(FPCore (x y z t) :precision binary64 (+ (- x (/ y (* z 3.0))) (/ t (* (* z 3.0) y))))
double code(double x, double y, double z, double t) { return (x - (y / (z * 3.0))) + (t / ((z * 3.0) * y)); }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t code = (x - (y / (z * 3.0d0))) + (t / ((z * 3.0d0) * y)) end function
public static double code(double x, double y, double z, double t) { return (x - (y / (z * 3.0))) + (t / ((z * 3.0) * y)); }
def code(x, y, z, t): return (x - (y / (z * 3.0))) + (t / ((z * 3.0) * y))
function code(x, y, z, t) return Float64(Float64(x - Float64(y / Float64(z * 3.0))) + Float64(t / Float64(Float64(z * 3.0) * y))) end
function tmp = code(x, y, z, t) tmp = (x - (y / (z * 3.0))) + (t / ((z * 3.0) * y)); end
code[x_, y_, z_, t_] := N[(N[(x - N[(y / N[(z * 3.0), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] + N[(t / N[(N[(z * 3.0), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ \left(x - \frac{y}{z \cdot 3}\right) + \frac{t}{\left(z \cdot 3\right) \cdot y} \end{array}
Sampling outcomes in binary64 precision:
Herbie found 11 alternatives:
Alternative | Accuracy | Speedup |
---|
(FPCore (x y z t) :precision binary64 (+ (- x (/ y (* z 3.0))) (/ t (* (* z 3.0) y))))
double code(double x, double y, double z, double t) { return (x - (y / (z * 3.0))) + (t / ((z * 3.0) * y)); }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t code = (x - (y / (z * 3.0d0))) + (t / ((z * 3.0d0) * y)) end function
public static double code(double x, double y, double z, double t) { return (x - (y / (z * 3.0))) + (t / ((z * 3.0) * y)); }
def code(x, y, z, t): return (x - (y / (z * 3.0))) + (t / ((z * 3.0) * y))
function code(x, y, z, t) return Float64(Float64(x - Float64(y / Float64(z * 3.0))) + Float64(t / Float64(Float64(z * 3.0) * y))) end
function tmp = code(x, y, z, t) tmp = (x - (y / (z * 3.0))) + (t / ((z * 3.0) * y)); end
code[x_, y_, z_, t_] := N[(N[(x - N[(y / N[(z * 3.0), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] + N[(t / N[(N[(z * 3.0), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ \left(x - \frac{y}{z \cdot 3}\right) + \frac{t}{\left(z \cdot 3\right) \cdot y} \end{array}
(FPCore (x y z t) :precision binary64 (let* ((t_1 (+ (- x (/ y (* z 3.0))) (/ t (* (* z 3.0) y))))) (if (<= t_1 1e+288) t_1 (fma (/ (- (/ t y) y) z) 0.3333333333333333 x))))
double code(double x, double y, double z, double t) { double t_1 = (x - (y / (z * 3.0))) + (t / ((z * 3.0) * y)); double tmp; if (t_1 <= 1e+288) { tmp = t_1; } else { tmp = fma((((t / y) - y) / z), 0.3333333333333333, x); } return tmp; }
function code(x, y, z, t) t_1 = Float64(Float64(x - Float64(y / Float64(z * 3.0))) + Float64(t / Float64(Float64(z * 3.0) * y))) tmp = 0.0 if (t_1 <= 1e+288) tmp = t_1; else tmp = fma(Float64(Float64(Float64(t / y) - y) / z), 0.3333333333333333, x); end return tmp end
code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(x - N[(y / N[(z * 3.0), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] + N[(t / N[(N[(z * 3.0), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$1, 1e+288], t$95$1, N[(N[(N[(N[(t / y), $MachinePrecision] - y), $MachinePrecision] / z), $MachinePrecision] * 0.3333333333333333 + x), $MachinePrecision]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \left(x - \frac{y}{z \cdot 3}\right) + \frac{t}{\left(z \cdot 3\right) \cdot y}\\ \mathbf{if}\;t\_1 \leq 10^{+288}:\\ \;\;\;\;t\_1\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(\frac{\frac{t}{y} - y}{z}, 0.3333333333333333, x\right)\\ \end{array} \end{array}
