(FPCore (x y) :precision binary64 (- (log (+ 1.0 (exp x))) (* x y)))
double code(double x, double y) { return log((1.0 + exp(x))) - (x * y); }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y code = log((1.0d0 + exp(x))) - (x * y) end function
public static double code(double x, double y) { return Math.log((1.0 + Math.exp(x))) - (x * y); }
def code(x, y): return math.log((1.0 + math.exp(x))) - (x * y)
function code(x, y) return Float64(log(Float64(1.0 + exp(x))) - Float64(x * y)) end
function tmp = code(x, y) tmp = log((1.0 + exp(x))) - (x * y); end
code[x_, y_] := N[(N[Log[N[(1.0 + N[Exp[x], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - N[(x * y), $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ \log \left(1 + e^{x}\right) - x \cdot y \end{array}
Sampling outcomes in binary64 precision:
Herbie found 11 alternatives:
Alternative | Accuracy | Speedup |
---|
(FPCore (x y) :precision binary64 (- (log (+ 1.0 (exp x))) (* x y)))
double code(double x, double y) { return log((1.0 + exp(x))) - (x * y); }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y code = log((1.0d0 + exp(x))) - (x * y) end function
public static double code(double x, double y) { return Math.log((1.0 + Math.exp(x))) - (x * y); }
def code(x, y): return math.log((1.0 + math.exp(x))) - (x * y)
function code(x, y) return Float64(log(Float64(1.0 + exp(x))) - Float64(x * y)) end
function tmp = code(x, y) tmp = log((1.0 + exp(x))) - (x * y); end
code[x_, y_] := N[(N[Log[N[(1.0 + N[Exp[x], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - N[(x * y), $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ \log \left(1 + e^{x}\right) - x \cdot y \end{array}
(FPCore (x y) :precision binary64 (fma (- y) x (log1p (exp x))))
double code(double x, double y) { return fma(-y, x, log1p(exp(x))); }
function code(x, y) return fma(Float64(-y), x, log1p(exp(x))) end
code[x_, y_] := N[((-y) * x + N[Log[1 + N[Exp[x], $MachinePrecision]], $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ \mathsf{fma}\left(-y, x, \mathsf{log1p}\left(e^{x}\right)\right) \end{array}
Initial program 98.8%
lift--.f64
N/A
lift-log.f64
N/A
lift-+.f64
N/A
lift-exp.f64
N/A
lift-*.f64
N/A
fp-cancel-sub-sign-inv
N/A
mul-1-neg
N/A
associate-*r*
N/A
+-commutative
N/A
*-commutative
N/A
associate-*r*
N/A
lower-fma.f64
N/A
mul-1-neg
N/A
lower-neg.f64
N/A
lower-log1p.f64
N/A
lift-exp.f64
99.2
Applied rewrites99.2%
(FPCore (x y) :precision binary64 (let* ((t_0 (- (log (+ 1.0 (exp x))) (* x y)))) (if (or (<= t_0 5e-35) (not (<= t_0 200.0))) (* (- x) y) (fma 0.5 x (log 2.0)))))
double code(double x, double y) { double t_0 = log((1.0 + exp(x))) - (x * y); double tmp; if ((t_0 <= 5e-35) || !(t_0 <= 200.0)) { tmp = -x * y; } else { tmp = fma(0.5, x, log(2.0)); } return tmp; }
function code(x, y) t_0 = Float64(log(Float64(1.0 + exp(x))) - Float64(x * y)) tmp = 0.0 if ((t_0 <= 5e-35) || !(t_0 <= 200.0)) tmp = Float64(Float64(-x) * y); else tmp = fma(0.5, x, log(2.0)); end return tmp end
code[x_, y_] := Block[{t$95$0 = N[(N[Log[N[(1.0 + N[Exp[x], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - N[(x * y), $MachinePrecision]), $MachinePrecision]}, If[Or[LessEqual[t$95$0, 5e-35], N[Not[LessEqual[t$95$0, 200.0]], $MachinePrecision]], N[((-x) * y), $MachinePrecision], N[(0.5 * x + N[Log[2.0], $MachinePrecision]), $MachinePrecision]]]
