Diagrams.Solve.Polynomial:cubForm from diagrams-solve-0.1, H

Percentage Accurate: 95.6% → 97.6%
Time: 3.8s
Alternatives: 11
Speedup: 1.4×

Specification

?
\[\begin{array}{l} \\ \left(x - \frac{y}{z \cdot 3}\right) + \frac{t}{\left(z \cdot 3\right) \cdot y} \end{array} \]
(FPCore (x y z t)
 :precision binary64
 (+ (- x (/ y (* z 3.0))) (/ t (* (* z 3.0) y))))
double code(double x, double y, double z, double t) {
	return (x - (y / (z * 3.0))) + (t / ((z * 3.0) * y));
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z, t)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8), intent (in) :: t
    code = (x - (y / (z * 3.0d0))) + (t / ((z * 3.0d0) * y))
end function
public static double code(double x, double y, double z, double t) {
	return (x - (y / (z * 3.0))) + (t / ((z * 3.0) * y));
}
def code(x, y, z, t):
	return (x - (y / (z * 3.0))) + (t / ((z * 3.0) * y))
function code(x, y, z, t)
	return Float64(Float64(x - Float64(y / Float64(z * 3.0))) + Float64(t / Float64(Float64(z * 3.0) * y)))
end
function tmp = code(x, y, z, t)
	tmp = (x - (y / (z * 3.0))) + (t / ((z * 3.0) * y));
end
code[x_, y_, z_, t_] := N[(N[(x - N[(y / N[(z * 3.0), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] + N[(t / N[(N[(z * 3.0), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
\begin{array}{l}

\\
\left(x - \frac{y}{z \cdot 3}\right) + \frac{t}{\left(z \cdot 3\right) \cdot y}
\end{array}

Sampling outcomes in binary64 precision:

Local Percentage Accuracy vs ?

The average percentage accuracy by input value. Horizontal axis shows value of an input variable; the variable is choosen in the title. Vertical axis is accuracy; higher is better. Red represent the original program, while blue represents Herbie's suggestion. These can be toggled with buttons below the plot. The line is an average while dots represent individual samples.

Accuracy vs Speed?

Herbie found 11 alternatives:

AlternativeAccuracySpeedup
The accuracy (vertical axis) and speed (horizontal axis) of each alternatives. Up and to the right is better. The red square shows the initial program, and each blue circle shows an alternative.The line shows the best available speed-accuracy tradeoffs.

Initial Program: 95.6% accurate, 1.0× speedup?

\[\begin{array}{l} \\ \left(x - \frac{y}{z \cdot 3}\right) + \frac{t}{\left(z \cdot 3\right) \cdot y} \end{array} \]
(FPCore (x y z t)
 :precision binary64
 (+ (- x (/ y (* z 3.0))) (/ t (* (* z 3.0) y))))
double code(double x, double y, double z, double t) {
	return (x - (y / (z * 3.0))) + (t / ((z * 3.0) * y));
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z, t)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8), intent (in) :: t
    code = (x - (y / (z * 3.0d0))) + (t / ((z * 3.0d0) * y))
end function
public static double code(double x, double y, double z, double t) {
	return (x - (y / (z * 3.0))) + (t / ((z * 3.0) * y));
}
def code(x, y, z, t):
	return (x - (y / (z * 3.0))) + (t / ((z * 3.0) * y))
function code(x, y, z, t)
	return Float64(Float64(x - Float64(y / Float64(z * 3.0))) + Float64(t / Float64(Float64(z * 3.0) * y)))
end
function tmp = code(x, y, z, t)
	tmp = (x - (y / (z * 3.0))) + (t / ((z * 3.0) * y));
end
code[x_, y_, z_, t_] := N[(N[(x - N[(y / N[(z * 3.0), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] + N[(t / N[(N[(z * 3.0), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
\begin{array}{l}

\\
\left(x - \frac{y}{z \cdot 3}\right) + \frac{t}{\left(z \cdot 3\right) \cdot y}
\end{array}

Alternative 1: 97.6% accurate, 0.5× speedup?

\[\begin{array}{l} \\ \begin{array}{l} t_1 := \left(x - \frac{y}{z \cdot 3}\right) + \frac{t}{\left(z \cdot 3\right) \cdot y}\\ \mathbf{if}\;t\_1 \leq 10^{+288}:\\ \;\;\;\;t\_1\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(\frac{\frac{t}{y} - y}{z}, 0.3333333333333333, x\right)\\ \end{array} \end{array} \]
(FPCore (x y z t)
 :precision binary64
 (let* ((t_1 (+ (- x (/ y (* z 3.0))) (/ t (* (* z 3.0) y)))))
   (if (<= t_1 1e+288) t_1 (fma (/ (- (/ t y) y) z) 0.3333333333333333 x))))
double code(double x, double y, double z, double t) {
	double t_1 = (x - (y / (z * 3.0))) + (t / ((z * 3.0) * y));
	double tmp;
	if (t_1 <= 1e+288) {
		tmp = t_1;
	} else {
		tmp = fma((((t / y) - y) / z), 0.3333333333333333, x);
	}
	return tmp;
}
function code(x, y, z, t)
	t_1 = Float64(Float64(x - Float64(y / Float64(z * 3.0))) + Float64(t / Float64(Float64(z * 3.0) * y)))
	tmp = 0.0
	if (t_1 <= 1e+288)
		tmp = t_1;
	else
		tmp = fma(Float64(Float64(Float64(t / y) - y) / z), 0.3333333333333333, x);
	end
	return tmp
end
code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(x - N[(y / N[(z * 3.0), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] + N[(t / N[(N[(z * 3.0), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$1, 1e+288], t$95$1, N[(N[(N[(N[(t / y), $MachinePrecision] - y), $MachinePrecision] / z), $MachinePrecision] * 0.3333333333333333 + x), $MachinePrecision]]]
\begin{array}{l}

\\
\begin{array}{l}
t_1 := \left(x - \frac{y}{z \cdot 3}\right) + \frac{t}{\left(z \cdot 3\right) \cdot y}\\
\mathbf{if}\;t\_1 \leq 10^{+288}:\\
\;\;\;\;t\_1\\

\mathbf{else}:\\
\;\;\;\;\mathsf{fma}\left(\frac{\frac{t}{y} - y}{z}, 0.3333333333333333, x\right)\\


\end{array}
\end{array}
Derivation
  1. Split input into 2 regimes
  2. if (+.f64 (-.f64 x (/.f64 y (*.f64 z #s(literal 3 binary64)))) (/.f64 t (*.f64 (*.f64 z #s(literal 3 binary64)) y))) < 1e288

    1. Initial program 98.4%

      \[\left(x - \frac{y}{z \cdot 3}\right) + \frac{t}{\left(z \cdot 3\right) \cdot y} \]
    2. Add Preprocessing

    if 1e288 < (+.f64 (-.f64 x (/.f64 y (*.f64 z #s(literal 3 binary64)))) (/.f64 t (*.f64 (*.f64 z #s(literal 3 binary64)) y)))

    1. Initial program 88.0%

      \[\left(x - \frac{y}{z \cdot 3}\right) + \frac{t}{\left(z \cdot 3\right) \cdot y} \]
    2. Add Preprocessing
    3. Taylor expanded in x around 0

      \[\leadsto \color{blue}{\left(x + \frac{1}{3} \cdot \frac{t}{y \cdot z}\right) - \frac{1}{3} \cdot \frac{y}{z}} \]
    4. Step-by-step derivation
      1. associate--l+N/A

        \[\leadsto x + \color{blue}{\left(\frac{1}{3} \cdot \frac{t}{y \cdot z} - \frac{1}{3} \cdot \frac{y}{z}\right)} \]
      2. distribute-lft-out--N/A

        \[\leadsto x + \frac{1}{3} \cdot \color{blue}{\left(\frac{t}{y \cdot z} - \frac{y}{z}\right)} \]
      3. fp-cancel-sign-sub-invN/A

        \[\leadsto x - \color{blue}{\left(\mathsf{neg}\left(\frac{1}{3}\right)\right) \cdot \left(\frac{t}{y \cdot z} - \frac{y}{z}\right)} \]
      4. metadata-evalN/A

        \[\leadsto x - \frac{-1}{3} \cdot \left(\color{blue}{\frac{t}{y \cdot z}} - \frac{y}{z}\right) \]
      5. associate-/r*N/A

        \[\leadsto x - \frac{-1}{3} \cdot \left(\frac{\frac{t}{y}}{z} - \frac{\color{blue}{y}}{z}\right) \]
      6. sub-divN/A

        \[\leadsto x - \frac{-1}{3} \cdot \frac{\frac{t}{y} - y}{\color{blue}{z}} \]
      7. associate-/l*N/A

        \[\leadsto x - \frac{\frac{-1}{3} \cdot \left(\frac{t}{y} - y\right)}{\color{blue}{z}} \]
      8. distribute-lft-out--N/A

