(FPCore (kx ky th) :precision binary64 (* (/ (sin ky) (sqrt (+ (pow (sin kx) 2.0) (pow (sin ky) 2.0)))) (sin th)))
double code(double kx, double ky, double th) { return (sin(ky) / sqrt((pow(sin(kx), 2.0) + pow(sin(ky), 2.0)))) * sin(th); }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(kx, ky, th) use fmin_fmax_functions real(8), intent (in) :: kx real(8), intent (in) :: ky real(8), intent (in) :: th code = (sin(ky) / sqrt(((sin(kx) ** 2.0d0) + (sin(ky) ** 2.0d0)))) * sin(th) end function
public static double code(double kx, double ky, double th) { return (Math.sin(ky) / Math.sqrt((Math.pow(Math.sin(kx), 2.0) + Math.pow(Math.sin(ky), 2.0)))) * Math.sin(th); }
def code(kx, ky, th): return (math.sin(ky) / math.sqrt((math.pow(math.sin(kx), 2.0) + math.pow(math.sin(ky), 2.0)))) * math.sin(th)
function code(kx, ky, th) return Float64(Float64(sin(ky) / sqrt(Float64((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) * sin(th)) end
function tmp = code(kx, ky, th) tmp = (sin(ky) / sqrt(((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) * sin(th); end
code[kx_, ky_, th_] := N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \end{array}
Sampling outcomes in binary64 precision:
Herbie found 23 alternatives:
Alternative | Accuracy | Speedup |
---|
(FPCore (kx ky th) :precision binary64 (* (/ (sin ky) (sqrt (+ (pow (sin kx) 2.0) (pow (sin ky) 2.0)))) (sin th)))
double code(double kx, double ky, double th) { return (sin(ky) / sqrt((pow(sin(kx), 2.0) + pow(sin(ky), 2.0)))) * sin(th); }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(kx, ky, th) use fmin_fmax_functions real(8), intent (in) :: kx real(8), intent (in) :: ky real(8), intent (in) :: th code = (sin(ky) / sqrt(((sin(kx) ** 2.0d0) + (sin(ky) ** 2.0d0)))) * sin(th) end function
public static double code(double kx, double ky, double th) { return (Math.sin(ky) / Math.sqrt((Math.pow(Math.sin(kx), 2.0) + Math.pow(Math.sin(ky), 2.0)))) * Math.sin(th); }
def code(kx, ky, th): return (math.sin(ky) / math.sqrt((math.pow(math.sin(kx), 2.0) + math.pow(math.sin(ky), 2.0)))) * math.sin(th)
function code(kx, ky, th) return Float64(Float64(sin(ky) / sqrt(Float64((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) * sin(th)) end
function tmp = code(kx, ky, th) tmp = (sin(ky) / sqrt(((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) * sin(th); end
code[kx_, ky_, th_] := N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \end{array}
(FPCore (kx ky th) :precision binary64 (* (/ (sin ky) (hypot (sin ky) (sin kx))) (sin th)))
double code(double kx, double ky, double th) { return (sin(ky) / hypot(sin(ky), sin(kx))) * sin(th); }
public static double code(double kx, double ky, double th) { return (Math.sin(ky) / Math.hypot(Math.sin(ky), Math.sin(kx))) * Math.sin(th); }
def code(kx, ky, th): return (math.sin(ky) / math.hypot(math.sin(ky), math.sin(kx))) * math.sin(th)
function code(kx, ky, th) return Float64(Float64(sin(ky) / hypot(sin(ky), sin(kx))) * sin(th)) end
function tmp = code(kx, ky, th) tmp = (sin(ky) / hypot(sin(ky), sin(kx))) * sin(th); end
code[kx_, ky_, th_] := N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + N[Sin[kx], $MachinePrecision] ^ 2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \sin th \end{array}
Initial program 94.4%
lift-sqrt.f64
N/A
lift-+.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
+-commutative
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
99.7
Applied rewrites99.7%
(FPCore (kx ky th) :precision binary64 (let* ((t_1 (/ (sin ky) (hypot (sin ky) (sin kx)))) (t_2 (pow (sin kx) 2.0)) (t_3 (/ (sin ky) (sqrt (+ t_2 (pow (sin ky) 2.0)))))) (if (<= t_3 -1.0) (* (/ (sin ky) (hypot (sin ky) kx)) (sin th)) (if (<= t_3 -0.2) (* t_1 th) (if (<= t_3 2e-16) (* (/ (sin ky) (sqrt t_2)) (sin th)) (if (<= t_3 0.998) (* t_1 (* (fma (- (* (fma (* th th) -0.0001984126984126984 0.008333333333333333) (* th th)) 0.16666666666666666) (* th th) 1.0) th)) (* (/ (sin ky) (hypot (sin ky) (* (fma (- (* (fma -0.0001984126984126984 (* kx kx) 0.008333333333333333) (* kx kx)) 0.16666666666666666) (* kx kx) 1.0) kx))) (sin th))))))))
double code(double kx, double ky, double th) { double t_1 = sin(ky) / hypot(sin(ky), sin(kx)); double t_2 = pow(sin(kx), 2.0); double t_3 = sin(ky) / sqrt((t_2 + pow(sin(ky), 2.0))); double tmp; if (t_3 <= -1.0) { tmp = (sin(ky) / hypot(sin(ky), kx)) * sin(th); } else if (t_3 <= -0.2) { tmp = t_1 * th; } else if (t_3 <= 2e-16) { tmp = (sin(ky) / sqrt(t_2)) * sin(th); } else if (t_3 <= 0.998) { tmp = t_1 * (fma(((fma((th * th), -0.0001984126984126984, 0.008333333333333333) * (th * th)) - 0.16666666666666666), (th * th), 1.0) * th); } else { tmp = (sin(ky) / hypot(sin(ky), (fma(((fma(-0.0001984126984126984, (kx * kx), 0.008333333333333333) * (kx * kx)) - 0.16666666666666666), (kx * kx), 1.0) * kx))) * sin(th); } return tmp; }
function code(kx, ky, th) t_1 = Float64(sin(ky) / hypot(sin(ky), sin(kx))) t_2 = sin(kx) ^ 2.0 t_3 = Float64(sin(ky) / sqrt(Float64(t_2 + (sin(ky) ^ 2.0)))) tmp = 0.0 if (t_3 <= -1.0) tmp = Float64(Float64(sin(ky) / hypot(sin(ky), kx)) * sin(th)); elseif (t_3 <= -0.2) tmp = Float64(t_1 * th); elseif (t_3 <= 2e-16) tmp = Float64(Float64(sin(ky) / sqrt(t_2)) * sin(th)); elseif (t_3 <= 0.998) tmp = Float64(t_1 * Float64(fma(Float64(Float64(fma(Float64(th * th), -0.0001984126984126984, 0.008333333333333333) * Float64(th * th)) - 0.16666666666666666), Float64(th * th), 1.0) * th)); else tmp = Float64(Float64(sin(ky) / hypot(sin(ky), Float64(fma(Float64(Float64(fma(-0.0001984126984126984, Float64(kx * kx), 0.008333333333333333) * Float64(kx * kx)) - 0.16666666666666666), Float64(kx * kx), 1.0) * kx))) * sin(th)); end return tmp end
code[kx_, ky_, th_] := Block[{t$95$1 = N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + N[Sin[kx], $MachinePrecision] ^ 2], $MachinePrecision]), $MachinePrecision]}, Block[{t$95$2 = N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision]}, Block[{t$95$3 = N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(t$95$2 + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$3, -1.0], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + kx ^ 2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$3, -0.2], N[(t$95$1 * th), $MachinePrecision], If[LessEqual[t$95$3, 2e-16], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[t$95$2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$3, 0.998], N[(t$95$1 * N[(N[(N[(N[(N[(N[(th * th), $MachinePrecision] * -0.0001984126984126984 + 0.008333333333333333), $MachinePrecision] * N[(th * th), $MachinePrecision]), $MachinePrecision] - 0.16666666666666666), $MachinePrecision] * N[(th * th), $MachinePrecision] + 1.0), $MachinePrecision] * th), $MachinePrecision]), $MachinePrecision], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + N[(N[(N[(N[(N[(-0.0001984126984126984 * N[(kx * kx), $MachinePrecision] + 0.008333333333333333), $MachinePrecision] * N[(kx * kx), $MachinePrecision]), $MachinePrecision] - 0.16666666666666666), $MachinePrecision] * N[(kx * kx), $MachinePrecision] + 1.0), $MachinePrecision] * kx), $MachinePrecision] ^ 2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision]]]]]]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}\\ t_2 := {\sin kx}^{2}\\ t_3 := \frac{\sin ky}{\sqrt{t\_2 + {\sin ky}^{2}}}\\ \mathbf{if}\;t\_3 \leq -1:\\ \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, kx\right)} \cdot \sin th\\ \mathbf{elif}\;t\_3 \leq -0.2:\\ \;\;\;\;t\_1 \cdot th\\ \mathbf{elif}\;t\_3 \leq 2 \cdot 10^{-16}:\\ \;\;\;\;\frac{\sin ky}{\sqrt{t\_2}} \cdot \sin th\\ \mathbf{elif}\;t\_3 \leq 0.998:\\ \;\;\;\;t\_1 \cdot \left(\mathsf{fma}\left(\mathsf{fma}\left(th \cdot th, -0.0001984126984126984, 0.008333333333333333\right) \cdot \left(th \cdot th\right) - 0.16666666666666666, th \cdot th, 1\right) \cdot th\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(\mathsf{fma}\left(-0.0001984126984126984, kx \cdot kx, 0.008333333333333333\right) \cdot \left(kx \cdot kx\right) - 0.16666666666666666, kx \cdot kx, 1\right) \cdot kx\right)} \cdot \sin th\\ \end{array} \end{array}
if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -1
Initial program 93.0%
lift-sqrt.f64
N/A
lift-+.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
+-commutative
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
100.0
Applied rewrites100.0%
Taylor expanded in kx around 0
Applied rewrites100.0%
if -1 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -0.20000000000000001
Initial program 99.3%
lift-sqrt.f64
N/A
lift-+.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
+-commutative
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
99.3
Applied rewrites99.3%
Taylor expanded in th around 0
Applied rewrites60.9%
if -0.20000000000000001 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 2e-16
Initial program 99.2%
Taylor expanded in ky around 0
lift-sin.f64
N/A
lift-pow.f64
97.2
Applied rewrites97.2%
if 2e-16 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 0.998
Initial program 99.3%
lift-sqrt.f64
N/A
lift-+.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
+-commutative
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
99.5
Applied rewrites99.5%
Taylor expanded in th around 0
*-commutative
N/A
lower-*.f64
N/A
Applied rewrites55.8%
if 0.998 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))
Initial program 79.9%
lift-sqrt.f64
N/A
lift-+.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
+-commutative
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
100.0
Applied rewrites100.0%
Taylor expanded in kx around 0
*-commutative
N/A
lower-*.f64
N/A
Applied rewrites98.2%
(FPCore (kx ky th) :precision binary64 (let* ((t_1 (/ (sin ky) (hypot (sin ky) (sin kx)))) (t_2 (pow (sin kx) 2.0)) (t_3 (/ (sin ky) (sqrt (+ t_2 (pow (sin ky) 2.0)))))) (if (<= t_3 -1.0) (* (/ (sin ky) (hypot (sin ky) kx)) (sin th)) (if (<= t_3 -0.2) (* t_1 th) (if (<= t_3 2e-16) (* (/ (sin ky) (sqrt t_2)) (sin th)) (if (<= t_3 0.998) (* t_1 (* (fma (- (* (* th th) 0.008333333333333333) 0.16666666666666666) (* th th) 1.0) th)) (* (/ (sin ky) (hypot (sin ky) (* (fma (- (* (fma -0.0001984126984126984 (* kx kx) 0.008333333333333333) (* kx kx)) 0.16666666666666666) (* kx kx) 1.0) kx))) (sin th))))))))
double code(double kx, double ky, double th) { double t_1 = sin(ky) / hypot(sin(ky), sin(kx)); double t_2 = pow(sin(kx), 2.0); double t_3 = sin(ky) / sqrt((t_2 + pow(sin(ky), 2.0))); double tmp; if (t_3 <= -1.0) { tmp = (sin(ky) / hypot(sin(ky), kx)) * sin(th); } else if (t_3 <= -0.2) { tmp = t_1 * th; } else if (t_3 <= 2e-16) { tmp = (sin(ky) / sqrt(t_2)) * sin(th); } else if (t_3 <= 0.998) { tmp = t_1 * (fma((((th * th) * 0.008333333333333333) - 0.16666666666666666), (th * th), 1.0) * th); } else { tmp = (sin(ky) / hypot(sin(ky), (fma(((fma(-0.0001984126984126984, (kx * kx), 0.008333333333333333) * (kx * kx)) - 0.16666666666666666), (kx * kx), 1.0) * kx))) * sin(th); } return tmp; }
