
(FPCore (x) :precision binary64 (sqrt (+ (pow x 2.0) (pow x 2.0))))
double code(double x) {
	return sqrt((pow(x, 2.0) + pow(x, 2.0)));
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin
    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module
real(8) function code(x)
use fmin_fmax_functions
    real(8), intent (in) :: x
    code = sqrt(((x ** 2.0d0) + (x ** 2.0d0)))
end function
public static double code(double x) {
	return Math.sqrt((Math.pow(x, 2.0) + Math.pow(x, 2.0)));
}
def code(x): return math.sqrt((math.pow(x, 2.0) + math.pow(x, 2.0)))
function code(x) return sqrt(Float64((x ^ 2.0) + (x ^ 2.0))) end
function tmp = code(x) tmp = sqrt(((x ^ 2.0) + (x ^ 2.0))); end
code[x_] := N[Sqrt[N[(N[Power[x, 2.0], $MachinePrecision] + N[Power[x, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]
\begin{array}{l}
\\
\sqrt{{x}^{2} + {x}^{2}}
\end{array}
Sampling outcomes in binary64 precision:
Herbie found 3 alternatives:
| Alternative | Accuracy | Speedup | 
|---|
(FPCore (x) :precision binary64 (sqrt (+ (pow x 2.0) (pow x 2.0))))
double code(double x) {
	return sqrt((pow(x, 2.0) + pow(x, 2.0)));
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin
    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module
real(8) function code(x)
use fmin_fmax_functions
    real(8), intent (in) :: x
    code = sqrt(((x ** 2.0d0) + (x ** 2.0d0)))
end function
public static double code(double x) {
	return Math.sqrt((Math.pow(x, 2.0) + Math.pow(x, 2.0)));
}
def code(x): return math.sqrt((math.pow(x, 2.0) + math.pow(x, 2.0)))
function code(x) return sqrt(Float64((x ^ 2.0) + (x ^ 2.0))) end
function tmp = code(x) tmp = sqrt(((x ^ 2.0) + (x ^ 2.0))); end
code[x_] := N[Sqrt[N[(N[Power[x, 2.0], $MachinePrecision] + N[Power[x, 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]
\begin{array}{l}
\\
\sqrt{{x}^{2} + {x}^{2}}
\end{array}
x_m = (fabs.f64 x) (FPCore (x_m) :precision binary64 (/ (+ x_m x_m) (sqrt 2.0)))
x_m = fabs(x);
double code(double x_m) {
	return (x_m + x_m) / sqrt(2.0);
}
x_m =     private
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin
    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module
real(8) function code(x_m)
use fmin_fmax_functions
    real(8), intent (in) :: x_m
    code = (x_m + x_m) / sqrt(2.0d0)
end function
x_m = Math.abs(x);
public static double code(double x_m) {
	return (x_m + x_m) / Math.sqrt(2.0);
}
x_m = math.fabs(x) def code(x_m): return (x_m + x_m) / math.sqrt(2.0)
x_m = abs(x) function code(x_m) return Float64(Float64(x_m + x_m) / sqrt(2.0)) end
x_m = abs(x); function tmp = code(x_m) tmp = (x_m + x_m) / sqrt(2.0); end
x_m = N[Abs[x], $MachinePrecision] code[x$95$m_] := N[(N[(x$95$m + x$95$m), $MachinePrecision] / N[Sqrt[2.0], $MachinePrecision]), $MachinePrecision]
\begin{array}{l}
x_m = \left|x\right|
\\
\frac{x\_m + x\_m}{\sqrt{2}}
\end{array}
Initial program 50.0%
Taylor expanded in x around 0
*-commutativeN/A
lower-*.f64N/A
lower-sqrt.f6452.4
Applied rewrites52.4%
lift-sqrt.f64N/A
metadata-evalN/A
sqrt-divN/A
metadata-evalN/A
lower-/.f64N/A
lift-sqrt.f6452.3
Applied rewrites52.3%
lift-*.f64N/A
lift-/.f64N/A
lift-sqrt.f64N/A
associate-*l/N/A
count-2-revN/A
lower-/.f64N/A
count-2-revN/A
lower-*.f64N/A
lift-sqrt.f6452.4
Applied rewrites52.4%
lift-*.f64N/A
count-2-revN/A
lower-+.f6452.4
Applied rewrites52.4%
x_m = (fabs.f64 x) (FPCore (x_m) :precision binary64 (* (sqrt 2.0) x_m))
x_m = fabs(x);
double code(double x_m) {
	return sqrt(2.0) * x_m;
}
x_m =     private
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin
    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module
real(8) function code(x_m)
use fmin_fmax_functions
    real(8), intent (in) :: x_m
    code = sqrt(2.0d0) * x_m
end function
x_m = Math.abs(x);
public static double code(double x_m) {
	return Math.sqrt(2.0) * x_m;
}
x_m = math.fabs(x) def code(x_m): return math.sqrt(2.0) * x_m
x_m = abs(x) function code(x_m) return Float64(sqrt(2.0) * x_m) end
x_m = abs(x); function tmp = code(x_m) tmp = sqrt(2.0) * x_m; end
x_m = N[Abs[x], $MachinePrecision] code[x$95$m_] := N[(N[Sqrt[2.0], $MachinePrecision] * x$95$m), $MachinePrecision]
\begin{array}{l}
x_m = \left|x\right|
\\
\sqrt{2} \cdot x\_m
\end{array}
Initial program 50.0%
Taylor expanded in x around 0
*-commutativeN/A
lower-*.f64N/A
lower-sqrt.f6452.4
Applied rewrites52.4%
x_m = (fabs.f64 x) (FPCore (x_m) :precision binary64 (sqrt 2.0))
x_m = fabs(x);
double code(double x_m) {
	return sqrt(2.0);
}
x_m =     private
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin
    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module
real(8) function code(x_m)
use fmin_fmax_functions
    real(8), intent (in) :: x_m
    code = sqrt(2.0d0)
end function
x_m = Math.abs(x);
public static double code(double x_m) {
	return Math.sqrt(2.0);
}
x_m = math.fabs(x) def code(x_m): return math.sqrt(2.0)
x_m = abs(x) function code(x_m) return sqrt(2.0) end
x_m = abs(x); function tmp = code(x_m) tmp = sqrt(2.0); end
x_m = N[Abs[x], $MachinePrecision] code[x$95$m_] := N[Sqrt[2.0], $MachinePrecision]
\begin{array}{l}
x_m = \left|x\right|
\\
\sqrt{2}
\end{array}
Initial program 50.0%
Taylor expanded in x around 0
count-2-revN/A
flip-+N/A
+-inversesN/A
metadata-evalN/A
metadata-evalN/A
metadata-evalN/A
metadata-evalN/A
metadata-evalN/A
metadata-evalN/A
metadata-evalN/A
+-inversesN/A
metadata-evalN/A
metadata-evalN/A
metadata-evalN/A
flip-+N/A
metadata-evalN/A
metadata-evalN/A
metadata-eval5.4
Applied rewrites5.4%
herbie shell --seed 2025044 
(FPCore (x)
  :name "sqrt E (should all be same)"
  :precision binary64
  (sqrt (+ (pow x 2.0) (pow x 2.0))))