
(FPCore (x y z t a b) :precision binary64 (/ (- (+ (* (+ x y) z) (* (+ t y) a)) (* y b)) (+ (+ x t) y)))
double code(double x, double y, double z, double t, double a, double b) {
return ((((x + y) * z) + ((t + y) * a)) - (y * b)) / ((x + t) + y);
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t, a, b)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
real(8), intent (in) :: a
real(8), intent (in) :: b
code = ((((x + y) * z) + ((t + y) * a)) - (y * b)) / ((x + t) + y)
end function
public static double code(double x, double y, double z, double t, double a, double b) {
return ((((x + y) * z) + ((t + y) * a)) - (y * b)) / ((x + t) + y);
}
def code(x, y, z, t, a, b): return ((((x + y) * z) + ((t + y) * a)) - (y * b)) / ((x + t) + y)
function code(x, y, z, t, a, b) return Float64(Float64(Float64(Float64(Float64(x + y) * z) + Float64(Float64(t + y) * a)) - Float64(y * b)) / Float64(Float64(x + t) + y)) end
function tmp = code(x, y, z, t, a, b) tmp = ((((x + y) * z) + ((t + y) * a)) - (y * b)) / ((x + t) + y); end
code[x_, y_, z_, t_, a_, b_] := N[(N[(N[(N[(N[(x + y), $MachinePrecision] * z), $MachinePrecision] + N[(N[(t + y), $MachinePrecision] * a), $MachinePrecision]), $MachinePrecision] - N[(y * b), $MachinePrecision]), $MachinePrecision] / N[(N[(x + t), $MachinePrecision] + y), $MachinePrecision]), $MachinePrecision]
\begin{array}{l}
\\
\frac{\left(\left(x + y\right) \cdot z + \left(t + y\right) \cdot a\right) - y \cdot b}{\left(x + t\right) + y}
\end{array}
Sampling outcomes in binary64 precision:
Herbie found 18 alternatives:
| Alternative | Accuracy | Speedup |
|---|
(FPCore (x y z t a b) :precision binary64 (/ (- (+ (* (+ x y) z) (* (+ t y) a)) (* y b)) (+ (+ x t) y)))
double code(double x, double y, double z, double t, double a, double b) {
return ((((x + y) * z) + ((t + y) * a)) - (y * b)) / ((x + t) + y);
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t, a, b)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
real(8), intent (in) :: a
real(8), intent (in) :: b
code = ((((x + y) * z) + ((t + y) * a)) - (y * b)) / ((x + t) + y)
end function
public static double code(double x, double y, double z, double t, double a, double b) {
return ((((x + y) * z) + ((t + y) * a)) - (y * b)) / ((x + t) + y);
}
def code(x, y, z, t, a, b): return ((((x + y) * z) + ((t + y) * a)) - (y * b)) / ((x + t) + y)
function code(x, y, z, t, a, b) return Float64(Float64(Float64(Float64(Float64(x + y) * z) + Float64(Float64(t + y) * a)) - Float64(y * b)) / Float64(Float64(x + t) + y)) end
function tmp = code(x, y, z, t, a, b) tmp = ((((x + y) * z) + ((t + y) * a)) - (y * b)) / ((x + t) + y); end
code[x_, y_, z_, t_, a_, b_] := N[(N[(N[(N[(N[(x + y), $MachinePrecision] * z), $MachinePrecision] + N[(N[(t + y), $MachinePrecision] * a), $MachinePrecision]), $MachinePrecision] - N[(y * b), $MachinePrecision]), $MachinePrecision] / N[(N[(x + t), $MachinePrecision] + y), $MachinePrecision]), $MachinePrecision]
\begin{array}{l}
\\
\frac{\left(\left(x + y\right) \cdot z + \left(t + y\right) \cdot a\right) - y \cdot b}{\left(x + t\right) + y}
\end{array}
(FPCore (x y z t a b)
:precision binary64
(let* ((t_1 (+ (+ y x) t))
(t_2 (/ (+ y x) t_1))
(t_3 (/ y t_1))
(t_4 (* (- (+ (/ (+ t y) t_1) (* (/ z a) t_2)) (* (/ b a) t_3)) a)))
(if (<= a -1.45e-12)
t_4
(if (<= a -1e-200)
(fma t_2 z (/ (fma (+ t y) a (* (- b) y)) t_1))
(if (<= a 2e-48)
(- (/ (fma (+ t y) a (* (+ y x) z)) t_1) (* b t_3))
t_4)))))
double code(double x, double y, double z, double t, double a, double b) {
double t_1 = (y + x) + t;
double t_2 = (y + x) / t_1;
double t_3 = y / t_1;
double t_4 = ((((t + y) / t_1) + ((z / a) * t_2)) - ((b / a) * t_3)) * a;
double tmp;
if (a <= -1.45e-12) {
tmp = t_4;
} else if (a <= -1e-200) {
tmp = fma(t_2, z, (fma((t + y), a, (-b * y)) / t_1));
} else if (a <= 2e-48) {
tmp = (fma((t + y), a, ((y + x) * z)) / t_1) - (b * t_3);
} else {
tmp = t_4;
}
return tmp;
}
function code(x, y, z, t, a, b) t_1 = Float64(Float64(y + x) + t) t_2 = Float64(Float64(y + x) / t_1) t_3 = Float64(y / t_1) t_4 = Float64(Float64(Float64(Float64(Float64(t + y) / t_1) + Float64(Float64(z / a) * t_2)) - Float64(Float64(b / a) * t_3)) * a) tmp = 0.0 if (a <= -1.45e-12) tmp = t_4; elseif (a <= -1e-200) tmp = fma(t_2, z, Float64(fma(Float64(t + y), a, Float64(Float64(-b) * y)) / t_1)); elseif (a <= 2e-48) tmp = Float64(Float64(fma(Float64(t + y), a, Float64(Float64(y + x) * z)) / t_1) - Float64(b * t_3)); else tmp = t_4; end return tmp end
code[x_, y_, z_, t_, a_, b_] := Block[{t$95$1 = N[(N[(y + x), $MachinePrecision] + t), $MachinePrecision]}, Block[{t$95$2 = N[(N[(y + x), $MachinePrecision] / t$95$1), $MachinePrecision]}, Block[{t$95$3 = N[(y / t$95$1), $MachinePrecision]}, Block[{t$95$4 = N[(N[(N[(N[(N[(t + y), $MachinePrecision] / t$95$1), $MachinePrecision] + N[(N[(z / a), $MachinePrecision] * t$95$2), $MachinePrecision]), $MachinePrecision] - N[(N[(b / a), $MachinePrecision] * t$95$3), $MachinePrecision]), $MachinePrecision] * a), $MachinePrecision]}, If[LessEqual[a, -1.45e-12], t$95$4, If[LessEqual[a, -1e-200], N[(t$95$2 * z + N[(N[(N[(t + y), $MachinePrecision] * a + N[((-b) * y), $MachinePrecision]), $MachinePrecision] / t$95$1), $MachinePrecision]), $MachinePrecision], If[LessEqual[a, 2e-48], N[(N[(N[(N[(t + y), $MachinePrecision] * a + N[(N[(y + x), $MachinePrecision] * z), $MachinePrecision]), $MachinePrecision] / t$95$1), $MachinePrecision] - N[(b * t$95$3), $MachinePrecision]), $MachinePrecision], t$95$4]]]]]]]
\begin{array}{l}
\\
\begin{array}{l}
t_1 := \left(y + x\right) + t\\
t_2 := \frac{y + x}{t\_1}\\
t_3 := \frac{y}{t\_1}\\
t_4 := \left(\left(\frac{t + y}{t\_1} + \frac{z}{a} \cdot t\_2\right) - \frac{b}{a} \cdot t\_3\right) \cdot a\\
\mathbf{if}\;a \leq -1.45 \cdot 10^{-12}:\\
\;\;\;\;t\_4\\
\mathbf{elif}\;a \leq -1 \cdot 10^{-200}:\\
\;\;\;\;\mathsf{fma}\left(t\_2, z, \frac{\mathsf{fma}\left(t + y, a, \left(-b\right) \cdot y\right)}{t\_1}\right)\\
\mathbf{elif}\;a \leq 2 \cdot 10^{-48}:\\
\;\;\;\;\frac{\mathsf{fma}\left(t + y, a, \left(y + x\right) \cdot z\right)}{t\_1} - b \cdot t\_3\\
\mathbf{else}:\\
\;\;\;\;t\_4\\
\end{array}
\end{array}
if a < -1.4500000000000001e-12 or 1.9999999999999999e-48 < a Initial program 50.5%
Taylor expanded in a around inf
*-commutativeN/A
lower-*.f64N/A
Applied rewrites99.9%
if -1.4500000000000001e-12 < a < -9.9999999999999998e-201Initial program 80.7%
Applied rewrites95.1%
