(FPCore (x) :precision binary64 (asinh x))
double code(double x) { return asinh(x); }
def code(x): return math.asinh(x)
function code(x) return asinh(x) end
function tmp = code(x) tmp = asinh(x); end
code[x_] := N[ArcSinh[x], $MachinePrecision]
\begin{array}{l} \\ \sinh^{-1} x \end{array}
Sampling outcomes in binary64 precision:
Herbie found 2 alternatives:
Alternative | Accuracy | Speedup |
---|
(FPCore (x) :precision binary64 (copysign (log (+ (fabs x) (sqrt (+ (* x x) 1.0)))) x))
double code(double x) { return copysign(log((fabs(x) + sqrt(((x * x) + 1.0)))), x); }
public static double code(double x) { return Math.copySign(Math.log((Math.abs(x) + Math.sqrt(((x * x) + 1.0)))), x); }
def code(x): return math.copysign(math.log((math.fabs(x) + math.sqrt(((x * x) + 1.0)))), x)
function code(x) return copysign(log(Float64(abs(x) + sqrt(Float64(Float64(x * x) + 1.0)))), x) end
function tmp = code(x) tmp = sign(x) * abs(log((abs(x) + sqrt(((x * x) + 1.0))))); end
code[x_] := N[With[{TMP1 = Abs[N[Log[N[(N[Abs[x], $MachinePrecision] + N[Sqrt[N[(N[(x * x), $MachinePrecision] + 1.0), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], TMP2 = Sign[x]}, TMP1 * If[TMP2 == 0, 1, TMP2]], $MachinePrecision]
\begin{array}{l} \\ \mathsf{copysign}\left(\log \left(\left|x\right| + \sqrt{x \cdot x + 1}\right), x\right) \end{array}
(FPCore (x) :precision binary64 (copysign (asinh x) x))
double code(double x) { return copysign(asinh(x), x); }
def code(x): return math.copysign(math.asinh(x), x)
function code(x) return copysign(asinh(x), x) end
function tmp = code(x) tmp = sign(x) * abs(asinh(x)); end
code[x_] := N[With[{TMP1 = Abs[N[ArcSinh[x], $MachinePrecision]], TMP2 = Sign[x]}, TMP1 * If[TMP2 == 0, 1, TMP2]], $MachinePrecision]
\begin{array}{l} \\ \mathsf{copysign}\left(\sinh^{-1} x, x\right) \end{array}
Initial program 28.8%
lift-log.f64
N/A
lift-+.f64
N/A
lift-fabs.f64
N/A
lift-sqrt.f64
N/A
lift-+.f64
N/A
lift-*.f64
N/A
pow2
N/A
+-commutative
N/A
+-commutative
N/A
pow2
N/A
sqr-abs-rev
N/A
asinh-def-rev
N/A
rem-sqrt-square-rev
N/A
pow2
N/A
sqrt-pow1
N/A
metadata-eval
N/A
unpow1
N/A
lower-asinh.f64
99.8
Applied rewrites99.8%
(FPCore (x) :precision binary64 (copysign x x))
double code(double x) { return copysign(x, x); }
public static double code(double x) { return Math.copySign(x, x); }
def code(x): return math.copysign(x, x)
function code(x) return copysign(x, x) end
function tmp = code(x) tmp = sign(x) * abs(x); end
code[x_] := N[With[{TMP1 = Abs[x], TMP2 = Sign[x]}, TMP1 * If[TMP2 == 0, 1, TMP2]], $MachinePrecision]
\begin{array}{l} \\ \mathsf{copysign}\left(x, x\right) \end{array}
Initial program 28.8%
lift-log.f64
N/A
lift-+.f64
N/A
lift-fabs.f64
N/A
lift-sqrt.f64
N/A
lift-+.f64
N/A
lift-*.f64
N/A
pow2
N/A
+-commutative
N/A
+-commutative
N/A
pow2
N/A
sqr-abs-rev
N/A
asinh-def-rev
N/A
rem-sqrt-square-rev
N/A
pow2
N/A
sqrt-pow1
N/A
metadata-eval
N/A
unpow1
N/A
lower-asinh.f64
99.8
Applied rewrites99.8%
Taylor expanded in x around 0
unpow1
50.1
metadata-eval
50.1
sqrt-pow1
50.1
pow2
50.1
rem-sqrt-square-rev
50.1
asinh-def-rev
50.1
sqr-abs-rev
50.1
pow2
50.1
+-commutative
50.1
+-commutative
50.1
pow2
50.1
Applied rewrites50.1%
herbie shell --seed 2025058
(FPCore (x)
:name "Rust f64::asinh"
:precision binary64
:alt
(! :herbie-platform default (let* ((ax (fabs x)) (ix (/ 1 ax))) (copysign (log1p (+ ax (/ ax (+ (hypot 1 ix) ix)))) x)))
(copysign (log (+ (fabs x) (sqrt (+ (* x x) 1.0)))) x))