_multiplyComplex, imaginary part

Percentage Accurate: 99.3% → 99.3%
Time: 1.4s
Alternatives: 3
Speedup: 1.0×

Specification

?
\[\begin{array}{l} \\ x.re \cdot y.im + x.im \cdot y.re \end{array} \]
(FPCore (x.re x.im y.re y.im)
 :precision binary64
 (+ (* x.re y.im) (* x.im y.re)))
double code(double x_46_re, double x_46_im, double y_46_re, double y_46_im) {
	return (x_46_re * y_46_im) + (x_46_im * y_46_re);
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x_46re, x_46im, y_46re, y_46im)
use fmin_fmax_functions
    real(8), intent (in) :: x_46re
    real(8), intent (in) :: x_46im
    real(8), intent (in) :: y_46re
    real(8), intent (in) :: y_46im
    code = (x_46re * y_46im) + (x_46im * y_46re)
end function
public static double code(double x_46_re, double x_46_im, double y_46_re, double y_46_im) {
	return (x_46_re * y_46_im) + (x_46_im * y_46_re);
}
def code(x_46_re, x_46_im, y_46_re, y_46_im):
	return (x_46_re * y_46_im) + (x_46_im * y_46_re)
function code(x_46_re, x_46_im, y_46_re, y_46_im)
	return Float64(Float64(x_46_re * y_46_im) + Float64(x_46_im * y_46_re))
end
function tmp = code(x_46_re, x_46_im, y_46_re, y_46_im)
	tmp = (x_46_re * y_46_im) + (x_46_im * y_46_re);
end
code[x$46$re_, x$46$im_, y$46$re_, y$46$im_] := N[(N[(x$46$re * y$46$im), $MachinePrecision] + N[(x$46$im * y$46$re), $MachinePrecision]), $MachinePrecision]
\begin{array}{l}

\\
x.re \cdot y.im + x.im \cdot y.re
\end{array}

Sampling outcomes in binary64 precision:

Local Percentage Accuracy vs ?

The average percentage accuracy by input value. Horizontal axis shows value of an input variable; the variable is choosen in the title. Vertical axis is accuracy; higher is better. Red represent the original program, while blue represents Herbie's suggestion. These can be toggled with buttons below the plot. The line is an average while dots represent individual samples.

Accuracy vs Speed?

Herbie found 3 alternatives:

AlternativeAccuracySpeedup
The accuracy (vertical axis) and speed (horizontal axis) of each alternatives. Up and to the right is better. The red square shows the initial program, and each blue circle shows an alternative.The line shows the best available speed-accuracy tradeoffs.

Initial Program: 99.3% accurate, 1.0× speedup?

\[\begin{array}{l} \\ x.re \cdot y.im + x.im \cdot y.re \end{array} \]
(FPCore (x.re x.im y.re y.im)
 :precision binary64
 (+ (* x.re y.im) (* x.im y.re)))
double code(double x_46_re, double x_46_im, double y_46_re, double y_46_im) {
	return (x_46_re * y_46_im) + (x_46_im * y_46_re);
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x_46re, x_46im, y_46re, y_46im)
use fmin_fmax_functions
    real(8), intent (in) :: x_46re
    real(8), intent (in) :: x_46im
    real(8), intent (in) :: y_46re
    real(8), intent (in) :: y_46im
    code = (x_46re * y_46im) + (x_46im * y_46re)
end function
public static double code(double x_46_re, double x_46_im, double y_46_re, double y_46_im) {
	return (x_46_re * y_46_im) + (x_46_im * y_46_re);
}
def code(x_46_re, x_46_im, y_46_re, y_46_im):
	return (x_46_re * y_46_im) + (x_46_im * y_46_re)
function code(x_46_re, x_46_im, y_46_re, y_46_im)
	return Float64(Float64(x_46_re * y_46_im) + Float64(x_46_im * y_46_re))
end
function tmp = code(x_46_re, x_46_im, y_46_re, y_46_im)
	tmp = (x_46_re * y_46_im) + (x_46_im * y_46_re);
end
code[x$46$re_, x$46$im_, y$46$re_, y$46$im_] := N[(N[(x$46$re * y$46$im), $MachinePrecision] + N[(x$46$im * y$46$re), $MachinePrecision]), $MachinePrecision]
\begin{array}{l}

\\
x.re \cdot y.im + x.im \cdot y.re
\end{array}

Alternative 1: 99.3% accurate, 1.0× speedup?