if -9.9999999999999998e-201 < a < 1.9999999999999999e-48Initial program 72.6%
Applied rewrites85.3%
Final simplification95.8%
(FPCore (x y z t a b)
:precision binary64
(let* ((t_1 (+ (+ y x) t))
(t_2 (/ (- (+ (* (+ x y) z) (* (+ t y) a)) (* y b)) (+ (+ x t) y))))
(if (or (<= t_2 (- INFINITY)) (not (<= t_2 1e+202)))
(- (+ a z) b)
(fma (/ (+ t y) t_1) a (/ (fma (+ y x) z (* (- b) y)) t_1)))))
double code(double x, double y, double z, double t, double a, double b) {
double t_1 = (y + x) + t;
double t_2 = ((((x + y) * z) + ((t + y) * a)) - (y * b)) / ((x + t) + y);
double tmp;
if ((t_2 <= -((double) INFINITY)) || !(t_2 <= 1e+202)) {
tmp = (a + z) - b;
} else {
tmp = fma(((t + y) / t_1), a, (fma((y + x), z, (-b * y)) / t_1));
}
return tmp;
}
function code(x, y, z, t, a, b) t_1 = Float64(Float64(y + x) + t) t_2 = Float64(Float64(Float64(Float64(Float64(x + y) * z) + Float64(Float64(t + y) * a)) - Float64(y * b)) / Float64(Float64(x + t) + y)) tmp = 0.0 if ((t_2 <= Float64(-Inf)) || !(t_2 <= 1e+202)) tmp = Float64(Float64(a + z) - b); else tmp = fma(Float64(Float64(t + y) / t_1), a, Float64(fma(Float64(y + x), z, Float64(Float64(-b) * y)) / t_1)); end return tmp end
code[x_, y_, z_, t_, a_, b_] := Block[{t$95$1 = N[(N[(y + x), $MachinePrecision] + t), $MachinePrecision]}, Block[{t$95$2 = N[(N[(N[(N[(N[(x + y), $MachinePrecision] * z), $MachinePrecision] + N[(N[(t + y), $MachinePrecision] * a), $MachinePrecision]), $MachinePrecision] - N[(y * b), $MachinePrecision]), $MachinePrecision] / N[(N[(x + t), $MachinePrecision] + y), $MachinePrecision]), $MachinePrecision]}, If[Or[LessEqual[t$95$2, (-Infinity)], N[Not[LessEqual[t$95$2, 1e+202]], $MachinePrecision]], N[(N[(a + z), $MachinePrecision] - b), $MachinePrecision], N[(N[(N[(t + y), $MachinePrecision] / t$95$1), $MachinePrecision] * a + N[(N[(N[(y + x), $MachinePrecision] * z + N[((-b) * y), $MachinePrecision]), $MachinePrecision] / t$95$1), $MachinePrecision]), $MachinePrecision]]]]
\begin{array}{l}
\\
\begin{array}{l}
t_1 := \left(y + x\right) + t\\
t_2 := \frac{\left(\left(x + y\right) \cdot z + \left(t + y\right) \cdot a\right) - y \cdot b}{\left(x + t\right) + y}\\
\mathbf{if}\;t\_2 \leq -\infty \lor \neg \left(t\_2 \leq 10^{+202}\right):\\
\;\;\;\;\left(a + z\right) - b\\
\mathbf{else}:\\
\;\;\;\;\mathsf{fma}\left(\frac{t + y}{t\_1}, a, \frac{\mathsf{fma}\left(y + x, z, \left(-b\right) \cdot y\right)}{t\_1}\right)\\
\end{array}
\end{array}
if (/.f64 (-.f64 (+.f64 (*.f64 (+.f64 x y) z) (*.f64 (+.f64 t y) a)) (*.f64 y b)) (+.f64 (+.f64 x t) y)) < -inf.0 or 9.999999999999999e201 < (/.f64 (-.f64 (+.f64 (*.f64 (+.f64 x y) z) (*.f64 (+.f64 t y) a)) (*.f64 y b)) (+.f64 (+.f64 x t) y)) Initial program 13.3%
Taylor expanded in y around inf
lower--.f64N/A
lower-+.f6475.4
Applied rewrites75.4%
if -inf.0 < (/.f64 (-.f64 (+.f64 (*.f64 (+.f64 x y) z) (*.f64 (+.f64 t y) a)) (*.f64 y b)) (+.f64 (+.f64 x t) y)) < 9.999999999999999e201Initial program 99.7%
Applied rewrites99.8%
Final simplification88.6%
(FPCore (x y z t a b)
:precision binary64
(let* ((t_1 (+ (+ x t) y))
(t_2 (/ (- (+ (* (+ x y) z) (* (+ t y) a)) (* y b)) t_1)))
(if (or (<= t_2 (- INFINITY)) (not (<= t_2 1e+202)))
(- (+ a z) b)
(/ (fma (+ y x) z (fma (+ t y) a (* (- b) y))) t_1))))
double code(double x, double y, double z, double t, double a, double b) {
double t_1 = (x + t) + y;
double t_2 = ((((x + y) * z) + ((t + y) * a)) - (y * b)) / t_1;
double tmp;
if ((t_2 <= -((double) INFINITY)) || !(t_2 <= 1e+202)) {
tmp = (a + z) - b;
} else {
tmp = fma((y + x), z, fma((t + y), a, (-b * y))) / t_1;
}
return tmp;
}
function code(x, y, z, t, a, b) t_1 = Float64(Float64(x + t) + y) t_2 = Float64(Float64(Float64(Float64(Float64(x + y) * z) + Float64(Float64(t + y) * a)) - Float64(y * b)) / t_1) tmp = 0.0 if ((t_2 <= Float64(-Inf)) || !(t_2 <= 1e+202)) tmp = Float64(Float64(a + z) - b); else tmp = Float64(fma(Float64(y + x), z, fma(Float64(t + y), a, Float64(Float64(-b) * y))) / t_1); end return tmp end
code[x_, y_, z_, t_, a_, b_] := Block[{t$95$1 = N[(N[(x + t), $MachinePrecision] + y), $MachinePrecision]}, Block[{t$95$2 = N[(N[(N[(N[(N[(x + y), $MachinePrecision] * z), $MachinePrecision] + N[(N[(t + y), $MachinePrecision] * a), $MachinePrecision]), $MachinePrecision] - N[(y * b), $MachinePrecision]), $MachinePrecision] / t$95$1), $MachinePrecision]}, If[Or[LessEqual[t$95$2, (-Infinity)], N[Not[LessEqual[t$95$2, 1e+202]], $MachinePrecision]], N[(N[(a + z), $MachinePrecision] - b), $MachinePrecision], N[(N[(N[(y + x), $MachinePrecision] * z + N[(N[(t + y), $MachinePrecision] * a + N[((-b) * y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] / t$95$1), $MachinePrecision]]]]
\begin{array}{l}
\\
\begin{array}{l}
t_1 := \left(x + t\right) + y\\
t_2 := \frac{\left(\left(x + y\right) \cdot z + \left(t + y\right) \cdot a\right) - y \cdot b}{t\_1}\\
\mathbf{if}\;t\_2 \leq -\infty \lor \neg \left(t\_2 \leq 10^{+202}\right):\\
\;\;\;\;\left(a + z\right) - b\\
\mathbf{else}:\\
\;\;\;\;\frac{\mathsf{fma}\left(y + x, z, \mathsf{fma}\left(t + y, a, \left(-b\right) \cdot y\right)\right)}{t\_1}\\
\end{array}
\end{array}
if (/.f64 (-.f64 (+.f64 (*.f64 (+.f64 x y) z) (*.f64 (+.f64 t y) a)) (*.f64 y b)) (+.f64 (+.f64 x t) y)) < -inf.0 or 9.999999999999999e201 < (/.f64 (-.f64 (+.f64 (*.f64 (+.f64 x y) z) (*.f64 (+.f64 t y) a)) (*.f64 y b)) (+.f64 (+.f64 x t) y)) Initial program 13.3%
Taylor expanded in y around inf
lower--.f64N/A
lower-+.f6475.4
Applied rewrites75.4%
if -inf.0 < (/.f64 (-.f64 (+.f64 (*.f64 (+.f64 x y) z) (*.f64 (+.f64 t y) a)) (*.f64 y b)) (+.f64 (+.f64 x t) y)) < 9.999999999999999e201Initial program 99.7%
lift--.f64N/A
lift-+.f64N/A
lift-+.f64N/A
lift-*.f64N/A
lift-+.f64N/A
lift-*.f64N/A
associate--l+N/A
*-commutativeN/A
lift-*.f64N/A
*-commutativeN/A
lower-fma.f64N/A
+-commutativeN/A
lower-+.f64N/A
fp-cancel-sub-sign-invN/A
*-commutativeN/A
mul-1-negN/A
associate-*r*N/A
mul-1-negN/A
lower-fma.f64N/A
lift-+.f64N/A
mul-1-negN/A
associate-*r*N/A
lower-*.f64N/A
mul-1-negN/A
lower-neg.f6499.7
Applied rewrites99.7%
Final simplification88.6%
(FPCore (x y z t a b)
:precision binary64
(let* ((t_1 (+ (+ x t) y))
(t_2 (/ (- (+ (* (+ x y) z) (* (+ t y) a)) (* y b)) t_1)))
(if (or (<= t_2 -2e+180) (not (<= t_2 1e+202)))
(- (+ a z) b)
(/ (fma (+ t y) a (* (+ y x) z)) t_1))))
double code(double x, double y, double z, double t, double a, double b) {
double t_1 = (x + t) + y;
