
(FPCore (a b c) :precision binary64 (/ (+ (- b) (sqrt (- (* b b) (* (* 4.0 a) c)))) (* 2.0 a)))
double code(double a, double b, double c) {
return (-b + sqrt(((b * b) - ((4.0 * a) * c)))) / (2.0 * a);
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(a, b, c)
use fmin_fmax_functions
real(8), intent (in) :: a
real(8), intent (in) :: b
real(8), intent (in) :: c
code = (-b + sqrt(((b * b) - ((4.0d0 * a) * c)))) / (2.0d0 * a)
end function
public static double code(double a, double b, double c) {
return (-b + Math.sqrt(((b * b) - ((4.0 * a) * c)))) / (2.0 * a);
}
def code(a, b, c): return (-b + math.sqrt(((b * b) - ((4.0 * a) * c)))) / (2.0 * a)
function code(a, b, c) return Float64(Float64(Float64(-b) + sqrt(Float64(Float64(b * b) - Float64(Float64(4.0 * a) * c)))) / Float64(2.0 * a)) end
function tmp = code(a, b, c) tmp = (-b + sqrt(((b * b) - ((4.0 * a) * c)))) / (2.0 * a); end
code[a_, b_, c_] := N[(N[((-b) + N[Sqrt[N[(N[(b * b), $MachinePrecision] - N[(N[(4.0 * a), $MachinePrecision] * c), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision] / N[(2.0 * a), $MachinePrecision]), $MachinePrecision]
\begin{array}{l}
\\
\frac{\left(-b\right) + \sqrt{b \cdot b - \left(4 \cdot a\right) \cdot c}}{2 \cdot a}
\end{array}
Sampling outcomes in binary64 precision:
Herbie found 7 alternatives:
| Alternative | Accuracy | Speedup |
|---|
(FPCore (a b c) :precision binary64 (/ (+ (- b) (sqrt (- (* b b) (* (* 4.0 a) c)))) (* 2.0 a)))
double code(double a, double b, double c) {
return (-b + sqrt(((b * b) - ((4.0 * a) * c)))) / (2.0 * a);
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(a, b, c)
use fmin_fmax_functions
real(8), intent (in) :: a
real(8), intent (in) :: b
real(8), intent (in) :: c
code = (-b + sqrt(((b * b) - ((4.0d0 * a) * c)))) / (2.0d0 * a)
end function
public static double code(double a, double b, double c) {
return (-b + Math.sqrt(((b * b) - ((4.0 * a) * c)))) / (2.0 * a);
}
def code(a, b, c): return (-b + math.sqrt(((b * b) - ((4.0 * a) * c)))) / (2.0 * a)
function code(a, b, c) return Float64(Float64(Float64(-b) + sqrt(Float64(Float64(b * b) - Float64(Float64(4.0 * a) * c)))) / Float64(2.0 * a)) end
function tmp = code(a, b, c) tmp = (-b + sqrt(((b * b) - ((4.0 * a) * c)))) / (2.0 * a); end
code[a_, b_, c_] := N[(N[((-b) + N[Sqrt[N[(N[(b * b), $MachinePrecision] - N[(N[(4.0 * a), $MachinePrecision] * c), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision] / N[(2.0 * a), $MachinePrecision]), $MachinePrecision]
\begin{array}{l}
\\
\frac{\left(-b\right) + \sqrt{b \cdot b - \left(4 \cdot a\right) \cdot c}}{2 \cdot a}
\end{array}
(FPCore (a b c)
:precision binary64
(if (<= b -1.15e+158)
(/ (- b) a)
(if (<= b 2.35e-60)
(/ (- (sqrt (fma (* -4.0 a) c (* b b))) b) (+ a a))
(/ (- c) b))))
double code(double a, double b, double c) {
double tmp;
if (b <= -1.15e+158) {
tmp = -b / a;
} else if (b <= 2.35e-60) {