if (+.f64 (-.f64 x (/.f64 y (*.f64 z #s(literal 3 binary64)))) (/.f64 t (*.f64 (*.f64 z #s(literal 3 binary64)) y))) < 1e288
Initial program 98.4%
if 1e288 < (+.f64 (-.f64 x (/.f64 y (*.f64 z #s(literal 3 binary64)))) (/.f64 t (*.f64 (*.f64 z #s(literal 3 binary64)) y)))
Initial program 88.0%
Taylor expanded in x around 0
associate--l+
N/A
distribute-lft-out--
N/A
fp-cancel-sign-sub-inv
N/A
metadata-eval
N/A
associate-/r*
N/A
sub-div
N/A
associate-/l*
N/A
distribute-lft-out--
N/A
*-lft-identity
N/A
fp-cancel-sub-sign-inv
N/A
metadata-eval
N/A
+-commutative
N/A
Applied rewrites99.9%
(FPCore (x y z t) :precision binary64 (+ (- x (/ y (* z 3.0))) (/ (/ t z) (* 3.0 y))))
double code(double x, double y, double z, double t) { return (x - (y / (z * 3.0))) + ((t / z) / (3.0 * y)); }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t code = (x - (y / (z * 3.0d0))) + ((t / z) / (3.0d0 * y)) end function
public static double code(double x, double y, double z, double t) { return (x - (y / (z * 3.0))) + ((t / z) / (3.0 * y)); }
def code(x, y, z, t): return (x - (y / (z * 3.0))) + ((t / z) / (3.0 * y))
function code(x, y, z, t) return Float64(Float64(x - Float64(y / Float64(z * 3.0))) + Float64(Float64(t / z) / Float64(3.0 * y))) end
function tmp = code(x, y, z, t) tmp = (x - (y / (z * 3.0))) + ((t / z) / (3.0 * y)); end
code[x_, y_, z_, t_] := N[(N[(x - N[(y / N[(z * 3.0), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] + N[(N[(t / z), $MachinePrecision] / N[(3.0 * y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ \left(x - \frac{y}{z \cdot 3}\right) + \frac{\frac{t}{z}}{3 \cdot y} \end{array}
Initial program 96.5%
lift-/.f64
N/A
lift-*.f64
N/A
lift-*.f64
N/A
associate-*l*
N/A
associate-/r*
N/A
lower-/.f64
N/A
lower-/.f64
N/A
lower-*.f64
98.0
Applied rewrites98.0%
(FPCore (x y z t) :precision binary64 (if (or (<= y -1.1e+20) (not (<= y 3.5e+58))) (fma -0.3333333333333333 (/ y z) x) (+ x (/ t (* (* z 3.0) y)))))
double code(double x, double y, double z, double t) { double tmp; if ((y <= -1.1e+20) || !(y <= 3.5e+58)) { tmp = fma(-0.3333333333333333, (y / z), x); } else { tmp = x + (t / ((z * 3.0) * y)); } return tmp; }
function code(x, y, z, t) tmp = 0.0 if ((y <= -1.1e+20) || !(y <= 3.5e+58)) tmp = fma(-0.3333333333333333, Float64(y / z), x); else tmp = Float64(x + Float64(t / Float64(Float64(z * 3.0) * y))); end return tmp end
code[x_, y_, z_, t_] := If[Or[LessEqual[y, -1.1e+20], N[Not[LessEqual[y, 3.5e+58]], $MachinePrecision]], N[(-0.3333333333333333 * N[(y / z), $MachinePrecision] + x), $MachinePrecision], N[(x + N[(t / N[(N[(z * 3.0), $MachinePrecision] * y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;y \leq -1.1 \cdot 10^{+20} \lor \neg \left(y \leq 3.5 \cdot 10^{+58}\right):\\ \;\;\;\;\mathsf{fma}\left(-0.3333333333333333, \frac{y}{z}, x\right)\\ \mathbf{else}:\\ \;\;\;\;x + \frac{t}{\left(z \cdot 3\right) \cdot y}\\ \end{array} \end{array}
