
(FPCore (x y z t) :precision binary64 (+ (- x (/ y (* z 3.0))) (/ t (* (* z 3.0) y))))
double code(double x, double y, double z, double t) {
return (x - (y / (z * 3.0))) + (t / ((z * 3.0) * y));
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
code = (x - (y / (z * 3.0d0))) + (t / ((z * 3.0d0) * y))
end function
public static double code(double x, double y, double z, double t) {
return (x - (y / (z * 3.0))) + (t / ((z * 3.0) * y));
}
def code(x, y, z, t): return (x - (y / (z * 3.0))) + (t / ((z * 3.0) * y))
function code(x, y, z, t) return Float64(Float64(x - Float64(y / Float64(z * 3.0))) + Float64(t / Float64(Float64(z * 3.0) * y))) end
function tmp = code(x, y, z, t) tmp = (x - (y / (z * 3.0))) + (t / ((z * 3.0) * y)); end
code[x_, y_, z_, t_] := N[(N[(x - N[(y / N[(z * 3.0), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] + N[(t / N[(N[(z * 3.0), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
\begin{array}{l}
\\
\left(x - \frac{y}{z \cdot 3}\right) + \frac{t}{\left(z \cdot 3\right) \cdot y}
\end{array}
Sampling outcomes in binary64 precision:
Herbie found 11 alternatives:
| Alternative | Accuracy | Speedup |
|---|
(FPCore (x y z t) :precision binary64 (+ (- x (/ y (* z 3.0))) (/ t (* (* z 3.0) y))))
double code(double x, double y, double z, double t) {
return (x - (y / (z * 3.0))) + (t / ((z * 3.0) * y));
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
code = (x - (y / (z * 3.0d0))) + (t / ((z * 3.0d0) * y))
end function
public static double code(double x, double y, double z, double t) {
return (x - (y / (z * 3.0))) + (t / ((z * 3.0) * y));
}
def code(x, y, z, t): return (x - (y / (z * 3.0))) + (t / ((z * 3.0) * y))
function code(x, y, z, t) return Float64(Float64(x - Float64(y / Float64(z * 3.0))) + Float64(t / Float64(Float64(z * 3.0) * y))) end
function tmp = code(x, y, z, t) tmp = (x - (y / (z * 3.0))) + (t / ((z * 3.0) * y)); end
code[x_, y_, z_, t_] := N[(N[(x - N[(y / N[(z * 3.0), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] + N[(t / N[(N[(z * 3.0), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
\begin{array}{l}
\\
\left(x - \frac{y}{z \cdot 3}\right) + \frac{t}{\left(z \cdot 3\right) \cdot y}
\end{array}
(FPCore (x y z t) :precision binary64 (let* ((t_1 (+ (- x (/ y (* z 3.0))) (/ t (* (* z 3.0) y))))) (if (<= t_1 1e+288) t_1 (fma (/ (- (/ t y) y) z) 0.3333333333333333 x))))
double code(double x, double y, double z, double t) {
double t_1 = (x - (y / (z * 3.0))) + (t / ((z * 3.0) * y));
double tmp;
if (t_1 <= 1e+288) {
tmp = t_1;
} else {
tmp = fma((((t / y) - y) / z), 0.3333333333333333, x);
}
return tmp;
}
function code(x, y, z, t) t_1 = Float64(Float64(x - Float64(y / Float64(z * 3.0))) + Float64(t / Float64(Float64(z * 3.0) * y))) tmp = 0.0 if (t_1 <= 1e+288) tmp = t_1; else tmp = fma(Float64(Float64(Float64(t / y) - y) / z), 0.3333333333333333, x); end return tmp end
code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(x - N[(y / N[(z * 3.0), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] + N[(t / N[(N[(z * 3.0), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$1, 1e+288], t$95$1, N[(N[(N[(N[(t / y), $MachinePrecision] - y), $MachinePrecision] / z), $MachinePrecision] * 0.3333333333333333 + x), $MachinePrecision]]]