        \[\leadsto x - \frac{\frac{-1}{3} \cdot \frac{t}{y} - \frac{-1}{3} \cdot y}{z} \]
      9. *-lft-identityN/A

        \[\leadsto x - 1 \cdot \color{blue}{\frac{\frac{-1}{3} \cdot \frac{t}{y} - \frac{-1}{3} \cdot y}{z}} \]
      10. fp-cancel-sub-sign-invN/A

        \[\leadsto x + \color{blue}{\left(\mathsf{neg}\left(1\right)\right) \cdot \frac{\frac{-1}{3} \cdot \frac{t}{y} - \frac{-1}{3} \cdot y}{z}} \]
      11. metadata-evalN/A

        \[\leadsto x + -1 \cdot \frac{\color{blue}{\frac{-1}{3} \cdot \frac{t}{y} - \frac{-1}{3} \cdot y}}{z} \]
      12. +-commutativeN/A

        \[\leadsto -1 \cdot \frac{\frac{-1}{3} \cdot \frac{t}{y} - \frac{-1}{3} \cdot y}{z} + \color{blue}{x} \]
    5. Applied rewrites99.9%

      \[\leadsto \color{blue}{\mathsf{fma}\left(\frac{\frac{t}{y} - y}{z}, 0.3333333333333333, x\right)} \]
  3. Recombined 2 regimes into one program.
  4. Add Preprocessing

Alternative 2: 96.2% accurate, 0.9× speedup?

\[\begin{array}{l} \\ \left(x - \frac{y}{z \cdot 3}\right) + \frac{\frac{t}{z}}{3 \cdot y} \end{array} \]
(FPCore (x y z t)
 :precision binary64
 (+ (- x (/ y (* z 3.0))) (/ (/ t z) (* 3.0 y))))
double code(double x, double y, double z, double t) {
	return (x - (y / (z * 3.0))) + ((t / z) / (3.0 * y));
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z, t)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8), intent (in) :: t
    code = (x - (y / (z * 3.0d0))) + ((t / z) / (3.0d0 * y))
end function
public static double code(double x, double y, double z, double t) {
	return (x - (y / (z * 3.0))) + ((t / z) / (3.0 * y));
}
def code(x, y, z, t):
	return (x - (y / (z * 3.0))) + ((t / z) / (3.0 * y))
function code(x, y, z, t)
	return Float64(Float64(x - Float64(y / Float64(z * 3.0))) + Float64(Float64(t / z) / Float64(3.0 * y)))
end
function tmp = code(x, y, z, t)
	tmp = (x - (y / (z * 3.0))) + ((t / z) / (3.0 * y));
end
code[x_, y_, z_, t_] := N[(N[(x - N[(y / N[(z * 3.0), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] + N[(N[(t / z), $MachinePrecision] / N[(3.0 * y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
\begin{array}{l}

\\
\left(x - \frac{y}{z \cdot 3}\right) + \frac{\frac{t}{z}}{3 \cdot y}
\end{array}
Derivation
  1. Initial program 96.5%

    \[\left(x - \frac{y}{z \cdot 3}\right) + \frac{t}{\left(z \cdot 3\right) \cdot y} \]
  2. Add Preprocessing
  3. Step-by-step derivation
    1. lift-/.f64N/A

      \[\leadsto \left(x - \frac{y}{z \cdot 3}\right) + \color{blue}{\frac{t}{\left(z \cdot 3\right) \cdot y}} \]
    2. lift-*.f64N/A

      \[\leadsto \left(x - \frac{y}{z \cdot 3}\right) + \frac{t}{\color{blue}{\left(z \cdot 3\right)} \cdot y} \]
    3. lift-*.f64N/A

      \[\leadsto \left(x - \frac{y}{z \cdot 3}\right) + \frac{t}{\color{blue}{\left(z \cdot 3\right) \cdot y}} \]
    4. associate-*l*N/A

      \[\leadsto \left(x - \frac{y}{z \cdot 3}\right) + \frac{t}{\color{blue}{z \cdot \left(3 \cdot y\right)}} \]
    5. associate-/r*N/A

      \[\leadsto \left(x - \frac{y}{z \cdot 3}\right) + \color{blue}{\frac{\frac{t}{z}}{3 \cdot y}} \]
    6. lower-/.f64N/A

      \[\leadsto \left(x - \frac{y}{z \cdot 3}\right) + \color{blue}{\frac{\frac{t}{z}}{3 \cdot y}} \]
    7. lower-/.f64N/A

      \[\leadsto \left(x - \frac{y}{z \cdot 3}\right) + \frac{\color{blue}{\frac{t}{z}}}{3 \cdot y} \]
    8. lower-*.f6498.0

      \[\leadsto \left(x - \frac{y}{z \cdot 3}\right) + \frac{\frac{t}{z}}{\color{blue}{3 \cdot y}} \]
  4. Applied rewrites98.0%

    \[\leadsto \left(x - \frac{y}{z \cdot 3}\right) + \color{blue}{\frac{\frac{t}{z}}{3 \cdot y}} \]
  5. Add Preprocessing

Alternative 3: 89.9% accurate, 1.2× speedup?

\[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;y \leq -1.1 \cdot 10^{+20} \lor \neg \left(y \leq 3.5 \cdot 10^{+58}\right):\\ \;\;\;\;\mathsf{fma}\left(-0.3333333333333333, \frac{y}{z}, x\right)\\ \mathbf{else}:\\ \;\;\;\;x + \frac{t}{\left(z \cdot 3\right) \cdot y}\\ \end{array} \end{array} \]
(FPCore (x y z t)
 :precision binary64
 (if (or (<= y -1.1e+20) (not (<= y 3.5e+58)))
   (fma -0.3333333333333333 (/ y z) x)
   (+ x (/ t (* (* z 3.0) y)))))
double code(double x, double y, double z, double t) {
	double tmp;
	if ((y <= -1.1e+20) || !(y <= 3.5e+58)) {
		tmp = fma(-0.3333333333333333, (y / z), x);
	} else {
		tmp = x + (t / ((z * 3.0) * y));
	}
	return tmp;
}
function code(x, y, z, t)
	tmp = 0.0
	if ((y <= -1.1e+20) || !(y <= 3.5e+58))
		tmp = fma(-0.3333333333333333, Float64(y / z), x);
	else
		tmp = Float64(x + Float64(t / Float64(Float64(z * 3.0) * y)));
	end
	return tmp
end
code[x_, y_, z_, t_] := If[Or[LessEqual[y, -1.1e+20], N[Not[LessEqual[y, 3.5e+58]], $MachinePrecision]], N[(-0.3333333333333333 * N[(y / z), $MachinePrecision] + x), $MachinePrecision], N[(x + N[(t / N[(N[(z * 3.0), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]
\begin{array}{l}

\\
\begin{array}{l}
\mathbf{if}\;y \leq -1.1 \cdot 10^{+20} \lor \neg \left(y \leq 3.5 \cdot 10^{+58}\right):\\
\;\;\;\;\mathsf{fma}\left(-0.3333333333333333, \frac{y}{z}, x\right)\\

\mathbf{else}:\\
\;\;\;\;x + \frac{t}{\left(z \cdot 3\right) \cdot y}\\


\end{array}
\end{array}
Derivation
  1. Split input into 2 regimes
  2. if y < -1.1e20 or 3.4999999999999997e58 < y

    1. Initial program 99.8%

      \[\left(x - \frac{y}{z \cdot 3}\right) + \frac{t}{\left(z \cdot 3\right) \cdot y} \]
    2. Add Preprocessing
    3. Taylor expanded in t around 0

      \[\leadsto \color{blue}{x - \frac{1}{3} \cdot \frac{y}{z}} \]
    4. Step-by-step derivation
      1. metadata-evalN/A

        \[\leadsto x - \left(\mathsf{neg}\left(\frac{-1}{3}\right)\right) \cdot \frac{\color{blue}{y}}{z} \]
      2. fp-cancel-sign-sub-invN/A

        \[\leadsto x + \color{blue}{\frac{-1}{3} \cdot \frac{y}{z}} \]
      3. +-commutativeN/A

        \[\leadsto \frac{-1}{3} \cdot \frac{y}{z} + \color{blue}{x} \]
      4. lower-fma.f64N/A

        \[\leadsto \mathsf{fma}\left(\frac{-1}{3}, \color{blue}{\frac{y}{z}}, x\right) \]
      5. lower-/.f6495.7

        \[\leadsto \mathsf{fma}\left(-0.3333333333333333, \frac{y}{\color{blue}{z}}, x\right) \]
    5. Applied rewrites95.7%

      \[\leadsto \color{blue}{\mathsf{fma}\left(-0.3333333333333333, \frac{y}{z}, x\right)} \]

    if -1.1e20 < y < 3.4999999999999997e58

    1. Initial program 93.9%

      \[\left(x - \frac{y}{z \cdot 3}\right) + \frac{t}{\left(z \cdot 3\right) \cdot y} \]
    2. Add Preprocessing
    3. Taylor expanded in x around inf

      \[\leadsto \color{blue}{x} + \frac{t}{\left(z \cdot 3\right) \cdot y} \]
    4. Step-by-step derivation
      1. Applied rewrites88.0%

        \[\leadsto \color{blue}{x} + \frac{t}{\left(z \cdot 3\right) \cdot y} \]
    5. Recombined 2 regimes into one program.
    6. Final simplification91.3%

      \[\leadsto \begin{array}{l} \mathbf{if}\;y \leq -1.1 \cdot 10^{+20} \lor \neg \left(y \leq 3.5 \cdot 10^{+58}\right):\\ \;\;\;\;\mathsf{fma}\left(-0.3333333333333333, \frac{y}{z}, x\right)\\ \mathbf{else}:\\ \;\;\;\;x + \frac{t}{\left(z \cdot 3\right) \cdot y}\\ \end{array} \]
    7. Add Preprocessing

    Alternative 4: 89.9% accurate, 1.2× speedup?