double t_2 = ((((x + y) * z) + ((t + y) * a)) - (y * b)) / t_1;
double tmp;
if ((t_2 <= -2e+180) || !(t_2 <= 1e+202)) {
tmp = (a + z) - b;
} else {
tmp = fma((t + y), a, ((y + x) * z)) / t_1;
}
return tmp;
}
function code(x, y, z, t, a, b) t_1 = Float64(Float64(x + t) + y) t_2 = Float64(Float64(Float64(Float64(Float64(x + y) * z) + Float64(Float64(t + y) * a)) - Float64(y * b)) / t_1) tmp = 0.0 if ((t_2 <= -2e+180) || !(t_2 <= 1e+202)) tmp = Float64(Float64(a + z) - b); else tmp = Float64(fma(Float64(t + y), a, Float64(Float64(y + x) * z)) / t_1); end return tmp end
code[x_, y_, z_, t_, a_, b_] := Block[{t$95$1 = N[(N[(x + t), $MachinePrecision] + y), $MachinePrecision]}, Block[{t$95$2 = N[(N[(N[(N[(N[(x + y), $MachinePrecision] * z), $MachinePrecision] + N[(N[(t + y), $MachinePrecision] * a), $MachinePrecision]), $MachinePrecision] - N[(y * b), $MachinePrecision]), $MachinePrecision] / t$95$1), $MachinePrecision]}, If[Or[LessEqual[t$95$2, -2e+180], N[Not[LessEqual[t$95$2, 1e+202]], $MachinePrecision]], N[(N[(a + z), $MachinePrecision] - b), $MachinePrecision], N[(N[(N[(t + y), $MachinePrecision] * a + N[(N[(y + x), $MachinePrecision] * z), $MachinePrecision]), $MachinePrecision] / t$95$1), $MachinePrecision]]]]
\begin{array}{l}
\\
\begin{array}{l}
t_1 := \left(x + t\right) + y\\
t_2 := \frac{\left(\left(x + y\right) \cdot z + \left(t + y\right) \cdot a\right) - y \cdot b}{t\_1}\\
\mathbf{if}\;t\_2 \leq -2 \cdot 10^{+180} \lor \neg \left(t\_2 \leq 10^{+202}\right):\\
\;\;\;\;\left(a + z\right) - b\\
\mathbf{else}:\\
\;\;\;\;\frac{\mathsf{fma}\left(t + y, a, \left(y + x\right) \cdot z\right)}{t\_1}\\
\end{array}
\end{array}
if (/.f64 (-.f64 (+.f64 (*.f64 (+.f64 x y) z) (*.f64 (+.f64 t y) a)) (*.f64 y b)) (+.f64 (+.f64 x t) y)) < -2e180 or 9.999999999999999e201 < (/.f64 (-.f64 (+.f64 (*.f64 (+.f64 x y) z) (*.f64 (+.f64 t y) a)) (*.f64 y b)) (+.f64 (+.f64 x t) y)) Initial program 21.4%
Taylor expanded in y around inf
lower--.f64N/A
lower-+.f6474.0
Applied rewrites74.0%
if -2e180 < (/.f64 (-.f64 (+.f64 (*.f64 (+.f64 x y) z) (*.f64 (+.f64 t y) a)) (*.f64 y b)) (+.f64 (+.f64 x t) y)) < 9.999999999999999e201Initial program 99.7%
Taylor expanded in b around 0
*-commutativeN/A
lower-fma.f64N/A
lift-+.f64N/A
*-commutativeN/A
lift-*.f64N/A
+-commutativeN/A
lower-+.f6478.6
Applied rewrites78.6%
Final simplification76.3%
(FPCore (x y z t a b)
:precision binary64
(let* ((t_1 (/ (- (+ (* (+ x y) z) (* (+ t y) a)) (* y b)) (+ (+ x t) y))))
(if (or (<= t_1 -2e+180) (not (<= t_1 1e+202)))
(- (+ a z) b)
(/ (fma a t (* z x)) (+ t x)))))
double code(double x, double y, double z, double t, double a, double b) {
double t_1 = ((((x + y) * z) + ((t + y) * a)) - (y * b)) / ((x + t) + y);
double tmp;
if ((t_1 <= -2e+180) || !(t_1 <= 1e+202)) {
tmp = (a + z) - b;
} else {
tmp = fma(a, t, (z * x)) / (t + x);
}
return tmp;
}
function code(x, y, z, t, a, b) t_1 = Float64(Float64(Float64(Float64(Float64(x + y) * z) + Float64(Float64(t + y) * a)) - Float64(y * b)) / Float64(Float64(x + t) + y)) tmp = 0.0 if ((t_1 <= -2e+180) || !(t_1 <= 1e+202)) tmp = Float64(Float64(a + z) - b); else tmp = Float64(fma(a, t, Float64(z * x)) / Float64(t + x)); end return tmp end
code[x_, y_, z_, t_, a_, b_] := Block[{t$95$1 = N[(N[(N[(N[(N[(x + y), $MachinePrecision] * z), $MachinePrecision] + N[(N[(t + y), $MachinePrecision] * a), $MachinePrecision]), $MachinePrecision] - N[(y * b), $MachinePrecision]), $MachinePrecision] / N[(N[(x + t), $MachinePrecision] + y), $MachinePrecision]), $MachinePrecision]}, If[Or[LessEqual[t$95$1, -2e+180], N[Not[LessEqual[t$95$1, 1e+202]], $MachinePrecision]], N[(N[(a + z), $MachinePrecision] - b), $MachinePrecision], N[(N[(a * t + N[(z * x), $MachinePrecision]), $MachinePrecision] / N[(t + x), $MachinePrecision]), $MachinePrecision]]]
\begin{array}{l}
\\
\begin{array}{l}
t_1 := \frac{\left(\left(x + y\right) \cdot z + \left(t + y\right) \cdot a\right) - y \cdot b}{\left(x + t\right) + y}\\
\mathbf{if}\;t\_1 \leq -2 \cdot 10^{+180} \lor \neg \left(t\_1 \leq 10^{+202}\right):\\
\;\;\;\;\left(a + z\right) - b\\
\mathbf{else}:\\
\;\;\;\;\frac{\mathsf{fma}\left(a, t, z \cdot x\right)}{t + x}\\
\end{array}
\end{array}
if (/.f64 (-.f64 (+.f64 (*.f64 (+.f64 x y) z) (*.f64 (+.f64 t y) a)) (*.f64 y b)) (+.f64 (+.f64 x t) y)) < -2e180 or 9.999999999999999e201 < (/.f64 (-.f64 (+.f64 (*.f64 (+.f64 x y) z) (*.f64 (+.f64 t y) a)) (*.f64 y b)) (+.f64 (+.f64 x t) y)) Initial program 21.4%
Taylor expanded in y around inf
lower--.f64N/A
lower-+.f6474.0
Applied rewrites74.0%
if -2e180 < (/.f64 (-.f64 (+.f64 (*.f64 (+.f64 x y) z) (*.f64 (+.f64 t y) a)) (*.f64 y b)) (+.f64 (+.f64 x t) y)) < 9.999999999999999e201Initial program 99.7%
Taylor expanded in y around 0
lower-/.f64N/A
lower-fma.f64N/A
*-commutativeN/A
lower-*.f64N/A
lower-+.f6461.5
Applied rewrites61.5%
Final simplification67.8%
(FPCore (x y z t a b)
:precision binary64
(let* ((t_1 (+ (+ y x) t)) (t_2 (/ (+ y x) t_1)) (t_3 (/ y t_1)))
(if (or (<= a -9e-89) (not (<= a 6e-88)))
(* (- (+ (/ (+ t y) t_1) (* (/ z a) t_2)) (* (/ b a) t_3)) a)
(* (- (+ t_2 (/ (/ (* (+ t y) a) z) t_1)) (* (/ b z) t_3)) z))))
double code(double x, double y, double z, double t, double a, double b) {
double t_1 = (y + x) + t;
double t_2 = (y + x) / t_1;
double t_3 = y / t_1;
double tmp;
if ((a <= -9e-89) || !(a <= 6e-88)) {
tmp = ((((t + y) / t_1) + ((z / a) * t_2)) - ((b / a) * t_3)) * a;
} else {
tmp = ((t_2 + ((((t + y) * a) / z) / t_1)) - ((b / z) * t_3)) * z;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t, a, b)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
real(8), intent (in) :: a
real(8), intent (in) :: b
real(8) :: t_1
real(8) :: t_2
real(8) :: t_3
real(8) :: tmp
t_1 = (y + x) + t
t_2 = (y + x) / t_1
t_3 = y / t_1
if ((a <= (-9d-89)) .or. (.not. (a <= 6d-88))) then
tmp = ((((t + y) / t_1) + ((z / a) * t_2)) - ((b / a) * t_3)) * a
else
tmp = ((t_2 + ((((t + y) * a) / z) / t_1)) - ((b / z) * t_3)) * z
end if
code = tmp
end function
public static double code(double x, double y, double z, double t, double a, double b) {
double t_1 = (y + x) + t;
double t_2 = (y + x) / t_1;
double t_3 = y / t_1;
double tmp;
if ((a <= -9e-89) || !(a <= 6e-88)) {
tmp = ((((t + y) / t_1) + ((z / a) * t_2)) - ((b / a) * t_3)) * a;
} else {
tmp = ((t_2 + ((((t + y) * a) / z) / t_1)) - ((b / z) * t_3)) * z;
}
return tmp;
}