tmp = (sqrt(fma((-4.0 * a), c, (b * b))) - b) / (a + a);
} else {
tmp = -c / b;
}
return tmp;
}
function code(a, b, c) tmp = 0.0 if (b <= -1.15e+158) tmp = Float64(Float64(-b) / a); elseif (b <= 2.35e-60) tmp = Float64(Float64(sqrt(fma(Float64(-4.0 * a), c, Float64(b * b))) - b) / Float64(a + a)); else tmp = Float64(Float64(-c) / b); end return tmp end
code[a_, b_, c_] := If[LessEqual[b, -1.15e+158], N[((-b) / a), $MachinePrecision], If[LessEqual[b, 2.35e-60], N[(N[(N[Sqrt[N[(N[(-4.0 * a), $MachinePrecision] * c + N[(b * b), $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - b), $MachinePrecision] / N[(a + a), $MachinePrecision]), $MachinePrecision], N[((-c) / b), $MachinePrecision]]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;b \leq -1.15 \cdot 10^{+158}:\\
\;\;\;\;\frac{-b}{a}\\
\mathbf{elif}\;b \leq 2.35 \cdot 10^{-60}:\\
\;\;\;\;\frac{\sqrt{\mathsf{fma}\left(-4 \cdot a, c, b \cdot b\right)} - b}{a + a}\\
\mathbf{else}:\\
\;\;\;\;\frac{-c}{b}\\
\end{array}
\end{array}
if b < -1.14999999999999993e158Initial program 46.0%
Taylor expanded in b around -inf
associate-*r/N/A
mul-1-negN/A
lower-/.f64N/A
lift-neg.f6495.8
Applied rewrites95.8%
if -1.14999999999999993e158 < b < 2.35e-60Initial program 82.3%
lift-neg.f64N/A
lift-+.f64N/A
lift-sqrt.f64N/A
lift--.f64N/A
lift-*.f64N/A
lift-*.f64N/A
lift-*.f64N/A
+-commutativeN/A
lower-+.f64N/A
Applied rewrites82.3%
lift-*.f64N/A
count-2-revN/A
lower-+.f6482.3
Applied rewrites82.3%
if 2.35e-60 < b Initial program 13.4%
Taylor expanded in a around 0
associate-*r/N/A
mul-1-negN/A
lower-/.f64N/A
lower-neg.f6484.9
Applied rewrites84.9%
Final simplification85.5%
(FPCore (a b c)
:precision binary64
(if (<= b -3.4e-91)
(/ (- b) a)
(if (<= b 2.35e-60)
(/ (+ (- b) (sqrt (* -4.0 (* c a)))) (+ a a))
(/ (- c) b))))
double code(double a, double b, double c) {
double tmp;
if (b <= -3.4e-91) {
tmp = -b / a;
} else if (b <= 2.35e-60) {
tmp = (-b + sqrt((-4.0 * (c * a)))) / (a + a);
} else {
tmp = -c / b;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(a, b, c)
use fmin_fmax_functions
real(8), intent (in) :: a
real(8), intent (in) :: b
real(8), intent (in) :: c
real(8) :: tmp
if (b <= (-3.4d-91)) then
tmp = -b / a
else if (b <= 2.35d-60) then
tmp = (-b + sqrt(((-4.0d0) * (c * a)))) / (a + a)
else
tmp = -c / b
end if
code = tmp
end function
public static double code(double a, double b, double c) {
double tmp;
if (b <= -3.4e-91) {
tmp = -b / a;
} else if (b <= 2.35e-60) {
tmp = (-b + Math.sqrt((-4.0 * (c * a)))) / (a + a);
} else {
tmp = -c / b;
}
return tmp;
}
def code(a, b, c): tmp = 0 if b <= -3.4e-91: tmp = -b / a elif b <= 2.35e-60: tmp = (-b + math.sqrt((-4.0 * (c * a)))) / (a + a) else: tmp = -c / b return tmp
function code(a, b, c) tmp = 0.0 if (b <= -3.4e-91) tmp = Float64(Float64(-b) / a); elseif (b <= 2.35e-60) tmp = Float64(Float64(Float64(-b) + sqrt(Float64(-4.0 * Float64(c * a)))) / Float64(a + a)); else tmp = Float64(Float64(-c) / b); end return tmp end
