Logistic regression 2

Percentage Accurate: 99.2% → 99.3%
Time: 5.5s
Alternatives: 11
Speedup: 1.6×

Specification

?
\[\begin{array}{l} \\ \log \left(1 + e^{x}\right) - x \cdot y \end{array} \]
(FPCore (x y) :precision binary64 (- (log (+ 1.0 (exp x))) (* x y)))
double code(double x, double y) {
	return log((1.0 + exp(x))) - (x * y);
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    code = log((1.0d0 + exp(x))) - (x * y)
end function
public static double code(double x, double y) {
	return Math.log((1.0 + Math.exp(x))) - (x * y);
}
def code(x, y):
	return math.log((1.0 + math.exp(x))) - (x * y)
function code(x, y)
	return Float64(log(Float64(1.0 + exp(x))) - Float64(x * y))
end
function tmp = code(x, y)
	tmp = log((1.0 + exp(x))) - (x * y);
end
code[x_, y_] := N[(N[Log[N[(1.0 + N[Exp[x], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - N[(x * y), $MachinePrecision]), $MachinePrecision]
\begin{array}{l}

\\
\log \left(1 + e^{x}\right) - x \cdot y
\end{array}

Sampling outcomes in binary64 precision:

Local Percentage Accuracy vs ?

The average percentage accuracy by input value. Horizontal axis shows value of an input variable; the variable is choosen in the title. Vertical axis is accuracy; higher is better. Red represent the original program, while blue represents Herbie's suggestion. These can be toggled with buttons below the plot. The line is an average while dots represent individual samples.

Accuracy vs Speed?

Herbie found 11 alternatives:

AlternativeAccuracySpeedup
The accuracy (vertical axis) and speed (horizontal axis) of each alternatives. Up and to the right is better. The red square shows the initial program, and each blue circle shows an alternative.The line shows the best available speed-accuracy tradeoffs.

Initial Program: 99.2% accurate, 1.0× speedup?

\[\begin{array}{l} \\ \log \left(1 + e^{x}\right) - x \cdot y \end{array} \]
(FPCore (x y) :precision binary64 (- (log (+ 1.0 (exp x))) (* x y)))
double code(double x, double y) {
	return log((1.0 + exp(x))) - (x * y);
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    code = log((1.0d0 + exp(x))) - (x * y)
end function
public static double code(double x, double y) {
	return Math.log((1.0 + Math.exp(x))) - (x * y);
}
def code(x, y):
	return math.log((1.0 + math.exp(x))) - (x * y)
function code(x, y)
	return Float64(log(Float64(1.0 + exp(x))) - Float64(x * y))
end
function tmp = code(x, y)
	tmp = log((1.0 + exp(x))) - (x * y);
end
code[x_, y_] := N[(N[Log[N[(1.0 + N[Exp[x], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - N[(x * y), $MachinePrecision]), $MachinePrecision]
\begin{array}{l}

\\
\log \left(1 + e^{x}\right) - x \cdot y
\end{array}

Alternative 1: 99.3% accurate, 1.0× speedup?

\[\begin{array}{l} \\ \mathsf{fma}\left(-y, x, \mathsf{log1p}\left(e^{x}\right)\right) \end{array} \]
(FPCore (x y) :precision binary64 (fma (- y) x (log1p (exp x))))
double code(double x, double y) {
	return fma(-y, x, log1p(exp(x)));
}
function code(x, y)
	return fma(Float64(-y), x, log1p(exp(x)))
end
code[x_, y_] := N[((-y) * x + N[Log[1 + N[Exp[x], $MachinePrecision]], $MachinePrecision]), $MachinePrecision]
\begin{array}{l}

\\
\mathsf{fma}\left(-y, x, \mathsf{log1p}\left(e^{x}\right)\right)
\end{array}
Derivation
  1. Initial program 98.8%

    \[\log \left(1 + e^{x}\right) - x \cdot y \]
  2. Add Preprocessing
  3. Step-by-step derivation
    1. lift--.f64N/A

      \[\leadsto \color{blue}{\log \left(1 + e^{x}\right) - x \cdot y} \]
    2. lift-log.f64N/A

      \[\leadsto \color{blue}{\log \left(1 + e^{x}\right)} - x \cdot y \]
    3. lift-+.f64N/A

      \[\leadsto \log \color{blue}{\left(1 + e^{x}\right)} - x \cdot y \]
    4. lift-exp.f64N/A

      \[\leadsto \log \left(1 + \color{blue}{e^{x}}\right) - x \cdot y \]
    5. lift-*.f64N/A

      \[\leadsto \log \left(1 + e^{x}\right) - \color{blue}{x \cdot y} \]
    6. fp-cancel-sub-sign-invN/A

      \[\leadsto \color{blue}{\log \left(1 + e^{x}\right) + \left(\mathsf{neg}\left(x\right)\right) \cdot y} \]
    7. mul-1-negN/A

      \[\leadsto \log \left(1 + e^{x}\right) + \color{blue}{\left(-1 \cdot x\right)} \cdot y \]
    8. associate-*r*N/A

      \[\leadsto \log \left(1 + e^{x}\right) + \color{blue}{-1 \cdot \left(x \cdot y\right)} \]
    9. +-commutativeN/A

      \[\leadsto \color{blue}{-1 \cdot \left(x \cdot y\right) + \log \left(1 + e^{x}\right)} \]
    10. *-commutativeN/A

      \[\leadsto -1 \cdot \color{blue}{\left(y \cdot x\right)} + \log \left(1 + e^{x}\right) \]
    11. associate-*r*N/A

      \[\leadsto \color{blue}{\left(-1 \cdot y\right) \cdot x} + \log \left(1 + e^{x}\right) \]
    12. lower-fma.f64N/A

      \[\leadsto \color{blue}{\mathsf{fma}\left(-1 \cdot y, x, \log \left(1 + e^{x}\right)\right)} \]
    13. mul-1-negN/A

      \[\leadsto \mathsf{fma}\left(\color{blue}{\mathsf{neg}\left(y\right)}, x, \log \left(1 + e^{x}\right)\right) \]
    14. lower-neg.f64N/A

      \[\leadsto \mathsf{fma}\left(\color{blue}{-y}, x, \log \left(1 + e^{x}\right)\right) \]
    15. lower-log1p.f64N/A

      \[\leadsto \mathsf{fma}\left(-y, x, \color{blue}{\mathsf{log1p}\left(e^{x}\right)}\right) \]
    16. lift-exp.f6499.2

      \[\leadsto \mathsf{fma}\left(-y, x, \mathsf{log1p}\left(\color{blue}{e^{x}}\right)\right) \]
  4. Applied rewrites99.2%

    \[\leadsto \color{blue}{\mathsf{fma}\left(-y, x, \mathsf{log1p}\left(e^{x}\right)\right)} \]
  5. Add Preprocessing

Alternative 2: 96.7% accurate, 0.4× speedup?

\[\begin{array}{l} \\ \begin{array}{l} t_0 := \log \left(1 + e^{x}\right) - x \cdot y\\ \mathbf{if}\;t\_0 \leq 5 \cdot 10^{-35} \lor \neg \left(t\_0 \leq 200\right):\\ \;\;\;\;\left(-x\right) \cdot y\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(0.5, x, \log 2\right)\\ \end{array} \end{array} \]
(FPCore (x y)
 :precision binary64
 (let* ((t_0 (- (log (+ 1.0 (exp x))) (* x y))))
   (if (or (<= t_0 5e-35) (not (<= t_0 200.0)))
     (* (- x) y)
     (fma 0.5 x (log 2.0)))))
double code(double x, double y) {
	double t_0 = log((1.0 + exp(x))) - (x * y);
	double tmp;
	if ((t_0 <= 5e-35) || !(t_0 <= 200.0)) {
		tmp = -x * y;
	} else {
		tmp = fma(0.5, x, log(2.0));
	}
	return tmp;
}
function code(x, y)
	t_0 = Float64(log(Float64(1.0 + exp(x))) - Float64(x * y))
	tmp = 0.0
	if ((t_0 <= 5e-35) || !(t_0 <= 200.0))
		tmp = Float64(Float64(-x) * y);
	else
		tmp = fma(0.5, x, log(2.0));
	end
	return tmp
end
code[x_, y_] := Block[{t$95$0 = N[(N[Log[N[(1.0 + N[Exp[x], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - N[(x * y), $MachinePrecision]), $MachinePrecision]}, If[Or[LessEqual[t$95$0, 5e-35], N[Not[LessEqual[t$95$0, 200.0]], $MachinePrecision]], N[((-x) * y), $MachinePrecision], N[(0.5 * x + N[Log[2.0], $MachinePrecision]), $MachinePrecision]]]
\begin{array}{l}