def code(x, y, z, t, a, b): t_1 = (y + x) + t t_2 = (y + x) / t_1 t_3 = y / t_1 tmp = 0 if (a <= -9e-89) or not (a <= 6e-88): tmp = ((((t + y) / t_1) + ((z / a) * t_2)) - ((b / a) * t_3)) * a else: tmp = ((t_2 + ((((t + y) * a) / z) / t_1)) - ((b / z) * t_3)) * z return tmp
function code(x, y, z, t, a, b) t_1 = Float64(Float64(y + x) + t) t_2 = Float64(Float64(y + x) / t_1) t_3 = Float64(y / t_1) tmp = 0.0 if ((a <= -9e-89) || !(a <= 6e-88)) tmp = Float64(Float64(Float64(Float64(Float64(t + y) / t_1) + Float64(Float64(z / a) * t_2)) - Float64(Float64(b / a) * t_3)) * a); else tmp = Float64(Float64(Float64(t_2 + Float64(Float64(Float64(Float64(t + y) * a) / z) / t_1)) - Float64(Float64(b / z) * t_3)) * z); end return tmp end
function tmp_2 = code(x, y, z, t, a, b) t_1 = (y + x) + t; t_2 = (y + x) / t_1; t_3 = y / t_1; tmp = 0.0; if ((a <= -9e-89) || ~((a <= 6e-88))) tmp = ((((t + y) / t_1) + ((z / a) * t_2)) - ((b / a) * t_3)) * a; else tmp = ((t_2 + ((((t + y) * a) / z) / t_1)) - ((b / z) * t_3)) * z; end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_] := Block[{t$95$1 = N[(N[(y + x), $MachinePrecision] + t), $MachinePrecision]}, Block[{t$95$2 = N[(N[(y + x), $MachinePrecision] / t$95$1), $MachinePrecision]}, Block[{t$95$3 = N[(y / t$95$1), $MachinePrecision]}, If[Or[LessEqual[a, -9e-89], N[Not[LessEqual[a, 6e-88]], $MachinePrecision]], N[(N[(N[(N[(N[(t + y), $MachinePrecision] / t$95$1), $MachinePrecision] + N[(N[(z / a), $MachinePrecision] * t$95$2), $MachinePrecision]), $MachinePrecision] - N[(N[(b / a), $MachinePrecision] * t$95$3), $MachinePrecision]), $MachinePrecision] * a), $MachinePrecision], N[(N[(N[(t$95$2 + N[(N[(N[(N[(t + y), $MachinePrecision] * a), $MachinePrecision] / z), $MachinePrecision] / t$95$1), $MachinePrecision]), $MachinePrecision] - N[(N[(b / z), $MachinePrecision] * t$95$3), $MachinePrecision]), $MachinePrecision] * z), $MachinePrecision]]]]]
\begin{array}{l}
\\
\begin{array}{l}
t_1 := \left(y + x\right) + t\\
t_2 := \frac{y + x}{t\_1}\\
t_3 := \frac{y}{t\_1}\\
\mathbf{if}\;a \leq -9 \cdot 10^{-89} \lor \neg \left(a \leq 6 \cdot 10^{-88}\right):\\
\;\;\;\;\left(\left(\frac{t + y}{t\_1} + \frac{z}{a} \cdot t\_2\right) - \frac{b}{a} \cdot t\_3\right) \cdot a\\
\mathbf{else}:\\
\;\;\;\;\left(\left(t\_2 + \frac{\frac{\left(t + y\right) \cdot a}{z}}{t\_1}\right) - \frac{b}{z} \cdot t\_3\right) \cdot z\\
\end{array}
\end{array}
if a < -8.9999999999999998e-89 or 5.9999999999999999e-88 < a Initial program 55.5%
Taylor expanded in a around inf
*-commutativeN/A
lower-*.f64N/A
Applied rewrites97.8%
if -8.9999999999999998e-89 < a < 5.9999999999999999e-88Initial program 71.3%
Taylor expanded in z around inf
*-commutativeN/A
lower-*.f64N/A
Applied rewrites88.4%
Final simplification95.0%
(FPCore (x y z t a b)
:precision binary64
(let* ((t_1 (- (+ a z) b)))
(if (<= y -1.3e+93)
t_1
(if (<= y -8.2e-115)
(- a (* b (/ y (+ (+ y x) t))))
(if (<= y 1.72e-59)
(/ (fma a t (* z x)) (+ t x))
(if (<= y 2.3e+24) (/ (* t_1 y) (+ (+ x t) y)) t_1))))))
double code(double x, double y, double z, double t, double a, double b) {
double t_1 = (a + z) - b;
double tmp;
if (y <= -1.3e+93) {
tmp = t_1;
} else if (y <= -8.2e-115) {
tmp = a - (b * (y / ((y + x) + t)));
} else if (y <= 1.72e-59) {
tmp = fma(a, t, (z * x)) / (t + x);
} else if (y <= 2.3e+24) {
tmp = (t_1 * y) / ((x + t) + y);
} else {
tmp = t_1;
}
return tmp;
}
function code(x, y, z, t, a, b) t_1 = Float64(Float64(a + z) - b) tmp = 0.0 if (y <= -1.3e+93) tmp = t_1; elseif (y <= -8.2e-115) tmp = Float64(a - Float64(b * Float64(y / Float64(Float64(y + x) + t)))); elseif (y <= 1.72e-59) tmp = Float64(fma(a, t, Float64(z * x)) / Float64(t + x)); elseif (y <= 2.3e+24) tmp = Float64(Float64(t_1 * y) / Float64(Float64(x + t) + y)); else tmp = t_1; end return tmp end
code[x_, y_, z_, t_, a_, b_] := Block[{t$95$1 = N[(N[(a + z), $MachinePrecision] - b), $MachinePrecision]}, If[LessEqual[y, -1.3e+93], t$95$1, If[LessEqual[y, -8.2e-115], N[(a - N[(b * N[(y / N[(N[(y + x), $MachinePrecision] + t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], If[LessEqual[y, 1.72e-59], N[(N[(a * t + N[(z * x), $MachinePrecision]), $MachinePrecision] / N[(t + x), $MachinePrecision]), $MachinePrecision], If[LessEqual[y, 2.3e+24], N[(N[(t$95$1 * y), $MachinePrecision] / N[(N[(x + t), $MachinePrecision] + y), $MachinePrecision]), $MachinePrecision], t$95$1]]]]]
\begin{array}{l}
\\
\begin{array}{l}
t_1 := \left(a + z\right) - b\\
\mathbf{if}\;y \leq -1.3 \cdot 10^{+93}:\\
\;\;\;\;t\_1\\
\mathbf{elif}\;y \leq -8.2 \cdot 10^{-115}:\\
\;\;\;\;a - b \cdot \frac{y}{\left(y + x\right) + t}\\
\mathbf{elif}\;y \leq 1.72 \cdot 10^{-59}:\\
\;\;\;\;\frac{\mathsf{fma}\left(a, t, z \cdot x\right)}{t + x}\\
\mathbf{elif}\;y \leq 2.3 \cdot 10^{+24}:\\
\;\;\;\;\frac{t\_1 \cdot y}{\left(x + t\right) + y}\\
\mathbf{else}:\\
\;\;\;\;t\_1\\
\end{array}
\end{array}
if y < -1.3e93 or 2.2999999999999999e24 < y Initial program 35.8%
Taylor expanded in y around inf
lower--.f64N/A
lower-+.f6481.4
Applied rewrites81.4%
if -1.3e93 < y < -8.1999999999999993e-115Initial program 72.6%
Applied rewrites72.8%
Taylor expanded in t around inf
Applied rewrites63.4%
if -8.1999999999999993e-115 < y < 1.72e-59Initial program 78.3%
Taylor expanded in y around 0
lower-/.f64N/A
lower-fma.f64N/A
*-commutativeN/A
lower-*.f64N/A
lower-+.f6470.9
Applied rewrites70.9%
if 1.72e-59 < y < 2.2999999999999999e24Initial program 74.8%
Taylor expanded in y around inf
*-commutativeN/A
lower-*.f64N/A
lower--.f64N/A
lower-+.f6454.2
Applied rewrites54.2%
Final simplification72.4%
(FPCore (x y z t a b)
:precision binary64
(let* ((t_1 (- (+ a z) b)))
(if (<= y -1.3e+93)
t_1
(if (<= y -8.2e-115)
(- a (* b (/ y (+ (+ y x) t))))
(if (<= y 1.45e+18) (/ (fma a t (* z x)) (+ t x)) t_1)))))
double code(double x, double y, double z, double t, double a, double b) {
double t_1 = (a + z) - b;
double tmp;
if (y <= -1.3e+93) {
tmp = t_1;
} else if (y <= -8.2e-115) {
tmp = a - (b * (y / ((y + x) + t)));
} else if (y <= 1.45e+18) {
tmp = fma(a, t, (z * x)) / (t + x);
} else {
tmp = t_1;
}
return tmp;
}
function code(x, y, z, t, a, b) t_1 = Float64(Float64(a + z) - b) tmp = 0.0 if (y <= -1.3e+93) tmp = t_1; elseif (y <= -8.2e-115) tmp = Float64(a - Float64(b * Float64(y / Float64(Float64(y + x) + t)))); elseif (y <= 1.45e+18) tmp = Float64(fma(a, t, Float64(z * x)) / Float64(t + x)); else tmp = t_1; end return tmp end
