Toniolo and Linder, Equation (3b), real

Percentage Accurate: 93.6% → 99.7%
Time: 14.5s
Alternatives: 23
Speedup: 1.2×

Specification

?
\[\begin{array}{l} \\ \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \end{array} \]
(FPCore (kx ky th)
 :precision binary64
 (* (/ (sin ky) (sqrt (+ (pow (sin kx) 2.0) (pow (sin ky) 2.0)))) (sin th)))
double code(double kx, double ky, double th) {
	return (sin(ky) / sqrt((pow(sin(kx), 2.0) + pow(sin(ky), 2.0)))) * sin(th);
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(kx, ky, th)
use fmin_fmax_functions
    real(8), intent (in) :: kx
    real(8), intent (in) :: ky
    real(8), intent (in) :: th
    code = (sin(ky) / sqrt(((sin(kx) ** 2.0d0) + (sin(ky) ** 2.0d0)))) * sin(th)
end function
public static double code(double kx, double ky, double th) {
	return (Math.sin(ky) / Math.sqrt((Math.pow(Math.sin(kx), 2.0) + Math.pow(Math.sin(ky), 2.0)))) * Math.sin(th);
}
def code(kx, ky, th):
	return (math.sin(ky) / math.sqrt((math.pow(math.sin(kx), 2.0) + math.pow(math.sin(ky), 2.0)))) * math.sin(th)
function code(kx, ky, th)
	return Float64(Float64(sin(ky) / sqrt(Float64((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) * sin(th))
end
function tmp = code(kx, ky, th)
	tmp = (sin(ky) / sqrt(((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) * sin(th);
end
code[kx_, ky_, th_] := N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision]
\begin{array}{l}

\\
\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th
\end{array}

Sampling outcomes in binary64 precision:

Local Percentage Accuracy vs ?

The average percentage accuracy by input value. Horizontal axis shows value of an input variable; the variable is choosen in the title. Vertical axis is accuracy; higher is better. Red represent the original program, while blue represents Herbie's suggestion. These can be toggled with buttons below the plot. The line is an average while dots represent individual samples.

Accuracy vs Speed?

Herbie found 23 alternatives:

AlternativeAccuracySpeedup
The accuracy (vertical axis) and speed (horizontal axis) of each alternatives. Up and to the right is better. The red square shows the initial program, and each blue circle shows an alternative.The line shows the best available speed-accuracy tradeoffs.

Initial Program: 93.6% accurate, 1.0× speedup?

\[\begin{array}{l} \\ \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \end{array} \]
(FPCore (kx ky th)
 :precision binary64
 (* (/ (sin ky) (sqrt (+ (pow (sin kx) 2.0) (pow (sin ky) 2.0)))) (sin th)))
double code(double kx, double ky, double th) {
	return (sin(ky) / sqrt((pow(sin(kx), 2.0) + pow(sin(ky), 2.0)))) * sin(th);
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(kx, ky, th)
use fmin_fmax_functions
    real(8), intent (in) :: kx
    real(8), intent (in) :: ky
    real(8), intent (in) :: th
    code = (sin(ky) / sqrt(((sin(kx) ** 2.0d0) + (sin(ky) ** 2.0d0)))) * sin(th)
end function
public static double code(double kx, double ky, double th) {
	return (Math.sin(ky) / Math.sqrt((Math.pow(Math.sin(kx), 2.0) + Math.pow(Math.sin(ky), 2.0)))) * Math.sin(th);
}
def code(kx, ky, th):
	return (math.sin(ky) / math.sqrt((math.pow(math.sin(kx), 2.0) + math.pow(math.sin(ky), 2.0)))) * math.sin(th)
function code(kx, ky, th)
	return Float64(Float64(sin(ky) / sqrt(Float64((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) * sin(th))
end
function tmp = code(kx, ky, th)
	tmp = (sin(ky) / sqrt(((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) * sin(th);
end
code[kx_, ky_, th_] := N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision]
\begin{array}{l}

\\
\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th
\end{array}

Alternative 1: 99.7% accurate, 1.2× speedup?

\[\begin{array}{l} \\ \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \sin th \end{array} \]
(FPCore (kx ky th)
 :precision binary64
 (* (/ (sin ky) (hypot (sin ky) (sin kx))) (sin th)))
double code(double kx, double ky, double th) {
	return (sin(ky) / hypot(sin(ky), sin(kx))) * sin(th);
}
public static double code(double kx, double ky, double th) {
	return (Math.sin(ky) / Math.hypot(Math.sin(ky), Math.sin(kx))) * Math.sin(th);
}
def code(kx, ky, th):
	return (math.sin(ky) / math.hypot(math.sin(ky), math.sin(kx))) * math.sin(th)
function code(kx, ky, th)
	return Float64(Float64(sin(ky) / hypot(sin(ky), sin(kx))) * sin(th))
end
function tmp = code(kx, ky, th)
	tmp = (sin(ky) / hypot(sin(ky), sin(kx))) * sin(th);
end
code[kx_, ky_, th_] := N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + N[Sin[kx], $MachinePrecision] ^ 2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision]
\begin{array}{l}

\\
\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \sin th
\end{array}
Derivation
  1. Initial program 94.4%

    \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
  2. Add Preprocessing
  3. Step-by-step derivation
    1. lift-sqrt.f64N/A

      \[\leadsto \frac{\sin ky}{\color{blue}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
    2. lift-+.f64N/A

      \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
    3. lift-pow.f64N/A

      \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}} + {\sin ky}^{2}}} \cdot \sin th \]
    4. lift-sin.f64N/A

      \[\leadsto \frac{\sin ky}{\sqrt{{\color{blue}{\sin kx}}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
    5. lift-pow.f64N/A

      \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + \color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
    6. lift-sin.f64N/A

      \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\color{blue}{\sin ky}}^{2}}} \cdot \sin th \]
    7. +-commutativeN/A

      \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2} + {\sin kx}^{2}}}} \cdot \sin th \]
    8. unpow2N/A

      \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{\sin ky \cdot \sin ky} + {\sin kx}^{2}}} \cdot \sin th \]
    9. unpow2N/A

      \[\leadsto \frac{\sin ky}{\sqrt{\sin ky \cdot \sin ky + \color{blue}{\sin kx \cdot \sin kx}}} \cdot \sin th \]
    10. lower-hypot.f64N/A

      \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
    11. lift-sin.f64N/A

      \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\color{blue}{\sin ky}, \sin kx\right)} \cdot \sin th \]
    12. lift-sin.f6499.7

      \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\sin kx}\right)} \cdot \sin th \]
  4. Applied rewrites99.7%

    \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
  5. Add Preprocessing

Alternative 2: 85.6% accurate, 0.2× speedup?

\[\begin{array}{l} \\ \begin{array}{l} t_1 := \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}\\ t_2 := {\sin kx}^{2}\\ t_3 := \frac{\sin ky}{\sqrt{t\_2 + {\sin ky}^{2}}}\\ \mathbf{if}\;t\_3 \leq -1:\\ \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, kx\right)} \cdot \sin th\\ \mathbf{elif}\;t\_3 \leq -0.2:\\ \;\;\;\;t\_1 \cdot th\\ \mathbf{elif}\;t\_3 \leq 2 \cdot 10^{-16}:\\ \;\;\;\;\frac{\sin ky}{\sqrt{t\_2}} \cdot \sin th\\ \mathbf{elif}\;t\_3 \leq 0.998:\\ \;\;\;\;t\_1 \cdot \left(\mathsf{fma}\left(\mathsf{fma}\left(th \cdot th, -0.0001984126984126984, 0.008333333333333333\right) \cdot \left(th \cdot th\right) - 0.16666666666666666, th \cdot th, 1\right) \cdot th\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(\mathsf{fma}\left(-0.0001984126984126984, kx \cdot kx, 0.008333333333333333\right) \cdot \left(kx \cdot kx\right) - 0.16666666666666666, kx \cdot kx, 1\right) \cdot kx\right)} \cdot \sin th\\ \end{array} \end{array} \]
(FPCore (kx ky th)
 :precision binary64
 (let* ((t_1 (/ (sin ky) (hypot (sin ky) (sin kx))))
        (t_2 (pow (sin kx) 2.0))
        (t_3 (/ (sin ky) (sqrt (+ t_2 (pow (sin ky) 2.0))))))
   (if (<= t_3 -1.0)
     (* (/ (sin ky) (hypot (sin ky) kx)) (sin th))
     (if (<= t_3 -0.2)
       (* t_1 th)
       (if (<= t_3 2e-16)
         (* (/ (sin ky) (sqrt t_2)) (sin th))
         (if (<= t_3 0.998)
           (*
            t_1
            (*
             (fma
              (-
               (*
                (fma (* th th) -0.0001984126984126984 0.008333333333333333)
                (* th th))
               0.16666666666666666)
              (* th th)
              1.0)
             th))
           (*
            (/
             (sin ky)
             (hypot
              (sin ky)
              (*
               (fma
                (-
                 (*
                  (fma -0.0001984126984126984 (* kx kx) 0.008333333333333333)
                  (* kx kx))
                 0.16666666666666666)
                (* kx kx)
                1.0)
               kx)))
            (sin th))))))))
double code(double kx, double ky, double th) {
	double t_1 = sin(ky) / hypot(sin(ky), sin(kx));
	double t_2 = pow(sin(kx), 2.0);
	double t_3 = sin(ky) / sqrt((t_2 + pow(sin(ky), 2.0)));
	double tmp;
	if (t_3 <= -1.0) {
		tmp = (sin(ky) / hypot(sin(ky), kx)) * sin(th);
	} else if (t_3 <= -0.2) {
		tmp = t_1 * th;
	} else if (t_3 <= 2e-16) {
		tmp = (sin(ky) / sqrt(t_2)) * sin(th);
	} else if (t_3 <= 0.998) {
		tmp = t_1 * (fma(((fma((th * th), -0.0001984126984126984, 0.008333333333333333) * (th * th)) - 0.16666666666666666), (th * th), 1.0) * th);
	} else {
		tmp = (sin(ky) / hypot(sin(ky), (fma(((fma(-0.0001984126984126984, (kx * kx), 0.008333333333333333) * (kx * kx)) - 0.16666666666666666), (kx * kx), 1.0) * kx))) * sin(th);
	}
	return tmp;
}
function code(kx, ky, th)
	t_1 = Float64(sin(ky) / hypot(sin(ky), sin(kx)))
	t_2 = sin(kx) ^ 2.0
	t_3 = Float64(sin(ky) / sqrt(Float64(t_2 + (sin(ky) ^ 2.0))))
	tmp = 0.0
	if (t_3 <= -1.0)
		tmp = Float64(Float64(sin(ky) / hypot(sin(ky), kx)) * sin(th));
	elseif (t_3 <= -0.2)
		tmp = Float64(t_1 * th);
	elseif (t_3 <= 2e-16)
		tmp = Float64(Float64(sin(ky) / sqrt(t_2)) * sin(th));
	elseif (t_3 <= 0.998)
		tmp = Float64(t_1 * Float64(fma(Float64(Float64(fma(Float64(th * th), -0.0001984126984126984, 0.008333333333333333) * Float64(th * th)) - 0.16666666666666666), Float64(th * th), 1.0) * th));
	else
		tmp = Float64(Float64(sin(ky) / hypot(sin(ky), Float64(fma(Float64(Float64(fma(-0.0001984126984126984, Float64(kx * kx), 0.008333333333333333) * Float64(kx * kx)) - 0.16666666666666666), Float64(kx * kx), 1.0) * kx))) * sin(th));
	end
	return tmp
end
code[kx_, ky_, th_] := Block[{t$95$1 = N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + N[Sin[kx], $MachinePrecision] ^ 2], $MachinePrecision]), $MachinePrecision]}, Block[{t$95$2 = N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision]}, Block[{t$95$3 = N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(t$95$2 + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$3, -1.0], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + kx ^ 2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$3, -0.2], N[(t$95$1 * th), $MachinePrecision], If[LessEqual[t$95$3, 2e-16], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[t$95$2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$3, 0.998], N[(t$95$1 * N[(N[(N[(N[(N[(N[(th * th), $MachinePrecision] * -0.0001984126984126984 + 0.008333333333333333), $MachinePrecision] * N[(th * th), $MachinePrecision]), $MachinePrecision] - 0.16666666666666666), $MachinePrecision] * N[(th * th), $MachinePrecision] + 1.0), $MachinePrecision] * th), $MachinePrecision]), $MachinePrecision], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + N[(N[(N[(N[(N[(-0.0001984126984126984 * N[(kx * kx), $MachinePrecision] + 0.008333333333333333), $MachinePrecision] * N[(kx * kx), $MachinePrecision]), $MachinePrecision] - 0.16666666666666666), $MachinePrecision] * N[(kx * kx), $MachinePrecision] + 1.0), $MachinePrecision] * kx), $MachinePrecision] ^ 2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision]]]]]]]]
\begin{array}{l}

\\
\begin{array}{l}
t_1 := \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}\\
t_2 := {\sin kx}^{2}\\
t_3 := \frac{\sin ky}{\sqrt{t\_2 + {\sin ky}^{2}}}\\
\mathbf{if}\;t\_3 \leq -1:\\
\;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, kx\right)} \cdot \sin th\\

\mathbf{elif}\;t\_3 \leq -0.2:\\
\;\;\;\;t\_1 \cdot th\\

\mathbf{elif}\;t\_3 \leq 2 \cdot 10^{-16}:\\
\;\;\;\;\frac{\sin ky}{\sqrt{t\_2}} \cdot \sin th\\

\mathbf{elif}\;t\_3 \leq 0.998:\\
\;\;\;\;t\_1 \cdot \left(\mathsf{fma}\left(\mathsf{fma}\left(th \cdot th, -0.0001984126984126984, 0.008333333333333333\right) \cdot \left(th \cdot th\right) - 0.16666666666666666, th \cdot th, 1\right) \cdot th\right)\\

\mathbf{else}:\\
\;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(\mathsf{fma}\left(-0.0001984126984126984, kx \cdot kx, 0.008333333333333333\right) \cdot \left(kx \cdot kx\right) - 0.16666666666666666, kx \cdot kx, 1\right) \cdot kx\right)} \cdot \sin th\\


\end{array}
\end{array}
Derivation
  1. Split input into 5 regimes
  2. if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -1

    1. Initial program 93.0%

      \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
    2. Add Preprocessing
    3. Step-by-step derivation
      1. lift-sqrt.f64N/A

        \[\leadsto \frac{\sin ky}{\color{blue}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
      2. lift-+.f64N/A

        \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
      3. lift-pow.f64N/A

        \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}} + {\sin ky}^{2}}} \cdot \sin th \]
      4. lift-sin.f64N/A

        \[\leadsto \frac{\sin ky}{\sqrt{{\color{blue}{\sin kx}}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
      5. lift-pow.f64N/A

        \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + \color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
      6. lift-sin.f64N/A

        \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\color{blue}{\sin ky}}^{2}}} \cdot \sin th \]
      7. +-commutativeN/A

        \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2} + {\sin kx}^{2}}}} \cdot \sin th \]
      8. unpow2N/A

        \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{\sin ky \cdot \sin ky} + {\sin kx}^{2}}} \cdot \sin th \]
      9. unpow2N/A

        \[\leadsto \frac{\sin ky}{\sqrt{\sin ky \cdot \sin ky + \color{blue}{\sin kx \cdot \sin kx}}} \cdot \sin th \]
      10. lower-hypot.f64N/A

        \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
      11. lift-sin.f64N/A

        \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\color{blue}{\sin ky}, \sin kx\right)} \cdot \sin th \]
      12. lift-sin.f64100.0

        \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\sin kx}\right)} \cdot \sin th \]
    4. Applied rewrites100.0%

      \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
    5. Taylor expanded in kx around 0

      \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{kx}\right)} \cdot \sin th \]
    6. Step-by-step derivation
      1. Applied rewrites100.0%

        \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{kx}\right)} \cdot \sin th \]

      if -1 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -0.20000000000000001

      1. Initial program 99.3%

        \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
      2. Add Preprocessing
      3. Step-by-step derivation
        1. lift-sqrt.f64N/A

          \[\leadsto \frac{\sin ky}{\color{blue}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
        2. lift-+.f64N/A

          \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
        3. lift-pow.f64N/A

          \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}} + {\sin ky}^{2}}} \cdot \sin th \]
        4. lift-sin.f64N/A

          \[\leadsto \frac{\sin ky}{\sqrt{{\color{blue}{\sin kx}}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
        5. lift-pow.f64N/A

          \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + \color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
        6. lift-sin.f64N/A

          \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\color{blue}{\sin ky}}^{2}}} \cdot \sin th \]
        7. +-commutativeN/A

          \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2} + {\sin kx}^{2}}}} \cdot \sin th \]
        8. unpow2N/A

          \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{\sin ky \cdot \sin ky} + {\sin kx}^{2}}} \cdot \sin th \]
        9. unpow2N/A

          \[\leadsto \frac{\sin ky}{\sqrt{\sin ky \cdot \sin ky + \color{blue}{\sin kx \cdot \sin kx}}} \cdot \sin th \]
        10. lower-hypot.f64N/A

          \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
        11. lift-sin.f64N/A

          \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\color{blue}{\sin ky}, \sin kx\right)} \cdot \sin th \]
        12. lift-sin.f6499.3

          \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\sin kx}\right)} \cdot \sin th \]
      4. Applied rewrites99.3%

        \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
      5. Taylor expanded in th around 0

        \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \color{blue}{th} \]
      6. Step-by-step derivation
        1. Applied rewrites60.9%

          \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \color{blue}{th} \]

        if -0.20000000000000001 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 2e-16

        1. Initial program 99.2%

          \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
        2. Add Preprocessing
        3. Taylor expanded in ky around 0

          \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}}}} \cdot \sin th \]
        4. Step-by-step derivation
          1. lift-sin.f64N/A

            \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2}}} \cdot \sin th \]
          2. lift-pow.f6497.2

            \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{\color{blue}{2}}}} \cdot \sin th \]
        5. Applied rewrites97.2%

          \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}}}} \cdot \sin th \]

        if 2e-16 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 0.998

        1. Initial program 99.3%

          \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
        2. Add Preprocessing
        3. Step-by-step derivation
          1. lift-sqrt.f64N/A

            \[\leadsto \frac{\sin ky}{\color{blue}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
          2. lift-+.f64N/A

            \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
          3. lift-pow.f64N/A

            \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}} + {\sin ky}^{2}}} \cdot \sin th \]
          4. lift-sin.f64N/A

            \[\leadsto \frac{\sin ky}{\sqrt{{\color{blue}{\sin kx}}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
          5. lift-pow.f64N/A

            \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + \color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
          6. lift-sin.f64N/A

            \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\color{blue}{\sin ky}}^{2}}} \cdot \sin th \]
          7. +-commutativeN/A

            \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2} + {\sin kx}^{2}}}} \cdot \sin th \]
          8. unpow2N/A

            \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{\sin ky \cdot \sin ky} + {\sin kx}^{2}}} \cdot \sin th \]
          9. unpow2N/A

            \[\leadsto \frac{\sin ky}{\sqrt{\sin ky \cdot \sin ky + \color{blue}{\sin kx \cdot \sin kx}}} \cdot \sin th \]
          10. lower-hypot.f64N/A

            \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
          11. lift-sin.f64N/A

            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\color{blue}{\sin ky}, \sin kx\right)} \cdot \sin th \]
          12. lift-sin.f6499.5

            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\sin kx}\right)} \cdot \sin th \]
        4. Applied rewrites99.5%

          \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
        5. Taylor expanded in th around 0

          \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \color{blue}{\left(th \cdot \left(1 + {th}^{2} \cdot \left({th}^{2} \cdot \left(\frac{1}{120} + \frac{-1}{5040} \cdot {th}^{2}\right) - \frac{1}{6}\right)\right)\right)} \]
        6. Step-by-step derivation
          1. *-commutativeN/A

            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\left(1 + {th}^{2} \cdot \left({th}^{2} \cdot \left(\frac{1}{120} + \frac{-1}{5040} \cdot {th}^{2}\right) - \frac{1}{6}\right)\right) \cdot \color{blue}{th}\right) \]
          2. lower-*.f64N/A

            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\left(1 + {th}^{2} \cdot \left({th}^{2} \cdot \left(\frac{1}{120} + \frac{-1}{5040} \cdot {th}^{2}\right) - \frac{1}{6}\right)\right) \cdot \color{blue}{th}\right) \]
        7. Applied rewrites55.8%

          \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \color{blue}{\left(\mathsf{fma}\left(\mathsf{fma}\left(th \cdot th, -0.0001984126984126984, 0.008333333333333333\right) \cdot \left(th \cdot th\right) - 0.16666666666666666, th \cdot th, 1\right) \cdot th\right)} \]

        if 0.998 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))

        1. Initial program 79.9%

          \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
        2. Add Preprocessing
        3. Step-by-step derivation
          1. lift-sqrt.f64N/A

            \[\leadsto \frac{\sin ky}{\color{blue}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
          2. lift-+.f64N/A

            \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
          3. lift-pow.f64N/A

            \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}} + {\sin ky}^{2}}} \cdot \sin th \]
          4. lift-sin.f64N/A

            \[\leadsto \frac{\sin ky}{\sqrt{{\color{blue}{\sin kx}}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
          5. lift-pow.f64N/A

            \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + \color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
          6. lift-sin.f64N/A

            \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\color{blue}{\sin ky}}^{2}}} \cdot \sin th \]
          7. +-commutativeN/A

            \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2} + {\sin kx}^{2}}}} \cdot \sin th \]
          8. unpow2N/A

            \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{\sin ky \cdot \sin ky} + {\sin kx}^{2}}} \cdot \sin th \]
          9. unpow2N/A

            \[\leadsto \frac{\sin ky}{\sqrt{\sin ky \cdot \sin ky + \color{blue}{\sin kx \cdot \sin kx}}} \cdot \sin th \]
          10. lower-hypot.f64N/A

            \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
          11. lift-sin.f64N/A

            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\color{blue}{\sin ky}, \sin kx\right)} \cdot \sin th \]
          12. lift-sin.f64100.0

            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\sin kx}\right)} \cdot \sin th \]
        4. Applied rewrites100.0%

          \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
        5. Taylor expanded in kx around 0

          \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{kx \cdot \left(1 + {kx}^{2} \cdot \left({kx}^{2} \cdot \left(\frac{1}{120} + \frac{-1}{5040} \cdot {kx}^{2}\right) - \frac{1}{6}\right)\right)}\right)} \cdot \sin th \]
        6. Step-by-step derivation
          1. *-commutativeN/A

            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \left(1 + {kx}^{2} \cdot \left({kx}^{2} \cdot \left(\frac{1}{120} + \frac{-1}{5040} \cdot {kx}^{2}\right) - \frac{1}{6}\right)\right) \cdot \color{blue}{kx}\right)} \cdot \sin th \]
          2. lower-*.f64N/A

            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \left(1 + {kx}^{2} \cdot \left({kx}^{2} \cdot \left(\frac{1}{120} + \frac{-1}{5040} \cdot {kx}^{2}\right) - \frac{1}{6}\right)\right) \cdot \color{blue}{kx}\right)} \cdot \sin th \]
        7. Applied rewrites98.2%

          \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\mathsf{fma}\left(\mathsf{fma}\left(-0.0001984126984126984, kx \cdot kx, 0.008333333333333333\right) \cdot \left(kx \cdot kx\right) - 0.16666666666666666, kx \cdot kx, 1\right) \cdot kx}\right)} \cdot \sin th \]
      7. Recombined 5 regimes into one program.
      8. Add Preprocessing

      Alternative 3: 85.6% accurate, 0.2× speedup?