if y < -1.1e20 or 3.4999999999999997e58 < y
Initial program 99.8%
Taylor expanded in t around 0
metadata-eval
N/A
fp-cancel-sign-sub-inv
N/A
+-commutative
N/A
lower-fma.f64
N/A
lower-/.f64
95.7
Applied rewrites95.7%
if -1.1e20 < y < 3.4999999999999997e58
Initial program 93.9%
Taylor expanded in x around inf
Applied rewrites88.0%
Final simplification91.3%
(FPCore (x y z t) :precision binary64 (if (or (<= y -1.1e+20) (not (<= y 3.5e+58))) (fma -0.3333333333333333 (/ y z) x) (+ x (/ t (* z (* 3.0 y))))))
double code(double x, double y, double z, double t) { double tmp; if ((y <= -1.1e+20) || !(y <= 3.5e+58)) { tmp = fma(-0.3333333333333333, (y / z), x); } else { tmp = x + (t / (z * (3.0 * y))); } return tmp; }
function code(x, y, z, t) tmp = 0.0 if ((y <= -1.1e+20) || !(y <= 3.5e+58)) tmp = fma(-0.3333333333333333, Float64(y / z), x); else tmp = Float64(x + Float64(t / Float64(z * Float64(3.0 * y)))); end return tmp end
code[x_, y_, z_, t_] := If[Or[LessEqual[y, -1.1e+20], N[Not[LessEqual[y, 3.5e+58]], $MachinePrecision]], N[(-0.3333333333333333 * N[(y / z), $MachinePrecision] + x), $MachinePrecision], N[(x + N[(t / N[(z * N[(3.0 * y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;y \leq -1.1 \cdot 10^{+20} \lor \neg \left(y \leq 3.5 \cdot 10^{+58}\right):\\ \;\;\;\;\mathsf{fma}\left(-0.3333333333333333, \frac{y}{z}, x\right)\\ \mathbf{else}:\\ \;\;\;\;x + \frac{t}{z \cdot \left(3 \cdot y\right)}\\ \end{array} \end{array}
if y < -1.1e20 or 3.4999999999999997e58 < y
Initial program 99.8%
Taylor expanded in t around 0
metadata-eval
N/A
fp-cancel-sign-sub-inv
N/A
+-commutative
N/A
lower-fma.f64
N/A
lower-/.f64
95.7
Applied rewrites95.7%
if -1.1e20 < y < 3.4999999999999997e58
Initial program 93.9%
Taylor expanded in x around inf
Applied rewrites88.0%
lift-*.f64
N/A
lift-*.f64
N/A
associate-*l*
N/A
lower-*.f64
N/A
lift-*.f64
88.0
Applied rewrites88.0%
Final simplification91.3%
(FPCore (x y z t) :precision binary64 (if (or (<= y -1.1e+20) (not (<= y 3.5e+58))) (fma -0.3333333333333333 (/ y z) x) (+ x (/ t (* (* z y) 3.0)))))
double code(double x, double y, double z, double t) { double tmp; if ((y <= -1.1e+20) || !(y <= 3.5e+58)) { tmp = fma(-0.3333333333333333, (y / z), x); } else { tmp = x + (t / ((z * y) * 3.0)); } return tmp; }
function code(x, y, z, t) tmp = 0.0 if ((y <= -1.1e+20) || !(y <= 3.5e+58)) tmp = fma(-0.3333333333333333, Float64(y / z), x); else tmp = Float64(x + Float64(t / Float64(Float64(z * y) * 3.0))); end return tmp end
code[x_, y_, z_, t_] := If[Or[LessEqual[y, -1.1e+20], N[Not[LessEqual[y, 3.5e+58]], $MachinePrecision]], N[(-0.3333333333333333 * N[(y / z), $MachinePrecision] + x), $MachinePrecision], N[(x + N[(t / N[(N[(z * y), $MachinePrecision] * 3.0), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;y \leq -1.1 \cdot 10^{+20} \lor \neg \left(y \leq 3.5 \cdot 10^{+58}\right):\\ \;\;\;\;\mathsf{fma}\left(-0.3333333333333333, \frac{y}{z}, x\right)\\ \mathbf{else}:\\ \;\;\;\;x + \frac{t}{\left(z \cdot y\right) \cdot 3}\\ \end{array} \end{array}
if y < -1.1e20 or 3.4999999999999997e58 < y
Initial program 99.8%
Taylor expanded in t around 0
metadata-eval
N/A
fp-cancel-sign-sub-inv
N/A
+-commutative
