(FPCore (x y z t) :precision binary64 (+ (* (+ (* x y) z) y) t))
double code(double x, double y, double z, double t) { return (((x * y) + z) * y) + t; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t code = (((x * y) + z) * y) + t end function
public static double code(double x, double y, double z, double t) { return (((x * y) + z) * y) + t; }
def code(x, y, z, t): return (((x * y) + z) * y) + t
function code(x, y, z, t) return Float64(Float64(Float64(Float64(x * y) + z) * y) + t) end
function tmp = code(x, y, z, t) tmp = (((x * y) + z) * y) + t; end
code[x_, y_, z_, t_] := N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision]
\begin{array}{l} \\ \left(x \cdot y + z\right) \cdot y + t \end{array}
Sampling outcomes in binary64 precision:
Herbie found 7 alternatives:
Alternative | Accuracy | Speedup |
---|
(FPCore (x y z t) :precision binary64 (+ (* (+ (* x y) z) y) t))
double code(double x, double y, double z, double t) { return (((x * y) + z) * y) + t; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t code = (((x * y) + z) * y) + t end function
public static double code(double x, double y, double z, double t) { return (((x * y) + z) * y) + t; }
def code(x, y, z, t): return (((x * y) + z) * y) + t
function code(x, y, z, t) return Float64(Float64(Float64(Float64(x * y) + z) * y) + t) end
function tmp = code(x, y, z, t) tmp = (((x * y) + z) * y) + t; end
code[x_, y_, z_, t_] := N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision]
\begin{array}{l} \\ \left(x \cdot y + z\right) \cdot y + t \end{array}
(FPCore (x y z t) :precision binary64 (+ (* (+ (* x y) z) y) t))
double code(double x, double y, double z, double t) { return (((x * y) + z) * y) + t; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t code = (((x * y) + z) * y) + t end function
public static double code(double x, double y, double z, double t) { return (((x * y) + z) * y) + t; }
def code(x, y, z, t): return (((x * y) + z) * y) + t
function code(x, y, z, t) return Float64(Float64(Float64(Float64(x * y) + z) * y) + t) end
function tmp = code(x, y, z, t) tmp = (((x * y) + z) * y) + t; end
code[x_, y_, z_, t_] := N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision]
\begin{array}{l} \\ \left(x \cdot y + z\right) \cdot y + t \end{array}
Initial program 100.0%
(FPCore (x y z t) :precision binary64 (let* ((t_1 (* (+ (* x y) z) y))) (if (or (<= t_1 -2e+136) (not (<= t_1 4e+180))) (* (fma y x z) y) (fma z y t))))
double code(double x, double y, double z, double t) { double t_1 = ((x * y) + z) * y; double tmp; if ((t_1 <= -2e+136) || !(t_1 <= 4e+180)) { tmp = fma(y, x, z) * y; } else { tmp = fma(z, y, t); } return tmp; }
function code(x, y, z, t) t_1 = Float64(Float64(Float64(x * y) + z) * y) tmp = 0.0 if ((t_1 <= -2e+136) || !(t_1 <= 4e+180)) tmp = Float64(fma(y, x, z) * y); else tmp = fma(z, y, t); end return tmp end
code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision]}, If[Or[LessEqual[t$95$1, -2e+136], N[Not[LessEqual[t$95$1, 4e+180]], $MachinePrecision]], N[(N[(y * x + z), $MachinePrecision] * y), $MachinePrecision], N[(z * y + t), $MachinePrecision]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \left(x \cdot y + z\right) \cdot y\\ \mathbf{if}\;t\_1 \leq -2 \cdot 10^{+136} \lor \neg \left(t\_1 \leq 4 \cdot 10^{+180}\right):\\ \;\;\;\;\mathsf{fma}\left(y, x, z\right) \cdot y\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(z, y, t\right)\\ \end{array} \end{array}
if (*.f64 (+.f64 (*.f64 x y) z) y) < -2.00000000000000012e136 or 4e180 < (*.f64 (+.f64 (*.f64 x y) z) y)
Initial program 99.9%
Taylor expanded in t around 0
+-commutative
N/A
*-commutative
N/A
lower-*.f64