\begin{array}{l}
\\
\begin{array}{l}
t_1 := \left(x - \frac{y}{z \cdot 3}\right) + \frac{t}{\left(z \cdot 3\right) \cdot y}\\
\mathbf{if}\;t\_1 \leq 10^{+288}:\\
\;\;\;\;t\_1\\
\mathbf{else}:\\
\;\;\;\;\mathsf{fma}\left(\frac{\frac{t}{y} - y}{z}, 0.3333333333333333, x\right)\\
\end{array}
\end{array}
if (+.f64 (-.f64 x (/.f64 y (*.f64 z #s(literal 3 binary64)))) (/.f64 t (*.f64 (*.f64 z #s(literal 3 binary64)) y))) < 1e288Initial program 98.4%
if 1e288 < (+.f64 (-.f64 x (/.f64 y (*.f64 z #s(literal 3 binary64)))) (/.f64 t (*.f64 (*.f64 z #s(literal 3 binary64)) y))) Initial program 88.0%
Taylor expanded in x around 0
associate--l+N/A
distribute-lft-out--N/A
fp-cancel-sign-sub-invN/A
metadata-evalN/A
associate-/r*N/A
sub-divN/A
associate-/l*N/A
distribute-lft-out--N/A
*-lft-identityN/A
fp-cancel-sub-sign-invN/A
metadata-evalN/A
+-commutativeN/A
Applied rewrites99.9%
(FPCore (x y z t) :precision binary64 (+ (- x (/ y (* z 3.0))) (/ (/ t z) (* 3.0 y))))
double code(double x, double y, double z, double t) {
return (x - (y / (z * 3.0))) + ((t / z) / (3.0 * y));
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
code = (x - (y / (z * 3.0d0))) + ((t / z) / (3.0d0 * y))
end function
public static double code(double x, double y, double z, double t) {
return (x - (y / (z * 3.0))) + ((t / z) / (3.0 * y));
}
def code(x, y, z, t): return (x - (y / (z * 3.0))) + ((t / z) / (3.0 * y))
function code(x, y, z, t) return Float64(Float64(x - Float64(y / Float64(z * 3.0))) + Float64(Float64(t / z) / Float64(3.0 * y))) end
function tmp = code(x, y, z, t) tmp = (x - (y / (z * 3.0))) + ((t / z) / (3.0 * y)); end
code[x_, y_, z_, t_] := N[(N[(x - N[(y / N[(z * 3.0), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] + N[(N[(t / z), $MachinePrecision] / N[(3.0 * y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
\begin{array}{l}
\\
\left(x - \frac{y}{z \cdot 3}\right) + \frac{\frac{t}{z}}{3 \cdot y}
\end{array}
Initial program 96.5%
lift-/.f64N/A
lift-*.f64N/A
lift-*.f64N/A
associate-*l*N/A
associate-/r*N/A
lower-/.f64N/A
lower-/.f64N/A
lower-*.f6498.0
Applied rewrites98.0%
(FPCore (x y z t) :precision binary64 (if (or (<= y -1.1e+20) (not (<= y 3.5e+58))) (fma -0.3333333333333333 (/ y z) x) (+ x (/ t (* (* z 3.0) y)))))
double code(double x, double y, double z, double t) {
double tmp;
if ((y <= -1.1e+20) || !(y <= 3.5e+58)) {
tmp = fma(-0.3333333333333333, (y / z), x);
} else {
tmp = x + (t / ((z * 3.0) * y));
}
return tmp;
}
function code(x, y, z, t) tmp = 0.0 if ((y <= -1.1e+20) || !(y <= 3.5e+58)) tmp = fma(-0.3333333333333333, Float64(y / z), x); else tmp = Float64(x + Float64(t / Float64(Float64(z * 3.0) * y))); end return tmp end
code[x_, y_, z_, t_] := If[Or[LessEqual[y, -1.1e+20], N[Not[LessEqual[y, 3.5e+58]], $MachinePrecision]], N[(-0.3333333333333333 * N[(y / z), $MachinePrecision] + x), $MachinePrecision], N[(x + N[(t / N[(N[(z * 3.0), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;y \leq -1.1 \cdot 10^{+20} \lor \neg \left(y \leq 3.5 \cdot 10^{+58}\right):\\
\;\;\;\;\mathsf{fma}\left(-0.3333333333333333, \frac{y}{z}, x\right)\\
\mathbf{else}:\\
