
(FPCore (x y) :precision binary64 (- (log (+ 1.0 (exp x))) (* x y)))
double code(double x, double y) {
return log((1.0 + exp(x))) - (x * y);
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
code = log((1.0d0 + exp(x))) - (x * y)
end function
public static double code(double x, double y) {
return Math.log((1.0 + Math.exp(x))) - (x * y);
}
def code(x, y): return math.log((1.0 + math.exp(x))) - (x * y)
function code(x, y) return Float64(log(Float64(1.0 + exp(x))) - Float64(x * y)) end
function tmp = code(x, y) tmp = log((1.0 + exp(x))) - (x * y); end
code[x_, y_] := N[(N[Log[N[(1.0 + N[Exp[x], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - N[(x * y), $MachinePrecision]), $MachinePrecision]
\begin{array}{l}
\\
\log \left(1 + e^{x}\right) - x \cdot y
\end{array}
Sampling outcomes in binary64 precision:
Herbie found 11 alternatives:
| Alternative | Accuracy | Speedup |
|---|
(FPCore (x y) :precision binary64 (- (log (+ 1.0 (exp x))) (* x y)))
double code(double x, double y) {
return log((1.0 + exp(x))) - (x * y);
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
code = log((1.0d0 + exp(x))) - (x * y)
end function
public static double code(double x, double y) {
return Math.log((1.0 + Math.exp(x))) - (x * y);
}
def code(x, y): return math.log((1.0 + math.exp(x))) - (x * y)
function code(x, y) return Float64(log(Float64(1.0 + exp(x))) - Float64(x * y)) end
function tmp = code(x, y) tmp = log((1.0 + exp(x))) - (x * y); end
code[x_, y_] := N[(N[Log[N[(1.0 + N[Exp[x], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - N[(x * y), $MachinePrecision]), $MachinePrecision]
\begin{array}{l}
\\
\log \left(1 + e^{x}\right) - x \cdot y
\end{array}
(FPCore (x y) :precision binary64 (fma (- y) x (log1p (exp x))))
double code(double x, double y) {
return fma(-y, x, log1p(exp(x)));
}
function code(x, y) return fma(Float64(-y), x, log1p(exp(x))) end
code[x_, y_] := N[((-y) * x + N[Log[1 + N[Exp[x], $MachinePrecision]], $MachinePrecision]), $MachinePrecision]
\begin{array}{l}
\\
\mathsf{fma}\left(-y, x, \mathsf{log1p}\left(e^{x}\right)\right)
\end{array}
Initial program 98.8%
lift--.f64N/A
lift-log.f64N/A
lift-+.f64N/A
lift-exp.f64N/A
lift-*.f64N/A
fp-cancel-sub-sign-invN/A
mul-1-negN/A
associate-*r*N/A
+-commutativeN/A
*-commutativeN/A
associate-*r*N/A
lower-fma.f64N/A
mul-1-negN/A
lower-neg.f64N/A
lower-log1p.f64N/A
lift-exp.f6499.2
Applied rewrites99.2%
(FPCore (x y)
:precision binary64
(let* ((t_0 (- (log (+ 1.0 (exp x))) (* x y))))
(if (or (<= t_0 5e-35) (not (<= t_0 200.0)))
(* (- x) y)
(fma 0.5 x (log 2.0)))))
double code(double x, double y) {
double t_0 = log((1.0 + exp(x))) - (x * y);
double tmp;
if ((t_0 <= 5e-35) || !(t_0 <= 200.0)) {
tmp = -x * y;
} else {
tmp = fma(0.5, x, log(2.0));
}
return tmp;
}
function code(x, y) t_0 = Float64(log(Float64(1.0 + exp(x))) - Float64(x * y)) tmp = 0.0 if ((t_0 <= 5e-35) || !(t_0 <= 200.0)) tmp = Float64(Float64(-x) * y); else tmp = fma(0.5, x, log(2.0)); end return tmp end
code[x_, y_] := Block[{t$95$0 = N[(N[Log[N[(1.0 + N[Exp[x], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - N[(x * y), $MachinePrecision]), $MachinePrecision]}, If[Or[LessEqual[t$95$0, 5e-35], N[Not[LessEqual[t$95$0, 200.0]], $MachinePrecision]], N[((-x) * y), $MachinePrecision], N[(0.5 * x + N[Log[2.0], $MachinePrecision]), $MachinePrecision]]]