function code(kx, ky, th) t_1 = Float64(sin(ky) / hypot(sin(ky), sin(kx))) t_2 = sin(kx) ^ 2.0 t_3 = Float64(sin(ky) / sqrt(Float64(t_2 + (sin(ky) ^ 2.0)))) tmp = 0.0 if (t_3 <= -1.0) tmp = Float64(Float64(sin(ky) / hypot(sin(ky), kx)) * sin(th)); elseif (t_3 <= -0.2) tmp = Float64(t_1 * th); elseif (t_3 <= 2e-16) tmp = Float64(Float64(sin(ky) / sqrt(t_2)) * sin(th)); elseif (t_3 <= 0.998) tmp = Float64(t_1 * Float64(fma(Float64(Float64(Float64(th * th) * 0.008333333333333333) - 0.16666666666666666), Float64(th * th), 1.0) * th)); else tmp = Float64(Float64(sin(ky) / hypot(sin(ky), Float64(fma(Float64(Float64(fma(-0.0001984126984126984, Float64(kx * kx), 0.008333333333333333) * Float64(kx * kx)) - 0.16666666666666666), Float64(kx * kx), 1.0) * kx))) * sin(th)); end return tmp end
code[kx_, ky_, th_] := Block[{t$95$1 = N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + N[Sin[kx], $MachinePrecision] ^ 2], $MachinePrecision]), $MachinePrecision]}, Block[{t$95$2 = N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision]}, Block[{t$95$3 = N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(t$95$2 + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$3, -1.0], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + kx ^ 2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$3, -0.2], N[(t$95$1 * th), $MachinePrecision], If[LessEqual[t$95$3, 2e-16], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[t$95$2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$3, 0.998], N[(t$95$1 * N[(N[(N[(N[(N[(th * th), $MachinePrecision] * 0.008333333333333333), $MachinePrecision] - 0.16666666666666666), $MachinePrecision] * N[(th * th), $MachinePrecision] + 1.0), $MachinePrecision] * th), $MachinePrecision]), $MachinePrecision], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + N[(N[(N[(N[(N[(-0.0001984126984126984 * N[(kx * kx), $MachinePrecision] + 0.008333333333333333), $MachinePrecision] * N[(kx * kx), $MachinePrecision]), $MachinePrecision] - 0.16666666666666666), $MachinePrecision] * N[(kx * kx), $MachinePrecision] + 1.0), $MachinePrecision] * kx), $MachinePrecision] ^ 2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision]]]]]]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}\\ t_2 := {\sin kx}^{2}\\ t_3 := \frac{\sin ky}{\sqrt{t\_2 + {\sin ky}^{2}}}\\ \mathbf{if}\;t\_3 \leq -1:\\ \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, kx\right)} \cdot \sin th\\ \mathbf{elif}\;t\_3 \leq -0.2:\\ \;\;\;\;t\_1 \cdot th\\ \mathbf{elif}\;t\_3 \leq 2 \cdot 10^{-16}:\\ \;\;\;\;\frac{\sin ky}{\sqrt{t\_2}} \cdot \sin th\\ \mathbf{elif}\;t\_3 \leq 0.998:\\ \;\;\;\;t\_1 \cdot \left(\mathsf{fma}\left(\left(th \cdot th\right) \cdot 0.008333333333333333 - 0.16666666666666666, th \cdot th, 1\right) \cdot th\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(\mathsf{fma}\left(-0.0001984126984126984, kx \cdot kx, 0.008333333333333333\right) \cdot \left(kx \cdot kx\right) - 0.16666666666666666, kx \cdot kx, 1\right) \cdot kx\right)} \cdot \sin th\\ \end{array} \end{array}
if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -1
Initial program 93.0%
lift-sqrt.f64
N/A
lift-+.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
+-commutative
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
100.0
Applied rewrites100.0%
Taylor expanded in kx around 0
Applied rewrites100.0%
if -1 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -0.20000000000000001
Initial program 99.3%
lift-sqrt.f64
N/A
lift-+.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
+-commutative
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
99.3
Applied rewrites99.3%
Taylor expanded in th around 0
Applied rewrites60.9%
if -0.20000000000000001 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 2e-16
Initial program 99.2%
Taylor expanded in ky around 0
lift-sin.f64
N/A
lift-pow.f64
97.2
Applied rewrites97.2%
if 2e-16 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 0.998
Initial program 99.3%
lift-sqrt.f64
N/A
lift-+.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
+-commutative
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
99.5
Applied rewrites99.5%
Taylor expanded in th around 0
*-commutative
N/A
lower-*.f64
N/A
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
N/A
lower--.f64
N/A
*-commutative
N/A
lower-*.f64
N/A
unpow2
N/A
lower-*.f64
N/A
unpow2
N/A
lower-*.f64
55.9
Applied rewrites55.9%
if 0.998 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))
Initial program 79.9%
lift-sqrt.f64
N/A
lift-+.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
+-commutative
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
100.0
Applied rewrites100.0%
Taylor expanded in kx around 0
*-commutative
N/A
lower-*.f64
N/A
Applied rewrites98.2%
(FPCore (kx ky th) :precision binary64 (let* ((t_1 (/ (sin ky) (hypot (sin ky) (sin kx)))) (t_2 (pow (sin kx) 2.0)) (t_3 (/ (sin ky) (sqrt (+ t_2 (pow (sin ky) 2.0)))))) (if (<= t_3 -1.0) (* (/ (sin ky) (hypot (sin ky) kx)) (sin th)) (if (<= t_3 -0.2) (* t_1 th) (if (<= t_3 2e-16) (* (/ (sin ky) (sqrt t_2)) (sin th)) (if (<= t_3 0.998) (* t_1 (* (fma (- (* (* th th) 0.008333333333333333) 0.16666666666666666) (* th th) 1.0) th)) (* (/ (sin ky) (hypot (sin ky) (* (fma (- (* 0.008333333333333333 (* kx kx)) 0.16666666666666666) (* kx kx) 1.0) kx))) (sin th))))))))
double code(double kx, double ky, double th) { double t_1 = sin(ky) / hypot(sin(ky), sin(kx)); double t_2 = pow(sin(kx), 2.0); double t_3 = sin(ky) / sqrt((t_2 + pow(sin(ky), 2.0))); double tmp; if (t_3 <= -1.0) { tmp = (sin(ky) / hypot(sin(ky), kx)) * sin(th); } else if (t_3 <= -0.2) { tmp = t_1 * th; } else if (t_3 <= 2e-16) { tmp = (sin(ky) / sqrt(t_2)) * sin(th); } else if (t_3 <= 0.998) { tmp = t_1 * (fma((((th * th) * 0.008333333333333333) - 0.16666666666666666), (th * th), 1.0) * th); } else { tmp = (sin(ky) / hypot(sin(ky), (fma(((0.008333333333333333 * (kx * kx)) - 0.16666666666666666), (kx * kx), 1.0) * kx))) * sin(th); } return tmp; }
function code(kx, ky, th) t_1 = Float64(sin(ky) / hypot(sin(ky), sin(kx))) t_2 = sin(kx) ^ 2.0 t_3 = Float64(sin(ky) / sqrt(Float64(t_2 + (sin(ky) ^ 2.0)))) tmp = 0.0 if (t_3 <= -1.0) tmp = Float64(Float64(sin(ky) / hypot(sin(ky), kx)) * sin(th)); elseif (t_3 <= -0.2) tmp = Float64(t_1 * th); elseif (t_3 <= 2e-16) tmp = Float64(Float64(sin(ky) / sqrt(t_2)) * sin(th)); elseif (t_3 <= 0.998) tmp = Float64(t_1 * Float64(fma(Float64(Float64(Float64(th * th) * 0.008333333333333333) - 0.16666666666666666), Float64(th * th), 1.0) * th)); else tmp = Float64(Float64(sin(ky) / hypot(sin(ky), Float64(fma(Float64(Float64(0.008333333333333333 * Float64(kx * kx)) - 0.16666666666666666), Float64(kx * kx), 1.0) * kx))) * sin(th)); end return tmp end
code[kx_, ky_, th_] := Block[{t$95$1 = N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + N[Sin[kx], $MachinePrecision] ^ 2], $MachinePrecision]), $MachinePrecision]}, Block[{t$95$2 = N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision]}, Block[{t$95$3 = N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(t$95$2 + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$3, -1.0], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + kx ^ 2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$3, -0.2], N[(t$95$1 * th), $MachinePrecision], If[LessEqual[t$95$3, 2e-16], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[t$95$2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$3, 0.998], N[(t$95$1 * N[(N[(N[(N[(N[(th * th), $MachinePrecision] * 0.008333333333333333), $MachinePrecision] - 0.16666666666666666), $MachinePrecision] * N[(th * th), $MachinePrecision] + 1.0), $MachinePrecision] * th), $MachinePrecision]), $MachinePrecision], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + N[(N[(N[(N[(0.008333333333333333 * N[(kx * kx), $MachinePrecision]), $MachinePrecision] - 0.16666666666666666), $MachinePrecision] * N[(kx * kx), $MachinePrecision] + 1.0), $MachinePrecision] * kx), $MachinePrecision] ^ 2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision]]]]]]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}\\ t_2 := {\sin kx}^{2}\\ t_3 := \frac{\sin ky}{\sqrt{t\_2 + {\sin ky}^{2}}}\\ \mathbf{if}\;t\_3 \leq -1:\\ \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, kx\right)} \cdot \sin th\\ \mathbf{elif}\;t\_3 \leq -0.2:\\ \;\;\;\;t\_1 \cdot th\\ \mathbf{elif}\;t\_3 \leq 2 \cdot 10^{-16}:\\ \;\;\;\;\frac{\sin ky}{\sqrt{t\_2}} \cdot \sin th\\ \mathbf{elif}\;t\_3 \leq 0.998:\\ \;\;\;\;t\_1 \cdot \left(\mathsf{fma}\left(\left(th \cdot th\right) \cdot 0.008333333333333333 - 0.16666666666666666, th \cdot th, 1\right) \cdot th\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(0.008333333333333333 \cdot \left(kx \cdot kx\right) - 0.16666666666666666, kx \cdot kx, 1\right) \cdot kx\right)} \cdot \sin th\\ \end{array} \end{array}
if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -1
Initial program 93.0%
lift-sqrt.f64
N/A
lift-+.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
+-commutative
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
100.0
Applied rewrites100.0%
Taylor expanded in kx around 0
Applied rewrites100.0%
if -1 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -0.20000000000000001
Initial program 99.3%
lift-sqrt.f64
N/A
lift-+.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
+-commutative
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
99.3
Applied rewrites99.3%
Taylor expanded in th around 0
Applied rewrites60.9%
if -0.20000000000000001 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 2e-16
Initial program 99.2%
Taylor expanded in ky around 0
lift-sin.f64
N/A
lift-pow.f64
97.2
Applied rewrites97.2%
if 2e-16 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 0.998
Initial program 99.3%
lift-sqrt.f64
N/A
lift-+.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
+-commutative
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
99.5
Applied rewrites99.5%
Taylor expanded in th around 0
*-commutative
N/A
lower-*.f64
N/A
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
N/A
lower--.f64
N/A
*-commutative
N/A
lower-*.f64
N/A
unpow2
N/A
lower-*.f64
N/A
unpow2
N/A
lower-*.f64
55.9
Applied rewrites55.9%
if 0.998 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))
Initial program 79.9%
lift-sqrt.f64
N/A
lift-+.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
+-commutative
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
100.0
Applied rewrites100.0%
Taylor expanded in kx around 0
*-commutative
N/A
lower-*.f64
N/A
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
N/A
lower--.f64
N/A
lower-*.f64
N/A
unpow2
N/A
lower-*.f64
N/A
unpow2
N/A
lower-*.f64
98.2
Applied rewrites98.2%
(FPCore (kx ky th) :precision binary64 (let* ((t_1 (/ (sin ky) (hypot (sin ky) (sin kx)))) (t_2 (pow (sin kx) 2.0)) (t_3 (/ (sin ky) (sqrt (+ t_2 (pow (sin ky) 2.0)))))) (if (<= t_3 -1.0) (* (/ (sin ky) (hypot (sin ky) kx)) (sin th)) (if (<= t_3 -0.2) (* t_1 th) (if (<= t_3 2e-16) (* (/ (sin ky) (sqrt t_2)) (sin th)) (if (<= t_3 0.998) (* t_1 (* (fma (* th th) -0.16666666666666666 1.0) th)) (* (/ (sin ky) (hypot (sin ky) (* (fma (- (* 0.008333333333333333 (* kx kx)) 0.16666666666666666) (* kx kx) 1.0) kx))) (sin th))))))))