\\
\begin{array}{l}
t_0 := \log \left(1 + e^{x}\right) - x \cdot y\\
\mathbf{if}\;t\_0 \leq 5 \cdot 10^{-35} \lor \neg \left(t\_0 \leq 200\right):\\
\;\;\;\;\left(-x\right) \cdot y\\

\mathbf{else}:\\
\;\;\;\;\mathsf{fma}\left(0.5, x, \log 2\right)\\


\end{array}
\end{array}
Derivation
  1. Split input into 2 regimes
  2. if (-.f64 (log.f64 (+.f64 #s(literal 1 binary64) (exp.f64 x))) (*.f64 x y)) < 4.99999999999999964e-35 or 200 < (-.f64 (log.f64 (+.f64 #s(literal 1 binary64) (exp.f64 x))) (*.f64 x y))

    1. Initial program 97.5%

      \[\log \left(1 + e^{x}\right) - x \cdot y \]
    2. Add Preprocessing
    3. Taylor expanded in x around inf

      \[\leadsto \color{blue}{-1 \cdot \left(x \cdot y\right)} \]
    4. Step-by-step derivation
      1. associate-*r*N/A

        \[\leadsto \left(-1 \cdot x\right) \cdot \color{blue}{y} \]
      2. mul-1-negN/A

        \[\leadsto \left(\mathsf{neg}\left(x\right)\right) \cdot y \]
      3. lower-*.f64N/A

        \[\leadsto \left(\mathsf{neg}\left(x\right)\right) \cdot \color{blue}{y} \]
      4. lower-neg.f6497.3

        \[\leadsto \left(-x\right) \cdot y \]
    5. Applied rewrites97.3%

      \[\leadsto \color{blue}{\left(-x\right) \cdot y} \]

    if 4.99999999999999964e-35 < (-.f64 (log.f64 (+.f64 #s(literal 1 binary64) (exp.f64 x))) (*.f64 x y)) < 200

    1. Initial program 100.0%

      \[\log \left(1 + e^{x}\right) - x \cdot y \]
    2. Add Preprocessing
    3. Taylor expanded in y around 0

      \[\leadsto \color{blue}{\log \left(1 + e^{x}\right)} \]
    4. Step-by-step derivation
      1. lower-log1p.f64N/A

        \[\leadsto \mathsf{log1p}\left(e^{x}\right) \]
      2. lift-exp.f6497.5

        \[\leadsto \mathsf{log1p}\left(e^{x}\right) \]
    5. Applied rewrites97.5%

      \[\leadsto \color{blue}{\mathsf{log1p}\left(e^{x}\right)} \]
    6. Taylor expanded in x around 0

      \[\leadsto \log 2 + \color{blue}{\frac{1}{2} \cdot x} \]
    7. Step-by-step derivation
      1. +-commutativeN/A

        \[\leadsto \frac{1}{2} \cdot x + \log 2 \]
      2. lower-fma.f64N/A

        \[\leadsto \mathsf{fma}\left(\frac{1}{2}, x, \log 2\right) \]
      3. lift-log.f6495.4

        \[\leadsto \mathsf{fma}\left(0.5, x, \log 2\right) \]
    8. Applied rewrites95.4%

      \[\leadsto \mathsf{fma}\left(0.5, \color{blue}{x}, \log 2\right) \]
  3. Recombined 2 regimes into one program.
  4. Final simplification96.3%

    \[\leadsto \begin{array}{l} \mathbf{if}\;\log \left(1 + e^{x}\right) - x \cdot y \leq 5 \cdot 10^{-35} \lor \neg \left(\log \left(1 + e^{x}\right) - x \cdot y \leq 200\right):\\ \;\;\;\;\left(-x\right) \cdot y\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(0.5, x, \log 2\right)\\ \end{array} \]
  5. Add Preprocessing

Alternative 3: 96.7% accurate, 0.4× speedup?

\[\begin{array}{l} \\ \begin{array}{l} t_0 := \log \left(1 + e^{x}\right) - x \cdot y\\ \mathbf{if}\;t\_0 \leq 5 \cdot 10^{-35} \lor \neg \left(t\_0 \leq 200\right):\\ \;\;\;\;\left(-x\right) \cdot y\\ \mathbf{else}:\\ \;\;\;\;\mathsf{log1p}\left(x - -1\right)\\ \end{array} \end{array} \]
(FPCore (x y)
 :precision binary64
 (let* ((t_0 (- (log (+ 1.0 (exp x))) (* x y))))
   (if (or (<= t_0 5e-35) (not (<= t_0 200.0)))
     (* (- x) y)
     (log1p (- x -1.0)))))
double code(double x, double y) {
	double t_0 = log((1.0 + exp(x))) - (x * y);
	double tmp;
	if ((t_0 <= 5e-35) || !(t_0 <= 200.0)) {
		tmp = -x * y;
	} else {
		tmp = log1p((x - -1.0));
	}
	return tmp;
}
public static double code(double x, double y) {
	double t_0 = Math.log((1.0 + Math.exp(x))) - (x * y);
	double tmp;
	if ((t_0 <= 5e-35) || !(t_0 <= 200.0)) {
		tmp = -x * y;
	} else {
		tmp = Math.log1p((x - -1.0));
	}
	return tmp;
}
def code(x, y):
	t_0 = math.log((1.0 + math.exp(x))) - (x * y)
	tmp = 0
	if (t_0 <= 5e-35) or not (t_0 <= 200.0):
		tmp = -x * y
	else:
		tmp = math.log1p((x - -1.0))
	return tmp
function code(x, y)
	t_0 = Float64(log(Float64(1.0 + exp(x))) - Float64(x * y))
	tmp = 0.0
	if ((t_0 <= 5e-35) || !(t_0 <= 200.0))
		tmp = Float64(Float64(-x) * y);
	else
		tmp = log1p(Float64(x - -1.0));
	end
	return tmp
end
code[x_, y_] := Block[{t$95$0 = N[(N[Log[N[(1.0 + N[Exp[x], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - N[(x * y), $MachinePrecision]), $MachinePrecision]}, If[Or[LessEqual[t$95$0, 5e-35], N[Not[LessEqual[t$95$0, 200.0]], $MachinePrecision]], N[((-x) * y), $MachinePrecision], N[Log[1 + N[(x - -1.0), $MachinePrecision]], $MachinePrecision]]]
\begin{array}{l}

\\
\begin{array}{l}
t_0 := \log \left(1 + e^{x}\right) - x \cdot y\\
\mathbf{if}\;t\_0 \leq 5 \cdot 10^{-35} \lor \neg \left(t\_0 \leq 200\right):\\
\;\;\;\;\left(-x\right) \cdot y\\

\mathbf{else}:\\
\;\;\;\;\mathsf{log1p}\left(x - -1\right)\\


\end{array}
\end{array}
Derivation
  1. Split input into 2 regimes
  2. if (-.f64 (log.f64 (+.f64 #s(literal 1 binary64) (exp.f64 x))) (*.f64 x y)) < 4.99999999999999964e-35 or 200 < (-.f64 (log.f64 (+.f64 #s(literal 1 binary64) (exp.f64 x))) (*.f64 x y))