\begin{array}{l}
\\
\begin{array}{l}
t_0 := \log \left(1 + e^{x}\right) - x \cdot y\\
\mathbf{if}\;t\_0 \leq 5 \cdot 10^{-35} \lor \neg \left(t\_0 \leq 200\right):\\
\;\;\;\;\left(-x\right) \cdot y\\
\mathbf{else}:\\
\;\;\;\;\mathsf{fma}\left(0.5, x, \log 2\right)\\
\end{array}
\end{array}
if (-.f64 (log.f64 (+.f64 #s(literal 1 binary64) (exp.f64 x))) (*.f64 x y)) < 4.99999999999999964e-35 or 200 < (-.f64 (log.f64 (+.f64 #s(literal 1 binary64) (exp.f64 x))) (*.f64 x y)) Initial program 97.5%
Taylor expanded in x around inf
associate-*r*N/A
mul-1-negN/A
lower-*.f64N/A
lower-neg.f6497.3
Applied rewrites97.3%
if 4.99999999999999964e-35 < (-.f64 (log.f64 (+.f64 #s(literal 1 binary64) (exp.f64 x))) (*.f64 x y)) < 200Initial program 100.0%
Taylor expanded in y around 0
lower-log1p.f64N/A
lift-exp.f6497.5
Applied rewrites97.5%
Taylor expanded in x around 0
+-commutativeN/A
lower-fma.f64N/A
lift-log.f6495.4
Applied rewrites95.4%
Final simplification96.3%
(FPCore (x y)
:precision binary64
(let* ((t_0 (- (log (+ 1.0 (exp x))) (* x y))))
(if (or (<= t_0 5e-35) (not (<= t_0 200.0)))
(* (- x) y)
(log1p (- x -1.0)))))
double code(double x, double y) {
double t_0 = log((1.0 + exp(x))) - (x * y);
double tmp;
if ((t_0 <= 5e-35) || !(t_0 <= 200.0)) {
tmp = -x * y;
} else {
tmp = log1p((x - -1.0));
}
return tmp;
}
public static double code(double x, double y) {
double t_0 = Math.log((1.0 + Math.exp(x))) - (x * y);
double tmp;
if ((t_0 <= 5e-35) || !(t_0 <= 200.0)) {
tmp = -x * y;
} else {
tmp = Math.log1p((x - -1.0));
}
return tmp;
}
def code(x, y): t_0 = math.log((1.0 + math.exp(x))) - (x * y) tmp = 0 if (t_0 <= 5e-35) or not (t_0 <= 200.0): tmp = -x * y else: tmp = math.log1p((x - -1.0)) return tmp
function code(x, y) t_0 = Float64(log(Float64(1.0 + exp(x))) - Float64(x * y)) tmp = 0.0 if ((t_0 <= 5e-35) || !(t_0 <= 200.0)) tmp = Float64(Float64(-x) * y); else tmp = log1p(Float64(x - -1.0)); end return tmp end
code[x_, y_] := Block[{t$95$0 = N[(N[Log[N[(1.0 + N[Exp[x], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - N[(x * y), $MachinePrecision]), $MachinePrecision]}, If[Or[LessEqual[t$95$0, 5e-35], N[Not[LessEqual[t$95$0, 200.0]], $MachinePrecision]], N[((-x) * y), $MachinePrecision], N[Log[1 + N[(x - -1.0), $MachinePrecision]], $MachinePrecision]]]
\begin{array}{l}
\\
\begin{array}{l}
t_0 := \log \left(1 + e^{x}\right) - x \cdot y\\
\mathbf{if}\;t\_0 \leq 5 \cdot 10^{-35} \lor \neg \left(t\_0 \leq 200\right):\\
\;\;\;\;\left(-x\right) \cdot y\\
\mathbf{else}:\\
\;\;\;\;\mathsf{log1p}\left(x - -1\right)\\
\end{array}
\end{array}
if (-.f64 (log.f64 (+.f64 #s(literal 1 binary64) (exp.f64 x))) (*.f64 x y)) < 4.99999999999999964e-35 or 200 < (-.f64 (log.f64 (+.f64 #s(literal 1 binary64) (exp.f64 x))) (*.f64 x y)) Initial program 97.5%
Taylor expanded in x around inf
associate-*r*N/A
mul-1-negN/A
lower-*.f64N/A
lower-neg.f6497.3
Applied rewrites97.3%
if 4.99999999999999964e-35 < (-.f64 (log.f64 (+.f64 #s(literal 1 binary64) (exp.f64 x))) (*.f64 x y)) < 200Initial program 100.0%
Taylor expanded in y around 0
lower-log1p.f64N/A