    \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;y \leq -1.1 \cdot 10^{+20} \lor \neg \left(y \leq 3.5 \cdot 10^{+58}\right):\\ \;\;\;\;\mathsf{fma}\left(-0.3333333333333333, \frac{y}{z}, x\right)\\ \mathbf{else}:\\ \;\;\;\;x + \frac{t}{z \cdot \left(3 \cdot y\right)}\\ \end{array} \end{array} \]
    (FPCore (x y z t)
     :precision binary64
     (if (or (<= y -1.1e+20) (not (<= y 3.5e+58)))
       (fma -0.3333333333333333 (/ y z) x)
       (+ x (/ t (* z (* 3.0 y))))))
    double code(double x, double y, double z, double t) {
    	double tmp;
    	if ((y <= -1.1e+20) || !(y <= 3.5e+58)) {
    		tmp = fma(-0.3333333333333333, (y / z), x);
    	} else {
    		tmp = x + (t / (z * (3.0 * y)));
    	}
    	return tmp;
    }
    
    function code(x, y, z, t)
    	tmp = 0.0
    	if ((y <= -1.1e+20) || !(y <= 3.5e+58))
    		tmp = fma(-0.3333333333333333, Float64(y / z), x);
    	else
    		tmp = Float64(x + Float64(t / Float64(z * Float64(3.0 * y))));
    	end
    	return tmp
    end
    
    code[x_, y_, z_, t_] := If[Or[LessEqual[y, -1.1e+20], N[Not[LessEqual[y, 3.5e+58]], $MachinePrecision]], N[(-0.3333333333333333 * N[(y / z), $MachinePrecision] + x), $MachinePrecision], N[(x + N[(t / N[(z * N[(3.0 * y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]
    
    \begin{array}{l}
    
    \\
    \begin{array}{l}
    \mathbf{if}\;y \leq -1.1 \cdot 10^{+20} \lor \neg \left(y \leq 3.5 \cdot 10^{+58}\right):\\
    \;\;\;\;\mathsf{fma}\left(-0.3333333333333333, \frac{y}{z}, x\right)\\
    
    \mathbf{else}:\\
    \;\;\;\;x + \frac{t}{z \cdot \left(3 \cdot y\right)}\\
    
    
    \end{array}
    \end{array}
    
    Derivation
    1. Split input into 2 regimes
    2. if y < -1.1e20 or 3.4999999999999997e58 < y

      1. Initial program 99.8%

        \[\left(x - \frac{y}{z \cdot 3}\right) + \frac{t}{\left(z \cdot 3\right) \cdot y} \]
      2. Add Preprocessing
      3. Taylor expanded in t around 0

        \[\leadsto \color{blue}{x - \frac{1}{3} \cdot \frac{y}{z}} \]
      4. Step-by-step derivation
        1. metadata-evalN/A

          \[\leadsto x - \left(\mathsf{neg}\left(\frac{-1}{3}\right)\right) \cdot \frac{\color{blue}{y}}{z} \]
        2. fp-cancel-sign-sub-invN/A

          \[\leadsto x + \color{blue}{\frac{-1}{3} \cdot \frac{y}{z}} \]
        3. +-commutativeN/A

          \[\leadsto \frac{-1}{3} \cdot \frac{y}{z} + \color{blue}{x} \]
        4. lower-fma.f64N/A

          \[\leadsto \mathsf{fma}\left(\frac{-1}{3}, \color{blue}{\frac{y}{z}}, x\right) \]
        5. lower-/.f6495.7

          \[\leadsto \mathsf{fma}\left(-0.3333333333333333, \frac{y}{\color{blue}{z}}, x\right) \]
      5. Applied rewrites95.7%

        \[\leadsto \color{blue}{\mathsf{fma}\left(-0.3333333333333333, \frac{y}{z}, x\right)} \]

      if -1.1e20 < y < 3.4999999999999997e58

      1. Initial program 93.9%

        \[\left(x - \frac{y}{z \cdot 3}\right) + \frac{t}{\left(z \cdot 3\right) \cdot y} \]
      2. Add Preprocessing
      3. Taylor expanded in x around inf

        \[\leadsto \color{blue}{x} + \frac{t}{\left(z \cdot 3\right) \cdot y} \]
      4. Step-by-step derivation
        1. Applied rewrites88.0%

          \[\leadsto \color{blue}{x} + \frac{t}{\left(z \cdot 3\right) \cdot y} \]
        2. Step-by-step derivation
          1. lift-*.f64N/A

            \[\leadsto x + \frac{t}{\color{blue}{\left(z \cdot 3\right)} \cdot y} \]
          2. lift-*.f64N/A

            \[\leadsto x + \frac{t}{\color{blue}{\left(z \cdot 3\right) \cdot y}} \]
          3. associate-*l*N/A

            \[\leadsto x + \frac{t}{\color{blue}{z \cdot \left(3 \cdot y\right)}} \]
          4. lower-*.f64N/A

            \[\leadsto x + \frac{t}{\color{blue}{z \cdot \left(3 \cdot y\right)}} \]
          5. lift-*.f6488.0

            \[\leadsto x + \frac{t}{z \cdot \color{blue}{\left(3 \cdot y\right)}} \]
        3. Applied rewrites88.0%

          \[\leadsto x + \frac{t}{\color{blue}{z \cdot \left(3 \cdot y\right)}} \]
      5. Recombined 2 regimes into one program.
      6. Final simplification91.3%

        \[\leadsto \begin{array}{l} \mathbf{if}\;y \leq -1.1 \cdot 10^{+20} \lor \neg \left(y \leq 3.5 \cdot 10^{+58}\right):\\ \;\;\;\;\mathsf{fma}\left(-0.3333333333333333, \frac{y}{z}, x\right)\\ \mathbf{else}:\\ \;\;\;\;x + \frac{t}{z \cdot \left(3 \cdot y\right)}\\ \end{array} \]
      7. Add Preprocessing

      Alternative 5: 89.9% accurate, 1.2× speedup?

      \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;y \leq -1.1 \cdot 10^{+20} \lor \neg \left(y \leq 3.5 \cdot 10^{+58}\right):\\ \;\;\;\;\mathsf{fma}\left(-0.3333333333333333, \frac{y}{z}, x\right)\\ \mathbf{else}:\\ \;\;\;\;x + \frac{t}{\left(z \cdot y\right) \cdot 3}\\ \end{array} \end{array} \]
      (FPCore (x y z t)
       :precision binary64
       (if (or (<= y -1.1e+20) (not (<= y 3.5e+58)))
         (fma -0.3333333333333333 (/ y z) x)
         (+ x (/ t (* (* z y) 3.0)))))
      double code(double x, double y, double z, double t) {
      	double tmp;
      	if ((y <= -1.1e+20) || !(y <= 3.5e+58)) {
      		tmp = fma(-0.3333333333333333, (y / z), x);
      	} else {
      		tmp = x + (t / ((z * y) * 3.0));
      	}
      	return tmp;
      }
      
      function code(x, y, z, t)
      	tmp = 0.0
      	if ((y <= -1.1e+20) || !(y <= 3.5e+58))
      		tmp = fma(-0.3333333333333333, Float64(y / z), x);
      	else
      		tmp = Float64(x + Float64(t / Float64(Float64(z * y) * 3.0)));
      	end
      	return tmp
      end
      
      code[x_, y_, z_, t_] := If[Or[LessEqual[y, -1.1e+20], N[Not[LessEqual[y, 3.5e+58]], $MachinePrecision]], N[(-0.3333333333333333 * N[(y / z), $MachinePrecision] + x), $MachinePrecision], N[(x + N[(t / N[(N[(z * y), $MachinePrecision] * 3.0), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]
      
      \begin{array}{l}
      
      \\
      \begin{array}{l}
      \mathbf{if}\;y \leq -1.1 \cdot 10^{+20} \lor \neg \left(y \leq 3.5 \cdot 10^{+58}\right):\\
      \;\;\;\;\mathsf{fma}\left(-0.3333333333333333, \frac{y}{z}, x\right)\\
      