function tmp_2 = code(a, b, c) tmp = 0.0; if (b <= -3.4e-91) tmp = -b / a; elseif (b <= 2.35e-60) tmp = (-b + sqrt((-4.0 * (c * a)))) / (a + a); else tmp = -c / b; end tmp_2 = tmp; end
code[a_, b_, c_] := If[LessEqual[b, -3.4e-91], N[((-b) / a), $MachinePrecision], If[LessEqual[b, 2.35e-60], N[(N[((-b) + N[Sqrt[N[(-4.0 * N[(c * a), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision] / N[(a + a), $MachinePrecision]), $MachinePrecision], N[((-c) / b), $MachinePrecision]]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;b \leq -3.4 \cdot 10^{-91}:\\
\;\;\;\;\frac{-b}{a}\\
\mathbf{elif}\;b \leq 2.35 \cdot 10^{-60}:\\
\;\;\;\;\frac{\left(-b\right) + \sqrt{-4 \cdot \left(c \cdot a\right)}}{a + a}\\
\mathbf{else}:\\
\;\;\;\;\frac{-c}{b}\\
\end{array}
\end{array}
if b < -3.40000000000000027e-91Initial program 74.1%
Taylor expanded in b around -inf
associate-*r/N/A
mul-1-negN/A
lower-/.f64N/A
lift-neg.f6486.0
Applied rewrites86.0%
if -3.40000000000000027e-91 < b < 2.35e-60Initial program 70.6%
Taylor expanded in a around inf
lower-*.f64N/A
*-commutativeN/A
lower-*.f6467.5
Applied rewrites67.5%
lift-*.f64N/A
count-2-revN/A
lower-+.f6467.5
Applied rewrites67.5%
if 2.35e-60 < b Initial program 13.4%
Taylor expanded in a around 0
associate-*r/N/A
mul-1-negN/A
lower-/.f64N/A
lower-neg.f6484.9
Applied rewrites84.9%
(FPCore (a b c) :precision binary64 (if (<= b -2.25e-117) (/ (- b) a) (if (<= b 2.35e-60) (/ (sqrt (* (* c a) -4.0)) (+ a a)) (/ (- c) b))))
double code(double a, double b, double c) {
double tmp;
if (b <= -2.25e-117) {
tmp = -b / a;
} else if (b <= 2.35e-60) {
tmp = sqrt(((c * a) * -4.0)) / (a + a);
} else {
tmp = -c / b;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(a, b, c)
use fmin_fmax_functions
real(8), intent (in) :: a
real(8), intent (in) :: b
real(8), intent (in) :: c
real(8) :: tmp
if (b <= (-2.25d-117)) then
tmp = -b / a
else if (b <= 2.35d-60) then
tmp = sqrt(((c * a) * (-4.0d0))) / (a + a)
else
tmp = -c / b
end if
code = tmp
end function
public static double code(double a, double b, double c) {
double tmp;
if (b <= -2.25e-117) {
tmp = -b / a;
} else if (b <= 2.35e-60) {
tmp = Math.sqrt(((c * a) * -4.0)) / (a + a);
} else {
tmp = -c / b;
}
return tmp;
}
def code(a, b, c): tmp = 0 if b <= -2.25e-117: tmp = -b / a elif b <= 2.35e-60: tmp = math.sqrt(((c * a) * -4.0)) / (a + a) else: tmp = -c / b return tmp
function code(a, b, c) tmp = 0.0 if (b <= -2.25e-117) tmp = Float64(Float64(-b) / a); elseif (b <= 2.35e-60) tmp = Float64(sqrt(Float64(Float64(c * a) * -4.0)) / Float64(a + a)); else tmp = Float64(Float64(-c) / b); end return tmp end
function tmp_2 = code(a, b, c) tmp = 0.0; if (b <= -2.25e-117) tmp = -b / a; elseif (b <= 2.35e-60) tmp = sqrt(((c * a) * -4.0)) / (a + a); else tmp = -c / b; end tmp_2 = tmp; end
