(FPCore (a b c) :precision binary64 (/ (+ (- b) (sqrt (- (* b b) (* (* 4.0 a) c)))) (* 2.0 a)))
double code(double a, double b, double c) { return (-b + sqrt(((b * b) - ((4.0 * a) * c)))) / (2.0 * a); }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(a, b, c) use fmin_fmax_functions real(8), intent (in) :: a real(8), intent (in) :: b real(8), intent (in) :: c code = (-b + sqrt(((b * b) - ((4.0d0 * a) * c)))) / (2.0d0 * a) end function
public static double code(double a, double b, double c) { return (-b + Math.sqrt(((b * b) - ((4.0 * a) * c)))) / (2.0 * a); }
def code(a, b, c): return (-b + math.sqrt(((b * b) - ((4.0 * a) * c)))) / (2.0 * a)
function code(a, b, c) return Float64(Float64(Float64(-b) + sqrt(Float64(Float64(b * b) - Float64(Float64(4.0 * a) * c)))) / Float64(2.0 * a)) end
function tmp = code(a, b, c) tmp = (-b + sqrt(((b * b) - ((4.0 * a) * c)))) / (2.0 * a); end
code[a_, b_, c_] := N[(N[((-b) + N[Sqrt[N[(N[(b * b), $MachinePrecision] - N[(N[(4.0 * a), $MachinePrecision] * c), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision] / N[(2.0 * a), $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ \frac{\left(-b\right) + \sqrt{b \cdot b - \left(4 \cdot a\right) \cdot c}}{2 \cdot a} \end{array}
Sampling outcomes in binary64 precision:
Herbie found 7 alternatives:
Alternative | Accuracy | Speedup |
---|
(FPCore (a b c) :precision binary64 (/ (+ (- b) (sqrt (- (* b b) (* (* 4.0 a) c)))) (* 2.0 a)))
double code(double a, double b, double c) { return (-b + sqrt(((b * b) - ((4.0 * a) * c)))) / (2.0 * a); }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(a, b, c) use fmin_fmax_functions real(8), intent (in) :: a real(8), intent (in) :: b real(8), intent (in) :: c code = (-b + sqrt(((b * b) - ((4.0d0 * a) * c)))) / (2.0d0 * a) end function
public static double code(double a, double b, double c) { return (-b + Math.sqrt(((b * b) - ((4.0 * a) * c)))) / (2.0 * a); }
def code(a, b, c): return (-b + math.sqrt(((b * b) - ((4.0 * a) * c)))) / (2.0 * a)
function code(a, b, c) return Float64(Float64(Float64(-b) + sqrt(Float64(Float64(b * b) - Float64(Float64(4.0 * a) * c)))) / Float64(2.0 * a)) end
function tmp = code(a, b, c) tmp = (-b + sqrt(((b * b) - ((4.0 * a) * c)))) / (2.0 * a); end
code[a_, b_, c_] := N[(N[((-b) + N[Sqrt[N[(N[(b * b), $MachinePrecision] - N[(N[(4.0 * a), $MachinePrecision] * c), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision] / N[(2.0 * a), $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ \frac{\left(-b\right) + \sqrt{b \cdot b - \left(4 \cdot a\right) \cdot c}}{2 \cdot a} \end{array}
(FPCore (a b c) :precision binary64 (if (<= b -1.15e+158) (/ (- b) a) (if (<= b 2.35e-60) (/ (- (sqrt (fma (* -4.0 a) c (* b b))) b) (+ a a)) (/ (- c) b))))
double code(double a, double b, double c) { double tmp; if (b <= -1.15e+158) { tmp = -b / a; } else if (b <= 2.35e-60) { tmp = (sqrt(fma((-4.0 * a), c, (b * b))) - b) / (a + a); } else { tmp = -c / b; } return tmp; }