N/A
lower-fma.f64
N/A
lower-/.f64
95.7
Applied rewrites95.7%
if -1.1e20 < y < 3.4999999999999997e58
Initial program 93.9%
Taylor expanded in x around inf
Applied rewrites88.0%
Taylor expanded in y around 0
*-commutative
N/A
lower-*.f64
N/A
*-commutative
N/A
lower-*.f64
87.9
Applied rewrites87.9%
Final simplification91.3%
(FPCore (x y z t) :precision binary64 (if (or (<= y -2.35e-10) (not (<= y 1.02e-45))) (fma -0.3333333333333333 (/ y z) x) (/ (* 0.3333333333333333 t) (* z y))))
double code(double x, double y, double z, double t) { double tmp; if ((y <= -2.35e-10) || !(y <= 1.02e-45)) { tmp = fma(-0.3333333333333333, (y / z), x); } else { tmp = (0.3333333333333333 * t) / (z * y); } return tmp; }
function code(x, y, z, t) tmp = 0.0 if ((y <= -2.35e-10) || !(y <= 1.02e-45)) tmp = fma(-0.3333333333333333, Float64(y / z), x); else tmp = Float64(Float64(0.3333333333333333 * t) / Float64(z * y)); end return tmp end
code[x_, y_, z_, t_] := If[Or[LessEqual[y, -2.35e-10], N[Not[LessEqual[y, 1.02e-45]], $MachinePrecision]], N[(-0.3333333333333333 * N[(y / z), $MachinePrecision] + x), $MachinePrecision], N[(N[(0.3333333333333333 * t), $MachinePrecision] / N[(z * y), $MachinePrecision]), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;y \leq -2.35 \cdot 10^{-10} \lor \neg \left(y \leq 1.02 \cdot 10^{-45}\right):\\ \;\;\;\;\mathsf{fma}\left(-0.3333333333333333, \frac{y}{z}, x\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{0.3333333333333333 \cdot t}{z \cdot y}\\ \end{array} \end{array}
if y < -2.3500000000000002e-10 or 1.0199999999999999e-45 < y
Initial program 99.8%
Taylor expanded in t around 0
metadata-eval
N/A
fp-cancel-sign-sub-inv
N/A
+-commutative
N/A
lower-fma.f64
N/A
lower-/.f64
91.2
Applied rewrites91.2%
if -2.3500000000000002e-10 < y < 1.0199999999999999e-45
Initial program 92.9%
lift-/.f64
N/A
lift-*.f64
N/A
lift-*.f64
N/A
associate-*l*
N/A
associate-/r*
N/A
lower-/.f64
N/A
lower-/.f64
N/A
lower-*.f64
96.9
Applied rewrites96.9%
lift-+.f64
N/A
lift--.f64
N/A
lift-*.f64
N/A
lift-/.f64
N/A
lift-/.f64
N/A
lift-*.f64
N/A
lift-/.f64
N/A
associate-+l-
N/A
associate-/l/
N/A
associate-*l*
N/A
lower--.f64
N/A
lower--.f64
N/A
lift-/.f64
N/A
*-commutative
N/A
lower-*.f64
N/A
lift-*.f64
N/A
lift-*.f64
N/A
lift-/.f64
92.9
lift-*.f64
N/A
*-commutative
N/A
lower-*.f64
92.9
Applied rewrites92.9%
Taylor expanded in y around 0
associate--r-
N/A
*-commutative
N/A
*-commutative
N/A
*-commutative
N/A
lower-*.f64
N/A
associate-/r*
N/A
lower-/.f64
N/A
lift-/.f64
60.4
Applied rewrites60.4%
lift-*.f64
N/A
lift-/.f64
N/A
lift-/.f64
N/A
*-commutative
N/A
associate-/r*
N/A
associate-*r/
N/A
lower-/.f64
N/A
lower-*.f64
N/A
*-commutative
N/A
lower-*.f64
64.3
Applied rewrites64.3%
Final simplification78.3%
(FPCore (x y z t) :precision binary64 (if (or (<= y -2.35e-10) (not (<= y 1.02e-45))) (fma -0.3333333333333333 (/ y z) x) (* (/ t (* z y)) 0.3333333333333333)))
double code(double x, double y, double z, double t) { double tmp; if ((y <= -2.35e-10) || !(y <= 1.02e-45)) { tmp = fma(-0.3333333333333333, (y / z), x); } else { tmp = (t / (z * y)) * 0.3333333333333333; } return tmp; }