N/A
*-commutative
N/A
lower-fma.f64
98.0
Applied rewrites98.0%
if -2.00000000000000012e136 < (*.f64 (+.f64 (*.f64 x y) z) y) < 4e180
Initial program 100.0%
Taylor expanded in x around 0
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
89.3
Applied rewrites89.3%
Final simplification93.5%
(FPCore (x y z t) :precision binary64 (let* ((t_1 (* (+ (* x y) z) y))) (if (or (<= t_1 -4e+283) (not (<= t_1 1e+232))) (* (* y x) y) (fma z y t))))
double code(double x, double y, double z, double t) { double t_1 = ((x * y) + z) * y; double tmp; if ((t_1 <= -4e+283) || !(t_1 <= 1e+232)) { tmp = (y * x) * y; } else { tmp = fma(z, y, t); } return tmp; }
function code(x, y, z, t) t_1 = Float64(Float64(Float64(x * y) + z) * y) tmp = 0.0 if ((t_1 <= -4e+283) || !(t_1 <= 1e+232)) tmp = Float64(Float64(y * x) * y); else tmp = fma(z, y, t); end return tmp end
code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision]}, If[Or[LessEqual[t$95$1, -4e+283], N[Not[LessEqual[t$95$1, 1e+232]], $MachinePrecision]], N[(N[(y * x), $MachinePrecision] * y), $MachinePrecision], N[(z * y + t), $MachinePrecision]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \left(x \cdot y + z\right) \cdot y\\ \mathbf{if}\;t\_1 \leq -4 \cdot 10^{+283} \lor \neg \left(t\_1 \leq 10^{+232}\right):\\ \;\;\;\;\left(y \cdot x\right) \cdot y\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(z, y, t\right)\\ \end{array} \end{array}
if (*.f64 (+.f64 (*.f64 x y) z) y) < -3.99999999999999982e283 or 1.00000000000000006e232 < (*.f64 (+.f64 (*.f64 x y) z) y)
Initial program 100.0%
Taylor expanded in x around inf
*-commutative
N/A
lower-*.f64
N/A
unpow2
N/A
lower-*.f64
74.8
Applied rewrites74.8%
lift-*.f64
N/A
lift-*.f64
N/A
pow2
N/A
*-commutative
N/A
pow2
N/A
associate-*r*
N/A
lower-*.f64
N/A
*-commutative
N/A
lower-*.f64
75.6
Applied rewrites75.6%
if -3.99999999999999982e283 < (*.f64 (+.f64 (*.f64 x y) z) y) < 1.00000000000000006e232
Initial program 99.9%
Taylor expanded in x around 0
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
84.9
Applied rewrites84.9%
Final simplification81.1%
(FPCore (x y z t) :precision binary64 (let* ((t_1 (* (+ (* x y) z) y))) (if (<= t_1 -4e+283) (* (* y x) y) (if (<= t_1 1e+278) (fma z y t) (* (* y y) x)))))
double code(double x, double y, double z, double t) { double t_1 = ((x * y) + z) * y; double tmp; if (t_1 <= -4e+283) { tmp = (y * x) * y; } else if (t_1 <= 1e+278) { tmp = fma(z, y, t); } else { tmp = (y * y) * x; } return tmp; }
function code(x, y, z, t) t_1 = Float64(Float64(Float64(x * y) + z) * y) tmp = 0.0 if (t_1 <= -4e+283) tmp = Float64(Float64(y * x) * y); elseif (t_1 <= 1e+278) tmp = fma(z, y, t); else tmp = Float64(Float64(y * y) * x); end return tmp end
code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision]}, If[LessEqual[t$95$1, -4e+283], N[(N[(y * x), $MachinePrecision] * y), $MachinePrecision], If[LessEqual[t$95$1, 1e+278], N[(z * y + t), $MachinePrecision], N[(N[(y * y), $MachinePrecision] * x), $MachinePrecision]]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \left(x \cdot y + z\right) \cdot y\\ \mathbf{if}\;t\_1 \leq -4 \cdot 10^{+283}:\\ \;\;\;\;\left(y \cdot x\right) \cdot y\\ \mathbf{elif}\;t\_1 \leq 10^{+278}:\\ \;\;\;\;\mathsf{fma}\left(z, y, t\right)\\ \mathbf{else}:\\ \;\;\;\;\left(y \cdot y\right) \cdot x\\ \end{array} \end{array}
if (*.f64 (+.f64 (*.f64 x y) z) y) < -3.99999999999999982e283
Initial program 100.0%
Taylor expanded in x around inf
*-commutative
N/A
lower-*.f64
N/A
unpow2
N/A
lower-*.f64
76.5
Applied rewrites76.5%
lift-*.f64
N/A
lift-*.f64
N/A
pow2
N/A
*-commutative
N/A
pow2
N/A
associate-*r*
N/A
lower-*.f64
N/A
*-commutative