function code(a, b, c) tmp = 0.0 if (b <= -1.15e+158) tmp = Float64(Float64(-b) / a); elseif (b <= 2.35e-60) tmp = Float64(Float64(sqrt(fma(Float64(-4.0 * a), c, Float64(b * b))) - b) / Float64(a + a)); else tmp = Float64(Float64(-c) / b); end return tmp end
code[a_, b_, c_] := If[LessEqual[b, -1.15e+158], N[((-b) / a), $MachinePrecision], If[LessEqual[b, 2.35e-60], N[(N[(N[Sqrt[N[(N[(-4.0 * a), $MachinePrecision] * c + N[(b * b), $MachinePrecision]), $MachinePrecision]], $MachinePrecision] - b), $MachinePrecision] / N[(a + a), $MachinePrecision]), $MachinePrecision], N[((-c) / b), $MachinePrecision]]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;b \leq -1.15 \cdot 10^{+158}:\\ \;\;\;\;\frac{-b}{a}\\ \mathbf{elif}\;b \leq 2.35 \cdot 10^{-60}:\\ \;\;\;\;\frac{\sqrt{\mathsf{fma}\left(-4 \cdot a, c, b \cdot b\right)} - b}{a + a}\\ \mathbf{else}:\\ \;\;\;\;\frac{-c}{b}\\ \end{array} \end{array}
if b < -1.14999999999999993e158
Initial program 46.0%
Taylor expanded in b around -inf
associate-*r/
N/A
mul-1-neg
N/A
lower-/.f64
N/A
lift-neg.f64
95.8
Applied rewrites95.8%
if -1.14999999999999993e158 < b < 2.35e-60
Initial program 82.3%
lift-neg.f64
N/A
lift-+.f64
N/A
lift-sqrt.f64
N/A
lift--.f64
N/A
lift-*.f64
N/A
lift-*.f64
N/A
lift-*.f64
N/A
+-commutative
N/A
lower-+.f64
N/A
Applied rewrites82.3%
lift-*.f64
N/A
count-2-rev
N/A
lower-+.f64
82.3
Applied rewrites82.3%
if 2.35e-60 < b
Initial program 13.4%
Taylor expanded in a around 0
associate-*r/
N/A
mul-1-neg
N/A
lower-/.f64
N/A
lower-neg.f64
84.9
Applied rewrites84.9%
Final simplification85.5%
(FPCore (a b c) :precision binary64 (if (<= b -3.4e-91) (/ (- b) a) (if (<= b 2.35e-60) (/ (+ (- b) (sqrt (* -4.0 (* c a)))) (+ a a)) (/ (- c) b))))
double code(double a, double b, double c) { double tmp; if (b <= -3.4e-91) { tmp = -b / a; } else if (b <= 2.35e-60) { tmp = (-b + sqrt((-4.0 * (c * a)))) / (a + a); } else { tmp = -c / b; } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(a, b, c) use fmin_fmax_functions real(8), intent (in) :: a real(8), intent (in) :: b real(8), intent (in) :: c real(8) :: tmp if (b <= (-3.4d-91)) then tmp = -b / a else if (b <= 2.35d-60) then tmp = (-b + sqrt(((-4.0d0) * (c * a)))) / (a + a) else tmp = -c / b end if code = tmp end function
public static double code(double a, double b, double c) { double tmp; if (b <= -3.4e-91) { tmp = -b / a; } else if (b <= 2.35e-60) { tmp = (-b + Math.sqrt((-4.0 * (c * a)))) / (a + a); } else { tmp = -c / b; } return tmp; }
def code(a, b, c): tmp = 0 if b <= -3.4e-91: tmp = -b / a elif b <= 2.35e-60: tmp = (-b + math.sqrt((-4.0 * (c * a)))) / (a + a) else: tmp = -c / b return tmp
function code(a, b, c) tmp = 0.0 if (b <= -3.4e-91) tmp = Float64(Float64(-b) / a); elseif (b <= 2.35e-60) tmp = Float64(Float64(Float64(-b) + sqrt(Float64(-4.0 * Float64(c * a)))) / Float64(a + a)); else tmp = Float64(Float64(-c) / b); end return tmp end