code[x_, y_, z_, t_, a_, b_] := Block[{t$95$1 = N[(N[(a + z), $MachinePrecision] - b), $MachinePrecision]}, If[LessEqual[y, -1.3e+93], t$95$1, If[LessEqual[y, -8.2e-115], N[(a - N[(b * N[(y / N[(N[(y + x), $MachinePrecision] + t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], If[LessEqual[y, 1.45e+18], N[(N[(a * t + N[(z * x), $MachinePrecision]), $MachinePrecision] / N[(t + x), $MachinePrecision]), $MachinePrecision], t$95$1]]]]
\begin{array}{l}
\\
\begin{array}{l}
t_1 := \left(a + z\right) - b\\
\mathbf{if}\;y \leq -1.3 \cdot 10^{+93}:\\
\;\;\;\;t\_1\\
\mathbf{elif}\;y \leq -8.2 \cdot 10^{-115}:\\
\;\;\;\;a - b \cdot \frac{y}{\left(y + x\right) + t}\\
\mathbf{elif}\;y \leq 1.45 \cdot 10^{+18}:\\
\;\;\;\;\frac{\mathsf{fma}\left(a, t, z \cdot x\right)}{t + x}\\
\mathbf{else}:\\
\;\;\;\;t\_1\\
\end{array}
\end{array}
if y < -1.3e93 or 1.45e18 < y Initial program 36.7%
Taylor expanded in y around inf
lower--.f64N/A
lower-+.f6480.1
Applied rewrites80.1%
if -1.3e93 < y < -8.1999999999999993e-115Initial program 72.6%
Applied rewrites72.8%
Taylor expanded in t around inf
Applied rewrites63.4%
if -8.1999999999999993e-115 < y < 1.45e18Initial program 78.0%
Taylor expanded in y around 0
lower-/.f64N/A
lower-fma.f64N/A
*-commutativeN/A
lower-*.f64N/A
lower-+.f6464.3
Applied rewrites64.3%
Final simplification70.6%
(FPCore (x y z t a b)
:precision binary64
(let* ((t_1 (- (+ a z) b)))
(if (<= y -3.6e+67)
t_1
(if (<= y 9e-146)
(* (/ (+ t y) (+ t (+ x y))) a)
(if (<= y 1.66e+19) (fma (/ (* b y) x) -1.0 z) t_1)))))
double code(double x, double y, double z, double t, double a, double b) {
double t_1 = (a + z) - b;
double tmp;
if (y <= -3.6e+67) {
tmp = t_1;
} else if (y <= 9e-146) {
tmp = ((t + y) / (t + (x + y))) * a;
} else if (y <= 1.66e+19) {
tmp = fma(((b * y) / x), -1.0, z);
} else {
tmp = t_1;
}
return tmp;
}
function code(x, y, z, t, a, b) t_1 = Float64(Float64(a + z) - b) tmp = 0.0 if (y <= -3.6e+67) tmp = t_1; elseif (y <= 9e-146) tmp = Float64(Float64(Float64(t + y) / Float64(t + Float64(x + y))) * a); elseif (y <= 1.66e+19) tmp = fma(Float64(Float64(b * y) / x), -1.0, z); else tmp = t_1; end return tmp end
code[x_, y_, z_, t_, a_, b_] := Block[{t$95$1 = N[(N[(a + z), $MachinePrecision] - b), $MachinePrecision]}, If[LessEqual[y, -3.6e+67], t$95$1, If[LessEqual[y, 9e-146], N[(N[(N[(t + y), $MachinePrecision] / N[(t + N[(x + y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] * a), $MachinePrecision], If[LessEqual[y, 1.66e+19], N[(N[(N[(b * y), $MachinePrecision] / x), $MachinePrecision] * -1.0 + z), $MachinePrecision], t$95$1]]]]
\begin{array}{l}
\\
\begin{array}{l}
t_1 := \left(a + z\right) - b\\
\mathbf{if}\;y \leq -3.6 \cdot 10^{+67}:\\
\;\;\;\;t\_1\\
\mathbf{elif}\;y \leq 9 \cdot 10^{-146}:\\
\;\;\;\;\frac{t + y}{t + \left(x + y\right)} \cdot a\\
\mathbf{elif}\;y \leq 1.66 \cdot 10^{+19}:\\
\;\;\;\;\mathsf{fma}\left(\frac{b \cdot y}{x}, -1, z\right)\\
\mathbf{else}:\\
\;\;\;\;t\_1\\
\end{array}
\end{array}
if y < -3.5999999999999999e67 or 1.66e19 < y Initial program 38.4%
Taylor expanded in y around inf
lower--.f64N/A
lower-+.f6480.3
Applied rewrites80.3%
if -3.5999999999999999e67 < y < 9.0000000000000001e-146Initial program 74.6%
Taylor expanded in a around inf
*-commutativeN/A
lower-*.f64N/A
Applied rewrites85.0%
Taylor expanded in a around inf
div-add-revN/A
lower-/.f64N/A
lift-+.f64N/A
lower-+.f64N/A
lower-+.f6451.6
Applied rewrites51.6%
if 9.0000000000000001e-146 < y < 1.66e19Initial program 84.2%
Taylor expanded in x around -inf
+-commutativeN/A
*-commutativeN/A
lower-fma.f64N/A
Applied rewrites54.1%
Taylor expanded in b around inf
lift-*.f6451.5
Applied rewrites51.5%
Final simplification63.9%
(FPCore (x y z t a b) :precision binary64 (if (or (<= x -5e+78) (not (<= x 1.28e+213))) (+ z (* t (/ (- a z) x))) (- (+ a z) b)))
double code(double x, double y, double z, double t, double a, double b) {
double tmp;
if ((x <= -5e+78) || !(x <= 1.28e+213)) {
tmp = z + (t * ((a - z) / x));
} else {
tmp = (a + z) - b;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t, a, b)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
real(8), intent (in) :: a
real(8), intent (in) :: b
real(8) :: tmp
if ((x <= (-5d+78)) .or. (.not. (x <= 1.28d+213))) then
tmp = z + (t * ((a - z) / x))
else
tmp = (a + z) - b
end if
code = tmp
end function
public static double code(double x, double y, double z, double t, double a, double b) {
double tmp;
if ((x <= -5e+78) || !(x <= 1.28e+213)) {
tmp = z + (t * ((a - z) / x));
} else {
tmp = (a + z) - b;
}
return tmp;
}
def code(x, y, z, t, a, b): tmp = 0 if (x <= -5e+78) or not (x <= 1.28e+213): tmp = z + (t * ((a - z) / x)) else: tmp = (a + z) - b return tmp
function code(x, y, z, t, a, b) tmp = 0.0 if ((x <= -5e+78) || !(x <= 1.28e+213)) tmp = Float64(z + Float64(t * Float64(Float64(a - z) / x))); else tmp = Float64(Float64(a + z) - b); end return tmp end
function tmp_2 = code(x, y, z, t, a, b) tmp = 0.0; if ((x <= -5e+78) || ~((x <= 1.28e+213))) tmp = z + (t * ((a - z) / x)); else tmp = (a + z) - b; end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_] := If[Or[LessEqual[x, -5e+78], N[Not[LessEqual[x, 1.28e+213]], $MachinePrecision]], N[(z + N[(t * N[(N[(a - z), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[(N[(a + z), $MachinePrecision] - b), $MachinePrecision]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;x \leq -5 \cdot 10^{+78} \lor \neg \left(x \leq 1.28 \cdot 10^{+213}\right):\\
\;\;\;\;z + t \cdot \frac{a - z}{x}\\
\mathbf{else}:\\
\;\;\;\;\left(a + z\right) - b\\
\end{array}
\end{array}
if x < -4.99999999999999984e78 or 1.2799999999999999e213 < x Initial program 58.1%
Taylor expanded in y around 0
lower-/.f64N/A
lower-fma.f64N/A
*-commutativeN/A
lower-*.f64N/A
lower-+.f6445.5
Applied rewrites45.5%
Taylor expanded in t around 0
lower-+.f64N/A
lower-*.f64N/A
sub-divN/A
lower-/.f64N/A
lower--.f6461.4
Applied rewrites61.4%
if -4.99999999999999984e78 < x < 1.2799999999999999e213Initial program 60.9%
Taylor expanded in y around inf
lower--.f64N/A
lower-+.f6461.6
Applied rewrites61.6%
Final simplification61.6%
(FPCore (x y z t a b) :precision binary64 (if (or (<= t -1.35e+70) (not (<= t 2.6e+118))) (+ a (* x (/ (- z a) t))) (- (+ a z) b)))
double code(double x, double y, double z, double t, double a, double b) {
double tmp;
if ((t <= -1.35e+70) || !(t <= 2.6e+118)) {
tmp = a + (x * ((z - a) / t));
} else {
tmp = (a + z) - b;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t, a, b)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