double code(double kx, double ky, double th) { double t_1 = sin(ky) / hypot(sin(ky), sin(kx)); double t_2 = pow(sin(kx), 2.0); double t_3 = sin(ky) / sqrt((t_2 + pow(sin(ky), 2.0))); double tmp; if (t_3 <= -1.0) { tmp = (sin(ky) / hypot(sin(ky), kx)) * sin(th); } else if (t_3 <= -0.2) { tmp = t_1 * th; } else if (t_3 <= 2e-16) { tmp = (sin(ky) / sqrt(t_2)) * sin(th); } else if (t_3 <= 0.998) { tmp = t_1 * (fma((th * th), -0.16666666666666666, 1.0) * th); } else { tmp = (sin(ky) / hypot(sin(ky), (fma(((0.008333333333333333 * (kx * kx)) - 0.16666666666666666), (kx * kx), 1.0) * kx))) * sin(th); } return tmp; }
function code(kx, ky, th) t_1 = Float64(sin(ky) / hypot(sin(ky), sin(kx))) t_2 = sin(kx) ^ 2.0 t_3 = Float64(sin(ky) / sqrt(Float64(t_2 + (sin(ky) ^ 2.0)))) tmp = 0.0 if (t_3 <= -1.0) tmp = Float64(Float64(sin(ky) / hypot(sin(ky), kx)) * sin(th)); elseif (t_3 <= -0.2) tmp = Float64(t_1 * th); elseif (t_3 <= 2e-16) tmp = Float64(Float64(sin(ky) / sqrt(t_2)) * sin(th)); elseif (t_3 <= 0.998) tmp = Float64(t_1 * Float64(fma(Float64(th * th), -0.16666666666666666, 1.0) * th)); else tmp = Float64(Float64(sin(ky) / hypot(sin(ky), Float64(fma(Float64(Float64(0.008333333333333333 * Float64(kx * kx)) - 0.16666666666666666), Float64(kx * kx), 1.0) * kx))) * sin(th)); end return tmp end
code[kx_, ky_, th_] := Block[{t$95$1 = N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + N[Sin[kx], $MachinePrecision] ^ 2], $MachinePrecision]), $MachinePrecision]}, Block[{t$95$2 = N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision]}, Block[{t$95$3 = N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(t$95$2 + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$3, -1.0], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + kx ^ 2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$3, -0.2], N[(t$95$1 * th), $MachinePrecision], If[LessEqual[t$95$3, 2e-16], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[t$95$2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$3, 0.998], N[(t$95$1 * N[(N[(N[(th * th), $MachinePrecision] * -0.16666666666666666 + 1.0), $MachinePrecision] * th), $MachinePrecision]), $MachinePrecision], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + N[(N[(N[(N[(0.008333333333333333 * N[(kx * kx), $MachinePrecision]), $MachinePrecision] - 0.16666666666666666), $MachinePrecision] * N[(kx * kx), $MachinePrecision] + 1.0), $MachinePrecision] * kx), $MachinePrecision] ^ 2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision]]]]]]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}\\ t_2 := {\sin kx}^{2}\\ t_3 := \frac{\sin ky}{\sqrt{t\_2 + {\sin ky}^{2}}}\\ \mathbf{if}\;t\_3 \leq -1:\\ \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, kx\right)} \cdot \sin th\\ \mathbf{elif}\;t\_3 \leq -0.2:\\ \;\;\;\;t\_1 \cdot th\\ \mathbf{elif}\;t\_3 \leq 2 \cdot 10^{-16}:\\ \;\;\;\;\frac{\sin ky}{\sqrt{t\_2}} \cdot \sin th\\ \mathbf{elif}\;t\_3 \leq 0.998:\\ \;\;\;\;t\_1 \cdot \left(\mathsf{fma}\left(th \cdot th, -0.16666666666666666, 1\right) \cdot th\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(0.008333333333333333 \cdot \left(kx \cdot kx\right) - 0.16666666666666666, kx \cdot kx, 1\right) \cdot kx\right)} \cdot \sin th\\ \end{array} \end{array}
if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -1
Initial program 93.0%
lift-sqrt.f64
N/A
lift-+.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
+-commutative
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
100.0
Applied rewrites100.0%
Taylor expanded in kx around 0
Applied rewrites100.0%
if -1 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -0.20000000000000001
Initial program 99.3%
lift-sqrt.f64
N/A
lift-+.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
+-commutative
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
99.3
Applied rewrites99.3%
Taylor expanded in th around 0
Applied rewrites60.9%
if -0.20000000000000001 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 2e-16
Initial program 99.2%
Taylor expanded in ky around 0
lift-sin.f64
N/A
lift-pow.f64
97.2
Applied rewrites97.2%
if 2e-16 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 0.998
Initial program 99.3%
lift-sqrt.f64
N/A
lift-+.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
+-commutative
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
99.5
Applied rewrites99.5%
Taylor expanded in th around 0
*-commutative
N/A
lower-*.f64
N/A
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
N/A
unpow2
N/A
lower-*.f64
54.9
Applied rewrites54.9%
if 0.998 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))
Initial program 79.9%
lift-sqrt.f64
N/A
lift-+.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
+-commutative
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
100.0
Applied rewrites100.0%
Taylor expanded in kx around 0
*-commutative
N/A
lower-*.f64
N/A
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
N/A
lower--.f64
N/A
lower-*.f64
N/A
unpow2
N/A
lower-*.f64
N/A
unpow2
N/A
lower-*.f64
98.2
Applied rewrites98.2%
(FPCore (kx ky th) :precision binary64 (let* ((t_1 (/ (sin ky) (hypot (sin ky) (sin kx)))) (t_2 (pow (sin kx) 2.0)) (t_3 (/ (sin ky) (sqrt (+ t_2 (pow (sin ky) 2.0)))))) (if (<= t_3 -1.0) (* (/ (sin ky) (hypot (sin ky) kx)) (sin th)) (if (<= t_3 -0.2) (* t_1 th) (if (<= t_3 2e-16) (* (/ (sin ky) (sqrt t_2)) (sin th)) (if (<= t_3 0.998) (* t_1 (* (fma (* th th) -0.16666666666666666 1.0) th)) (* (/ (sin ky) (hypot (sin ky) (* (fma -0.16666666666666666 (* kx kx) 1.0) kx))) (sin th))))))))
double code(double kx, double ky, double th) { double t_1 = sin(ky) / hypot(sin(ky), sin(kx)); double t_2 = pow(sin(kx), 2.0); double t_3 = sin(ky) / sqrt((t_2 + pow(sin(ky), 2.0))); double tmp; if (t_3 <= -1.0) { tmp = (sin(ky) / hypot(sin(ky), kx)) * sin(th); } else if (t_3 <= -0.2) { tmp = t_1 * th; } else if (t_3 <= 2e-16) { tmp = (sin(ky) / sqrt(t_2)) * sin(th); } else if (t_3 <= 0.998) { tmp = t_1 * (fma((th * th), -0.16666666666666666, 1.0) * th); } else { tmp = (sin(ky) / hypot(sin(ky), (fma(-0.16666666666666666, (kx * kx), 1.0) * kx))) * sin(th); } return tmp; }
function code(kx, ky, th) t_1 = Float64(sin(ky) / hypot(sin(ky), sin(kx))) t_2 = sin(kx) ^ 2.0 t_3 = Float64(sin(ky) / sqrt(Float64(t_2 + (sin(ky) ^ 2.0)))) tmp = 0.0 if (t_3 <= -1.0) tmp = Float64(Float64(sin(ky) / hypot(sin(ky), kx)) * sin(th)); elseif (t_3 <= -0.2) tmp = Float64(t_1 * th); elseif (t_3 <= 2e-16) tmp = Float64(Float64(sin(ky) / sqrt(t_2)) * sin(th)); elseif (t_3 <= 0.998) tmp = Float64(t_1 * Float64(fma(Float64(th * th), -0.16666666666666666, 1.0) * th)); else tmp = Float64(Float64(sin(ky) / hypot(sin(ky), Float64(fma(-0.16666666666666666, Float64(kx * kx), 1.0) * kx))) * sin(th)); end return tmp end
code[kx_, ky_, th_] := Block[{t$95$1 = N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + N[Sin[kx], $MachinePrecision] ^ 2], $MachinePrecision]), $MachinePrecision]}, Block[{t$95$2 = N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision]}, Block[{t$95$3 = N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(t$95$2 + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$3, -1.0], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + kx ^ 2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$3, -0.2], N[(t$95$1 * th), $MachinePrecision], If[LessEqual[t$95$3, 2e-16], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[t$95$2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$3, 0.998], N[(t$95$1 * N[(N[(N[(th * th), $MachinePrecision] * -0.16666666666666666 + 1.0), $MachinePrecision] * th), $MachinePrecision]), $MachinePrecision], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + N[(N[(-0.16666666666666666 * N[(kx * kx), $MachinePrecision] + 1.0), $MachinePrecision] * kx), $MachinePrecision] ^ 2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision]]]]]]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}\\ t_2 := {\sin kx}^{2}\\ t_3 := \frac{\sin ky}{\sqrt{t\_2 + {\sin ky}^{2}}}\\ \mathbf{if}\;t\_3 \leq -1:\\ \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, kx\right)} \cdot \sin th\\ \mathbf{elif}\;t\_3 \leq -0.2:\\ \;\;\;\;t\_1 \cdot th\\ \mathbf{elif}\;t\_3 \leq 2 \cdot 10^{-16}:\\ \;\;\;\;\frac{\sin ky}{\sqrt{t\_2}} \cdot \sin th\\ \mathbf{elif}\;t\_3 \leq 0.998:\\ \;\;\;\;t\_1 \cdot \left(\mathsf{fma}\left(th \cdot th, -0.16666666666666666, 1\right) \cdot th\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(-0.16666666666666666, kx \cdot kx, 1\right) \cdot kx\right)} \cdot \sin th\\ \end{array} \end{array}
if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -1
Initial program 93.0%
lift-sqrt.f64
N/A
lift-+.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
+-commutative
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
100.0
Applied rewrites100.0%
Taylor expanded in kx around 0
Applied rewrites100.0%
if -1 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -0.20000000000000001
Initial program 99.3%
lift-sqrt.f64
N/A
lift-+.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
+-commutative
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
99.3
Applied rewrites99.3%
Taylor expanded in th around 0
Applied rewrites60.9%
if -0.20000000000000001 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 2e-16
Initial program 99.2%
Taylor expanded in ky around 0
lift-sin.f64
N/A
lift-pow.f64
97.2
Applied rewrites97.2%
if 2e-16 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 0.998
Initial program 99.3%
lift-sqrt.f64
N/A
lift-+.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
+-commutative
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
99.5
Applied rewrites99.5%
Taylor expanded in th around 0
*-commutative
N/A
lower-*.f64
N/A
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
N/A
unpow2
N/A
lower-*.f64
54.9
Applied rewrites54.9%
if 0.998 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))
Initial program 79.9%
lift-sqrt.f64
N/A
lift-+.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
+-commutative
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
100.0
Applied rewrites100.0%
Taylor expanded in kx around 0
*-commutative
N/A
lower-*.f64
N/A
+-commutative
N/A
lower-fma.f64
N/A
unpow2
N/A
lower-*.f64
98.2
Applied rewrites98.2%
(FPCore (kx ky th) :precision binary64 (let* ((t_1 (* (/ (sin ky) (hypot (sin ky) (sin kx))) th)) (t_2 (pow (sin kx) 2.0)) (t_3 (/ (sin ky) (sqrt (+ t_2 (pow (sin ky) 2.0)))))) (if (<= t_3 -1.0) (* (/ (sin ky) (hypot (sin ky) kx)) (sin th)) (if (<= t_3 -0.2) t_1 (if (<= t_3 2e-16) (* (/ (sin ky) (sqrt t_2)) (sin th)) (if (<= t_3 0.998) t_1 (* (/ (sin ky) (hypot (sin ky) (* (fma -0.16666666666666666 (* kx kx) 1.0) kx))) (sin th))))))))