    1. Initial program 97.5%

      \[\log \left(1 + e^{x}\right) - x \cdot y \]
    2. Add Preprocessing
    3. Taylor expanded in x around inf

      \[\leadsto \color{blue}{-1 \cdot \left(x \cdot y\right)} \]
    4. Step-by-step derivation
      1. associate-*r*N/A

        \[\leadsto \left(-1 \cdot x\right) \cdot \color{blue}{y} \]
      2. mul-1-negN/A

        \[\leadsto \left(\mathsf{neg}\left(x\right)\right) \cdot y \]
      3. lower-*.f64N/A

        \[\leadsto \left(\mathsf{neg}\left(x\right)\right) \cdot \color{blue}{y} \]
      4. lower-neg.f6497.3

        \[\leadsto \left(-x\right) \cdot y \]
    5. Applied rewrites97.3%

      \[\leadsto \color{blue}{\left(-x\right) \cdot y} \]

    if 4.99999999999999964e-35 < (-.f64 (log.f64 (+.f64 #s(literal 1 binary64) (exp.f64 x))) (*.f64 x y)) < 200

    1. Initial program 100.0%

      \[\log \left(1 + e^{x}\right) - x \cdot y \]
    2. Add Preprocessing
    3. Taylor expanded in y around 0

      \[\leadsto \color{blue}{\log \left(1 + e^{x}\right)} \]
    4. Step-by-step derivation
      1. lower-log1p.f64N/A

        \[\leadsto \mathsf{log1p}\left(e^{x}\right) \]
      2. lift-exp.f6497.5

        \[\leadsto \mathsf{log1p}\left(e^{x}\right) \]
    5. Applied rewrites97.5%

      \[\leadsto \color{blue}{\mathsf{log1p}\left(e^{x}\right)} \]
    6. Taylor expanded in x around 0

      \[\leadsto \mathsf{log1p}\left(1 + x\right) \]
    7. Step-by-step derivation
      1. +-commutativeN/A

        \[\leadsto \mathsf{log1p}\left(x + 1\right) \]
      2. metadata-evalN/A

        \[\leadsto \mathsf{log1p}\left(x + 1 \cdot 1\right) \]
      3. fp-cancel-sign-sub-invN/A

        \[\leadsto \mathsf{log1p}\left(x - \left(\mathsf{neg}\left(1\right)\right) \cdot 1\right) \]
      4. metadata-evalN/A

        \[\leadsto \mathsf{log1p}\left(x - -1 \cdot 1\right) \]
      5. metadata-evalN/A

        \[\leadsto \mathsf{log1p}\left(x - -1\right) \]
      6. lower--.f6495.2

        \[\leadsto \mathsf{log1p}\left(x - -1\right) \]
    8. Applied rewrites95.2%

      \[\leadsto \mathsf{log1p}\left(x - -1\right) \]
  3. Recombined 2 regimes into one program.
  4. Final simplification96.2%

    \[\leadsto \begin{array}{l} \mathbf{if}\;\log \left(1 + e^{x}\right) - x \cdot y \leq 5 \cdot 10^{-35} \lor \neg \left(\log \left(1 + e^{x}\right) - x \cdot y \leq 200\right):\\ \;\;\;\;\left(-x\right) \cdot y\\ \mathbf{else}:\\ \;\;\;\;\mathsf{log1p}\left(x - -1\right)\\ \end{array} \]
  5. Add Preprocessing

Alternative 4: 96.3% accurate, 0.4× speedup?

\[\begin{array}{l} \\ \begin{array}{l} t_0 := \log \left(1 + e^{x}\right) - x \cdot y\\ \mathbf{if}\;t\_0 \leq 5 \cdot 10^{-35} \lor \neg \left(t\_0 \leq 200\right):\\ \;\;\;\;\left(-x\right) \cdot y\\ \mathbf{else}:\\ \;\;\;\;\log 2\\ \end{array} \end{array} \]
(FPCore (x y)
 :precision binary64
 (let* ((t_0 (- (log (+ 1.0 (exp x))) (* x y))))
   (if (or (<= t_0 5e-35) (not (<= t_0 200.0))) (* (- x) y) (log 2.0))))
double code(double x, double y) {
	double t_0 = log((1.0 + exp(x))) - (x * y);
	double tmp;
	if ((t_0 <= 5e-35) || !(t_0 <= 200.0)) {
		tmp = -x * y;
	} else {
		tmp = log(2.0);
	}
	return tmp;
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8) :: t_0
    real(8) :: tmp
    t_0 = log((1.0d0 + exp(x))) - (x * y)
    if ((t_0 <= 5d-35) .or. (.not. (t_0 <= 200.0d0))) then
        tmp = -x * y
    else
        tmp = log(2.0d0)
    end if
    code = tmp
end function
public static double code(double x, double y) {
	double t_0 = Math.log((1.0 + Math.exp(x))) - (x * y);
	double tmp;
	if ((t_0 <= 5e-35) || !(t_0 <= 200.0)) {
		tmp = -x * y;
	} else {
		tmp = Math.log(2.0);
	}
	return tmp;
}
def code(x, y):
	t_0 = math.log((1.0 + math.exp(x))) - (x * y)
	tmp = 0
	if (t_0 <= 5e-35) or not (t_0 <= 200.0):
		tmp = -x * y
	else:
		tmp = math.log(2.0)
	return tmp
function code(x, y)
	t_0 = Float64(log(Float64(1.0 + exp(x))) - Float64(x * y))
	tmp = 0.0
	if ((t_0 <= 5e-35) || !(t_0 <= 200.0))
		tmp = Float64(Float64(-x) * y);
	else
		tmp = log(2.0);
	end
	return tmp
end
function tmp_2 = code(x, y)
	t_0 = log((1.0 + exp(x))) - (x * y);
	tmp = 0.0;
	if ((t_0 <= 5e-35) || ~((t_0 <= 200.0)))
		tmp = -x * y;
	else
		tmp = log(2.0);
	end
	tmp_2 = tmp;
end
code[x_, y_] := Block[{t$95$0 = N[(N[Log[N[(1.0 + N[Exp[x], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - N[(x * y), $MachinePrecision]), $MachinePrecision]}, If[Or[LessEqual[t$95$0, 5e-35], N[Not[LessEqual[t$95$0, 200.0]], $MachinePrecision]], N[((-x) * y), $MachinePrecision], N[Log[2.0], $MachinePrecision]]]
\begin{array}{l}

\\
\begin{array}{l}
t_0 := \log \left(1 + e^{x}\right) - x \cdot y\\
\mathbf{if}\;t\_0 \leq 5 \cdot 10^{-35} \lor \neg \left(t\_0 \leq 200\right):\\
\;\;\;\;\left(-x\right) \cdot y\\

\mathbf{else}:\\
\;\;\;\;\log 2\\


\end{array}
\end{array}
Derivation
  1. Split input into 2 regimes
  2. if (-.f64 (log.f64 (+.f64 #s(literal 1 binary64) (exp.f64 x))) (*.f64 x y)) < 4.99999999999999964e-35 or 200 < (-.f64 (log.f64 (+.f64 #s(literal 1 binary64) (exp.f64 x))) (*.f64 x y))

    1. Initial program 97.5%

      \[\log \left(1 + e^{x}\right) - x \cdot y \]
    2. Add Preprocessing
    3. Taylor expanded in x around inf

      \[\leadsto \color{blue}{-1 \cdot \left(x \cdot y\right)} \]
    4. Step-by-step derivation
      1. associate-*r*N/A

        \[\leadsto \left(-1 \cdot x\right) \cdot \color{blue}{y} \]
      2. mul-1-negN/A

        \[\leadsto \left(\mathsf{neg}\left(x\right)\right) \cdot y \]
      3. lower-*.f64N/A

        \[\leadsto \left(\mathsf{neg}\left(x\right)\right) \cdot \color{blue}{y} \]
      4. lower-neg.f6497.3

        \[\leadsto \left(-x\right) \cdot y \]
    5. Applied rewrites97.3%

      \[\leadsto \color{blue}{\left(-x\right) \cdot y} \]

    if 4.99999999999999964e-35 < (-.f64 (log.f64 (+.f64 #s(literal 1 binary64) (exp.f64 x))) (*.f64 x y)) < 200