      \mathbf{else}:\\
      \;\;\;\;x + \frac{t}{\left(z \cdot y\right) \cdot 3}\\
      
      
      \end{array}
      \end{array}
      
      Derivation
      1. Split input into 2 regimes
      2. if y < -1.1e20 or 3.4999999999999997e58 < y

        1. Initial program 99.8%

          \[\left(x - \frac{y}{z \cdot 3}\right) + \frac{t}{\left(z \cdot 3\right) \cdot y} \]
        2. Add Preprocessing
        3. Taylor expanded in t around 0

          \[\leadsto \color{blue}{x - \frac{1}{3} \cdot \frac{y}{z}} \]
        4. Step-by-step derivation
          1. metadata-evalN/A

            \[\leadsto x - \left(\mathsf{neg}\left(\frac{-1}{3}\right)\right) \cdot \frac{\color{blue}{y}}{z} \]
          2. fp-cancel-sign-sub-invN/A

            \[\leadsto x + \color{blue}{\frac{-1}{3} \cdot \frac{y}{z}} \]
          3. +-commutativeN/A

            \[\leadsto \frac{-1}{3} \cdot \frac{y}{z} + \color{blue}{x} \]
          4. lower-fma.f64N/A

            \[\leadsto \mathsf{fma}\left(\frac{-1}{3}, \color{blue}{\frac{y}{z}}, x\right) \]
          5. lower-/.f6495.7

            \[\leadsto \mathsf{fma}\left(-0.3333333333333333, \frac{y}{\color{blue}{z}}, x\right) \]
        5. Applied rewrites95.7%

          \[\leadsto \color{blue}{\mathsf{fma}\left(-0.3333333333333333, \frac{y}{z}, x\right)} \]

        if -1.1e20 < y < 3.4999999999999997e58

        1. Initial program 93.9%

          \[\left(x - \frac{y}{z \cdot 3}\right) + \frac{t}{\left(z \cdot 3\right) \cdot y} \]
        2. Add Preprocessing
        3. Taylor expanded in x around inf

          \[\leadsto \color{blue}{x} + \frac{t}{\left(z \cdot 3\right) \cdot y} \]
        4. Step-by-step derivation
          1. Applied rewrites88.0%

            \[\leadsto \color{blue}{x} + \frac{t}{\left(z \cdot 3\right) \cdot y} \]
          2. Taylor expanded in y around 0

            \[\leadsto x + \frac{t}{\color{blue}{3 \cdot \left(y \cdot z\right)}} \]
          3. Step-by-step derivation
            1. *-commutativeN/A

              \[\leadsto x + \frac{t}{\left(y \cdot z\right) \cdot \color{blue}{3}} \]
            2. lower-*.f64N/A

              \[\leadsto x + \frac{t}{\left(y \cdot z\right) \cdot \color{blue}{3}} \]
            3. *-commutativeN/A

              \[\leadsto x + \frac{t}{\left(z \cdot y\right) \cdot 3} \]
            4. lower-*.f6487.9

              \[\leadsto x + \frac{t}{\left(z \cdot y\right) \cdot 3} \]
          4. Applied rewrites87.9%

            \[\leadsto x + \frac{t}{\color{blue}{\left(z \cdot y\right) \cdot 3}} \]
        5. Recombined 2 regimes into one program.
        6. Final simplification91.3%

          \[\leadsto \begin{array}{l} \mathbf{if}\;y \leq -1.1 \cdot 10^{+20} \lor \neg \left(y \leq 3.5 \cdot 10^{+58}\right):\\ \;\;\;\;\mathsf{fma}\left(-0.3333333333333333, \frac{y}{z}, x\right)\\ \mathbf{else}:\\ \;\;\;\;x + \frac{t}{\left(z \cdot y\right) \cdot 3}\\ \end{array} \]
        7. Add Preprocessing

        Alternative 6: 76.4% accurate, 1.3× speedup?

        \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;y \leq -2.35 \cdot 10^{-10} \lor \neg \left(y \leq 1.02 \cdot 10^{-45}\right):\\ \;\;\;\;\mathsf{fma}\left(-0.3333333333333333, \frac{y}{z}, x\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{0.3333333333333333 \cdot t}{z \cdot y}\\ \end{array} \end{array} \]
        (FPCore (x y z t)
         :precision binary64
         (if (or (<= y -2.35e-10) (not (<= y 1.02e-45)))
           (fma -0.3333333333333333 (/ y z) x)
           (/ (* 0.3333333333333333 t) (* z y))))
        double code(double x, double y, double z, double t) {
        	double tmp;
        	if ((y <= -2.35e-10) || !(y <= 1.02e-45)) {
        		tmp = fma(-0.3333333333333333, (y / z), x);
        	} else {
        		tmp = (0.3333333333333333 * t) / (z * y);
        	}
        	return tmp;
        }
        
        function code(x, y, z, t)
        	tmp = 0.0
        	if ((y <= -2.35e-10) || !(y <= 1.02e-45))
        		tmp = fma(-0.3333333333333333, Float64(y / z), x);
        	else
        		tmp = Float64(Float64(0.3333333333333333 * t) / Float64(z * y));
        	end
        	return tmp
        end
        
        code[x_, y_, z_, t_] := If[Or[LessEqual[y, -2.35e-10], N[Not[LessEqual[y, 1.02e-45]], $MachinePrecision]], N[(-0.3333333333333333 * N[(y / z), $MachinePrecision] + x), $MachinePrecision], N[(N[(0.3333333333333333 * t), $MachinePrecision] / N[(z * y), $MachinePrecision]), $MachinePrecision]]
        
        \begin{array}{l}
        
        \\
        \begin{array}{l}
        \mathbf{if}\;y \leq -2.35 \cdot 10^{-10} \lor \neg \left(y \leq 1.02 \cdot 10^{-45}\right):\\
        \;\;\;\;\mathsf{fma}\left(-0.3333333333333333, \frac{y}{z}, x\right)\\
        
        \mathbf{else}:\\
        \;\;\;\;\frac{0.3333333333333333 \cdot t}{z \cdot y}\\
        
        
        \end{array}
        \end{array}
        
        Derivation
        1. Split input into 2 regimes
        2. if y < -2.3500000000000002e-10 or 1.0199999999999999e-45 < y

          1. Initial program 99.8%

            \[\left(x - \frac{y}{z \cdot 3}\right) + \frac{t}{\left(z \cdot 3\right) \cdot y} \]
          2. Add Preprocessing
          3. Taylor expanded in t around 0

            \[\leadsto \color{blue}{x - \frac{1}{3} \cdot \frac{y}{z}} \]
          4. Step-by-step derivation
            1. metadata-evalN/A

              \[\leadsto x - \left(\mathsf{neg}\left(\frac{-1}{3}\right)\right) \cdot \frac{\color{blue}{y}}{z} \]
            2. fp-cancel-sign-sub-invN/A

              \[\leadsto x + \color{blue}{\frac{-1}{3} \cdot \frac{y}{z}} \]
            3. +-commutativeN/A

              \[\leadsto \frac{-1}{3} \cdot \frac{y}{z} + \color{blue}{x} \]
            4. lower-fma.f64N/A

              \[\leadsto \mathsf{fma}\left(\frac{-1}{3}, \color{blue}{\frac{y}{z}}, x\right) \]
            5. lower-/.f6491.2

              \[\leadsto \mathsf{fma}\left(-0.3333333333333333, \frac{y}{\color{blue}{z}}, x\right) \]
          5. Applied rewrites91.2%

            \[\leadsto \color{blue}{\mathsf{fma}\left(-0.3333333333333333, \frac{y}{z}, x\right)} \]

          if -2.3500000000000002e-10 < y < 1.0199999999999999e-45

          1. Initial program 92.9%

            \[\left(x - \frac{y}{z \cdot 3}\right) + \frac{t}{\left(z \cdot 3\right) \cdot y} \]
          2. Add Preprocessing
          3. Step-by-step derivation
            1. lift-/.f64N/A

              \[\leadsto \left(x - \frac{y}{z \cdot 3}\right) + \color{blue}{\frac{t}{\left(z \cdot 3\right) \cdot y}} \]
            2. lift-*.f64N/A

              \[\leadsto \left(x - \frac{y}{z \cdot 3}\right) + \frac{t}{\color{blue}{\left(z \cdot 3\right)} \cdot y} \]
            3. lift-*.f64N/A