double code(double kx, double ky, double th) { double t_1 = (sin(ky) / hypot(sin(ky), sin(kx))) * th; double t_2 = pow(sin(kx), 2.0); double t_3 = sin(ky) / sqrt((t_2 + pow(sin(ky), 2.0))); double tmp; if (t_3 <= -1.0) { tmp = (sin(ky) / hypot(sin(ky), kx)) * sin(th); } else if (t_3 <= -0.2) { tmp = t_1; } else if (t_3 <= 2e-16) { tmp = (sin(ky) / sqrt(t_2)) * sin(th); } else if (t_3 <= 0.998) { tmp = t_1; } else { tmp = (sin(ky) / hypot(sin(ky), (fma(-0.16666666666666666, (kx * kx), 1.0) * kx))) * sin(th); } return tmp; }
function code(kx, ky, th) t_1 = Float64(Float64(sin(ky) / hypot(sin(ky), sin(kx))) * th) t_2 = sin(kx) ^ 2.0 t_3 = Float64(sin(ky) / sqrt(Float64(t_2 + (sin(ky) ^ 2.0)))) tmp = 0.0 if (t_3 <= -1.0) tmp = Float64(Float64(sin(ky) / hypot(sin(ky), kx)) * sin(th)); elseif (t_3 <= -0.2) tmp = t_1; elseif (t_3 <= 2e-16) tmp = Float64(Float64(sin(ky) / sqrt(t_2)) * sin(th)); elseif (t_3 <= 0.998) tmp = t_1; else tmp = Float64(Float64(sin(ky) / hypot(sin(ky), Float64(fma(-0.16666666666666666, Float64(kx * kx), 1.0) * kx))) * sin(th)); end return tmp end
code[kx_, ky_, th_] := Block[{t$95$1 = N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + N[Sin[kx], $MachinePrecision] ^ 2], $MachinePrecision]), $MachinePrecision] * th), $MachinePrecision]}, Block[{t$95$2 = N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision]}, Block[{t$95$3 = N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(t$95$2 + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$3, -1.0], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + kx ^ 2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$3, -0.2], t$95$1, If[LessEqual[t$95$3, 2e-16], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[t$95$2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$3, 0.998], t$95$1, N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + N[(N[(-0.16666666666666666 * N[(kx * kx), $MachinePrecision] + 1.0), $MachinePrecision] * kx), $MachinePrecision] ^ 2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision]]]]]]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot th\\ t_2 := {\sin kx}^{2}\\ t_3 := \frac{\sin ky}{\sqrt{t\_2 + {\sin ky}^{2}}}\\ \mathbf{if}\;t\_3 \leq -1:\\ \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, kx\right)} \cdot \sin th\\ \mathbf{elif}\;t\_3 \leq -0.2:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;t\_3 \leq 2 \cdot 10^{-16}:\\ \;\;\;\;\frac{\sin ky}{\sqrt{t\_2}} \cdot \sin th\\ \mathbf{elif}\;t\_3 \leq 0.998:\\ \;\;\;\;t\_1\\ \mathbf{else}:\\ \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(-0.16666666666666666, kx \cdot kx, 1\right) \cdot kx\right)} \cdot \sin th\\ \end{array} \end{array}
if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -1
Initial program 93.0%
lift-sqrt.f64
N/A
lift-+.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
+-commutative
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
100.0
Applied rewrites100.0%
Taylor expanded in kx around 0
Applied rewrites100.0%
if -1 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -0.20000000000000001 or 2e-16 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 0.998
Initial program 99.3%
lift-sqrt.f64
N/A
lift-+.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
+-commutative
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
99.4
Applied rewrites99.4%
Taylor expanded in th around 0
Applied rewrites58.0%
if -0.20000000000000001 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 2e-16
Initial program 99.2%
Taylor expanded in ky around 0
lift-sin.f64
N/A
lift-pow.f64
97.2
Applied rewrites97.2%
if 0.998 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))
Initial program 79.9%
lift-sqrt.f64
N/A
lift-+.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
+-commutative
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
100.0
Applied rewrites100.0%
Taylor expanded in kx around 0
*-commutative
N/A
lower-*.f64
N/A
+-commutative
N/A
lower-fma.f64
N/A
unpow2
N/A
lower-*.f64
98.2
Applied rewrites98.2%
(FPCore (kx ky th) :precision binary64 (let* ((t_1 (* (/ (sin ky) (hypot (sin ky) kx)) (sin th))) (t_2 (* (/ (sin ky) (hypot (sin ky) (sin kx))) th)) (t_3 (pow (sin kx) 2.0)) (t_4 (/ (sin ky) (sqrt (+ t_3 (pow (sin ky) 2.0)))))) (if (<= t_4 -1.0) t_1 (if (<= t_4 -0.2) t_2 (if (<= t_4 2e-16) (* (/ (sin ky) (sqrt t_3)) (sin th)) (if (<= t_4 0.998) t_2 t_1))))))
double code(double kx, double ky, double th) { double t_1 = (sin(ky) / hypot(sin(ky), kx)) * sin(th); double t_2 = (sin(ky) / hypot(sin(ky), sin(kx))) * th; double t_3 = pow(sin(kx), 2.0); double t_4 = sin(ky) / sqrt((t_3 + pow(sin(ky), 2.0))); double tmp; if (t_4 <= -1.0) { tmp = t_1; } else if (t_4 <= -0.2) { tmp = t_2; } else if (t_4 <= 2e-16) { tmp = (sin(ky) / sqrt(t_3)) * sin(th); } else if (t_4 <= 0.998) { tmp = t_2; } else { tmp = t_1; } return tmp; }
public static double code(double kx, double ky, double th) { double t_1 = (Math.sin(ky) / Math.hypot(Math.sin(ky), kx)) * Math.sin(th); double t_2 = (Math.sin(ky) / Math.hypot(Math.sin(ky), Math.sin(kx))) * th; double t_3 = Math.pow(Math.sin(kx), 2.0); double t_4 = Math.sin(ky) / Math.sqrt((t_3 + Math.pow(Math.sin(ky), 2.0))); double tmp; if (t_4 <= -1.0) { tmp = t_1; } else if (t_4 <= -0.2) { tmp = t_2; } else if (t_4 <= 2e-16) { tmp = (Math.sin(ky) / Math.sqrt(t_3)) * Math.sin(th); } else if (t_4 <= 0.998) { tmp = t_2; } else { tmp = t_1; } return tmp; }
def code(kx, ky, th): t_1 = (math.sin(ky) / math.hypot(math.sin(ky), kx)) * math.sin(th) t_2 = (math.sin(ky) / math.hypot(math.sin(ky), math.sin(kx))) * th t_3 = math.pow(math.sin(kx), 2.0) t_4 = math.sin(ky) / math.sqrt((t_3 + math.pow(math.sin(ky), 2.0))) tmp = 0 if t_4 <= -1.0: tmp = t_1 elif t_4 <= -0.2: tmp = t_2 elif t_4 <= 2e-16: tmp = (math.sin(ky) / math.sqrt(t_3)) * math.sin(th) elif t_4 <= 0.998: tmp = t_2 else: tmp = t_1 return tmp
function code(kx, ky, th) t_1 = Float64(Float64(sin(ky) / hypot(sin(ky), kx)) * sin(th)) t_2 = Float64(Float64(sin(ky) / hypot(sin(ky), sin(kx))) * th) t_3 = sin(kx) ^ 2.0 t_4 = Float64(sin(ky) / sqrt(Float64(t_3 + (sin(ky) ^ 2.0)))) tmp = 0.0 if (t_4 <= -1.0) tmp = t_1; elseif (t_4 <= -0.2) tmp = t_2; elseif (t_4 <= 2e-16) tmp = Float64(Float64(sin(ky) / sqrt(t_3)) * sin(th)); elseif (t_4 <= 0.998) tmp = t_2; else tmp = t_1; end return tmp end
function tmp_2 = code(kx, ky, th) t_1 = (sin(ky) / hypot(sin(ky), kx)) * sin(th); t_2 = (sin(ky) / hypot(sin(ky), sin(kx))) * th; t_3 = sin(kx) ^ 2.0; t_4 = sin(ky) / sqrt((t_3 + (sin(ky) ^ 2.0))); tmp = 0.0; if (t_4 <= -1.0) tmp = t_1; elseif (t_4 <= -0.2) tmp = t_2; elseif (t_4 <= 2e-16) tmp = (sin(ky) / sqrt(t_3)) * sin(th); elseif (t_4 <= 0.998) tmp = t_2; else tmp = t_1; end tmp_2 = tmp; end
code[kx_, ky_, th_] := Block[{t$95$1 = N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + kx ^ 2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision]}, Block[{t$95$2 = N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + N[Sin[kx], $MachinePrecision] ^ 2], $MachinePrecision]), $MachinePrecision] * th), $MachinePrecision]}, Block[{t$95$3 = N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision]}, Block[{t$95$4 = N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(t$95$3 + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$4, -1.0], t$95$1, If[LessEqual[t$95$4, -0.2], t$95$2, If[LessEqual[t$95$4, 2e-16], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[t$95$3], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$4, 0.998], t$95$2, t$95$1]]]]]]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, kx\right)} \cdot \sin th\\ t_2 := \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot th\\ t_3 := {\sin kx}^{2}\\ t_4 := \frac{\sin ky}{\sqrt{t\_3 + {\sin ky}^{2}}}\\ \mathbf{if}\;t\_4 \leq -1:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;t\_4 \leq -0.2:\\ \;\;\;\;t\_2\\ \mathbf{elif}\;t\_4 \leq 2 \cdot 10^{-16}:\\ \;\;\;\;\frac{\sin ky}{\sqrt{t\_3}} \cdot \sin th\\ \mathbf{elif}\;t\_4 \leq 0.998:\\ \;\;\;\;t\_2\\ \mathbf{else}:\\ \;\;\;\;t\_1\\ \end{array} \end{array}
if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -1 or 0.998 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))
Initial program 85.9%
lift-sqrt.f64
N/A
lift-+.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
+-commutative
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
100.0
Applied rewrites100.0%
Taylor expanded in kx around 0
Applied rewrites99.0%
if -1 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -0.20000000000000001 or 2e-16 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 0.998
Initial program 99.3%
lift-sqrt.f64
N/A
lift-+.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
+-commutative
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
99.4
Applied rewrites99.4%
Taylor expanded in th around 0
Applied rewrites58.0%
if -0.20000000000000001 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 2e-16
Initial program 99.2%
Taylor expanded in ky around 0
lift-sin.f64
N/A
lift-pow.f64
97.2
Applied rewrites97.2%
(FPCore (kx ky th) :precision binary64 (let* ((t_1 (* (/ (sin ky) (hypot (sin ky) kx)) (sin th))) (t_2 (/ (sin ky) (sqrt (+ (pow (sin kx) 2.0) (pow (sin ky) 2.0))))) (t_3 (* (/ (sin ky) (hypot (sin ky) (sin kx))) th))) (if (<= t_2 -1.0) t_1 (if (<= t_2 -0.2) t_3 (if (<= t_2 0.12) (* (/ (sin ky) (hypot ky (sin kx))) (sin th)) (if (<= t_2 0.998) t_3 t_1))))))
double code(double kx, double ky, double th) { double t_1 = (sin(ky) / hypot(sin(ky), kx)) * sin(th); double t_2 = sin(ky) / sqrt((pow(sin(kx), 2.0) + pow(sin(ky), 2.0))); double t_3 = (sin(ky) / hypot(sin(ky), sin(kx))) * th; double tmp; if (t_2 <= -1.0) { tmp = t_1; } else if (t_2 <= -0.2) { tmp = t_3; } else if (t_2 <= 0.12) { tmp = (sin(ky) / hypot(ky, sin(kx))) * sin(th); } else if (t_2 <= 0.998) { tmp = t_3; } else { tmp = t_1; } return tmp; }
public static double code(double kx, double ky, double th) { double t_1 = (Math.sin(ky) / Math.hypot(Math.sin(ky), kx)) * Math.sin(th); double t_2 = Math.sin(ky) / Math.sqrt((Math.pow(Math.sin(kx), 2.0) + Math.pow(Math.sin(ky), 2.0))); double t_3 = (Math.sin(ky) / Math.hypot(Math.sin(ky), Math.sin(kx))) * th; double tmp; if (t_2 <= -1.0) { tmp = t_1; } else if (t_2 <= -0.2) { tmp = t_3; } else if (t_2 <= 0.12) { tmp = (Math.sin(ky) / Math.hypot(ky, Math.sin(kx))) * Math.sin(th); } else if (t_2 <= 0.998) { tmp = t_3; } else { tmp = t_1; } return tmp; }
def code(kx, ky, th): t_1 = (math.sin(ky) / math.hypot(math.sin(ky), kx)) * math.sin(th) t_2 = math.sin(ky) / math.sqrt((math.pow(math.sin(kx), 2.0) + math.pow(math.sin(ky), 2.0))) t_3 = (math.sin(ky) / math.hypot(math.sin(ky), math.sin(kx))) * th tmp = 0 if t_2 <= -1.0: tmp = t_1 elif t_2 <= -0.2: tmp = t_3 elif t_2 <= 0.12: tmp = (math.sin(ky) / math.hypot(ky, math.sin(kx))) * math.sin(th) elif t_2 <= 0.998: tmp = t_3 else: tmp = t_1 return tmp
function code(kx, ky, th) t_1 = Float64(Float64(sin(ky) / hypot(sin(ky), kx)) * sin(th)) t_2 = Float64(sin(ky) / sqrt(Float64((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) t_3 = Float64(Float64(sin(ky) / hypot(sin(ky), sin(kx))) * th) tmp = 0.0 if (t_2 <= -1.0) tmp = t_1; elseif (t_2 <= -0.2) tmp = t_3; elseif (t_2 <= 0.12) tmp = Float64(Float64(sin(ky) / hypot(ky, sin(kx))) * sin(th)); elseif (t_2 <= 0.998) tmp = t_3; else tmp = t_1; end return tmp end