real(8), intent (in) :: a
real(8), intent (in) :: b
real(8) :: tmp
if ((t <= (-1.35d+70)) .or. (.not. (t <= 2.6d+118))) then
tmp = a + (x * ((z - a) / t))
else
tmp = (a + z) - b
end if
code = tmp
end function
public static double code(double x, double y, double z, double t, double a, double b) {
double tmp;
if ((t <= -1.35e+70) || !(t <= 2.6e+118)) {
tmp = a + (x * ((z - a) / t));
} else {
tmp = (a + z) - b;
}
return tmp;
}
def code(x, y, z, t, a, b): tmp = 0 if (t <= -1.35e+70) or not (t <= 2.6e+118): tmp = a + (x * ((z - a) / t)) else: tmp = (a + z) - b return tmp
function code(x, y, z, t, a, b) tmp = 0.0 if ((t <= -1.35e+70) || !(t <= 2.6e+118)) tmp = Float64(a + Float64(x * Float64(Float64(z - a) / t))); else tmp = Float64(Float64(a + z) - b); end return tmp end
function tmp_2 = code(x, y, z, t, a, b) tmp = 0.0; if ((t <= -1.35e+70) || ~((t <= 2.6e+118))) tmp = a + (x * ((z - a) / t)); else tmp = (a + z) - b; end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_] := If[Or[LessEqual[t, -1.35e+70], N[Not[LessEqual[t, 2.6e+118]], $MachinePrecision]], N[(a + N[(x * N[(N[(z - a), $MachinePrecision] / t), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[(N[(a + z), $MachinePrecision] - b), $MachinePrecision]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;t \leq -1.35 \cdot 10^{+70} \lor \neg \left(t \leq 2.6 \cdot 10^{+118}\right):\\
\;\;\;\;a + x \cdot \frac{z - a}{t}\\
\mathbf{else}:\\
\;\;\;\;\left(a + z\right) - b\\
\end{array}
\end{array}
if t < -1.35e70 or 2.60000000000000016e118 < t Initial program 50.3%
Taylor expanded in y around 0
lower-/.f64N/A
lower-fma.f64N/A
*-commutativeN/A
lower-*.f64N/A
lower-+.f6441.3
Applied rewrites41.3%
Taylor expanded in x around 0
lower-+.f64N/A
lower-*.f64N/A
sub-divN/A
lower-/.f64N/A
lower--.f6460.3
Applied rewrites60.3%
if -1.35e70 < t < 2.60000000000000016e118Initial program 65.9%
Taylor expanded in y around inf
lower--.f64N/A
lower-+.f6461.6
Applied rewrites61.6%
Final simplification61.1%
(FPCore (x y z t a b) :precision binary64 (if (<= x -5e+103) (* z (/ (+ x y) (+ t (+ x y)))) (if (<= x 1.28e+213) (- (+ a z) b) (+ z (* t (/ (- a z) x))))))
double code(double x, double y, double z, double t, double a, double b) {
double tmp;
if (x <= -5e+103) {
tmp = z * ((x + y) / (t + (x + y)));
} else if (x <= 1.28e+213) {
tmp = (a + z) - b;
} else {
tmp = z + (t * ((a - z) / x));
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t, a, b)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
real(8), intent (in) :: a
real(8), intent (in) :: b
real(8) :: tmp
if (x <= (-5d+103)) then
tmp = z * ((x + y) / (t + (x + y)))
else if (x <= 1.28d+213) then
tmp = (a + z) - b
else
tmp = z + (t * ((a - z) / x))
end if
code = tmp
end function
public static double code(double x, double y, double z, double t, double a, double b) {
double tmp;
if (x <= -5e+103) {
tmp = z * ((x + y) / (t + (x + y)));
} else if (x <= 1.28e+213) {
tmp = (a + z) - b;
} else {
tmp = z + (t * ((a - z) / x));
}
return tmp;
}
def code(x, y, z, t, a, b): tmp = 0 if x <= -5e+103: tmp = z * ((x + y) / (t + (x + y))) elif x <= 1.28e+213: tmp = (a + z) - b else: tmp = z + (t * ((a - z) / x)) return tmp
function code(x, y, z, t, a, b) tmp = 0.0 if (x <= -5e+103) tmp = Float64(z * Float64(Float64(x + y) / Float64(t + Float64(x + y)))); elseif (x <= 1.28e+213) tmp = Float64(Float64(a + z) - b); else tmp = Float64(z + Float64(t * Float64(Float64(a - z) / x))); end return tmp end
function tmp_2 = code(x, y, z, t, a, b) tmp = 0.0; if (x <= -5e+103) tmp = z * ((x + y) / (t + (x + y))); elseif (x <= 1.28e+213) tmp = (a + z) - b; else tmp = z + (t * ((a - z) / x)); end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_] := If[LessEqual[x, -5e+103], N[(z * N[(N[(x + y), $MachinePrecision] / N[(t + N[(x + y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision], If[LessEqual[x, 1.28e+213], N[(N[(a + z), $MachinePrecision] - b), $MachinePrecision], N[(z + N[(t * N[(N[(a - z), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;x \leq -5 \cdot 10^{+103}:\\
\;\;\;\;z \cdot \frac{x + y}{t + \left(x + y\right)}\\
\mathbf{elif}\;x \leq 1.28 \cdot 10^{+213}:\\
\;\;\;\;\left(a + z\right) - b\\
\mathbf{else}:\\
\;\;\;\;z + t \cdot \frac{a - z}{x}\\
\end{array}
\end{array}
if x < -5e103Initial program 75.6%
Applied rewrites78.3%
Taylor expanded in z around inf
lower-*.f64N/A
div-add-revN/A
lower-/.f64N/A
lower-+.f64N/A
lower-+.f64N/A
lower-+.f6460.2
Applied rewrites60.2%
if -5e103 < x < 1.2799999999999999e213Initial program 61.4%
Taylor expanded in y around inf
lower--.f64N/A
lower-+.f6461.6
Applied rewrites61.6%
if 1.2799999999999999e213 < x Initial program 21.9%
Taylor expanded in y around 0
lower-/.f64N/A
lower-fma.f64N/A
*-commutativeN/A
lower-*.f64N/A
lower-+.f6415.8
Applied rewrites15.8%
Taylor expanded in t around 0
lower-+.f64N/A
lower-*.f64N/A
sub-divN/A
lower-/.f64N/A
lower--.f6471.3
Applied rewrites71.3%
Final simplification62.2%
(FPCore (x y z t a b) :precision binary64 (if (<= x -2.4e+105) (fma (/ (* b y) x) -1.0 z) (if (<= x 1.28e+213) (- (+ a z) b) (+ z (* t (/ (- a z) x))))))
double code(double x, double y, double z, double t, double a, double b) {
double tmp;
if (x <= -2.4e+105) {
tmp = fma(((b * y) / x), -1.0, z);
} else if (x <= 1.28e+213) {
tmp = (a + z) - b;
} else {
tmp = z + (t * ((a - z) / x));
}
return tmp;
}
function code(x, y, z, t, a, b) tmp = 0.0 if (x <= -2.4e+105) tmp = fma(Float64(Float64(b * y) / x), -1.0, z); elseif (x <= 1.28e+213) tmp = Float64(Float64(a + z) - b); else tmp = Float64(z + Float64(t * Float64(Float64(a - z) / x))); end return tmp end
code[x_, y_, z_, t_, a_, b_] := If[LessEqual[x, -2.4e+105], N[(N[(N[(b * y), $MachinePrecision] / x), $MachinePrecision] * -1.0 + z), $MachinePrecision], If[LessEqual[x, 1.28e+213], N[(N[(a + z), $MachinePrecision] - b), $MachinePrecision], N[(z + N[(t * N[(N[(a - z), $MachinePrecision] / x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;x \leq -2.4 \cdot 10^{+105}:\\
\;\;\;\;\mathsf{fma}\left(\frac{b \cdot y}{x}, -1, z\right)\\
\mathbf{elif}\;x \leq 1.28 \cdot 10^{+213}:\\
\;\;\;\;\left(a + z\right) - b\\
\mathbf{else}:\\
\;\;\;\;z + t \cdot \frac{a - z}{x}\\
\end{array}
\end{array}
if x < -2.39999999999999975e105Initial program 75.6%
Taylor expanded in x around -inf
+-commutativeN/A
*-commutativeN/A
lower-fma.f64N/A
Applied rewrites62.5%
Taylor expanded in b around inf
lift-*.f6460.0