\begin{array}{l} \\ \begin{array}{l} t_0 := \log \left(1 + e^{x}\right) - x \cdot y\\ \mathbf{if}\;t\_0 \leq 5 \cdot 10^{-35} \lor \neg \left(t\_0 \leq 200\right):\\ \;\;\;\;\left(-x\right) \cdot y\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(0.5, x, \log 2\right)\\ \end{array} \end{array}
if (-.f64 (log.f64 (+.f64 #s(literal 1 binary64) (exp.f64 x))) (*.f64 x y)) < 4.99999999999999964e-35 or 200 < (-.f64 (log.f64 (+.f64 #s(literal 1 binary64) (exp.f64 x))) (*.f64 x y))
Initial program 97.5%
Taylor expanded in x around inf
associate-*r*
N/A
mul-1-neg
N/A
lower-*.f64
N/A
lower-neg.f64
97.3
Applied rewrites97.3%
if 4.99999999999999964e-35 < (-.f64 (log.f64 (+.f64 #s(literal 1 binary64) (exp.f64 x))) (*.f64 x y)) < 200
Initial program 100.0%
Taylor expanded in y around 0
lower-log1p.f64
N/A
lift-exp.f64
97.5
Applied rewrites97.5%
Taylor expanded in x around 0
+-commutative
N/A
lower-fma.f64
N/A
lift-log.f64
95.4
Applied rewrites95.4%
Final simplification96.3%
(FPCore (x y) :precision binary64 (let* ((t_0 (- (log (+ 1.0 (exp x))) (* x y)))) (if (or (<= t_0 5e-35) (not (<= t_0 200.0))) (* (- x) y) (log1p (- x -1.0)))))
double code(double x, double y) { double t_0 = log((1.0 + exp(x))) - (x * y); double tmp; if ((t_0 <= 5e-35) || !(t_0 <= 200.0)) { tmp = -x * y; } else { tmp = log1p((x - -1.0)); } return tmp; }
public static double code(double x, double y) { double t_0 = Math.log((1.0 + Math.exp(x))) - (x * y); double tmp; if ((t_0 <= 5e-35) || !(t_0 <= 200.0)) { tmp = -x * y; } else { tmp = Math.log1p((x - -1.0)); } return tmp; }
def code(x, y): t_0 = math.log((1.0 + math.exp(x))) - (x * y) tmp = 0 if (t_0 <= 5e-35) or not (t_0 <= 200.0): tmp = -x * y else: tmp = math.log1p((x - -1.0)) return tmp
function code(x, y) t_0 = Float64(log(Float64(1.0 + exp(x))) - Float64(x * y)) tmp = 0.0 if ((t_0 <= 5e-35) || !(t_0 <= 200.0)) tmp = Float64(Float64(-x) * y); else tmp = log1p(Float64(x - -1.0)); end return tmp end
code[x_, y_] := Block[{t$95$0 = N[(N[Log[N[(1.0 + N[Exp[x], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - N[(x * y), $MachinePrecision]), $MachinePrecision]}, If[Or[LessEqual[t$95$0, 5e-35], N[Not[LessEqual[t$95$0, 200.0]], $MachinePrecision]], N[((-x) * y), $MachinePrecision], N[Log[1 + N[(x - -1.0), $MachinePrecision]], $MachinePrecision]]]
\begin{array}{l} \\ \begin{array}{l} t_0 := \log \left(1 + e^{x}\right) - x \cdot y\\ \mathbf{if}\;t\_0 \leq 5 \cdot 10^{-35} \lor \neg \left(t\_0 \leq 200\right):\\ \;\;\;\;\left(-x\right) \cdot y\\ \mathbf{else}:\\ \;\;\;\;\mathsf{log1p}\left(x - -1\right)\\ \end{array} \end{array}
if (-.f64 (log.f64 (+.f64 #s(literal 1 binary64) (exp.f64 x))) (*.f64 x y)) < 4.99999999999999964e-35 or 200 < (-.f64 (log.f64 (+.f64 #s(literal 1 binary64) (exp.f64 x))) (*.f64 x y))
Initial program 97.5%
Taylor expanded in x around inf
associate-*r*
N/A
mul-1-neg
N/A
lower-*.f64
N/A
lower-neg.f64
97.3
Applied rewrites97.3%
if 4.99999999999999964e-35 < (-.f64 (log.f64 (+.f64 #s(literal 1 binary64) (exp.f64 x))) (*.f64 x y)) < 200
Initial program 100.0%
Taylor expanded in y around 0
lower-log1p.f64
N/A