    1. Initial program 100.0%

      \[\log \left(1 + e^{x}\right) - x \cdot y \]
    2. Add Preprocessing
    3. Taylor expanded in x around 0

      \[\leadsto \color{blue}{\log 2} \]
    4. Step-by-step derivation
      1. lower-log.f6494.0

        \[\leadsto \log 2 \]
    5. Applied rewrites94.0%

      \[\leadsto \color{blue}{\log 2} \]
  3. Recombined 2 regimes into one program.
  4. Final simplification95.5%

    \[\leadsto \begin{array}{l} \mathbf{if}\;\log \left(1 + e^{x}\right) - x \cdot y \leq 5 \cdot 10^{-35} \lor \neg \left(\log \left(1 + e^{x}\right) - x \cdot y \leq 200\right):\\ \;\;\;\;\left(-x\right) \cdot y\\ \mathbf{else}:\\ \;\;\;\;\log 2\\ \end{array} \]
  5. Add Preprocessing

Alternative 5: 99.3% accurate, 1.6× speedup?

\[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;x \leq -2.6:\\ \;\;\;\;\left(-x\right) \cdot y\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(\mathsf{fma}\left(\mathsf{fma}\left(x \cdot x, -0.005208333333333333, 0.125\right), x, 0.5 - y\right), x, \log 2\right)\\ \end{array} \end{array} \]
(FPCore (x y)
 :precision binary64
 (if (<= x -2.6)
   (* (- x) y)
   (fma
    (fma (fma (* x x) -0.005208333333333333 0.125) x (- 0.5 y))
    x
    (log 2.0))))
double code(double x, double y) {
	double tmp;
	if (x <= -2.6) {
		tmp = -x * y;
	} else {
		tmp = fma(fma(fma((x * x), -0.005208333333333333, 0.125), x, (0.5 - y)), x, log(2.0));
	}
	return tmp;
}
function code(x, y)
	tmp = 0.0
	if (x <= -2.6)
		tmp = Float64(Float64(-x) * y);
	else
		tmp = fma(fma(fma(Float64(x * x), -0.005208333333333333, 0.125), x, Float64(0.5 - y)), x, log(2.0));
	end
	return tmp
end
code[x_, y_] := If[LessEqual[x, -2.6], N[((-x) * y), $MachinePrecision], N[(N[(N[(N[(x * x), $MachinePrecision] * -0.005208333333333333 + 0.125), $MachinePrecision] * x + N[(0.5 - y), $MachinePrecision]), $MachinePrecision] * x + N[Log[2.0], $MachinePrecision]), $MachinePrecision]]
\begin{array}{l}

\\
\begin{array}{l}
\mathbf{if}\;x \leq -2.6:\\
\;\;\;\;\left(-x\right) \cdot y\\

\mathbf{else}:\\
\;\;\;\;\mathsf{fma}\left(\mathsf{fma}\left(\mathsf{fma}\left(x \cdot x, -0.005208333333333333, 0.125\right), x, 0.5 - y\right), x, \log 2\right)\\


\end{array}
\end{array}
Derivation
  1. Split input into 2 regimes
  2. if x < -2.60000000000000009

    1. Initial program 98.8%

      \[\log \left(1 + e^{x}\right) - x \cdot y \]
    2. Add Preprocessing
    3. Taylor expanded in x around inf

      \[\leadsto \color{blue}{-1 \cdot \left(x \cdot y\right)} \]
    4. Step-by-step derivation
      1. associate-*r*N/A

        \[\leadsto \left(-1 \cdot x\right) \cdot \color{blue}{y} \]
      2. mul-1-negN/A

        \[\leadsto \left(\mathsf{neg}\left(x\right)\right) \cdot y \]
      3. lower-*.f64N/A

        \[\leadsto \left(\mathsf{neg}\left(x\right)\right) \cdot \color{blue}{y} \]
      4. lower-neg.f6498.8

        \[\leadsto \left(-x\right) \cdot y \]
    5. Applied rewrites98.8%

      \[\leadsto \color{blue}{\left(-x\right) \cdot y} \]

    if -2.60000000000000009 < x

    1. Initial program 98.8%

      \[\log \left(1 + e^{x}\right) - x \cdot y \]
    2. Add Preprocessing
    3. Taylor expanded in x around 0

      \[\leadsto \color{blue}{\log 2 + x \cdot \left(\left(\frac{1}{2} + x \cdot \left(\frac{1}{8} + \frac{-1}{192} \cdot {x}^{2}\right)\right) - y\right)} \]
    4. Step-by-step derivation
      1. +-commutativeN/A

        \[\leadsto x \cdot \left(\left(\frac{1}{2} + x \cdot \left(\frac{1}{8} + \frac{-1}{192} \cdot {x}^{2}\right)\right) - y\right) + \color{blue}{\log 2} \]
      2. *-commutativeN/A

        \[\leadsto \left(\left(\frac{1}{2} + x \cdot \left(\frac{1}{8} + \frac{-1}{192} \cdot {x}^{2}\right)\right) - y\right) \cdot x + \log \color{blue}{2} \]
      3. lower-fma.f64N/A

        \[\leadsto \mathsf{fma}\left(\left(\frac{1}{2} + x \cdot \left(\frac{1}{8} + \frac{-1}{192} \cdot {x}^{2}\right)\right) - y, \color{blue}{x}, \log 2\right) \]
      4. +-commutativeN/A

        \[\leadsto \mathsf{fma}\left(\left(x \cdot \left(\frac{1}{8} + \frac{-1}{192} \cdot {x}^{2}\right) + \frac{1}{2}\right) - y, x, \log 2\right) \]
      5. associate--l+N/A

        \[\leadsto \mathsf{fma}\left(x \cdot \left(\frac{1}{8} + \frac{-1}{192} \cdot {x}^{2}\right) + \left(\frac{1}{2} - y\right), x, \log 2\right) \]
      6. *-commutativeN/A

        \[\leadsto \mathsf{fma}\left(\left(\frac{1}{8} + \frac{-1}{192} \cdot {x}^{2}\right) \cdot x + \left(\frac{1}{2} - y\right), x, \log 2\right) \]
      7. lower-fma.f64N/A

        \[\leadsto \mathsf{fma}\left(\mathsf{fma}\left(\frac{1}{8} + \frac{-1}{192} \cdot {x}^{2}, x, \frac{1}{2} - y\right), x, \log 2\right) \]
      8. +-commutativeN/A

        \[\leadsto \mathsf{fma}\left(\mathsf{fma}\left(\frac{-1}{192} \cdot {x}^{2} + \frac{1}{8}, x, \frac{1}{2} - y\right), x, \log 2\right) \]
      9. *-commutativeN/A

        \[\leadsto \mathsf{fma}\left(\mathsf{fma}\left({x}^{2} \cdot \frac{-1}{192} + \frac{1}{8}, x, \frac{1}{2} - y\right), x, \log 2\right) \]
      10. lower-fma.f64N/A

        \[\leadsto \mathsf{fma}\left(\mathsf{fma}\left(\mathsf{fma}\left({x}^{2}, \frac{-1}{192}, \frac{1}{8}\right), x, \frac{1}{2} - y\right), x, \log 2\right) \]
      11. unpow2N/A

        \[\leadsto \mathsf{fma}\left(\mathsf{fma}\left(\mathsf{fma}\left(x \cdot x, \frac{-1}{192}, \frac{1}{8}\right), x, \frac{1}{2} - y\right), x, \log 2\right) \]
      12. lower-*.f64N/A

        \[\leadsto \mathsf{fma}\left(\mathsf{fma}\left(\mathsf{fma}\left(x \cdot x, \frac{-1}{192}, \frac{1}{8}\right), x, \frac{1}{2} - y\right), x, \log 2\right) \]
      13. lower--.f64N/A

        \[\leadsto \mathsf{fma}\left(\mathsf{fma}\left(\mathsf{fma}\left(x \cdot x, \frac{-1}{192}, \frac{1}{8}\right), x, \frac{1}{2} - y\right), x, \log 2\right) \]
      14. lower-log.f6498.2

        \[\leadsto \mathsf{fma}\left(\mathsf{fma}\left(\mathsf{fma}\left(x \cdot x, -0.005208333333333333, 0.125\right), x, 0.5 - y\right), x, \log 2\right) \]
    5. Applied rewrites98.2%

      \[\leadsto \color{blue}{\mathsf{fma}\left(\mathsf{fma}\left(\mathsf{fma}\left(x \cdot x, -0.005208333333333333, 0.125\right), x, 0.5 - y\right), x, \log 2\right)} \]
  3. Recombined 2 regimes into one program.
  4. Add Preprocessing