code[a_, b_, c_] := If[LessEqual[b, -2.25e-117], N[((-b) / a), $MachinePrecision], If[LessEqual[b, 2.35e-60], N[(N[Sqrt[N[(N[(c * a), $MachinePrecision] * -4.0), $MachinePrecision]], $MachinePrecision] / N[(a + a), $MachinePrecision]), $MachinePrecision], N[((-c) / b), $MachinePrecision]]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;b \leq -2.25 \cdot 10^{-117}:\\
\;\;\;\;\frac{-b}{a}\\
\mathbf{elif}\;b \leq 2.35 \cdot 10^{-60}:\\
\;\;\;\;\frac{\sqrt{\left(c \cdot a\right) \cdot -4}}{a + a}\\
\mathbf{else}:\\
\;\;\;\;\frac{-c}{b}\\
\end{array}
\end{array}
if b < -2.24999999999999985e-117Initial program 74.4%
Taylor expanded in b around -inf
associate-*r/N/A
mul-1-negN/A
lower-/.f64N/A
lift-neg.f6483.9
Applied rewrites83.9%
if -2.24999999999999985e-117 < b < 2.35e-60Initial program 69.7%
lift-neg.f64N/A
lift-+.f64N/A
lift-sqrt.f64N/A
lift--.f64N/A
lift-*.f64N/A
lift-*.f64N/A
lift-*.f64N/A
+-commutativeN/A
lower-+.f64N/A
Applied rewrites69.7%
lift-*.f64N/A
count-2-revN/A
lower-+.f6469.7
Applied rewrites69.7%
Taylor expanded in a around inf
sqrt-unprodN/A
*-commutativeN/A
lower-sqrt.f64N/A
*-commutativeN/A
lower-*.f64N/A
*-commutativeN/A
lift-*.f6469.3
Applied rewrites69.3%
if 2.35e-60 < b Initial program 13.4%
Taylor expanded in a around 0
associate-*r/N/A
mul-1-negN/A
lower-/.f64N/A
lower-neg.f6484.9
Applied rewrites84.9%
(FPCore (a b c) :precision binary64 (if (<= b -3.35e-130) (/ (- b) a) (if (<= b 5.5e-175) (/ (sqrt (- c)) (sqrt a)) (/ (- c) b))))
double code(double a, double b, double c) {
double tmp;
if (b <= -3.35e-130) {
tmp = -b / a;
} else if (b <= 5.5e-175) {
tmp = sqrt(-c) / sqrt(a);
} else {
tmp = -c / b;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(a, b, c)
use fmin_fmax_functions
real(8), intent (in) :: a
real(8), intent (in) :: b
real(8), intent (in) :: c
real(8) :: tmp
if (b <= (-3.35d-130)) then
tmp = -b / a
else if (b <= 5.5d-175) then
tmp = sqrt(-c) / sqrt(a)
else
tmp = -c / b
end if
code = tmp
end function
public static double code(double a, double b, double c) {
double tmp;
if (b <= -3.35e-130) {
tmp = -b / a;
} else if (b <= 5.5e-175) {
tmp = Math.sqrt(-c) / Math.sqrt(a);
} else {
tmp = -c / b;
}
return tmp;
}
def code(a, b, c): tmp = 0 if b <= -3.35e-130: tmp = -b / a elif b <= 5.5e-175: tmp = math.sqrt(-c) / math.sqrt(a) else: tmp = -c / b return tmp
function code(a, b, c) tmp = 0.0 if (b <= -3.35e-130) tmp = Float64(Float64(-b) / a); elseif (b <= 5.5e-175) tmp = Float64(sqrt(Float64(-c)) / sqrt(a)); else tmp = Float64(Float64(-c) / b); end return tmp end
function tmp_2 = code(a, b, c) tmp = 0.0; if (b <= -3.35e-130) tmp = -b / a; elseif (b <= 5.5e-175) tmp = sqrt(-c) / sqrt(a); else tmp = -c / b; end tmp_2 = tmp; end
code[a_, b_, c_] := If[LessEqual[b, -3.35e-130], N[((-b) / a), $MachinePrecision], If[LessEqual[b, 5.5e-175], N[(N[Sqrt[(-c)], $MachinePrecision] / N[Sqrt[a], $MachinePrecision]), $MachinePrecision], N[((-c) / b), $MachinePrecision]]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;b \leq -3.35 \cdot 10^{-130}:\\