lift-exp.f64
97.5
Applied rewrites97.5%
Taylor expanded in x around 0
+-commutative
N/A
metadata-eval
N/A
fp-cancel-sign-sub-inv
N/A
metadata-eval
N/A
metadata-eval
N/A
lower--.f64
95.2
Applied rewrites95.2%
Final simplification96.2%
(FPCore (x y) :precision binary64 (let* ((t_0 (- (log (+ 1.0 (exp x))) (* x y)))) (if (or (<= t_0 5e-35) (not (<= t_0 200.0))) (* (- x) y) (log 2.0))))
double code(double x, double y) { double t_0 = log((1.0 + exp(x))) - (x * y); double tmp; if ((t_0 <= 5e-35) || !(t_0 <= 200.0)) { tmp = -x * y; } else { tmp = log(2.0); } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8) :: t_0 real(8) :: tmp t_0 = log((1.0d0 + exp(x))) - (x * y) if ((t_0 <= 5d-35) .or. (.not. (t_0 <= 200.0d0))) then tmp = -x * y else tmp = log(2.0d0) end if code = tmp end function
public static double code(double x, double y) { double t_0 = Math.log((1.0 + Math.exp(x))) - (x * y); double tmp; if ((t_0 <= 5e-35) || !(t_0 <= 200.0)) { tmp = -x * y; } else { tmp = Math.log(2.0); } return tmp; }
def code(x, y): t_0 = math.log((1.0 + math.exp(x))) - (x * y) tmp = 0 if (t_0 <= 5e-35) or not (t_0 <= 200.0): tmp = -x * y else: tmp = math.log(2.0) return tmp
function code(x, y) t_0 = Float64(log(Float64(1.0 + exp(x))) - Float64(x * y)) tmp = 0.0 if ((t_0 <= 5e-35) || !(t_0 <= 200.0)) tmp = Float64(Float64(-x) * y); else tmp = log(2.0); end return tmp end
function tmp_2 = code(x, y) t_0 = log((1.0 + exp(x))) - (x * y); tmp = 0.0; if ((t_0 <= 5e-35) || ~((t_0 <= 200.0))) tmp = -x * y; else tmp = log(2.0); end tmp_2 = tmp; end
code[x_, y_] := Block[{t$95$0 = N[(N[Log[N[(1.0 + N[Exp[x], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - N[(x * y), $MachinePrecision]), $MachinePrecision]}, If[Or[LessEqual[t$95$0, 5e-35], N[Not[LessEqual[t$95$0, 200.0]], $MachinePrecision]], N[((-x) * y), $MachinePrecision], N[Log[2.0], $MachinePrecision]]]
\begin{array}{l} \\ \begin{array}{l} t_0 := \log \left(1 + e^{x}\right) - x \cdot y\\ \mathbf{if}\;t\_0 \leq 5 \cdot 10^{-35} \lor \neg \left(t\_0 \leq 200\right):\\ \;\;\;\;\left(-x\right) \cdot y\\ \mathbf{else}:\\ \;\;\;\;\log 2\\ \end{array} \end{array}
if (-.f64 (log.f64 (+.f64 #s(literal 1 binary64) (exp.f64 x))) (*.f64 x y)) < 4.99999999999999964e-35 or 200 < (-.f64 (log.f64 (+.f64 #s(literal 1 binary64) (exp.f64 x))) (*.f64 x y))
Initial program 97.5%
Taylor expanded in x around inf
associate-*r*
N/A
mul-1-neg
N/A
lower-*.f64
N/A
lower-neg.f64
97.3
Applied rewrites97.3%
if 4.99999999999999964e-35 < (-.f64 (log.f64 (+.f64 #s(literal 1 binary64) (exp.f64 x))) (*.f64 x y)) < 200
Initial program 100.0%
Taylor expanded in x around 0
lower-log.f64
94.0
Applied rewrites94.0%
Final simplification95.5%
(FPCore (x y) :precision binary64 (if (<= x -2.6) (* (- x) y) (fma (fma (fma (* x x) -0.005208333333333333 0.125) x (- 0.5 y)) x (log 2.0))))
double code(double x, double y) { double tmp; if (x <= -2.6) { tmp = -x * y; } else { tmp = fma(fma(fma((x * x), -0.005208333333333333, 0.125), x, (0.5 - y)), x, log(2.0)); } return tmp; }
function code(x, y) tmp = 0.0 if (x <= -2.6) tmp = Float64(Float64(-x) * y); else tmp = fma(fma(fma(Float64(x * x), -0.005208333333333333, 0.125), x, Float64(0.5 - y)), x, log(2.0)); end return tmp end