function tmp_2 = code(kx, ky, th) t_1 = (sin(ky) / hypot(sin(ky), kx)) * sin(th); t_2 = sin(ky) / sqrt(((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0))); t_3 = (sin(ky) / hypot(sin(ky), sin(kx))) * th; tmp = 0.0; if (t_2 <= -1.0) tmp = t_1; elseif (t_2 <= -0.2) tmp = t_3; elseif (t_2 <= 0.12) tmp = (sin(ky) / hypot(ky, sin(kx))) * sin(th); elseif (t_2 <= 0.998) tmp = t_3; else tmp = t_1; end tmp_2 = tmp; end
code[kx_, ky_, th_] := Block[{t$95$1 = N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + kx ^ 2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision]}, Block[{t$95$2 = N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]}, Block[{t$95$3 = N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + N[Sin[kx], $MachinePrecision] ^ 2], $MachinePrecision]), $MachinePrecision] * th), $MachinePrecision]}, If[LessEqual[t$95$2, -1.0], t$95$1, If[LessEqual[t$95$2, -0.2], t$95$3, If[LessEqual[t$95$2, 0.12], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[ky ^ 2 + N[Sin[kx], $MachinePrecision] ^ 2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$2, 0.998], t$95$3, t$95$1]]]]]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, kx\right)} \cdot \sin th\\ t_2 := \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}\\ t_3 := \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot th\\ \mathbf{if}\;t\_2 \leq -1:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;t\_2 \leq -0.2:\\ \;\;\;\;t\_3\\ \mathbf{elif}\;t\_2 \leq 0.12:\\ \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(ky, \sin kx\right)} \cdot \sin th\\ \mathbf{elif}\;t\_2 \leq 0.998:\\ \;\;\;\;t\_3\\ \mathbf{else}:\\ \;\;\;\;t\_1\\ \end{array} \end{array}
if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -1 or 0.998 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))
Initial program 85.9%
lift-sqrt.f64
N/A
lift-+.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
+-commutative
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
100.0
Applied rewrites100.0%
Taylor expanded in kx around 0
Applied rewrites99.0%
if -1 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -0.20000000000000001 or 0.12 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 0.998
Initial program 99.3%
lift-sqrt.f64
N/A
lift-+.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
+-commutative
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
99.4
Applied rewrites99.4%
Taylor expanded in th around 0
Applied rewrites59.5%
if -0.20000000000000001 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 0.12
Initial program 99.2%
lift-sqrt.f64
N/A
lift-+.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
+-commutative
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
99.5
Applied rewrites99.5%
Taylor expanded in ky around 0
Applied rewrites94.0%
(FPCore (kx ky th) :precision binary64 (let* ((t_1 (/ (sin ky) (sqrt (+ (pow (sin kx) 2.0) (pow (sin ky) 2.0)))))) (if (<= t_1 -0.5) (* (/ (sin ky) (sqrt (- 0.5 (* 0.5 (cos (+ ky ky)))))) (sin th)) (if (<= t_1 0.0001) (* (/ (sin th) (sin kx)) (sin ky)) (sin th)))))
double code(double kx, double ky, double th) { double t_1 = sin(ky) / sqrt((pow(sin(kx), 2.0) + pow(sin(ky), 2.0))); double tmp; if (t_1 <= -0.5) { tmp = (sin(ky) / sqrt((0.5 - (0.5 * cos((ky + ky)))))) * sin(th); } else if (t_1 <= 0.0001) { tmp = (sin(th) / sin(kx)) * sin(ky); } else { tmp = sin(th); } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(kx, ky, th) use fmin_fmax_functions real(8), intent (in) :: kx real(8), intent (in) :: ky real(8), intent (in) :: th real(8) :: t_1 real(8) :: tmp t_1 = sin(ky) / sqrt(((sin(kx) ** 2.0d0) + (sin(ky) ** 2.0d0))) if (t_1 <= (-0.5d0)) then tmp = (sin(ky) / sqrt((0.5d0 - (0.5d0 * cos((ky + ky)))))) * sin(th) else if (t_1 <= 0.0001d0) then tmp = (sin(th) / sin(kx)) * sin(ky) else tmp = sin(th) end if code = tmp end function
public static double code(double kx, double ky, double th) { double t_1 = Math.sin(ky) / Math.sqrt((Math.pow(Math.sin(kx), 2.0) + Math.pow(Math.sin(ky), 2.0))); double tmp; if (t_1 <= -0.5) { tmp = (Math.sin(ky) / Math.sqrt((0.5 - (0.5 * Math.cos((ky + ky)))))) * Math.sin(th); } else if (t_1 <= 0.0001) { tmp = (Math.sin(th) / Math.sin(kx)) * Math.sin(ky); } else { tmp = Math.sin(th); } return tmp; }
def code(kx, ky, th): t_1 = math.sin(ky) / math.sqrt((math.pow(math.sin(kx), 2.0) + math.pow(math.sin(ky), 2.0))) tmp = 0 if t_1 <= -0.5: tmp = (math.sin(ky) / math.sqrt((0.5 - (0.5 * math.cos((ky + ky)))))) * math.sin(th) elif t_1 <= 0.0001: tmp = (math.sin(th) / math.sin(kx)) * math.sin(ky) else: tmp = math.sin(th) return tmp
function code(kx, ky, th) t_1 = Float64(sin(ky) / sqrt(Float64((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) tmp = 0.0 if (t_1 <= -0.5) tmp = Float64(Float64(sin(ky) / sqrt(Float64(0.5 - Float64(0.5 * cos(Float64(ky + ky)))))) * sin(th)); elseif (t_1 <= 0.0001) tmp = Float64(Float64(sin(th) / sin(kx)) * sin(ky)); else tmp = sin(th); end return tmp end
function tmp_2 = code(kx, ky, th) t_1 = sin(ky) / sqrt(((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0))); tmp = 0.0; if (t_1 <= -0.5) tmp = (sin(ky) / sqrt((0.5 - (0.5 * cos((ky + ky)))))) * sin(th); elseif (t_1 <= 0.0001) tmp = (sin(th) / sin(kx)) * sin(ky); else tmp = sin(th); end tmp_2 = tmp; end
code[kx_, ky_, th_] := Block[{t$95$1 = N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$1, -0.5], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(0.5 - N[(0.5 * N[Cos[N[(ky + ky), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$1, 0.0001], N[(N[(N[Sin[th], $MachinePrecision] / N[Sin[kx], $MachinePrecision]), $MachinePrecision] * N[Sin[ky], $MachinePrecision]), $MachinePrecision], N[Sin[th], $MachinePrecision]]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}\\ \mathbf{if}\;t\_1 \leq -0.5:\\ \;\;\;\;\frac{\sin ky}{\sqrt{0.5 - 0.5 \cdot \cos \left(ky + ky\right)}} \cdot \sin th\\ \mathbf{elif}\;t\_1 \leq 0.0001:\\ \;\;\;\;\frac{\sin th}{\sin kx} \cdot \sin ky\\ \mathbf{else}:\\ \;\;\;\;\sin th\\ \end{array} \end{array}
if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -0.5
Initial program 95.8%
Taylor expanded in kx around 0
lift-sin.f64
N/A
lift-pow.f64
62.6
Applied rewrites62.6%
lift-pow.f64
N/A
lift-sin.f64
N/A
pow2
N/A
sqr-sin-a
N/A
lower--.f64
N/A
lower-*.f64
N/A
cos-2
N/A
cos-sum
N/A
lower-cos.f64
N/A
lower-+.f64
48.2
Applied rewrites48.2%
if -0.5 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 1.00000000000000005e-4
Initial program 99.2%
Taylor expanded in kx around inf
*-commutative
N/A
lower-*.f64
N/A
sqrt-div
N/A
metadata-eval
N/A
inv-pow
N/A
lower-pow.f64
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
N/A
*-commutative
N/A
lower-*.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
97.1
Applied rewrites97.1%
lift-*.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
N/A
lift-hypot.f64
N/A
lift-*.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
N/A
associate-*r*
N/A
lower-*.f64
N/A
Applied rewrites99.4%
Taylor expanded in ky around 0
lower-/.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
63.7
Applied rewrites63.7%
if 1.00000000000000005e-4 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))
Initial program 87.0%
Taylor expanded in kx around 0
lift-sin.f64
65.1
Applied rewrites65.1%
(FPCore (kx ky th) :precision binary64 (let* ((t_1 (pow (sin ky) 2.0)) (t_2 (/ (sin ky) (sqrt (+ (pow (sin kx) 2.0) t_1))))) (if (<= t_2 -0.5) (* (/ (sin ky) (sqrt t_1)) th) (if (<= t_2 0.0001) (* (/ (sin th) (sin kx)) (sin ky)) (sin th)))))
double code(double kx, double ky, double th) { double t_1 = pow(sin(ky), 2.0); double t_2 = sin(ky) / sqrt((pow(sin(kx), 2.0) + t_1)); double tmp; if (t_2 <= -0.5) { tmp = (sin(ky) / sqrt(t_1)) * th; } else if (t_2 <= 0.0001) { tmp = (sin(th) / sin(kx)) * sin(ky); } else { tmp = sin(th); } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(kx, ky, th) use fmin_fmax_functions real(8), intent (in) :: kx real(8), intent (in) :: ky real(8), intent (in) :: th real(8) :: t_1 real(8) :: t_2 real(8) :: tmp t_1 = sin(ky) ** 2.0d0 t_2 = sin(ky) / sqrt(((sin(kx) ** 2.0d0) + t_1)) if (t_2 <= (-0.5d0)) then tmp = (sin(ky) / sqrt(t_1)) * th else if (t_2 <= 0.0001d0) then tmp = (sin(th) / sin(kx)) * sin(ky) else tmp = sin(th) end if code = tmp end function
public static double code(double kx, double ky, double th) { double t_1 = Math.pow(Math.sin(ky), 2.0); double t_2 = Math.sin(ky) / Math.sqrt((Math.pow(Math.sin(kx), 2.0) + t_1)); double tmp; if (t_2 <= -0.5) { tmp = (Math.sin(ky) / Math.sqrt(t_1)) * th; } else if (t_2 <= 0.0001) { tmp = (Math.sin(th) / Math.sin(kx)) * Math.sin(ky); } else { tmp = Math.sin(th); } return tmp; }
def code(kx, ky, th): t_1 = math.pow(math.sin(ky), 2.0) t_2 = math.sin(ky) / math.sqrt((math.pow(math.sin(kx), 2.0) + t_1)) tmp = 0 if t_2 <= -0.5: tmp = (math.sin(ky) / math.sqrt(t_1)) * th elif t_2 <= 0.0001: tmp = (math.sin(th) / math.sin(kx)) * math.sin(ky) else: tmp = math.sin(th) return tmp
function code(kx, ky, th) t_1 = sin(ky) ^ 2.0 t_2 = Float64(sin(ky) / sqrt(Float64((sin(kx) ^ 2.0) + t_1))) tmp = 0.0 if (t_2 <= -0.5) tmp = Float64(Float64(sin(ky) / sqrt(t_1)) * th); elseif (t_2 <= 0.0001) tmp = Float64(Float64(sin(th) / sin(kx)) * sin(ky)); else tmp = sin(th); end return tmp end
function tmp_2 = code(kx, ky, th) t_1 = sin(ky) ^ 2.0; t_2 = sin(ky) / sqrt(((sin(kx) ^ 2.0) + t_1)); tmp = 0.0; if (t_2 <= -0.5) tmp = (sin(ky) / sqrt(t_1)) * th; elseif (t_2 <= 0.0001) tmp = (sin(th) / sin(kx)) * sin(ky); else tmp = sin(th); end tmp_2 = tmp; end
code[kx_, ky_, th_] := Block[{t$95$1 = N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]}, Block[{t$95$2 = N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision] + t$95$1), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$2, -0.5], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[t$95$1], $MachinePrecision]), $MachinePrecision] * th), $MachinePrecision], If[LessEqual[t$95$2, 0.0001], N[(N[(N[Sin[th], $MachinePrecision] / N[Sin[kx], $MachinePrecision]), $MachinePrecision] * N[Sin[ky], $MachinePrecision]), $MachinePrecision], N[Sin[th], $MachinePrecision]]]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := {\sin ky}^{2}\\ t_2 := \frac{\sin ky}{\sqrt{{\sin kx}^{2} + t\_1}}\\ \mathbf{if}\;t\_2 \leq -0.5:\\ \;\;\;\;\frac{\sin ky}{\sqrt{t\_1}} \cdot th\\ \mathbf{elif}\;t\_2 \leq 0.0001:\\ \;\;\;\;\frac{\sin th}{\sin kx} \cdot \sin ky\\ \mathbf{else}:\\ \;\;\;\;\sin th\\ \end{array} \end{array}
if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -0.5
Initial program 95.8%
Taylor expanded in kx around 0
lift-sin.f64
N/A
lift-pow.f64
62.6
Applied rewrites62.6%
Taylor expanded in th around 0
Applied rewrites31.9%
if -0.5 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 1.00000000000000005e-4