function code(x, y, z, t) tmp = 0.0 if ((y <= -2.35e-10) || !(y <= 1.02e-45)) tmp = fma(-0.3333333333333333, Float64(y / z), x); else tmp = Float64(Float64(t / Float64(z * y)) * 0.3333333333333333); end return tmp end
code[x_, y_, z_, t_] := If[Or[LessEqual[y, -2.35e-10], N[Not[LessEqual[y, 1.02e-45]], $MachinePrecision]], N[(-0.3333333333333333 * N[(y / z), $MachinePrecision] + x), $MachinePrecision], N[(N[(t / N[(z * y), $MachinePrecision]), $MachinePrecision] * 0.3333333333333333), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;y \leq -2.35 \cdot 10^{-10} \lor \neg \left(y \leq 1.02 \cdot 10^{-45}\right):\\ \;\;\;\;\mathsf{fma}\left(-0.3333333333333333, \frac{y}{z}, x\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{t}{z \cdot y} \cdot 0.3333333333333333\\ \end{array} \end{array}
if y < -2.3500000000000002e-10 or 1.0199999999999999e-45 < y
Initial program 99.8%
Taylor expanded in t around 0
metadata-eval
N/A
fp-cancel-sign-sub-inv
N/A
+-commutative
N/A
lower-fma.f64
N/A
lower-/.f64
91.2
Applied rewrites91.2%
if -2.3500000000000002e-10 < y < 1.0199999999999999e-45
Initial program 92.9%
Taylor expanded in y around 0
*-commutative
N/A
lower-*.f64
N/A
lower-/.f64
N/A
*-commutative
N/A
lower-*.f64
64.3
Applied rewrites64.3%
Final simplification78.3%
(FPCore (x y z t) :precision binary64 (fma (/ (- (/ t y) y) z) 0.3333333333333333 x))
double code(double x, double y, double z, double t) { return fma((((t / y) - y) / z), 0.3333333333333333, x); }
function code(x, y, z, t) return fma(Float64(Float64(Float64(t / y) - y) / z), 0.3333333333333333, x) end
code[x_, y_, z_, t_] := N[(N[(N[(N[(t / y), $MachinePrecision] - y), $MachinePrecision] / z), $MachinePrecision] * 0.3333333333333333 + x), $MachinePrecision]
\begin{array}{l} \\ \mathsf{fma}\left(\frac{\frac{t}{y} - y}{z}, 0.3333333333333333, x\right) \end{array}
Initial program 96.5%
Taylor expanded in x around 0
associate--l+
N/A
distribute-lft-out--
N/A
fp-cancel-sign-sub-inv
N/A
metadata-eval
N/A
associate-/r*
N/A
sub-div
N/A
associate-/l*
N/A
distribute-lft-out--
N/A
*-lft-identity
N/A
fp-cancel-sub-sign-inv
N/A
metadata-eval
N/A
+-commutative
N/A
Applied rewrites94.6%
(FPCore (x y z t) :precision binary64 (if (or (<= y -220000.0) (not (<= y 1.32e+45))) (* -0.3333333333333333 (/ y z)) x))
double code(double x, double y, double z, double t) { double tmp; if ((y <= -220000.0) || !(y <= 1.32e+45)) { tmp = -0.3333333333333333 * (y / z); } else { tmp = x; } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t real(8) :: tmp if ((y <= (-220000.0d0)) .or. (.not. (y <= 1.32d+45))) then tmp = (-0.3333333333333333d0) * (y / z) else tmp = x end if code = tmp end function
public static double code(double x, double y, double z, double t) { double tmp; if ((y <= -220000.0) || !(y <= 1.32e+45)) { tmp = -0.3333333333333333 * (y / z); } else { tmp = x; } return tmp; }
def code(x, y, z, t): tmp = 0 if (y <= -220000.0) or not (y <= 1.32e+45): tmp = -0.3333333333333333 * (y / z) else: tmp = x return tmp
function code(x, y, z, t) tmp = 0.0 if ((y <= -220000.0) || !(y <= 1.32e+45)) tmp = Float64(-0.3333333333333333 * Float64(y / z)); else tmp = x; end return tmp end
function tmp_2 = code(x, y, z, t) tmp = 0.0; if ((y <= -220000.0) || ~((y <= 1.32e+45))) tmp = -0.3333333333333333 * (y / z); else tmp = x; end tmp_2 = tmp; end