Alternative 6: 98.4% accurate, 1.7× speedup?

\[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;x \leq -1.35 \cdot 10^{+19}:\\ \;\;\;\;\left(-x\right) \cdot y\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(\mathsf{fma}\left(0.125, x, 0.5 - y\right), x, \log 2\right)\\ \end{array} \end{array} \]
(FPCore (x y)
 :precision binary64
 (if (<= x -1.35e+19) (* (- x) y) (fma (fma 0.125 x (- 0.5 y)) x (log 2.0))))
double code(double x, double y) {
	double tmp;
	if (x <= -1.35e+19) {
		tmp = -x * y;
	} else {
		tmp = fma(fma(0.125, x, (0.5 - y)), x, log(2.0));
	}
	return tmp;
}
function code(x, y)
	tmp = 0.0
	if (x <= -1.35e+19)
		tmp = Float64(Float64(-x) * y);
	else
		tmp = fma(fma(0.125, x, Float64(0.5 - y)), x, log(2.0));
	end
	return tmp
end
code[x_, y_] := If[LessEqual[x, -1.35e+19], N[((-x) * y), $MachinePrecision], N[(N[(0.125 * x + N[(0.5 - y), $MachinePrecision]), $MachinePrecision] * x + N[Log[2.0], $MachinePrecision]), $MachinePrecision]]
\begin{array}{l}

\\
\begin{array}{l}
\mathbf{if}\;x \leq -1.35 \cdot 10^{+19}:\\
\;\;\;\;\left(-x\right) \cdot y\\

\mathbf{else}:\\
\;\;\;\;\mathsf{fma}\left(\mathsf{fma}\left(0.125, x, 0.5 - y\right), x, \log 2\right)\\


\end{array}
\end{array}
Derivation
  1. Split input into 2 regimes
  2. if x < -1.35e19

    1. Initial program 100.0%

      \[\log \left(1 + e^{x}\right) - x \cdot y \]
    2. Add Preprocessing
    3. Taylor expanded in x around inf

      \[\leadsto \color{blue}{-1 \cdot \left(x \cdot y\right)} \]
    4. Step-by-step derivation
      1. associate-*r*N/A

        \[\leadsto \left(-1 \cdot x\right) \cdot \color{blue}{y} \]
      2. mul-1-negN/A

        \[\leadsto \left(\mathsf{neg}\left(x\right)\right) \cdot y \]
      3. lower-*.f64N/A

        \[\leadsto \left(\mathsf{neg}\left(x\right)\right) \cdot \color{blue}{y} \]
      4. lower-neg.f64100.0

        \[\leadsto \left(-x\right) \cdot y \]
    5. Applied rewrites100.0%

      \[\leadsto \color{blue}{\left(-x\right) \cdot y} \]

    if -1.35e19 < x

    1. Initial program 98.3%

      \[\log \left(1 + e^{x}\right) - x \cdot y \]
    2. Add Preprocessing
    3. Taylor expanded in x around 0

      \[\leadsto \color{blue}{\log 2 + x \cdot \left(\left(\frac{1}{2} + \frac{1}{8} \cdot x\right) - y\right)} \]
    4. Step-by-step derivation
      1. +-commutativeN/A

        \[\leadsto x \cdot \left(\left(\frac{1}{2} + \frac{1}{8} \cdot x\right) - y\right) + \color{blue}{\log 2} \]
      2. *-commutativeN/A

        \[\leadsto \left(\left(\frac{1}{2} + \frac{1}{8} \cdot x\right) - y\right) \cdot x + \log \color{blue}{2} \]
      3. lower-fma.f64N/A

        \[\leadsto \mathsf{fma}\left(\left(\frac{1}{2} + \frac{1}{8} \cdot x\right) - y, \color{blue}{x}, \log 2\right) \]
      4. +-commutativeN/A

        \[\leadsto \mathsf{fma}\left(\left(\frac{1}{8} \cdot x + \frac{1}{2}\right) - y, x, \log 2\right) \]
      5. associate--l+N/A

        \[\leadsto \mathsf{fma}\left(\frac{1}{8} \cdot x + \left(\frac{1}{2} - y\right), x, \log 2\right) \]
      6. lower-fma.f64N/A

        \[\leadsto \mathsf{fma}\left(\mathsf{fma}\left(\frac{1}{8}, x, \frac{1}{2} - y\right), x, \log 2\right) \]
      7. lower--.f64N/A

        \[\leadsto \mathsf{fma}\left(\mathsf{fma}\left(\frac{1}{8}, x, \frac{1}{2} - y\right), x, \log 2\right) \]
      8. lower-log.f6497.5

        \[\leadsto \mathsf{fma}\left(\mathsf{fma}\left(0.125, x, 0.5 - y\right), x, \log 2\right) \]
    5. Applied rewrites97.5%

      \[\leadsto \color{blue}{\mathsf{fma}\left(\mathsf{fma}\left(0.125, x, 0.5 - y\right), x, \log 2\right)} \]
  3. Recombined 2 regimes into one program.
  4. Add Preprocessing

Alternative 7: 99.0% accurate, 1.8× speedup?

\[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;x \leq -1.35:\\ \;\;\;\;\left(-x\right) \cdot y\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(0.5 - y, x, \log 2\right)\\ \end{array} \end{array} \]
(FPCore (x y)
 :precision binary64
 (if (<= x -1.35) (* (- x) y) (fma (- 0.5 y) x (log 2.0))))
double code(double x, double y) {
	double tmp;
	if (x <= -1.35) {
		tmp = -x * y;
	} else {
		tmp = fma((0.5 - y), x, log(2.0));
	}
	return tmp;
}
function code(x, y)
	tmp = 0.0
	if (x <= -1.35)
		tmp = Float64(Float64(-x) * y);
	else
		tmp = fma(Float64(0.5 - y), x, log(2.0));
	end
	return tmp
end
code[x_, y_] := If[LessEqual[x, -1.35], N[((-x) * y), $MachinePrecision], N[(N[(0.5 - y), $MachinePrecision] * x + N[Log[2.0], $MachinePrecision]), $MachinePrecision]]
\begin{array}{l}

\\
\begin{array}{l}
\mathbf{if}\;x \leq -1.35:\\
\;\;\;\;\left(-x\right) \cdot y\\

\mathbf{else}:\\
\;\;\;\;\mathsf{fma}\left(0.5 - y, x, \log 2\right)\\


\end{array}
\end{array}
Derivation
  1. Split input into 2 regimes
  2. if x < -1.3500000000000001