lift-exp.f6497.5
Applied rewrites97.5%
Taylor expanded in x around 0
+-commutativeN/A
metadata-evalN/A
fp-cancel-sign-sub-invN/A
metadata-evalN/A
metadata-evalN/A
lower--.f6495.2
Applied rewrites95.2%
Final simplification96.2%
(FPCore (x y) :precision binary64 (let* ((t_0 (- (log (+ 1.0 (exp x))) (* x y)))) (if (or (<= t_0 5e-35) (not (<= t_0 200.0))) (* (- x) y) (log 2.0))))
double code(double x, double y) {
double t_0 = log((1.0 + exp(x))) - (x * y);
double tmp;
if ((t_0 <= 5e-35) || !(t_0 <= 200.0)) {
tmp = -x * y;
} else {
tmp = log(2.0);
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8) :: t_0
real(8) :: tmp
t_0 = log((1.0d0 + exp(x))) - (x * y)
if ((t_0 <= 5d-35) .or. (.not. (t_0 <= 200.0d0))) then
tmp = -x * y
else
tmp = log(2.0d0)
end if
code = tmp
end function
public static double code(double x, double y) {
double t_0 = Math.log((1.0 + Math.exp(x))) - (x * y);
double tmp;
if ((t_0 <= 5e-35) || !(t_0 <= 200.0)) {
tmp = -x * y;
} else {
tmp = Math.log(2.0);
}
return tmp;
}
def code(x, y): t_0 = math.log((1.0 + math.exp(x))) - (x * y) tmp = 0 if (t_0 <= 5e-35) or not (t_0 <= 200.0): tmp = -x * y else: tmp = math.log(2.0) return tmp
function code(x, y) t_0 = Float64(log(Float64(1.0 + exp(x))) - Float64(x * y)) tmp = 0.0 if ((t_0 <= 5e-35) || !(t_0 <= 200.0)) tmp = Float64(Float64(-x) * y); else tmp = log(2.0); end return tmp end
function tmp_2 = code(x, y) t_0 = log((1.0 + exp(x))) - (x * y); tmp = 0.0; if ((t_0 <= 5e-35) || ~((t_0 <= 200.0))) tmp = -x * y; else tmp = log(2.0); end tmp_2 = tmp; end
code[x_, y_] := Block[{t$95$0 = N[(N[Log[N[(1.0 + N[Exp[x], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - N[(x * y), $MachinePrecision]), $MachinePrecision]}, If[Or[LessEqual[t$95$0, 5e-35], N[Not[LessEqual[t$95$0, 200.0]], $MachinePrecision]], N[((-x) * y), $MachinePrecision], N[Log[2.0], $MachinePrecision]]]
\begin{array}{l}
\\
\begin{array}{l}
t_0 := \log \left(1 + e^{x}\right) - x \cdot y\\
\mathbf{if}\;t\_0 \leq 5 \cdot 10^{-35} \lor \neg \left(t\_0 \leq 200\right):\\
\;\;\;\;\left(-x\right) \cdot y\\
\mathbf{else}:\\
\;\;\;\;\log 2\\
\end{array}
\end{array}
if (-.f64 (log.f64 (+.f64 #s(literal 1 binary64) (exp.f64 x))) (*.f64 x y)) < 4.99999999999999964e-35 or 200 < (-.f64 (log.f64 (+.f64 #s(literal 1 binary64) (exp.f64 x))) (*.f64 x y)) Initial program 97.5%
Taylor expanded in x around inf
associate-*r*N/A
mul-1-negN/A
lower-*.f64N/A
lower-neg.f6497.3
Applied rewrites97.3%
if 4.99999999999999964e-35 < (-.f64 (log.f64 (+.f64 #s(literal 1 binary64) (exp.f64 x))) (*.f64 x y)) < 200Initial program 100.0%
Taylor expanded in x around 0
lower-log.f6494.0
Applied rewrites94.0%
Final simplification95.5%
(FPCore (x y)
:precision binary64
(if (<= x -2.6)
(* (- x) y)
(fma
(fma (fma (* x x) -0.005208333333333333 0.125) x (- 0.5 y))
x
(log 2.0))))
double code(double x, double y) {
double tmp;
if (x <= -2.6) {
tmp = -x * y;
} else {
tmp = fma(fma(fma((x * x), -0.005208333333333333, 0.125), x, (0.5 - y)), x, log(2.0));
}
return tmp;
}
function code(x, y) tmp = 0.0 if (x <= -2.6) tmp = Float64(Float64(-x) * y); else tmp = fma(fma(fma(Float64(x * x), -0.005208333333333333, 0.125), x, Float64(0.5 - y)), x, log(2.0)); end return tmp end