\[\begin{array}{l} \\ x.re \cdot y.im + x.im \cdot y.re \end{array} \]
(FPCore (x.re x.im y.re y.im)
 :precision binary64
 (+ (* x.re y.im) (* x.im y.re)))
double code(double x_46_re, double x_46_im, double y_46_re, double y_46_im) {
	return (x_46_re * y_46_im) + (x_46_im * y_46_re);
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x_46re, x_46im, y_46re, y_46im)
use fmin_fmax_functions
    real(8), intent (in) :: x_46re
    real(8), intent (in) :: x_46im
    real(8), intent (in) :: y_46re
    real(8), intent (in) :: y_46im
    code = (x_46re * y_46im) + (x_46im * y_46re)
end function
public static double code(double x_46_re, double x_46_im, double y_46_re, double y_46_im) {
	return (x_46_re * y_46_im) + (x_46_im * y_46_re);
}
def code(x_46_re, x_46_im, y_46_re, y_46_im):
	return (x_46_re * y_46_im) + (x_46_im * y_46_re)
function code(x_46_re, x_46_im, y_46_re, y_46_im)
	return Float64(Float64(x_46_re * y_46_im) + Float64(x_46_im * y_46_re))
end
function tmp = code(x_46_re, x_46_im, y_46_re, y_46_im)
	tmp = (x_46_re * y_46_im) + (x_46_im * y_46_re);
end
code[x$46$re_, x$46$im_, y$46$re_, y$46$im_] := N[(N[(x$46$re * y$46$im), $MachinePrecision] + N[(x$46$im * y$46$re), $MachinePrecision]), $MachinePrecision]
\begin{array}{l}

\\
x.re \cdot y.im + x.im \cdot y.re
\end{array}
Derivation
  1. Initial program 99.2%

    \[x.re \cdot y.im + x.im \cdot y.re \]
  2. Add Preprocessing
  3. Add Preprocessing

Alternative 2: 76.0% accurate, 0.5× speedup?

\[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;x.im \cdot y.re \leq -5 \cdot 10^{+14} \lor \neg \left(x.im \cdot y.re \leq 10^{+21}\right):\\ \;\;\;\;y.re \cdot x.im\\ \mathbf{else}:\\ \;\;\;\;y.im \cdot x.re\\ \end{array} \end{array} \]
(FPCore (x.re x.im y.re y.im)
 :precision binary64
 (if (or (<= (* x.im y.re) -5e+14) (not (<= (* x.im y.re) 1e+21)))
   (* y.re x.im)
   (* y.im x.re)))
double code(double x_46_re, double x_46_im, double y_46_re, double y_46_im) {
	double tmp;
	if (((x_46_im * y_46_re) <= -5e+14) || !((x_46_im * y_46_re) <= 1e+21)) {
		tmp = y_46_re * x_46_im;
	} else {
		tmp = y_46_im * x_46_re;
	}
	return tmp;
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x_46re, x_46im, y_46re, y_46im)
use fmin_fmax_functions
    real(8), intent (in) :: x_46re
    real(8), intent (in) :: x_46im
    real(8), intent (in) :: y_46re
    real(8), intent (in) :: y_46im
    real(8) :: tmp
    if (((x_46im * y_46re) <= (-5d+14)) .or. (.not. ((x_46im * y_46re) <= 1d+21))) then
        tmp = y_46re * x_46im
    else
        tmp = y_46im * x_46re
    end if
    code = tmp
end function
public static double code(double x_46_re, double x_46_im, double y_46_re, double y_46_im) {
	double tmp;
	if (((x_46_im * y_46_re) <= -5e+14) || !((x_46_im * y_46_re) <= 1e+21)) {
		tmp = y_46_re * x_46_im;
	} else {
		tmp = y_46_im * x_46_re;
	}
	return tmp;
}
def code(x_46_re, x_46_im, y_46_re, y_46_im):
	tmp = 0
	if ((x_46_im * y_46_re) <= -5e+14) or not ((x_46_im * y_46_re) <= 1e+21):
		tmp = y_46_re * x_46_im
	else:
		tmp = y_46_im * x_46_re
	return tmp
function code(x_46_re, x_46_im, y_46_re, y_46_im)
	tmp = 0.0
	if ((Float64(x_46_im * y_46_re) <= -5e+14) || !(Float64(x_46_im * y_46_re) <= 1e+21))
		tmp = Float64(y_46_re * x_46_im);
	else
		tmp = Float64(y_46_im * x_46_re);
	end
	return tmp
end
function tmp_2 = code(x_46_re, x_46_im, y_46_re, y_46_im)
	tmp = 0.0;
	if (((x_46_im * y_46_re) <= -5e+14) || ~(((x_46_im * y_46_re) <= 1e+21)))
		tmp = y_46_re * x_46_im;
	else
		tmp = y_46_im * x_46_re;
	end
	tmp_2 = tmp;
end
code[x$46$re_, x$46$im_, y$46$re_, y$46$im_] := If[Or[LessEqual[N[(x$46$im * y$46$re), $MachinePrecision], -5e+14], N[Not[LessEqual[N[(x$46$im * y$46$re), $MachinePrecision], 1e+21]], $MachinePrecision]], N[(y$46$re * x$46$im), $MachinePrecision], N[(y$46$im * x$46$re), $MachinePrecision]]
\begin{array}{l}