\;\;\;\;\frac{-b}{a}\\
\mathbf{elif}\;b \leq 5.5 \cdot 10^{-175}:\\
\;\;\;\;\frac{\sqrt{-c}}{\sqrt{a}}\\
\mathbf{else}:\\
\;\;\;\;\frac{-c}{b}\\
\end{array}
\end{array}
if b < -3.34999999999999993e-130Initial program 74.6%
Taylor expanded in b around -inf
associate-*r/N/A
mul-1-negN/A
lower-/.f64N/A
lift-neg.f6483.2
Applied rewrites83.2%
if -3.34999999999999993e-130 < b < 5.50000000000000054e-175Initial program 75.5%
Taylor expanded in a around -inf
mul-1-negN/A
lower-neg.f64N/A
sqrt-unprodN/A
lower-sqrt.f64N/A
lower-*.f64N/A
lower-/.f6419.9
Applied rewrites19.9%
Taylor expanded in c around -inf
sqrt-prodN/A
lower-sqrt.f64N/A
*-commutativeN/A
associate-*r/N/A
mul-1-negN/A
lower-/.f64N/A
lower-neg.f6458.9
Applied rewrites58.9%
lift-sqrt.f64N/A
lift-neg.f64N/A
lift-/.f64N/A
sqrt-divN/A
lower-/.f64N/A
lower-sqrt.f64N/A
lift-neg.f64N/A
lower-sqrt.f6467.2
Applied rewrites67.2%
if 5.50000000000000054e-175 < b Initial program 20.1%
Taylor expanded in a around 0
associate-*r/N/A
mul-1-negN/A
lower-/.f64N/A
lower-neg.f6477.4
Applied rewrites77.4%
(FPCore (a b c) :precision binary64 (if (<= b -3.35e-130) (/ (- b) a) (if (<= b 2.65e-175) (sqrt (/ (- c) a)) (/ (- c) b))))
double code(double a, double b, double c) {
double tmp;
if (b <= -3.35e-130) {
tmp = -b / a;
} else if (b <= 2.65e-175) {
tmp = sqrt((-c / a));
} else {
tmp = -c / b;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(a, b, c)
use fmin_fmax_functions
real(8), intent (in) :: a
real(8), intent (in) :: b
real(8), intent (in) :: c
real(8) :: tmp
if (b <= (-3.35d-130)) then
tmp = -b / a
else if (b <= 2.65d-175) then
tmp = sqrt((-c / a))
else
tmp = -c / b
end if
code = tmp
end function
public static double code(double a, double b, double c) {
double tmp;
if (b <= -3.35e-130) {
tmp = -b / a;
} else if (b <= 2.65e-175) {
tmp = Math.sqrt((-c / a));
} else {
tmp = -c / b;
}
return tmp;
}
def code(a, b, c): tmp = 0 if b <= -3.35e-130: tmp = -b / a elif b <= 2.65e-175: tmp = math.sqrt((-c / a)) else: tmp = -c / b return tmp
function code(a, b, c) tmp = 0.0 if (b <= -3.35e-130) tmp = Float64(Float64(-b) / a); elseif (b <= 2.65e-175) tmp = sqrt(Float64(Float64(-c) / a)); else tmp = Float64(Float64(-c) / b); end return tmp end
function tmp_2 = code(a, b, c) tmp = 0.0; if (b <= -3.35e-130) tmp = -b / a; elseif (b <= 2.65e-175) tmp = sqrt((-c / a)); else tmp = -c / b; end tmp_2 = tmp; end
code[a_, b_, c_] := If[LessEqual[b, -3.35e-130], N[((-b) / a), $MachinePrecision], If[LessEqual[b, 2.65e-175], N[Sqrt[N[((-c) / a), $MachinePrecision]], $MachinePrecision], N[((-c) / b), $MachinePrecision]]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;b \leq -3.35 \cdot 10^{-130}:\\
\;\;\;\;\frac{-b}{a}\\
\mathbf{elif}\;b \leq 2.65 \cdot 10^{-175}:\\
\;\;\;\;\sqrt{\frac{-c}{a}}\\