code[x_, y_, z_, t_] := If[Or[LessEqual[y, -220000.0], N[Not[LessEqual[y, 1.32e+45]], $MachinePrecision]], N[(-0.3333333333333333 * N[(y / z), $MachinePrecision]), $MachinePrecision], x]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;y \leq -220000 \lor \neg \left(y \leq 1.32 \cdot 10^{+45}\right):\\ \;\;\;\;-0.3333333333333333 \cdot \frac{y}{z}\\ \mathbf{else}:\\ \;\;\;\;x\\ \end{array} \end{array}
if y < -2.2e5 or 1.32000000000000005e45 < y
Initial program 99.8%
Taylor expanded in y around inf
lower-*.f64
N/A
lower-/.f64
73.3
Applied rewrites73.3%
if -2.2e5 < y < 1.32000000000000005e45
Initial program 93.6%
Taylor expanded in x around inf
Applied rewrites33.2%
Final simplification51.7%
(FPCore (x y z t) :precision binary64 (fma -0.3333333333333333 (/ y z) x))
double code(double x, double y, double z, double t) { return fma(-0.3333333333333333, (y / z), x); }
function code(x, y, z, t) return fma(-0.3333333333333333, Float64(y / z), x) end
code[x_, y_, z_, t_] := N[(-0.3333333333333333 * N[(y / z), $MachinePrecision] + x), $MachinePrecision]
\begin{array}{l} \\ \mathsf{fma}\left(-0.3333333333333333, \frac{y}{z}, x\right) \end{array}
Initial program 96.5%
Taylor expanded in t around 0
metadata-eval
N/A
fp-cancel-sign-sub-inv
N/A
+-commutative
N/A
lower-fma.f64
N/A
lower-/.f64
63.1
Applied rewrites63.1%
(FPCore (x y z t) :precision binary64 x)
double code(double x, double y, double z, double t) { return x; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t code = x end function
public static double code(double x, double y, double z, double t) { return x; }
def code(x, y, z, t): return x
function code(x, y, z, t) return x end
function tmp = code(x, y, z, t) tmp = x; end
code[x_, y_, z_, t_] := x
\begin{array}{l} \\ x \end{array}
Initial program 96.5%
Taylor expanded in x around inf
Applied rewrites28.0%
(FPCore (x y z t) :precision binary64 (+ (- x (/ y (* z 3.0))) (/ (/ t (* z 3.0)) y)))
double code(double x, double y, double z, double t) { return (x - (y / (z * 3.0))) + ((t / (z * 3.0)) / y); }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t code = (x - (y / (z * 3.0d0))) + ((t / (z * 3.0d0)) / y) end function
public static double code(double x, double y, double z, double t) { return (x - (y / (z * 3.0))) + ((t / (z * 3.0)) / y); }
def code(x, y, z, t): return (x - (y / (z * 3.0))) + ((t / (z * 3.0)) / y)
function code(x, y, z, t) return Float64(Float64(x - Float64(y / Float64(z * 3.0))) + Float64(Float64(t / Float64(z * 3.0)) / y)) end
function tmp = code(x, y, z, t) tmp = (x - (y / (z * 3.0))) + ((t / (z * 3.0)) / y); end
code[x_, y_, z_, t_] := N[(N[(x - N[(y / N[(z * 3.0), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] + N[(N[(t / N[(z * 3.0), $MachinePrecision]), $MachinePrecision] / y), $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ \left(x - \frac{y}{z \cdot 3}\right) + \frac{\frac{t}{z \cdot 3}}{y} \end{array}
herbie shell --seed 2025056
(FPCore (x y z t)
:name "Diagrams.Solve.Polynomial:cubForm from diagrams-solve-0.1, H"
:precision binary64
:alt
(! :herbie-platform default (+ (- x (/ y (* z 3))) (/ (/ t (* z 3)) y)))
(+ (- x (/ y (* z 3.0))) (/ t (* (* z 3.0) y))))