      \[\begin{array}{l} \\ \begin{array}{l} t_1 := \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}\\ t_2 := {\sin kx}^{2}\\ t_3 := \frac{\sin ky}{\sqrt{t\_2 + {\sin ky}^{2}}}\\ \mathbf{if}\;t\_3 \leq -1:\\ \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, kx\right)} \cdot \sin th\\ \mathbf{elif}\;t\_3 \leq -0.2:\\ \;\;\;\;t\_1 \cdot th\\ \mathbf{elif}\;t\_3 \leq 2 \cdot 10^{-16}:\\ \;\;\;\;\frac{\sin ky}{\sqrt{t\_2}} \cdot \sin th\\ \mathbf{elif}\;t\_3 \leq 0.998:\\ \;\;\;\;t\_1 \cdot \left(\mathsf{fma}\left(\left(th \cdot th\right) \cdot 0.008333333333333333 - 0.16666666666666666, th \cdot th, 1\right) \cdot th\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(\mathsf{fma}\left(-0.0001984126984126984, kx \cdot kx, 0.008333333333333333\right) \cdot \left(kx \cdot kx\right) - 0.16666666666666666, kx \cdot kx, 1\right) \cdot kx\right)} \cdot \sin th\\ \end{array} \end{array} \]
      (FPCore (kx ky th)
       :precision binary64
       (let* ((t_1 (/ (sin ky) (hypot (sin ky) (sin kx))))
              (t_2 (pow (sin kx) 2.0))
              (t_3 (/ (sin ky) (sqrt (+ t_2 (pow (sin ky) 2.0))))))
         (if (<= t_3 -1.0)
           (* (/ (sin ky) (hypot (sin ky) kx)) (sin th))
           (if (<= t_3 -0.2)
             (* t_1 th)
             (if (<= t_3 2e-16)
               (* (/ (sin ky) (sqrt t_2)) (sin th))
               (if (<= t_3 0.998)
                 (*
                  t_1
                  (*
                   (fma
                    (- (* (* th th) 0.008333333333333333) 0.16666666666666666)
                    (* th th)
                    1.0)
                   th))
                 (*
                  (/
                   (sin ky)
                   (hypot
                    (sin ky)
                    (*
                     (fma
                      (-
                       (*
                        (fma -0.0001984126984126984 (* kx kx) 0.008333333333333333)
                        (* kx kx))
                       0.16666666666666666)
                      (* kx kx)
                      1.0)
                     kx)))
                  (sin th))))))))
      double code(double kx, double ky, double th) {
      	double t_1 = sin(ky) / hypot(sin(ky), sin(kx));
      	double t_2 = pow(sin(kx), 2.0);
      	double t_3 = sin(ky) / sqrt((t_2 + pow(sin(ky), 2.0)));
      	double tmp;
      	if (t_3 <= -1.0) {
      		tmp = (sin(ky) / hypot(sin(ky), kx)) * sin(th);
      	} else if (t_3 <= -0.2) {
      		tmp = t_1 * th;
      	} else if (t_3 <= 2e-16) {
      		tmp = (sin(ky) / sqrt(t_2)) * sin(th);
      	} else if (t_3 <= 0.998) {
      		tmp = t_1 * (fma((((th * th) * 0.008333333333333333) - 0.16666666666666666), (th * th), 1.0) * th);
      	} else {
      		tmp = (sin(ky) / hypot(sin(ky), (fma(((fma(-0.0001984126984126984, (kx * kx), 0.008333333333333333) * (kx * kx)) - 0.16666666666666666), (kx * kx), 1.0) * kx))) * sin(th);
      	}
      	return tmp;
      }
      
      function code(kx, ky, th)
      	t_1 = Float64(sin(ky) / hypot(sin(ky), sin(kx)))
      	t_2 = sin(kx) ^ 2.0
      	t_3 = Float64(sin(ky) / sqrt(Float64(t_2 + (sin(ky) ^ 2.0))))
      	tmp = 0.0
      	if (t_3 <= -1.0)
      		tmp = Float64(Float64(sin(ky) / hypot(sin(ky), kx)) * sin(th));
      	elseif (t_3 <= -0.2)
      		tmp = Float64(t_1 * th);
      	elseif (t_3 <= 2e-16)
      		tmp = Float64(Float64(sin(ky) / sqrt(t_2)) * sin(th));
      	elseif (t_3 <= 0.998)
      		tmp = Float64(t_1 * Float64(fma(Float64(Float64(Float64(th * th) * 0.008333333333333333) - 0.16666666666666666), Float64(th * th), 1.0) * th));
      	else
      		tmp = Float64(Float64(sin(ky) / hypot(sin(ky), Float64(fma(Float64(Float64(fma(-0.0001984126984126984, Float64(kx * kx), 0.008333333333333333) * Float64(kx * kx)) - 0.16666666666666666), Float64(kx * kx), 1.0) * kx))) * sin(th));
      	end
      	return tmp
      end
      
      code[kx_, ky_, th_] := Block[{t$95$1 = N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + N[Sin[kx], $MachinePrecision] ^ 2], $MachinePrecision]), $MachinePrecision]}, Block[{t$95$2 = N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision]}, Block[{t$95$3 = N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(t$95$2 + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$3, -1.0], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + kx ^ 2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$3, -0.2], N[(t$95$1 * th), $MachinePrecision], If[LessEqual[t$95$3, 2e-16], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[t$95$2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$3, 0.998], N[(t$95$1 * N[(N[(N[(N[(N[(th * th), $MachinePrecision] * 0.008333333333333333), $MachinePrecision] - 0.16666666666666666), $MachinePrecision] * N[(th * th), $MachinePrecision] + 1.0), $MachinePrecision] * th), $MachinePrecision]), $MachinePrecision], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + N[(N[(N[(N[(N[(-0.0001984126984126984 * N[(kx * kx), $MachinePrecision] + 0.008333333333333333), $MachinePrecision] * N[(kx * kx), $MachinePrecision]), $MachinePrecision] - 0.16666666666666666), $MachinePrecision] * N[(kx * kx), $MachinePrecision] + 1.0), $MachinePrecision] * kx), $MachinePrecision] ^ 2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision]]]]]]]]
      
      \begin{array}{l}
      
      \\
      \begin{array}{l}
      t_1 := \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}\\
      t_2 := {\sin kx}^{2}\\
      t_3 := \frac{\sin ky}{\sqrt{t\_2 + {\sin ky}^{2}}}\\
      \mathbf{if}\;t\_3 \leq -1:\\
      \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, kx\right)} \cdot \sin th\\
      
      \mathbf{elif}\;t\_3 \leq -0.2:\\
      \;\;\;\;t\_1 \cdot th\\
      
      \mathbf{elif}\;t\_3 \leq 2 \cdot 10^{-16}:\\
      \;\;\;\;\frac{\sin ky}{\sqrt{t\_2}} \cdot \sin th\\
      
      \mathbf{elif}\;t\_3 \leq 0.998:\\
      \;\;\;\;t\_1 \cdot \left(\mathsf{fma}\left(\left(th \cdot th\right) \cdot 0.008333333333333333 - 0.16666666666666666, th \cdot th, 1\right) \cdot th\right)\\
      
      \mathbf{else}:\\
      \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(\mathsf{fma}\left(-0.0001984126984126984, kx \cdot kx, 0.008333333333333333\right) \cdot \left(kx \cdot kx\right) - 0.16666666666666666, kx \cdot kx, 1\right) \cdot kx\right)} \cdot \sin th\\
      
      
      \end{array}
      \end{array}
      
      Derivation
      1. Split input into 5 regimes
      2. if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -1

        1. Initial program 93.0%

          \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
        2. Add Preprocessing
        3. Step-by-step derivation
          1. lift-sqrt.f64N/A

            \[\leadsto \frac{\sin ky}{\color{blue}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
          2. lift-+.f64N/A

            \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
          3. lift-pow.f64N/A

            \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}} + {\sin ky}^{2}}} \cdot \sin th \]
          4. lift-sin.f64N/A

            \[\leadsto \frac{\sin ky}{\sqrt{{\color{blue}{\sin kx}}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
          5. lift-pow.f64N/A

            \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + \color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
          6. lift-sin.f64N/A

            \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\color{blue}{\sin ky}}^{2}}} \cdot \sin th \]
          7. +-commutativeN/A

            \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2} + {\sin kx}^{2}}}} \cdot \sin th \]
          8. unpow2N/A

            \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{\sin ky \cdot \sin ky} + {\sin kx}^{2}}} \cdot \sin th \]
          9. unpow2N/A

            \[\leadsto \frac{\sin ky}{\sqrt{\sin ky \cdot \sin ky + \color{blue}{\sin kx \cdot \sin kx}}} \cdot \sin th \]
          10. lower-hypot.f64N/A

            \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
          11. lift-sin.f64N/A

            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\color{blue}{\sin ky}, \sin kx\right)} \cdot \sin th \]
          12. lift-sin.f64100.0

            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\sin kx}\right)} \cdot \sin th \]
        4. Applied rewrites100.0%

          \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
        5. Taylor expanded in kx around 0

          \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{kx}\right)} \cdot \sin th \]
        6. Step-by-step derivation
          1. Applied rewrites100.0%

            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{kx}\right)} \cdot \sin th \]

          if -1 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -0.20000000000000001

          1. Initial program 99.3%

            \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
          2. Add Preprocessing
          3. Step-by-step derivation
            1. lift-sqrt.f64N/A

              \[\leadsto \frac{\sin ky}{\color{blue}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
            2. lift-+.f64N/A

              \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
            3. lift-pow.f64N/A

              \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}} + {\sin ky}^{2}}} \cdot \sin th \]
            4. lift-sin.f64N/A

              \[\leadsto \frac{\sin ky}{\sqrt{{\color{blue}{\sin kx}}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
            5. lift-pow.f64N/A

              \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + \color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
            6. lift-sin.f64N/A

              \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\color{blue}{\sin ky}}^{2}}} \cdot \sin th \]
            7. +-commutativeN/A

              \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2} + {\sin kx}^{2}}}} \cdot \sin th \]
            8. unpow2N/A

              \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{\sin ky \cdot \sin ky} + {\sin kx}^{2}}} \cdot \sin th \]
            9. unpow2N/A

              \[\leadsto \frac{\sin ky}{\sqrt{\sin ky \cdot \sin ky + \color{blue}{\sin kx \cdot \sin kx}}} \cdot \sin th \]
            10. lower-hypot.f64N/A

              \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
            11. lift-sin.f64N/A

              \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\color{blue}{\sin ky}, \sin kx\right)} \cdot \sin th \]
            12. lift-sin.f6499.3

              \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\sin kx}\right)} \cdot \sin th \]
          4. Applied rewrites99.3%

            \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
          5. Taylor expanded in th around 0

            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \color{blue}{th} \]
          6. Step-by-step derivation
            1. Applied rewrites60.9%

              \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \color{blue}{th} \]

            if -0.20000000000000001 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 2e-16

            1. Initial program 99.2%

              \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
            2. Add Preprocessing
            3. Taylor expanded in ky around 0

              \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}}}} \cdot \sin th \]
            4. Step-by-step derivation
              1. lift-sin.f64N/A

                \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2}}} \cdot \sin th \]
              2. lift-pow.f6497.2

                \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{\color{blue}{2}}}} \cdot \sin th \]
            5. Applied rewrites97.2%

              \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}}}} \cdot \sin th \]

            if 2e-16 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 0.998

            1. Initial program 99.3%

              \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
            2. Add Preprocessing
            3. Step-by-step derivation
              1. lift-sqrt.f64N/A

                \[\leadsto \frac{\sin ky}{\color{blue}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
              2. lift-+.f64N/A

                \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
              3. lift-pow.f64N/A

                \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}} + {\sin ky}^{2}}} \cdot \sin th \]
              4. lift-sin.f64N/A

                \[\leadsto \frac{\sin ky}{\sqrt{{\color{blue}{\sin kx}}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
              5. lift-pow.f64N/A

                \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + \color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
              6. lift-sin.f64N/A

                \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\color{blue}{\sin ky}}^{2}}} \cdot \sin th \]
              7. +-commutativeN/A

                \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2} + {\sin kx}^{2}}}} \cdot \sin th \]
              8. unpow2N/A

                \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{\sin ky \cdot \sin ky} + {\sin kx}^{2}}} \cdot \sin th \]
              9. unpow2N/A

                \[\leadsto \frac{\sin ky}{\sqrt{\sin ky \cdot \sin ky + \color{blue}{\sin kx \cdot \sin kx}}} \cdot \sin th \]
              10. lower-hypot.f64N/A

                \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
              11. lift-sin.f64N/A

                \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\color{blue}{\sin ky}, \sin kx\right)} \cdot \sin th \]
              12. lift-sin.f6499.5

                \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\sin kx}\right)} \cdot \sin th \]
            4. Applied rewrites99.5%

              \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
            5. Taylor expanded in th around 0

              \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \color{blue}{\left(th \cdot \left(1 + {th}^{2} \cdot \left(\frac{1}{120} \cdot {th}^{2} - \frac{1}{6}\right)\right)\right)} \]
            6. Step-by-step derivation
              1. *-commutativeN/A

                \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\left(1 + {th}^{2} \cdot \left(\frac{1}{120} \cdot {th}^{2} - \frac{1}{6}\right)\right) \cdot \color{blue}{th}\right) \]
              2. lower-*.f64N/A

                \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\left(1 + {th}^{2} \cdot \left(\frac{1}{120} \cdot {th}^{2} - \frac{1}{6}\right)\right) \cdot \color{blue}{th}\right) \]
              3. +-commutativeN/A

                \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\left({th}^{2} \cdot \left(\frac{1}{120} \cdot {th}^{2} - \frac{1}{6}\right) + 1\right) \cdot th\right) \]
              4. *-commutativeN/A

                \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\left(\left(\frac{1}{120} \cdot {th}^{2} - \frac{1}{6}\right) \cdot {th}^{2} + 1\right) \cdot th\right) \]
              5. lower-fma.f64N/A

                \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\mathsf{fma}\left(\frac{1}{120} \cdot {th}^{2} - \frac{1}{6}, {th}^{2}, 1\right) \cdot th\right) \]
              6. lower--.f64N/A

                \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\mathsf{fma}\left(\frac{1}{120} \cdot {th}^{2} - \frac{1}{6}, {th}^{2}, 1\right) \cdot th\right) \]
              7. *-commutativeN/A

                \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\mathsf{fma}\left({th}^{2} \cdot \frac{1}{120} - \frac{1}{6}, {th}^{2}, 1\right) \cdot th\right) \]
              8. lower-*.f64N/A

                \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\mathsf{fma}\left({th}^{2} \cdot \frac{1}{120} - \frac{1}{6}, {th}^{2}, 1\right) \cdot th\right) \]
              9. unpow2N/A

                \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\mathsf{fma}\left(\left(th \cdot th\right) \cdot \frac{1}{120} - \frac{1}{6}, {th}^{2}, 1\right) \cdot th\right) \]
              10. lower-*.f64N/A

                \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\mathsf{fma}\left(\left(th \cdot th\right) \cdot \frac{1}{120} - \frac{1}{6}, {th}^{2}, 1\right) \cdot th\right) \]
              11. unpow2N/A

                \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\mathsf{fma}\left(\left(th \cdot th\right) \cdot \frac{1}{120} - \frac{1}{6}, th \cdot th, 1\right) \cdot th\right) \]
              12. lower-*.f6455.9

                \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\mathsf{fma}\left(\left(th \cdot th\right) \cdot 0.008333333333333333 - 0.16666666666666666, th \cdot th, 1\right) \cdot th\right) \]
            7. Applied rewrites55.9%

              \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \color{blue}{\left(\mathsf{fma}\left(\left(th \cdot th\right) \cdot 0.008333333333333333 - 0.16666666666666666, th \cdot th, 1\right) \cdot th\right)} \]

            if 0.998 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))

            1. Initial program 79.9%

              \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
            2. Add Preprocessing
            3. Step-by-step derivation
              1. lift-sqrt.f64N/A

                \[\leadsto \frac{\sin ky}{\color{blue}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
              2. lift-+.f64N/A

                \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
              3. lift-pow.f64N/A

                \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}} + {\sin ky}^{2}}} \cdot \sin th \]
              4. lift-sin.f64N/A

                \[\leadsto \frac{\sin ky}{\sqrt{{\color{blue}{\sin kx}}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
              5. lift-pow.f64N/A

                \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + \color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
              6. lift-sin.f64N/A

                \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\color{blue}{\sin ky}}^{2}}} \cdot \sin th \]
              7. +-commutativeN/A

                \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2} + {\sin kx}^{2}}}} \cdot \sin th \]
              8. unpow2N/A

                \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{\sin ky \cdot \sin ky} + {\sin kx}^{2}}} \cdot \sin th \]
              9. unpow2N/A

                \[\leadsto \frac{\sin ky}{\sqrt{\sin ky \cdot \sin ky + \color{blue}{\sin kx \cdot \sin kx}}} \cdot \sin th \]
              10. lower-hypot.f64N/A

                \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
              11. lift-sin.f64N/A

                \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\color{blue}{\sin ky}, \sin kx\right)} \cdot \sin th \]
              12. lift-sin.f64100.0

                \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\sin kx}\right)} \cdot \sin th \]
            4. Applied rewrites100.0%

              \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
            5. Taylor expanded in kx around 0

              \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{kx \cdot \left(1 + {kx}^{2} \cdot \left({kx}^{2} \cdot \left(\frac{1}{120} + \frac{-1}{5040} \cdot {kx}^{2}\right) - \frac{1}{6}\right)\right)}\right)} \cdot \sin th \]
            6. Step-by-step derivation
              1. *-commutativeN/A

                \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \left(1 + {kx}^{2} \cdot \left({kx}^{2} \cdot \left(\frac{1}{120} + \frac{-1}{5040} \cdot {kx}^{2}\right) - \frac{1}{6}\right)\right) \cdot \color{blue}{kx}\right)} \cdot \sin th \]
              2. lower-*.f64N/A

                \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \left(1 + {kx}^{2} \cdot \left({kx}^{2} \cdot \left(\frac{1}{120} + \frac{-1}{5040} \cdot {kx}^{2}\right) - \frac{1}{6}\right)\right) \cdot \color{blue}{kx}\right)} \cdot \sin th \]
            7. Applied rewrites98.2%

              \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\mathsf{fma}\left(\mathsf{fma}\left(-0.0001984126984126984, kx \cdot kx, 0.008333333333333333\right) \cdot \left(kx \cdot kx\right) - 0.16666666666666666, kx \cdot kx, 1\right) \cdot kx}\right)} \cdot \sin th \]
          7. Recombined 5 regimes into one program.
          8. Add Preprocessing

          Alternative 4: 85.6% accurate, 0.2× speedup?

          \[\begin{array}{l} \\ \begin{array}{l} t_1 := \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}\\ t_2 := {\sin kx}^{2}\\ t_3 := \frac{\sin ky}{\sqrt{t\_2 + {\sin ky}^{2}}}\\ \mathbf{if}\;t\_3 \leq -1:\\ \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, kx\right)} \cdot \sin th\\ \mathbf{elif}\;t\_3 \leq -0.2:\\ \;\;\;\;t\_1 \cdot th\\ \mathbf{elif}\;t\_3 \leq 2 \cdot 10^{-16}:\\ \;\;\;\;\frac{\sin ky}{\sqrt{t\_2}} \cdot \sin th\\ \mathbf{elif}\;t\_3 \leq 0.998:\\ \;\;\;\;t\_1 \cdot \left(\mathsf{fma}\left(\left(th \cdot th\right) \cdot 0.008333333333333333 - 0.16666666666666666, th \cdot th, 1\right) \cdot th\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(0.008333333333333333 \cdot \left(kx \cdot kx\right) - 0.16666666666666666, kx \cdot kx, 1\right) \cdot kx\right)} \cdot \sin th\\ \end{array} \end{array} \]
          (FPCore (kx ky th)
           :precision binary64
           (let* ((t_1 (/ (sin ky) (hypot (sin ky) (sin kx))))
                  (t_2 (pow (sin kx) 2.0))
                  (t_3 (/ (sin ky) (sqrt (+ t_2 (pow (sin ky) 2.0))))))
             (if (<= t_3 -1.0)
               (* (/ (sin ky) (hypot (sin ky) kx)) (sin th))
               (if (<= t_3 -0.2)
                 (* t_1 th)
                 (if (<= t_3 2e-16)
                   (* (/ (sin ky) (sqrt t_2)) (sin th))
                   (if (<= t_3 0.998)
                     (*
                      t_1
                      (*
                       (fma
                        (- (* (* th th) 0.008333333333333333) 0.16666666666666666)
                        (* th th)
                        1.0)
                       th))
                     (*
                      (/
                       (sin ky)
                       (hypot
                        (sin ky)
                        (*
                         (fma
                          (- (* 0.008333333333333333 (* kx kx)) 0.16666666666666666)
                          (* kx kx)
                          1.0)
                         kx)))
                      (sin th))))))))
          double code(double kx, double ky, double th) {
          	double t_1 = sin(ky) / hypot(sin(ky), sin(kx));
          	double t_2 = pow(sin(kx), 2.0);
          	double t_3 = sin(ky) / sqrt((t_2 + pow(sin(ky), 2.0)));
          	double tmp;
          	if (t_3 <= -1.0) {
          		tmp = (sin(ky) / hypot(sin(ky), kx)) * sin(th);
          	} else if (t_3 <= -0.2) {
          		tmp = t_1 * th;
          	} else if (t_3 <= 2e-16) {
          		tmp = (sin(ky) / sqrt(t_2)) * sin(th);
          	} else if (t_3 <= 0.998) {
          		tmp = t_1 * (fma((((th * th) * 0.008333333333333333) - 0.16666666666666666), (th * th), 1.0) * th);
          	} else {
          		tmp = (sin(ky) / hypot(sin(ky), (fma(((0.008333333333333333 * (kx * kx)) - 0.16666666666666666), (kx * kx), 1.0) * kx))) * sin(th);
          	}
          	return tmp;
          }
          
          function code(kx, ky, th)
          	t_1 = Float64(sin(ky) / hypot(sin(ky), sin(kx)))
          	t_2 = sin(kx) ^ 2.0
          	t_3 = Float64(sin(ky) / sqrt(Float64(t_2 + (sin(ky) ^ 2.0))))
          	tmp = 0.0
          	if (t_3 <= -1.0)
          		tmp = Float64(Float64(sin(ky) / hypot(sin(ky), kx)) * sin(th));
          	elseif (t_3 <= -0.2)
          		tmp = Float64(t_1 * th);
          	elseif (t_3 <= 2e-16)
          		tmp = Float64(Float64(sin(ky) / sqrt(t_2)) * sin(th));
          	elseif (t_3 <= 0.998)
          		tmp = Float64(t_1 * Float64(fma(Float64(Float64(Float64(th * th) * 0.008333333333333333) - 0.16666666666666666), Float64(th * th), 1.0) * th));
          	else
          		tmp = Float64(Float64(sin(ky) / hypot(sin(ky), Float64(fma(Float64(Float64(0.008333333333333333 * Float64(kx * kx)) - 0.16666666666666666), Float64(kx * kx), 1.0) * kx))) * sin(th));
          	end
          	return tmp
          end
          
          code[kx_, ky_, th_] := Block[{t$95$1 = N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + N[Sin[kx], $MachinePrecision] ^ 2], $MachinePrecision]), $MachinePrecision]}, Block[{t$95$2 = N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision]}, Block[{t$95$3 = N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(t$95$2 + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$3, -1.0], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + kx ^ 2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$3, -0.2], N[(t$95$1 * th), $MachinePrecision], If[LessEqual[t$95$3, 2e-16], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[t$95$2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$3, 0.998], N[(t$95$1 * N[(N[(N[(N[(N[(th * th), $MachinePrecision] * 0.008333333333333333), $MachinePrecision] - 0.16666666666666666), $MachinePrecision] * N[(th * th), $MachinePrecision] + 1.0), $MachinePrecision] * th), $MachinePrecision]), $MachinePrecision], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + N[(N[(N[(N[(0.008333333333333333 * N[(kx * kx), $MachinePrecision]), $MachinePrecision] - 0.16666666666666666), $MachinePrecision] * N[(kx * kx), $MachinePrecision] + 1.0), $MachinePrecision] * kx), $MachinePrecision] ^ 2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision]]]]]]]]
          
          \begin{array}{l}
          
          \\
          \begin{array}{l}
          t_1 := \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}\\
          t_2 := {\sin kx}^{2}\\
          t_3 := \frac{\sin ky}{\sqrt{t\_2 + {\sin ky}^{2}}}\\
          \mathbf{if}\;t\_3 \leq -1:\\
          \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, kx\right)} \cdot \sin th\\
          
          \mathbf{elif}\;t\_3 \leq -0.2:\\
          \;\;\;\;t\_1 \cdot th\\
          
          \mathbf{elif}\;t\_3 \leq 2 \cdot 10^{-16}:\\
          \;\;\;\;\frac{\sin ky}{\sqrt{t\_2}} \cdot \sin th\\
          
