(FPCore (x y z t) :precision binary64 (+ (* (+ (* x y) z) y) t))
double code(double x, double y, double z, double t) { return (((x * y) + z) * y) + t; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t code = (((x * y) + z) * y) + t end function
public static double code(double x, double y, double z, double t) { return (((x * y) + z) * y) + t; }
def code(x, y, z, t): return (((x * y) + z) * y) + t
function code(x, y, z, t) return Float64(Float64(Float64(Float64(x * y) + z) * y) + t) end
function tmp = code(x, y, z, t) tmp = (((x * y) + z) * y) + t; end
code[x_, y_, z_, t_] := N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision]
\begin{array}{l} \\ \left(x \cdot y + z\right) \cdot y + t \end{array}
Sampling outcomes in binary64 precision:
Herbie found 6 alternatives:
Alternative | Accuracy | Speedup |
---|
(FPCore (x y z t) :precision binary64 (+ (* (+ (* x y) z) y) t))
double code(double x, double y, double z, double t) { return (((x * y) + z) * y) + t; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t code = (((x * y) + z) * y) + t end function
public static double code(double x, double y, double z, double t) { return (((x * y) + z) * y) + t; }
def code(x, y, z, t): return (((x * y) + z) * y) + t
function code(x, y, z, t) return Float64(Float64(Float64(Float64(x * y) + z) * y) + t) end
function tmp = code(x, y, z, t) tmp = (((x * y) + z) * y) + t; end
code[x_, y_, z_, t_] := N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision]
\begin{array}{l} \\ \left(x \cdot y + z\right) \cdot y + t \end{array}
(FPCore (x y z t) :precision binary64 (+ (* (+ (* x y) z) y) t))
double code(double x, double y, double z, double t) { return (((x * y) + z) * y) + t; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t code = (((x * y) + z) * y) + t end function
public static double code(double x, double y, double z, double t) { return (((x * y) + z) * y) + t; }
def code(x, y, z, t): return (((x * y) + z) * y) + t
function code(x, y, z, t) return Float64(Float64(Float64(Float64(x * y) + z) * y) + t) end
function tmp = code(x, y, z, t) tmp = (((x * y) + z) * y) + t; end
code[x_, y_, z_, t_] := N[(N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision] + t), $MachinePrecision]
\begin{array}{l} \\ \left(x \cdot y + z\right) \cdot y + t \end{array}
Initial program 99.9%
(FPCore (x y z t) :precision binary64 (let* ((t_1 (* (+ (* x y) z) y))) (if (or (<= t_1 -5e+219) (not (<= t_1 2e+167))) (* (fma y x z) y) (fma z y t))))
double code(double x, double y, double z, double t) { double t_1 = ((x * y) + z) * y; double tmp; if ((t_1 <= -5e+219) || !(t_1 <= 2e+167)) { tmp = fma(y, x, z) * y; } else { tmp = fma(z, y, t); } return tmp; }
function code(x, y, z, t) t_1 = Float64(Float64(Float64(x * y) + z) * y) tmp = 0.0 if ((t_1 <= -5e+219) || !(t_1 <= 2e+167)) tmp = Float64(fma(y, x, z) * y); else tmp = fma(z, y, t); end return tmp end
code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision]}, If[Or[LessEqual[t$95$1, -5e+219], N[Not[LessEqual[t$95$1, 2e+167]], $MachinePrecision]], N[(N[(y * x + z), $MachinePrecision] * y), $MachinePrecision], N[(z * y + t), $MachinePrecision]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \left(x \cdot y + z\right) \cdot y\\ \mathbf{if}\;t\_1 \leq -5 \cdot 10^{+219} \lor \neg \left(t\_1 \leq 2 \cdot 10^{+167}\right):\\ \;\;\;\;\mathsf{fma}\left(y, x, z\right) \cdot y\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(z, y, t\right)\\ \end{array} \end{array}
if (*.f64 (+.f64 (*.f64 x y) z) y) < -5e219 or 2.0000000000000001e167 < (*.f64 (+.f64 (*.f64 x y) z) y)
Initial program 100.0%
Taylor expanded in t around 0
+-commutative
N/A
*-commutative
N/A
lower-*.f64
N/A
*-commutative
N/A
lower-fma.f64
98.9
Applied rewrites98.9%
if -5e219 < (*.f64 (+.f64 (*.f64 x y) z) y) < 2.0000000000000001e167
Initial program 99.9%
Taylor expanded in x around 0
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
86.0
Applied rewrites86.0%
Final simplification91.3%
(FPCore (x y z t) :precision binary64 (let* ((t_1 (* (+ (* x y) z) y))) (if (or (<= t_1 -1e+287) (not (<= t_1 1e+199))) (* (* y x) y) (fma z y t))))
double code(double x, double y, double z, double t) { double t_1 = ((x * y) + z) * y; double tmp; if ((t_1 <= -1e+287) || !(t_1 <= 1e+199)) { tmp = (y * x) * y; } else { tmp = fma(z, y, t); } return tmp; }
function code(x, y, z, t) t_1 = Float64(Float64(Float64(x * y) + z) * y) tmp = 0.0 if ((t_1 <= -1e+287) || !(t_1 <= 1e+199)) tmp = Float64(Float64(y * x) * y); else tmp = fma(z, y, t); end return tmp end