Applied rewrites60.0%
if -2.39999999999999975e105 < x < 1.2799999999999999e213Initial program 61.4%
Taylor expanded in y around inf
lower--.f64N/A
lower-+.f6461.6
Applied rewrites61.6%
if 1.2799999999999999e213 < x Initial program 21.9%
Taylor expanded in y around 0
lower-/.f64N/A
lower-fma.f64N/A
*-commutativeN/A
lower-*.f64N/A
lower-+.f6415.8
Applied rewrites15.8%
Taylor expanded in t around 0
lower-+.f64N/A
lower-*.f64N/A
sub-divN/A
lower-/.f64N/A
lower--.f6471.3
Applied rewrites71.3%
Final simplification62.2%
(FPCore (x y z t a b) :precision binary64 (if (or (<= y -3.1e+71) (not (<= y 3.5e+23))) (- (+ a z) b) (+ a z)))
double code(double x, double y, double z, double t, double a, double b) {
double tmp;
if ((y <= -3.1e+71) || !(y <= 3.5e+23)) {
tmp = (a + z) - b;
} else {
tmp = a + z;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t, a, b)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
real(8), intent (in) :: a
real(8), intent (in) :: b
real(8) :: tmp
if ((y <= (-3.1d+71)) .or. (.not. (y <= 3.5d+23))) then
tmp = (a + z) - b
else
tmp = a + z
end if
code = tmp
end function
public static double code(double x, double y, double z, double t, double a, double b) {
double tmp;
if ((y <= -3.1e+71) || !(y <= 3.5e+23)) {
tmp = (a + z) - b;
} else {
tmp = a + z;
}
return tmp;
}
def code(x, y, z, t, a, b): tmp = 0 if (y <= -3.1e+71) or not (y <= 3.5e+23): tmp = (a + z) - b else: tmp = a + z return tmp
function code(x, y, z, t, a, b) tmp = 0.0 if ((y <= -3.1e+71) || !(y <= 3.5e+23)) tmp = Float64(Float64(a + z) - b); else tmp = Float64(a + z); end return tmp end
function tmp_2 = code(x, y, z, t, a, b) tmp = 0.0; if ((y <= -3.1e+71) || ~((y <= 3.5e+23))) tmp = (a + z) - b; else tmp = a + z; end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_] := If[Or[LessEqual[y, -3.1e+71], N[Not[LessEqual[y, 3.5e+23]], $MachinePrecision]], N[(N[(a + z), $MachinePrecision] - b), $MachinePrecision], N[(a + z), $MachinePrecision]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;y \leq -3.1 \cdot 10^{+71} \lor \neg \left(y \leq 3.5 \cdot 10^{+23}\right):\\
\;\;\;\;\left(a + z\right) - b\\
\mathbf{else}:\\
\;\;\;\;a + z\\
\end{array}
\end{array}
if y < -3.10000000000000018e71 or 3.5000000000000002e23 < y Initial program 38.2%
Taylor expanded in y around inf
lower--.f64N/A
lower-+.f6480.8
Applied rewrites80.8%
if -3.10000000000000018e71 < y < 3.5000000000000002e23Initial program 76.3%
Taylor expanded in y around inf
lower--.f64N/A
lower-+.f6433.4
Applied rewrites33.4%
Taylor expanded in b around 0
lift-+.f6445.6
Applied rewrites45.6%
Final simplification60.5%
(FPCore (x y z t a b) :precision binary64 (if (or (<= a -3.7e-110) (not (<= a 30500.0))) (+ a z) (- z b)))
double code(double x, double y, double z, double t, double a, double b) {
double tmp;
if ((a <= -3.7e-110) || !(a <= 30500.0)) {
tmp = a + z;
} else {
tmp = z - b;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t, a, b)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
real(8), intent (in) :: a
real(8), intent (in) :: b
real(8) :: tmp
if ((a <= (-3.7d-110)) .or. (.not. (a <= 30500.0d0))) then
tmp = a + z
else
tmp = z - b
end if
code = tmp
end function
public static double code(double x, double y, double z, double t, double a, double b) {
double tmp;
if ((a <= -3.7e-110) || !(a <= 30500.0)) {
tmp = a + z;
} else {
tmp = z - b;
}
return tmp;
}
def code(x, y, z, t, a, b): tmp = 0 if (a <= -3.7e-110) or not (a <= 30500.0): tmp = a + z else: tmp = z - b return tmp
function code(x, y, z, t, a, b) tmp = 0.0 if ((a <= -3.7e-110) || !(a <= 30500.0)) tmp = Float64(a + z); else tmp = Float64(z - b); end return tmp end
function tmp_2 = code(x, y, z, t, a, b) tmp = 0.0; if ((a <= -3.7e-110) || ~((a <= 30500.0))) tmp = a + z; else tmp = z - b; end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_] := If[Or[LessEqual[a, -3.7e-110], N[Not[LessEqual[a, 30500.0]], $MachinePrecision]], N[(a + z), $MachinePrecision], N[(z - b), $MachinePrecision]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;a \leq -3.7 \cdot 10^{-110} \lor \neg \left(a \leq 30500\right):\\
\;\;\;\;a + z\\
\mathbf{else}:\\
\;\;\;\;z - b\\
\end{array}
\end{array}
if a < -3.70000000000000016e-110 or 30500 < a Initial program 54.6%
Taylor expanded in y around inf
lower--.f64N/A
lower-+.f6454.7
Applied rewrites54.7%
Taylor expanded in b around 0
lift-+.f6460.5
Applied rewrites60.5%
if -3.70000000000000016e-110 < a < 30500Initial program 71.2%
Taylor expanded in y around inf
lower--.f64N/A
lower-+.f6450.9
Applied rewrites50.9%
Taylor expanded in z around inf
Applied rewrites50.5%
Final simplification57.1%
(FPCore (x y z t a b) :precision binary64 (if (<= x -1.85e+81) z (if (<= x 1.9e+61) a z)))
double code(double x, double y, double z, double t, double a, double b) {
double tmp;
if (x <= -1.85e+81) {
tmp = z;
} else if (x <= 1.9e+61) {
tmp = a;
} else {
tmp = z;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t, a, b)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
real(8), intent (in) :: a
real(8), intent (in) :: b
real(8) :: tmp
if (x <= (-1.85d+81)) then
tmp = z
else if (x <= 1.9d+61) then
tmp = a
else
tmp = z
end if
code = tmp
end function
public static double code(double x, double y, double z, double t, double a, double b) {
double tmp;
if (x <= -1.85e+81) {
tmp = z;
} else if (x <= 1.9e+61) {
tmp = a;
} else {
tmp = z;
}
return tmp;
}
def code(x, y, z, t, a, b): tmp = 0 if x <= -1.85e+81: tmp = z elif x <= 1.9e+61: tmp = a else: tmp = z return tmp
function code(x, y, z, t, a, b) tmp = 0.0 if (x <= -1.85e+81) tmp = z; elseif (x <= 1.9e+61) tmp = a; else tmp = z; end return tmp end
function tmp_2 = code(x, y, z, t, a, b) tmp = 0.0; if (x <= -1.85e+81) tmp = z; elseif (x <= 1.9e+61) tmp = a; else tmp = z; end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_] := If[LessEqual[x, -1.85e+81], z, If[LessEqual[x, 1.9e+61], a, z]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;x \leq -1.85 \cdot 10^{+81}:\\
\;\;\;\;z\\
\mathbf{elif}\;x \leq 1.9 \cdot 10^{+61}:\\
\;\;\;\;a\\
\mathbf{else}:\\
\;\;\;\;z\\
\end{array}
\end{array}
if x < -1.85e81 or 1.89999999999999998e61 < x Initial program 56.5%
Taylor expanded in x around inf
Applied rewrites47.9%
if -1.85e81 < x < 1.89999999999999998e61Initial program 62.4%
Taylor expanded in t around inf
Applied rewrites50.8%
Final simplification49.7%
(FPCore (x y z t a b) :precision binary64 (if (<= x -4e+105) z (+ a z)))
