N/A
lower-+.f64
15.8
Applied rewrites15.8%
Taylor expanded in t around 0
lower-+.f64
N/A
lower-*.f64
N/A
sub-div
N/A
lower-/.f64
N/A
lower--.f64
71.3
Applied rewrites71.3%
Final simplification62.2%
(FPCore (x y z t a b) :precision binary64 (if (<= x -2.4e+105) (fma (/ (* b y) x) -1.0 z) (if (<= x 1.28e+213) (- (+ a z) b) (+ z (* t (/ (- a z) x))))))
double code(double x, double y, double z, double t, double a, double b) { double tmp; if (x <= -2.4e+105) { tmp = fma(((b * y) / x), -1.0, z); } else if (x <= 1.28e+213) { tmp = (a + z) - b; } else { tmp = z + (t * ((a - z) / x)); } return tmp; }
function code(x, y, z, t, a, b) tmp = 0.0 if (x <= -2.4e+105) tmp = fma(Float64(Float64(b * y) / x), -1.0, z); elseif (x <= 1.28e+213) tmp = Float64(Float64(a + z) - b); else tmp = Float64(z + Float64(t * Float64(Float64(a - z) / x))); end return tmp end
code[x_, y_, z_, t_, a_, b_] := If[LessEqual[x, -2.4e+105], N[(N[(N[(b * y), $MachinePrecision] / x), $MachinePrecision] * -1.0 + z), $MachinePrecision], If[LessEqual[x, 1.28e+213], N[(N[(a + z), $MachinePrecision] - b), $MachinePrecision], N[(z + N[(t * N[(N[(a - z), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;x \leq -2.4 \cdot 10^{+105}:\\ \;\;\;\;\mathsf{fma}\left(\frac{b \cdot y}{x}, -1, z\right)\\ \mathbf{elif}\;x \leq 1.28 \cdot 10^{+213}:\\ \;\;\;\;\left(a + z\right) - b\\ \mathbf{else}:\\ \;\;\;\;z + t \cdot \frac{a - z}{x}\\ \end{array} \end{array}
if x < -2.39999999999999975e105
Initial program 75.6%
Taylor expanded in x around -inf
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
N/A
Applied rewrites62.5%
Taylor expanded in b around inf
lift-*.f64
60.0
Applied rewrites60.0%
if -2.39999999999999975e105 < x < 1.2799999999999999e213
Initial program 61.4%
Taylor expanded in y around inf
lower--.f64
N/A
lower-+.f64
61.6
Applied rewrites61.6%
if 1.2799999999999999e213 < x
Initial program 21.9%
Taylor expanded in y around 0
lower-/.f64
N/A
lower-fma.f64
N/A
*-commutative
N/A
lower-*.f64
N/A
lower-+.f64
15.8
Applied rewrites15.8%
Taylor expanded in t around 0
lower-+.f64
N/A
lower-*.f64
N/A
sub-div
N/A
lower-/.f64
N/A
lower--.f64
71.3
Applied rewrites71.3%
Final simplification62.2%
(FPCore (x y z t a b) :precision binary64 (if (or (<= y -3.1e+71) (not (<= y 3.5e+23))) (- (+ a z) b) (+ a z)))
double code(double x, double y, double z, double t, double a, double b) { double tmp; if ((y <= -3.1e+71) || !(y <= 3.5e+23)) { tmp = (a + z) - b; } else { tmp = a + z; } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t, a, b) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t real(8), intent (in) :: a real(8), intent (in) :: b real(8) :: tmp if ((y <= (-3.1d+71)) .or. (.not. (y <= 3.5d+23))) then tmp = (a + z) - b else tmp = a + z end if code = tmp end function
public static double code(double x, double y, double z, double t, double a, double b) { double tmp; if ((y <= -3.1e+71) || !(y <= 3.5e+23)) { tmp = (a + z) - b; } else { tmp = a + z; } return tmp; }
def code(x, y, z, t, a, b): tmp = 0 if (y <= -3.1e+71) or not (y <= 3.5e+23): tmp = (a + z) - b else: tmp = a + z return tmp
function code(x, y, z, t, a, b) tmp = 0.0 if ((y <= -3.1e+71) || !(y <= 3.5e+23)) tmp = Float64(Float64(a + z) - b); else tmp = Float64(a + z); end return tmp end
function tmp_2 = code(x, y, z, t, a, b) tmp = 0.0; if ((y <= -3.1e+71) || ~((y <= 3.5e+23))) tmp = (a + z) - b; else tmp = a + z; end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_] := If[Or[LessEqual[y, -3.1e+71], N[Not[LessEqual[y, 3.5e+23]], $MachinePrecision]], N[(N[(a + z), $MachinePrecision] - b), $MachinePrecision], N[(a + z), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;y \leq -3.1 \cdot 10^{+71} \lor \neg \left(y \leq 3.5 \cdot 10^{+23}\right):\\ \;\;\;\;\left(a + z\right) - b\\ \mathbf{else}:\\ \;\;\;\;a + z\\ \end{array} \end{array}