code[x_, y_] := If[LessEqual[x, -2.6], N[((-x) * y), $MachinePrecision], N[(N[(N[(N[(x * x), $MachinePrecision] * -0.005208333333333333 + 0.125), $MachinePrecision] * x + N[(0.5 - y), $MachinePrecision]), $MachinePrecision] * x + N[Log[2.0], $MachinePrecision]), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;x \leq -2.6:\\ \;\;\;\;\left(-x\right) \cdot y\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(\mathsf{fma}\left(\mathsf{fma}\left(x \cdot x, -0.005208333333333333, 0.125\right), x, 0.5 - y\right), x, \log 2\right)\\ \end{array} \end{array}
if x < -2.60000000000000009
Initial program 98.8%
Taylor expanded in x around inf
associate-*r*
N/A
mul-1-neg
N/A
lower-*.f64
N/A
lower-neg.f64
98.8
Applied rewrites98.8%
if -2.60000000000000009 < x
Initial program 98.8%
Taylor expanded in x around 0
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
N/A
+-commutative
N/A
associate--l+
N/A
*-commutative
N/A
lower-fma.f64
N/A
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
N/A
unpow2
N/A
lower-*.f64
N/A
lower--.f64
N/A
lower-log.f64
98.2
Applied rewrites98.2%
(FPCore (x y) :precision binary64 (if (<= x -1.35e+19) (* (- x) y) (fma (fma 0.125 x (- 0.5 y)) x (log 2.0))))
double code(double x, double y) { double tmp; if (x <= -1.35e+19) { tmp = -x * y; } else { tmp = fma(fma(0.125, x, (0.5 - y)), x, log(2.0)); } return tmp; }
function code(x, y) tmp = 0.0 if (x <= -1.35e+19) tmp = Float64(Float64(-x) * y); else tmp = fma(fma(0.125, x, Float64(0.5 - y)), x, log(2.0)); end return tmp end
code[x_, y_] := If[LessEqual[x, -1.35e+19], N[((-x) * y), $MachinePrecision], N[(N[(0.125 * x + N[(0.5 - y), $MachinePrecision]), $MachinePrecision] * x + N[Log[2.0], $MachinePrecision]), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;x \leq -1.35 \cdot 10^{+19}:\\ \;\;\;\;\left(-x\right) \cdot y\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(\mathsf{fma}\left(0.125, x, 0.5 - y\right), x, \log 2\right)\\ \end{array} \end{array}
if x < -1.35e19
Initial program 100.0%
Taylor expanded in x around inf
associate-*r*
N/A
mul-1-neg
N/A
lower-*.f64
N/A
lower-neg.f64
100.0
Applied rewrites100.0%
if -1.35e19 < x
Initial program 98.3%
Taylor expanded in x around 0
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
N/A
+-commutative
N/A
associate--l+
N/A
lower-fma.f64
N/A
lower--.f64
N/A
lower-log.f64
97.5
Applied rewrites97.5%
(FPCore (x y) :precision binary64 (if (<= x -1.35) (* (- x) y) (fma (- 0.5 y) x (log 2.0))))
double code(double x, double y) { double tmp; if (x <= -1.35) { tmp = -x * y; } else { tmp = fma((0.5 - y), x, log(2.0)); } return tmp; }
function code(x, y) tmp = 0.0 if (x <= -1.35) tmp = Float64(Float64(-x) * y); else tmp = fma(Float64(0.5 - y), x, log(2.0)); end return tmp end
code[x_, y_] := If[LessEqual[x, -1.35], N[((-x) * y), $MachinePrecision], N[(N[(0.5 - y), $MachinePrecision] * x + N[Log[2.0], $MachinePrecision]), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;x \leq -1.35:\\ \;\;\;\;\left(-x\right) \cdot y\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(0.5 - y, x, \log 2\right)\\ \end{array} \end{array}
if x < -1.3500000000000001
Initial program 98.8%
Taylor expanded in x around inf
associate-*r*
N/A
mul-1-neg
N/A