          \mathbf{elif}\;t\_3 \leq 0.998:\\
          \;\;\;\;t\_1 \cdot \left(\mathsf{fma}\left(\left(th \cdot th\right) \cdot 0.008333333333333333 - 0.16666666666666666, th \cdot th, 1\right) \cdot th\right)\\
          
          \mathbf{else}:\\
          \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(0.008333333333333333 \cdot \left(kx \cdot kx\right) - 0.16666666666666666, kx \cdot kx, 1\right) \cdot kx\right)} \cdot \sin th\\
          
          
          \end{array}
          \end{array}
          
          Derivation
          1. Split input into 5 regimes
          2. if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -1

            1. Initial program 93.0%

              \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
            2. Add Preprocessing
            3. Step-by-step derivation
              1. lift-sqrt.f64N/A

                \[\leadsto \frac{\sin ky}{\color{blue}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
              2. lift-+.f64N/A

                \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
              3. lift-pow.f64N/A

                \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}} + {\sin ky}^{2}}} \cdot \sin th \]
              4. lift-sin.f64N/A

                \[\leadsto \frac{\sin ky}{\sqrt{{\color{blue}{\sin kx}}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
              5. lift-pow.f64N/A

                \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + \color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
              6. lift-sin.f64N/A

                \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\color{blue}{\sin ky}}^{2}}} \cdot \sin th \]
              7. +-commutativeN/A

                \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2} + {\sin kx}^{2}}}} \cdot \sin th \]
              8. unpow2N/A

                \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{\sin ky \cdot \sin ky} + {\sin kx}^{2}}} \cdot \sin th \]
              9. unpow2N/A

                \[\leadsto \frac{\sin ky}{\sqrt{\sin ky \cdot \sin ky + \color{blue}{\sin kx \cdot \sin kx}}} \cdot \sin th \]
              10. lower-hypot.f64N/A

                \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
              11. lift-sin.f64N/A

                \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\color{blue}{\sin ky}, \sin kx\right)} \cdot \sin th \]
              12. lift-sin.f64100.0

                \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\sin kx}\right)} \cdot \sin th \]
            4. Applied rewrites100.0%

              \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
            5. Taylor expanded in kx around 0

              \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{kx}\right)} \cdot \sin th \]
            6. Step-by-step derivation
              1. Applied rewrites100.0%

                \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{kx}\right)} \cdot \sin th \]

              if -1 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -0.20000000000000001

              1. Initial program 99.3%

                \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
              2. Add Preprocessing
              3. Step-by-step derivation
                1. lift-sqrt.f64N/A

                  \[\leadsto \frac{\sin ky}{\color{blue}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                2. lift-+.f64N/A

                  \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                3. lift-pow.f64N/A

                  \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}} + {\sin ky}^{2}}} \cdot \sin th \]
                4. lift-sin.f64N/A

                  \[\leadsto \frac{\sin ky}{\sqrt{{\color{blue}{\sin kx}}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                5. lift-pow.f64N/A

                  \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + \color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
                6. lift-sin.f64N/A

                  \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\color{blue}{\sin ky}}^{2}}} \cdot \sin th \]
                7. +-commutativeN/A

                  \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2} + {\sin kx}^{2}}}} \cdot \sin th \]
                8. unpow2N/A

                  \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{\sin ky \cdot \sin ky} + {\sin kx}^{2}}} \cdot \sin th \]
                9. unpow2N/A

                  \[\leadsto \frac{\sin ky}{\sqrt{\sin ky \cdot \sin ky + \color{blue}{\sin kx \cdot \sin kx}}} \cdot \sin th \]
                10. lower-hypot.f64N/A

                  \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                11. lift-sin.f64N/A

                  \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\color{blue}{\sin ky}, \sin kx\right)} \cdot \sin th \]
                12. lift-sin.f6499.3

                  \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\sin kx}\right)} \cdot \sin th \]
              4. Applied rewrites99.3%

                \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
              5. Taylor expanded in th around 0

                \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \color{blue}{th} \]
              6. Step-by-step derivation
                1. Applied rewrites60.9%

                  \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \color{blue}{th} \]

                if -0.20000000000000001 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 2e-16

                1. Initial program 99.2%

                  \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                2. Add Preprocessing
                3. Taylor expanded in ky around 0

                  \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}}}} \cdot \sin th \]
                4. Step-by-step derivation
                  1. lift-sin.f64N/A

                    \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2}}} \cdot \sin th \]
                  2. lift-pow.f6497.2

                    \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{\color{blue}{2}}}} \cdot \sin th \]
                5. Applied rewrites97.2%

                  \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}}}} \cdot \sin th \]

                if 2e-16 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 0.998

                1. Initial program 99.3%

                  \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                2. Add Preprocessing
                3. Step-by-step derivation
                  1. lift-sqrt.f64N/A

                    \[\leadsto \frac{\sin ky}{\color{blue}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                  2. lift-+.f64N/A

                    \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                  3. lift-pow.f64N/A

                    \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}} + {\sin ky}^{2}}} \cdot \sin th \]
                  4. lift-sin.f64N/A

                    \[\leadsto \frac{\sin ky}{\sqrt{{\color{blue}{\sin kx}}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                  5. lift-pow.f64N/A

                    \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + \color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
                  6. lift-sin.f64N/A

                    \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\color{blue}{\sin ky}}^{2}}} \cdot \sin th \]
                  7. +-commutativeN/A

                    \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2} + {\sin kx}^{2}}}} \cdot \sin th \]
                  8. unpow2N/A

                    \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{\sin ky \cdot \sin ky} + {\sin kx}^{2}}} \cdot \sin th \]
                  9. unpow2N/A

                    \[\leadsto \frac{\sin ky}{\sqrt{\sin ky \cdot \sin ky + \color{blue}{\sin kx \cdot \sin kx}}} \cdot \sin th \]
                  10. lower-hypot.f64N/A

                    \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                  11. lift-sin.f64N/A

                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\color{blue}{\sin ky}, \sin kx\right)} \cdot \sin th \]
                  12. lift-sin.f6499.5

                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\sin kx}\right)} \cdot \sin th \]
                4. Applied rewrites99.5%

                  \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                5. Taylor expanded in th around 0

                  \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \color{blue}{\left(th \cdot \left(1 + {th}^{2} \cdot \left(\frac{1}{120} \cdot {th}^{2} - \frac{1}{6}\right)\right)\right)} \]
                6. Step-by-step derivation
                  1. *-commutativeN/A

                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\left(1 + {th}^{2} \cdot \left(\frac{1}{120} \cdot {th}^{2} - \frac{1}{6}\right)\right) \cdot \color{blue}{th}\right) \]
                  2. lower-*.f64N/A

                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\left(1 + {th}^{2} \cdot \left(\frac{1}{120} \cdot {th}^{2} - \frac{1}{6}\right)\right) \cdot \color{blue}{th}\right) \]
                  3. +-commutativeN/A

                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\left({th}^{2} \cdot \left(\frac{1}{120} \cdot {th}^{2} - \frac{1}{6}\right) + 1\right) \cdot th\right) \]
                  4. *-commutativeN/A

                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\left(\left(\frac{1}{120} \cdot {th}^{2} - \frac{1}{6}\right) \cdot {th}^{2} + 1\right) \cdot th\right) \]
                  5. lower-fma.f64N/A

                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\mathsf{fma}\left(\frac{1}{120} \cdot {th}^{2} - \frac{1}{6}, {th}^{2}, 1\right) \cdot th\right) \]
                  6. lower--.f64N/A

                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\mathsf{fma}\left(\frac{1}{120} \cdot {th}^{2} - \frac{1}{6}, {th}^{2}, 1\right) \cdot th\right) \]
                  7. *-commutativeN/A

                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\mathsf{fma}\left({th}^{2} \cdot \frac{1}{120} - \frac{1}{6}, {th}^{2}, 1\right) \cdot th\right) \]
                  8. lower-*.f64N/A

                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\mathsf{fma}\left({th}^{2} \cdot \frac{1}{120} - \frac{1}{6}, {th}^{2}, 1\right) \cdot th\right) \]
                  9. unpow2N/A

                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\mathsf{fma}\left(\left(th \cdot th\right) \cdot \frac{1}{120} - \frac{1}{6}, {th}^{2}, 1\right) \cdot th\right) \]
                  10. lower-*.f64N/A

                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\mathsf{fma}\left(\left(th \cdot th\right) \cdot \frac{1}{120} - \frac{1}{6}, {th}^{2}, 1\right) \cdot th\right) \]
                  11. unpow2N/A

                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\mathsf{fma}\left(\left(th \cdot th\right) \cdot \frac{1}{120} - \frac{1}{6}, th \cdot th, 1\right) \cdot th\right) \]
                  12. lower-*.f6455.9

                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\mathsf{fma}\left(\left(th \cdot th\right) \cdot 0.008333333333333333 - 0.16666666666666666, th \cdot th, 1\right) \cdot th\right) \]
                7. Applied rewrites55.9%

                  \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \color{blue}{\left(\mathsf{fma}\left(\left(th \cdot th\right) \cdot 0.008333333333333333 - 0.16666666666666666, th \cdot th, 1\right) \cdot th\right)} \]

                if 0.998 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))

                1. Initial program 79.9%

                  \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                2. Add Preprocessing
                3. Step-by-step derivation
                  1. lift-sqrt.f64N/A

                    \[\leadsto \frac{\sin ky}{\color{blue}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                  2. lift-+.f64N/A

                    \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                  3. lift-pow.f64N/A

                    \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}} + {\sin ky}^{2}}} \cdot \sin th \]
                  4. lift-sin.f64N/A

                    \[\leadsto \frac{\sin ky}{\sqrt{{\color{blue}{\sin kx}}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                  5. lift-pow.f64N/A

                    \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + \color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
                  6. lift-sin.f64N/A

                    \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\color{blue}{\sin ky}}^{2}}} \cdot \sin th \]
                  7. +-commutativeN/A

                    \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2} + {\sin kx}^{2}}}} \cdot \sin th \]
                  8. unpow2N/A

                    \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{\sin ky \cdot \sin ky} + {\sin kx}^{2}}} \cdot \sin th \]
                  9. unpow2N/A

                    \[\leadsto \frac{\sin ky}{\sqrt{\sin ky \cdot \sin ky + \color{blue}{\sin kx \cdot \sin kx}}} \cdot \sin th \]
                  10. lower-hypot.f64N/A

                    \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                  11. lift-sin.f64N/A

                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\color{blue}{\sin ky}, \sin kx\right)} \cdot \sin th \]
                  12. lift-sin.f64100.0

                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\sin kx}\right)} \cdot \sin th \]
                4. Applied rewrites100.0%

                  \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                5. Taylor expanded in kx around 0

                  \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{kx \cdot \left(1 + {kx}^{2} \cdot \left(\frac{1}{120} \cdot {kx}^{2} - \frac{1}{6}\right)\right)}\right)} \cdot \sin th \]
                6. Step-by-step derivation
                  1. *-commutativeN/A

                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \left(1 + {kx}^{2} \cdot \left(\frac{1}{120} \cdot {kx}^{2} - \frac{1}{6}\right)\right) \cdot \color{blue}{kx}\right)} \cdot \sin th \]
                  2. lower-*.f64N/A

                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \left(1 + {kx}^{2} \cdot \left(\frac{1}{120} \cdot {kx}^{2} - \frac{1}{6}\right)\right) \cdot \color{blue}{kx}\right)} \cdot \sin th \]
                  3. +-commutativeN/A

                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \left({kx}^{2} \cdot \left(\frac{1}{120} \cdot {kx}^{2} - \frac{1}{6}\right) + 1\right) \cdot kx\right)} \cdot \sin th \]
                  4. *-commutativeN/A

                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \left(\left(\frac{1}{120} \cdot {kx}^{2} - \frac{1}{6}\right) \cdot {kx}^{2} + 1\right) \cdot kx\right)} \cdot \sin th \]
                  5. lower-fma.f64N/A

                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(\frac{1}{120} \cdot {kx}^{2} - \frac{1}{6}, {kx}^{2}, 1\right) \cdot kx\right)} \cdot \sin th \]
                  6. lower--.f64N/A

                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(\frac{1}{120} \cdot {kx}^{2} - \frac{1}{6}, {kx}^{2}, 1\right) \cdot kx\right)} \cdot \sin th \]
                  7. lower-*.f64N/A

                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(\frac{1}{120} \cdot {kx}^{2} - \frac{1}{6}, {kx}^{2}, 1\right) \cdot kx\right)} \cdot \sin th \]
                  8. unpow2N/A

                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(\frac{1}{120} \cdot \left(kx \cdot kx\right) - \frac{1}{6}, {kx}^{2}, 1\right) \cdot kx\right)} \cdot \sin th \]
                  9. lower-*.f64N/A

                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(\frac{1}{120} \cdot \left(kx \cdot kx\right) - \frac{1}{6}, {kx}^{2}, 1\right) \cdot kx\right)} \cdot \sin th \]
                  10. unpow2N/A

                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(\frac{1}{120} \cdot \left(kx \cdot kx\right) - \frac{1}{6}, kx \cdot kx, 1\right) \cdot kx\right)} \cdot \sin th \]
                  11. lower-*.f6498.2

                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(0.008333333333333333 \cdot \left(kx \cdot kx\right) - 0.16666666666666666, kx \cdot kx, 1\right) \cdot kx\right)} \cdot \sin th \]
                7. Applied rewrites98.2%

                  \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\mathsf{fma}\left(0.008333333333333333 \cdot \left(kx \cdot kx\right) - 0.16666666666666666, kx \cdot kx, 1\right) \cdot kx}\right)} \cdot \sin th \]
              7. Recombined 5 regimes into one program.
              8. Add Preprocessing

              Alternative 5: 85.6% accurate, 0.2× speedup?

              \[\begin{array}{l} \\ \begin{array}{l} t_1 := \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}\\ t_2 := {\sin kx}^{2}\\ t_3 := \frac{\sin ky}{\sqrt{t\_2 + {\sin ky}^{2}}}\\ \mathbf{if}\;t\_3 \leq -1:\\ \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, kx\right)} \cdot \sin th\\ \mathbf{elif}\;t\_3 \leq -0.2:\\ \;\;\;\;t\_1 \cdot th\\ \mathbf{elif}\;t\_3 \leq 2 \cdot 10^{-16}:\\ \;\;\;\;\frac{\sin ky}{\sqrt{t\_2}} \cdot \sin th\\ \mathbf{elif}\;t\_3 \leq 0.998:\\ \;\;\;\;t\_1 \cdot \left(\mathsf{fma}\left(th \cdot th, -0.16666666666666666, 1\right) \cdot th\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(0.008333333333333333 \cdot \left(kx \cdot kx\right) - 0.16666666666666666, kx \cdot kx, 1\right) \cdot kx\right)} \cdot \sin th\\ \end{array} \end{array} \]
              (FPCore (kx ky th)
               :precision binary64
               (let* ((t_1 (/ (sin ky) (hypot (sin ky) (sin kx))))
                      (t_2 (pow (sin kx) 2.0))
                      (t_3 (/ (sin ky) (sqrt (+ t_2 (pow (sin ky) 2.0))))))
                 (if (<= t_3 -1.0)
                   (* (/ (sin ky) (hypot (sin ky) kx)) (sin th))
                   (if (<= t_3 -0.2)
                     (* t_1 th)
                     (if (<= t_3 2e-16)
                       (* (/ (sin ky) (sqrt t_2)) (sin th))
                       (if (<= t_3 0.998)
                         (* t_1 (* (fma (* th th) -0.16666666666666666 1.0) th))
                         (*
                          (/
                           (sin ky)
                           (hypot
                            (sin ky)
                            (*
                             (fma
                              (- (* 0.008333333333333333 (* kx kx)) 0.16666666666666666)
                              (* kx kx)
                              1.0)
                             kx)))
                          (sin th))))))))
              double code(double kx, double ky, double th) {
              	double t_1 = sin(ky) / hypot(sin(ky), sin(kx));
              	double t_2 = pow(sin(kx), 2.0);
              	double t_3 = sin(ky) / sqrt((t_2 + pow(sin(ky), 2.0)));
              	double tmp;
              	if (t_3 <= -1.0) {
              		tmp = (sin(ky) / hypot(sin(ky), kx)) * sin(th);
              	} else if (t_3 <= -0.2) {
              		tmp = t_1 * th;
              	} else if (t_3 <= 2e-16) {
              		tmp = (sin(ky) / sqrt(t_2)) * sin(th);
              	} else if (t_3 <= 0.998) {
              		tmp = t_1 * (fma((th * th), -0.16666666666666666, 1.0) * th);
              	} else {
              		tmp = (sin(ky) / hypot(sin(ky), (fma(((0.008333333333333333 * (kx * kx)) - 0.16666666666666666), (kx * kx), 1.0) * kx))) * sin(th);
              	}
              	return tmp;
              }
              
              function code(kx, ky, th)
              	t_1 = Float64(sin(ky) / hypot(sin(ky), sin(kx)))
              	t_2 = sin(kx) ^ 2.0
              	t_3 = Float64(sin(ky) / sqrt(Float64(t_2 + (sin(ky) ^ 2.0))))
              	tmp = 0.0
              	if (t_3 <= -1.0)
              		tmp = Float64(Float64(sin(ky) / hypot(sin(ky), kx)) * sin(th));
              	elseif (t_3 <= -0.2)
              		tmp = Float64(t_1 * th);
              	elseif (t_3 <= 2e-16)
              		tmp = Float64(Float64(sin(ky) / sqrt(t_2)) * sin(th));
              	elseif (t_3 <= 0.998)
              		tmp = Float64(t_1 * Float64(fma(Float64(th * th), -0.16666666666666666, 1.0) * th));
              	else
              		tmp = Float64(Float64(sin(ky) / hypot(sin(ky), Float64(fma(Float64(Float64(0.008333333333333333 * Float64(kx * kx)) - 0.16666666666666666), Float64(kx * kx), 1.0) * kx))) * sin(th));
              	end
              	return tmp
              end
              
              code[kx_, ky_, th_] := Block[{t$95$1 = N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + N[Sin[kx], $MachinePrecision] ^ 2], $MachinePrecision]), $MachinePrecision]}, Block[{t$95$2 = N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision]}, Block[{t$95$3 = N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(t$95$2 + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$3, -1.0], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + kx ^ 2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$3, -0.2], N[(t$95$1 * th), $MachinePrecision], If[LessEqual[t$95$3, 2e-16], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[t$95$2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$3, 0.998], N[(t$95$1 * N[(N[(N[(th * th), $MachinePrecision] * -0.16666666666666666 + 1.0), $MachinePrecision] * th), $MachinePrecision]), $MachinePrecision], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + N[(N[(N[(N[(0.008333333333333333 * N[(kx * kx), $MachinePrecision]), $MachinePrecision] - 0.16666666666666666), $MachinePrecision] * N[(kx * kx), $MachinePrecision] + 1.0), $MachinePrecision] * kx), $MachinePrecision] ^ 2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision]]]]]]]]
              
              \begin{array}{l}
              
              \\
              \begin{array}{l}
              t_1 := \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}\\
              t_2 := {\sin kx}^{2}\\
              t_3 := \frac{\sin ky}{\sqrt{t\_2 + {\sin ky}^{2}}}\\
              \mathbf{if}\;t\_3 \leq -1:\\
              \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, kx\right)} \cdot \sin th\\
              
              \mathbf{elif}\;t\_3 \leq -0.2:\\
              \;\;\;\;t\_1 \cdot th\\
              
              \mathbf{elif}\;t\_3 \leq 2 \cdot 10^{-16}:\\
              \;\;\;\;\frac{\sin ky}{\sqrt{t\_2}} \cdot \sin th\\
              
              \mathbf{elif}\;t\_3 \leq 0.998:\\
              \;\;\;\;t\_1 \cdot \left(\mathsf{fma}\left(th \cdot th, -0.16666666666666666, 1\right) \cdot th\right)\\
              
              \mathbf{else}:\\
              \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(0.008333333333333333 \cdot \left(kx \cdot kx\right) - 0.16666666666666666, kx \cdot kx, 1\right) \cdot kx\right)} \cdot \sin th\\
              
              
              \end{array}
              \end{array}
              
              Derivation
              1. Split input into 5 regimes
              2. if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -1

                1. Initial program 93.0%

                  \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                2. Add Preprocessing
                3. Step-by-step derivation
                  1. lift-sqrt.f64N/A

                    \[\leadsto \frac{\sin ky}{\color{blue}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                  2. lift-+.f64N/A

                    \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                  3. lift-pow.f64N/A

                    \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}} + {\sin ky}^{2}}} \cdot \sin th \]
                  4. lift-sin.f64N/A

                    \[\leadsto \frac{\sin ky}{\sqrt{{\color{blue}{\sin kx}}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                  5. lift-pow.f64N/A

                    \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + \color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
                  6. lift-sin.f64N/A

                    \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\color{blue}{\sin ky}}^{2}}} \cdot \sin th \]
                  7. +-commutativeN/A

                    \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2} + {\sin kx}^{2}}}} \cdot \sin th \]
                  8. unpow2N/A

                    \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{\sin ky \cdot \sin ky} + {\sin kx}^{2}}} \cdot \sin th \]
                  9. unpow2N/A

                    \[\leadsto \frac{\sin ky}{\sqrt{\sin ky \cdot \sin ky + \color{blue}{\sin kx \cdot \sin kx}}} \cdot \sin th \]
                  10. lower-hypot.f64N/A

                    \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                  11. lift-sin.f64N/A

                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\color{blue}{\sin ky}, \sin kx\right)} \cdot \sin th \]
                  12. lift-sin.f64100.0

                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\sin kx}\right)} \cdot \sin th \]
                4. Applied rewrites100.0%

                  \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                5. Taylor expanded in kx around 0

                  \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{kx}\right)} \cdot \sin th \]
                6. Step-by-step derivation
                  1. Applied rewrites100.0%

                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{kx}\right)} \cdot \sin th \]

                  if -1 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -0.20000000000000001

                  1. Initial program 99.3%

                    \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                  2. Add Preprocessing
                  3. Step-by-step derivation
                    1. lift-sqrt.f64N/A

                      \[\leadsto \frac{\sin ky}{\color{blue}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                    2. lift-+.f64N/A

                      \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                    3. lift-pow.f64N/A

                      \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}} + {\sin ky}^{2}}} \cdot \sin th \]
                    4. lift-sin.f64N/A

                      \[\leadsto \frac{\sin ky}{\sqrt{{\color{blue}{\sin kx}}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                    5. lift-pow.f64N/A

                      \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + \color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
                    6. lift-sin.f64N/A

                      \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\color{blue}{\sin ky}}^{2}}} \cdot \sin th \]
                    7. +-commutativeN/A

                      \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2} + {\sin kx}^{2}}}} \cdot \sin th \]
                    8. unpow2N/A

                      \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{\sin ky \cdot \sin ky} + {\sin kx}^{2}}} \cdot \sin th \]
                    9. unpow2N/A

                      \[\leadsto \frac{\sin ky}{\sqrt{\sin ky \cdot \sin ky + \color{blue}{\sin kx \cdot \sin kx}}} \cdot \sin th \]
                    10. lower-hypot.f64N/A

                      \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                    11. lift-sin.f64N/A

                      \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\color{blue}{\sin ky}, \sin kx\right)} \cdot \sin th \]
                    12. lift-sin.f6499.3

                      \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\sin kx}\right)} \cdot \sin th \]
                  4. Applied rewrites99.3%

                    \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                  5. Taylor expanded in th around 0

                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \color{blue}{th} \]
                  6. Step-by-step derivation
                    1. Applied rewrites60.9%

                      \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \color{blue}{th} \]

                    if -0.20000000000000001 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 2e-16

                    1. Initial program 99.2%

                      \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                    2. Add Preprocessing
                    3. Taylor expanded in ky around 0

                      \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}}}} \cdot \sin th \]
                    4. Step-by-step derivation
                      1. lift-sin.f64N/A

                        \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2}}} \cdot \sin th \]
                      2. lift-pow.f6497.2

                        \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{\color{blue}{2}}}} \cdot \sin th \]
                    5. Applied rewrites97.2%

                      \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}}}} \cdot \sin th \]

                    if 2e-16 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 0.998

                    1. Initial program 99.3%

                      \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                    2. Add Preprocessing
                    3. Step-by-step derivation
                      1. lift-sqrt.f64N/A