if y < -3.10000000000000018e71 or 3.5000000000000002e23 < y
Initial program 38.2%
Taylor expanded in y around inf
lower--.f64
N/A
lower-+.f64
80.8
Applied rewrites80.8%
if -3.10000000000000018e71 < y < 3.5000000000000002e23
Initial program 76.3%
Taylor expanded in y around inf
lower--.f64
N/A
lower-+.f64
33.4
Applied rewrites33.4%
Taylor expanded in b around 0
lift-+.f64
45.6
Applied rewrites45.6%
Final simplification60.5%
(FPCore (x y z t a b) :precision binary64 (if (or (<= a -3.7e-110) (not (<= a 30500.0))) (+ a z) (- z b)))
double code(double x, double y, double z, double t, double a, double b) { double tmp; if ((a <= -3.7e-110) || !(a <= 30500.0)) { tmp = a + z; } else { tmp = z - b; } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t, a, b) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t real(8), intent (in) :: a real(8), intent (in) :: b real(8) :: tmp if ((a <= (-3.7d-110)) .or. (.not. (a <= 30500.0d0))) then tmp = a + z else tmp = z - b end if code = tmp end function
public static double code(double x, double y, double z, double t, double a, double b) { double tmp; if ((a <= -3.7e-110) || !(a <= 30500.0)) { tmp = a + z; } else { tmp = z - b; } return tmp; }
def code(x, y, z, t, a, b): tmp = 0 if (a <= -3.7e-110) or not (a <= 30500.0): tmp = a + z else: tmp = z - b return tmp
function code(x, y, z, t, a, b) tmp = 0.0 if ((a <= -3.7e-110) || !(a <= 30500.0)) tmp = Float64(a + z); else tmp = Float64(z - b); end return tmp end
function tmp_2 = code(x, y, z, t, a, b) tmp = 0.0; if ((a <= -3.7e-110) || ~((a <= 30500.0))) tmp = a + z; else tmp = z - b; end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_] := If[Or[LessEqual[a, -3.7e-110], N[Not[LessEqual[a, 30500.0]], $MachinePrecision]], N[(a + z), $MachinePrecision], N[(z - b), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;a \leq -3.7 \cdot 10^{-110} \lor \neg \left(a \leq 30500\right):\\ \;\;\;\;a + z\\ \mathbf{else}:\\ \;\;\;\;z - b\\ \end{array} \end{array}
if a < -3.70000000000000016e-110 or 30500 < a
Initial program 54.6%
Taylor expanded in y around inf
lower--.f64
N/A
lower-+.f64
54.7
Applied rewrites54.7%
Taylor expanded in b around 0
lift-+.f64
60.5
Applied rewrites60.5%
if -3.70000000000000016e-110 < a < 30500
Initial program 71.2%
Taylor expanded in y around inf
lower--.f64
N/A
lower-+.f64
50.9
Applied rewrites50.9%
Taylor expanded in z around inf
Applied rewrites50.5%
Final simplification57.1%
(FPCore (x y z t a b) :precision binary64 (if (<= x -1.85e+81) z (if (<= x 1.9e+61) a z)))
double code(double x, double y, double z, double t, double a, double b) { double tmp; if (x <= -1.85e+81) { tmp = z; } else if (x <= 1.9e+61) { tmp = a; } else { tmp = z; } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t, a, b) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t real(8), intent (in) :: a real(8), intent (in) :: b real(8) :: tmp if (x <= (-1.85d+81)) then tmp = z else if (x <= 1.9d+61) then tmp = a else tmp = z end if code = tmp end function
public static double code(double x, double y, double z, double t, double a, double b) { double tmp; if (x <= -1.85e+81) { tmp = z; } else if (x <= 1.9e+61) { tmp = a; } else { tmp = z; } return tmp; }
def code(x, y, z, t, a, b): tmp = 0 if x <= -1.85e+81: tmp = z elif x <= 1.9e+61: tmp = a else: tmp = z return tmp
function code(x, y, z, t, a, b) tmp = 0.0 if (x <= -1.85e+81) tmp = z; elseif (x <= 1.9e+61) tmp = a; else tmp = z; end return tmp end