              \[\leadsto \left(x - \frac{y}{z \cdot 3}\right) + \frac{t}{\color{blue}{\left(z \cdot 3\right) \cdot y}} \]
            4. associate-*l*N/A

              \[\leadsto \left(x - \frac{y}{z \cdot 3}\right) + \frac{t}{\color{blue}{z \cdot \left(3 \cdot y\right)}} \]
            5. associate-/r*N/A

              \[\leadsto \left(x - \frac{y}{z \cdot 3}\right) + \color{blue}{\frac{\frac{t}{z}}{3 \cdot y}} \]
            6. lower-/.f64N/A

              \[\leadsto \left(x - \frac{y}{z \cdot 3}\right) + \color{blue}{\frac{\frac{t}{z}}{3 \cdot y}} \]
            7. lower-/.f64N/A

              \[\leadsto \left(x - \frac{y}{z \cdot 3}\right) + \frac{\color{blue}{\frac{t}{z}}}{3 \cdot y} \]
            8. lower-*.f6496.9

              \[\leadsto \left(x - \frac{y}{z \cdot 3}\right) + \frac{\frac{t}{z}}{\color{blue}{3 \cdot y}} \]
          4. Applied rewrites96.9%

            \[\leadsto \left(x - \frac{y}{z \cdot 3}\right) + \color{blue}{\frac{\frac{t}{z}}{3 \cdot y}} \]
          5. Step-by-step derivation
            1. lift-+.f64N/A

              \[\leadsto \color{blue}{\left(x - \frac{y}{z \cdot 3}\right) + \frac{\frac{t}{z}}{3 \cdot y}} \]
            2. lift--.f64N/A

              \[\leadsto \color{blue}{\left(x - \frac{y}{z \cdot 3}\right)} + \frac{\frac{t}{z}}{3 \cdot y} \]
            3. lift-*.f64N/A

              \[\leadsto \left(x - \frac{y}{\color{blue}{z \cdot 3}}\right) + \frac{\frac{t}{z}}{3 \cdot y} \]
            4. lift-/.f64N/A

              \[\leadsto \left(x - \color{blue}{\frac{y}{z \cdot 3}}\right) + \frac{\frac{t}{z}}{3 \cdot y} \]
            5. lift-/.f64N/A

              \[\leadsto \left(x - \frac{y}{z \cdot 3}\right) + \frac{\color{blue}{\frac{t}{z}}}{3 \cdot y} \]
            6. lift-*.f64N/A

              \[\leadsto \left(x - \frac{y}{z \cdot 3}\right) + \frac{\frac{t}{z}}{\color{blue}{3 \cdot y}} \]
            7. lift-/.f64N/A

              \[\leadsto \left(x - \frac{y}{z \cdot 3}\right) + \color{blue}{\frac{\frac{t}{z}}{3 \cdot y}} \]
            8. associate-+l-N/A

              \[\leadsto \color{blue}{x - \left(\frac{y}{z \cdot 3} - \frac{\frac{t}{z}}{3 \cdot y}\right)} \]
            9. associate-/l/N/A

              \[\leadsto x - \left(\frac{y}{z \cdot 3} - \color{blue}{\frac{t}{z \cdot \left(3 \cdot y\right)}}\right) \]
            10. associate-*l*N/A

              \[\leadsto x - \left(\frac{y}{z \cdot 3} - \frac{t}{\color{blue}{\left(z \cdot 3\right) \cdot y}}\right) \]
            11. lower--.f64N/A

              \[\leadsto \color{blue}{x - \left(\frac{y}{z \cdot 3} - \frac{t}{\left(z \cdot 3\right) \cdot y}\right)} \]
            12. lower--.f64N/A

              \[\leadsto x - \color{blue}{\left(\frac{y}{z \cdot 3} - \frac{t}{\left(z \cdot 3\right) \cdot y}\right)} \]
            13. lift-/.f64N/A

              \[\leadsto x - \left(\color{blue}{\frac{y}{z \cdot 3}} - \frac{t}{\left(z \cdot 3\right) \cdot y}\right) \]
            14. *-commutativeN/A

              \[\leadsto x - \left(\frac{y}{\color{blue}{3 \cdot z}} - \frac{t}{\left(z \cdot 3\right) \cdot y}\right) \]
            15. lower-*.f64N/A

              \[\leadsto x - \left(\frac{y}{\color{blue}{3 \cdot z}} - \frac{t}{\left(z \cdot 3\right) \cdot y}\right) \]
            16. lift-*.f64N/A

              \[\leadsto x - \left(\frac{y}{3 \cdot z} - \frac{t}{\color{blue}{\left(z \cdot 3\right) \cdot y}}\right) \]
            17. lift-*.f64N/A

              \[\leadsto x - \left(\frac{y}{3 \cdot z} - \frac{t}{\color{blue}{\left(z \cdot 3\right)} \cdot y}\right) \]
            18. lift-/.f6492.9

              \[\leadsto x - \left(\frac{y}{3 \cdot z} - \color{blue}{\frac{t}{\left(z \cdot 3\right) \cdot y}}\right) \]
            19. lift-*.f64N/A

              \[\leadsto x - \left(\frac{y}{3 \cdot z} - \frac{t}{\color{blue}{\left(z \cdot 3\right)} \cdot y}\right) \]
            20. *-commutativeN/A

              \[\leadsto x - \left(\frac{y}{3 \cdot z} - \frac{t}{\color{blue}{\left(3 \cdot z\right)} \cdot y}\right) \]
            21. lower-*.f6492.9

              \[\leadsto x - \left(\frac{y}{3 \cdot z} - \frac{t}{\color{blue}{\left(3 \cdot z\right)} \cdot y}\right) \]
          6. Applied rewrites92.9%

            \[\leadsto \color{blue}{x - \left(\frac{y}{3 \cdot z} - \frac{t}{\left(3 \cdot z\right) \cdot y}\right)} \]
          7. Taylor expanded in y around 0

            \[\leadsto \color{blue}{\frac{1}{3} \cdot \frac{t}{y \cdot z}} \]
          8. Step-by-step derivation
            1. associate--r-N/A

              \[\leadsto \color{blue}{\frac{1}{3}} \cdot \frac{t}{y \cdot z} \]
            2. *-commutativeN/A

              \[\leadsto \frac{1}{3} \cdot \frac{t}{y \cdot z} \]
            3. *-commutativeN/A

              \[\leadsto \frac{1}{3} \cdot \frac{t}{y \cdot z} \]
            4. *-commutativeN/A

              \[\leadsto \frac{t}{y \cdot z} \cdot \color{blue}{\frac{1}{3}} \]
            5. lower-*.f64N/A

              \[\leadsto \frac{t}{y \cdot z} \cdot \color{blue}{\frac{1}{3}} \]
            6. associate-/r*N/A

              \[\leadsto \frac{\frac{t}{y}}{z} \cdot \frac{1}{3} \]
            7. lower-/.f64N/A

              \[\leadsto \frac{\frac{t}{y}}{z} \cdot \frac{1}{3} \]
            8. lift-/.f6460.4

              \[\leadsto \frac{\frac{t}{y}}{z} \cdot 0.3333333333333333 \]
          9. Applied rewrites60.4%

            \[\leadsto \color{blue}{\frac{\frac{t}{y}}{z} \cdot 0.3333333333333333} \]
          10. Step-by-step derivation
            1. lift-*.f64N/A

              \[\leadsto \frac{\frac{t}{y}}{z} \cdot \color{blue}{\frac{1}{3}} \]
            2. lift-/.f64N/A

              \[\leadsto \frac{\frac{t}{y}}{z} \cdot \frac{1}{3} \]
            3. lift-/.f64N/A

              \[\leadsto \frac{\frac{t}{y}}{z} \cdot \frac{1}{3} \]
            4. *-commutativeN/A

              \[\leadsto \frac{1}{3} \cdot \color{blue}{\frac{\frac{t}{y}}{z}} \]
            5. associate-/r*N/A

              \[\leadsto \frac{1}{3} \cdot \frac{t}{\color{blue}{y \cdot z}} \]
            6. associate-*r/N/A

              \[\leadsto \frac{\frac{1}{3} \cdot t}{\color{blue}{y \cdot z}} \]
            7. lower-/.f64N/A

              \[\leadsto \frac{\frac{1}{3} \cdot t}{\color{blue}{y \cdot z}} \]
            8. lower-*.f64N/A

              \[\leadsto \frac{\frac{1}{3} \cdot t}{\color{blue}{y} \cdot z} \]
            9. *-commutativeN/A

              \[\leadsto \frac{\frac{1}{3} \cdot t}{z \cdot \color{blue}{y}} \]
            10. lower-*.f6464.3

              \[\leadsto \frac{0.3333333333333333 \cdot t}{z \cdot \color{blue}{y}} \]
          11. Applied rewrites64.3%

            \[\leadsto \frac{0.3333333333333333 \cdot t}{\color{blue}{z \cdot y}} \]
        3. Recombined 2 regimes into one program.
        4. Final simplification78.3%

          \[\leadsto \begin{array}{l} \mathbf{if}\;y \leq -2.35 \cdot 10^{-10} \lor \neg \left(y \leq 1.02 \cdot 10^{-45}\right):\\ \;\;\;\;\mathsf{fma}\left(-0.3333333333333333, \frac{y}{z}, x\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{0.3333333333333333 \cdot t}{z \cdot y}\\ \end{array} \]
        5. Add Preprocessing

        Alternative 7: 76.4% accurate, 1.3× speedup?