\;\;\;\;x + \frac{t}{\left(z \cdot 3\right) \cdot y}\\
\end{array}
\end{array}
if y < -1.1e20 or 3.4999999999999997e58 < y Initial program 99.8%
Taylor expanded in t around 0
metadata-evalN/A
fp-cancel-sign-sub-invN/A
+-commutativeN/A
lower-fma.f64N/A
lower-/.f6495.7
Applied rewrites95.7%
if -1.1e20 < y < 3.4999999999999997e58Initial program 93.9%
Taylor expanded in x around inf
Applied rewrites88.0%
Final simplification91.3%
(FPCore (x y z t) :precision binary64 (if (or (<= y -1.1e+20) (not (<= y 3.5e+58))) (fma -0.3333333333333333 (/ y z) x) (+ x (/ t (* z (* 3.0 y))))))
double code(double x, double y, double z, double t) {
double tmp;
if ((y <= -1.1e+20) || !(y <= 3.5e+58)) {
tmp = fma(-0.3333333333333333, (y / z), x);
} else {
tmp = x + (t / (z * (3.0 * y)));
}
return tmp;
}
function code(x, y, z, t) tmp = 0.0 if ((y <= -1.1e+20) || !(y <= 3.5e+58)) tmp = fma(-0.3333333333333333, Float64(y / z), x); else tmp = Float64(x + Float64(t / Float64(z * Float64(3.0 * y)))); end return tmp end
code[x_, y_, z_, t_] := If[Or[LessEqual[y, -1.1e+20], N[Not[LessEqual[y, 3.5e+58]], $MachinePrecision]], N[(-0.3333333333333333 * N[(y / z), $MachinePrecision] + x), $MachinePrecision], N[(x + N[(t / N[(z * N[(3.0 * y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;y \leq -1.1 \cdot 10^{+20} \lor \neg \left(y \leq 3.5 \cdot 10^{+58}\right):\\
\;\;\;\;\mathsf{fma}\left(-0.3333333333333333, \frac{y}{z}, x\right)\\
\mathbf{else}:\\
\;\;\;\;x + \frac{t}{z \cdot \left(3 \cdot y\right)}\\
\end{array}
\end{array}
if y < -1.1e20 or 3.4999999999999997e58 < y Initial program 99.8%
Taylor expanded in t around 0
metadata-evalN/A
fp-cancel-sign-sub-invN/A
+-commutativeN/A
lower-fma.f64N/A
lower-/.f6495.7
Applied rewrites95.7%
if -1.1e20 < y < 3.4999999999999997e58Initial program 93.9%
Taylor expanded in x around inf
Applied rewrites88.0%
lift-*.f64N/A
lift-*.f64N/A
associate-*l*N/A
lower-*.f64N/A
lift-*.f6488.0
Applied rewrites88.0%
Final simplification91.3%
(FPCore (x y z t) :precision binary64 (if (or (<= y -1.1e+20) (not (<= y 3.5e+58))) (fma -0.3333333333333333 (/ y z) x) (+ x (/ t (* (* z y) 3.0)))))
double code(double x, double y, double z, double t) {
double tmp;
if ((y <= -1.1e+20) || !(y <= 3.5e+58)) {
tmp = fma(-0.3333333333333333, (y / z), x);
} else {
tmp = x + (t / ((z * y) * 3.0));
}
return tmp;
}
function code(x, y, z, t) tmp = 0.0 if ((y <= -1.1e+20) || !(y <= 3.5e+58)) tmp = fma(-0.3333333333333333, Float64(y / z), x); else tmp = Float64(x + Float64(t / Float64(Float64(z * y) * 3.0))); end return tmp end
code[x_, y_, z_, t_] := If[Or[LessEqual[y, -1.1e+20], N[Not[LessEqual[y, 3.5e+58]], $MachinePrecision]], N[(-0.3333333333333333 * N[(y / z), $MachinePrecision] + x), $MachinePrecision], N[(x + N[(t / N[(N[(z * y), $MachinePrecision] * 3.0), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;y \leq -1.1 \cdot 10^{+20} \lor \neg \left(y \leq 3.5 \cdot 10^{+58}\right):\\
\;\;\;\;\mathsf{fma}\left(-0.3333333333333333, \frac{y}{z}, x\right)\\
\mathbf{else}:\\
\;\;\;\;x + \frac{t}{\left(z \cdot y\right) \cdot 3}\\
\end{array}
\end{array}
if y < -1.1e20 or 3.4999999999999997e58 < y Initial program 99.8%
Taylor expanded in t around 0
metadata-evalN/A