                        \[\leadsto \frac{\sin ky}{\color{blue}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                      2. lift-+.f64N/A

                        \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                      3. lift-pow.f64N/A

                        \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}} + {\sin ky}^{2}}} \cdot \sin th \]
                      4. lift-sin.f64N/A

                        \[\leadsto \frac{\sin ky}{\sqrt{{\color{blue}{\sin kx}}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                      5. lift-pow.f64N/A

                        \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + \color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
                      6. lift-sin.f64N/A

                        \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\color{blue}{\sin ky}}^{2}}} \cdot \sin th \]
                      7. +-commutativeN/A

                        \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2} + {\sin kx}^{2}}}} \cdot \sin th \]
                      8. unpow2N/A

                        \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{\sin ky \cdot \sin ky} + {\sin kx}^{2}}} \cdot \sin th \]
                      9. unpow2N/A

                        \[\leadsto \frac{\sin ky}{\sqrt{\sin ky \cdot \sin ky + \color{blue}{\sin kx \cdot \sin kx}}} \cdot \sin th \]
                      10. lower-hypot.f64N/A

                        \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                      11. lift-sin.f64N/A

                        \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\color{blue}{\sin ky}, \sin kx\right)} \cdot \sin th \]
                      12. lift-sin.f6499.5

                        \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\sin kx}\right)} \cdot \sin th \]
                    4. Applied rewrites99.5%

                      \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                    5. Taylor expanded in th around 0

                      \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \color{blue}{\left(th \cdot \left(1 + \frac{-1}{6} \cdot {th}^{2}\right)\right)} \]
                    6. Step-by-step derivation
                      1. *-commutativeN/A

                        \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\left(1 + \frac{-1}{6} \cdot {th}^{2}\right) \cdot \color{blue}{th}\right) \]
                      2. lower-*.f64N/A

                        \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\left(1 + \frac{-1}{6} \cdot {th}^{2}\right) \cdot \color{blue}{th}\right) \]
                      3. +-commutativeN/A

                        \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\left(\frac{-1}{6} \cdot {th}^{2} + 1\right) \cdot th\right) \]
                      4. *-commutativeN/A

                        \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\left({th}^{2} \cdot \frac{-1}{6} + 1\right) \cdot th\right) \]
                      5. lower-fma.f64N/A

                        \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\mathsf{fma}\left({th}^{2}, \frac{-1}{6}, 1\right) \cdot th\right) \]
                      6. unpow2N/A

                        \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\mathsf{fma}\left(th \cdot th, \frac{-1}{6}, 1\right) \cdot th\right) \]
                      7. lower-*.f6454.9

                        \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\mathsf{fma}\left(th \cdot th, -0.16666666666666666, 1\right) \cdot th\right) \]
                    7. Applied rewrites54.9%

                      \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \color{blue}{\left(\mathsf{fma}\left(th \cdot th, -0.16666666666666666, 1\right) \cdot th\right)} \]

                    if 0.998 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))

                    1. Initial program 79.9%

                      \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                    2. Add Preprocessing
                    3. Step-by-step derivation
                      1. lift-sqrt.f64N/A

                        \[\leadsto \frac{\sin ky}{\color{blue}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                      2. lift-+.f64N/A

                        \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                      3. lift-pow.f64N/A

                        \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}} + {\sin ky}^{2}}} \cdot \sin th \]
                      4. lift-sin.f64N/A

                        \[\leadsto \frac{\sin ky}{\sqrt{{\color{blue}{\sin kx}}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                      5. lift-pow.f64N/A

                        \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + \color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
                      6. lift-sin.f64N/A

                        \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\color{blue}{\sin ky}}^{2}}} \cdot \sin th \]
                      7. +-commutativeN/A

                        \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2} + {\sin kx}^{2}}}} \cdot \sin th \]
                      8. unpow2N/A

                        \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{\sin ky \cdot \sin ky} + {\sin kx}^{2}}} \cdot \sin th \]
                      9. unpow2N/A

                        \[\leadsto \frac{\sin ky}{\sqrt{\sin ky \cdot \sin ky + \color{blue}{\sin kx \cdot \sin kx}}} \cdot \sin th \]
                      10. lower-hypot.f64N/A

                        \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                      11. lift-sin.f64N/A

                        \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\color{blue}{\sin ky}, \sin kx\right)} \cdot \sin th \]
                      12. lift-sin.f64100.0

                        \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\sin kx}\right)} \cdot \sin th \]
                    4. Applied rewrites100.0%

                      \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                    5. Taylor expanded in kx around 0

                      \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{kx \cdot \left(1 + {kx}^{2} \cdot \left(\frac{1}{120} \cdot {kx}^{2} - \frac{1}{6}\right)\right)}\right)} \cdot \sin th \]
                    6. Step-by-step derivation
                      1. *-commutativeN/A

                        \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \left(1 + {kx}^{2} \cdot \left(\frac{1}{120} \cdot {kx}^{2} - \frac{1}{6}\right)\right) \cdot \color{blue}{kx}\right)} \cdot \sin th \]
                      2. lower-*.f64N/A

                        \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \left(1 + {kx}^{2} \cdot \left(\frac{1}{120} \cdot {kx}^{2} - \frac{1}{6}\right)\right) \cdot \color{blue}{kx}\right)} \cdot \sin th \]
                      3. +-commutativeN/A

                        \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \left({kx}^{2} \cdot \left(\frac{1}{120} \cdot {kx}^{2} - \frac{1}{6}\right) + 1\right) \cdot kx\right)} \cdot \sin th \]
                      4. *-commutativeN/A

                        \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \left(\left(\frac{1}{120} \cdot {kx}^{2} - \frac{1}{6}\right) \cdot {kx}^{2} + 1\right) \cdot kx\right)} \cdot \sin th \]
                      5. lower-fma.f64N/A

                        \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(\frac{1}{120} \cdot {kx}^{2} - \frac{1}{6}, {kx}^{2}, 1\right) \cdot kx\right)} \cdot \sin th \]
                      6. lower--.f64N/A

                        \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(\frac{1}{120} \cdot {kx}^{2} - \frac{1}{6}, {kx}^{2}, 1\right) \cdot kx\right)} \cdot \sin th \]
                      7. lower-*.f64N/A

                        \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(\frac{1}{120} \cdot {kx}^{2} - \frac{1}{6}, {kx}^{2}, 1\right) \cdot kx\right)} \cdot \sin th \]
                      8. unpow2N/A

                        \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(\frac{1}{120} \cdot \left(kx \cdot kx\right) - \frac{1}{6}, {kx}^{2}, 1\right) \cdot kx\right)} \cdot \sin th \]
                      9. lower-*.f64N/A

                        \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(\frac{1}{120} \cdot \left(kx \cdot kx\right) - \frac{1}{6}, {kx}^{2}, 1\right) \cdot kx\right)} \cdot \sin th \]
                      10. unpow2N/A

                        \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(\frac{1}{120} \cdot \left(kx \cdot kx\right) - \frac{1}{6}, kx \cdot kx, 1\right) \cdot kx\right)} \cdot \sin th \]
                      11. lower-*.f6498.2

                        \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(0.008333333333333333 \cdot \left(kx \cdot kx\right) - 0.16666666666666666, kx \cdot kx, 1\right) \cdot kx\right)} \cdot \sin th \]
                    7. Applied rewrites98.2%

                      \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\mathsf{fma}\left(0.008333333333333333 \cdot \left(kx \cdot kx\right) - 0.16666666666666666, kx \cdot kx, 1\right) \cdot kx}\right)} \cdot \sin th \]
                  7. Recombined 5 regimes into one program.
                  8. Add Preprocessing

                  Alternative 6: 85.6% accurate, 0.2× speedup?

                  \[\begin{array}{l} \\ \begin{array}{l} t_1 := \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}\\ t_2 := {\sin kx}^{2}\\ t_3 := \frac{\sin ky}{\sqrt{t\_2 + {\sin ky}^{2}}}\\ \mathbf{if}\;t\_3 \leq -1:\\ \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, kx\right)} \cdot \sin th\\ \mathbf{elif}\;t\_3 \leq -0.2:\\ \;\;\;\;t\_1 \cdot th\\ \mathbf{elif}\;t\_3 \leq 2 \cdot 10^{-16}:\\ \;\;\;\;\frac{\sin ky}{\sqrt{t\_2}} \cdot \sin th\\ \mathbf{elif}\;t\_3 \leq 0.998:\\ \;\;\;\;t\_1 \cdot \left(\mathsf{fma}\left(th \cdot th, -0.16666666666666666, 1\right) \cdot th\right)\\ \mathbf{else}:\\ \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(-0.16666666666666666, kx \cdot kx, 1\right) \cdot kx\right)} \cdot \sin th\\ \end{array} \end{array} \]
                  (FPCore (kx ky th)
                   :precision binary64
                   (let* ((t_1 (/ (sin ky) (hypot (sin ky) (sin kx))))
                          (t_2 (pow (sin kx) 2.0))
                          (t_3 (/ (sin ky) (sqrt (+ t_2 (pow (sin ky) 2.0))))))
                     (if (<= t_3 -1.0)
                       (* (/ (sin ky) (hypot (sin ky) kx)) (sin th))
                       (if (<= t_3 -0.2)
                         (* t_1 th)
                         (if (<= t_3 2e-16)
                           (* (/ (sin ky) (sqrt t_2)) (sin th))
                           (if (<= t_3 0.998)
                             (* t_1 (* (fma (* th th) -0.16666666666666666 1.0) th))
                             (*
                              (/
                               (sin ky)
                               (hypot (sin ky) (* (fma -0.16666666666666666 (* kx kx) 1.0) kx)))
                              (sin th))))))))
                  double code(double kx, double ky, double th) {
                  	double t_1 = sin(ky) / hypot(sin(ky), sin(kx));
                  	double t_2 = pow(sin(kx), 2.0);
                  	double t_3 = sin(ky) / sqrt((t_2 + pow(sin(ky), 2.0)));
                  	double tmp;
                  	if (t_3 <= -1.0) {
                  		tmp = (sin(ky) / hypot(sin(ky), kx)) * sin(th);
                  	} else if (t_3 <= -0.2) {
                  		tmp = t_1 * th;
                  	} else if (t_3 <= 2e-16) {
                  		tmp = (sin(ky) / sqrt(t_2)) * sin(th);
                  	} else if (t_3 <= 0.998) {
                  		tmp = t_1 * (fma((th * th), -0.16666666666666666, 1.0) * th);
                  	} else {
                  		tmp = (sin(ky) / hypot(sin(ky), (fma(-0.16666666666666666, (kx * kx), 1.0) * kx))) * sin(th);
                  	}
                  	return tmp;
                  }
                  
                  function code(kx, ky, th)
                  	t_1 = Float64(sin(ky) / hypot(sin(ky), sin(kx)))
                  	t_2 = sin(kx) ^ 2.0
                  	t_3 = Float64(sin(ky) / sqrt(Float64(t_2 + (sin(ky) ^ 2.0))))
                  	tmp = 0.0
                  	if (t_3 <= -1.0)
                  		tmp = Float64(Float64(sin(ky) / hypot(sin(ky), kx)) * sin(th));
                  	elseif (t_3 <= -0.2)
                  		tmp = Float64(t_1 * th);
                  	elseif (t_3 <= 2e-16)
                  		tmp = Float64(Float64(sin(ky) / sqrt(t_2)) * sin(th));
                  	elseif (t_3 <= 0.998)
                  		tmp = Float64(t_1 * Float64(fma(Float64(th * th), -0.16666666666666666, 1.0) * th));
                  	else
                  		tmp = Float64(Float64(sin(ky) / hypot(sin(ky), Float64(fma(-0.16666666666666666, Float64(kx * kx), 1.0) * kx))) * sin(th));
                  	end
                  	return tmp
                  end
                  
                  code[kx_, ky_, th_] := Block[{t$95$1 = N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + N[Sin[kx], $MachinePrecision] ^ 2], $MachinePrecision]), $MachinePrecision]}, Block[{t$95$2 = N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision]}, Block[{t$95$3 = N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(t$95$2 + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$3, -1.0], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + kx ^ 2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$3, -0.2], N[(t$95$1 * th), $MachinePrecision], If[LessEqual[t$95$3, 2e-16], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[t$95$2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$3, 0.998], N[(t$95$1 * N[(N[(N[(th * th), $MachinePrecision] * -0.16666666666666666 + 1.0), $MachinePrecision] * th), $MachinePrecision]), $MachinePrecision], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + N[(N[(-0.16666666666666666 * N[(kx * kx), $MachinePrecision] + 1.0), $MachinePrecision] * kx), $MachinePrecision] ^ 2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision]]]]]]]]
                  
                  \begin{array}{l}
                  
                  \\
                  \begin{array}{l}
                  t_1 := \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}\\
                  t_2 := {\sin kx}^{2}\\
                  t_3 := \frac{\sin ky}{\sqrt{t\_2 + {\sin ky}^{2}}}\\
                  \mathbf{if}\;t\_3 \leq -1:\\
                  \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, kx\right)} \cdot \sin th\\
                  
                  \mathbf{elif}\;t\_3 \leq -0.2:\\
                  \;\;\;\;t\_1 \cdot th\\
                  
                  \mathbf{elif}\;t\_3 \leq 2 \cdot 10^{-16}:\\
                  \;\;\;\;\frac{\sin ky}{\sqrt{t\_2}} \cdot \sin th\\
                  
                  \mathbf{elif}\;t\_3 \leq 0.998:\\
                  \;\;\;\;t\_1 \cdot \left(\mathsf{fma}\left(th \cdot th, -0.16666666666666666, 1\right) \cdot th\right)\\
                  
                  \mathbf{else}:\\
                  \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(-0.16666666666666666, kx \cdot kx, 1\right) \cdot kx\right)} \cdot \sin th\\
                  
                  
                  \end{array}
                  \end{array}
                  
                  Derivation
                  1. Split input into 5 regimes
                  2. if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -1

                    1. Initial program 93.0%

                      \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                    2. Add Preprocessing
                    3. Step-by-step derivation
                      1. lift-sqrt.f64N/A

                        \[\leadsto \frac{\sin ky}{\color{blue}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                      2. lift-+.f64N/A

                        \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                      3. lift-pow.f64N/A

                        \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}} + {\sin ky}^{2}}} \cdot \sin th \]
                      4. lift-sin.f64N/A

                        \[\leadsto \frac{\sin ky}{\sqrt{{\color{blue}{\sin kx}}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                      5. lift-pow.f64N/A

                        \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + \color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
                      6. lift-sin.f64N/A

                        \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\color{blue}{\sin ky}}^{2}}} \cdot \sin th \]
                      7. +-commutativeN/A

                        \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2} + {\sin kx}^{2}}}} \cdot \sin th \]
                      8. unpow2N/A

                        \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{\sin ky \cdot \sin ky} + {\sin kx}^{2}}} \cdot \sin th \]
                      9. unpow2N/A

                        \[\leadsto \frac{\sin ky}{\sqrt{\sin ky \cdot \sin ky + \color{blue}{\sin kx \cdot \sin kx}}} \cdot \sin th \]
                      10. lower-hypot.f64N/A

                        \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                      11. lift-sin.f64N/A

                        \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\color{blue}{\sin ky}, \sin kx\right)} \cdot \sin th \]
                      12. lift-sin.f64100.0

                        \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\sin kx}\right)} \cdot \sin th \]
                    4. Applied rewrites100.0%

                      \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                    5. Taylor expanded in kx around 0

                      \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{kx}\right)} \cdot \sin th \]
                    6. Step-by-step derivation
                      1. Applied rewrites100.0%

                        \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{kx}\right)} \cdot \sin th \]

                      if -1 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -0.20000000000000001

                      1. Initial program 99.3%

                        \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                      2. Add Preprocessing
                      3. Step-by-step derivation
                        1. lift-sqrt.f64N/A

                          \[\leadsto \frac{\sin ky}{\color{blue}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                        2. lift-+.f64N/A

                          \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                        3. lift-pow.f64N/A

                          \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}} + {\sin ky}^{2}}} \cdot \sin th \]
                        4. lift-sin.f64N/A

                          \[\leadsto \frac{\sin ky}{\sqrt{{\color{blue}{\sin kx}}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                        5. lift-pow.f64N/A

                          \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + \color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
                        6. lift-sin.f64N/A

                          \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\color{blue}{\sin ky}}^{2}}} \cdot \sin th \]
                        7. +-commutativeN/A

                          \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2} + {\sin kx}^{2}}}} \cdot \sin th \]
                        8. unpow2N/A

                          \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{\sin ky \cdot \sin ky} + {\sin kx}^{2}}} \cdot \sin th \]
                        9. unpow2N/A

                          \[\leadsto \frac{\sin ky}{\sqrt{\sin ky \cdot \sin ky + \color{blue}{\sin kx \cdot \sin kx}}} \cdot \sin th \]
                        10. lower-hypot.f64N/A

                          \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                        11. lift-sin.f64N/A

                          \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\color{blue}{\sin ky}, \sin kx\right)} \cdot \sin th \]
                        12. lift-sin.f6499.3

                          \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\sin kx}\right)} \cdot \sin th \]
                      4. Applied rewrites99.3%

                        \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                      5. Taylor expanded in th around 0

                        \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \color{blue}{th} \]
                      6. Step-by-step derivation
                        1. Applied rewrites60.9%

                          \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \color{blue}{th} \]

                        if -0.20000000000000001 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 2e-16

                        1. Initial program 99.2%

                          \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                        2. Add Preprocessing
                        3. Taylor expanded in ky around 0

                          \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}}}} \cdot \sin th \]
                        4. Step-by-step derivation
                          1. lift-sin.f64N/A

                            \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2}}} \cdot \sin th \]
                          2. lift-pow.f6497.2

                            \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{\color{blue}{2}}}} \cdot \sin th \]
                        5. Applied rewrites97.2%

                          \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}}}} \cdot \sin th \]

                        if 2e-16 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 0.998

                        1. Initial program 99.3%

                          \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                        2. Add Preprocessing
                        3. Step-by-step derivation
                          1. lift-sqrt.f64N/A

                            \[\leadsto \frac{\sin ky}{\color{blue}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                          2. lift-+.f64N/A

                            \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                          3. lift-pow.f64N/A

                            \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}} + {\sin ky}^{2}}} \cdot \sin th \]
                          4. lift-sin.f64N/A

                            \[\leadsto \frac{\sin ky}{\sqrt{{\color{blue}{\sin kx}}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                          5. lift-pow.f64N/A

                            \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + \color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
                          6. lift-sin.f64N/A

                            \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\color{blue}{\sin ky}}^{2}}} \cdot \sin th \]
                          7. +-commutativeN/A

                            \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2} + {\sin kx}^{2}}}} \cdot \sin th \]
                          8. unpow2N/A

                            \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{\sin ky \cdot \sin ky} + {\sin kx}^{2}}} \cdot \sin th \]
                          9. unpow2N/A

                            \[\leadsto \frac{\sin ky}{\sqrt{\sin ky \cdot \sin ky + \color{blue}{\sin kx \cdot \sin kx}}} \cdot \sin th \]
                          10. lower-hypot.f64N/A

                            \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                          11. lift-sin.f64N/A

                            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\color{blue}{\sin ky}, \sin kx\right)} \cdot \sin th \]
                          12. lift-sin.f6499.5

                            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\sin kx}\right)} \cdot \sin th \]
                        4. Applied rewrites99.5%

                          \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                        5. Taylor expanded in th around 0

                          \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \color{blue}{\left(th \cdot \left(1 + \frac{-1}{6} \cdot {th}^{2}\right)\right)} \]
                        6. Step-by-step derivation
                          1. *-commutativeN/A

                            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\left(1 + \frac{-1}{6} \cdot {th}^{2}\right) \cdot \color{blue}{th}\right) \]
                          2. lower-*.f64N/A

                            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\left(1 + \frac{-1}{6} \cdot {th}^{2}\right) \cdot \color{blue}{th}\right) \]
                          3. +-commutativeN/A

                            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\left(\frac{-1}{6} \cdot {th}^{2} + 1\right) \cdot th\right) \]
                          4. *-commutativeN/A

                            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\left({th}^{2} \cdot \frac{-1}{6} + 1\right) \cdot th\right) \]
                          5. lower-fma.f64N/A

                            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\mathsf{fma}\left({th}^{2}, \frac{-1}{6}, 1\right) \cdot th\right) \]
                          6. unpow2N/A

                            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\mathsf{fma}\left(th \cdot th, \frac{-1}{6}, 1\right) \cdot th\right) \]
                          7. lower-*.f6454.9

                            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \left(\mathsf{fma}\left(th \cdot th, -0.16666666666666666, 1\right) \cdot th\right) \]
                        7. Applied rewrites54.9%

                          \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \color{blue}{\left(\mathsf{fma}\left(th \cdot th, -0.16666666666666666, 1\right) \cdot th\right)} \]

                        if 0.998 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))

                        1. Initial program 79.9%

                          \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                        2. Add Preprocessing
                        3. Step-by-step derivation
                          1. lift-sqrt.f64N/A

                            \[\leadsto \frac{\sin ky}{\color{blue}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                          2. lift-+.f64N/A

                            \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                          3. lift-pow.f64N/A

                            \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}} + {\sin ky}^{2}}} \cdot \sin th \]
                          4. lift-sin.f64N/A

                            \[\leadsto \frac{\sin ky}{\sqrt{{\color{blue}{\sin kx}}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                          5. lift-pow.f64N/A

                            \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + \color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
                          6. lift-sin.f64N/A

                            \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\color{blue}{\sin ky}}^{2}}} \cdot \sin th \]
                          7. +-commutativeN/A

                            \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2} + {\sin kx}^{2}}}} \cdot \sin th \]
                          8. unpow2N/A

                            \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{\sin ky \cdot \sin ky} + {\sin kx}^{2}}} \cdot \sin th \]
                          9. unpow2N/A

                            \[\leadsto \frac{\sin ky}{\sqrt{\sin ky \cdot \sin ky + \color{blue}{\sin kx \cdot \sin kx}}} \cdot \sin th \]
                          10. lower-hypot.f64N/A

                            \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                          11. lift-sin.f64N/A

                            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\color{blue}{\sin ky}, \sin kx\right)} \cdot \sin th \]
                          12. lift-sin.f64100.0

                            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\sin kx}\right)} \cdot \sin th \]
                        4. Applied rewrites100.0%

                          \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                        5. Taylor expanded in kx around 0

                          \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{kx \cdot \left(1 + \frac{-1}{6} \cdot {kx}^{2}\right)}\right)} \cdot \sin th \]
                        6. Step-by-step derivation
                          1. *-commutativeN/A

                            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \left(1 + \frac{-1}{6} \cdot {kx}^{2}\right) \cdot \color{blue}{kx}\right)} \cdot \sin th \]
                          2. lower-*.f64N/A

                            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \left(1 + \frac{-1}{6} \cdot {kx}^{2}\right) \cdot \color{blue}{kx}\right)} \cdot \sin th \]
                          3. +-commutativeN/A

                            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \left(\frac{-1}{6} \cdot {kx}^{2} + 1\right) \cdot kx\right)} \cdot \sin th \]
                          4. lower-fma.f64N/A

                            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(\frac{-1}{6}, {kx}^{2}, 1\right) \cdot kx\right)} \cdot \sin th \]
                          5. unpow2N/A

                            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(\frac{-1}{6}, kx \cdot kx, 1\right) \cdot kx\right)} \cdot \sin th \]
                          6. lower-*.f6498.2

                            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(-0.16666666666666666, kx \cdot kx, 1\right) \cdot kx\right)} \cdot \sin th \]
                        7. Applied rewrites98.2%

                          \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\mathsf{fma}\left(-0.16666666666666666, kx \cdot kx, 1\right) \cdot kx}\right)} \cdot \sin th \]
                      7. Recombined 5 regimes into one program.
                      8. Add Preprocessing

                      Alternative 7: 85.7% accurate, 0.2× speedup?

