
(FPCore (x y z t) :precision binary64 (+ (* (+ (* x y) z) y) t))
double code(double x, double y, double z, double t) {
return (((x * y) + z) * y) + t;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
code = (((x * y) + z) * y) + t
end function
public static double code(double x, double y, double z, double t) {
return (((x * y) + z) * y) + t;
}
def code(x, y, z, t): return (((x * y) + z) * y) + t
function code(x, y, z, t) return Float64(Float64(Float64(Float64(x * y) + z) * y) + t) end
function tmp = code(x, y, z, t) tmp = (((x * y) + z) * y) + t; end
code[x_, y_, z_, t_] := N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision]
\begin{array}{l}
\\
\left(x \cdot y + z\right) \cdot y + t
\end{array}
Sampling outcomes in binary64 precision:
Herbie found 6 alternatives:
| Alternative | Accuracy | Speedup |
|---|
(FPCore (x y z t) :precision binary64 (+ (* (+ (* x y) z) y) t))
double code(double x, double y, double z, double t) {
return (((x * y) + z) * y) + t;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
code = (((x * y) + z) * y) + t
end function
public static double code(double x, double y, double z, double t) {
return (((x * y) + z) * y) + t;
}
def code(x, y, z, t): return (((x * y) + z) * y) + t
function code(x, y, z, t) return Float64(Float64(Float64(Float64(x * y) + z) * y) + t) end
function tmp = code(x, y, z, t) tmp = (((x * y) + z) * y) + t; end
code[x_, y_, z_, t_] := N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision]
\begin{array}{l}
\\
\left(x \cdot y + z\right) \cdot y + t
\end{array}
(FPCore (x y z t) :precision binary64 (+ (* (+ (* x y) z) y) t))
double code(double x, double y, double z, double t) {
return (((x * y) + z) * y) + t;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
code = (((x * y) + z) * y) + t
end function
public static double code(double x, double y, double z, double t) {
return (((x * y) + z) * y) + t;
}
def code(x, y, z, t): return (((x * y) + z) * y) + t
function code(x, y, z, t) return Float64(Float64(Float64(Float64(x * y) + z) * y) + t) end
function tmp = code(x, y, z, t) tmp = (((x * y) + z) * y) + t; end
code[x_, y_, z_, t_] := N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision]
\begin{array}{l}
\\
\left(x \cdot y + z\right) \cdot y + t
\end{array}
Initial program 99.9%
(FPCore (x y z t)
:precision binary64
(let* ((t_1 (* (+ (* x y) z) y)))
(if (or (<= t_1 -5e+219) (not (<= t_1 2e+167)))
(* (fma y x z) y)
(fma z y t))))
double code(double x, double y, double z, double t) {
double t_1 = ((x * y) + z) * y;
double tmp;
if ((t_1 <= -5e+219) || !(t_1 <= 2e+167)) {
tmp = fma(y, x, z) * y;
} else {
tmp = fma(z, y, t);
}
return tmp;
}
function code(x, y, z, t) t_1 = Float64(Float64(Float64(x * y) + z) * y) tmp = 0.0 if ((t_1 <= -5e+219) || !(t_1 <= 2e+167)) tmp = Float64(fma(y, x, z) * y); else tmp = fma(z, y, t); end return tmp end
code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision]}, If[Or[LessEqual[t$95$1, -5e+219], N[Not[LessEqual[t$95$1, 2e+167]], $MachinePrecision]], N[(N[(y * x + z), $MachinePrecision] * y), $MachinePrecision], N[(z * y + t), $MachinePrecision]]]
\begin{array}{l}
\\
\begin{array}{l}
t_1 := \left(x \cdot y + z\right) \cdot y\\
\mathbf{if}\;t\_1 \leq -5 \cdot 10^{+219} \lor \neg \left(t\_1 \leq 2 \cdot 10^{+167}\right):\\
\;\;\;\;\mathsf{fma}\left(y, x, z\right) \cdot y\\
\mathbf{else}:\\
\;\;\;\;\mathsf{fma}\left(z, y, t\right)\\
\end{array}
\end{array}
if (*.f64 (+.f64 (*.f64 x y) z) y) < -5e219 or 2.0000000000000001e167 < (*.f64 (+.f64 (*.f64 x y) z) y) Initial program 100.0%
Taylor expanded in t around 0
+-commutativeN/A
*-commutativeN/A
lower-*.f64N/A
*-commutativeN/A
lower-fma.f6498.9
Applied rewrites98.9%
if -5e219 < (*.f64 (+.f64 (*.f64 x y) z) y) < 2.0000000000000001e167Initial program 99.9%
Taylor expanded in x around 0
+-commutativeN/A
*-commutativeN/A
lower-fma.f6486.0
Applied rewrites86.0%
Final simplification91.3%
(FPCore (x y z t) :precision binary64 (let* ((t_1 (* (+ (* x y) z) y))) (if (or (<= t_1 -1e+287) (not (<= t_1 1e+199))) (* (* y x) y) (fma z y t))))
double code(double x, double y, double z, double t) {
double t_1 = ((x * y) + z) * y;
double tmp;
if ((t_1 <= -1e+287) || !(t_1 <= 1e+199)) {
tmp = (y * x) * y;
} else {
tmp = fma(z, y, t);
}
return tmp;
}
function code(x, y, z, t) t_1 = Float64(Float64(Float64(x * y) + z) * y) tmp = 0.0 if ((t_1 <= -1e+287) || !(t_1 <= 1e+199)) tmp = Float64(Float64(y * x) * y); else tmp = fma(z, y, t); end return tmp end
