(FPCore (x) :precision binary64 (- (sqrt (+ x 1.0)) (sqrt x)))
double code(double x) { return sqrt((x + 1.0)) - sqrt(x); }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x) use fmin_fmax_functions real(8), intent (in) :: x code = sqrt((x + 1.0d0)) - sqrt(x) end function
public static double code(double x) { return Math.sqrt((x + 1.0)) - Math.sqrt(x); }
def code(x): return math.sqrt((x + 1.0)) - math.sqrt(x)
function code(x) return Float64(sqrt(Float64(x + 1.0)) - sqrt(x)) end
function tmp = code(x) tmp = sqrt((x + 1.0)) - sqrt(x); end
code[x_] := N[(N[Sqrt[N[(x + 1.0), $MachinePrecision]], $MachinePrecision] - N[Sqrt[x], $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ \sqrt{x + 1} - \sqrt{x} \end{array}
Sampling outcomes in binary64 precision:
Herbie found 8 alternatives:
Alternative | Accuracy | Speedup |
---|
(FPCore (x) :precision binary64 (- (sqrt (+ x 1.0)) (sqrt x)))
double code(double x) { return sqrt((x + 1.0)) - sqrt(x); }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x) use fmin_fmax_functions real(8), intent (in) :: x code = sqrt((x + 1.0d0)) - sqrt(x) end function
public static double code(double x) { return Math.sqrt((x + 1.0)) - Math.sqrt(x); }
def code(x): return math.sqrt((x + 1.0)) - math.sqrt(x)
function code(x) return Float64(sqrt(Float64(x + 1.0)) - sqrt(x)) end
function tmp = code(x) tmp = sqrt((x + 1.0)) - sqrt(x); end
code[x_] := N[(N[Sqrt[N[(x + 1.0), $MachinePrecision]], $MachinePrecision] - N[Sqrt[x], $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ \sqrt{x + 1} - \sqrt{x} \end{array}
(FPCore (x) :precision binary64 (/ 1.0 (+ (sqrt (+ 1.0 x)) (sqrt x))))
double code(double x) { return 1.0 / (sqrt((1.0 + x)) + sqrt(x)); }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x) use fmin_fmax_functions real(8), intent (in) :: x code = 1.0d0 / (sqrt((1.0d0 + x)) + sqrt(x)) end function
public static double code(double x) { return 1.0 / (Math.sqrt((1.0 + x)) + Math.sqrt(x)); }
def code(x): return 1.0 / (math.sqrt((1.0 + x)) + math.sqrt(x))
function code(x) return Float64(1.0 / Float64(sqrt(Float64(1.0 + x)) + sqrt(x))) end
function tmp = code(x) tmp = 1.0 / (sqrt((1.0 + x)) + sqrt(x)); end
code[x_] := N[(1.0 / N[(N[Sqrt[N[(1.0 + x), $MachinePrecision]], $MachinePrecision] + N[Sqrt[x], $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ \frac{1}{\sqrt{1 + x} + \sqrt{x}} \end{array}
Initial program 52.0%
lift--.f64
N/A
lift-+.f64
N/A
lift-sqrt.f64
N/A
lift-sqrt.f64
N/A
flip--
N/A
lower-/.f64
N/A
lower--.f64
N/A
lower-*.f64
N/A
lift-sqrt.f64
N/A
+-commutative
N/A
lower-+.f64
N/A
lift-sqrt.f64
N/A
+-commutative
N/A
lower-+.f64
N/A
lower-*.f64
N/A
lift-sqrt.f64
N/A
lift-sqrt.f64
N/A
lower-+.f64
N/A
Applied rewrites52.0%
Taylor expanded in x around 0
Applied rewrites99.8%
(FPCore (x) :precision binary64 (if (<= x 130000000.0) (- (sqrt (+ x 1.0)) (sqrt x)) (* (sqrt (/ 1.0 x)) 0.5)))