                      \[\begin{array}{l} \\ \begin{array}{l} t_1 := \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot th\\ t_2 := {\sin kx}^{2}\\ t_3 := \frac{\sin ky}{\sqrt{t\_2 + {\sin ky}^{2}}}\\ \mathbf{if}\;t\_3 \leq -1:\\ \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, kx\right)} \cdot \sin th\\ \mathbf{elif}\;t\_3 \leq -0.2:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;t\_3 \leq 2 \cdot 10^{-16}:\\ \;\;\;\;\frac{\sin ky}{\sqrt{t\_2}} \cdot \sin th\\ \mathbf{elif}\;t\_3 \leq 0.998:\\ \;\;\;\;t\_1\\ \mathbf{else}:\\ \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(-0.16666666666666666, kx \cdot kx, 1\right) \cdot kx\right)} \cdot \sin th\\ \end{array} \end{array} \]
                      (FPCore (kx ky th)
                       :precision binary64
                       (let* ((t_1 (* (/ (sin ky) (hypot (sin ky) (sin kx))) th))
                              (t_2 (pow (sin kx) 2.0))
                              (t_3 (/ (sin ky) (sqrt (+ t_2 (pow (sin ky) 2.0))))))
                         (if (<= t_3 -1.0)
                           (* (/ (sin ky) (hypot (sin ky) kx)) (sin th))
                           (if (<= t_3 -0.2)
                             t_1
                             (if (<= t_3 2e-16)
                               (* (/ (sin ky) (sqrt t_2)) (sin th))
                               (if (<= t_3 0.998)
                                 t_1
                                 (*
                                  (/
                                   (sin ky)
                                   (hypot (sin ky) (* (fma -0.16666666666666666 (* kx kx) 1.0) kx)))
                                  (sin th))))))))
                      double code(double kx, double ky, double th) {
                      	double t_1 = (sin(ky) / hypot(sin(ky), sin(kx))) * th;
                      	double t_2 = pow(sin(kx), 2.0);
                      	double t_3 = sin(ky) / sqrt((t_2 + pow(sin(ky), 2.0)));
                      	double tmp;
                      	if (t_3 <= -1.0) {
                      		tmp = (sin(ky) / hypot(sin(ky), kx)) * sin(th);
                      	} else if (t_3 <= -0.2) {
                      		tmp = t_1;
                      	} else if (t_3 <= 2e-16) {
                      		tmp = (sin(ky) / sqrt(t_2)) * sin(th);
                      	} else if (t_3 <= 0.998) {
                      		tmp = t_1;
                      	} else {
                      		tmp = (sin(ky) / hypot(sin(ky), (fma(-0.16666666666666666, (kx * kx), 1.0) * kx))) * sin(th);
                      	}
                      	return tmp;
                      }
                      
                      function code(kx, ky, th)
                      	t_1 = Float64(Float64(sin(ky) / hypot(sin(ky), sin(kx))) * th)
                      	t_2 = sin(kx) ^ 2.0
                      	t_3 = Float64(sin(ky) / sqrt(Float64(t_2 + (sin(ky) ^ 2.0))))
                      	tmp = 0.0
                      	if (t_3 <= -1.0)
                      		tmp = Float64(Float64(sin(ky) / hypot(sin(ky), kx)) * sin(th));
                      	elseif (t_3 <= -0.2)
                      		tmp = t_1;
                      	elseif (t_3 <= 2e-16)
                      		tmp = Float64(Float64(sin(ky) / sqrt(t_2)) * sin(th));
                      	elseif (t_3 <= 0.998)
                      		tmp = t_1;
                      	else
                      		tmp = Float64(Float64(sin(ky) / hypot(sin(ky), Float64(fma(-0.16666666666666666, Float64(kx * kx), 1.0) * kx))) * sin(th));
                      	end
                      	return tmp
                      end
                      
                      code[kx_, ky_, th_] := Block[{t$95$1 = N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + N[Sin[kx], $MachinePrecision] ^ 2], $MachinePrecision]), $MachinePrecision] * th), $MachinePrecision]}, Block[{t$95$2 = N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision]}, Block[{t$95$3 = N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(t$95$2 + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$3, -1.0], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + kx ^ 2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$3, -0.2], t$95$1, If[LessEqual[t$95$3, 2e-16], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[t$95$2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$3, 0.998], t$95$1, N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + N[(N[(-0.16666666666666666 * N[(kx * kx), $MachinePrecision] + 1.0), $MachinePrecision] * kx), $MachinePrecision] ^ 2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision]]]]]]]]
                      
                      \begin{array}{l}
                      
                      \\
                      \begin{array}{l}
                      t_1 := \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot th\\
                      t_2 := {\sin kx}^{2}\\
                      t_3 := \frac{\sin ky}{\sqrt{t\_2 + {\sin ky}^{2}}}\\
                      \mathbf{if}\;t\_3 \leq -1:\\
                      \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, kx\right)} \cdot \sin th\\
                      
                      \mathbf{elif}\;t\_3 \leq -0.2:\\
                      \;\;\;\;t\_1\\
                      
                      \mathbf{elif}\;t\_3 \leq 2 \cdot 10^{-16}:\\
                      \;\;\;\;\frac{\sin ky}{\sqrt{t\_2}} \cdot \sin th\\
                      
                      \mathbf{elif}\;t\_3 \leq 0.998:\\
                      \;\;\;\;t\_1\\
                      
                      \mathbf{else}:\\
                      \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(-0.16666666666666666, kx \cdot kx, 1\right) \cdot kx\right)} \cdot \sin th\\
                      
                      
                      \end{array}
                      \end{array}
                      
                      Derivation
                      1. Split input into 4 regimes
                      2. if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -1

                        1. Initial program 93.0%

                          \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                        2. Add Preprocessing
                        3. Step-by-step derivation
                          1. lift-sqrt.f64N/A

                            \[\leadsto \frac{\sin ky}{\color{blue}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                          2. lift-+.f64N/A

                            \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                          3. lift-pow.f64N/A

                            \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}} + {\sin ky}^{2}}} \cdot \sin th \]
                          4. lift-sin.f64N/A

                            \[\leadsto \frac{\sin ky}{\sqrt{{\color{blue}{\sin kx}}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                          5. lift-pow.f64N/A

                            \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + \color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
                          6. lift-sin.f64N/A

                            \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\color{blue}{\sin ky}}^{2}}} \cdot \sin th \]
                          7. +-commutativeN/A

                            \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2} + {\sin kx}^{2}}}} \cdot \sin th \]
                          8. unpow2N/A

                            \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{\sin ky \cdot \sin ky} + {\sin kx}^{2}}} \cdot \sin th \]
                          9. unpow2N/A

                            \[\leadsto \frac{\sin ky}{\sqrt{\sin ky \cdot \sin ky + \color{blue}{\sin kx \cdot \sin kx}}} \cdot \sin th \]
                          10. lower-hypot.f64N/A

                            \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                          11. lift-sin.f64N/A

                            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\color{blue}{\sin ky}, \sin kx\right)} \cdot \sin th \]
                          12. lift-sin.f64100.0

                            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\sin kx}\right)} \cdot \sin th \]
                        4. Applied rewrites100.0%

                          \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                        5. Taylor expanded in kx around 0

                          \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{kx}\right)} \cdot \sin th \]
                        6. Step-by-step derivation
                          1. Applied rewrites100.0%

                            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{kx}\right)} \cdot \sin th \]

                          if -1 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -0.20000000000000001 or 2e-16 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 0.998

                          1. Initial program 99.3%

                            \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                          2. Add Preprocessing
                          3. Step-by-step derivation
                            1. lift-sqrt.f64N/A

                              \[\leadsto \frac{\sin ky}{\color{blue}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                            2. lift-+.f64N/A

                              \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                            3. lift-pow.f64N/A

                              \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}} + {\sin ky}^{2}}} \cdot \sin th \]
                            4. lift-sin.f64N/A

                              \[\leadsto \frac{\sin ky}{\sqrt{{\color{blue}{\sin kx}}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                            5. lift-pow.f64N/A

                              \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + \color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
                            6. lift-sin.f64N/A

                              \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\color{blue}{\sin ky}}^{2}}} \cdot \sin th \]
                            7. +-commutativeN/A

                              \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2} + {\sin kx}^{2}}}} \cdot \sin th \]
                            8. unpow2N/A

                              \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{\sin ky \cdot \sin ky} + {\sin kx}^{2}}} \cdot \sin th \]
                            9. unpow2N/A

                              \[\leadsto \frac{\sin ky}{\sqrt{\sin ky \cdot \sin ky + \color{blue}{\sin kx \cdot \sin kx}}} \cdot \sin th \]
                            10. lower-hypot.f64N/A

                              \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                            11. lift-sin.f64N/A

                              \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\color{blue}{\sin ky}, \sin kx\right)} \cdot \sin th \]
                            12. lift-sin.f6499.4

                              \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\sin kx}\right)} \cdot \sin th \]
                          4. Applied rewrites99.4%

                            \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                          5. Taylor expanded in th around 0

                            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \color{blue}{th} \]
                          6. Step-by-step derivation
                            1. Applied rewrites58.0%

                              \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \color{blue}{th} \]

                            if -0.20000000000000001 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 2e-16

                            1. Initial program 99.2%

                              \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                            2. Add Preprocessing
                            3. Taylor expanded in ky around 0

                              \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}}}} \cdot \sin th \]
                            4. Step-by-step derivation
                              1. lift-sin.f64N/A

                                \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2}}} \cdot \sin th \]
                              2. lift-pow.f6497.2

                                \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{\color{blue}{2}}}} \cdot \sin th \]
                            5. Applied rewrites97.2%

                              \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}}}} \cdot \sin th \]

                            if 0.998 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))

                            1. Initial program 79.9%

                              \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                            2. Add Preprocessing
                            3. Step-by-step derivation
                              1. lift-sqrt.f64N/A

                                \[\leadsto \frac{\sin ky}{\color{blue}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                              2. lift-+.f64N/A

                                \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                              3. lift-pow.f64N/A

                                \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}} + {\sin ky}^{2}}} \cdot \sin th \]
                              4. lift-sin.f64N/A

                                \[\leadsto \frac{\sin ky}{\sqrt{{\color{blue}{\sin kx}}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                              5. lift-pow.f64N/A

                                \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + \color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
                              6. lift-sin.f64N/A

                                \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\color{blue}{\sin ky}}^{2}}} \cdot \sin th \]
                              7. +-commutativeN/A

                                \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2} + {\sin kx}^{2}}}} \cdot \sin th \]
                              8. unpow2N/A

                                \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{\sin ky \cdot \sin ky} + {\sin kx}^{2}}} \cdot \sin th \]
                              9. unpow2N/A

                                \[\leadsto \frac{\sin ky}{\sqrt{\sin ky \cdot \sin ky + \color{blue}{\sin kx \cdot \sin kx}}} \cdot \sin th \]
                              10. lower-hypot.f64N/A

                                \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                              11. lift-sin.f64N/A

                                \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\color{blue}{\sin ky}, \sin kx\right)} \cdot \sin th \]
                              12. lift-sin.f64100.0

                                \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\sin kx}\right)} \cdot \sin th \]
                            4. Applied rewrites100.0%

                              \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                            5. Taylor expanded in kx around 0

                              \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{kx \cdot \left(1 + \frac{-1}{6} \cdot {kx}^{2}\right)}\right)} \cdot \sin th \]
                            6. Step-by-step derivation
                              1. *-commutativeN/A

                                \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \left(1 + \frac{-1}{6} \cdot {kx}^{2}\right) \cdot \color{blue}{kx}\right)} \cdot \sin th \]
                              2. lower-*.f64N/A

                                \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \left(1 + \frac{-1}{6} \cdot {kx}^{2}\right) \cdot \color{blue}{kx}\right)} \cdot \sin th \]
                              3. +-commutativeN/A

                                \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \left(\frac{-1}{6} \cdot {kx}^{2} + 1\right) \cdot kx\right)} \cdot \sin th \]
                              4. lower-fma.f64N/A

                                \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(\frac{-1}{6}, {kx}^{2}, 1\right) \cdot kx\right)} \cdot \sin th \]
                              5. unpow2N/A

                                \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(\frac{-1}{6}, kx \cdot kx, 1\right) \cdot kx\right)} \cdot \sin th \]
                              6. lower-*.f6498.2

                                \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \mathsf{fma}\left(-0.16666666666666666, kx \cdot kx, 1\right) \cdot kx\right)} \cdot \sin th \]
                            7. Applied rewrites98.2%

                              \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\mathsf{fma}\left(-0.16666666666666666, kx \cdot kx, 1\right) \cdot kx}\right)} \cdot \sin th \]
                          7. Recombined 4 regimes into one program.
                          8. Add Preprocessing

                          Alternative 8: 85.6% accurate, 0.2× speedup?

                          \[\begin{array}{l} \\ \begin{array}{l} t_1 := \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, kx\right)} \cdot \sin th\\ t_2 := \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot th\\ t_3 := {\sin kx}^{2}\\ t_4 := \frac{\sin ky}{\sqrt{t\_3 + {\sin ky}^{2}}}\\ \mathbf{if}\;t\_4 \leq -1:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;t\_4 \leq -0.2:\\ \;\;\;\;t\_2\\ \mathbf{elif}\;t\_4 \leq 2 \cdot 10^{-16}:\\ \;\;\;\;\frac{\sin ky}{\sqrt{t\_3}} \cdot \sin th\\ \mathbf{elif}\;t\_4 \leq 0.998:\\ \;\;\;\;t\_2\\ \mathbf{else}:\\ \;\;\;\;t\_1\\ \end{array} \end{array} \]
                          (FPCore (kx ky th)
                           :precision binary64
                           (let* ((t_1 (* (/ (sin ky) (hypot (sin ky) kx)) (sin th)))
                                  (t_2 (* (/ (sin ky) (hypot (sin ky) (sin kx))) th))
                                  (t_3 (pow (sin kx) 2.0))
                                  (t_4 (/ (sin ky) (sqrt (+ t_3 (pow (sin ky) 2.0))))))
                             (if (<= t_4 -1.0)
                               t_1
                               (if (<= t_4 -0.2)
                                 t_2
                                 (if (<= t_4 2e-16)
                                   (* (/ (sin ky) (sqrt t_3)) (sin th))
                                   (if (<= t_4 0.998) t_2 t_1))))))
                          double code(double kx, double ky, double th) {
                          	double t_1 = (sin(ky) / hypot(sin(ky), kx)) * sin(th);
                          	double t_2 = (sin(ky) / hypot(sin(ky), sin(kx))) * th;
                          	double t_3 = pow(sin(kx), 2.0);
                          	double t_4 = sin(ky) / sqrt((t_3 + pow(sin(ky), 2.0)));
                          	double tmp;
                          	if (t_4 <= -1.0) {
                          		tmp = t_1;
                          	} else if (t_4 <= -0.2) {
                          		tmp = t_2;
                          	} else if (t_4 <= 2e-16) {
                          		tmp = (sin(ky) / sqrt(t_3)) * sin(th);
                          	} else if (t_4 <= 0.998) {
                          		tmp = t_2;
                          	} else {
                          		tmp = t_1;
                          	}
                          	return tmp;
                          }
                          
                          public static double code(double kx, double ky, double th) {
                          	double t_1 = (Math.sin(ky) / Math.hypot(Math.sin(ky), kx)) * Math.sin(th);
                          	double t_2 = (Math.sin(ky) / Math.hypot(Math.sin(ky), Math.sin(kx))) * th;
                          	double t_3 = Math.pow(Math.sin(kx), 2.0);
                          	double t_4 = Math.sin(ky) / Math.sqrt((t_3 + Math.pow(Math.sin(ky), 2.0)));
                          	double tmp;
                          	if (t_4 <= -1.0) {
                          		tmp = t_1;
                          	} else if (t_4 <= -0.2) {
                          		tmp = t_2;
                          	} else if (t_4 <= 2e-16) {
                          		tmp = (Math.sin(ky) / Math.sqrt(t_3)) * Math.sin(th);
                          	} else if (t_4 <= 0.998) {
                          		tmp = t_2;
                          	} else {
                          		tmp = t_1;
                          	}
                          	return tmp;
                          }
                          
                          def code(kx, ky, th):
                          	t_1 = (math.sin(ky) / math.hypot(math.sin(ky), kx)) * math.sin(th)
                          	t_2 = (math.sin(ky) / math.hypot(math.sin(ky), math.sin(kx))) * th
                          	t_3 = math.pow(math.sin(kx), 2.0)
                          	t_4 = math.sin(ky) / math.sqrt((t_3 + math.pow(math.sin(ky), 2.0)))
                          	tmp = 0
                          	if t_4 <= -1.0:
                          		tmp = t_1
                          	elif t_4 <= -0.2:
                          		tmp = t_2
                          	elif t_4 <= 2e-16:
                          		tmp = (math.sin(ky) / math.sqrt(t_3)) * math.sin(th)
                          	elif t_4 <= 0.998:
                          		tmp = t_2
                          	else:
                          		tmp = t_1
                          	return tmp
                          
                          function code(kx, ky, th)
                          	t_1 = Float64(Float64(sin(ky) / hypot(sin(ky), kx)) * sin(th))
                          	t_2 = Float64(Float64(sin(ky) / hypot(sin(ky), sin(kx))) * th)
                          	t_3 = sin(kx) ^ 2.0
                          	t_4 = Float64(sin(ky) / sqrt(Float64(t_3 + (sin(ky) ^ 2.0))))
                          	tmp = 0.0
                          	if (t_4 <= -1.0)
                          		tmp = t_1;
                          	elseif (t_4 <= -0.2)
                          		tmp = t_2;
                          	elseif (t_4 <= 2e-16)
                          		tmp = Float64(Float64(sin(ky) / sqrt(t_3)) * sin(th));
                          	elseif (t_4 <= 0.998)
                          		tmp = t_2;
                          	else
                          		tmp = t_1;
                          	end
                          	return tmp
                          end
                          
                          function tmp_2 = code(kx, ky, th)
                          	t_1 = (sin(ky) / hypot(sin(ky), kx)) * sin(th);
                          	t_2 = (sin(ky) / hypot(sin(ky), sin(kx))) * th;
                          	t_3 = sin(kx) ^ 2.0;
                          	t_4 = sin(ky) / sqrt((t_3 + (sin(ky) ^ 2.0)));
                          	tmp = 0.0;
                          	if (t_4 <= -1.0)
                          		tmp = t_1;
                          	elseif (t_4 <= -0.2)
                          		tmp = t_2;
                          	elseif (t_4 <= 2e-16)
                          		tmp = (sin(ky) / sqrt(t_3)) * sin(th);
                          	elseif (t_4 <= 0.998)
                          		tmp = t_2;
                          	else
                          		tmp = t_1;
                          	end
                          	tmp_2 = tmp;
                          end
                          
                          code[kx_, ky_, th_] := Block[{t$95$1 = N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + kx ^ 2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision]}, Block[{t$95$2 = N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + N[Sin[kx], $MachinePrecision] ^ 2], $MachinePrecision]), $MachinePrecision] * th), $MachinePrecision]}, Block[{t$95$3 = N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision]}, Block[{t$95$4 = N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(t$95$3 + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$4, -1.0], t$95$1, If[LessEqual[t$95$4, -0.2], t$95$2, If[LessEqual[t$95$4, 2e-16], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[t$95$3], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$4, 0.998], t$95$2, t$95$1]]]]]]]]
                          
                          \begin{array}{l}
                          
                          \\
                          \begin{array}{l}
                          t_1 := \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, kx\right)} \cdot \sin th\\
                          t_2 := \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot th\\
                          t_3 := {\sin kx}^{2}\\
                          t_4 := \frac{\sin ky}{\sqrt{t\_3 + {\sin ky}^{2}}}\\
                          \mathbf{if}\;t\_4 \leq -1:\\
                          \;\;\;\;t\_1\\
                          
                          \mathbf{elif}\;t\_4 \leq -0.2:\\
                          \;\;\;\;t\_2\\
                          
                          \mathbf{elif}\;t\_4 \leq 2 \cdot 10^{-16}:\\
                          \;\;\;\;\frac{\sin ky}{\sqrt{t\_3}} \cdot \sin th\\
                          
                          \mathbf{elif}\;t\_4 \leq 0.998:\\
                          \;\;\;\;t\_2\\
                          
                          \mathbf{else}:\\
                          \;\;\;\;t\_1\\
                          
                          
                          \end{array}
                          \end{array}
                          
                          Derivation
                          1. Split input into 3 regimes
                          2. if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -1 or 0.998 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))

                            1. Initial program 85.9%

                              \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                            2. Add Preprocessing
                            3. Step-by-step derivation
                              1. lift-sqrt.f64N/A

                                \[\leadsto \frac{\sin ky}{\color{blue}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                              2. lift-+.f64N/A

                                \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                              3. lift-pow.f64N/A

                                \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}} + {\sin ky}^{2}}} \cdot \sin th \]
                              4. lift-sin.f64N/A

                                \[\leadsto \frac{\sin ky}{\sqrt{{\color{blue}{\sin kx}}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                              5. lift-pow.f64N/A

                                \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + \color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
                              6. lift-sin.f64N/A

                                \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\color{blue}{\sin ky}}^{2}}} \cdot \sin th \]
                              7. +-commutativeN/A

                                \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2} + {\sin kx}^{2}}}} \cdot \sin th \]
                              8. unpow2N/A

                                \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{\sin ky \cdot \sin ky} + {\sin kx}^{2}}} \cdot \sin th \]
                              9. unpow2N/A

                                \[\leadsto \frac{\sin ky}{\sqrt{\sin ky \cdot \sin ky + \color{blue}{\sin kx \cdot \sin kx}}} \cdot \sin th \]
                              10. lower-hypot.f64N/A

                                \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                              11. lift-sin.f64N/A

                                \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\color{blue}{\sin ky}, \sin kx\right)} \cdot \sin th \]
                              12. lift-sin.f64100.0

                                \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\sin kx}\right)} \cdot \sin th \]
                            4. Applied rewrites100.0%

                              \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                            5. Taylor expanded in kx around 0

                              \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{kx}\right)} \cdot \sin th \]
                            6. Step-by-step derivation
                              1. Applied rewrites99.0%

                                \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{kx}\right)} \cdot \sin th \]

                              if -1 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -0.20000000000000001 or 2e-16 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 0.998

                              1. Initial program 99.3%

                                \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                              2. Add Preprocessing
                              3. Step-by-step derivation
                                1. lift-sqrt.f64N/A

                                  \[\leadsto \frac{\sin ky}{\color{blue}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                                2. lift-+.f64N/A

                                  \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                                3. lift-pow.f64N/A

                                  \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}} + {\sin ky}^{2}}} \cdot \sin th \]
                                4. lift-sin.f64N/A

                                  \[\leadsto \frac{\sin ky}{\sqrt{{\color{blue}{\sin kx}}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                5. lift-pow.f64N/A

                                  \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + \color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
                                6. lift-sin.f64N/A

                                  \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\color{blue}{\sin ky}}^{2}}} \cdot \sin th \]
                                7. +-commutativeN/A

                                  \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2} + {\sin kx}^{2}}}} \cdot \sin th \]
                                8. unpow2N/A

                                  \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{\sin ky \cdot \sin ky} + {\sin kx}^{2}}} \cdot \sin th \]
                                9. unpow2N/A

                                  \[\leadsto \frac{\sin ky}{\sqrt{\sin ky \cdot \sin ky + \color{blue}{\sin kx \cdot \sin kx}}} \cdot \sin th \]
                                10. lower-hypot.f64N/A

                                  \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                                11. lift-sin.f64N/A

                                  \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\color{blue}{\sin ky}, \sin kx\right)} \cdot \sin th \]
                                12. lift-sin.f6499.4

                                  \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\sin kx}\right)} \cdot \sin th \]
                              4. Applied rewrites99.4%

                                \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                              5. Taylor expanded in th around 0

                                \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \color{blue}{th} \]
                              6. Step-by-step derivation
                                1. Applied rewrites58.0%

                                  \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \color{blue}{th} \]

                                if -0.20000000000000001 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 2e-16

                                1. Initial program 99.2%

                                  \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                2. Add Preprocessing
                                3. Taylor expanded in ky around 0

                                  \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}}}} \cdot \sin th \]
                                4. Step-by-step derivation
                                  1. lift-sin.f64N/A

                                    \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2}}} \cdot \sin th \]
                                  2. lift-pow.f6497.2

                                    \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{\color{blue}{2}}}} \cdot \sin th \]
                                5. Applied rewrites97.2%

                                  \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}}}} \cdot \sin th \]
                              7. Recombined 3 regimes into one program.
                              8. Add Preprocessing

                              Alternative 9: 85.7% accurate, 0.2× speedup?