    1. Initial program 98.8%

      \[\log \left(1 + e^{x}\right) - x \cdot y \]
    2. Add Preprocessing
    3. Taylor expanded in x around inf

      \[\leadsto \color{blue}{-1 \cdot \left(x \cdot y\right)} \]
    4. Step-by-step derivation
      1. associate-*r*N/A

        \[\leadsto \left(-1 \cdot x\right) \cdot \color{blue}{y} \]
      2. mul-1-negN/A

        \[\leadsto \left(\mathsf{neg}\left(x\right)\right) \cdot y \]
      3. lower-*.f64N/A

        \[\leadsto \left(\mathsf{neg}\left(x\right)\right) \cdot \color{blue}{y} \]
      4. lower-neg.f6498.8

        \[\leadsto \left(-x\right) \cdot y \]
    5. Applied rewrites98.8%

      \[\leadsto \color{blue}{\left(-x\right) \cdot y} \]

    if -1.3500000000000001 < x

    1. Initial program 98.8%

      \[\log \left(1 + e^{x}\right) - x \cdot y \]
    2. Add Preprocessing
    3. Taylor expanded in x around 0

      \[\leadsto \color{blue}{\log 2 + x \cdot \left(\frac{1}{2} - y\right)} \]
    4. Step-by-step derivation
      1. +-commutativeN/A

        \[\leadsto x \cdot \left(\frac{1}{2} - y\right) + \color{blue}{\log 2} \]
      2. *-commutativeN/A

        \[\leadsto \left(\frac{1}{2} - y\right) \cdot x + \log \color{blue}{2} \]
      3. lower-fma.f64N/A

        \[\leadsto \mathsf{fma}\left(\frac{1}{2} - y, \color{blue}{x}, \log 2\right) \]
      4. lower--.f64N/A

        \[\leadsto \mathsf{fma}\left(\frac{1}{2} - y, x, \log 2\right) \]
      5. lower-log.f6497.4

        \[\leadsto \mathsf{fma}\left(0.5 - y, x, \log 2\right) \]
    5. Applied rewrites97.4%

      \[\leadsto \color{blue}{\mathsf{fma}\left(0.5 - y, x, \log 2\right)} \]
  3. Recombined 2 regimes into one program.
  4. Add Preprocessing

Alternative 8: 97.8% accurate, 1.8× speedup?

\[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;x \leq -1.35 \cdot 10^{+19}:\\ \;\;\;\;\left(-x\right) \cdot y\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(-y, x, \mathsf{log1p}\left(1\right)\right)\\ \end{array} \end{array} \]
(FPCore (x y)
 :precision binary64
 (if (<= x -1.35e+19) (* (- x) y) (fma (- y) x (log1p 1.0))))
double code(double x, double y) {
	double tmp;
	if (x <= -1.35e+19) {
		tmp = -x * y;
	} else {
		tmp = fma(-y, x, log1p(1.0));
	}
	return tmp;
}
function code(x, y)
	tmp = 0.0
	if (x <= -1.35e+19)
		tmp = Float64(Float64(-x) * y);
	else
		tmp = fma(Float64(-y), x, log1p(1.0));
	end
	return tmp
end
code[x_, y_] := If[LessEqual[x, -1.35e+19], N[((-x) * y), $MachinePrecision], N[((-y) * x + N[Log[1 + 1.0], $MachinePrecision]), $MachinePrecision]]
\begin{array}{l}

\\
\begin{array}{l}
\mathbf{if}\;x \leq -1.35 \cdot 10^{+19}:\\
\;\;\;\;\left(-x\right) \cdot y\\

\mathbf{else}:\\
\;\;\;\;\mathsf{fma}\left(-y, x, \mathsf{log1p}\left(1\right)\right)\\


\end{array}
\end{array}
Derivation
  1. Split input into 2 regimes
  2. if x < -1.35e19

    1. Initial program 100.0%

      \[\log \left(1 + e^{x}\right) - x \cdot y \]
    2. Add Preprocessing
    3. Taylor expanded in x around inf

      \[\leadsto \color{blue}{-1 \cdot \left(x \cdot y\right)} \]
    4. Step-by-step derivation
      1. associate-*r*N/A

        \[\leadsto \left(-1 \cdot x\right) \cdot \color{blue}{y} \]
      2. mul-1-negN/A

        \[\leadsto \left(\mathsf{neg}\left(x\right)\right) \cdot y \]
      3. lower-*.f64N/A

        \[\leadsto \left(\mathsf{neg}\left(x\right)\right) \cdot \color{blue}{y} \]
      4. lower-neg.f64100.0

        \[\leadsto \left(-x\right) \cdot y \]
    5. Applied rewrites100.0%

      \[\leadsto \color{blue}{\left(-x\right) \cdot y} \]

    if -1.35e19 < x

    1. Initial program 98.3%

      \[\log \left(1 + e^{x}\right) - x \cdot y \]
    2. Add Preprocessing
    3. Step-by-step derivation
      1. lift--.f64N/A

        \[\leadsto \color{blue}{\log \left(1 + e^{x}\right) - x \cdot y} \]
      2. lift-log.f64N/A

        \[\leadsto \color{blue}{\log \left(1 + e^{x}\right)} - x \cdot y \]
      3. lift-+.f64N/A

        \[\leadsto \log \color{blue}{\left(1 + e^{x}\right)} - x \cdot y \]
      4. lift-exp.f64N/A

        \[\leadsto \log \left(1 + \color{blue}{e^{x}}\right) - x \cdot y \]
      5. lift-*.f64N/A

        \[\leadsto \log \left(1 + e^{x}\right) - \color{blue}{x \cdot y} \]
      6. fp-cancel-sub-sign-invN/A

        \[\leadsto \color{blue}{\log \left(1 + e^{x}\right) + \left(\mathsf{neg}\left(x\right)\right) \cdot y} \]
      7. mul-1-negN/A

        \[\leadsto \log \left(1 + e^{x}\right) + \color{blue}{\left(-1 \cdot x\right)} \cdot y \]
      8. associate-*r*N/A

        \[\leadsto \log \left(1 + e^{x}\right) + \color{blue}{-1 \cdot \left(x \cdot y\right)} \]
      9. +-commutativeN/A

        \[\leadsto \color{blue}{-1 \cdot \left(x \cdot y\right) + \log \left(1 + e^{x}\right)} \]
      10. *-commutativeN/A

        \[\leadsto -1 \cdot \color{blue}{\left(y \cdot x\right)} + \log \left(1 + e^{x}\right) \]
      11. associate-*r*N/A

        \[\leadsto \color{blue}{\left(-1 \cdot y\right) \cdot x} + \log \left(1 + e^{x}\right) \]
      12. lower-fma.f64N/A

        \[\leadsto \color{blue}{\mathsf{fma}\left(-1 \cdot y, x, \log \left(1 + e^{x}\right)\right)} \]
      13. mul-1-negN/A

        \[\leadsto \mathsf{fma}\left(\color{blue}{\mathsf{neg}\left(y\right)}, x, \log \left(1 + e^{x}\right)\right) \]
      14. lower-neg.f64N/A

        \[\leadsto \mathsf{fma}\left(\color{blue}{-y}, x, \log \left(1 + e^{x}\right)\right) \]
      15. lower-log1p.f64N/A

        \[\leadsto \mathsf{fma}\left(-y, x, \color{blue}{\mathsf{log1p}\left(e^{x}\right)}\right) \]
      16. lift-exp.f6498.9

        \[\leadsto \mathsf{fma}\left(-y, x, \mathsf{log1p}\left(\color{blue}{e^{x}}\right)\right) \]
    4. Applied rewrites98.9%

      \[\leadsto \color{blue}{\mathsf{fma}\left(-y, x, \mathsf{log1p}\left(e^{x}\right)\right)} \]
    5. Taylor expanded in x around 0

      \[\leadsto \mathsf{fma}\left(-y, x, \mathsf{log1p}\left(\color{blue}{1}\right)\right) \]
    6. Step-by-step derivation
      1. Applied rewrites95.8%

        \[\leadsto \mathsf{fma}\left(-y, x, \mathsf{log1p}\left(\color{blue}{1}\right)\right) \]
    7. Recombined 2 regimes into one program.
    8. Add Preprocessing

    Alternative 9: 97.8% accurate, 1.8× speedup?