\mathbf{else}:\\
\;\;\;\;\frac{-c}{b}\\
\end{array}
\end{array}
if b < -3.34999999999999993e-130Initial program 74.6%
Taylor expanded in b around -inf
associate-*r/N/A
mul-1-negN/A
lower-/.f64N/A
lift-neg.f6483.2
Applied rewrites83.2%
if -3.34999999999999993e-130 < b < 2.6500000000000003e-175Initial program 75.5%
Taylor expanded in a around -inf
mul-1-negN/A
lower-neg.f64N/A
sqrt-unprodN/A
lower-sqrt.f64N/A
lower-*.f64N/A
lower-/.f6419.9
Applied rewrites19.9%
Taylor expanded in c around -inf
sqrt-prodN/A
lower-sqrt.f64N/A
*-commutativeN/A
associate-*r/N/A
mul-1-negN/A
lower-/.f64N/A
lower-neg.f6458.9
Applied rewrites58.9%
if 2.6500000000000003e-175 < b Initial program 20.1%
Taylor expanded in a around 0
associate-*r/N/A
mul-1-negN/A
lower-/.f64N/A
lower-neg.f6477.4
Applied rewrites77.4%
(FPCore (a b c) :precision binary64 (if (<= b -5e-310) (/ (- b) a) (/ (- c) b)))
double code(double a, double b, double c) {
double tmp;
if (b <= -5e-310) {
tmp = -b / a;
} else {
tmp = -c / b;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(a, b, c)
use fmin_fmax_functions
real(8), intent (in) :: a
real(8), intent (in) :: b
real(8), intent (in) :: c
real(8) :: tmp
if (b <= (-5d-310)) then
tmp = -b / a
else
tmp = -c / b
end if
code = tmp
end function
public static double code(double a, double b, double c) {
double tmp;
if (b <= -5e-310) {
tmp = -b / a;
} else {
tmp = -c / b;
}
return tmp;
}
def code(a, b, c): tmp = 0 if b <= -5e-310: tmp = -b / a else: tmp = -c / b return tmp
function code(a, b, c) tmp = 0.0 if (b <= -5e-310) tmp = Float64(Float64(-b) / a); else tmp = Float64(Float64(-c) / b); end return tmp end
function tmp_2 = code(a, b, c) tmp = 0.0; if (b <= -5e-310) tmp = -b / a; else tmp = -c / b; end tmp_2 = tmp; end
code[a_, b_, c_] := If[LessEqual[b, -5e-310], N[((-b) / a), $MachinePrecision], N[((-c) / b), $MachinePrecision]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;b \leq -5 \cdot 10^{-310}:\\
\;\;\;\;\frac{-b}{a}\\
\mathbf{else}:\\
\;\;\;\;\frac{-c}{b}\\
\end{array}
\end{array}
if b < -4.999999999999985e-310Initial program 75.5%
Taylor expanded in b around -inf
associate-*r/N/A
mul-1-negN/A
lower-/.f64N/A
lift-neg.f6470.1
Applied rewrites70.1%
if -4.999999999999985e-310 < b Initial program 26.7%
Taylor expanded in a around 0
associate-*r/N/A
mul-1-negN/A
lower-/.f64N/A
lower-neg.f6467.5
Applied rewrites67.5%
(FPCore (a b c) :precision binary64 (/ (- b) a))
double code(double a, double b, double c) {
return -b / a;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(a, b, c)
use fmin_fmax_functions
real(8), intent (in) :: a
real(8), intent (in) :: b
real(8), intent (in) :: c
code = -b / a
end function
public static double code(double a, double b, double c) {
return -b / a;
}
def code(a, b, c): return -b / a
function code(a, b, c) return Float64(Float64(-b) / a) end
function tmp = code(a, b, c) tmp = -b / a; end