Initial program 99.2%
Taylor expanded in kx around inf
*-commutative
N/A
lower-*.f64
N/A
sqrt-div
N/A
metadata-eval
N/A
inv-pow
N/A
lower-pow.f64
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
N/A
*-commutative
N/A
lower-*.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
97.1
Applied rewrites97.1%
lift-*.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
N/A
lift-hypot.f64
N/A
lift-*.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
N/A
associate-*r*
N/A
lower-*.f64
N/A
Applied rewrites99.4%
Taylor expanded in ky around 0
lower-/.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
63.7
Applied rewrites63.7%
if 1.00000000000000005e-4 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))
Initial program 87.0%
Taylor expanded in kx around 0
lift-sin.f64
65.1
Applied rewrites65.1%
(FPCore (kx ky th) :precision binary64 (let* ((t_1 (/ (sin ky) (sqrt (+ (pow (sin kx) 2.0) (pow (sin ky) 2.0)))))) (if (<= t_1 -0.998) (* (/ (sin ky) (hypot (sin ky) kx)) th) (if (<= t_1 0.0001) (* (/ (sin th) (sin kx)) (sin ky)) (sin th)))))
double code(double kx, double ky, double th) { double t_1 = sin(ky) / sqrt((pow(sin(kx), 2.0) + pow(sin(ky), 2.0))); double tmp; if (t_1 <= -0.998) { tmp = (sin(ky) / hypot(sin(ky), kx)) * th; } else if (t_1 <= 0.0001) { tmp = (sin(th) / sin(kx)) * sin(ky); } else { tmp = sin(th); } return tmp; }
public static double code(double kx, double ky, double th) { double t_1 = Math.sin(ky) / Math.sqrt((Math.pow(Math.sin(kx), 2.0) + Math.pow(Math.sin(ky), 2.0))); double tmp; if (t_1 <= -0.998) { tmp = (Math.sin(ky) / Math.hypot(Math.sin(ky), kx)) * th; } else if (t_1 <= 0.0001) { tmp = (Math.sin(th) / Math.sin(kx)) * Math.sin(ky); } else { tmp = Math.sin(th); } return tmp; }
def code(kx, ky, th): t_1 = math.sin(ky) / math.sqrt((math.pow(math.sin(kx), 2.0) + math.pow(math.sin(ky), 2.0))) tmp = 0 if t_1 <= -0.998: tmp = (math.sin(ky) / math.hypot(math.sin(ky), kx)) * th elif t_1 <= 0.0001: tmp = (math.sin(th) / math.sin(kx)) * math.sin(ky) else: tmp = math.sin(th) return tmp
function code(kx, ky, th) t_1 = Float64(sin(ky) / sqrt(Float64((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) tmp = 0.0 if (t_1 <= -0.998) tmp = Float64(Float64(sin(ky) / hypot(sin(ky), kx)) * th); elseif (t_1 <= 0.0001) tmp = Float64(Float64(sin(th) / sin(kx)) * sin(ky)); else tmp = sin(th); end return tmp end
function tmp_2 = code(kx, ky, th) t_1 = sin(ky) / sqrt(((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0))); tmp = 0.0; if (t_1 <= -0.998) tmp = (sin(ky) / hypot(sin(ky), kx)) * th; elseif (t_1 <= 0.0001) tmp = (sin(th) / sin(kx)) * sin(ky); else tmp = sin(th); end tmp_2 = tmp; end
code[kx_, ky_, th_] := Block[{t$95$1 = N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$1, -0.998], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + kx ^ 2], $MachinePrecision]), $MachinePrecision] * th), $MachinePrecision], If[LessEqual[t$95$1, 0.0001], N[(N[(N[Sin[th], $MachinePrecision] / N[Sin[kx], $MachinePrecision]), $MachinePrecision] * N[Sin[ky], $MachinePrecision]), $MachinePrecision], N[Sin[th], $MachinePrecision]]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}\\ \mathbf{if}\;t\_1 \leq -0.998:\\ \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, kx\right)} \cdot th\\ \mathbf{elif}\;t\_1 \leq 0.0001:\\ \;\;\;\;\frac{\sin th}{\sin kx} \cdot \sin ky\\ \mathbf{else}:\\ \;\;\;\;\sin th\\ \end{array} \end{array}
if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -0.998
Initial program 93.3%
lift-sqrt.f64
N/A
lift-+.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
+-commutative
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
100.0
Applied rewrites100.0%
Taylor expanded in th around 0
Applied rewrites48.0%
Taylor expanded in kx around 0
Applied rewrites45.8%
if -0.998 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 1.00000000000000005e-4
Initial program 99.2%
Taylor expanded in kx around inf
*-commutative
N/A
lower-*.f64
N/A
sqrt-div
N/A
metadata-eval
N/A
inv-pow
N/A
lower-pow.f64
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
N/A
*-commutative
N/A
lower-*.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
97.5
Applied rewrites97.5%
lift-*.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
N/A
lift-hypot.f64
N/A
lift-*.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
N/A
associate-*r*
N/A
lower-*.f64
N/A
Applied rewrites99.4%
Taylor expanded in ky around 0
lower-/.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
52.2
Applied rewrites52.2%
if 1.00000000000000005e-4 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))
Initial program 87.0%
Taylor expanded in kx around 0
lift-sin.f64
65.1
Applied rewrites65.1%
(FPCore (kx ky th) :precision binary64 (if (<= (/ (sin ky) (sqrt (+ (pow (sin kx) 2.0) (pow (sin ky) 2.0)))) 0.0001) (* (/ (sin th) (sin kx)) (sin ky)) (sin th)))
double code(double kx, double ky, double th) { double tmp; if ((sin(ky) / sqrt((pow(sin(kx), 2.0) + pow(sin(ky), 2.0)))) <= 0.0001) { tmp = (sin(th) / sin(kx)) * sin(ky); } else { tmp = sin(th); } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(kx, ky, th) use fmin_fmax_functions real(8), intent (in) :: kx real(8), intent (in) :: ky real(8), intent (in) :: th real(8) :: tmp if ((sin(ky) / sqrt(((sin(kx) ** 2.0d0) + (sin(ky) ** 2.0d0)))) <= 0.0001d0) then tmp = (sin(th) / sin(kx)) * sin(ky) else tmp = sin(th) end if code = tmp end function
public static double code(double kx, double ky, double th) { double tmp; if ((Math.sin(ky) / Math.sqrt((Math.pow(Math.sin(kx), 2.0) + Math.pow(Math.sin(ky), 2.0)))) <= 0.0001) { tmp = (Math.sin(th) / Math.sin(kx)) * Math.sin(ky); } else { tmp = Math.sin(th); } return tmp; }
def code(kx, ky, th): tmp = 0 if (math.sin(ky) / math.sqrt((math.pow(math.sin(kx), 2.0) + math.pow(math.sin(ky), 2.0)))) <= 0.0001: tmp = (math.sin(th) / math.sin(kx)) * math.sin(ky) else: tmp = math.sin(th) return tmp
function code(kx, ky, th) tmp = 0.0 if (Float64(sin(ky) / sqrt(Float64((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) <= 0.0001) tmp = Float64(Float64(sin(th) / sin(kx)) * sin(ky)); else tmp = sin(th); end return tmp end
function tmp_2 = code(kx, ky, th) tmp = 0.0; if ((sin(ky) / sqrt(((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) <= 0.0001) tmp = (sin(th) / sin(kx)) * sin(ky); else tmp = sin(th); end tmp_2 = tmp; end
code[kx_, ky_, th_] := If[LessEqual[N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision], 0.0001], N[(N[(N[Sin[th], $MachinePrecision] / N[Sin[kx], $MachinePrecision]), $MachinePrecision] * N[Sin[ky], $MachinePrecision]), $MachinePrecision], N[Sin[th], $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \leq 0.0001:\\ \;\;\;\;\frac{\sin th}{\sin kx} \cdot \sin ky\\ \mathbf{else}:\\ \;\;\;\;\sin th\\ \end{array} \end{array}
if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 1.00000000000000005e-4
Initial program 97.8%
Taylor expanded in kx around inf
*-commutative
N/A
lower-*.f64
N/A
sqrt-div
N/A
metadata-eval
N/A
inv-pow
N/A
lower-pow.f64
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
N/A
*-commutative
N/A
lower-*.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
96.2
Applied rewrites96.2%
lift-*.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
N/A
lift-hypot.f64
N/A
lift-*.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
N/A
associate-*r*
N/A
lower-*.f64
N/A
Applied rewrites99.4%
Taylor expanded in ky around 0
lower-/.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
40.6
Applied rewrites40.6%
if 1.00000000000000005e-4 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))
Initial program 87.0%
Taylor expanded in kx around 0
lift-sin.f64
65.1
Applied rewrites65.1%
(FPCore (kx ky th) :precision binary64 (if (<= (/ (sin ky) (sqrt (+ (pow (sin kx) 2.0) (pow (sin ky) 2.0)))) 0.0001) (* (* (pow (sin kx) -1.0) (sin th)) ky) (sin th)))
double code(double kx, double ky, double th) { double tmp; if ((sin(ky) / sqrt((pow(sin(kx), 2.0) + pow(sin(ky), 2.0)))) <= 0.0001) { tmp = (pow(sin(kx), -1.0) * sin(th)) * ky; } else { tmp = sin(th); } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(kx, ky, th) use fmin_fmax_functions real(8), intent (in) :: kx real(8), intent (in) :: ky real(8), intent (in) :: th real(8) :: tmp if ((sin(ky) / sqrt(((sin(kx) ** 2.0d0) + (sin(ky) ** 2.0d0)))) <= 0.0001d0) then tmp = ((sin(kx) ** (-1.0d0)) * sin(th)) * ky else tmp = sin(th) end if code = tmp end function
public static double code(double kx, double ky, double th) { double tmp; if ((Math.sin(ky) / Math.sqrt((Math.pow(Math.sin(kx), 2.0) + Math.pow(Math.sin(ky), 2.0)))) <= 0.0001) { tmp = (Math.pow(Math.sin(kx), -1.0) * Math.sin(th)) * ky; } else { tmp = Math.sin(th); } return tmp; }
def code(kx, ky, th): tmp = 0 if (math.sin(ky) / math.sqrt((math.pow(math.sin(kx), 2.0) + math.pow(math.sin(ky), 2.0)))) <= 0.0001: tmp = (math.pow(math.sin(kx), -1.0) * math.sin(th)) * ky else: tmp = math.sin(th) return tmp
function code(kx, ky, th) tmp = 0.0 if (Float64(sin(ky) / sqrt(Float64((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) <= 0.0001) tmp = Float64(Float64((sin(kx) ^ -1.0) * sin(th)) * ky); else tmp = sin(th); end return tmp end
function tmp_2 = code(kx, ky, th) tmp = 0.0; if ((sin(ky) / sqrt(((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) <= 0.0001) tmp = ((sin(kx) ^ -1.0) * sin(th)) * ky; else tmp = sin(th); end tmp_2 = tmp; end
code[kx_, ky_, th_] := If[LessEqual[N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision], 0.0001], N[(N[(N[Power[N[Sin[kx], $MachinePrecision], -1.0], $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision] * ky), $MachinePrecision], N[Sin[th], $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \leq 0.0001:\\ \;\;\;\;\left({\sin kx}^{-1} \cdot \sin th\right) \cdot ky\\ \mathbf{else}:\\ \;\;\;\;\sin th\\ \end{array} \end{array}
if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 1.00000000000000005e-4
Initial program 97.8%
Taylor expanded in kx around inf
*-commutative
N/A
lower-*.f64
N/A
sqrt-div
N/A
metadata-eval
N/A
inv-pow
N/A
lower-pow.f64
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
N/A
*-commutative
N/A
lower-*.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
96.2
Applied rewrites96.2%
lift-*.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
N/A
lift-hypot.f64
N/A
lift-*.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
N/A
associate-*r*
N/A
lower-*.f64
N/A
Applied rewrites99.4%
Taylor expanded in ky around 0
lift-sin.f64
40.6
Applied rewrites40.6%
Taylor expanded in ky around 0
Applied rewrites38.3%
if 1.00000000000000005e-4 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))
Initial program 87.0%
Taylor expanded in kx around 0
lift-sin.f64
65.1
Applied rewrites65.1%
(FPCore (kx ky th) :precision binary64 (if (<= (/ (sin ky) (sqrt (+ (pow (sin kx) 2.0) (pow (sin ky) 2.0)))) 0.0001) (* (/ ky (sin kx)) (sin th)) (sin th)))