code[x_, y_] := If[LessEqual[x, -2.6], N[((-x) * y), $MachinePrecision], N[(N[(N[(N[(x * x), $MachinePrecision] * -0.005208333333333333 + 0.125), $MachinePrecision] * x + N[(0.5 - y), $MachinePrecision]), $MachinePrecision] * x + N[Log[2.0], $MachinePrecision]), $MachinePrecision]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;x \leq -2.6:\\
\;\;\;\;\left(-x\right) \cdot y\\
\mathbf{else}:\\
\;\;\;\;\mathsf{fma}\left(\mathsf{fma}\left(\mathsf{fma}\left(x \cdot x, -0.005208333333333333, 0.125\right), x, 0.5 - y\right), x, \log 2\right)\\
\end{array}
\end{array}
if x < -2.60000000000000009Initial program 98.8%
Taylor expanded in x around inf
associate-*r*N/A
mul-1-negN/A
lower-*.f64N/A
lower-neg.f6498.8
Applied rewrites98.8%
if -2.60000000000000009 < x Initial program 98.8%
Taylor expanded in x around 0
+-commutativeN/A
*-commutativeN/A
lower-fma.f64N/A
+-commutativeN/A
associate--l+N/A
*-commutativeN/A
lower-fma.f64N/A
+-commutativeN/A
*-commutativeN/A
lower-fma.f64N/A
unpow2N/A
lower-*.f64N/A
lower--.f64N/A
lower-log.f6498.2
Applied rewrites98.2%
(FPCore (x y) :precision binary64 (if (<= x -1.35e+19) (* (- x) y) (fma (fma 0.125 x (- 0.5 y)) x (log 2.0))))
double code(double x, double y) {
double tmp;
if (x <= -1.35e+19) {
tmp = -x * y;
} else {
tmp = fma(fma(0.125, x, (0.5 - y)), x, log(2.0));
}
return tmp;
}
function code(x, y) tmp = 0.0 if (x <= -1.35e+19) tmp = Float64(Float64(-x) * y); else tmp = fma(fma(0.125, x, Float64(0.5 - y)), x, log(2.0)); end return tmp end
code[x_, y_] := If[LessEqual[x, -1.35e+19], N[((-x) * y), $MachinePrecision], N[(N[(0.125 * x + N[(0.5 - y), $MachinePrecision]), $MachinePrecision] * x + N[Log[2.0], $MachinePrecision]), $MachinePrecision]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;x \leq -1.35 \cdot 10^{+19}:\\
\;\;\;\;\left(-x\right) \cdot y\\
\mathbf{else}:\\
\;\;\;\;\mathsf{fma}\left(\mathsf{fma}\left(0.125, x, 0.5 - y\right), x, \log 2\right)\\
\end{array}
\end{array}
if x < -1.35e19Initial program 100.0%
Taylor expanded in x around inf
associate-*r*N/A
mul-1-negN/A
lower-*.f64N/A
lower-neg.f64100.0
Applied rewrites100.0%
if -1.35e19 < x Initial program 98.3%
Taylor expanded in x around 0
+-commutativeN/A
*-commutativeN/A
lower-fma.f64N/A
+-commutativeN/A
associate--l+N/A
lower-fma.f64N/A
lower--.f64N/A
lower-log.f6497.5
Applied rewrites97.5%
(FPCore (x y) :precision binary64 (if (<= x -1.35) (* (- x) y) (fma (- 0.5 y) x (log 2.0))))
double code(double x, double y) {
double tmp;
if (x <= -1.35) {
tmp = -x * y;
} else {
tmp = fma((0.5 - y), x, log(2.0));
}
return tmp;
}
function code(x, y) tmp = 0.0 if (x <= -1.35) tmp = Float64(Float64(-x) * y); else tmp = fma(Float64(0.5 - y), x, log(2.0)); end return tmp end
code[x_, y_] := If[LessEqual[x, -1.35], N[((-x) * y), $MachinePrecision], N[(N[(0.5 - y), $MachinePrecision] * x + N[Log[2.0], $MachinePrecision]), $MachinePrecision]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;x \leq -1.35:\\
\;\;\;\;\left(-x\right) \cdot y\\
\mathbf{else}:\\
\;\;\;\;\mathsf{fma}\left(0.5 - y, x, \log 2\right)\\
\end{array}
\end{array}
if x < -1.3500000000000001Initial program 98.8%
Taylor expanded in x around inf
associate-*r*N/A
mul-1-negN/A
lower-*.f64N/A