                              \[\begin{array}{l} \\ \begin{array}{l} t_1 := \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, kx\right)} \cdot \sin th\\ t_2 := \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}\\ t_3 := \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot th\\ \mathbf{if}\;t\_2 \leq -1:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;t\_2 \leq -0.2:\\ \;\;\;\;t\_3\\ \mathbf{elif}\;t\_2 \leq 0.12:\\ \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(ky, \sin kx\right)} \cdot \sin th\\ \mathbf{elif}\;t\_2 \leq 0.998:\\ \;\;\;\;t\_3\\ \mathbf{else}:\\ \;\;\;\;t\_1\\ \end{array} \end{array} \]
                              (FPCore (kx ky th)
                               :precision binary64
                               (let* ((t_1 (* (/ (sin ky) (hypot (sin ky) kx)) (sin th)))
                                      (t_2 (/ (sin ky) (sqrt (+ (pow (sin kx) 2.0) (pow (sin ky) 2.0)))))
                                      (t_3 (* (/ (sin ky) (hypot (sin ky) (sin kx))) th)))
                                 (if (<= t_2 -1.0)
                                   t_1
                                   (if (<= t_2 -0.2)
                                     t_3
                                     (if (<= t_2 0.12)
                                       (* (/ (sin ky) (hypot ky (sin kx))) (sin th))
                                       (if (<= t_2 0.998) t_3 t_1))))))
                              double code(double kx, double ky, double th) {
                              	double t_1 = (sin(ky) / hypot(sin(ky), kx)) * sin(th);
                              	double t_2 = sin(ky) / sqrt((pow(sin(kx), 2.0) + pow(sin(ky), 2.0)));
                              	double t_3 = (sin(ky) / hypot(sin(ky), sin(kx))) * th;
                              	double tmp;
                              	if (t_2 <= -1.0) {
                              		tmp = t_1;
                              	} else if (t_2 <= -0.2) {
                              		tmp = t_3;
                              	} else if (t_2 <= 0.12) {
                              		tmp = (sin(ky) / hypot(ky, sin(kx))) * sin(th);
                              	} else if (t_2 <= 0.998) {
                              		tmp = t_3;
                              	} else {
                              		tmp = t_1;
                              	}
                              	return tmp;
                              }
                              
                              public static double code(double kx, double ky, double th) {
                              	double t_1 = (Math.sin(ky) / Math.hypot(Math.sin(ky), kx)) * Math.sin(th);
                              	double t_2 = Math.sin(ky) / Math.sqrt((Math.pow(Math.sin(kx), 2.0) + Math.pow(Math.sin(ky), 2.0)));
                              	double t_3 = (Math.sin(ky) / Math.hypot(Math.sin(ky), Math.sin(kx))) * th;
                              	double tmp;
                              	if (t_2 <= -1.0) {
                              		tmp = t_1;
                              	} else if (t_2 <= -0.2) {
                              		tmp = t_3;
                              	} else if (t_2 <= 0.12) {
                              		tmp = (Math.sin(ky) / Math.hypot(ky, Math.sin(kx))) * Math.sin(th);
                              	} else if (t_2 <= 0.998) {
                              		tmp = t_3;
                              	} else {
                              		tmp = t_1;
                              	}
                              	return tmp;
                              }
                              
                              def code(kx, ky, th):
                              	t_1 = (math.sin(ky) / math.hypot(math.sin(ky), kx)) * math.sin(th)
                              	t_2 = math.sin(ky) / math.sqrt((math.pow(math.sin(kx), 2.0) + math.pow(math.sin(ky), 2.0)))
                              	t_3 = (math.sin(ky) / math.hypot(math.sin(ky), math.sin(kx))) * th
                              	tmp = 0
                              	if t_2 <= -1.0:
                              		tmp = t_1
                              	elif t_2 <= -0.2:
                              		tmp = t_3
                              	elif t_2 <= 0.12:
                              		tmp = (math.sin(ky) / math.hypot(ky, math.sin(kx))) * math.sin(th)
                              	elif t_2 <= 0.998:
                              		tmp = t_3
                              	else:
                              		tmp = t_1
                              	return tmp
                              
                              function code(kx, ky, th)
                              	t_1 = Float64(Float64(sin(ky) / hypot(sin(ky), kx)) * sin(th))
                              	t_2 = Float64(sin(ky) / sqrt(Float64((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0))))
                              	t_3 = Float64(Float64(sin(ky) / hypot(sin(ky), sin(kx))) * th)
                              	tmp = 0.0
                              	if (t_2 <= -1.0)
                              		tmp = t_1;
                              	elseif (t_2 <= -0.2)
                              		tmp = t_3;
                              	elseif (t_2 <= 0.12)
                              		tmp = Float64(Float64(sin(ky) / hypot(ky, sin(kx))) * sin(th));
                              	elseif (t_2 <= 0.998)
                              		tmp = t_3;
                              	else
                              		tmp = t_1;
                              	end
                              	return tmp
                              end
                              
                              function tmp_2 = code(kx, ky, th)
                              	t_1 = (sin(ky) / hypot(sin(ky), kx)) * sin(th);
                              	t_2 = sin(ky) / sqrt(((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)));
                              	t_3 = (sin(ky) / hypot(sin(ky), sin(kx))) * th;
                              	tmp = 0.0;
                              	if (t_2 <= -1.0)
                              		tmp = t_1;
                              	elseif (t_2 <= -0.2)
                              		tmp = t_3;
                              	elseif (t_2 <= 0.12)
                              		tmp = (sin(ky) / hypot(ky, sin(kx))) * sin(th);
                              	elseif (t_2 <= 0.998)
                              		tmp = t_3;
                              	else
                              		tmp = t_1;
                              	end
                              	tmp_2 = tmp;
                              end
                              
                              code[kx_, ky_, th_] := Block[{t$95$1 = N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + kx ^ 2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision]}, Block[{t$95$2 = N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]}, Block[{t$95$3 = N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + N[Sin[kx], $MachinePrecision] ^ 2], $MachinePrecision]), $MachinePrecision] * th), $MachinePrecision]}, If[LessEqual[t$95$2, -1.0], t$95$1, If[LessEqual[t$95$2, -0.2], t$95$3, If[LessEqual[t$95$2, 0.12], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[ky ^ 2 + N[Sin[kx], $MachinePrecision] ^ 2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$2, 0.998], t$95$3, t$95$1]]]]]]]
                              
                              \begin{array}{l}
                              
                              \\
                              \begin{array}{l}
                              t_1 := \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, kx\right)} \cdot \sin th\\
                              t_2 := \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}\\
                              t_3 := \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot th\\
                              \mathbf{if}\;t\_2 \leq -1:\\
                              \;\;\;\;t\_1\\
                              
                              \mathbf{elif}\;t\_2 \leq -0.2:\\
                              \;\;\;\;t\_3\\
                              
                              \mathbf{elif}\;t\_2 \leq 0.12:\\
                              \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(ky, \sin kx\right)} \cdot \sin th\\
                              
                              \mathbf{elif}\;t\_2 \leq 0.998:\\
                              \;\;\;\;t\_3\\
                              
                              \mathbf{else}:\\
                              \;\;\;\;t\_1\\
                              
                              
                              \end{array}
                              \end{array}
                              
                              Derivation
                              1. Split input into 3 regimes
                              2. if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -1 or 0.998 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))

                                1. Initial program 85.9%

                                  \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                2. Add Preprocessing
                                3. Step-by-step derivation
                                  1. lift-sqrt.f64N/A

                                    \[\leadsto \frac{\sin ky}{\color{blue}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                                  2. lift-+.f64N/A

                                    \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                                  3. lift-pow.f64N/A

                                    \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}} + {\sin ky}^{2}}} \cdot \sin th \]
                                  4. lift-sin.f64N/A

                                    \[\leadsto \frac{\sin ky}{\sqrt{{\color{blue}{\sin kx}}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                  5. lift-pow.f64N/A

                                    \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + \color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
                                  6. lift-sin.f64N/A

                                    \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\color{blue}{\sin ky}}^{2}}} \cdot \sin th \]
                                  7. +-commutativeN/A

                                    \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2} + {\sin kx}^{2}}}} \cdot \sin th \]
                                  8. unpow2N/A

                                    \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{\sin ky \cdot \sin ky} + {\sin kx}^{2}}} \cdot \sin th \]
                                  9. unpow2N/A

                                    \[\leadsto \frac{\sin ky}{\sqrt{\sin ky \cdot \sin ky + \color{blue}{\sin kx \cdot \sin kx}}} \cdot \sin th \]
                                  10. lower-hypot.f64N/A

                                    \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                                  11. lift-sin.f64N/A

                                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\color{blue}{\sin ky}, \sin kx\right)} \cdot \sin th \]
                                  12. lift-sin.f64100.0

                                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\sin kx}\right)} \cdot \sin th \]
                                4. Applied rewrites100.0%

                                  \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                                5. Taylor expanded in kx around 0

                                  \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{kx}\right)} \cdot \sin th \]
                                6. Step-by-step derivation
                                  1. Applied rewrites99.0%

                                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{kx}\right)} \cdot \sin th \]

                                  if -1 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -0.20000000000000001 or 0.12 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 0.998

                                  1. Initial program 99.3%

                                    \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                  2. Add Preprocessing
                                  3. Step-by-step derivation
                                    1. lift-sqrt.f64N/A

                                      \[\leadsto \frac{\sin ky}{\color{blue}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                                    2. lift-+.f64N/A

                                      \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                                    3. lift-pow.f64N/A

                                      \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}} + {\sin ky}^{2}}} \cdot \sin th \]
                                    4. lift-sin.f64N/A

                                      \[\leadsto \frac{\sin ky}{\sqrt{{\color{blue}{\sin kx}}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                    5. lift-pow.f64N/A

                                      \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + \color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
                                    6. lift-sin.f64N/A

                                      \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\color{blue}{\sin ky}}^{2}}} \cdot \sin th \]
                                    7. +-commutativeN/A

                                      \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2} + {\sin kx}^{2}}}} \cdot \sin th \]
                                    8. unpow2N/A

                                      \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{\sin ky \cdot \sin ky} + {\sin kx}^{2}}} \cdot \sin th \]
                                    9. unpow2N/A

                                      \[\leadsto \frac{\sin ky}{\sqrt{\sin ky \cdot \sin ky + \color{blue}{\sin kx \cdot \sin kx}}} \cdot \sin th \]
                                    10. lower-hypot.f64N/A

                                      \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                                    11. lift-sin.f64N/A

                                      \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\color{blue}{\sin ky}, \sin kx\right)} \cdot \sin th \]
                                    12. lift-sin.f6499.4

                                      \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\sin kx}\right)} \cdot \sin th \]
                                  4. Applied rewrites99.4%

                                    \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                                  5. Taylor expanded in th around 0

                                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \color{blue}{th} \]
                                  6. Step-by-step derivation
                                    1. Applied rewrites59.5%

                                      \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \color{blue}{th} \]

                                    if -0.20000000000000001 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 0.12

                                    1. Initial program 99.2%

                                      \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                    2. Add Preprocessing
                                    3. Step-by-step derivation
                                      1. lift-sqrt.f64N/A

                                        \[\leadsto \frac{\sin ky}{\color{blue}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                                      2. lift-+.f64N/A

                                        \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                                      3. lift-pow.f64N/A

                                        \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}} + {\sin ky}^{2}}} \cdot \sin th \]
                                      4. lift-sin.f64N/A

                                        \[\leadsto \frac{\sin ky}{\sqrt{{\color{blue}{\sin kx}}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                      5. lift-pow.f64N/A

                                        \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + \color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
                                      6. lift-sin.f64N/A

                                        \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\color{blue}{\sin ky}}^{2}}} \cdot \sin th \]
                                      7. +-commutativeN/A

                                        \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2} + {\sin kx}^{2}}}} \cdot \sin th \]
                                      8. unpow2N/A

                                        \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{\sin ky \cdot \sin ky} + {\sin kx}^{2}}} \cdot \sin th \]
                                      9. unpow2N/A

                                        \[\leadsto \frac{\sin ky}{\sqrt{\sin ky \cdot \sin ky + \color{blue}{\sin kx \cdot \sin kx}}} \cdot \sin th \]
                                      10. lower-hypot.f64N/A

                                        \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                                      11. lift-sin.f64N/A

                                        \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\color{blue}{\sin ky}, \sin kx\right)} \cdot \sin th \]
                                      12. lift-sin.f6499.5

                                        \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\sin kx}\right)} \cdot \sin th \]
                                    4. Applied rewrites99.5%

                                      \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                                    5. Taylor expanded in ky around 0

                                      \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\color{blue}{ky}, \sin kx\right)} \cdot \sin th \]
                                    6. Step-by-step derivation
                                      1. Applied rewrites94.0%

                                        \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\color{blue}{ky}, \sin kx\right)} \cdot \sin th \]
                                    7. Recombined 3 regimes into one program.
                                    8. Add Preprocessing

                                    Alternative 10: 58.0% accurate, 0.5× speedup?

                                    \[\begin{array}{l} \\ \begin{array}{l} t_1 := \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}\\ \mathbf{if}\;t\_1 \leq -0.5:\\ \;\;\;\;\frac{\sin ky}{\sqrt{0.5 - 0.5 \cdot \cos \left(ky + ky\right)}} \cdot \sin th\\ \mathbf{elif}\;t\_1 \leq 0.0001:\\ \;\;\;\;\frac{\sin th}{\sin kx} \cdot \sin ky\\ \mathbf{else}:\\ \;\;\;\;\sin th\\ \end{array} \end{array} \]
                                    (FPCore (kx ky th)
                                     :precision binary64
                                     (let* ((t_1 (/ (sin ky) (sqrt (+ (pow (sin kx) 2.0) (pow (sin ky) 2.0))))))
                                       (if (<= t_1 -0.5)
                                         (* (/ (sin ky) (sqrt (- 0.5 (* 0.5 (cos (+ ky ky)))))) (sin th))
                                         (if (<= t_1 0.0001) (* (/ (sin th) (sin kx)) (sin ky)) (sin th)))))
                                    double code(double kx, double ky, double th) {
                                    	double t_1 = sin(ky) / sqrt((pow(sin(kx), 2.0) + pow(sin(ky), 2.0)));
                                    	double tmp;
                                    	if (t_1 <= -0.5) {
                                    		tmp = (sin(ky) / sqrt((0.5 - (0.5 * cos((ky + ky)))))) * sin(th);
                                    	} else if (t_1 <= 0.0001) {
                                    		tmp = (sin(th) / sin(kx)) * sin(ky);
                                    	} else {
                                    		tmp = sin(th);
                                    	}
                                    	return tmp;
                                    }
                                    
                                    module fmin_fmax_functions
                                        implicit none
                                        private
                                        public fmax
                                        public fmin
                                    
                                        interface fmax
                                            module procedure fmax88
                                            module procedure fmax44
                                            module procedure fmax84
                                            module procedure fmax48
                                        end interface
                                        interface fmin
                                            module procedure fmin88
                                            module procedure fmin44
                                            module procedure fmin84
                                            module procedure fmin48
                                        end interface
                                    contains
                                        real(8) function fmax88(x, y) result (res)
                                            real(8), intent (in) :: x
                                            real(8), intent (in) :: y
                                            res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                        end function
                                        real(4) function fmax44(x, y) result (res)
                                            real(4), intent (in) :: x
                                            real(4), intent (in) :: y
                                            res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                        end function
                                        real(8) function fmax84(x, y) result(res)
                                            real(8), intent (in) :: x
                                            real(4), intent (in) :: y
                                            res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                                        end function
                                        real(8) function fmax48(x, y) result(res)
                                            real(4), intent (in) :: x
                                            real(8), intent (in) :: y
                                            res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                                        end function
                                        real(8) function fmin88(x, y) result (res)
                                            real(8), intent (in) :: x
                                            real(8), intent (in) :: y
                                            res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                        end function
                                        real(4) function fmin44(x, y) result (res)
                                            real(4), intent (in) :: x
                                            real(4), intent (in) :: y
                                            res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                        end function
                                        real(8) function fmin84(x, y) result(res)
                                            real(8), intent (in) :: x
                                            real(4), intent (in) :: y
                                            res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                                        end function
                                        real(8) function fmin48(x, y) result(res)
                                            real(4), intent (in) :: x
                                            real(8), intent (in) :: y
                                            res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                                        end function
                                    end module
                                    
                                    real(8) function code(kx, ky, th)
                                    use fmin_fmax_functions
                                        real(8), intent (in) :: kx
                                        real(8), intent (in) :: ky
                                        real(8), intent (in) :: th
                                        real(8) :: t_1
                                        real(8) :: tmp
                                        t_1 = sin(ky) / sqrt(((sin(kx) ** 2.0d0) + (sin(ky) ** 2.0d0)))
                                        if (t_1 <= (-0.5d0)) then
                                            tmp = (sin(ky) / sqrt((0.5d0 - (0.5d0 * cos((ky + ky)))))) * sin(th)
                                        else if (t_1 <= 0.0001d0) then
                                            tmp = (sin(th) / sin(kx)) * sin(ky)
                                        else
                                            tmp = sin(th)
                                        end if
                                        code = tmp
                                    end function
                                    
                                    public static double code(double kx, double ky, double th) {
                                    	double t_1 = Math.sin(ky) / Math.sqrt((Math.pow(Math.sin(kx), 2.0) + Math.pow(Math.sin(ky), 2.0)));
                                    	double tmp;
                                    	if (t_1 <= -0.5) {
                                    		tmp = (Math.sin(ky) / Math.sqrt((0.5 - (0.5 * Math.cos((ky + ky)))))) * Math.sin(th);
                                    	} else if (t_1 <= 0.0001) {
                                    		tmp = (Math.sin(th) / Math.sin(kx)) * Math.sin(ky);
                                    	} else {
                                    		tmp = Math.sin(th);
                                    	}
                                    	return tmp;
                                    }
                                    
                                    def code(kx, ky, th):
                                    	t_1 = math.sin(ky) / math.sqrt((math.pow(math.sin(kx), 2.0) + math.pow(math.sin(ky), 2.0)))
                                    	tmp = 0
                                    	if t_1 <= -0.5:
                                    		tmp = (math.sin(ky) / math.sqrt((0.5 - (0.5 * math.cos((ky + ky)))))) * math.sin(th)
                                    	elif t_1 <= 0.0001:
                                    		tmp = (math.sin(th) / math.sin(kx)) * math.sin(ky)
                                    	else:
                                    		tmp = math.sin(th)
                                    	return tmp
                                    
                                    function code(kx, ky, th)
                                    	t_1 = Float64(sin(ky) / sqrt(Float64((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0))))
                                    	tmp = 0.0
                                    	if (t_1 <= -0.5)
                                    		tmp = Float64(Float64(sin(ky) / sqrt(Float64(0.5 - Float64(0.5 * cos(Float64(ky + ky)))))) * sin(th));
                                    	elseif (t_1 <= 0.0001)
                                    		tmp = Float64(Float64(sin(th) / sin(kx)) * sin(ky));
                                    	else
                                    		tmp = sin(th);
                                    	end
                                    	return tmp
                                    end
                                    
                                    function tmp_2 = code(kx, ky, th)
                                    	t_1 = sin(ky) / sqrt(((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)));
                                    	tmp = 0.0;
                                    	if (t_1 <= -0.5)
                                    		tmp = (sin(ky) / sqrt((0.5 - (0.5 * cos((ky + ky)))))) * sin(th);
                                    	elseif (t_1 <= 0.0001)
                                    		tmp = (sin(th) / sin(kx)) * sin(ky);
                                    	else
                                    		tmp = sin(th);
                                    	end
                                    	tmp_2 = tmp;
                                    end
                                    
                                    code[kx_, ky_, th_] := Block[{t$95$1 = N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$1, -0.5], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(0.5 - N[(0.5 * N[Cos[N[(ky + ky), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision], If[LessEqual[t$95$1, 0.0001], N[(N[(N[Sin[th], $MachinePrecision] / N[Sin[kx], $MachinePrecision]), $MachinePrecision] * N[Sin[ky], $MachinePrecision]), $MachinePrecision], N[Sin[th], $MachinePrecision]]]]
                                    
                                    \begin{array}{l}
                                    
                                    \\
                                    \begin{array}{l}
                                    t_1 := \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}\\
                                    \mathbf{if}\;t\_1 \leq -0.5:\\
                                    \;\;\;\;\frac{\sin ky}{\sqrt{0.5 - 0.5 \cdot \cos \left(ky + ky\right)}} \cdot \sin th\\
                                    
                                    \mathbf{elif}\;t\_1 \leq 0.0001:\\
                                    \;\;\;\;\frac{\sin th}{\sin kx} \cdot \sin ky\\
                                    
                                    \mathbf{else}:\\
                                    \;\;\;\;\sin th\\
                                    
                                    
                                    \end{array}
                                    \end{array}
                                    
                                    Derivation
                                    1. Split input into 3 regimes
                                    2. if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -0.5

                                      1. Initial program 95.8%

                                        \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                      2. Add Preprocessing
                                      3. Taylor expanded in kx around 0

                                        \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
                                      4. Step-by-step derivation
                                        1. lift-sin.f64N/A

                                          \[\leadsto \frac{\sin ky}{\sqrt{{\sin ky}^{2}}} \cdot \sin th \]
                                        2. lift-pow.f6462.6

                                          \[\leadsto \frac{\sin ky}{\sqrt{{\sin ky}^{\color{blue}{2}}}} \cdot \sin th \]
                                      5. Applied rewrites62.6%

                                        \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
                                      6. Step-by-step derivation
                                        1. lift-pow.f64N/A

                                          \[\leadsto \frac{\sin ky}{\sqrt{{\sin ky}^{\color{blue}{2}}}} \cdot \sin th \]
                                        2. lift-sin.f64N/A

                                          \[\leadsto \frac{\sin ky}{\sqrt{{\sin ky}^{2}}} \cdot \sin th \]
                                        3. pow2N/A

                                          \[\leadsto \frac{\sin ky}{\sqrt{\sin ky \cdot \color{blue}{\sin ky}}} \cdot \sin th \]
                                        4. sqr-sin-aN/A

                                          \[\leadsto \frac{\sin ky}{\sqrt{\frac{1}{2} - \color{blue}{\frac{1}{2} \cdot \cos \left(2 \cdot ky\right)}}} \cdot \sin th \]
                                        5. lower--.f64N/A

                                          \[\leadsto \frac{\sin ky}{\sqrt{\frac{1}{2} - \color{blue}{\frac{1}{2} \cdot \cos \left(2 \cdot ky\right)}}} \cdot \sin th \]
                                        6. lower-*.f64N/A

                                          \[\leadsto \frac{\sin ky}{\sqrt{\frac{1}{2} - \frac{1}{2} \cdot \color{blue}{\cos \left(2 \cdot ky\right)}}} \cdot \sin th \]
                                        7. cos-2N/A

                                          \[\leadsto \frac{\sin ky}{\sqrt{\frac{1}{2} - \frac{1}{2} \cdot \left(\cos ky \cdot \cos ky - \color{blue}{\sin ky \cdot \sin ky}\right)}} \cdot \sin th \]
                                        8. cos-sumN/A

                                          \[\leadsto \frac{\sin ky}{\sqrt{\frac{1}{2} - \frac{1}{2} \cdot \cos \left(ky + ky\right)}} \cdot \sin th \]
                                        9. lower-cos.f64N/A

                                          \[\leadsto \frac{\sin ky}{\sqrt{\frac{1}{2} - \frac{1}{2} \cdot \cos \left(ky + ky\right)}} \cdot \sin th \]
                                        10. lower-+.f6448.2

                                          \[\leadsto \frac{\sin ky}{\sqrt{0.5 - 0.5 \cdot \cos \left(ky + ky\right)}} \cdot \sin th \]
                                      7. Applied rewrites48.2%

                                        \[\leadsto \frac{\sin ky}{\sqrt{0.5 - \color{blue}{0.5 \cdot \cos \left(ky + ky\right)}}} \cdot \sin th \]

                                      if -0.5 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 1.00000000000000005e-4

                                      1. Initial program 99.2%

                                        \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                      2. Add Preprocessing
                                      3. Taylor expanded in kx around inf

                                        \[\leadsto \color{blue}{\left(\sin ky \cdot \sin th\right) \cdot \sqrt{\frac{1}{{\sin kx}^{2} + {\sin ky}^{2}}}} \]
                                      4. Step-by-step derivation
                                        1. *-commutativeN/A

                                          \[\leadsto \sqrt{\frac{1}{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \color{blue}{\left(\sin ky \cdot \sin th\right)} \]
                                        2. lower-*.f64N/A