fp-cancel-sign-sub-invN/A
+-commutativeN/A
lower-fma.f64N/A
lower-/.f6495.7
Applied rewrites95.7%
if -1.1e20 < y < 3.4999999999999997e58Initial program 93.9%
Taylor expanded in x around inf
Applied rewrites88.0%
Taylor expanded in y around 0
*-commutativeN/A
lower-*.f64N/A
*-commutativeN/A
lower-*.f6487.9
Applied rewrites87.9%
Final simplification91.3%
(FPCore (x y z t) :precision binary64 (if (or (<= y -2.35e-10) (not (<= y 1.02e-45))) (fma -0.3333333333333333 (/ y z) x) (/ (* 0.3333333333333333 t) (* z y))))
double code(double x, double y, double z, double t) {
double tmp;
if ((y <= -2.35e-10) || !(y <= 1.02e-45)) {
tmp = fma(-0.3333333333333333, (y / z), x);
} else {
tmp = (0.3333333333333333 * t) / (z * y);
}
return tmp;
}
function code(x, y, z, t) tmp = 0.0 if ((y <= -2.35e-10) || !(y <= 1.02e-45)) tmp = fma(-0.3333333333333333, Float64(y / z), x); else tmp = Float64(Float64(0.3333333333333333 * t) / Float64(z * y)); end return tmp end
code[x_, y_, z_, t_] := If[Or[LessEqual[y, -2.35e-10], N[Not[LessEqual[y, 1.02e-45]], $MachinePrecision]], N[(-0.3333333333333333 * N[(y / z), $MachinePrecision] + x), $MachinePrecision], N[(N[(0.3333333333333333 * t), $MachinePrecision] / N[(z * y), $MachinePrecision]), $MachinePrecision]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;y \leq -2.35 \cdot 10^{-10} \lor \neg \left(y \leq 1.02 \cdot 10^{-45}\right):\\
\;\;\;\;\mathsf{fma}\left(-0.3333333333333333, \frac{y}{z}, x\right)\\
\mathbf{else}:\\
\;\;\;\;\frac{0.3333333333333333 \cdot t}{z \cdot y}\\
\end{array}
\end{array}
if y < -2.3500000000000002e-10 or 1.0199999999999999e-45 < y Initial program 99.8%
Taylor expanded in t around 0
metadata-evalN/A
fp-cancel-sign-sub-invN/A
+-commutativeN/A
lower-fma.f64N/A
lower-/.f6491.2
Applied rewrites91.2%
if -2.3500000000000002e-10 < y < 1.0199999999999999e-45Initial program 92.9%
lift-/.f64N/A
lift-*.f64N/A
lift-*.f64N/A
associate-*l*N/A
associate-/r*N/A
lower-/.f64N/A
lower-/.f64N/A
lower-*.f6496.9
Applied rewrites96.9%
lift-+.f64N/A
lift--.f64N/A
lift-*.f64N/A
lift-/.f64N/A
lift-/.f64N/A
lift-*.f64N/A
lift-/.f64N/A
associate-+l-N/A
associate-/l/N/A
associate-*l*N/A
lower--.f64N/A
lower--.f64N/A
lift-/.f64N/A
*-commutativeN/A
lower-*.f64N/A
lift-*.f64N/A
lift-*.f64N/A
lift-/.f6492.9
lift-*.f64N/A
*-commutativeN/A
lower-*.f6492.9
Applied rewrites92.9%
Taylor expanded in y around 0
associate--r-N/A
*-commutativeN/A
*-commutativeN/A
*-commutativeN/A
lower-*.f64N/A
associate-/r*N/A
lower-/.f64N/A
lift-/.f6460.4
Applied rewrites60.4%
lift-*.f64N/A
lift-/.f64N/A
lift-/.f64N/A
*-commutativeN/A
associate-/r*N/A
associate-*r/N/A
lower-/.f64N/A
lower-*.f64N/A
*-commutativeN/A
lower-*.f6464.3
Applied rewrites64.3%
Final simplification78.3%
(FPCore (x y z t) :precision binary64 (if (or (<= y -2.35e-10) (not (<= y 1.02e-45))) (fma -0.3333333333333333 (/ y z) x) (* (/ t (* z y)) 0.3333333333333333)))
double code(double x, double y, double z, double t) {
double tmp;
if ((y <= -2.35e-10) || !(y <= 1.02e-45)) {
tmp = fma(-0.3333333333333333, (y / z), x);
} else {
tmp = (t / (z * y)) * 0.3333333333333333;
}
return tmp;
}