    \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;x \leq -1.35 \cdot 10^{+19}:\\ \;\;\;\;\left(-x\right) \cdot y\\ \mathbf{else}:\\ \;\;\;\;\log 2 - x \cdot y\\ \end{array} \end{array} \]
    (FPCore (x y)
     :precision binary64
     (if (<= x -1.35e+19) (* (- x) y) (- (log 2.0) (* x y))))
    double code(double x, double y) {
    	double tmp;
    	if (x <= -1.35e+19) {
    		tmp = -x * y;
    	} else {
    		tmp = log(2.0) - (x * y);
    	}
    	return tmp;
    }
    
    module fmin_fmax_functions
        implicit none
        private
        public fmax
        public fmin
    
        interface fmax
            module procedure fmax88
            module procedure fmax44
            module procedure fmax84
            module procedure fmax48
        end interface
        interface fmin
            module procedure fmin88
            module procedure fmin44
            module procedure fmin84
            module procedure fmin48
        end interface
    contains
        real(8) function fmax88(x, y) result (res)
            real(8), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(x, max(x, y), y /= y), x /= x)
        end function
        real(4) function fmax44(x, y) result (res)
            real(4), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(y, merge(x, max(x, y), y /= y), x /= x)
        end function
        real(8) function fmax84(x, y) result(res)
            real(8), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
        end function
        real(8) function fmax48(x, y) result(res)
            real(4), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
        end function
        real(8) function fmin88(x, y) result (res)
            real(8), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(x, min(x, y), y /= y), x /= x)
        end function
        real(4) function fmin44(x, y) result (res)
            real(4), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(y, merge(x, min(x, y), y /= y), x /= x)
        end function
        real(8) function fmin84(x, y) result(res)
            real(8), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
        end function
        real(8) function fmin48(x, y) result(res)
            real(4), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
        end function
    end module
    
    real(8) function code(x, y)
    use fmin_fmax_functions
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        real(8) :: tmp
        if (x <= (-1.35d+19)) then
            tmp = -x * y
        else
            tmp = log(2.0d0) - (x * y)
        end if
        code = tmp
    end function
    
    public static double code(double x, double y) {
    	double tmp;
    	if (x <= -1.35e+19) {
    		tmp = -x * y;
    	} else {
    		tmp = Math.log(2.0) - (x * y);
    	}
    	return tmp;
    }
    
    def code(x, y):
    	tmp = 0
    	if x <= -1.35e+19:
    		tmp = -x * y
    	else:
    		tmp = math.log(2.0) - (x * y)
    	return tmp
    
    function code(x, y)
    	tmp = 0.0
    	if (x <= -1.35e+19)
    		tmp = Float64(Float64(-x) * y);
    	else
    		tmp = Float64(log(2.0) - Float64(x * y));
    	end
    	return tmp
    end
    
    function tmp_2 = code(x, y)
    	tmp = 0.0;
    	if (x <= -1.35e+19)
    		tmp = -x * y;
    	else
    		tmp = log(2.0) - (x * y);
    	end
    	tmp_2 = tmp;
    end
    
    code[x_, y_] := If[LessEqual[x, -1.35e+19], N[((-x) * y), $MachinePrecision], N[(N[Log[2.0], $MachinePrecision] - N[(x * y), $MachinePrecision]), $MachinePrecision]]
    
    \begin{array}{l}
    
    \\
    \begin{array}{l}
    \mathbf{if}\;x \leq -1.35 \cdot 10^{+19}:\\
    \;\;\;\;\left(-x\right) \cdot y\\
    
    \mathbf{else}:\\
    \;\;\;\;\log 2 - x \cdot y\\
    
    
    \end{array}
    \end{array}
    
    Derivation
    1. Split input into 2 regimes
    2. if x < -1.35e19

      1. Initial program 100.0%

        \[\log \left(1 + e^{x}\right) - x \cdot y \]
      2. Add Preprocessing
      3. Taylor expanded in x around inf

        \[\leadsto \color{blue}{-1 \cdot \left(x \cdot y\right)} \]
      4. Step-by-step derivation
        1. associate-*r*N/A

          \[\leadsto \left(-1 \cdot x\right) \cdot \color{blue}{y} \]
        2. mul-1-negN/A

          \[\leadsto \left(\mathsf{neg}\left(x\right)\right) \cdot y \]
        3. lower-*.f64N/A

          \[\leadsto \left(\mathsf{neg}\left(x\right)\right) \cdot \color{blue}{y} \]
        4. lower-neg.f64100.0

          \[\leadsto \left(-x\right) \cdot y \]
      5. Applied rewrites100.0%

        \[\leadsto \color{blue}{\left(-x\right) \cdot y} \]

      if -1.35e19 < x

      1. Initial program 98.3%

        \[\log \left(1 + e^{x}\right) - x \cdot y \]
      2. Add Preprocessing
      3. Taylor expanded in x around 0

        \[\leadsto \log \color{blue}{2} - x \cdot y \]
      4. Step-by-step derivation
        1. Applied rewrites95.8%

          \[\leadsto \log \color{blue}{2} - x \cdot y \]
      5. Recombined 2 regimes into one program.
      6. Add Preprocessing

      Alternative 10: 50.0% accurate, 26.5× speedup?

      \[\begin{array}{l} \\ \left(-x\right) \cdot y \end{array} \]
      (FPCore (x y) :precision binary64 (* (- x) y))
      double code(double x, double y) {
      	return -x * y;
      }
      
      module fmin_fmax_functions
          implicit none
          private
          public fmax
          public fmin
      
          interface fmax
              module procedure fmax88
              module procedure fmax44
              module procedure fmax84
              module procedure fmax48
          end interface
          interface fmin
              module procedure fmin88
              module procedure fmin44
              module procedure fmin84
              module procedure fmin48
          end interface
      contains
          real(8) function fmax88(x, y) result (res)
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
          end function
          real(4) function fmax44(x, y) result (res)
              real(4), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
          end function
          real(8) function fmax84(x, y) result(res)
              real(8), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
          end function
          real(8) function fmax48(x, y) result(res)
              real(4), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
          end function
          real(8) function fmin88(x, y) result (res)
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
          end function
          real(4) function fmin44(x, y) result (res)
              real(4), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
          end function
          real(8) function fmin84(x, y) result(res)
              real(8), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
          end function
          real(8) function fmin48(x, y) result(res)
              real(4), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
          end function
      end module
      
      real(8) function code(x, y)
      use fmin_fmax_functions
          real(8), intent (in) :: x
          real(8), intent (in) :: y
          code = -x * y
      end function
      
      public static double code(double x, double y) {
      	return -x * y;
      }
      
      def code(x, y):
      	return -x * y
      
      function code(x, y)
      	return Float64(Float64(-x) * y)
      end
      
      function tmp = code(x, y)
      	tmp = -x * y;
      end
      
      code[x_, y_] := N[((-x) * y), $MachinePrecision]
      
      \begin{array}{l}
      
      \\
      \left(-x\right) \cdot y
      \end{array}
      
      Derivation
      1. Initial program 98.8%

        \[\log \left(1 + e^{x}\right) - x \cdot y \]
      2. Add Preprocessing
      3. Taylor expanded in x around inf

        \[\leadsto \color{blue}{-1 \cdot \left(x \cdot y\right)} \]
      4. Step-by-step derivation
        1. associate-*r*N/A

          \[\leadsto \left(-1 \cdot x\right) \cdot \color{blue}{y} \]
        2. mul-1-negN/A

          \[\leadsto \left(\mathsf{neg}\left(x\right)\right) \cdot y \]
        3. lower-*.f64N/A

          \[\leadsto \left(\mathsf{neg}\left(x\right)\right) \cdot \color{blue}{y} \]
        4. lower-neg.f6447.2

          \[\leadsto \left(-x\right) \cdot y \]
      5. Applied rewrites47.2%

        \[\leadsto \color{blue}{\left(-x\right) \cdot y} \]
      6. Add Preprocessing

      Alternative 11: 3.5% accurate, 35.3× speedup?