function tmp_2 = code(a, b, c) tmp = 0.0; if (b <= -3.4e-91) tmp = -b / a; elseif (b <= 2.35e-60) tmp = (-b + sqrt((-4.0 * (c * a)))) / (a + a); else tmp = -c / b; end tmp_2 = tmp; end
code[a_, b_, c_] := If[LessEqual[b, -3.4e-91], N[((-b) / a), $MachinePrecision], If[LessEqual[b, 2.35e-60], N[(N[((-b) + N[Sqrt[N[(-4.0 * N[(c * a), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision] / N[(a + a), $MachinePrecision]), $MachinePrecision], N[((-c) / b), $MachinePrecision]]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;b \leq -3.4 \cdot 10^{-91}:\\ \;\;\;\;\frac{-b}{a}\\ \mathbf{elif}\;b \leq 2.35 \cdot 10^{-60}:\\ \;\;\;\;\frac{\left(-b\right) + \sqrt{-4 \cdot \left(c \cdot a\right)}}{a + a}\\ \mathbf{else}:\\ \;\;\;\;\frac{-c}{b}\\ \end{array} \end{array}
if b < -3.40000000000000027e-91
Initial program 74.1%
Taylor expanded in b around -inf
associate-*r/
N/A
mul-1-neg
N/A
lower-/.f64
N/A
lift-neg.f64
86.0
Applied rewrites86.0%
if -3.40000000000000027e-91 < b < 2.35e-60
Initial program 70.6%
Taylor expanded in a around inf
lower-*.f64
N/A
*-commutative
N/A
lower-*.f64
67.5
Applied rewrites67.5%
lift-*.f64
N/A
count-2-rev
N/A
lower-+.f64
67.5
Applied rewrites67.5%
if 2.35e-60 < b
Initial program 13.4%
Taylor expanded in a around 0
associate-*r/
N/A
mul-1-neg
N/A
lower-/.f64
N/A
lower-neg.f64
84.9
Applied rewrites84.9%
(FPCore (a b c) :precision binary64 (if (<= b -2.25e-117) (/ (- b) a) (if (<= b 2.35e-60) (/ (sqrt (* (* c a) -4.0)) (+ a a)) (/ (- c) b))))
double code(double a, double b, double c) { double tmp; if (b <= -2.25e-117) { tmp = -b / a; } else if (b <= 2.35e-60) { tmp = sqrt(((c * a) * -4.0)) / (a + a); } else { tmp = -c / b; } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(a, b, c) use fmin_fmax_functions real(8), intent (in) :: a real(8), intent (in) :: b real(8), intent (in) :: c real(8) :: tmp if (b <= (-2.25d-117)) then tmp = -b / a else if (b <= 2.35d-60) then tmp = sqrt(((c * a) * (-4.0d0))) / (a + a) else tmp = -c / b end if code = tmp end function
public static double code(double a, double b, double c) { double tmp; if (b <= -2.25e-117) { tmp = -b / a; } else if (b <= 2.35e-60) { tmp = Math.sqrt(((c * a) * -4.0)) / (a + a); } else { tmp = -c / b; } return tmp; }
def code(a, b, c): tmp = 0 if b <= -2.25e-117: tmp = -b / a elif b <= 2.35e-60: tmp = math.sqrt(((c * a) * -4.0)) / (a + a) else: tmp = -c / b return tmp
function code(a, b, c) tmp = 0.0 if (b <= -2.25e-117) tmp = Float64(Float64(-b) / a); elseif (b <= 2.35e-60) tmp = Float64(sqrt(Float64(Float64(c * a) * -4.0)) / Float64(a + a)); else tmp = Float64(Float64(-c) / b); end return tmp end
function tmp_2 = code(a, b, c) tmp = 0.0; if (b <= -2.25e-117) tmp = -b / a; elseif (b <= 2.35e-60) tmp = sqrt(((c * a) * -4.0)) / (a + a); else tmp = -c / b; end tmp_2 = tmp; end