function tmp_2 = code(x, y, z, t, a, b) tmp = 0.0; if (x <= -1.85e+81) tmp = z; elseif (x <= 1.9e+61) tmp = a; else tmp = z; end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_] := If[LessEqual[x, -1.85e+81], z, If[LessEqual[x, 1.9e+61], a, z]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;x \leq -1.85 \cdot 10^{+81}:\\ \;\;\;\;z\\ \mathbf{elif}\;x \leq 1.9 \cdot 10^{+61}:\\ \;\;\;\;a\\ \mathbf{else}:\\ \;\;\;\;z\\ \end{array} \end{array}
if x < -1.85e81 or 1.89999999999999998e61 < x
Initial program 56.5%
Taylor expanded in x around inf
Applied rewrites47.9%
if -1.85e81 < x < 1.89999999999999998e61
Initial program 62.4%
Taylor expanded in t around inf
Applied rewrites50.8%
Final simplification49.7%
(FPCore (x y z t a b) :precision binary64 (if (<= x -4e+105) z (+ a z)))
double code(double x, double y, double z, double t, double a, double b) { double tmp; if (x <= -4e+105) { tmp = z; } else { tmp = a + z; } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t, a, b) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t real(8), intent (in) :: a real(8), intent (in) :: b real(8) :: tmp if (x <= (-4d+105)) then tmp = z else tmp = a + z end if code = tmp end function
public static double code(double x, double y, double z, double t, double a, double b) { double tmp; if (x <= -4e+105) { tmp = z; } else { tmp = a + z; } return tmp; }
def code(x, y, z, t, a, b): tmp = 0 if x <= -4e+105: tmp = z else: tmp = a + z return tmp
function code(x, y, z, t, a, b) tmp = 0.0 if (x <= -4e+105) tmp = z; else tmp = Float64(a + z); end return tmp end
function tmp_2 = code(x, y, z, t, a, b) tmp = 0.0; if (x <= -4e+105) tmp = z; else tmp = a + z; end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_] := If[LessEqual[x, -4e+105], z, N[(a + z), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;x \leq -4 \cdot 10^{+105}:\\ \;\;\;\;z\\ \mathbf{else}:\\ \;\;\;\;a + z\\ \end{array} \end{array}
if x < -3.9999999999999998e105
Initial program 75.0%
Taylor expanded in x around inf
Applied rewrites49.3%
if -3.9999999999999998e105 < x
Initial program 57.6%
Taylor expanded in y around inf
lower--.f64
N/A
lower-+.f64
58.8
Applied rewrites58.8%
Taylor expanded in b around 0
lift-+.f64
53.4
Applied rewrites53.4%
Final simplification52.8%
(FPCore (x y z t a b) :precision binary64 a)
double code(double x, double y, double z, double t, double a, double b) { return a; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t, a, b) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t real(8), intent (in) :: a real(8), intent (in) :: b code = a end function
public static double code(double x, double y, double z, double t, double a, double b) { return a; }
def code(x, y, z, t, a, b): return a
function code(x, y, z, t, a, b) return a end
function tmp = code(x, y, z, t, a, b) tmp = a; end
code[x_, y_, z_, t_, a_, b_] := a
\begin{array}{l} \\ a \end{array}
Initial program 60.2%
Taylor expanded in t around inf
Applied rewrites37.7%
Final simplification37.7%
(FPCore (x y z t a b) :precision binary64 (let* ((t_1 (+ (+ x t) y)) (t_2 (- (+ (* (+ x y) z) (* (+ t y) a)) (* y b))) (t_3 (/ t_2 t_1)) (t_4 (- (+ z a) b))) (if (< t_3 -3.5813117084150564e+153) t_4 (if (< t_3 1.2285964308315609e+82) (/ 1.0 (/ t_1 t_2)) t_4))))