        \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;y \leq -2.35 \cdot 10^{-10} \lor \neg \left(y \leq 1.02 \cdot 10^{-45}\right):\\ \;\;\;\;\mathsf{fma}\left(-0.3333333333333333, \frac{y}{z}, x\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{t}{z \cdot y} \cdot 0.3333333333333333\\ \end{array} \end{array} \]
        (FPCore (x y z t)
         :precision binary64
         (if (or (<= y -2.35e-10) (not (<= y 1.02e-45)))
           (fma -0.3333333333333333 (/ y z) x)
           (* (/ t (* z y)) 0.3333333333333333)))
        double code(double x, double y, double z, double t) {
        	double tmp;
        	if ((y <= -2.35e-10) || !(y <= 1.02e-45)) {
        		tmp = fma(-0.3333333333333333, (y / z), x);
        	} else {
        		tmp = (t / (z * y)) * 0.3333333333333333;
        	}
        	return tmp;
        }
        
        function code(x, y, z, t)
        	tmp = 0.0
        	if ((y <= -2.35e-10) || !(y <= 1.02e-45))
        		tmp = fma(-0.3333333333333333, Float64(y / z), x);
        	else
        		tmp = Float64(Float64(t / Float64(z * y)) * 0.3333333333333333);
        	end
        	return tmp
        end
        
        code[x_, y_, z_, t_] := If[Or[LessEqual[y, -2.35e-10], N[Not[LessEqual[y, 1.02e-45]], $MachinePrecision]], N[(-0.3333333333333333 * N[(y / z), $MachinePrecision] + x), $MachinePrecision], N[(N[(t / N[(z * y), $MachinePrecision]), $MachinePrecision] * 0.3333333333333333), $MachinePrecision]]
        
        \begin{array}{l}
        
        \\
        \begin{array}{l}
        \mathbf{if}\;y \leq -2.35 \cdot 10^{-10} \lor \neg \left(y \leq 1.02 \cdot 10^{-45}\right):\\
        \;\;\;\;\mathsf{fma}\left(-0.3333333333333333, \frac{y}{z}, x\right)\\
        
        \mathbf{else}:\\
        \;\;\;\;\frac{t}{z \cdot y} \cdot 0.3333333333333333\\
        
        
        \end{array}
        \end{array}
        
        Derivation
        1. Split input into 2 regimes
        2. if y < -2.3500000000000002e-10 or 1.0199999999999999e-45 < y

          1. Initial program 99.8%

            \[\left(x - \frac{y}{z \cdot 3}\right) + \frac{t}{\left(z \cdot 3\right) \cdot y} \]
          2. Add Preprocessing
          3. Taylor expanded in t around 0

            \[\leadsto \color{blue}{x - \frac{1}{3} \cdot \frac{y}{z}} \]
          4. Step-by-step derivation
            1. metadata-evalN/A

              \[\leadsto x - \left(\mathsf{neg}\left(\frac{-1}{3}\right)\right) \cdot \frac{\color{blue}{y}}{z} \]
            2. fp-cancel-sign-sub-invN/A

              \[\leadsto x + \color{blue}{\frac{-1}{3} \cdot \frac{y}{z}} \]
            3. +-commutativeN/A

              \[\leadsto \frac{-1}{3} \cdot \frac{y}{z} + \color{blue}{x} \]
            4. lower-fma.f64N/A

              \[\leadsto \mathsf{fma}\left(\frac{-1}{3}, \color{blue}{\frac{y}{z}}, x\right) \]
            5. lower-/.f6491.2

              \[\leadsto \mathsf{fma}\left(-0.3333333333333333, \frac{y}{\color{blue}{z}}, x\right) \]
          5. Applied rewrites91.2%

            \[\leadsto \color{blue}{\mathsf{fma}\left(-0.3333333333333333, \frac{y}{z}, x\right)} \]

          if -2.3500000000000002e-10 < y < 1.0199999999999999e-45

          1. Initial program 92.9%

            \[\left(x - \frac{y}{z \cdot 3}\right) + \frac{t}{\left(z \cdot 3\right) \cdot y} \]
          2. Add Preprocessing
          3. Taylor expanded in y around 0

            \[\leadsto \color{blue}{\frac{1}{3} \cdot \frac{t}{y \cdot z}} \]
          4. Step-by-step derivation
            1. *-commutativeN/A

              \[\leadsto \frac{t}{y \cdot z} \cdot \color{blue}{\frac{1}{3}} \]
            2. lower-*.f64N/A

              \[\leadsto \frac{t}{y \cdot z} \cdot \color{blue}{\frac{1}{3}} \]
            3. lower-/.f64N/A

              \[\leadsto \frac{t}{y \cdot z} \cdot \frac{1}{3} \]
            4. *-commutativeN/A

              \[\leadsto \frac{t}{z \cdot y} \cdot \frac{1}{3} \]
            5. lower-*.f6464.3

              \[\leadsto \frac{t}{z \cdot y} \cdot 0.3333333333333333 \]
          5. Applied rewrites64.3%

            \[\leadsto \color{blue}{\frac{t}{z \cdot y} \cdot 0.3333333333333333} \]
        3. Recombined 2 regimes into one program.
        4. Final simplification78.3%

          \[\leadsto \begin{array}{l} \mathbf{if}\;y \leq -2.35 \cdot 10^{-10} \lor \neg \left(y \leq 1.02 \cdot 10^{-45}\right):\\ \;\;\;\;\mathsf{fma}\left(-0.3333333333333333, \frac{y}{z}, x\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{t}{z \cdot y} \cdot 0.3333333333333333\\ \end{array} \]
        5. Add Preprocessing

        Alternative 8: 95.8% accurate, 1.4× speedup?

        \[\begin{array}{l} \\ \mathsf{fma}\left(\frac{\frac{t}{y} - y}{z}, 0.3333333333333333, x\right) \end{array} \]
        (FPCore (x y z t)
         :precision binary64
         (fma (/ (- (/ t y) y) z) 0.3333333333333333 x))
        double code(double x, double y, double z, double t) {
        	return fma((((t / y) - y) / z), 0.3333333333333333, x);
        }
        
        function code(x, y, z, t)
        	return fma(Float64(Float64(Float64(t / y) - y) / z), 0.3333333333333333, x)
        end
        
        code[x_, y_, z_, t_] := N[(N[(N[(N[(t / y), $MachinePrecision] - y), $MachinePrecision] / z), $MachinePrecision] * 0.3333333333333333 + x), $MachinePrecision]
        
        \begin{array}{l}
        
        \\
        \mathsf{fma}\left(\frac{\frac{t}{y} - y}{z}, 0.3333333333333333, x\right)
        \end{array}
        
        Derivation
        1. Initial program 96.5%

          \[\left(x - \frac{y}{z \cdot 3}\right) + \frac{t}{\left(z \cdot 3\right) \cdot y} \]
        2. Add Preprocessing
        3. Taylor expanded in x around 0

          \[\leadsto \color{blue}{\left(x + \frac{1}{3} \cdot \frac{t}{y \cdot z}\right) - \frac{1}{3} \cdot \frac{y}{z}} \]
        4. Step-by-step derivation
          1. associate--l+N/A

            \[\leadsto x + \color{blue}{\left(\frac{1}{3} \cdot \frac{t}{y \cdot z} - \frac{1}{3} \cdot \frac{y}{z}\right)} \]
          2. distribute-lft-out--N/A

            \[\leadsto x + \frac{1}{3} \cdot \color{blue}{\left(\frac{t}{y \cdot z} - \frac{y}{z}\right)} \]
          3. fp-cancel-sign-sub-invN/A

            \[\leadsto x - \color{blue}{\left(\mathsf{neg}\left(\frac{1}{3}\right)\right) \cdot \left(\frac{t}{y \cdot z} - \frac{y}{z}\right)} \]
          4. metadata-evalN/A

            \[\leadsto x - \frac{-1}{3} \cdot \left(\color{blue}{\frac{t}{y \cdot z}} - \frac{y}{z}\right) \]
          5. associate-/r*N/A

            \[\leadsto x - \frac{-1}{3} \cdot \left(\frac{\frac{t}{y}}{z} - \frac{\color{blue}{y}}{z}\right) \]
          6. sub-divN/A