code[a_, b_, c_] := If[LessEqual[b, -2.25e-117], N[((-b) / a), $MachinePrecision], If[LessEqual[b, 2.35e-60], N[(N[Sqrt[N[(N[(c * a), $MachinePrecision] * -4.0), $MachinePrecision]], $MachinePrecision] / N[(a + a), $MachinePrecision]), $MachinePrecision], N[((-c) / b), $MachinePrecision]]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;b \leq -2.25 \cdot 10^{-117}:\\ \;\;\;\;\frac{-b}{a}\\ \mathbf{elif}\;b \leq 2.35 \cdot 10^{-60}:\\ \;\;\;\;\frac{\sqrt{\left(c \cdot a\right) \cdot -4}}{a + a}\\ \mathbf{else}:\\ \;\;\;\;\frac{-c}{b}\\ \end{array} \end{array}
if b < -2.24999999999999985e-117
Initial program 74.4%
Taylor expanded in b around -inf
associate-*r/
N/A
mul-1-neg
N/A
lower-/.f64
N/A
lift-neg.f64
83.9
Applied rewrites83.9%
if -2.24999999999999985e-117 < b < 2.35e-60
Initial program 69.7%
lift-neg.f64
N/A
lift-+.f64
N/A
lift-sqrt.f64
N/A
lift--.f64
N/A
lift-*.f64
N/A
lift-*.f64
N/A
lift-*.f64
N/A
+-commutative
N/A
lower-+.f64
N/A
Applied rewrites69.7%
lift-*.f64
N/A
count-2-rev
N/A
lower-+.f64
69.7
Applied rewrites69.7%
Taylor expanded in a around inf
sqrt-unprod
N/A
*-commutative
N/A
lower-sqrt.f64
N/A
*-commutative
N/A
lower-*.f64
N/A
*-commutative
N/A
lift-*.f64
69.3
Applied rewrites69.3%
if 2.35e-60 < b
Initial program 13.4%
Taylor expanded in a around 0
associate-*r/
N/A
mul-1-neg
N/A
lower-/.f64
N/A
lower-neg.f64
84.9
Applied rewrites84.9%
(FPCore (a b c) :precision binary64 (if (<= b -3.35e-130) (/ (- b) a) (if (<= b 5.5e-175) (/ (sqrt (- c)) (sqrt a)) (/ (- c) b))))
double code(double a, double b, double c) { double tmp; if (b <= -3.35e-130) { tmp = -b / a; } else if (b <= 5.5e-175) { tmp = sqrt(-c) / sqrt(a); } else { tmp = -c / b; } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(a, b, c) use fmin_fmax_functions real(8), intent (in) :: a real(8), intent (in) :: b real(8), intent (in) :: c real(8) :: tmp if (b <= (-3.35d-130)) then tmp = -b / a else if (b <= 5.5d-175) then tmp = sqrt(-c) / sqrt(a) else tmp = -c / b end if code = tmp end function
public static double code(double a, double b, double c) { double tmp; if (b <= -3.35e-130) { tmp = -b / a; } else if (b <= 5.5e-175) { tmp = Math.sqrt(-c) / Math.sqrt(a); } else { tmp = -c / b; } return tmp; }
def code(a, b, c): tmp = 0 if b <= -3.35e-130: tmp = -b / a elif b <= 5.5e-175: tmp = math.sqrt(-c) / math.sqrt(a) else: tmp = -c / b return tmp
function code(a, b, c) tmp = 0.0 if (b <= -3.35e-130) tmp = Float64(Float64(-b) / a); elseif (b <= 5.5e-175) tmp = Float64(sqrt(Float64(-c)) / sqrt(a)); else tmp = Float64(Float64(-c) / b); end return tmp end
function tmp_2 = code(a, b, c) tmp = 0.0; if (b <= -3.35e-130) tmp = -b / a; elseif (b <= 5.5e-175) tmp = sqrt(-c) / sqrt(a); else tmp = -c / b; end tmp_2 = tmp; end