function code(x, y, z, t) tmp = 0.0 if ((y <= -2.35e-10) || !(y <= 1.02e-45)) tmp = fma(-0.3333333333333333, Float64(y / z), x); else tmp = Float64(Float64(t / Float64(z * y)) * 0.3333333333333333); end return tmp end
code[x_, y_, z_, t_] := If[Or[LessEqual[y, -2.35e-10], N[Not[LessEqual[y, 1.02e-45]], $MachinePrecision]], N[(-0.3333333333333333 * N[(y / z), $MachinePrecision] + x), $MachinePrecision], N[(N[(t / N[(z * y), $MachinePrecision]), $MachinePrecision] * 0.3333333333333333), $MachinePrecision]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;y \leq -2.35 \cdot 10^{-10} \lor \neg \left(y \leq 1.02 \cdot 10^{-45}\right):\\
\;\;\;\;\mathsf{fma}\left(-0.3333333333333333, \frac{y}{z}, x\right)\\
\mathbf{else}:\\
\;\;\;\;\frac{t}{z \cdot y} \cdot 0.3333333333333333\\
\end{array}
\end{array}
if y < -2.3500000000000002e-10 or 1.0199999999999999e-45 < y Initial program 99.8%
Taylor expanded in t around 0
metadata-evalN/A
fp-cancel-sign-sub-invN/A
+-commutativeN/A
lower-fma.f64N/A
lower-/.f6491.2
Applied rewrites91.2%
if -2.3500000000000002e-10 < y < 1.0199999999999999e-45Initial program 92.9%
Taylor expanded in y around 0
*-commutativeN/A
lower-*.f64N/A
lower-/.f64N/A
*-commutativeN/A
lower-*.f6464.3
Applied rewrites64.3%
Final simplification78.3%
(FPCore (x y z t) :precision binary64 (fma (/ (- (/ t y) y) z) 0.3333333333333333 x))
double code(double x, double y, double z, double t) {
return fma((((t / y) - y) / z), 0.3333333333333333, x);
}
function code(x, y, z, t) return fma(Float64(Float64(Float64(t / y) - y) / z), 0.3333333333333333, x) end
code[x_, y_, z_, t_] := N[(N[(N[(N[(t / y), $MachinePrecision] - y), $MachinePrecision] / z), $MachinePrecision] * 0.3333333333333333 + x), $MachinePrecision]
\begin{array}{l}
\\
\mathsf{fma}\left(\frac{\frac{t}{y} - y}{z}, 0.3333333333333333, x\right)
\end{array}
Initial program 96.5%
Taylor expanded in x around 0
associate--l+N/A
distribute-lft-out--N/A
fp-cancel-sign-sub-invN/A
metadata-evalN/A
associate-/r*N/A
sub-divN/A
associate-/l*N/A
distribute-lft-out--N/A
*-lft-identityN/A
fp-cancel-sub-sign-invN/A
metadata-evalN/A
+-commutativeN/A
Applied rewrites94.6%
(FPCore (x y z t) :precision binary64 (if (or (<= y -220000.0) (not (<= y 1.32e+45))) (* -0.3333333333333333 (/ y z)) x))
double code(double x, double y, double z, double t) {
double tmp;
if ((y <= -220000.0) || !(y <= 1.32e+45)) {
tmp = -0.3333333333333333 * (y / z);
} else {
tmp = x;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
real(8) :: tmp
if ((y <= (-220000.0d0)) .or. (.not. (y <= 1.32d+45))) then
tmp = (-0.3333333333333333d0) * (y / z)
else
tmp = x
end if
code = tmp
end function
public static double code(double x, double y, double z, double t) {
double tmp;
if ((y <= -220000.0) || !(y <= 1.32e+45)) {
tmp = -0.3333333333333333 * (y / z);
} else {
tmp = x;
}
return tmp;
}
def code(x, y, z, t): tmp = 0 if (y <= -220000.0) or not (y <= 1.32e+45): tmp = -0.3333333333333333 * (y / z) else: tmp = x return tmp
function code(x, y, z, t) tmp = 0.0 if ((y <= -220000.0) || !(y <= 1.32e+45)) tmp = Float64(-0.3333333333333333 * Float64(y / z)); else tmp = x; end return tmp end
function tmp_2 = code(x, y, z, t) tmp = 0.0; if ((y <= -220000.0) || ~((y <= 1.32e+45))) tmp = -0.3333333333333333 * (y / z); else tmp = x; end tmp_2 = tmp; end