            \[\leadsto x - \frac{-1}{3} \cdot \frac{\frac{t}{y} - y}{\color{blue}{z}} \]
          7. associate-/l*N/A

            \[\leadsto x - \frac{\frac{-1}{3} \cdot \left(\frac{t}{y} - y\right)}{\color{blue}{z}} \]
          8. distribute-lft-out--N/A

            \[\leadsto x - \frac{\frac{-1}{3} \cdot \frac{t}{y} - \frac{-1}{3} \cdot y}{z} \]
          9. *-lft-identityN/A

            \[\leadsto x - 1 \cdot \color{blue}{\frac{\frac{-1}{3} \cdot \frac{t}{y} - \frac{-1}{3} \cdot y}{z}} \]
          10. fp-cancel-sub-sign-invN/A

            \[\leadsto x + \color{blue}{\left(\mathsf{neg}\left(1\right)\right) \cdot \frac{\frac{-1}{3} \cdot \frac{t}{y} - \frac{-1}{3} \cdot y}{z}} \]
          11. metadata-evalN/A

            \[\leadsto x + -1 \cdot \frac{\color{blue}{\frac{-1}{3} \cdot \frac{t}{y} - \frac{-1}{3} \cdot y}}{z} \]
          12. +-commutativeN/A

            \[\leadsto -1 \cdot \frac{\frac{-1}{3} \cdot \frac{t}{y} - \frac{-1}{3} \cdot y}{z} + \color{blue}{x} \]
        5. Applied rewrites94.6%

          \[\leadsto \color{blue}{\mathsf{fma}\left(\frac{\frac{t}{y} - y}{z}, 0.3333333333333333, x\right)} \]
        6. Add Preprocessing

        Alternative 9: 48.5% accurate, 1.5× speedup?

        \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;y \leq -220000 \lor \neg \left(y \leq 1.32 \cdot 10^{+45}\right):\\ \;\;\;\;-0.3333333333333333 \cdot \frac{y}{z}\\ \mathbf{else}:\\ \;\;\;\;x\\ \end{array} \end{array} \]
        (FPCore (x y z t)
         :precision binary64
         (if (or (<= y -220000.0) (not (<= y 1.32e+45)))
           (* -0.3333333333333333 (/ y z))
           x))
        double code(double x, double y, double z, double t) {
        	double tmp;
        	if ((y <= -220000.0) || !(y <= 1.32e+45)) {
        		tmp = -0.3333333333333333 * (y / z);
        	} else {
        		tmp = x;
        	}
        	return tmp;
        }
        
        module fmin_fmax_functions
            implicit none
            private
            public fmax
            public fmin
        
            interface fmax
                module procedure fmax88
                module procedure fmax44
                module procedure fmax84
                module procedure fmax48
            end interface
            interface fmin
                module procedure fmin88
                module procedure fmin44
                module procedure fmin84
                module procedure fmin48
            end interface
        contains
            real(8) function fmax88(x, y) result (res)
                real(8), intent (in) :: x
                real(8), intent (in) :: y
                res = merge(y, merge(x, max(x, y), y /= y), x /= x)
            end function
            real(4) function fmax44(x, y) result (res)
                real(4), intent (in) :: x
                real(4), intent (in) :: y
                res = merge(y, merge(x, max(x, y), y /= y), x /= x)
            end function
            real(8) function fmax84(x, y) result(res)
                real(8), intent (in) :: x
                real(4), intent (in) :: y
                res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
            end function
            real(8) function fmax48(x, y) result(res)
                real(4), intent (in) :: x
                real(8), intent (in) :: y
                res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
            end function
            real(8) function fmin88(x, y) result (res)
                real(8), intent (in) :: x
                real(8), intent (in) :: y
                res = merge(y, merge(x, min(x, y), y /= y), x /= x)
            end function
            real(4) function fmin44(x, y) result (res)
                real(4), intent (in) :: x
                real(4), intent (in) :: y
                res = merge(y, merge(x, min(x, y), y /= y), x /= x)
            end function
            real(8) function fmin84(x, y) result(res)
                real(8), intent (in) :: x
                real(4), intent (in) :: y
                res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
            end function
            real(8) function fmin48(x, y) result(res)
                real(4), intent (in) :: x
                real(8), intent (in) :: y
                res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
            end function
        end module
        
        real(8) function code(x, y, z, t)
        use fmin_fmax_functions
            real(8), intent (in) :: x
            real(8), intent (in) :: y
            real(8), intent (in) :: z
            real(8), intent (in) :: t
            real(8) :: tmp
            if ((y <= (-220000.0d0)) .or. (.not. (y <= 1.32d+45))) then
                tmp = (-0.3333333333333333d0) * (y / z)
            else
                tmp = x
            end if
            code = tmp
        end function
        
        public static double code(double x, double y, double z, double t) {
        	double tmp;
        	if ((y <= -220000.0) || !(y <= 1.32e+45)) {
        		tmp = -0.3333333333333333 * (y / z);
        	} else {
        		tmp = x;
        	}
        	return tmp;
        }
        
        def code(x, y, z, t):
        	tmp = 0
        	if (y <= -220000.0) or not (y <= 1.32e+45):
        		tmp = -0.3333333333333333 * (y / z)
        	else:
        		tmp = x
        	return tmp
        
        function code(x, y, z, t)
        	tmp = 0.0
        	if ((y <= -220000.0) || !(y <= 1.32e+45))
        		tmp = Float64(-0.3333333333333333 * Float64(y / z));
        	else
        		tmp = x;
        	end
        	return tmp
        end
        
        function tmp_2 = code(x, y, z, t)
        	tmp = 0.0;
        	if ((y <= -220000.0) || ~((y <= 1.32e+45)))
        		tmp = -0.3333333333333333 * (y / z);
        	else
        		tmp = x;
        	end
        	tmp_2 = tmp;
        end
        
        code[x_, y_, z_, t_] := If[Or[LessEqual[y, -220000.0], N[Not[LessEqual[y, 1.32e+45]], $MachinePrecision]], N[(-0.3333333333333333 * N[(y / z), $MachinePrecision]), $MachinePrecision], x]
        
        \begin{array}{l}
        
        \\
        \begin{array}{l}
        \mathbf{if}\;y \leq -220000 \lor \neg \left(y \leq 1.32 \cdot 10^{+45}\right):\\
        \;\;\;\;-0.3333333333333333 \cdot \frac{y}{z}\\
        
        \mathbf{else}:\\
        \;\;\;\;x\\
        
        
        \end{array}
        \end{array}
        
        Derivation
        1. Split input into 2 regimes
        2. if y < -2.2e5 or 1.32000000000000005e45 < y

          1. Initial program 99.8%

            \[\left(x - \frac{y}{z \cdot 3}\right) + \frac{t}{\left(z \cdot 3\right) \cdot y} \]
          2. Add Preprocessing
          3. Taylor expanded in y around inf

            \[\leadsto \color{blue}{\frac{-1}{3} \cdot \frac{y}{z}} \]
          4. Step-by-step derivation
            1. lower-*.f64N/A

              \[\leadsto \frac{-1}{3} \cdot \color{blue}{\frac{y}{z}} \]
            2. lower-/.f6473.3

              \[\leadsto -0.3333333333333333 \cdot \frac{y}{\color{blue}{z}} \]
          5. Applied rewrites73.3%

            \[\leadsto \color{blue}{-0.3333333333333333 \cdot \frac{y}{z}} \]

          if -2.2e5 < y < 1.32000000000000005e45

          1. Initial program 93.6%

            \[\left(x - \frac{y}{z \cdot 3}\right) + \frac{t}{\left(z \cdot 3\right) \cdot y} \]
          2. Add Preprocessing
          3. Taylor expanded in x around inf

            \[\leadsto \color{blue}{x} \]
          4. Step-by-step derivation
            1. Applied rewrites33.2%

              \[\leadsto \color{blue}{x} \]
          5. Recombined 2 regimes into one program.
          6. Final simplification51.7%

            \[\leadsto \begin{array}{l} \mathbf{if}\;y \leq -220000 \lor \neg \left(y \leq 1.32 \cdot 10^{+45}\right):\\ \;\;\;\;-0.3333333333333333 \cdot \frac{y}{z}\\ \mathbf{else}:\\ \;\;\;\;x\\ \end{array} \]
          7. Add Preprocessing

          Alternative 10: 64.0% accurate, 2.4× speedup?