N/A
lower-*.f64
78.4
Applied rewrites78.4%
if -3.99999999999999982e283 < (*.f64 (+.f64 (*.f64 x y) z) y) < 9.99999999999999964e277
Initial program 99.9%
Taylor expanded in x around 0
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
83.4
Applied rewrites83.4%
if 9.99999999999999964e277 < (*.f64 (+.f64 (*.f64 x y) z) y)
Initial program 100.0%
Taylor expanded in x around inf
*-commutative
N/A
lower-*.f64
N/A
unpow2
N/A
lower-*.f64
79.6
Applied rewrites79.6%
(FPCore (x y z t) :precision binary64 (let* ((t_1 (* (+ (* x y) z) y))) (if (or (<= t_1 -5e+146) (not (<= t_1 1e+66))) (* z y) t)))
double code(double x, double y, double z, double t) { double t_1 = ((x * y) + z) * y; double tmp; if ((t_1 <= -5e+146) || !(t_1 <= 1e+66)) { tmp = z * y; } else { tmp = t; } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t real(8) :: t_1 real(8) :: tmp t_1 = ((x * y) + z) * y if ((t_1 <= (-5d+146)) .or. (.not. (t_1 <= 1d+66))) then tmp = z * y else tmp = t end if code = tmp end function
public static double code(double x, double y, double z, double t) { double t_1 = ((x * y) + z) * y; double tmp; if ((t_1 <= -5e+146) || !(t_1 <= 1e+66)) { tmp = z * y; } else { tmp = t; } return tmp; }
def code(x, y, z, t): t_1 = ((x * y) + z) * y tmp = 0 if (t_1 <= -5e+146) or not (t_1 <= 1e+66): tmp = z * y else: tmp = t return tmp
function code(x, y, z, t) t_1 = Float64(Float64(Float64(x * y) + z) * y) tmp = 0.0 if ((t_1 <= -5e+146) || !(t_1 <= 1e+66)) tmp = Float64(z * y); else tmp = t; end return tmp end
function tmp_2 = code(x, y, z, t) t_1 = ((x * y) + z) * y; tmp = 0.0; if ((t_1 <= -5e+146) || ~((t_1 <= 1e+66))) tmp = z * y; else tmp = t; end tmp_2 = tmp; end
code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision]}, If[Or[LessEqual[t$95$1, -5e+146], N[Not[LessEqual[t$95$1, 1e+66]], $MachinePrecision]], N[(z * y), $MachinePrecision], t]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \left(x \cdot y + z\right) \cdot y\\ \mathbf{if}\;t\_1 \leq -5 \cdot 10^{+146} \lor \neg \left(t\_1 \leq 10^{+66}\right):\\ \;\;\;\;z \cdot y\\ \mathbf{else}:\\ \;\;\;\;t\\ \end{array} \end{array}
if (*.f64 (+.f64 (*.f64 x y) z) y) < -4.9999999999999999e146 or 9.99999999999999945e65 < (*.f64 (+.f64 (*.f64 x y) z) y)
Initial program 100.0%
Taylor expanded in z around inf
*-commutative
N/A
lower-*.f64
38.2
Applied rewrites38.2%
if -4.9999999999999999e146 < (*.f64 (+.f64 (*.f64 x y) z) y) < 9.99999999999999945e65
Initial program 100.0%
Taylor expanded in y around 0
Applied rewrites79.1%
Final simplification56.1%
(FPCore (x y z t) :precision binary64 (fma z y t))
double code(double x, double y, double z, double t) { return fma(z, y, t); }
function code(x, y, z, t) return fma(z, y, t) end
code[x_, y_, z_, t_] := N[(z * y + t), $MachinePrecision]
\begin{array}{l} \\ \mathsf{fma}\left(z, y, t\right) \end{array}
Initial program 100.0%
Taylor expanded in x around 0
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
63.9
Applied rewrites63.9%
(FPCore (x y z t) :precision binary64 t)
double code(double x, double y, double z, double t) { return t; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t code = t end function
public static double code(double x, double y, double z, double t) { return t; }
def code(x, y, z, t): return t
function code(x, y, z, t) return t end
function tmp = code(x, y, z, t) tmp = t; end
code[x_, y_, z_, t_] := t
\begin{array}{l} \\ t \end{array}
Initial program 100.0%
Taylor expanded in y around 0
Applied rewrites38.9%
herbie shell --seed 2025051
(FPCore (x y z t)
:name "Language.Haskell.HsColour.ColourHighlight:unbase from hscolour-1.23"
:precision binary64
(+ (* (+ (* x y) z) y) t))