code[a_, b_, c_] := If[LessEqual[b, -3.35e-130], N[((-b) / a), $MachinePrecision], If[LessEqual[b, 5.5e-175], N[(N[Sqrt[(-c)], $MachinePrecision] / N[Sqrt[a], $MachinePrecision]), $MachinePrecision], N[((-c) / b), $MachinePrecision]]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;b \leq -3.35 \cdot 10^{-130}:\\ \;\;\;\;\frac{-b}{a}\\ \mathbf{elif}\;b \leq 5.5 \cdot 10^{-175}:\\ \;\;\;\;\frac{\sqrt{-c}}{\sqrt{a}}\\ \mathbf{else}:\\ \;\;\;\;\frac{-c}{b}\\ \end{array} \end{array}
if b < -3.34999999999999993e-130
Initial program 74.6%
Taylor expanded in b around -inf
associate-*r/
N/A
mul-1-neg
N/A
lower-/.f64
N/A
lift-neg.f64
83.2
Applied rewrites83.2%
if -3.34999999999999993e-130 < b < 5.50000000000000054e-175
Initial program 75.5%
Taylor expanded in a around -inf
mul-1-neg
N/A
lower-neg.f64
N/A
sqrt-unprod
N/A
lower-sqrt.f64
N/A
lower-*.f64
N/A
lower-/.f64
19.9
Applied rewrites19.9%
Taylor expanded in c around -inf
sqrt-prod
N/A
lower-sqrt.f64
N/A
*-commutative
N/A
associate-*r/
N/A
mul-1-neg
N/A
lower-/.f64
N/A
lower-neg.f64
58.9
Applied rewrites58.9%
lift-sqrt.f64
N/A
lift-neg.f64
N/A
lift-/.f64
N/A
sqrt-div
N/A
lower-/.f64
N/A
lower-sqrt.f64
N/A
lift-neg.f64
N/A
lower-sqrt.f64
67.2
Applied rewrites67.2%
if 5.50000000000000054e-175 < b
Initial program 20.1%
Taylor expanded in a around 0
associate-*r/
N/A
mul-1-neg
N/A
lower-/.f64
N/A
lower-neg.f64
77.4
Applied rewrites77.4%
(FPCore (a b c) :precision binary64 (if (<= b -3.35e-130) (/ (- b) a) (if (<= b 2.65e-175) (sqrt (/ (- c) a)) (/ (- c) b))))
double code(double a, double b, double c) { double tmp; if (b <= -3.35e-130) { tmp = -b / a; } else if (b <= 2.65e-175) { tmp = sqrt((-c / a)); } else { tmp = -c / b; } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(a, b, c) use fmin_fmax_functions real(8), intent (in) :: a real(8), intent (in) :: b real(8), intent (in) :: c real(8) :: tmp if (b <= (-3.35d-130)) then tmp = -b / a else if (b <= 2.65d-175) then tmp = sqrt((-c / a)) else tmp = -c / b end if code = tmp end function
public static double code(double a, double b, double c) { double tmp; if (b <= -3.35e-130) { tmp = -b / a; } else if (b <= 2.65e-175) { tmp = Math.sqrt((-c / a)); } else { tmp = -c / b; } return tmp; }
def code(a, b, c): tmp = 0 if b <= -3.35e-130: tmp = -b / a elif b <= 2.65e-175: tmp = math.sqrt((-c / a)) else: tmp = -c / b return tmp
function code(a, b, c) tmp = 0.0 if (b <= -3.35e-130) tmp = Float64(Float64(-b) / a); elseif (b <= 2.65e-175) tmp = sqrt(Float64(Float64(-c) / a)); else tmp = Float64(Float64(-c) / b); end return tmp end
function tmp_2 = code(a, b, c) tmp = 0.0; if (b <= -3.35e-130) tmp = -b / a; elseif (b <= 2.65e-175) tmp = sqrt((-c / a)); else tmp = -c / b; end tmp_2 = tmp; end
code[a_, b_, c_] := If[LessEqual[b, -3.35e-130], N[((-b) / a), $MachinePrecision], If[LessEqual[b, 2.65e-175], N[Sqrt[N[((-c) / a), $MachinePrecision]], $MachinePrecision], N[((-c) / b), $MachinePrecision]]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;b \leq -3.35 \cdot 10^{-130}:\\ \;\;\;\;\frac{-b}{a}\\ \mathbf{elif}\;b \leq 2.65 \cdot 10^{-175}:\\ \;\;\;\;\sqrt{\frac{-c}{a}}\\ \mathbf{else}:\\ \;\;\;\;\frac{-c}{b}\\ \end{array} \end{array}