          \[\begin{array}{l} \\ \mathsf{fma}\left(-0.3333333333333333, \frac{y}{z}, x\right) \end{array} \]
          (FPCore (x y z t) :precision binary64 (fma -0.3333333333333333 (/ y z) x))
          double code(double x, double y, double z, double t) {
          	return fma(-0.3333333333333333, (y / z), x);
          }
          
          function code(x, y, z, t)
          	return fma(-0.3333333333333333, Float64(y / z), x)
          end
          
          code[x_, y_, z_, t_] := N[(-0.3333333333333333 * N[(y / z), $MachinePrecision] + x), $MachinePrecision]
          
          \begin{array}{l}
          
          \\
          \mathsf{fma}\left(-0.3333333333333333, \frac{y}{z}, x\right)
          \end{array}
          
          Derivation
          1. Initial program 96.5%

            \[\left(x - \frac{y}{z \cdot 3}\right) + \frac{t}{\left(z \cdot 3\right) \cdot y} \]
          2. Add Preprocessing
          3. Taylor expanded in t around 0

            \[\leadsto \color{blue}{x - \frac{1}{3} \cdot \frac{y}{z}} \]
          4. Step-by-step derivation
            1. metadata-evalN/A

              \[\leadsto x - \left(\mathsf{neg}\left(\frac{-1}{3}\right)\right) \cdot \frac{\color{blue}{y}}{z} \]
            2. fp-cancel-sign-sub-invN/A

              \[\leadsto x + \color{blue}{\frac{-1}{3} \cdot \frac{y}{z}} \]
            3. +-commutativeN/A

              \[\leadsto \frac{-1}{3} \cdot \frac{y}{z} + \color{blue}{x} \]
            4. lower-fma.f64N/A

              \[\leadsto \mathsf{fma}\left(\frac{-1}{3}, \color{blue}{\frac{y}{z}}, x\right) \]
            5. lower-/.f6463.1

              \[\leadsto \mathsf{fma}\left(-0.3333333333333333, \frac{y}{\color{blue}{z}}, x\right) \]
          5. Applied rewrites63.1%

            \[\leadsto \color{blue}{\mathsf{fma}\left(-0.3333333333333333, \frac{y}{z}, x\right)} \]
          6. Add Preprocessing

          Alternative 11: 30.4% accurate, 44.0× speedup?

          \[\begin{array}{l} \\ x \end{array} \]
          (FPCore (x y z t) :precision binary64 x)
          double code(double x, double y, double z, double t) {
          	return x;
          }
          
          module fmin_fmax_functions
              implicit none
              private
              public fmax
              public fmin
          
              interface fmax
                  module procedure fmax88
                  module procedure fmax44
                  module procedure fmax84
                  module procedure fmax48
              end interface
              interface fmin
                  module procedure fmin88
                  module procedure fmin44
                  module procedure fmin84
                  module procedure fmin48
              end interface
          contains
              real(8) function fmax88(x, y) result (res)
                  real(8), intent (in) :: x
                  real(8), intent (in) :: y
                  res = merge(y, merge(x, max(x, y), y /= y), x /= x)
              end function
              real(4) function fmax44(x, y) result (res)
                  real(4), intent (in) :: x
                  real(4), intent (in) :: y
                  res = merge(y, merge(x, max(x, y), y /= y), x /= x)
              end function
              real(8) function fmax84(x, y) result(res)
                  real(8), intent (in) :: x
                  real(4), intent (in) :: y
                  res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
              end function
              real(8) function fmax48(x, y) result(res)
                  real(4), intent (in) :: x
                  real(8), intent (in) :: y
                  res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
              end function
              real(8) function fmin88(x, y) result (res)
                  real(8), intent (in) :: x
                  real(8), intent (in) :: y
                  res = merge(y, merge(x, min(x, y), y /= y), x /= x)
              end function
              real(4) function fmin44(x, y) result (res)
                  real(4), intent (in) :: x
                  real(4), intent (in) :: y
                  res = merge(y, merge(x, min(x, y), y /= y), x /= x)
              end function
              real(8) function fmin84(x, y) result(res)
                  real(8), intent (in) :: x
                  real(4), intent (in) :: y
                  res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
              end function
              real(8) function fmin48(x, y) result(res)
                  real(4), intent (in) :: x
                  real(8), intent (in) :: y
                  res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
              end function
          end module
          
          real(8) function code(x, y, z, t)
          use fmin_fmax_functions
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              real(8), intent (in) :: z
              real(8), intent (in) :: t
              code = x
          end function
          
          public static double code(double x, double y, double z, double t) {
          	return x;
          }
          
          def code(x, y, z, t):
          	return x
          
          function code(x, y, z, t)
          	return x
          end
          
          function tmp = code(x, y, z, t)
          	tmp = x;
          end
          
          code[x_, y_, z_, t_] := x
          
          \begin{array}{l}
          
          \\
          x
          \end{array}
          
          Derivation
          1. Initial program 96.5%

            \[\left(x - \frac{y}{z \cdot 3}\right) + \frac{t}{\left(z \cdot 3\right) \cdot y} \]
          2. Add Preprocessing
          3. Taylor expanded in x around inf

            \[\leadsto \color{blue}{x} \]
          4. Step-by-step derivation
            1. Applied rewrites28.0%

              \[\leadsto \color{blue}{x} \]
            2. Add Preprocessing

            Developer Target 1: 96.2% accurate, 0.9× speedup?

            \[\begin{array}{l} \\ \left(x - \frac{y}{z \cdot 3}\right) + \frac{\frac{t}{z \cdot 3}}{y} \end{array} \]
            (FPCore (x y z t)
             :precision binary64
             (+ (- x (/ y (* z 3.0))) (/ (/ t (* z 3.0)) y)))
            double code(double x, double y, double z, double t) {
            	return (x - (y / (z * 3.0))) + ((t / (z * 3.0)) / y);
            }
            
            module fmin_fmax_functions
                implicit none
                private
                public fmax
                public fmin
            
                interface fmax
                    module procedure fmax88
                    module procedure fmax44
                    module procedure fmax84
                    module procedure fmax48
                end interface
                interface fmin
                    module procedure fmin88
                    module procedure fmin44
                    module procedure fmin84
                    module procedure fmin48
                end interface
            contains
                real(8) function fmax88(x, y) result (res)
                    real(8), intent (in) :: x
                    real(8), intent (in) :: y
                    res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                end function
                real(4) function fmax44(x, y) result (res)
                    real(4), intent (in) :: x
                    real(4), intent (in) :: y
                    res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                end function
                real(8) function fmax84(x, y) result(res)
                    real(8), intent (in) :: x
                    real(4), intent (in) :: y
                    res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                end function
                real(8) function fmax48(x, y) result(res)
                    real(4), intent (in) :: x
                    real(8), intent (in) :: y
                    res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                end function
                real(8) function fmin88(x, y) result (res)
                    real(8), intent (in) :: x
                    real(8), intent (in) :: y
                    res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                end function
                real(4) function fmin44(x, y) result (res)
                    real(4), intent (in) :: x
                    real(4), intent (in) :: y
                    res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                end function
                real(8) function fmin84(x, y) result(res)
                    real(8), intent (in) :: x
                    real(4), intent (in) :: y
                    res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                end function
                real(8) function fmin48(x, y) result(res)
                    real(4), intent (in) :: x
                    real(8), intent (in) :: y
                    res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                end function
            end module
            
            real(8) function code(x, y, z, t)
            use fmin_fmax_functions
                real(8), intent (in) :: x
                real(8), intent (in) :: y
                real(8), intent (in) :: z
                real(8), intent (in) :: t
                code = (x - (y / (z * 3.0d0))) + ((t / (z * 3.0d0)) / y)
            end function
            
            public static double code(double x, double y, double z, double t) {
            	return (x - (y / (z * 3.0))) + ((t / (z * 3.0)) / y);
            }
            
            def code(x, y, z, t):
            	return (x - (y / (z * 3.0))) + ((t / (z * 3.0)) / y)
            
            function code(x, y, z, t)
            	return Float64(Float64(x - Float64(y / Float64(z * 3.0))) + Float64(Float64(t / Float64(z * 3.0)) / y))
            end
            
            function tmp = code(x, y, z, t)
            	tmp = (x - (y / (z * 3.0))) + ((t / (z * 3.0)) / y);
            end
            
            code[x_, y_, z_, t_] := N[(N[(x - N[(y / N[(z * 3.0), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] + N[(N[(t / N[(z * 3.0), $MachinePrecision]), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]
            
            \begin{array}{l}
            
            \\
            \left(x - \frac{y}{z \cdot 3}\right) + \frac{\frac{t}{z \cdot 3}}{y}
            \end{array}
            

            Reproduce

            ?
            herbie shell --seed 2025056 
            (FPCore (x y z t)
              :name "Diagrams.Solve.Polynomial:cubForm  from diagrams-solve-0.1, H"
              :precision binary64
            
              :alt
              (! :herbie-platform default (+ (- x (/ y (* z 3))) (/ (/ t (* z 3)) y)))
            
              (+ (- x (/ y (* z 3.0))) (/ t (* (* z 3.0) y))))