code[a_, b_, c_] := N[((-b) / a), $MachinePrecision]
\begin{array}{l}
\\
\frac{-b}{a}
\end{array}
Initial program 52.6%
Taylor expanded in b around -inf
associate-*r/N/A
mul-1-negN/A
lower-/.f64N/A
lift-neg.f6438.5
Applied rewrites38.5%
(FPCore (a b c)
:precision binary64
(let* ((t_0 (sqrt (- (* b b) (* (* 4.0 a) c)))))
(if (< b 0.0)
(/ (+ (- b) t_0) (* 2.0 a))
(/ c (* a (/ (- (- b) t_0) (* 2.0 a)))))))
double code(double a, double b, double c) {
double t_0 = sqrt(((b * b) - ((4.0 * a) * c)));
double tmp;
if (b < 0.0) {
tmp = (-b + t_0) / (2.0 * a);
} else {
tmp = c / (a * ((-b - t_0) / (2.0 * a)));
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(a, b, c)
use fmin_fmax_functions
real(8), intent (in) :: a
real(8), intent (in) :: b
real(8), intent (in) :: c
real(8) :: t_0
real(8) :: tmp
t_0 = sqrt(((b * b) - ((4.0d0 * a) * c)))
if (b < 0.0d0) then
tmp = (-b + t_0) / (2.0d0 * a)
else
tmp = c / (a * ((-b - t_0) / (2.0d0 * a)))
end if
code = tmp
end function
public static double code(double a, double b, double c) {
double t_0 = Math.sqrt(((b * b) - ((4.0 * a) * c)));
double tmp;
if (b < 0.0) {
tmp = (-b + t_0) / (2.0 * a);
} else {
tmp = c / (a * ((-b - t_0) / (2.0 * a)));
}
return tmp;
}
def code(a, b, c): t_0 = math.sqrt(((b * b) - ((4.0 * a) * c))) tmp = 0 if b < 0.0: tmp = (-b + t_0) / (2.0 * a) else: tmp = c / (a * ((-b - t_0) / (2.0 * a))) return tmp
function code(a, b, c) t_0 = sqrt(Float64(Float64(b * b) - Float64(Float64(4.0 * a) * c))) tmp = 0.0 if (b < 0.0) tmp = Float64(Float64(Float64(-b) + t_0) / Float64(2.0 * a)); else tmp = Float64(c / Float64(a * Float64(Float64(Float64(-b) - t_0) / Float64(2.0 * a)))); end return tmp end
function tmp_2 = code(a, b, c) t_0 = sqrt(((b * b) - ((4.0 * a) * c))); tmp = 0.0; if (b < 0.0) tmp = (-b + t_0) / (2.0 * a); else tmp = c / (a * ((-b - t_0) / (2.0 * a))); end tmp_2 = tmp; end
code[a_, b_, c_] := Block[{t$95$0 = N[Sqrt[N[(N[(b * b), $MachinePrecision] - N[(N[(4.0 * a), $MachinePrecision] * c), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, If[Less[b, 0.0], N[(N[((-b) + t$95$0), $MachinePrecision] / N[(2.0 * a), $MachinePrecision]), $MachinePrecision], N[(c / N[(a * N[(N[((-b) - t$95$0), $MachinePrecision] / N[(2.0 * a), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]]
\begin{array}{l}
\\
\begin{array}{l}
t_0 := \sqrt{b \cdot b - \left(4 \cdot a\right) \cdot c}\\
\mathbf{if}\;b < 0:\\
\;\;\;\;\frac{\left(-b\right) + t\_0}{2 \cdot a}\\
\mathbf{else}:\\
\;\;\;\;\frac{c}{a \cdot \frac{\left(-b\right) - t\_0}{2 \cdot a}}\\
\end{array}
\end{array}
herbie shell --seed 2025043
(FPCore (a b c)
:name "The quadratic formula (r1)"
:precision binary64
:alt
(! :herbie-platform default (let ((d (- (* b b) (* (* 4 a) c)))) (let ((r1 (/ (+ (- b) (sqrt d)) (* 2 a)))) (let ((r2 (/ (- (- b) (sqrt d)) (* 2 a)))) (if (< b 0) r1 (/ c (* a r2)))))))
(/ (+ (- b) (sqrt (- (* b b) (* (* 4.0 a) c)))) (* 2.0 a)))