code[x_, y_, z_, t_] := If[Or[LessEqual[y, -220000.0], N[Not[LessEqual[y, 1.32e+45]], $MachinePrecision]], N[(-0.3333333333333333 * N[(y / z), $MachinePrecision]), $MachinePrecision], x]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;y \leq -220000 \lor \neg \left(y \leq 1.32 \cdot 10^{+45}\right):\\
\;\;\;\;-0.3333333333333333 \cdot \frac{y}{z}\\
\mathbf{else}:\\
\;\;\;\;x\\
\end{array}
\end{array}
if y < -2.2e5 or 1.32000000000000005e45 < y Initial program 99.8%
Taylor expanded in y around inf
lower-*.f64N/A
lower-/.f6473.3
Applied rewrites73.3%
if -2.2e5 < y < 1.32000000000000005e45Initial program 93.6%
Taylor expanded in x around inf
Applied rewrites33.2%
Final simplification51.7%
(FPCore (x y z t) :precision binary64 (fma -0.3333333333333333 (/ y z) x))
double code(double x, double y, double z, double t) {
return fma(-0.3333333333333333, (y / z), x);
}
function code(x, y, z, t) return fma(-0.3333333333333333, Float64(y / z), x) end
code[x_, y_, z_, t_] := N[(-0.3333333333333333 * N[(y / z), $MachinePrecision] + x), $MachinePrecision]
\begin{array}{l}
\\
\mathsf{fma}\left(-0.3333333333333333, \frac{y}{z}, x\right)
\end{array}
Initial program 96.5%
Taylor expanded in t around 0
metadata-evalN/A
fp-cancel-sign-sub-invN/A
+-commutativeN/A
lower-fma.f64N/A
lower-/.f6463.1
Applied rewrites63.1%
(FPCore (x y z t) :precision binary64 x)
double code(double x, double y, double z, double t) {
return x;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
code = x
end function
public static double code(double x, double y, double z, double t) {
return x;
}
def code(x, y, z, t): return x
function code(x, y, z, t) return x end
function tmp = code(x, y, z, t) tmp = x; end
code[x_, y_, z_, t_] := x
\begin{array}{l}
\\
x
\end{array}
Initial program 96.5%
Taylor expanded in x around inf
Applied rewrites28.0%
(FPCore (x y z t) :precision binary64 (+ (- x (/ y (* z 3.0))) (/ (/ t (* z 3.0)) y)))
double code(double x, double y, double z, double t) {
return (x - (y / (z * 3.0))) + ((t / (z * 3.0)) / y);
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
code = (x - (y / (z * 3.0d0))) + ((t / (z * 3.0d0)) / y)
end function
public static double code(double x, double y, double z, double t) {
return (x - (y / (z * 3.0))) + ((t / (z * 3.0)) / y);
}
def code(x, y, z, t): return (x - (y / (z * 3.0))) + ((t / (z * 3.0)) / y)
function code(x, y, z, t) return Float64(Float64(x - Float64(y / Float64(z * 3.0))) + Float64(Float64(t / Float64(z * 3.0)) / y)) end
function tmp = code(x, y, z, t) tmp = (x - (y / (z * 3.0))) + ((t / (z * 3.0)) / y); end
code[x_, y_, z_, t_] := N[(N[(x - N[(y / N[(z * 3.0), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] + N[(N[(t / N[(z * 3.0), $MachinePrecision]), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]
\begin{array}{l}
\\
\left(x - \frac{y}{z \cdot 3}\right) + \frac{\frac{t}{z \cdot 3}}{y}
\end{array}
herbie shell --seed 2025056
(FPCore (x y z t)
:name "Diagrams.Solve.Polynomial:cubForm from diagrams-solve-0.1, H"
:precision binary64
:alt
(! :herbie-platform default (+ (- x (/ y (* z 3))) (/ (/ t (* z 3)) y)))
(+ (- x (/ y (* z 3.0))) (/ t (* (* z 3.0) y))))