code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision]}, If[Or[LessEqual[t$95$1, -1e+287], N[Not[LessEqual[t$95$1, 1e+199]], $MachinePrecision]], N[(N[(y * x), $MachinePrecision] * y), $MachinePrecision], N[(z * y + t), $MachinePrecision]]]
\begin{array}{l}
\\
\begin{array}{l}
t_1 := \left(x \cdot y + z\right) \cdot y\\
\mathbf{if}\;t\_1 \leq -1 \cdot 10^{+287} \lor \neg \left(t\_1 \leq 10^{+199}\right):\\
\;\;\;\;\left(y \cdot x\right) \cdot y\\
\mathbf{else}:\\
\;\;\;\;\mathsf{fma}\left(z, y, t\right)\\
\end{array}
\end{array}
if (*.f64 (+.f64 (*.f64 x y) z) y) < -1.0000000000000001e287 or 1.0000000000000001e199 < (*.f64 (+.f64 (*.f64 x y) z) y) Initial program 100.0%
Taylor expanded in t around 0
+-commutativeN/A
*-commutativeN/A
lower-*.f64N/A
*-commutativeN/A
lower-fma.f6499.7
Applied rewrites99.7%
Taylor expanded in x around inf
*-commutativeN/A
lift-*.f6482.7
Applied rewrites82.7%
if -1.0000000000000001e287 < (*.f64 (+.f64 (*.f64 x y) z) y) < 1.0000000000000001e199Initial program 99.9%
Taylor expanded in x around 0
+-commutativeN/A
*-commutativeN/A
lower-fma.f6484.9
Applied rewrites84.9%
Final simplification84.1%
(FPCore (x y z t) :precision binary64 (let* ((t_1 (* (+ (* x y) z) y))) (if (or (<= t_1 -5e+26) (not (<= t_1 2e+167))) (* z y) t)))
double code(double x, double y, double z, double t) {
double t_1 = ((x * y) + z) * y;
double tmp;
if ((t_1 <= -5e+26) || !(t_1 <= 2e+167)) {
tmp = z * y;
} else {
tmp = t;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
real(8) :: t_1
real(8) :: tmp
t_1 = ((x * y) + z) * y
if ((t_1 <= (-5d+26)) .or. (.not. (t_1 <= 2d+167))) then
tmp = z * y
else
tmp = t
end if
code = tmp
end function
public static double code(double x, double y, double z, double t) {
double t_1 = ((x * y) + z) * y;
double tmp;
if ((t_1 <= -5e+26) || !(t_1 <= 2e+167)) {
tmp = z * y;
} else {
tmp = t;
}
return tmp;
}
def code(x, y, z, t): t_1 = ((x * y) + z) * y tmp = 0 if (t_1 <= -5e+26) or not (t_1 <= 2e+167): tmp = z * y else: tmp = t return tmp
function code(x, y, z, t) t_1 = Float64(Float64(Float64(x * y) + z) * y) tmp = 0.0 if ((t_1 <= -5e+26) || !(t_1 <= 2e+167)) tmp = Float64(z * y); else tmp = t; end return tmp end
function tmp_2 = code(x, y, z, t) t_1 = ((x * y) + z) * y; tmp = 0.0; if ((t_1 <= -5e+26) || ~((t_1 <= 2e+167))) tmp = z * y; else tmp = t; end tmp_2 = tmp; end
code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision]}, If[Or[LessEqual[t$95$1, -5e+26], N[Not[LessEqual[t$95$1, 2e+167]], $MachinePrecision]], N[(z * y), $MachinePrecision], t]]
\begin{array}{l}
\\
\begin{array}{l}
t_1 := \left(x \cdot y + z\right) \cdot y\\
\mathbf{if}\;t\_1 \leq -5 \cdot 10^{+26} \lor \neg \left(t\_1 \leq 2 \cdot 10^{+167}\right):\\
\;\;\;\;z \cdot y\\
\mathbf{else}:\\
\;\;\;\;t\\
\end{array}
\end{array}
if (*.f64 (+.f64 (*.f64 x y) z) y) < -5.0000000000000001e26 or 2.0000000000000001e167 < (*.f64 (+.f64 (*.f64 x y) z) y) Initial program 99.9%
Taylor expanded in z around inf
*-commutativeN/A
lower-*.f6440.4
Applied rewrites40.4%
if -5.0000000000000001e26 < (*.f64 (+.f64 (*.f64 x y) z) y) < 2.0000000000000001e167Initial program 99.9%
Taylor expanded in y around 0
Applied rewrites75.2%
Final simplification57.5%
(FPCore (x y z t) :precision binary64 (fma z y t))
double code(double x, double y, double z, double t) {
return fma(z, y, t);
}
function code(x, y, z, t) return fma(z, y, t) end
code[x_, y_, z_, t_] := N[(z * y + t), $MachinePrecision]
\begin{array}{l}
\\
\mathsf{fma}\left(z, y, t\right)
\end{array}
Initial program 99.9%
Taylor expanded in x around 0
+-commutativeN/A
*-commutativeN/A
lower-fma.f6466.5
Applied rewrites66.5%
(FPCore (x y z t) :precision binary64 t)
double code(double x, double y, double z, double t) {
return t;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z, t)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8), intent (in) :: t
code = t
end function
public static double code(double x, double y, double z, double t) {
return t;
}
def code(x, y, z, t): return t
function code(x, y, z, t) return t end
function tmp = code(x, y, z, t) tmp = t; end
code[x_, y_, z_, t_] := t
\begin{array}{l}
\\
t
\end{array}
Initial program 99.9%
Taylor expanded in y around 0
Applied rewrites41.3%
herbie shell --seed 2025043
(FPCore (x y z t)
:name "Language.Haskell.HsColour.ColourHighlight:unbase from hscolour-1.23"
:precision binary64
(+ (* (+ (* x y) z) y) t))