      \[\begin{array}{l} \\ 0.5 \cdot x \end{array} \]
      (FPCore (x y) :precision binary64 (* 0.5 x))
      double code(double x, double y) {
      	return 0.5 * x;
      }
      
      module fmin_fmax_functions
          implicit none
          private
          public fmax
          public fmin
      
          interface fmax
              module procedure fmax88
              module procedure fmax44
              module procedure fmax84
              module procedure fmax48
          end interface
          interface fmin
              module procedure fmin88
              module procedure fmin44
              module procedure fmin84
              module procedure fmin48
          end interface
      contains
          real(8) function fmax88(x, y) result (res)
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
          end function
          real(4) function fmax44(x, y) result (res)
              real(4), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
          end function
          real(8) function fmax84(x, y) result(res)
              real(8), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
          end function
          real(8) function fmax48(x, y) result(res)
              real(4), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
          end function
          real(8) function fmin88(x, y) result (res)
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
          end function
          real(4) function fmin44(x, y) result (res)
              real(4), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
          end function
          real(8) function fmin84(x, y) result(res)
              real(8), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
          end function
          real(8) function fmin48(x, y) result(res)
              real(4), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
          end function
      end module
      
      real(8) function code(x, y)
      use fmin_fmax_functions
          real(8), intent (in) :: x
          real(8), intent (in) :: y
          code = 0.5d0 * x
      end function
      
      public static double code(double x, double y) {
      	return 0.5 * x;
      }
      
      def code(x, y):
      	return 0.5 * x
      
      function code(x, y)
      	return Float64(0.5 * x)
      end
      
      function tmp = code(x, y)
      	tmp = 0.5 * x;
      end
      
      code[x_, y_] := N[(0.5 * x), $MachinePrecision]
      
      \begin{array}{l}
      
      \\
      0.5 \cdot x
      \end{array}
      
      Derivation
      1. Initial program 98.8%

        \[\log \left(1 + e^{x}\right) - x \cdot y \]
      2. Add Preprocessing
      3. Taylor expanded in y around 0

        \[\leadsto \color{blue}{\log \left(1 + e^{x}\right)} \]
      4. Step-by-step derivation
        1. lower-log1p.f64N/A

          \[\leadsto \mathsf{log1p}\left(e^{x}\right) \]
        2. lift-exp.f6453.9

          \[\leadsto \mathsf{log1p}\left(e^{x}\right) \]
      5. Applied rewrites53.9%

        \[\leadsto \color{blue}{\mathsf{log1p}\left(e^{x}\right)} \]
      6. Taylor expanded in x around 0

        \[\leadsto \log 2 + \color{blue}{\frac{1}{2} \cdot x} \]
      7. Step-by-step derivation
        1. +-commutativeN/A

          \[\leadsto \frac{1}{2} \cdot x + \log 2 \]
        2. lower-fma.f64N/A

          \[\leadsto \mathsf{fma}\left(\frac{1}{2}, x, \log 2\right) \]
        3. lift-log.f6452.4

          \[\leadsto \mathsf{fma}\left(0.5, x, \log 2\right) \]
      8. Applied rewrites52.4%

        \[\leadsto \mathsf{fma}\left(0.5, \color{blue}{x}, \log 2\right) \]
      9. Taylor expanded in x around inf

        \[\leadsto \frac{1}{2} \cdot x \]
      10. Step-by-step derivation
        1. lower-*.f643.2

          \[\leadsto 0.5 \cdot x \]
      11. Applied rewrites3.2%

        \[\leadsto 0.5 \cdot x \]
      12. Add Preprocessing

      Developer Target 1: 99.9% accurate, 0.9× speedup?

      \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;x \leq 0:\\ \;\;\;\;\log \left(1 + e^{x}\right) - x \cdot y\\ \mathbf{else}:\\ \;\;\;\;\log \left(1 + e^{-x}\right) - \left(-x\right) \cdot \left(1 - y\right)\\ \end{array} \end{array} \]
      (FPCore (x y)
       :precision binary64
       (if (<= x 0.0)
         (- (log (+ 1.0 (exp x))) (* x y))
         (- (log (+ 1.0 (exp (- x)))) (* (- x) (- 1.0 y)))))
      double code(double x, double y) {
      	double tmp;
      	if (x <= 0.0) {
      		tmp = log((1.0 + exp(x))) - (x * y);
      	} else {
      		tmp = log((1.0 + exp(-x))) - (-x * (1.0 - y));
      	}
      	return tmp;
      }
      
      module fmin_fmax_functions
          implicit none
          private
          public fmax
          public fmin
      
          interface fmax
              module procedure fmax88
              module procedure fmax44
              module procedure fmax84
              module procedure fmax48
          end interface
          interface fmin
              module procedure fmin88
              module procedure fmin44
              module procedure fmin84
              module procedure fmin48
          end interface
      contains
          real(8) function fmax88(x, y) result (res)
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
          end function
          real(4) function fmax44(x, y) result (res)
              real(4), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
          end function
          real(8) function fmax84(x, y) result(res)
              real(8), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
          end function
          real(8) function fmax48(x, y) result(res)
              real(4), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
          end function
          real(8) function fmin88(x, y) result (res)
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
          end function
          real(4) function fmin44(x, y) result (res)
              real(4), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
          end function
          real(8) function fmin84(x, y) result(res)
              real(8), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
          end function
          real(8) function fmin48(x, y) result(res)
              real(4), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
          end function
      end module
      
      real(8) function code(x, y)
      use fmin_fmax_functions
          real(8), intent (in) :: x
          real(8), intent (in) :: y
          real(8) :: tmp
          if (x <= 0.0d0) then
              tmp = log((1.0d0 + exp(x))) - (x * y)
          else
              tmp = log((1.0d0 + exp(-x))) - (-x * (1.0d0 - y))
          end if
          code = tmp
      end function
      
      public static double code(double x, double y) {
      	double tmp;
      	if (x <= 0.0) {
      		tmp = Math.log((1.0 + Math.exp(x))) - (x * y);
      	} else {
      		tmp = Math.log((1.0 + Math.exp(-x))) - (-x * (1.0 - y));
      	}
      	return tmp;
      }
      
      def code(x, y):
      	tmp = 0
      	if x <= 0.0:
      		tmp = math.log((1.0 + math.exp(x))) - (x * y)
      	else:
      		tmp = math.log((1.0 + math.exp(-x))) - (-x * (1.0 - y))
      	return tmp
      
      function code(x, y)
      	tmp = 0.0
      	if (x <= 0.0)
      		tmp = Float64(log(Float64(1.0 + exp(x))) - Float64(x * y));
      	else
      		tmp = Float64(log(Float64(1.0 + exp(Float64(-x)))) - Float64(Float64(-x) * Float64(1.0 - y)));
      	end
      	return tmp
      end
      
      function tmp_2 = code(x, y)
      	tmp = 0.0;
      	if (x <= 0.0)
      		tmp = log((1.0 + exp(x))) - (x * y);
      	else
      		tmp = log((1.0 + exp(-x))) - (-x * (1.0 - y));
      	end
      	tmp_2 = tmp;
      end
      
      code[x_, y_] := If[LessEqual[x, 0.0], N[(N[Log[N[(1.0 + N[Exp[x], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - N[(x * y), $MachinePrecision]), $MachinePrecision], N[(N[Log[N[(1.0 + N[Exp[(-x)], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - N[((-x) * N[(1.0 - y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]
      
      \begin{array}{l}
      
      \\
      \begin{array}{l}
      \mathbf{if}\;x \leq 0:\\
      \;\;\;\;\log \left(1 + e^{x}\right) - x \cdot y\\
      
      \mathbf{else}:\\
      \;\;\;\;\log \left(1 + e^{-x}\right) - \left(-x\right) \cdot \left(1 - y\right)\\
      
      
      \end{array}
      \end{array}
      

      Reproduce

      ?
      herbie shell --seed 2025051 
      (FPCore (x y)
        :name "Logistic regression 2"
        :precision binary64
      
        :alt
        (! :herbie-platform default (if (<= x 0) (- (log (+ 1 (exp x))) (* x y)) (- (log (+ 1 (exp (- x)))) (* (- x) (- 1 y)))))
      
        (- (log (+ 1.0 (exp x))) (* x y)))