                                          \[\leadsto \sqrt{\frac{1}{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \color{blue}{\left(\sin ky \cdot \sin th\right)} \]
                                        3. sqrt-divN/A

                                          \[\leadsto \frac{\sqrt{1}}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \left(\color{blue}{\sin ky} \cdot \sin th\right) \]
                                        4. metadata-evalN/A

                                          \[\leadsto \frac{1}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \left(\sin \color{blue}{ky} \cdot \sin th\right) \]
                                        5. inv-powN/A

                                          \[\leadsto {\left(\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}\right)}^{-1} \cdot \left(\color{blue}{\sin ky} \cdot \sin th\right) \]
                                        6. lower-pow.f64N/A

                                          \[\leadsto {\left(\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}\right)}^{-1} \cdot \left(\color{blue}{\sin ky} \cdot \sin th\right) \]
                                        7. unpow2N/A

                                          \[\leadsto {\left(\sqrt{\sin kx \cdot \sin kx + {\sin ky}^{2}}\right)}^{-1} \cdot \left(\sin ky \cdot \sin th\right) \]
                                        8. unpow2N/A

                                          \[\leadsto {\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \cdot \left(\sin ky \cdot \sin th\right) \]
                                        9. lower-hypot.f64N/A

                                          \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin \color{blue}{ky} \cdot \sin th\right) \]
                                        10. lift-sin.f64N/A

                                          \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin ky \cdot \sin th\right) \]
                                        11. lift-sin.f64N/A

                                          \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin ky \cdot \sin th\right) \]
                                        12. *-commutativeN/A

                                          \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin th \cdot \color{blue}{\sin ky}\right) \]
                                        13. lower-*.f64N/A

                                          \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin th \cdot \color{blue}{\sin ky}\right) \]
                                        14. lift-sin.f64N/A

                                          \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin th \cdot \sin \color{blue}{ky}\right) \]
                                        15. lift-sin.f6497.1

                                          \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin th \cdot \sin ky\right) \]
                                      5. Applied rewrites97.1%

                                        \[\leadsto \color{blue}{{\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin th \cdot \sin ky\right)} \]
                                      6. Step-by-step derivation
                                        1. lift-*.f64N/A

                                          \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \color{blue}{\left(\sin th \cdot \sin ky\right)} \]
                                        2. lift-pow.f64N/A

                                          \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\color{blue}{\sin th} \cdot \sin ky\right) \]
                                        3. lift-sin.f64N/A

                                          \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin th \cdot \sin ky\right) \]
                                        4. lift-sin.f64N/A

                                          \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin th \cdot \sin ky\right) \]
                                        5. lift-hypot.f64N/A

                                          \[\leadsto {\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \cdot \left(\sin \color{blue}{th} \cdot \sin ky\right) \]
                                        6. lift-*.f64N/A

                                          \[\leadsto {\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \cdot \left(\sin th \cdot \color{blue}{\sin ky}\right) \]
                                        7. lift-sin.f64N/A

                                          \[\leadsto {\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \cdot \left(\sin th \cdot \sin \color{blue}{ky}\right) \]
                                        8. lift-sin.f64N/A

                                          \[\leadsto {\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \cdot \left(\sin th \cdot \sin ky\right) \]
                                        9. associate-*r*N/A

                                          \[\leadsto \left({\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \cdot \sin th\right) \cdot \color{blue}{\sin ky} \]
                                        10. lower-*.f64N/A

                                          \[\leadsto \left({\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \cdot \sin th\right) \cdot \color{blue}{\sin ky} \]
                                      7. Applied rewrites99.4%

                                        \[\leadsto \left({\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \sin th\right) \cdot \color{blue}{\sin ky} \]
                                      8. Taylor expanded in ky around 0

                                        \[\leadsto \frac{\sin th}{\sin kx} \cdot \sin \color{blue}{ky} \]
                                      9. Step-by-step derivation
                                        1. lower-/.f64N/A

                                          \[\leadsto \frac{\sin th}{\sin kx} \cdot \sin ky \]
                                        2. lift-sin.f64N/A

                                          \[\leadsto \frac{\sin th}{\sin kx} \cdot \sin ky \]
                                        3. lift-sin.f6463.7

                                          \[\leadsto \frac{\sin th}{\sin kx} \cdot \sin ky \]
                                      10. Applied rewrites63.7%

                                        \[\leadsto \frac{\sin th}{\sin kx} \cdot \sin \color{blue}{ky} \]

                                      if 1.00000000000000005e-4 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))

                                      1. Initial program 87.0%

                                        \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                      2. Add Preprocessing
                                      3. Taylor expanded in kx around 0

                                        \[\leadsto \color{blue}{\sin th} \]
                                      4. Step-by-step derivation
                                        1. lift-sin.f6465.1

                                          \[\leadsto \sin th \]
                                      5. Applied rewrites65.1%

                                        \[\leadsto \color{blue}{\sin th} \]
                                    3. Recombined 3 regimes into one program.
                                    4. Add Preprocessing

                                    Alternative 11: 53.4% accurate, 0.5× speedup?

                                    \[\begin{array}{l} \\ \begin{array}{l} t_1 := {\sin ky}^{2}\\ t_2 := \frac{\sin ky}{\sqrt{{\sin kx}^{2} + t\_1}}\\ \mathbf{if}\;t\_2 \leq -0.5:\\ \;\;\;\;\frac{\sin ky}{\sqrt{t\_1}} \cdot th\\ \mathbf{elif}\;t\_2 \leq 0.0001:\\ \;\;\;\;\frac{\sin th}{\sin kx} \cdot \sin ky\\ \mathbf{else}:\\ \;\;\;\;\sin th\\ \end{array} \end{array} \]
                                    (FPCore (kx ky th)
                                     :precision binary64
                                     (let* ((t_1 (pow (sin ky) 2.0))
                                            (t_2 (/ (sin ky) (sqrt (+ (pow (sin kx) 2.0) t_1)))))
                                       (if (<= t_2 -0.5)
                                         (* (/ (sin ky) (sqrt t_1)) th)
                                         (if (<= t_2 0.0001) (* (/ (sin th) (sin kx)) (sin ky)) (sin th)))))
                                    double code(double kx, double ky, double th) {
                                    	double t_1 = pow(sin(ky), 2.0);
                                    	double t_2 = sin(ky) / sqrt((pow(sin(kx), 2.0) + t_1));
                                    	double tmp;
                                    	if (t_2 <= -0.5) {
                                    		tmp = (sin(ky) / sqrt(t_1)) * th;
                                    	} else if (t_2 <= 0.0001) {
                                    		tmp = (sin(th) / sin(kx)) * sin(ky);
                                    	} else {
                                    		tmp = sin(th);
                                    	}
                                    	return tmp;
                                    }
                                    
                                    module fmin_fmax_functions
                                        implicit none
                                        private
                                        public fmax
                                        public fmin
                                    
                                        interface fmax
                                            module procedure fmax88
                                            module procedure fmax44
                                            module procedure fmax84
                                            module procedure fmax48
                                        end interface
                                        interface fmin
                                            module procedure fmin88
                                            module procedure fmin44
                                            module procedure fmin84
                                            module procedure fmin48
                                        end interface
                                    contains
                                        real(8) function fmax88(x, y) result (res)
                                            real(8), intent (in) :: x
                                            real(8), intent (in) :: y
                                            res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                        end function
                                        real(4) function fmax44(x, y) result (res)
                                            real(4), intent (in) :: x
                                            real(4), intent (in) :: y
                                            res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                        end function
                                        real(8) function fmax84(x, y) result(res)
                                            real(8), intent (in) :: x
                                            real(4), intent (in) :: y
                                            res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                                        end function
                                        real(8) function fmax48(x, y) result(res)
                                            real(4), intent (in) :: x
                                            real(8), intent (in) :: y
                                            res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                                        end function
                                        real(8) function fmin88(x, y) result (res)
                                            real(8), intent (in) :: x
                                            real(8), intent (in) :: y
                                            res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                        end function
                                        real(4) function fmin44(x, y) result (res)
                                            real(4), intent (in) :: x
                                            real(4), intent (in) :: y
                                            res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                        end function
                                        real(8) function fmin84(x, y) result(res)
                                            real(8), intent (in) :: x
                                            real(4), intent (in) :: y
                                            res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                                        end function
                                        real(8) function fmin48(x, y) result(res)
                                            real(4), intent (in) :: x
                                            real(8), intent (in) :: y
                                            res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                                        end function
                                    end module
                                    
                                    real(8) function code(kx, ky, th)
                                    use fmin_fmax_functions
                                        real(8), intent (in) :: kx
                                        real(8), intent (in) :: ky
                                        real(8), intent (in) :: th
                                        real(8) :: t_1
                                        real(8) :: t_2
                                        real(8) :: tmp
                                        t_1 = sin(ky) ** 2.0d0
                                        t_2 = sin(ky) / sqrt(((sin(kx) ** 2.0d0) + t_1))
                                        if (t_2 <= (-0.5d0)) then
                                            tmp = (sin(ky) / sqrt(t_1)) * th
                                        else if (t_2 <= 0.0001d0) then
                                            tmp = (sin(th) / sin(kx)) * sin(ky)
                                        else
                                            tmp = sin(th)
                                        end if
                                        code = tmp
                                    end function
                                    
                                    public static double code(double kx, double ky, double th) {
                                    	double t_1 = Math.pow(Math.sin(ky), 2.0);
                                    	double t_2 = Math.sin(ky) / Math.sqrt((Math.pow(Math.sin(kx), 2.0) + t_1));
                                    	double tmp;
                                    	if (t_2 <= -0.5) {
                                    		tmp = (Math.sin(ky) / Math.sqrt(t_1)) * th;
                                    	} else if (t_2 <= 0.0001) {
                                    		tmp = (Math.sin(th) / Math.sin(kx)) * Math.sin(ky);
                                    	} else {
                                    		tmp = Math.sin(th);
                                    	}
                                    	return tmp;
                                    }
                                    
                                    def code(kx, ky, th):
                                    	t_1 = math.pow(math.sin(ky), 2.0)
                                    	t_2 = math.sin(ky) / math.sqrt((math.pow(math.sin(kx), 2.0) + t_1))
                                    	tmp = 0
                                    	if t_2 <= -0.5:
                                    		tmp = (math.sin(ky) / math.sqrt(t_1)) * th
                                    	elif t_2 <= 0.0001:
                                    		tmp = (math.sin(th) / math.sin(kx)) * math.sin(ky)
                                    	else:
                                    		tmp = math.sin(th)
                                    	return tmp
                                    
                                    function code(kx, ky, th)
                                    	t_1 = sin(ky) ^ 2.0
                                    	t_2 = Float64(sin(ky) / sqrt(Float64((sin(kx) ^ 2.0) + t_1)))
                                    	tmp = 0.0
                                    	if (t_2 <= -0.5)
                                    		tmp = Float64(Float64(sin(ky) / sqrt(t_1)) * th);
                                    	elseif (t_2 <= 0.0001)
                                    		tmp = Float64(Float64(sin(th) / sin(kx)) * sin(ky));
                                    	else
                                    		tmp = sin(th);
                                    	end
                                    	return tmp
                                    end
                                    
                                    function tmp_2 = code(kx, ky, th)
                                    	t_1 = sin(ky) ^ 2.0;
                                    	t_2 = sin(ky) / sqrt(((sin(kx) ^ 2.0) + t_1));
                                    	tmp = 0.0;
                                    	if (t_2 <= -0.5)
                                    		tmp = (sin(ky) / sqrt(t_1)) * th;
                                    	elseif (t_2 <= 0.0001)
                                    		tmp = (sin(th) / sin(kx)) * sin(ky);
                                    	else
                                    		tmp = sin(th);
                                    	end
                                    	tmp_2 = tmp;
                                    end
                                    
                                    code[kx_, ky_, th_] := Block[{t$95$1 = N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]}, Block[{t$95$2 = N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision] + t$95$1), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$2, -0.5], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[t$95$1], $MachinePrecision]), $MachinePrecision] * th), $MachinePrecision], If[LessEqual[t$95$2, 0.0001], N[(N[(N[Sin[th], $MachinePrecision] / N[Sin[kx], $MachinePrecision]), $MachinePrecision] * N[Sin[ky], $MachinePrecision]), $MachinePrecision], N[Sin[th], $MachinePrecision]]]]]
                                    
                                    \begin{array}{l}
                                    
                                    \\
                                    \begin{array}{l}
                                    t_1 := {\sin ky}^{2}\\
                                    t_2 := \frac{\sin ky}{\sqrt{{\sin kx}^{2} + t\_1}}\\
                                    \mathbf{if}\;t\_2 \leq -0.5:\\
                                    \;\;\;\;\frac{\sin ky}{\sqrt{t\_1}} \cdot th\\
                                    
                                    \mathbf{elif}\;t\_2 \leq 0.0001:\\
                                    \;\;\;\;\frac{\sin th}{\sin kx} \cdot \sin ky\\
                                    
                                    \mathbf{else}:\\
                                    \;\;\;\;\sin th\\
                                    
                                    
                                    \end{array}
                                    \end{array}
                                    
                                    Derivation
                                    1. Split input into 3 regimes
                                    2. if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -0.5

                                      1. Initial program 95.8%

                                        \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                      2. Add Preprocessing
                                      3. Taylor expanded in kx around 0

                                        \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
                                      4. Step-by-step derivation
                                        1. lift-sin.f64N/A

                                          \[\leadsto \frac{\sin ky}{\sqrt{{\sin ky}^{2}}} \cdot \sin th \]
                                        2. lift-pow.f6462.6

                                          \[\leadsto \frac{\sin ky}{\sqrt{{\sin ky}^{\color{blue}{2}}}} \cdot \sin th \]
                                      5. Applied rewrites62.6%

                                        \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
                                      6. Taylor expanded in th around 0

                                        \[\leadsto \frac{\sin ky}{\sqrt{{\sin ky}^{2}}} \cdot \color{blue}{th} \]
                                      7. Step-by-step derivation
                                        1. Applied rewrites31.9%

                                          \[\leadsto \frac{\sin ky}{\sqrt{{\sin ky}^{2}}} \cdot \color{blue}{th} \]

                                        if -0.5 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 1.00000000000000005e-4

                                        1. Initial program 99.2%

                                          \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                        2. Add Preprocessing
                                        3. Taylor expanded in kx around inf

                                          \[\leadsto \color{blue}{\left(\sin ky \cdot \sin th\right) \cdot \sqrt{\frac{1}{{\sin kx}^{2} + {\sin ky}^{2}}}} \]
                                        4. Step-by-step derivation
                                          1. *-commutativeN/A

                                            \[\leadsto \sqrt{\frac{1}{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \color{blue}{\left(\sin ky \cdot \sin th\right)} \]
                                          2. lower-*.f64N/A

                                            \[\leadsto \sqrt{\frac{1}{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \color{blue}{\left(\sin ky \cdot \sin th\right)} \]
                                          3. sqrt-divN/A

                                            \[\leadsto \frac{\sqrt{1}}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \left(\color{blue}{\sin ky} \cdot \sin th\right) \]
                                          4. metadata-evalN/A

                                            \[\leadsto \frac{1}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \left(\sin \color{blue}{ky} \cdot \sin th\right) \]
                                          5. inv-powN/A

                                            \[\leadsto {\left(\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}\right)}^{-1} \cdot \left(\color{blue}{\sin ky} \cdot \sin th\right) \]
                                          6. lower-pow.f64N/A

                                            \[\leadsto {\left(\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}\right)}^{-1} \cdot \left(\color{blue}{\sin ky} \cdot \sin th\right) \]
                                          7. unpow2N/A

                                            \[\leadsto {\left(\sqrt{\sin kx \cdot \sin kx + {\sin ky}^{2}}\right)}^{-1} \cdot \left(\sin ky \cdot \sin th\right) \]
                                          8. unpow2N/A

                                            \[\leadsto {\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \cdot \left(\sin ky \cdot \sin th\right) \]
                                          9. lower-hypot.f64N/A

                                            \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin \color{blue}{ky} \cdot \sin th\right) \]
                                          10. lift-sin.f64N/A

                                            \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin ky \cdot \sin th\right) \]
                                          11. lift-sin.f64N/A

                                            \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin ky \cdot \sin th\right) \]
                                          12. *-commutativeN/A

                                            \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin th \cdot \color{blue}{\sin ky}\right) \]
                                          13. lower-*.f64N/A

                                            \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin th \cdot \color{blue}{\sin ky}\right) \]
                                          14. lift-sin.f64N/A

                                            \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin th \cdot \sin \color{blue}{ky}\right) \]
                                          15. lift-sin.f6497.1

                                            \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin th \cdot \sin ky\right) \]
                                        5. Applied rewrites97.1%

                                          \[\leadsto \color{blue}{{\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin th \cdot \sin ky\right)} \]
                                        6. Step-by-step derivation
                                          1. lift-*.f64N/A

                                            \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \color{blue}{\left(\sin th \cdot \sin ky\right)} \]
                                          2. lift-pow.f64N/A

                                            \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\color{blue}{\sin th} \cdot \sin ky\right) \]
                                          3. lift-sin.f64N/A

                                            \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin th \cdot \sin ky\right) \]
                                          4. lift-sin.f64N/A

                                            \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin th \cdot \sin ky\right) \]
                                          5. lift-hypot.f64N/A

                                            \[\leadsto {\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \cdot \left(\sin \color{blue}{th} \cdot \sin ky\right) \]
                                          6. lift-*.f64N/A

                                            \[\leadsto {\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \cdot \left(\sin th \cdot \color{blue}{\sin ky}\right) \]
                                          7. lift-sin.f64N/A

                                            \[\leadsto {\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \cdot \left(\sin th \cdot \sin \color{blue}{ky}\right) \]
                                          8. lift-sin.f64N/A

                                            \[\leadsto {\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \cdot \left(\sin th \cdot \sin ky\right) \]
                                          9. associate-*r*N/A

                                            \[\leadsto \left({\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \cdot \sin th\right) \cdot \color{blue}{\sin ky} \]
                                          10. lower-*.f64N/A

                                            \[\leadsto \left({\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \cdot \sin th\right) \cdot \color{blue}{\sin ky} \]
                                        7. Applied rewrites99.4%

                                          \[\leadsto \left({\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \sin th\right) \cdot \color{blue}{\sin ky} \]
                                        8. Taylor expanded in ky around 0

                                          \[\leadsto \frac{\sin th}{\sin kx} \cdot \sin \color{blue}{ky} \]
                                        9. Step-by-step derivation
                                          1. lower-/.f64N/A

                                            \[\leadsto \frac{\sin th}{\sin kx} \cdot \sin ky \]
                                          2. lift-sin.f64N/A

                                            \[\leadsto \frac{\sin th}{\sin kx} \cdot \sin ky \]
                                          3. lift-sin.f6463.7

                                            \[\leadsto \frac{\sin th}{\sin kx} \cdot \sin ky \]
                                        10. Applied rewrites63.7%

                                          \[\leadsto \frac{\sin th}{\sin kx} \cdot \sin \color{blue}{ky} \]

                                        if 1.00000000000000005e-4 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))

                                        1. Initial program 87.0%

                                          \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                        2. Add Preprocessing
                                        3. Taylor expanded in kx around 0

                                          \[\leadsto \color{blue}{\sin th} \]
                                        4. Step-by-step derivation
                                          1. lift-sin.f6465.1

                                            \[\leadsto \sin th \]
                                        5. Applied rewrites65.1%

                                          \[\leadsto \color{blue}{\sin th} \]
                                      8. Recombined 3 regimes into one program.
                                      9. Add Preprocessing

                                      Alternative 12: 54.8% accurate, 0.5× speedup?

                                      \[\begin{array}{l} \\ \begin{array}{l} t_1 := \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}\\ \mathbf{if}\;t\_1 \leq -0.998:\\ \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, kx\right)} \cdot th\\ \mathbf{elif}\;t\_1 \leq 0.0001:\\ \;\;\;\;\frac{\sin th}{\sin kx} \cdot \sin ky\\ \mathbf{else}:\\ \;\;\;\;\sin th\\ \end{array} \end{array} \]
                                      (FPCore (kx ky th)
                                       :precision binary64
                                       (let* ((t_1 (/ (sin ky) (sqrt (+ (pow (sin kx) 2.0) (pow (sin ky) 2.0))))))
                                         (if (<= t_1 -0.998)
                                           (* (/ (sin ky) (hypot (sin ky) kx)) th)
                                           (if (<= t_1 0.0001) (* (/ (sin th) (sin kx)) (sin ky)) (sin th)))))
                                      double code(double kx, double ky, double th) {
                                      	double t_1 = sin(ky) / sqrt((pow(sin(kx), 2.0) + pow(sin(ky), 2.0)));
                                      	double tmp;
                                      	if (t_1 <= -0.998) {
                                      		tmp = (sin(ky) / hypot(sin(ky), kx)) * th;
                                      	} else if (t_1 <= 0.0001) {
                                      		tmp = (sin(th) / sin(kx)) * sin(ky);
                                      	} else {
                                      		tmp = sin(th);
                                      	}
                                      	return tmp;
                                      }
                                      
                                      public static double code(double kx, double ky, double th) {
                                      	double t_1 = Math.sin(ky) / Math.sqrt((Math.pow(Math.sin(kx), 2.0) + Math.pow(Math.sin(ky), 2.0)));
                                      	double tmp;
                                      	if (t_1 <= -0.998) {
                                      		tmp = (Math.sin(ky) / Math.hypot(Math.sin(ky), kx)) * th;
                                      	} else if (t_1 <= 0.0001) {
                                      		tmp = (Math.sin(th) / Math.sin(kx)) * Math.sin(ky);
                                      	} else {
                                      		tmp = Math.sin(th);
                                      	}
                                      	return tmp;
                                      }
                                      
                                      def code(kx, ky, th):
                                      	t_1 = math.sin(ky) / math.sqrt((math.pow(math.sin(kx), 2.0) + math.pow(math.sin(ky), 2.0)))
                                      	tmp = 0
                                      	if t_1 <= -0.998:
                                      		tmp = (math.sin(ky) / math.hypot(math.sin(ky), kx)) * th
                                      	elif t_1 <= 0.0001:
                                      		tmp = (math.sin(th) / math.sin(kx)) * math.sin(ky)
                                      	else:
                                      		tmp = math.sin(th)
                                      	return tmp
                                      
                                      function code(kx, ky, th)
                                      	t_1 = Float64(sin(ky) / sqrt(Float64((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0))))
                                      	tmp = 0.0
                                      	if (t_1 <= -0.998)
                                      		tmp = Float64(Float64(sin(ky) / hypot(sin(ky), kx)) * th);
                                      	elseif (t_1 <= 0.0001)
                                      		tmp = Float64(Float64(sin(th) / sin(kx)) * sin(ky));
                                      	else
                                      		tmp = sin(th);
                                      	end
                                      	return tmp
                                      end
                                      
                                      function tmp_2 = code(kx, ky, th)
                                      	t_1 = sin(ky) / sqrt(((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)));
                                      	tmp = 0.0;
                                      	if (t_1 <= -0.998)
                                      		tmp = (sin(ky) / hypot(sin(ky), kx)) * th;
                                      	elseif (t_1 <= 0.0001)
                                      		tmp = (sin(th) / sin(kx)) * sin(ky);
                                      	else
                                      		tmp = sin(th);
                                      	end
                                      	tmp_2 = tmp;
                                      end
                                      
                                      code[kx_, ky_, th_] := Block[{t$95$1 = N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]}, If[LessEqual[t$95$1, -0.998], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[Sin[ky], $MachinePrecision] ^ 2 + kx ^ 2], $MachinePrecision]), $MachinePrecision] * th), $MachinePrecision], If[LessEqual[t$95$1, 0.0001], N[(N[(N[Sin[th], $MachinePrecision] / N[Sin[kx], $MachinePrecision]), $MachinePrecision] * N[Sin[ky], $MachinePrecision]), $MachinePrecision], N[Sin[th], $MachinePrecision]]]]
                                      
                                      \begin{array}{l}
                                      
                                      \\
                                      \begin{array}{l}
                                      t_1 := \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}\\
                                      \mathbf{if}\;t\_1 \leq -0.998:\\
                                      \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(\sin ky, kx\right)} \cdot th\\
                                      