double code(double x) { double tmp; if (x <= 130000000.0) { tmp = sqrt((x + 1.0)) - sqrt(x); } else { tmp = sqrt((1.0 / x)) * 0.5; } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x) use fmin_fmax_functions real(8), intent (in) :: x real(8) :: tmp if (x <= 130000000.0d0) then tmp = sqrt((x + 1.0d0)) - sqrt(x) else tmp = sqrt((1.0d0 / x)) * 0.5d0 end if code = tmp end function
public static double code(double x) { double tmp; if (x <= 130000000.0) { tmp = Math.sqrt((x + 1.0)) - Math.sqrt(x); } else { tmp = Math.sqrt((1.0 / x)) * 0.5; } return tmp; }
def code(x): tmp = 0 if x <= 130000000.0: tmp = math.sqrt((x + 1.0)) - math.sqrt(x) else: tmp = math.sqrt((1.0 / x)) * 0.5 return tmp
function code(x) tmp = 0.0 if (x <= 130000000.0) tmp = Float64(sqrt(Float64(x + 1.0)) - sqrt(x)); else tmp = Float64(sqrt(Float64(1.0 / x)) * 0.5); end return tmp end
function tmp_2 = code(x) tmp = 0.0; if (x <= 130000000.0) tmp = sqrt((x + 1.0)) - sqrt(x); else tmp = sqrt((1.0 / x)) * 0.5; end tmp_2 = tmp; end
code[x_] := If[LessEqual[x, 130000000.0], N[(N[Sqrt[N[(x + 1.0), $MachinePrecision]], $MachinePrecision] - N[Sqrt[x], $MachinePrecision]), $MachinePrecision], N[(N[Sqrt[N[(1.0 / x), $MachinePrecision]], $MachinePrecision] * 0.5), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;x \leq 130000000:\\ \;\;\;\;\sqrt{x + 1} - \sqrt{x}\\ \mathbf{else}:\\ \;\;\;\;\sqrt{\frac{1}{x}} \cdot 0.5\\ \end{array} \end{array}
if x < 1.3e8
Initial program 99.3%
if 1.3e8 < x
Initial program 4.8%
Taylor expanded in x around inf
*-commutative
N/A
lower-*.f64
N/A
sqrt-div
N/A
metadata-eval
N/A
lower-/.f64
N/A
lift-sqrt.f64
99.1
Applied rewrites99.1%
lift-/.f64
N/A
metadata-eval
N/A
lift-sqrt.f64
N/A
sqrt-div
N/A
lower-sqrt.f64
N/A
inv-pow
N/A
lower-pow.f64
99.3
Applied rewrites99.3%
lift-pow.f64
N/A
inv-pow
N/A
lower-/.f64
99.3
Applied rewrites99.3%
Final simplification99.3%
(FPCore (x) :precision binary64 (if (<= x 1.25) (- (fma (fma -0.125 x 0.5) x 1.0) (sqrt x)) (* (sqrt (/ 1.0 x)) 0.5)))
double code(double x) { double tmp; if (x <= 1.25) { tmp = fma(fma(-0.125, x, 0.5), x, 1.0) - sqrt(x); } else { tmp = sqrt((1.0 / x)) * 0.5; } return tmp; }
function code(x) tmp = 0.0 if (x <= 1.25) tmp = Float64(fma(fma(-0.125, x, 0.5), x, 1.0) - sqrt(x)); else tmp = Float64(sqrt(Float64(1.0 / x)) * 0.5); end return tmp end
code[x_] := If[LessEqual[x, 1.25], N[(N[(N[(-0.125 * x + 0.5), $MachinePrecision] * x + 1.0), $MachinePrecision] - N[Sqrt[x], $MachinePrecision]), $MachinePrecision], N[(N[Sqrt[N[(1.0 / x), $MachinePrecision]], $MachinePrecision] * 0.5), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;x \leq 1.25:\\ \;\;\;\;\mathsf{fma}\left(\mathsf{fma}\left(-0.125, x, 0.5\right), x, 1\right) - \sqrt{x}\\ \mathbf{else}:\\ \;\;\;\;\sqrt{\frac{1}{x}} \cdot 0.5\\ \end{array} \end{array}
if x < 1.25
Initial program 100.0%
Taylor expanded in x around 0
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
N/A
+-commutative
N/A
lower-fma.f64
99.5
Applied rewrites99.5%
if 1.25 < x
Initial program 7.0%
Taylor expanded in x around inf
*-commutative
N/A
lower-*.f64
N/A
sqrt-div
N/A
metadata-eval