lower-*.f64
N/A
lower-neg.f64
98.8
Applied rewrites98.8%
if -1.3500000000000001 < x
Initial program 98.8%
Taylor expanded in x around 0
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
N/A
lower--.f64
N/A
lower-log.f64
97.4
Applied rewrites97.4%
(FPCore (x y) :precision binary64 (if (<= x -1.35e+19) (* (- x) y) (fma (- y) x (log1p 1.0))))
double code(double x, double y) { double tmp; if (x <= -1.35e+19) { tmp = -x * y; } else { tmp = fma(-y, x, log1p(1.0)); } return tmp; }
function code(x, y) tmp = 0.0 if (x <= -1.35e+19) tmp = Float64(Float64(-x) * y); else tmp = fma(Float64(-y), x, log1p(1.0)); end return tmp end
code[x_, y_] := If[LessEqual[x, -1.35e+19], N[((-x) * y), $MachinePrecision], N[((-y) * x + N[Log[1 + 1.0], $MachinePrecision]), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;x \leq -1.35 \cdot 10^{+19}:\\ \;\;\;\;\left(-x\right) \cdot y\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(-y, x, \mathsf{log1p}\left(1\right)\right)\\ \end{array} \end{array}
if x < -1.35e19
Initial program 100.0%
Taylor expanded in x around inf
associate-*r*
N/A
mul-1-neg
N/A
lower-*.f64
N/A
lower-neg.f64
100.0
Applied rewrites100.0%
if -1.35e19 < x
Initial program 98.3%
lift--.f64
N/A
lift-log.f64
N/A
lift-+.f64
N/A
lift-exp.f64
N/A
lift-*.f64
N/A
fp-cancel-sub-sign-inv
N/A
mul-1-neg
N/A
associate-*r*
N/A
+-commutative
N/A
*-commutative
N/A
associate-*r*
N/A
lower-fma.f64
N/A
mul-1-neg
N/A
lower-neg.f64
N/A
lower-log1p.f64
N/A
lift-exp.f64
98.9
Applied rewrites98.9%
Taylor expanded in x around 0
Applied rewrites95.8%
(FPCore (x y) :precision binary64 (if (<= x -1.35e+19) (* (- x) y) (- (log 2.0) (* x y))))
double code(double x, double y) { double tmp; if (x <= -1.35e+19) { tmp = -x * y; } else { tmp = log(2.0) - (x * y); } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8) :: tmp if (x <= (-1.35d+19)) then tmp = -x * y else tmp = log(2.0d0) - (x * y) end if code = tmp end function
public static double code(double x, double y) { double tmp; if (x <= -1.35e+19) { tmp = -x * y; } else { tmp = Math.log(2.0) - (x * y); } return tmp; }
def code(x, y): tmp = 0 if x <= -1.35e+19: tmp = -x * y else: tmp = math.log(2.0) - (x * y) return tmp
function code(x, y) tmp = 0.0 if (x <= -1.35e+19) tmp = Float64(Float64(-x) * y); else tmp = Float64(log(2.0) - Float64(x * y)); end return tmp end
function tmp_2 = code(x, y) tmp = 0.0; if (x <= -1.35e+19) tmp = -x * y; else tmp = log(2.0) - (x * y); end tmp_2 = tmp; end
code[x_, y_] := If[LessEqual[x, -1.35e+19], N[((-x) * y), $MachinePrecision], N[(N[Log[2.0], $MachinePrecision] - N[(x * y), $MachinePrecision]), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;x \leq -1.35 \cdot 10^{+19}:\\ \;\;\;\;\left(-x\right) \cdot y\\ \mathbf{else}:\\ \;\;\;\;\log 2 - x \cdot y\\ \end{array} \end{array}
if x < -1.35e19
Initial program 100.0%
Taylor expanded in x around inf
associate-*r*
N/A
mul-1-neg
N/A
lower-*.f64
N/A
lower-neg.f64
100.0
Applied rewrites100.0%
if -1.35e19 < x
Initial program 98.3%
Taylor expanded in x around 0
Applied rewrites95.8%
(FPCore (x y) :precision binary64 (* (- x) y))
double code(double x, double y) { return -x * y; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y code = -x * y end function