double code(double x, double y, double z, double t, double a, double b) { double t_1 = (x + t) + y; double t_2 = (((x + y) * z) + ((t + y) * a)) - (y * b); double t_3 = t_2 / t_1; double t_4 = (z + a) - b; double tmp; if (t_3 < -3.5813117084150564e+153) { tmp = t_4; } else if (t_3 < 1.2285964308315609e+82) { tmp = 1.0 / (t_1 / t_2); } else { tmp = t_4; } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t, a, b) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t real(8), intent (in) :: a real(8), intent (in) :: b real(8) :: t_1 real(8) :: t_2 real(8) :: t_3 real(8) :: t_4 real(8) :: tmp t_1 = (x + t) + y t_2 = (((x + y) * z) + ((t + y) * a)) - (y * b) t_3 = t_2 / t_1 t_4 = (z + a) - b if (t_3 < (-3.5813117084150564d+153)) then tmp = t_4 else if (t_3 < 1.2285964308315609d+82) then tmp = 1.0d0 / (t_1 / t_2) else tmp = t_4 end if code = tmp end function
public static double code(double x, double y, double z, double t, double a, double b) { double t_1 = (x + t) + y; double t_2 = (((x + y) * z) + ((t + y) * a)) - (y * b); double t_3 = t_2 / t_1; double t_4 = (z + a) - b; double tmp; if (t_3 < -3.5813117084150564e+153) { tmp = t_4; } else if (t_3 < 1.2285964308315609e+82) { tmp = 1.0 / (t_1 / t_2); } else { tmp = t_4; } return tmp; }
def code(x, y, z, t, a, b): t_1 = (x + t) + y t_2 = (((x + y) * z) + ((t + y) * a)) - (y * b) t_3 = t_2 / t_1 t_4 = (z + a) - b tmp = 0 if t_3 < -3.5813117084150564e+153: tmp = t_4 elif t_3 < 1.2285964308315609e+82: tmp = 1.0 / (t_1 / t_2) else: tmp = t_4 return tmp
function code(x, y, z, t, a, b) t_1 = Float64(Float64(x + t) + y) t_2 = Float64(Float64(Float64(Float64(x + y) * z) + Float64(Float64(t + y) * a)) - Float64(y * b)) t_3 = Float64(t_2 / t_1) t_4 = Float64(Float64(z + a) - b) tmp = 0.0 if (t_3 < -3.5813117084150564e+153) tmp = t_4; elseif (t_3 < 1.2285964308315609e+82) tmp = Float64(1.0 / Float64(t_1 / t_2)); else tmp = t_4; end return tmp end
function tmp_2 = code(x, y, z, t, a, b) t_1 = (x + t) + y; t_2 = (((x + y) * z) + ((t + y) * a)) - (y * b); t_3 = t_2 / t_1; t_4 = (z + a) - b; tmp = 0.0; if (t_3 < -3.5813117084150564e+153) tmp = t_4; elseif (t_3 < 1.2285964308315609e+82) tmp = 1.0 / (t_1 / t_2); else tmp = t_4; end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_] := Block[{t$95$1 = N[(N[(x + t), $MachinePrecision] + y), $MachinePrecision]}, Block[{t$95$2 = N[(N[(N[(N[(x + y), $MachinePrecision] * z), $MachinePrecision] + N[(N[(t + y), $MachinePrecision] * a), $MachinePrecision]), $MachinePrecision] - N[(y * b), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$3 = N[(t$95$2 / t$95$1), $MachinePrecision]}, Block[{t$95$4 = N[(N[(z + a), $MachinePrecision] - b), $MachinePrecision]}, If[Less[t$95$3, -3.5813117084150564e+153], t$95$4, If[Less[t$95$3, 1.2285964308315609e+82], N[(1.0 / N[(t$95$1 / t$95$2), $MachinePrecision]), $MachinePrecision], t$95$4]]]]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \left(x + t\right) + y\\ t_2 := \left(\left(x + y\right) \cdot z + \left(t + y\right) \cdot a\right) - y \cdot b\\ t_3 := \frac{t\_2}{t\_1}\\ t_4 := \left(z + a\right) - b\\ \mathbf{if}\;t\_3 < -3.5813117084150564 \cdot 10^{+153}:\\ \;\;\;\;t\_4\\ \mathbf{elif}\;t\_3 < 1.2285964308315609 \cdot 10^{+82}:\\ \;\;\;\;\frac{1}{\frac{t\_1}{t\_2}}\\ \mathbf{else}:\\ \;\;\;\;t\_4\\ \end{array} \end{array}
herbie shell --seed 2025061
(FPCore (x y z t a b)
:name "AI.Clustering.Hierarchical.Internal:ward from clustering-0.2.1"
:precision binary64
:alt
(! :herbie-platform default (if (< (/ (- (+ (* (+ x y) z) (* (+ t y) a)) (* y b)) (+ (+ x t) y)) -3581311708415056400000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000) (- (+ z a) b) (if (< (/ (- (+ (* (+ x y) z) (* (+ t y) a)) (* y b)) (+ (+ x t) y)) 12285964308315609000000000000000000000000000000000000000000000000000000000000000000) (/ 1 (/ (+ (+ x t) y) (- (+ (* (+ x y) z) (* (+ t y) a)) (* y b)))) (- (+ z a) b))))
(/ (- (+ (* (+ x y) z) (* (+ t y) a)) (* y b)) (+ (+ x t) y)))