if b < -3.34999999999999993e-130
Initial program 74.6%
Taylor expanded in b around -inf
associate-*r/
N/A
mul-1-neg
N/A
lower-/.f64
N/A
lift-neg.f64
83.2
Applied rewrites83.2%
if -3.34999999999999993e-130 < b < 2.6500000000000003e-175
Initial program 75.5%
Taylor expanded in a around -inf
mul-1-neg
N/A
lower-neg.f64
N/A
sqrt-unprod
N/A
lower-sqrt.f64
N/A
lower-*.f64
N/A
lower-/.f64
19.9
Applied rewrites19.9%
Taylor expanded in c around -inf
sqrt-prod
N/A
lower-sqrt.f64
N/A
*-commutative
N/A
associate-*r/
N/A
mul-1-neg
N/A
lower-/.f64
N/A
lower-neg.f64
58.9
Applied rewrites58.9%
if 2.6500000000000003e-175 < b
Initial program 20.1%
Taylor expanded in a around 0
associate-*r/
N/A
mul-1-neg
N/A
lower-/.f64
N/A
lower-neg.f64
77.4
Applied rewrites77.4%
(FPCore (a b c) :precision binary64 (if (<= b -5e-310) (/ (- b) a) (/ (- c) b)))
double code(double a, double b, double c) { double tmp; if (b <= -5e-310) { tmp = -b / a; } else { tmp = -c / b; } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(a, b, c) use fmin_fmax_functions real(8), intent (in) :: a real(8), intent (in) :: b real(8), intent (in) :: c real(8) :: tmp if (b <= (-5d-310)) then tmp = -b / a else tmp = -c / b end if code = tmp end function
public static double code(double a, double b, double c) { double tmp; if (b <= -5e-310) { tmp = -b / a; } else { tmp = -c / b; } return tmp; }
def code(a, b, c): tmp = 0 if b <= -5e-310: tmp = -b / a else: tmp = -c / b return tmp
function code(a, b, c) tmp = 0.0 if (b <= -5e-310) tmp = Float64(Float64(-b) / a); else tmp = Float64(Float64(-c) / b); end return tmp end
function tmp_2 = code(a, b, c) tmp = 0.0; if (b <= -5e-310) tmp = -b / a; else tmp = -c / b; end tmp_2 = tmp; end
code[a_, b_, c_] := If[LessEqual[b, -5e-310], N[((-b) / a), $MachinePrecision], N[((-c) / b), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;b \leq -5 \cdot 10^{-310}:\\ \;\;\;\;\frac{-b}{a}\\ \mathbf{else}:\\ \;\;\;\;\frac{-c}{b}\\ \end{array} \end{array}
if b < -4.999999999999985e-310
Initial program 75.5%
Taylor expanded in b around -inf
associate-*r/
N/A
mul-1-neg
N/A
lower-/.f64
N/A
lift-neg.f64
70.1
Applied rewrites70.1%
if -4.999999999999985e-310 < b
Initial program 26.7%
Taylor expanded in a around 0
associate-*r/
N/A
mul-1-neg
N/A
lower-/.f64
N/A
lower-neg.f64
67.5
Applied rewrites67.5%
(FPCore (a b c) :precision binary64 (/ (- b) a))
double code(double a, double b, double c) { return -b / a; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(a, b, c) use fmin_fmax_functions real(8), intent (in) :: a real(8), intent (in) :: b real(8), intent (in) :: c code = -b / a end function
public static double code(double a, double b, double c) { return -b / a; }
def code(a, b, c): return -b / a
function code(a, b, c) return Float64(Float64(-b) / a) end
function tmp = code(a, b, c) tmp = -b / a; end