N/A
lower-/.f64
N/A
lift-sqrt.f64
97.6
Applied rewrites97.6%
lift-/.f64
N/A
metadata-eval
N/A
lift-sqrt.f64
N/A
sqrt-div
N/A
lower-sqrt.f64
N/A
inv-pow
N/A
lower-pow.f64
97.8
Applied rewrites97.8%
lift-pow.f64
N/A
inv-pow
N/A
lower-/.f64
97.8
Applied rewrites97.8%
Final simplification98.6%
(FPCore (x) :precision binary64 (if (<= x 1.25) (- (fma (fma -0.125 x 0.5) x 1.0) (sqrt x)) (/ 0.5 (sqrt x))))
double code(double x) { double tmp; if (x <= 1.25) { tmp = fma(fma(-0.125, x, 0.5), x, 1.0) - sqrt(x); } else { tmp = 0.5 / sqrt(x); } return tmp; }
function code(x) tmp = 0.0 if (x <= 1.25) tmp = Float64(fma(fma(-0.125, x, 0.5), x, 1.0) - sqrt(x)); else tmp = Float64(0.5 / sqrt(x)); end return tmp end
code[x_] := If[LessEqual[x, 1.25], N[(N[(N[(-0.125 * x + 0.5), $MachinePrecision] * x + 1.0), $MachinePrecision] - N[Sqrt[x], $MachinePrecision]), $MachinePrecision], N[(0.5 / N[Sqrt[x], $MachinePrecision]), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;x \leq 1.25:\\ \;\;\;\;\mathsf{fma}\left(\mathsf{fma}\left(-0.125, x, 0.5\right), x, 1\right) - \sqrt{x}\\ \mathbf{else}:\\ \;\;\;\;\frac{0.5}{\sqrt{x}}\\ \end{array} \end{array}
if x < 1.25
Initial program 100.0%
Taylor expanded in x around 0
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
N/A
+-commutative
N/A
lower-fma.f64
99.5
Applied rewrites99.5%
if 1.25 < x
Initial program 7.0%
Taylor expanded in x around inf
*-commutative
N/A
lower-*.f64
N/A
sqrt-div
N/A
metadata-eval
N/A
lower-/.f64
N/A
lift-sqrt.f64
97.6
Applied rewrites97.6%
lift-*.f64
N/A
lift-/.f64
N/A
lift-sqrt.f64
N/A
associate-*l/
N/A
metadata-eval
N/A
lower-/.f64
N/A
lift-sqrt.f64
97.6
Applied rewrites97.6%
Final simplification98.5%
(FPCore (x) :precision binary64 (if (<= x 1.0) (- (fma 0.5 x 1.0) (sqrt x)) (/ 0.5 (sqrt x))))
double code(double x) { double tmp; if (x <= 1.0) { tmp = fma(0.5, x, 1.0) - sqrt(x); } else { tmp = 0.5 / sqrt(x); } return tmp; }
function code(x) tmp = 0.0 if (x <= 1.0) tmp = Float64(fma(0.5, x, 1.0) - sqrt(x)); else tmp = Float64(0.5 / sqrt(x)); end return tmp end
code[x_] := If[LessEqual[x, 1.0], N[(N[(0.5 * x + 1.0), $MachinePrecision] - N[Sqrt[x], $MachinePrecision]), $MachinePrecision], N[(0.5 / N[Sqrt[x], $MachinePrecision]), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;x \leq 1:\\ \;\;\;\;\mathsf{fma}\left(0.5, x, 1\right) - \sqrt{x}\\ \mathbf{else}:\\ \;\;\;\;\frac{0.5}{\sqrt{x}}\\ \end{array} \end{array}
if x < 1
Initial program 100.0%
Taylor expanded in x around 0
+-commutative
N/A
lower-fma.f64
99.4
Applied rewrites99.4%
if 1 < x
Initial program 7.0%
Taylor expanded in x around inf
*-commutative
N/A
lower-*.f64
N/A
sqrt-div
N/A
metadata-eval
N/A
lower-/.f64
N/A
lift-sqrt.f64
97.6
Applied rewrites97.6%
lift-*.f64
N/A
lift-/.f64
N/A
lift-sqrt.f64
N/A
associate-*l/
N/A
metadata-eval
N/A
lower-/.f64
N/A
lift-sqrt.f64
97.6
Applied rewrites97.6%
Final simplification98.5%
(FPCore (x) :precision binary64 (- (fma 0.5 x 1.0) (sqrt x)))
double code(double x) { return fma(0.5, x, 1.0) - sqrt(x); }