lower-neg.f6498.8
Applied rewrites98.8%
if -1.3500000000000001 < x Initial program 98.8%
Taylor expanded in x around 0
+-commutativeN/A
*-commutativeN/A
lower-fma.f64N/A
lower--.f64N/A
lower-log.f6497.4
Applied rewrites97.4%
(FPCore (x y) :precision binary64 (if (<= x -1.35e+19) (* (- x) y) (fma (- y) x (log1p 1.0))))
double code(double x, double y) {
double tmp;
if (x <= -1.35e+19) {
tmp = -x * y;
} else {
tmp = fma(-y, x, log1p(1.0));
}
return tmp;
}
function code(x, y) tmp = 0.0 if (x <= -1.35e+19) tmp = Float64(Float64(-x) * y); else tmp = fma(Float64(-y), x, log1p(1.0)); end return tmp end
code[x_, y_] := If[LessEqual[x, -1.35e+19], N[((-x) * y), $MachinePrecision], N[((-y) * x + N[Log[1 + 1.0], $MachinePrecision]), $MachinePrecision]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;x \leq -1.35 \cdot 10^{+19}:\\
\;\;\;\;\left(-x\right) \cdot y\\
\mathbf{else}:\\
\;\;\;\;\mathsf{fma}\left(-y, x, \mathsf{log1p}\left(1\right)\right)\\
\end{array}
\end{array}
if x < -1.35e19Initial program 100.0%
Taylor expanded in x around inf
associate-*r*N/A
mul-1-negN/A
lower-*.f64N/A
lower-neg.f64100.0
Applied rewrites100.0%
if -1.35e19 < x Initial program 98.3%
lift--.f64N/A
lift-log.f64N/A
lift-+.f64N/A
lift-exp.f64N/A
lift-*.f64N/A
fp-cancel-sub-sign-invN/A
mul-1-negN/A
associate-*r*N/A
+-commutativeN/A
*-commutativeN/A
associate-*r*N/A
lower-fma.f64N/A
mul-1-negN/A
lower-neg.f64N/A
lower-log1p.f64N/A
lift-exp.f6498.9
Applied rewrites98.9%
Taylor expanded in x around 0
Applied rewrites95.8%
(FPCore (x y) :precision binary64 (if (<= x -1.35e+19) (* (- x) y) (- (log 2.0) (* x y))))
double code(double x, double y) {
double tmp;
if (x <= -1.35e+19) {
tmp = -x * y;
} else {
tmp = log(2.0) - (x * y);
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8) :: tmp
if (x <= (-1.35d+19)) then
tmp = -x * y
else
tmp = log(2.0d0) - (x * y)
end if
code = tmp
end function
public static double code(double x, double y) {
double tmp;
if (x <= -1.35e+19) {
tmp = -x * y;
} else {
tmp = Math.log(2.0) - (x * y);
}
return tmp;
}
def code(x, y): tmp = 0 if x <= -1.35e+19: tmp = -x * y else: tmp = math.log(2.0) - (x * y) return tmp
function code(x, y) tmp = 0.0 if (x <= -1.35e+19) tmp = Float64(Float64(-x) * y); else tmp = Float64(log(2.0) - Float64(x * y)); end return tmp end
function tmp_2 = code(x, y) tmp = 0.0; if (x <= -1.35e+19) tmp = -x * y; else tmp = log(2.0) - (x * y); end tmp_2 = tmp; end
code[x_, y_] := If[LessEqual[x, -1.35e+19], N[((-x) * y), $MachinePrecision], N[(N[Log[2.0], $MachinePrecision] - N[(x * y), $MachinePrecision]), $MachinePrecision]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;x \leq -1.35 \cdot 10^{+19}:\\
\;\;\;\;\left(-x\right) \cdot y\\
\mathbf{else}:\\
\;\;\;\;\log 2 - x \cdot y\\
\end{array}
\end{array}
if x < -1.35e19Initial program 100.0%
Taylor expanded in x around inf
associate-*r*N/A
mul-1-negN/A
lower-*.f64N/A
lower-neg.f64100.0
Applied rewrites100.0%
if -1.35e19 < x Initial program 98.3%
Taylor expanded in x around 0
Applied rewrites95.8%
(FPCore (x y) :precision binary64 (* (- x) y))
double code(double x, double y) {
return -x * y;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
code = -x * y
end function