code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision]}, If[Or[LessEqual[t$95$1, -1e+287], N[Not[LessEqual[t$95$1, 1e+199]], $MachinePrecision]], N[(N[(y * x), $MachinePrecision] * y), $MachinePrecision], N[(z * y + t), $MachinePrecision]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \left(x \cdot y + z\right) \cdot y\\ \mathbf{if}\;t\_1 \leq -1 \cdot 10^{+287} \lor \neg \left(t\_1 \leq 10^{+199}\right):\\ \;\;\;\;\left(y \cdot x\right) \cdot y\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(z, y, t\right)\\ \end{array} \end{array}
if (*.f64 (+.f64 (*.f64 x y) z) y) < -1.0000000000000001e287 or 1.0000000000000001e199 < (*.f64 (+.f64 (*.f64 x y) z) y)
Initial program 100.0%
Taylor expanded in t around 0
+-commutative
N/A
*-commutative
N/A
lower-*.f64
N/A
*-commutative
N/A
lower-fma.f64
99.7
Applied rewrites99.7%
Taylor expanded in x around inf
*-commutative
N/A
lift-*.f64
82.7
Applied rewrites82.7%
if -1.0000000000000001e287 < (*.f64 (+.f64 (*.f64 x y) z) y) < 1.0000000000000001e199
Initial program 99.9%
Taylor expanded in x around 0
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
84.9
Applied rewrites84.9%
Final simplification84.1%
(FPCore (x y z t) :precision binary64 (let* ((t_1 (* (+ (* x y) z) y))) (if (or (<= t_1 -5e+26) (not (<= t_1 2e+167))) (* z y) t)))
double code(double x, double y, double z, double t) { double t_1 = ((x * y) + z) * y; double tmp; if ((t_1 <= -5e+26) || !(t_1 <= 2e+167)) { tmp = z * y; } else { tmp = t; } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t real(8) :: t_1 real(8) :: tmp t_1 = ((x * y) + z) * y if ((t_1 <= (-5d+26)) .or. (.not. (t_1 <= 2d+167))) then tmp = z * y else tmp = t end if code = tmp end function
public static double code(double x, double y, double z, double t) { double t_1 = ((x * y) + z) * y; double tmp; if ((t_1 <= -5e+26) || !(t_1 <= 2e+167)) { tmp = z * y; } else { tmp = t; } return tmp; }
def code(x, y, z, t): t_1 = ((x * y) + z) * y tmp = 0 if (t_1 <= -5e+26) or not (t_1 <= 2e+167): tmp = z * y else: tmp = t return tmp
function code(x, y, z, t) t_1 = Float64(Float64(Float64(x * y) + z) * y) tmp = 0.0 if ((t_1 <= -5e+26) || !(t_1 <= 2e+167)) tmp = Float64(z * y); else tmp = t; end return tmp end
function tmp_2 = code(x, y, z, t) t_1 = ((x * y) + z) * y; tmp = 0.0; if ((t_1 <= -5e+26) || ~((t_1 <= 2e+167))) tmp = z * y; else tmp = t; end tmp_2 = tmp; end
code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(N[(x * y), $MachinePrecision] + z), $MachinePrecision] * y), $MachinePrecision]}, If[Or[LessEqual[t$95$1, -5e+26], N[Not[LessEqual[t$95$1, 2e+167]], $MachinePrecision]], N[(z * y), $MachinePrecision], t]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \left(x \cdot y + z\right) \cdot y\\ \mathbf{if}\;t\_1 \leq -5 \cdot 10^{+26} \lor \neg \left(t\_1 \leq 2 \cdot 10^{+167}\right):\\ \;\;\;\;z \cdot y\\ \mathbf{else}:\\ \;\;\;\;t\\ \end{array} \end{array}
if (*.f64 (+.f64 (*.f64 x y) z) y) < -5.0000000000000001e26 or 2.0000000000000001e167 < (*.f64 (+.f64 (*.f64 x y) z) y)
Initial program 99.9%
Taylor expanded in z around inf
*-commutative
N/A
lower-*.f64
40.4
Applied rewrites40.4%
if -5.0000000000000001e26 < (*.f64 (+.f64 (*.f64 x y) z) y) < 2.0000000000000001e167
Initial program 99.9%
Taylor expanded in y around 0
Applied rewrites75.2%
Final simplification57.5%
(FPCore (x y z t) :precision binary64 (fma z y t))
double code(double x, double y, double z, double t) { return fma(z, y, t); }
function code(x, y, z, t) return fma(z, y, t) end
code[x_, y_, z_, t_] := N[(z * y + t), $MachinePrecision]
\begin{array}{l} \\ \mathsf{fma}\left(z, y, t\right) \end{array}
Initial program 99.9%
Taylor expanded in x around 0
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
66.5
Applied rewrites66.5%
(FPCore (x y z t) :precision binary64 t)
double code(double x, double y, double z, double t) { return t; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t code = t end function
public static double code(double x, double y, double z, double t) { return t; }
def code(x, y, z, t): return t
function code(x, y, z, t) return t end
function tmp = code(x, y, z, t) tmp = t; end
code[x_, y_, z_, t_] := t
\begin{array}{l} \\ t \end{array}
Initial program 99.9%
Taylor expanded in y around 0
Applied rewrites41.3%
herbie shell --seed 2025043
(FPCore (x y z t)
:name "Language.Haskell.HsColour.ColourHighlight:unbase from hscolour-1.23"
:precision binary64
(+ (* (+ (* x y) z) y) t))