function code(x) return Float64(fma(0.5, x, 1.0) - sqrt(x)) end
code[x_] := N[(N[(0.5 * x + 1.0), $MachinePrecision] - N[Sqrt[x], $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ \mathsf{fma}\left(0.5, x, 1\right) - \sqrt{x} \end{array}
Initial program 52.0%
Taylor expanded in x around 0
+-commutative
N/A
lower-fma.f64
50.4
Applied rewrites50.4%
(FPCore (x) :precision binary64 (- 1.0 (sqrt x)))
double code(double x) { return 1.0 - sqrt(x); }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x) use fmin_fmax_functions real(8), intent (in) :: x code = 1.0d0 - sqrt(x) end function
public static double code(double x) { return 1.0 - Math.sqrt(x); }
def code(x): return 1.0 - math.sqrt(x)
function code(x) return Float64(1.0 - sqrt(x)) end
function tmp = code(x) tmp = 1.0 - sqrt(x); end
code[x_] := N[(1.0 - N[Sqrt[x], $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ 1 - \sqrt{x} \end{array}
Initial program 52.0%
Taylor expanded in x around 0
Applied rewrites48.9%
(FPCore (x) :precision binary64 0.0)
double code(double x) { return 0.0; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x) use fmin_fmax_functions real(8), intent (in) :: x code = 0.0d0 end function
public static double code(double x) { return 0.0; }
def code(x): return 0.0
function code(x) return 0.0 end
function tmp = code(x) tmp = 0.0; end
code[x_] := 0.0
\begin{array}{l} \\ 0 \end{array}
Initial program 52.0%
lift--.f64
N/A
lift-+.f64
N/A
lift-sqrt.f64
N/A
lift-sqrt.f64
N/A
flip--
N/A
lower-/.f64
N/A
lower--.f64
N/A
lower-*.f64
N/A
lift-sqrt.f64
N/A
+-commutative
N/A
lower-+.f64
N/A
lift-sqrt.f64
N/A
+-commutative
N/A
lower-+.f64
N/A
lower-*.f64
N/A
lift-sqrt.f64
N/A
lift-sqrt.f64
N/A
lower-+.f64
N/A
Applied rewrites52.0%
Taylor expanded in x around -inf
*-commutative
N/A
lower-*.f64
N/A
*-commutative
N/A
lower-*.f64
N/A
sqrt-pow2
N/A
metadata-eval
N/A
metadata-eval
N/A
metadata-eval
N/A
lift-sqrt.f64
3.5
Applied rewrites3.5%
Taylor expanded in x around 0
Applied rewrites3.5%
(FPCore (x) :precision binary64 (/ 1.0 (+ (sqrt (+ x 1.0)) (sqrt x))))
double code(double x) { return 1.0 / (sqrt((x + 1.0)) + sqrt(x)); }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x) use fmin_fmax_functions real(8), intent (in) :: x code = 1.0d0 / (sqrt((x + 1.0d0)) + sqrt(x)) end function
public static double code(double x) { return 1.0 / (Math.sqrt((x + 1.0)) + Math.sqrt(x)); }
def code(x): return 1.0 / (math.sqrt((x + 1.0)) + math.sqrt(x))
function code(x) return Float64(1.0 / Float64(sqrt(Float64(x + 1.0)) + sqrt(x))) end
function tmp = code(x) tmp = 1.0 / (sqrt((x + 1.0)) + sqrt(x)); end
code[x_] := N[(1.0 / N[(N[Sqrt[N[(x + 1.0), $MachinePrecision]], $MachinePrecision] + N[Sqrt[x], $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ \frac{1}{\sqrt{x + 1} + \sqrt{x}} \end{array}
herbie shell --seed 2025054
(FPCore (x)
:name "Main:bigenough3 from C"
:precision binary64
:alt
(! :herbie-platform default (/ 1 (+ (sqrt (+ x 1)) (sqrt x))))
(- (sqrt (+ x 1.0)) (sqrt x)))