public static double code(double x, double y) { return -x * y; }
def code(x, y): return -x * y
function code(x, y) return Float64(Float64(-x) * y) end
function tmp = code(x, y) tmp = -x * y; end
code[x_, y_] := N[((-x) * y), $MachinePrecision]
\begin{array}{l} \\ \left(-x\right) \cdot y \end{array}
Initial program 98.8%
Taylor expanded in x around inf
associate-*r*
N/A
mul-1-neg
N/A
lower-*.f64
N/A
lower-neg.f64
47.2
Applied rewrites47.2%
(FPCore (x y) :precision binary64 (* 0.5 x))
double code(double x, double y) { return 0.5 * x; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y code = 0.5d0 * x end function
public static double code(double x, double y) { return 0.5 * x; }
def code(x, y): return 0.5 * x
function code(x, y) return Float64(0.5 * x) end
function tmp = code(x, y) tmp = 0.5 * x; end
code[x_, y_] := N[(0.5 * x), $MachinePrecision]
\begin{array}{l} \\ 0.5 \cdot x \end{array}
Initial program 98.8%
Taylor expanded in y around 0
lower-log1p.f64
N/A
lift-exp.f64
53.9
Applied rewrites53.9%
Taylor expanded in x around 0
+-commutative
N/A
lower-fma.f64
N/A
lift-log.f64
52.4
Applied rewrites52.4%
Taylor expanded in x around inf
lower-*.f64
3.2
Applied rewrites3.2%
(FPCore (x y) :precision binary64 (if (<= x 0.0) (- (log (+ 1.0 (exp x))) (* x y)) (- (log (+ 1.0 (exp (- x)))) (* (- x) (- 1.0 y)))))
double code(double x, double y) { double tmp; if (x <= 0.0) { tmp = log((1.0 + exp(x))) - (x * y); } else { tmp = log((1.0 + exp(-x))) - (-x * (1.0 - y)); } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8) :: tmp if (x <= 0.0d0) then tmp = log((1.0d0 + exp(x))) - (x * y) else tmp = log((1.0d0 + exp(-x))) - (-x * (1.0d0 - y)) end if code = tmp end function
public static double code(double x, double y) { double tmp; if (x <= 0.0) { tmp = Math.log((1.0 + Math.exp(x))) - (x * y); } else { tmp = Math.log((1.0 + Math.exp(-x))) - (-x * (1.0 - y)); } return tmp; }
def code(x, y): tmp = 0 if x <= 0.0: tmp = math.log((1.0 + math.exp(x))) - (x * y) else: tmp = math.log((1.0 + math.exp(-x))) - (-x * (1.0 - y)) return tmp
function code(x, y) tmp = 0.0 if (x <= 0.0) tmp = Float64(log(Float64(1.0 + exp(x))) - Float64(x * y)); else tmp = Float64(log(Float64(1.0 + exp(Float64(-x)))) - Float64(Float64(-x) * Float64(1.0 - y))); end return tmp end
function tmp_2 = code(x, y) tmp = 0.0; if (x <= 0.0) tmp = log((1.0 + exp(x))) - (x * y); else tmp = log((1.0 + exp(-x))) - (-x * (1.0 - y)); end tmp_2 = tmp; end
code[x_, y_] := If[LessEqual[x, 0.0], N[(N[Log[N[(1.0 + N[Exp[x], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - N[(x * y), $MachinePrecision]), $MachinePrecision], N[(N[Log[N[(1.0 + N[Exp[(-x)], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - N[((-x) * N[(1.0 - y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;x \leq 0:\\ \;\;\;\;\log \left(1 + e^{x}\right) - x \cdot y\\ \mathbf{else}:\\ \;\;\;\;\log \left(1 + e^{-x}\right) - \left(-x\right) \cdot \left(1 - y\right)\\ \end{array} \end{array}
herbie shell --seed 2025051
(FPCore (x y)
:name "Logistic regression 2"
:precision binary64
:alt
(! :herbie-platform default (if (<= x 0) (- (log (+ 1 (exp x))) (* x y)) (- (log (+ 1 (exp (- x)))) (* (- x) (- 1 y)))))
(- (log (+ 1.0 (exp x))) (* x y)))