double code(double x, double y, double z, double t, double a, double b) {
double tmp;
if (x <= -4e+105) {
tmp = z;
} else {
tmp = a + z;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t, a, b)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
real(8), intent (in) :: a
real(8), intent (in) :: b
real(8) :: tmp
if (x <= (-4d+105)) then
tmp = z
else
tmp = a + z
end if
code = tmp
end function
public static double code(double x, double y, double z, double t, double a, double b) {
double tmp;
if (x <= -4e+105) {
tmp = z;
} else {
tmp = a + z;
}
return tmp;
}
def code(x, y, z, t, a, b): tmp = 0 if x <= -4e+105: tmp = z else: tmp = a + z return tmp
function code(x, y, z, t, a, b) tmp = 0.0 if (x <= -4e+105) tmp = z; else tmp = Float64(a + z); end return tmp end
function tmp_2 = code(x, y, z, t, a, b) tmp = 0.0; if (x <= -4e+105) tmp = z; else tmp = a + z; end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_] := If[LessEqual[x, -4e+105], z, N[(a + z), $MachinePrecision]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;x \leq -4 \cdot 10^{+105}:\\
\;\;\;\;z\\
\mathbf{else}:\\
\;\;\;\;a + z\\
\end{array}
\end{array}
if x < -3.9999999999999998e105Initial program 75.0%
Taylor expanded in x around inf
Applied rewrites49.3%
if -3.9999999999999998e105 < x Initial program 57.6%
Taylor expanded in y around inf
lower--.f64N/A
lower-+.f6458.8
Applied rewrites58.8%
Taylor expanded in b around 0
lift-+.f6453.4
Applied rewrites53.4%
Final simplification52.8%
(FPCore (x y z t a b) :precision binary64 a)
double code(double x, double y, double z, double t, double a, double b) {
return a;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t, a, b)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
real(8), intent (in) :: a
real(8), intent (in) :: b
code = a
end function
public static double code(double x, double y, double z, double t, double a, double b) {
return a;
}
def code(x, y, z, t, a, b): return a
function code(x, y, z, t, a, b) return a end
function tmp = code(x, y, z, t, a, b) tmp = a; end
code[x_, y_, z_, t_, a_, b_] := a
\begin{array}{l}
\\
a
\end{array}
Initial program 60.2%
Taylor expanded in t around inf
Applied rewrites37.7%
Final simplification37.7%
(FPCore (x y z t a b)
:precision binary64
(let* ((t_1 (+ (+ x t) y))
(t_2 (- (+ (* (+ x y) z) (* (+ t y) a)) (* y b)))
(t_3 (/ t_2 t_1))
(t_4 (- (+ z a) b)))
(if (< t_3 -3.5813117084150564e+153)
t_4
(if (< t_3 1.2285964308315609e+82) (/ 1.0 (/ t_1 t_2)) t_4))))
double code(double x, double y, double z, double t, double a, double b) {
double t_1 = (x + t) + y;
double t_2 = (((x + y) * z) + ((t + y) * a)) - (y * b);
double t_3 = t_2 / t_1;
double t_4 = (z + a) - b;
double tmp;
if (t_3 < -3.5813117084150564e+153) {
tmp = t_4;
} else if (t_3 < 1.2285964308315609e+82) {
tmp = 1.0 / (t_1 / t_2);
} else {
tmp = t_4;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t, a, b)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
real(8), intent (in) :: a
real(8), intent (in) :: b
real(8) :: t_1
real(8) :: t_2
real(8) :: t_3
real(8) :: t_4
real(8) :: tmp
t_1 = (x + t) + y
t_2 = (((x + y) * z) + ((t + y) * a)) - (y * b)
t_3 = t_2 / t_1
t_4 = (z + a) - b
if (t_3 < (-3.5813117084150564d+153)) then
tmp = t_4
else if (t_3 < 1.2285964308315609d+82) then
tmp = 1.0d0 / (t_1 / t_2)
else
tmp = t_4
end if
code = tmp
end function
public static double code(double x, double y, double z, double t, double a, double b) {
double t_1 = (x + t) + y;
double t_2 = (((x + y) * z) + ((t + y) * a)) - (y * b);
double t_3 = t_2 / t_1;
double t_4 = (z + a) - b;
double tmp;
if (t_3 < -3.5813117084150564e+153) {
tmp = t_4;
} else if (t_3 < 1.2285964308315609e+82) {
tmp = 1.0 / (t_1 / t_2);
} else {
tmp = t_4;
}
return tmp;
}
def code(x, y, z, t, a, b): t_1 = (x + t) + y t_2 = (((x + y) * z) + ((t + y) * a)) - (y * b) t_3 = t_2 / t_1 t_4 = (z + a) - b tmp = 0 if t_3 < -3.5813117084150564e+153: tmp = t_4 elif t_3 < 1.2285964308315609e+82: tmp = 1.0 / (t_1 / t_2) else: tmp = t_4 return tmp
function code(x, y, z, t, a, b) t_1 = Float64(Float64(x + t) + y) t_2 = Float64(Float64(Float64(Float64(x + y) * z) + Float64(Float64(t + y) * a)) - Float64(y * b)) t_3 = Float64(t_2 / t_1) t_4 = Float64(Float64(z + a) - b) tmp = 0.0 if (t_3 < -3.5813117084150564e+153) tmp = t_4; elseif (t_3 < 1.2285964308315609e+82) tmp = Float64(1.0 / Float64(t_1 / t_2)); else tmp = t_4; end return tmp end
function tmp_2 = code(x, y, z, t, a, b) t_1 = (x + t) + y; t_2 = (((x + y) * z) + ((t + y) * a)) - (y * b); t_3 = t_2 / t_1; t_4 = (z + a) - b; tmp = 0.0; if (t_3 < -3.5813117084150564e+153) tmp = t_4; elseif (t_3 < 1.2285964308315609e+82) tmp = 1.0 / (t_1 / t_2); else tmp = t_4; end tmp_2 = tmp; end
code[x_, y_, z_, t_, a_, b_] := Block[{t$95$1 = N[(N[(x + t), $MachinePrecision] + y), $MachinePrecision]}, Block[{t$95$2 = N[(N[(N[(N[(x + y), $MachinePrecision] * z), $MachinePrecision] + N[(N[(t + y), $MachinePrecision] * a), $MachinePrecision]), $MachinePrecision] - N[(y * b), $MachinePrecision]), $MachinePrecision]}, Block[{t$95$3 = N[(t$95$2 / t$95$1), $MachinePrecision]}, Block[{t$95$4 = N[(N[(z + a), $MachinePrecision] - b), $MachinePrecision]}, If[Less[t$95$3, -3.5813117084150564e+153], t$95$4, If[Less[t$95$3, 1.2285964308315609e+82], N[(1.0 / N[(t$95$1 / t$95$2), $MachinePrecision]), $MachinePrecision], t$95$4]]]]]]
\begin{array}{l}
\\
\begin{array}{l}
t_1 := \left(x + t\right) + y\\
t_2 := \left(\left(x + y\right) \cdot z + \left(t + y\right) \cdot a\right) - y \cdot b\\
t_3 := \frac{t\_2}{t\_1}\\
t_4 := \left(z + a\right) - b\\
\mathbf{if}\;t\_3 < -3.5813117084150564 \cdot 10^{+153}:\\
\;\;\;\;t\_4\\
\mathbf{elif}\;t\_3 < 1.2285964308315609 \cdot 10^{+82}:\\
\;\;\;\;\frac{1}{\frac{t\_1}{t\_2}}\\
\mathbf{else}:\\
\;\;\;\;t\_4\\
\end{array}
\end{array}
herbie shell --seed 2025061
(FPCore (x y z t a b)
:name "AI.Clustering.Hierarchical.Internal:ward from clustering-0.2.1"
:precision binary64
:alt
(! :herbie-platform default (if (< (/ (- (+ (* (+ x y) z) (* (+ t y) a)) (* y b)) (+ (+ x t) y)) -3581311708415056400000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000) (- (+ z a) b) (if (< (/ (- (+ (* (+ x y) z) (* (+ t y) a)) (* y b)) (+ (+ x t) y)) 12285964308315609000000000000000000000000000000000000000000000000000000000000000000) (/ 1 (/ (+ (+ x t) y) (- (+ (* (+ x y) z) (* (+ t y) a)) (* y b)))) (- (+ z a) b))))
(/ (- (+ (* (+ x y) z) (* (+ t y) a)) (* y b)) (+ (+ x t) y)))