code[a_, b_, c_] := N[((-b) / a), $MachinePrecision]
\begin{array}{l} \\ \frac{-b}{a} \end{array}
Initial program 52.6%
Taylor expanded in b around -inf
associate-*r/
N/A
mul-1-neg
N/A
lower-/.f64
N/A
lift-neg.f64
38.5
Applied rewrites38.5%
(FPCore (a b c) :precision binary64 (let* ((t_0 (sqrt (- (* b b) (* (* 4.0 a) c))))) (if (< b 0.0) (/ (+ (- b) t_0) (* 2.0 a)) (/ c (* a (/ (- (- b) t_0) (* 2.0 a)))))))
double code(double a, double b, double c) { double t_0 = sqrt(((b * b) - ((4.0 * a) * c))); double tmp; if (b < 0.0) { tmp = (-b + t_0) / (2.0 * a); } else { tmp = c / (a * ((-b - t_0) / (2.0 * a))); } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(a, b, c) use fmin_fmax_functions real(8), intent (in) :: a real(8), intent (in) :: b real(8), intent (in) :: c real(8) :: t_0 real(8) :: tmp t_0 = sqrt(((b * b) - ((4.0d0 * a) * c))) if (b < 0.0d0) then tmp = (-b + t_0) / (2.0d0 * a) else tmp = c / (a * ((-b - t_0) / (2.0d0 * a))) end if code = tmp end function
public static double code(double a, double b, double c) { double t_0 = Math.sqrt(((b * b) - ((4.0 * a) * c))); double tmp; if (b < 0.0) { tmp = (-b + t_0) / (2.0 * a); } else { tmp = c / (a * ((-b - t_0) / (2.0 * a))); } return tmp; }
def code(a, b, c): t_0 = math.sqrt(((b * b) - ((4.0 * a) * c))) tmp = 0 if b < 0.0: tmp = (-b + t_0) / (2.0 * a) else: tmp = c / (a * ((-b - t_0) / (2.0 * a))) return tmp
function code(a, b, c) t_0 = sqrt(Float64(Float64(b * b) - Float64(Float64(4.0 * a) * c))) tmp = 0.0 if (b < 0.0) tmp = Float64(Float64(Float64(-b) + t_0) / Float64(2.0 * a)); else tmp = Float64(c / Float64(a * Float64(Float64(Float64(-b) - t_0) / Float64(2.0 * a)))); end return tmp end
function tmp_2 = code(a, b, c) t_0 = sqrt(((b * b) - ((4.0 * a) * c))); tmp = 0.0; if (b < 0.0) tmp = (-b + t_0) / (2.0 * a); else tmp = c / (a * ((-b - t_0) / (2.0 * a))); end tmp_2 = tmp; end
code[a_, b_, c_] := Block[{t$95$0 = N[Sqrt[N[(N[(b * b), $MachinePrecision] - N[(N[(4.0 * a), $MachinePrecision] * c), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]}, If[Less[b, 0.0], N[(N[((-b) + t$95$0), $MachinePrecision] / N[(2.0 * a), $MachinePrecision]), $MachinePrecision], N[(c / N[(a * N[(N[((-b) - t$95$0), $MachinePrecision] / N[(2.0 * a), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]]
\begin{array}{l} \\ \begin{array}{l} t_0 := \sqrt{b \cdot b - \left(4 \cdot a\right) \cdot c}\\ \mathbf{if}\;b < 0:\\ \;\;\;\;\frac{\left(-b\right) + t\_0}{2 \cdot a}\\ \mathbf{else}:\\ \;\;\;\;\frac{c}{a \cdot \frac{\left(-b\right) - t\_0}{2 \cdot a}}\\ \end{array} \end{array}
herbie shell --seed 2025043
(FPCore (a b c)
:name "The quadratic formula (r1)"
:precision binary64
:alt
(! :herbie-platform default (let ((d (- (* b b) (* (* 4 a) c)))) (let ((r1 (/ (+ (- b) (sqrt d)) (* 2 a)))) (let ((r2 (/ (- (- b) (sqrt d)) (* 2 a)))) (if (< b 0) r1 (/ c (* a r2)))))))
(/ (+ (- b) (sqrt (- (* b b) (* (* 4.0 a) c)))) (* 2.0 a)))