double code(double kx, double ky, double th) { double tmp; if ((sin(ky) / sqrt((pow(sin(kx), 2.0) + pow(sin(ky), 2.0)))) <= 0.0001) { tmp = (ky / sin(kx)) * sin(th); } else { tmp = sin(th); } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(kx, ky, th) use fmin_fmax_functions real(8), intent (in) :: kx real(8), intent (in) :: ky real(8), intent (in) :: th real(8) :: tmp if ((sin(ky) / sqrt(((sin(kx) ** 2.0d0) + (sin(ky) ** 2.0d0)))) <= 0.0001d0) then tmp = (ky / sin(kx)) * sin(th) else tmp = sin(th) end if code = tmp end function
public static double code(double kx, double ky, double th) { double tmp; if ((Math.sin(ky) / Math.sqrt((Math.pow(Math.sin(kx), 2.0) + Math.pow(Math.sin(ky), 2.0)))) <= 0.0001) { tmp = (ky / Math.sin(kx)) * Math.sin(th); } else { tmp = Math.sin(th); } return tmp; }
def code(kx, ky, th): tmp = 0 if (math.sin(ky) / math.sqrt((math.pow(math.sin(kx), 2.0) + math.pow(math.sin(ky), 2.0)))) <= 0.0001: tmp = (ky / math.sin(kx)) * math.sin(th) else: tmp = math.sin(th) return tmp
function code(kx, ky, th) tmp = 0.0 if (Float64(sin(ky) / sqrt(Float64((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) <= 0.0001) tmp = Float64(Float64(ky / sin(kx)) * sin(th)); else tmp = sin(th); end return tmp end
function tmp_2 = code(kx, ky, th) tmp = 0.0; if ((sin(ky) / sqrt(((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) <= 0.0001) tmp = (ky / sin(kx)) * sin(th); else tmp = sin(th); end tmp_2 = tmp; end
code[kx_, ky_, th_] := If[LessEqual[N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision], 0.0001], N[(N[(ky / N[Sin[kx], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision], N[Sin[th], $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \leq 0.0001:\\ \;\;\;\;\frac{ky}{\sin kx} \cdot \sin th\\ \mathbf{else}:\\ \;\;\;\;\sin th\\ \end{array} \end{array}
if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 1.00000000000000005e-4
Initial program 97.8%
Taylor expanded in ky around 0
lower-/.f64
N/A
lift-sin.f64
38.3
Applied rewrites38.3%
if 1.00000000000000005e-4 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))
Initial program 87.0%
Taylor expanded in kx around 0
lift-sin.f64
65.1
Applied rewrites65.1%
(FPCore (kx ky th) :precision binary64 (if (<= (/ (sin ky) (sqrt (+ (pow (sin kx) 2.0) (pow (sin ky) 2.0)))) 0.0001) (/ (* (sin th) ky) (sin kx)) (sin th)))
double code(double kx, double ky, double th) { double tmp; if ((sin(ky) / sqrt((pow(sin(kx), 2.0) + pow(sin(ky), 2.0)))) <= 0.0001) { tmp = (sin(th) * ky) / sin(kx); } else { tmp = sin(th); } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(kx, ky, th) use fmin_fmax_functions real(8), intent (in) :: kx real(8), intent (in) :: ky real(8), intent (in) :: th real(8) :: tmp if ((sin(ky) / sqrt(((sin(kx) ** 2.0d0) + (sin(ky) ** 2.0d0)))) <= 0.0001d0) then tmp = (sin(th) * ky) / sin(kx) else tmp = sin(th) end if code = tmp end function
public static double code(double kx, double ky, double th) { double tmp; if ((Math.sin(ky) / Math.sqrt((Math.pow(Math.sin(kx), 2.0) + Math.pow(Math.sin(ky), 2.0)))) <= 0.0001) { tmp = (Math.sin(th) * ky) / Math.sin(kx); } else { tmp = Math.sin(th); } return tmp; }
def code(kx, ky, th): tmp = 0 if (math.sin(ky) / math.sqrt((math.pow(math.sin(kx), 2.0) + math.pow(math.sin(ky), 2.0)))) <= 0.0001: tmp = (math.sin(th) * ky) / math.sin(kx) else: tmp = math.sin(th) return tmp
function code(kx, ky, th) tmp = 0.0 if (Float64(sin(ky) / sqrt(Float64((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) <= 0.0001) tmp = Float64(Float64(sin(th) * ky) / sin(kx)); else tmp = sin(th); end return tmp end
function tmp_2 = code(kx, ky, th) tmp = 0.0; if ((sin(ky) / sqrt(((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) <= 0.0001) tmp = (sin(th) * ky) / sin(kx); else tmp = sin(th); end tmp_2 = tmp; end
code[kx_, ky_, th_] := If[LessEqual[N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision], 0.0001], N[(N[(N[Sin[th], $MachinePrecision] * ky), $MachinePrecision] / N[Sin[kx], $MachinePrecision]), $MachinePrecision], N[Sin[th], $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \leq 0.0001:\\ \;\;\;\;\frac{\sin th \cdot ky}{\sin kx}\\ \mathbf{else}:\\ \;\;\;\;\sin th\\ \end{array} \end{array}
if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 1.00000000000000005e-4
Initial program 97.8%
Taylor expanded in ky around 0
lower-/.f64
N/A
*-commutative
N/A
lower-*.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
36.8
Applied rewrites36.8%
if 1.00000000000000005e-4 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))
Initial program 87.0%
Taylor expanded in kx around 0
lift-sin.f64
65.1
Applied rewrites65.1%
(FPCore (kx ky th) :precision binary64 (if (<= (/ (sin ky) (sqrt (+ (pow (sin kx) 2.0) (pow (sin ky) 2.0)))) 0.0001) (* (sin ky) (/ th (sin kx))) (sin th)))
double code(double kx, double ky, double th) { double tmp; if ((sin(ky) / sqrt((pow(sin(kx), 2.0) + pow(sin(ky), 2.0)))) <= 0.0001) { tmp = sin(ky) * (th / sin(kx)); } else { tmp = sin(th); } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(kx, ky, th) use fmin_fmax_functions real(8), intent (in) :: kx real(8), intent (in) :: ky real(8), intent (in) :: th real(8) :: tmp if ((sin(ky) / sqrt(((sin(kx) ** 2.0d0) + (sin(ky) ** 2.0d0)))) <= 0.0001d0) then tmp = sin(ky) * (th / sin(kx)) else tmp = sin(th) end if code = tmp end function
public static double code(double kx, double ky, double th) { double tmp; if ((Math.sin(ky) / Math.sqrt((Math.pow(Math.sin(kx), 2.0) + Math.pow(Math.sin(ky), 2.0)))) <= 0.0001) { tmp = Math.sin(ky) * (th / Math.sin(kx)); } else { tmp = Math.sin(th); } return tmp; }
def code(kx, ky, th): tmp = 0 if (math.sin(ky) / math.sqrt((math.pow(math.sin(kx), 2.0) + math.pow(math.sin(ky), 2.0)))) <= 0.0001: tmp = math.sin(ky) * (th / math.sin(kx)) else: tmp = math.sin(th) return tmp
function code(kx, ky, th) tmp = 0.0 if (Float64(sin(ky) / sqrt(Float64((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) <= 0.0001) tmp = Float64(sin(ky) * Float64(th / sin(kx))); else tmp = sin(th); end return tmp end
function tmp_2 = code(kx, ky, th) tmp = 0.0; if ((sin(ky) / sqrt(((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) <= 0.0001) tmp = sin(ky) * (th / sin(kx)); else tmp = sin(th); end tmp_2 = tmp; end
code[kx_, ky_, th_] := If[LessEqual[N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision], 0.0001], N[(N[Sin[ky], $MachinePrecision] * N[(th / N[Sin[kx], $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[Sin[th], $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \leq 0.0001:\\ \;\;\;\;\sin ky \cdot \frac{th}{\sin kx}\\ \mathbf{else}:\\ \;\;\;\;\sin th\\ \end{array} \end{array}
if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 1.00000000000000005e-4
Initial program 97.8%
Taylor expanded in th around 0
lower-*.f64
N/A
*-commutative
N/A
lower-*.f64
N/A
lift-sin.f64
N/A
sqrt-div
N/A
metadata-eval
N/A
inv-pow
N/A
lower-pow.f64
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
47.1
Applied rewrites47.1%
Taylor expanded in kx around 0
inv-pow
N/A
lower-pow.f64
N/A
lift-sin.f64
14.7
Applied rewrites14.7%
lift-*.f64
N/A
lift-*.f64
N/A
lift-sin.f64
N/A
associate-*l*
N/A
lower-*.f64
N/A
lift-sin.f64
N/A
lower-*.f64
3.8
Applied rewrites3.8%
Taylor expanded in ky around 0
lower-/.f64
N/A
lift-sin.f64
24.4
Applied rewrites24.4%
if 1.00000000000000005e-4 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))
Initial program 87.0%
Taylor expanded in kx around 0
lift-sin.f64
65.1
Applied rewrites65.1%
(FPCore (kx ky th) :precision binary64 (if (<= (* (/ (sin ky) (sqrt (+ (pow (sin kx) 2.0) (pow (sin ky) 2.0)))) (sin th)) 5e-316) (* (* (* th th) -0.16666666666666666) th) th))
double code(double kx, double ky, double th) { double tmp; if (((sin(ky) / sqrt((pow(sin(kx), 2.0) + pow(sin(ky), 2.0)))) * sin(th)) <= 5e-316) { tmp = ((th * th) * -0.16666666666666666) * th; } else { tmp = th; } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(kx, ky, th) use fmin_fmax_functions real(8), intent (in) :: kx real(8), intent (in) :: ky real(8), intent (in) :: th real(8) :: tmp if (((sin(ky) / sqrt(((sin(kx) ** 2.0d0) + (sin(ky) ** 2.0d0)))) * sin(th)) <= 5d-316) then tmp = ((th * th) * (-0.16666666666666666d0)) * th else tmp = th end if code = tmp end function
public static double code(double kx, double ky, double th) { double tmp; if (((Math.sin(ky) / Math.sqrt((Math.pow(Math.sin(kx), 2.0) + Math.pow(Math.sin(ky), 2.0)))) * Math.sin(th)) <= 5e-316) { tmp = ((th * th) * -0.16666666666666666) * th; } else { tmp = th; } return tmp; }
def code(kx, ky, th): tmp = 0 if ((math.sin(ky) / math.sqrt((math.pow(math.sin(kx), 2.0) + math.pow(math.sin(ky), 2.0)))) * math.sin(th)) <= 5e-316: tmp = ((th * th) * -0.16666666666666666) * th else: tmp = th return tmp
function code(kx, ky, th) tmp = 0.0 if (Float64(Float64(sin(ky) / sqrt(Float64((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) * sin(th)) <= 5e-316) tmp = Float64(Float64(Float64(th * th) * -0.16666666666666666) * th); else tmp = th; end return tmp end
function tmp_2 = code(kx, ky, th) tmp = 0.0; if (((sin(ky) / sqrt(((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) * sin(th)) <= 5e-316) tmp = ((th * th) * -0.16666666666666666) * th; else tmp = th; end tmp_2 = tmp; end
code[kx_, ky_, th_] := If[LessEqual[N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision], 5e-316], N[(N[(N[(th * th), $MachinePrecision] * -0.16666666666666666), $MachinePrecision] * th), $MachinePrecision], th]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \leq 5 \cdot 10^{-316}:\\ \;\;\;\;\left(\left(th \cdot th\right) \cdot -0.16666666666666666\right) \cdot th\\ \mathbf{else}:\\ \;\;\;\;th\\ \end{array} \end{array}
if (*.f64 (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) (sin.f64 th)) < 5.000000017e-316
Initial program 96.1%
Taylor expanded in kx around 0
lift-sin.f64
21.9
Applied rewrites21.9%
Taylor expanded in th around 0
*-commutative
N/A
lower-*.f64
N/A
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
N/A
unpow2
N/A
lower-*.f64
13.6
Applied rewrites13.6%
Taylor expanded in th around inf
*-commutative
N/A
lower-*.f64
N/A
pow2
N/A
lift-*.f64
16.0
Applied rewrites16.0%
if 5.000000017e-316 < (*.f64 (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) (sin.f64 th))
Initial program 92.5%
Taylor expanded in th around 0
lower-*.f64
N/A
*-commutative
N/A
lower-*.f64
N/A
lift-sin.f64
N/A
sqrt-div
N/A
metadata-eval
N/A
inv-pow
N/A
lower-pow.f64
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
39.2
Applied rewrites39.2%
Taylor expanded in kx around 0
Applied rewrites12.1%
(FPCore (kx ky th) :precision binary64 (if (<= (/ (sin ky) (sqrt (+ (pow (sin kx) 2.0) (pow (sin ky) 2.0)))) 0.0001) (* (/ ky (sin kx)) th) (sin th)))
double code(double kx, double ky, double th) { double tmp; if ((sin(ky) / sqrt((pow(sin(kx), 2.0) + pow(sin(ky), 2.0)))) <= 0.0001) { tmp = (ky / sin(kx)) * th; } else { tmp = sin(th); } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(kx, ky, th) use fmin_fmax_functions real(8), intent (in) :: kx real(8), intent (in) :: ky real(8), intent (in) :: th real(8) :: tmp if ((sin(ky) / sqrt(((sin(kx) ** 2.0d0) + (sin(ky) ** 2.0d0)))) <= 0.0001d0) then tmp = (ky / sin(kx)) * th else tmp = sin(th) end if code = tmp end function