public static double code(double x, double y) {
return -x * y;
}
def code(x, y): return -x * y
function code(x, y) return Float64(Float64(-x) * y) end
function tmp = code(x, y) tmp = -x * y; end
code[x_, y_] := N[((-x) * y), $MachinePrecision]
\begin{array}{l}
\\
\left(-x\right) \cdot y
\end{array}
Initial program 98.8%
Taylor expanded in x around inf
associate-*r*N/A
mul-1-negN/A
lower-*.f64N/A
lower-neg.f6447.2
Applied rewrites47.2%
(FPCore (x y) :precision binary64 (* 0.5 x))
double code(double x, double y) {
return 0.5 * x;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
code = 0.5d0 * x
end function
public static double code(double x, double y) {
return 0.5 * x;
}
def code(x, y): return 0.5 * x
function code(x, y) return Float64(0.5 * x) end
function tmp = code(x, y) tmp = 0.5 * x; end
code[x_, y_] := N[(0.5 * x), $MachinePrecision]
\begin{array}{l}
\\
0.5 \cdot x
\end{array}
Initial program 98.8%
Taylor expanded in y around 0
lower-log1p.f64N/A
lift-exp.f6453.9
Applied rewrites53.9%
Taylor expanded in x around 0
+-commutativeN/A
lower-fma.f64N/A
lift-log.f6452.4
Applied rewrites52.4%
Taylor expanded in x around inf
lower-*.f643.2
Applied rewrites3.2%
(FPCore (x y) :precision binary64 (if (<= x 0.0) (- (log (+ 1.0 (exp x))) (* x y)) (- (log (+ 1.0 (exp (- x)))) (* (- x) (- 1.0 y)))))
double code(double x, double y) {
double tmp;
if (x <= 0.0) {
tmp = log((1.0 + exp(x))) - (x * y);
} else {
tmp = log((1.0 + exp(-x))) - (-x * (1.0 - y));
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8) :: tmp
if (x <= 0.0d0) then
tmp = log((1.0d0 + exp(x))) - (x * y)
else
tmp = log((1.0d0 + exp(-x))) - (-x * (1.0d0 - y))
end if
code = tmp
end function
public static double code(double x, double y) {
double tmp;
if (x <= 0.0) {
tmp = Math.log((1.0 + Math.exp(x))) - (x * y);
} else {
tmp = Math.log((1.0 + Math.exp(-x))) - (-x * (1.0 - y));
}
return tmp;
}
def code(x, y): tmp = 0 if x <= 0.0: tmp = math.log((1.0 + math.exp(x))) - (x * y) else: tmp = math.log((1.0 + math.exp(-x))) - (-x * (1.0 - y)) return tmp
function code(x, y) tmp = 0.0 if (x <= 0.0) tmp = Float64(log(Float64(1.0 + exp(x))) - Float64(x * y)); else tmp = Float64(log(Float64(1.0 + exp(Float64(-x)))) - Float64(Float64(-x) * Float64(1.0 - y))); end return tmp end
function tmp_2 = code(x, y) tmp = 0.0; if (x <= 0.0) tmp = log((1.0 + exp(x))) - (x * y); else tmp = log((1.0 + exp(-x))) - (-x * (1.0 - y)); end tmp_2 = tmp; end
code[x_, y_] := If[LessEqual[x, 0.0], N[(N[Log[N[(1.0 + N[Exp[x], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - N[(x * y), $MachinePrecision]), $MachinePrecision], N[(N[Log[N[(1.0 + N[Exp[(-x)], $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - N[((-x) * N[(1.0 - y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;x \leq 0:\\
\;\;\;\;\log \left(1 + e^{x}\right) - x \cdot y\\
\mathbf{else}:\\
\;\;\;\;\log \left(1 + e^{-x}\right) - \left(-x\right) \cdot \left(1 - y\right)\\
\end{array}
\end{array}
herbie shell --seed 2025051
(FPCore (x y)
:name "Logistic regression 2"
:precision binary64
:alt
(! :herbie-platform default (if (<= x 0) (- (log (+ 1 (exp x))) (* x y)) (- (log (+ 1 (exp (- x)))) (* (- x) (- 1 y)))))
(- (log (+ 1.0 (exp x))) (* x y)))