\\
\begin{array}{l}
\mathbf{if}\;x.im \cdot y.re \leq -5 \cdot 10^{+14} \lor \neg \left(x.im \cdot y.re \leq 10^{+21}\right):\\
\;\;\;\;y.re \cdot x.im\\

\mathbf{else}:\\
\;\;\;\;y.im \cdot x.re\\


\end{array}
\end{array}
Derivation
  1. Split input into 2 regimes
  2. if (*.f64 x.im y.re) < -5e14 or 1e21 < (*.f64 x.im y.re)

    1. Initial program 98.1%

      \[x.re \cdot y.im + x.im \cdot y.re \]
    2. Add Preprocessing
    3. Taylor expanded in x.re around 0

      \[\leadsto \color{blue}{x.im \cdot y.re} \]
    4. Step-by-step derivation
      1. *-commutativeN/A

        \[\leadsto y.re \cdot \color{blue}{x.im} \]
      2. lower-*.f6481.7

        \[\leadsto y.re \cdot \color{blue}{x.im} \]
    5. Applied rewrites81.7%

      \[\leadsto \color{blue}{y.re \cdot x.im} \]

    if -5e14 < (*.f64 x.im y.re) < 1e21

    1. Initial program 100.0%

      \[x.re \cdot y.im + x.im \cdot y.re \]
    2. Add Preprocessing
    3. Taylor expanded in x.re around inf

      \[\leadsto \color{blue}{x.re \cdot y.im} \]
    4. Step-by-step derivation
      1. *-commutativeN/A

        \[\leadsto y.im \cdot \color{blue}{x.re} \]
      2. lower-*.f6479.3

        \[\leadsto y.im \cdot \color{blue}{x.re} \]
    5. Applied rewrites79.3%

      \[\leadsto \color{blue}{y.im \cdot x.re} \]
  3. Recombined 2 regimes into one program.
  4. Final simplification80.3%

    \[\leadsto \begin{array}{l} \mathbf{if}\;x.im \cdot y.re \leq -5 \cdot 10^{+14} \lor \neg \left(x.im \cdot y.re \leq 10^{+21}\right):\\ \;\;\;\;y.re \cdot x.im\\ \mathbf{else}:\\ \;\;\;\;y.im \cdot x.re\\ \end{array} \]
  5. Add Preprocessing

Alternative 3: 52.4% accurate, 2.3× speedup?

\[\begin{array}{l} \\ y.im \cdot x.re \end{array} \]
(FPCore (x.re x.im y.re y.im) :precision binary64 (* y.im x.re))
double code(double x_46_re, double x_46_im, double y_46_re, double y_46_im) {
	return y_46_im * x_46_re;
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x_46re, x_46im, y_46re, y_46im)
use fmin_fmax_functions
    real(8), intent (in) :: x_46re
    real(8), intent (in) :: x_46im
    real(8), intent (in) :: y_46re
    real(8), intent (in) :: y_46im
    code = y_46im * x_46re
end function
public static double code(double x_46_re, double x_46_im, double y_46_re, double y_46_im) {
	return y_46_im * x_46_re;
}
def code(x_46_re, x_46_im, y_46_re, y_46_im):
	return y_46_im * x_46_re
function code(x_46_re, x_46_im, y_46_re, y_46_im)
	return Float64(y_46_im * x_46_re)
end
function tmp = code(x_46_re, x_46_im, y_46_re, y_46_im)
	tmp = y_46_im * x_46_re;
end
code[x$46$re_, x$46$im_, y$46$re_, y$46$im_] := N[(y$46$im * x$46$re), $MachinePrecision]
\begin{array}{l}

\\
y.im \cdot x.re
\end{array}
Derivation
  1. Initial program 99.2%

    \[x.re \cdot y.im + x.im \cdot y.re \]
  2. Add Preprocessing
  3. Taylor expanded in x.re around inf

    \[\leadsto \color{blue}{x.re \cdot y.im} \]
  4. Step-by-step derivation
    1. *-commutativeN/A

      \[\leadsto y.im \cdot \color{blue}{x.re} \]
    2. lower-*.f6456.0

      \[\leadsto y.im \cdot \color{blue}{x.re} \]
  5. Applied rewrites56.0%

    \[\leadsto \color{blue}{y.im \cdot x.re} \]
  6. Add Preprocessing

Reproduce

?
herbie shell --seed 2025058 
(FPCore (x.re x.im y.re y.im)
  :name "_multiplyComplex, imaginary part"
  :precision binary64
  (+ (* x.re y.im) (* x.im y.re)))