public static double code(double kx, double ky, double th) { double tmp; if ((Math.sin(ky) / Math.sqrt((Math.pow(Math.sin(kx), 2.0) + Math.pow(Math.sin(ky), 2.0)))) <= 0.0001) { tmp = (ky / Math.sin(kx)) * th; } else { tmp = Math.sin(th); } return tmp; }
def code(kx, ky, th): tmp = 0 if (math.sin(ky) / math.sqrt((math.pow(math.sin(kx), 2.0) + math.pow(math.sin(ky), 2.0)))) <= 0.0001: tmp = (ky / math.sin(kx)) * th else: tmp = math.sin(th) return tmp
function code(kx, ky, th) tmp = 0.0 if (Float64(sin(ky) / sqrt(Float64((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) <= 0.0001) tmp = Float64(Float64(ky / sin(kx)) * th); else tmp = sin(th); end return tmp end
function tmp_2 = code(kx, ky, th) tmp = 0.0; if ((sin(ky) / sqrt(((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) <= 0.0001) tmp = (ky / sin(kx)) * th; else tmp = sin(th); end tmp_2 = tmp; end
code[kx_, ky_, th_] := If[LessEqual[N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision], 0.0001], N[(N[(ky / N[Sin[kx], $MachinePrecision]), $MachinePrecision] * th), $MachinePrecision], N[Sin[th], $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \leq 0.0001:\\ \;\;\;\;\frac{ky}{\sin kx} \cdot th\\ \mathbf{else}:\\ \;\;\;\;\sin th\\ \end{array} \end{array}
if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 1.00000000000000005e-4
Initial program 97.8%
lift-sqrt.f64
N/A
lift-+.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
+-commutative
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
99.6
Applied rewrites99.6%
Taylor expanded in th around 0
Applied rewrites50.2%
Taylor expanded in ky around 0
lower-/.f64
N/A
lift-sin.f64
23.2
Applied rewrites23.2%
if 1.00000000000000005e-4 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))
Initial program 87.0%
Taylor expanded in kx around 0
lift-sin.f64
65.1
Applied rewrites65.1%
Final simplification36.1%
(FPCore (kx ky th) :precision binary64 (if (<= (/ (sin ky) (sqrt (+ (pow (sin kx) 2.0) (pow (sin ky) 2.0)))) 0.0001) (* ky (/ th (sin kx))) (sin th)))
double code(double kx, double ky, double th) { double tmp; if ((sin(ky) / sqrt((pow(sin(kx), 2.0) + pow(sin(ky), 2.0)))) <= 0.0001) { tmp = ky * (th / sin(kx)); } else { tmp = sin(th); } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(kx, ky, th) use fmin_fmax_functions real(8), intent (in) :: kx real(8), intent (in) :: ky real(8), intent (in) :: th real(8) :: tmp if ((sin(ky) / sqrt(((sin(kx) ** 2.0d0) + (sin(ky) ** 2.0d0)))) <= 0.0001d0) then tmp = ky * (th / sin(kx)) else tmp = sin(th) end if code = tmp end function
public static double code(double kx, double ky, double th) { double tmp; if ((Math.sin(ky) / Math.sqrt((Math.pow(Math.sin(kx), 2.0) + Math.pow(Math.sin(ky), 2.0)))) <= 0.0001) { tmp = ky * (th / Math.sin(kx)); } else { tmp = Math.sin(th); } return tmp; }
def code(kx, ky, th): tmp = 0 if (math.sin(ky) / math.sqrt((math.pow(math.sin(kx), 2.0) + math.pow(math.sin(ky), 2.0)))) <= 0.0001: tmp = ky * (th / math.sin(kx)) else: tmp = math.sin(th) return tmp
function code(kx, ky, th) tmp = 0.0 if (Float64(sin(ky) / sqrt(Float64((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) <= 0.0001) tmp = Float64(ky * Float64(th / sin(kx))); else tmp = sin(th); end return tmp end
function tmp_2 = code(kx, ky, th) tmp = 0.0; if ((sin(ky) / sqrt(((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) <= 0.0001) tmp = ky * (th / sin(kx)); else tmp = sin(th); end tmp_2 = tmp; end
code[kx_, ky_, th_] := If[LessEqual[N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision], 0.0001], N[(ky * N[(th / N[Sin[kx], $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[Sin[th], $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \leq 0.0001:\\ \;\;\;\;ky \cdot \frac{th}{\sin kx}\\ \mathbf{else}:\\ \;\;\;\;\sin th\\ \end{array} \end{array}
if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 1.00000000000000005e-4
Initial program 97.8%
Taylor expanded in th around 0
lower-*.f64
N/A
*-commutative
N/A
lower-*.f64
N/A
lift-sin.f64
N/A
sqrt-div
N/A
metadata-eval
N/A
inv-pow
N/A
lower-pow.f64
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
47.1
Applied rewrites47.1%
Taylor expanded in ky around 0
associate-/l*
N/A
lower-*.f64
N/A
lower-/.f64
N/A
lift-sin.f64
23.2
Applied rewrites23.2%
if 1.00000000000000005e-4 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))
Initial program 87.0%
Taylor expanded in kx around 0
lift-sin.f64
65.1
Applied rewrites65.1%
(FPCore (kx ky th) :precision binary64 (if (<= (/ (sin ky) (sqrt (+ (pow (sin kx) 2.0) (pow (sin ky) 2.0)))) 7.8e-56) (* (* (* th th) -0.16666666666666666) th) (sin th)))
double code(double kx, double ky, double th) { double tmp; if ((sin(ky) / sqrt((pow(sin(kx), 2.0) + pow(sin(ky), 2.0)))) <= 7.8e-56) { tmp = ((th * th) * -0.16666666666666666) * th; } else { tmp = sin(th); } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(kx, ky, th) use fmin_fmax_functions real(8), intent (in) :: kx real(8), intent (in) :: ky real(8), intent (in) :: th real(8) :: tmp if ((sin(ky) / sqrt(((sin(kx) ** 2.0d0) + (sin(ky) ** 2.0d0)))) <= 7.8d-56) then tmp = ((th * th) * (-0.16666666666666666d0)) * th else tmp = sin(th) end if code = tmp end function
public static double code(double kx, double ky, double th) { double tmp; if ((Math.sin(ky) / Math.sqrt((Math.pow(Math.sin(kx), 2.0) + Math.pow(Math.sin(ky), 2.0)))) <= 7.8e-56) { tmp = ((th * th) * -0.16666666666666666) * th; } else { tmp = Math.sin(th); } return tmp; }
def code(kx, ky, th): tmp = 0 if (math.sin(ky) / math.sqrt((math.pow(math.sin(kx), 2.0) + math.pow(math.sin(ky), 2.0)))) <= 7.8e-56: tmp = ((th * th) * -0.16666666666666666) * th else: tmp = math.sin(th) return tmp
function code(kx, ky, th) tmp = 0.0 if (Float64(sin(ky) / sqrt(Float64((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) <= 7.8e-56) tmp = Float64(Float64(Float64(th * th) * -0.16666666666666666) * th); else tmp = sin(th); end return tmp end
function tmp_2 = code(kx, ky, th) tmp = 0.0; if ((sin(ky) / sqrt(((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) <= 7.8e-56) tmp = ((th * th) * -0.16666666666666666) * th; else tmp = sin(th); end tmp_2 = tmp; end
code[kx_, ky_, th_] := If[LessEqual[N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision], 7.8e-56], N[(N[(N[(th * th), $MachinePrecision] * -0.16666666666666666), $MachinePrecision] * th), $MachinePrecision], N[Sin[th], $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \leq 7.8 \cdot 10^{-56}:\\ \;\;\;\;\left(\left(th \cdot th\right) \cdot -0.16666666666666666\right) \cdot th\\ \mathbf{else}:\\ \;\;\;\;\sin th\\ \end{array} \end{array}
if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 7.8e-56
Initial program 97.9%
Taylor expanded in kx around 0
lift-sin.f64
3.5
Applied rewrites3.5%
Taylor expanded in th around 0
*-commutative
N/A
lower-*.f64
N/A
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
N/A
unpow2
N/A
lower-*.f64
3.1
Applied rewrites3.1%
Taylor expanded in th around inf
*-commutative
N/A
lower-*.f64
N/A
pow2
N/A
lift-*.f64
14.0
Applied rewrites14.0%
if 7.8e-56 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))
Initial program 88.2%
Taylor expanded in kx around 0
lift-sin.f64
58.2
Applied rewrites58.2%
(FPCore (kx ky th) :precision binary64 (if (<= ky 0.0275) (* (/ (sin ky) (hypot ky (sin kx))) (sin th)) (* (/ (sin ky) (sqrt (- 0.5 (* 0.5 (cos (+ ky ky)))))) (sin th))))
double code(double kx, double ky, double th) { double tmp; if (ky <= 0.0275) { tmp = (sin(ky) / hypot(ky, sin(kx))) * sin(th); } else { tmp = (sin(ky) / sqrt((0.5 - (0.5 * cos((ky + ky)))))) * sin(th); } return tmp; }
public static double code(double kx, double ky, double th) { double tmp; if (ky <= 0.0275) { tmp = (Math.sin(ky) / Math.hypot(ky, Math.sin(kx))) * Math.sin(th); } else { tmp = (Math.sin(ky) / Math.sqrt((0.5 - (0.5 * Math.cos((ky + ky)))))) * Math.sin(th); } return tmp; }
def code(kx, ky, th): tmp = 0 if ky <= 0.0275: tmp = (math.sin(ky) / math.hypot(ky, math.sin(kx))) * math.sin(th) else: tmp = (math.sin(ky) / math.sqrt((0.5 - (0.5 * math.cos((ky + ky)))))) * math.sin(th) return tmp
function code(kx, ky, th) tmp = 0.0 if (ky <= 0.0275) tmp = Float64(Float64(sin(ky) / hypot(ky, sin(kx))) * sin(th)); else tmp = Float64(Float64(sin(ky) / sqrt(Float64(0.5 - Float64(0.5 * cos(Float64(ky + ky)))))) * sin(th)); end return tmp end
function tmp_2 = code(kx, ky, th) tmp = 0.0; if (ky <= 0.0275) tmp = (sin(ky) / hypot(ky, sin(kx))) * sin(th); else tmp = (sin(ky) / sqrt((0.5 - (0.5 * cos((ky + ky)))))) * sin(th); end tmp_2 = tmp; end
code[kx_, ky_, th_] := If[LessEqual[ky, 0.0275], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[ky ^ 2 + N[Sin[kx], $MachinePrecision] ^ 2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(0.5 - N[(0.5 * N[Cos[N[(ky + ky), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;ky \leq 0.0275:\\ \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(ky, \sin kx\right)} \cdot \sin th\\ \mathbf{else}:\\ \;\;\;\;\frac{\sin ky}{\sqrt{0.5 - 0.5 \cdot \cos \left(ky + ky\right)}} \cdot \sin th\\ \end{array} \end{array}
if ky < 0.0275000000000000001
Initial program 92.4%
lift-sqrt.f64
N/A
lift-+.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
lift-pow.f64
N/A
lift-sin.f64
N/A
+-commutative
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
99.7
Applied rewrites99.7%
Taylor expanded in ky around 0
Applied rewrites71.6%
if 0.0275000000000000001 < ky
Initial program 99.6%
Taylor expanded in kx around 0
lift-sin.f64
N/A
lift-pow.f64
59.3
Applied rewrites59.3%
lift-pow.f64
N/A
lift-sin.f64
N/A
pow2
N/A
sqr-sin-a
N/A
lower--.f64
N/A
lower-*.f64
N/A
cos-2
N/A
cos-sum
N/A
lower-cos.f64
N/A
lower-+.f64
58.6
Applied rewrites58.6%
(FPCore (kx ky th) :precision binary64 th)
double code(double kx, double ky, double th) { return th; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(kx, ky, th) use fmin_fmax_functions real(8), intent (in) :: kx real(8), intent (in) :: ky real(8), intent (in) :: th code = th end function
public static double code(double kx, double ky, double th) { return th; }
def code(kx, ky, th): return th
function code(kx, ky, th) return th end
function tmp = code(kx, ky, th) tmp = th; end
code[kx_, ky_, th_] := th
\begin{array}{l} \\ th \end{array}
Initial program 94.4%
Taylor expanded in th around 0
lower-*.f64
N/A
*-commutative
N/A
lower-*.f64
N/A
lift-sin.f64
N/A
sqrt-div
N/A
metadata-eval
N/A
inv-pow
N/A
lower-pow.f64
N/A
unpow2
N/A
unpow2
N/A
lower-hypot.f64
N/A
lift-sin.f64
N/A
lift-sin.f64
46.0
Applied rewrites46.0%
Taylor expanded in kx around 0
Applied rewrites13.3%
herbie shell --seed 2025043
(FPCore (kx ky th)
:name "Toniolo and Linder, Equation (3b), real"
:precision binary64
(* (/ (sin ky) (sqrt (+ (pow (sin kx) 2.0) (pow (sin ky) 2.0)))) (sin th)))