                                      \mathbf{elif}\;t\_1 \leq 0.0001:\\
                                      \;\;\;\;\frac{\sin th}{\sin kx} \cdot \sin ky\\
                                      
                                      \mathbf{else}:\\
                                      \;\;\;\;\sin th\\
                                      
                                      
                                      \end{array}
                                      \end{array}
                                      
                                      Derivation
                                      1. Split input into 3 regimes
                                      2. if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < -0.998

                                        1. Initial program 93.3%

                                          \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                        2. Add Preprocessing
                                        3. Step-by-step derivation
                                          1. lift-sqrt.f64N/A

                                            \[\leadsto \frac{\sin ky}{\color{blue}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                                          2. lift-+.f64N/A

                                            \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                                          3. lift-pow.f64N/A

                                            \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}} + {\sin ky}^{2}}} \cdot \sin th \]
                                          4. lift-sin.f64N/A

                                            \[\leadsto \frac{\sin ky}{\sqrt{{\color{blue}{\sin kx}}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                          5. lift-pow.f64N/A

                                            \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + \color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
                                          6. lift-sin.f64N/A

                                            \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\color{blue}{\sin ky}}^{2}}} \cdot \sin th \]
                                          7. +-commutativeN/A

                                            \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2} + {\sin kx}^{2}}}} \cdot \sin th \]
                                          8. unpow2N/A

                                            \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{\sin ky \cdot \sin ky} + {\sin kx}^{2}}} \cdot \sin th \]
                                          9. unpow2N/A

                                            \[\leadsto \frac{\sin ky}{\sqrt{\sin ky \cdot \sin ky + \color{blue}{\sin kx \cdot \sin kx}}} \cdot \sin th \]
                                          10. lower-hypot.f64N/A

                                            \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                                          11. lift-sin.f64N/A

                                            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\color{blue}{\sin ky}, \sin kx\right)} \cdot \sin th \]
                                          12. lift-sin.f64100.0

                                            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\sin kx}\right)} \cdot \sin th \]
                                        4. Applied rewrites100.0%

                                          \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                                        5. Taylor expanded in th around 0

                                          \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \color{blue}{th} \]
                                        6. Step-by-step derivation
                                          1. Applied rewrites48.0%

                                            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \color{blue}{th} \]
                                          2. Taylor expanded in kx around 0

                                            \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{kx}\right)} \cdot th \]
                                          3. Step-by-step derivation
                                            1. Applied rewrites45.8%

                                              \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{kx}\right)} \cdot th \]

                                            if -0.998 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 1.00000000000000005e-4

                                            1. Initial program 99.2%

                                              \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                            2. Add Preprocessing
                                            3. Taylor expanded in kx around inf

                                              \[\leadsto \color{blue}{\left(\sin ky \cdot \sin th\right) \cdot \sqrt{\frac{1}{{\sin kx}^{2} + {\sin ky}^{2}}}} \]
                                            4. Step-by-step derivation
                                              1. *-commutativeN/A

                                                \[\leadsto \sqrt{\frac{1}{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \color{blue}{\left(\sin ky \cdot \sin th\right)} \]
                                              2. lower-*.f64N/A

                                                \[\leadsto \sqrt{\frac{1}{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \color{blue}{\left(\sin ky \cdot \sin th\right)} \]
                                              3. sqrt-divN/A

                                                \[\leadsto \frac{\sqrt{1}}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \left(\color{blue}{\sin ky} \cdot \sin th\right) \]
                                              4. metadata-evalN/A

                                                \[\leadsto \frac{1}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \left(\sin \color{blue}{ky} \cdot \sin th\right) \]
                                              5. inv-powN/A

                                                \[\leadsto {\left(\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}\right)}^{-1} \cdot \left(\color{blue}{\sin ky} \cdot \sin th\right) \]
                                              6. lower-pow.f64N/A

                                                \[\leadsto {\left(\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}\right)}^{-1} \cdot \left(\color{blue}{\sin ky} \cdot \sin th\right) \]
                                              7. unpow2N/A

                                                \[\leadsto {\left(\sqrt{\sin kx \cdot \sin kx + {\sin ky}^{2}}\right)}^{-1} \cdot \left(\sin ky \cdot \sin th\right) \]
                                              8. unpow2N/A

                                                \[\leadsto {\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \cdot \left(\sin ky \cdot \sin th\right) \]
                                              9. lower-hypot.f64N/A

                                                \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin \color{blue}{ky} \cdot \sin th\right) \]
                                              10. lift-sin.f64N/A

                                                \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin ky \cdot \sin th\right) \]
                                              11. lift-sin.f64N/A

                                                \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin ky \cdot \sin th\right) \]
                                              12. *-commutativeN/A

                                                \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin th \cdot \color{blue}{\sin ky}\right) \]
                                              13. lower-*.f64N/A

                                                \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin th \cdot \color{blue}{\sin ky}\right) \]
                                              14. lift-sin.f64N/A

                                                \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin th \cdot \sin \color{blue}{ky}\right) \]
                                              15. lift-sin.f6497.5

                                                \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin th \cdot \sin ky\right) \]
                                            5. Applied rewrites97.5%

                                              \[\leadsto \color{blue}{{\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin th \cdot \sin ky\right)} \]
                                            6. Step-by-step derivation
                                              1. lift-*.f64N/A

                                                \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \color{blue}{\left(\sin th \cdot \sin ky\right)} \]
                                              2. lift-pow.f64N/A

                                                \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\color{blue}{\sin th} \cdot \sin ky\right) \]
                                              3. lift-sin.f64N/A

                                                \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin th \cdot \sin ky\right) \]
                                              4. lift-sin.f64N/A

                                                \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin th \cdot \sin ky\right) \]
                                              5. lift-hypot.f64N/A

                                                \[\leadsto {\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \cdot \left(\sin \color{blue}{th} \cdot \sin ky\right) \]
                                              6. lift-*.f64N/A

                                                \[\leadsto {\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \cdot \left(\sin th \cdot \color{blue}{\sin ky}\right) \]
                                              7. lift-sin.f64N/A

                                                \[\leadsto {\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \cdot \left(\sin th \cdot \sin \color{blue}{ky}\right) \]
                                              8. lift-sin.f64N/A

                                                \[\leadsto {\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \cdot \left(\sin th \cdot \sin ky\right) \]
                                              9. associate-*r*N/A

                                                \[\leadsto \left({\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \cdot \sin th\right) \cdot \color{blue}{\sin ky} \]
                                              10. lower-*.f64N/A

                                                \[\leadsto \left({\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \cdot \sin th\right) \cdot \color{blue}{\sin ky} \]
                                            7. Applied rewrites99.4%

                                              \[\leadsto \left({\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \sin th\right) \cdot \color{blue}{\sin ky} \]
                                            8. Taylor expanded in ky around 0

                                              \[\leadsto \frac{\sin th}{\sin kx} \cdot \sin \color{blue}{ky} \]
                                            9. Step-by-step derivation
                                              1. lower-/.f64N/A

                                                \[\leadsto \frac{\sin th}{\sin kx} \cdot \sin ky \]
                                              2. lift-sin.f64N/A

                                                \[\leadsto \frac{\sin th}{\sin kx} \cdot \sin ky \]
                                              3. lift-sin.f6452.2

                                                \[\leadsto \frac{\sin th}{\sin kx} \cdot \sin ky \]
                                            10. Applied rewrites52.2%

                                              \[\leadsto \frac{\sin th}{\sin kx} \cdot \sin \color{blue}{ky} \]

                                            if 1.00000000000000005e-4 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))

                                            1. Initial program 87.0%

                                              \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                            2. Add Preprocessing
                                            3. Taylor expanded in kx around 0

                                              \[\leadsto \color{blue}{\sin th} \]
                                            4. Step-by-step derivation
                                              1. lift-sin.f6465.1

                                                \[\leadsto \sin th \]
                                            5. Applied rewrites65.1%

                                              \[\leadsto \color{blue}{\sin th} \]
                                          4. Recombined 3 regimes into one program.
                                          5. Add Preprocessing

                                          Alternative 13: 46.2% accurate, 0.7× speedup?

                                          \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \leq 0.0001:\\ \;\;\;\;\frac{\sin th}{\sin kx} \cdot \sin ky\\ \mathbf{else}:\\ \;\;\;\;\sin th\\ \end{array} \end{array} \]
                                          (FPCore (kx ky th)
                                           :precision binary64
                                           (if (<= (/ (sin ky) (sqrt (+ (pow (sin kx) 2.0) (pow (sin ky) 2.0)))) 0.0001)
                                             (* (/ (sin th) (sin kx)) (sin ky))
                                             (sin th)))
                                          double code(double kx, double ky, double th) {
                                          	double tmp;
                                          	if ((sin(ky) / sqrt((pow(sin(kx), 2.0) + pow(sin(ky), 2.0)))) <= 0.0001) {
                                          		tmp = (sin(th) / sin(kx)) * sin(ky);
                                          	} else {
                                          		tmp = sin(th);
                                          	}
                                          	return tmp;
                                          }
                                          
                                          module fmin_fmax_functions
                                              implicit none
                                              private
                                              public fmax
                                              public fmin
                                          
                                              interface fmax
                                                  module procedure fmax88
                                                  module procedure fmax44
                                                  module procedure fmax84
                                                  module procedure fmax48
                                              end interface
                                              interface fmin
                                                  module procedure fmin88
                                                  module procedure fmin44
                                                  module procedure fmin84
                                                  module procedure fmin48
                                              end interface
                                          contains
                                              real(8) function fmax88(x, y) result (res)
                                                  real(8), intent (in) :: x
                                                  real(8), intent (in) :: y
                                                  res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                              end function
                                              real(4) function fmax44(x, y) result (res)
                                                  real(4), intent (in) :: x
                                                  real(4), intent (in) :: y
                                                  res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                              end function
                                              real(8) function fmax84(x, y) result(res)
                                                  real(8), intent (in) :: x
                                                  real(4), intent (in) :: y
                                                  res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                                              end function
                                              real(8) function fmax48(x, y) result(res)
                                                  real(4), intent (in) :: x
                                                  real(8), intent (in) :: y
                                                  res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                                              end function
                                              real(8) function fmin88(x, y) result (res)
                                                  real(8), intent (in) :: x
                                                  real(8), intent (in) :: y
                                                  res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                              end function
                                              real(4) function fmin44(x, y) result (res)
                                                  real(4), intent (in) :: x
                                                  real(4), intent (in) :: y
                                                  res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                              end function
                                              real(8) function fmin84(x, y) result(res)
                                                  real(8), intent (in) :: x
                                                  real(4), intent (in) :: y
                                                  res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                                              end function
                                              real(8) function fmin48(x, y) result(res)
                                                  real(4), intent (in) :: x
                                                  real(8), intent (in) :: y
                                                  res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                                              end function
                                          end module
                                          
                                          real(8) function code(kx, ky, th)
                                          use fmin_fmax_functions
                                              real(8), intent (in) :: kx
                                              real(8), intent (in) :: ky
                                              real(8), intent (in) :: th
                                              real(8) :: tmp
                                              if ((sin(ky) / sqrt(((sin(kx) ** 2.0d0) + (sin(ky) ** 2.0d0)))) <= 0.0001d0) then
                                                  tmp = (sin(th) / sin(kx)) * sin(ky)
                                              else
                                                  tmp = sin(th)
                                              end if
                                              code = tmp
                                          end function
                                          
                                          public static double code(double kx, double ky, double th) {
                                          	double tmp;
                                          	if ((Math.sin(ky) / Math.sqrt((Math.pow(Math.sin(kx), 2.0) + Math.pow(Math.sin(ky), 2.0)))) <= 0.0001) {
                                          		tmp = (Math.sin(th) / Math.sin(kx)) * Math.sin(ky);
                                          	} else {
                                          		tmp = Math.sin(th);
                                          	}
                                          	return tmp;
                                          }
                                          
                                          def code(kx, ky, th):
                                          	tmp = 0
                                          	if (math.sin(ky) / math.sqrt((math.pow(math.sin(kx), 2.0) + math.pow(math.sin(ky), 2.0)))) <= 0.0001:
                                          		tmp = (math.sin(th) / math.sin(kx)) * math.sin(ky)
                                          	else:
                                          		tmp = math.sin(th)
                                          	return tmp
                                          
                                          function code(kx, ky, th)
                                          	tmp = 0.0
                                          	if (Float64(sin(ky) / sqrt(Float64((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) <= 0.0001)
                                          		tmp = Float64(Float64(sin(th) / sin(kx)) * sin(ky));
                                          	else
                                          		tmp = sin(th);
                                          	end
                                          	return tmp
                                          end
                                          
                                          function tmp_2 = code(kx, ky, th)
                                          	tmp = 0.0;
                                          	if ((sin(ky) / sqrt(((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) <= 0.0001)
                                          		tmp = (sin(th) / sin(kx)) * sin(ky);
                                          	else
                                          		tmp = sin(th);
                                          	end
                                          	tmp_2 = tmp;
                                          end
                                          
                                          code[kx_, ky_, th_] := If[LessEqual[N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision], 0.0001], N[(N[(N[Sin[th], $MachinePrecision] / N[Sin[kx], $MachinePrecision]), $MachinePrecision] * N[Sin[ky], $MachinePrecision]), $MachinePrecision], N[Sin[th], $MachinePrecision]]
                                          
                                          \begin{array}{l}
                                          
                                          \\
                                          \begin{array}{l}
                                          \mathbf{if}\;\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \leq 0.0001:\\
                                          \;\;\;\;\frac{\sin th}{\sin kx} \cdot \sin ky\\
                                          
                                          \mathbf{else}:\\
                                          \;\;\;\;\sin th\\
                                          
                                          
                                          \end{array}
                                          \end{array}
                                          
                                          Derivation
                                          1. Split input into 2 regimes
                                          2. if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 1.00000000000000005e-4

                                            1. Initial program 97.8%

                                              \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                            2. Add Preprocessing
                                            3. Taylor expanded in kx around inf

                                              \[\leadsto \color{blue}{\left(\sin ky \cdot \sin th\right) \cdot \sqrt{\frac{1}{{\sin kx}^{2} + {\sin ky}^{2}}}} \]
                                            4. Step-by-step derivation
                                              1. *-commutativeN/A

                                                \[\leadsto \sqrt{\frac{1}{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \color{blue}{\left(\sin ky \cdot \sin th\right)} \]
                                              2. lower-*.f64N/A

                                                \[\leadsto \sqrt{\frac{1}{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \color{blue}{\left(\sin ky \cdot \sin th\right)} \]
                                              3. sqrt-divN/A

                                                \[\leadsto \frac{\sqrt{1}}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \left(\color{blue}{\sin ky} \cdot \sin th\right) \]
                                              4. metadata-evalN/A

                                                \[\leadsto \frac{1}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \left(\sin \color{blue}{ky} \cdot \sin th\right) \]
                                              5. inv-powN/A

                                                \[\leadsto {\left(\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}\right)}^{-1} \cdot \left(\color{blue}{\sin ky} \cdot \sin th\right) \]
                                              6. lower-pow.f64N/A

                                                \[\leadsto {\left(\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}\right)}^{-1} \cdot \left(\color{blue}{\sin ky} \cdot \sin th\right) \]
                                              7. unpow2N/A

                                                \[\leadsto {\left(\sqrt{\sin kx \cdot \sin kx + {\sin ky}^{2}}\right)}^{-1} \cdot \left(\sin ky \cdot \sin th\right) \]
                                              8. unpow2N/A

                                                \[\leadsto {\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \cdot \left(\sin ky \cdot \sin th\right) \]
                                              9. lower-hypot.f64N/A

                                                \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin \color{blue}{ky} \cdot \sin th\right) \]
                                              10. lift-sin.f64N/A

                                                \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin ky \cdot \sin th\right) \]
                                              11. lift-sin.f64N/A

                                                \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin ky \cdot \sin th\right) \]
                                              12. *-commutativeN/A

                                                \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin th \cdot \color{blue}{\sin ky}\right) \]
                                              13. lower-*.f64N/A

                                                \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin th \cdot \color{blue}{\sin ky}\right) \]
                                              14. lift-sin.f64N/A

                                                \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin th \cdot \sin \color{blue}{ky}\right) \]
                                              15. lift-sin.f6496.2

                                                \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin th \cdot \sin ky\right) \]
                                            5. Applied rewrites96.2%

                                              \[\leadsto \color{blue}{{\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin th \cdot \sin ky\right)} \]
                                            6. Step-by-step derivation
                                              1. lift-*.f64N/A

                                                \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \color{blue}{\left(\sin th \cdot \sin ky\right)} \]
                                              2. lift-pow.f64N/A

                                                \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\color{blue}{\sin th} \cdot \sin ky\right) \]
                                              3. lift-sin.f64N/A

                                                \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin th \cdot \sin ky\right) \]
                                              4. lift-sin.f64N/A

                                                \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin th \cdot \sin ky\right) \]
                                              5. lift-hypot.f64N/A

                                                \[\leadsto {\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \cdot \left(\sin \color{blue}{th} \cdot \sin ky\right) \]
                                              6. lift-*.f64N/A

                                                \[\leadsto {\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \cdot \left(\sin th \cdot \color{blue}{\sin ky}\right) \]
                                              7. lift-sin.f64N/A

                                                \[\leadsto {\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \cdot \left(\sin th \cdot \sin \color{blue}{ky}\right) \]
                                              8. lift-sin.f64N/A

                                                \[\leadsto {\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \cdot \left(\sin th \cdot \sin ky\right) \]
                                              9. associate-*r*N/A

                                                \[\leadsto \left({\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \cdot \sin th\right) \cdot \color{blue}{\sin ky} \]
                                              10. lower-*.f64N/A

                                                \[\leadsto \left({\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \cdot \sin th\right) \cdot \color{blue}{\sin ky} \]
                                            7. Applied rewrites99.4%

                                              \[\leadsto \left({\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \sin th\right) \cdot \color{blue}{\sin ky} \]
                                            8. Taylor expanded in ky around 0

                                              \[\leadsto \frac{\sin th}{\sin kx} \cdot \sin \color{blue}{ky} \]
                                            9. Step-by-step derivation
                                              1. lower-/.f64N/A

                                                \[\leadsto \frac{\sin th}{\sin kx} \cdot \sin ky \]
                                              2. lift-sin.f64N/A

                                                \[\leadsto \frac{\sin th}{\sin kx} \cdot \sin ky \]
                                              3. lift-sin.f6440.6

                                                \[\leadsto \frac{\sin th}{\sin kx} \cdot \sin ky \]
                                            10. Applied rewrites40.6%

                                              \[\leadsto \frac{\sin th}{\sin kx} \cdot \sin \color{blue}{ky} \]

                                            if 1.00000000000000005e-4 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))

                                            1. Initial program 87.0%

                                              \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                            2. Add Preprocessing
                                            3. Taylor expanded in kx around 0

                                              \[\leadsto \color{blue}{\sin th} \]
                                            4. Step-by-step derivation
                                              1. lift-sin.f6465.1

                                                \[\leadsto \sin th \]
                                            5. Applied rewrites65.1%

                                              \[\leadsto \color{blue}{\sin th} \]
                                          3. Recombined 2 regimes into one program.
                                          4. Add Preprocessing

                                          Alternative 14: 45.0% accurate, 0.7× speedup?

                                          \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \leq 0.0001:\\ \;\;\;\;\left({\sin kx}^{-1} \cdot \sin th\right) \cdot ky\\ \mathbf{else}:\\ \;\;\;\;\sin th\\ \end{array} \end{array} \]
                                          (FPCore (kx ky th)
                                           :precision binary64
                                           (if (<= (/ (sin ky) (sqrt (+ (pow (sin kx) 2.0) (pow (sin ky) 2.0)))) 0.0001)
                                             (* (* (pow (sin kx) -1.0) (sin th)) ky)
                                             (sin th)))
                                          double code(double kx, double ky, double th) {
                                          	double tmp;
                                          	if ((sin(ky) / sqrt((pow(sin(kx), 2.0) + pow(sin(ky), 2.0)))) <= 0.0001) {
                                          		tmp = (pow(sin(kx), -1.0) * sin(th)) * ky;
                                          	} else {
                                          		tmp = sin(th);
                                          	}
                                          	return tmp;
                                          }
                                          
                                          module fmin_fmax_functions
                                              implicit none
                                              private
                                              public fmax
                                              public fmin
                                          
                                              interface fmax
                                                  module procedure fmax88
                                                  module procedure fmax44
                                                  module procedure fmax84
                                                  module procedure fmax48
                                              end interface
                                              interface fmin
                                                  module procedure fmin88
                                                  module procedure fmin44
                                                  module procedure fmin84
                                                  module procedure fmin48
                                              end interface
                                          contains
                                              real(8) function fmax88(x, y) result (res)
                                                  real(8), intent (in) :: x
                                                  real(8), intent (in) :: y
                                                  res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                              end function
                                              real(4) function fmax44(x, y) result (res)
                                                  real(4), intent (in) :: x
                                                  real(4), intent (in) :: y
                                                  res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                              end function
                                              real(8) function fmax84(x, y) result(res)
                                                  real(8), intent (in) :: x
                                                  real(4), intent (in) :: y
                                                  res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                                              end function
                                              real(8) function fmax48(x, y) result(res)
                                                  real(4), intent (in) :: x
                                                  real(8), intent (in) :: y
                                                  res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                                              end function
                                              real(8) function fmin88(x, y) result (res)
                                                  real(8), intent (in) :: x
                                                  real(8), intent (in) :: y
                                                  res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                              end function
                                              real(4) function fmin44(x, y) result (res)
                                                  real(4), intent (in) :: x
                                                  real(4), intent (in) :: y
                                                  res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                              end function
                                              real(8) function fmin84(x, y) result(res)
                                                  real(8), intent (in) :: x
                                                  real(4), intent (in) :: y
                                                  res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                                              end function
                                              real(8) function fmin48(x, y) result(res)
                                                  real(4), intent (in) :: x
                                                  real(8), intent (in) :: y
                                                  res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                                              end function
                                          end module
                                          
                                          real(8) function code(kx, ky, th)
                                          use fmin_fmax_functions
                                              real(8), intent (in) :: kx
                                              real(8), intent (in) :: ky
                                              real(8), intent (in) :: th
                                              real(8) :: tmp
                                              if ((sin(ky) / sqrt(((sin(kx) ** 2.0d0) + (sin(ky) ** 2.0d0)))) <= 0.0001d0) then
                                                  tmp = ((sin(kx) ** (-1.0d0)) * sin(th)) * ky
                                              else
                                                  tmp = sin(th)
                                              end if
                                              code = tmp
                                          end function
                                          
                                          public static double code(double kx, double ky, double th) {
                                          	double tmp;
                                          	if ((Math.sin(ky) / Math.sqrt((Math.pow(Math.sin(kx), 2.0) + Math.pow(Math.sin(ky), 2.0)))) <= 0.0001) {
                                          		tmp = (Math.pow(Math.sin(kx), -1.0) * Math.sin(th)) * ky;
                                          	} else {
                                          		tmp = Math.sin(th);
                                          	}
                                          	return tmp;
                                          }
                                          
                                          def code(kx, ky, th):
                                          	tmp = 0
                                          	if (math.sin(ky) / math.sqrt((math.pow(math.sin(kx), 2.0) + math.pow(math.sin(ky), 2.0)))) <= 0.0001:
                                          		tmp = (math.pow(math.sin(kx), -1.0) * math.sin(th)) * ky
                                          	else:
                                          		tmp = math.sin(th)
                                          	return tmp
                                          
                                          function code(kx, ky, th)
                                          	tmp = 0.0
                                          	if (Float64(sin(ky) / sqrt(Float64((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) <= 0.0001)
                                          		tmp = Float64(Float64((sin(kx) ^ -1.0) * sin(th)) * ky);
                                          	else
                                          		tmp = sin(th);
                                          	end
                                          	return tmp
                                          end
                                          
                                          function tmp_2 = code(kx, ky, th)
                                          	tmp = 0.0;
                                          	if ((sin(ky) / sqrt(((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) <= 0.0001)
                                          		tmp = ((sin(kx) ^ -1.0) * sin(th)) * ky;
                                          	else
                                          		tmp = sin(th);
                                          	end
                                          	tmp_2 = tmp;
                                          end
                                          
                                          code[kx_, ky_, th_] := If[LessEqual[N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision], 0.0001], N[(N[(N[Power[N[Sin[kx], $MachinePrecision], -1.0], $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision] * ky), $MachinePrecision], N[Sin[th], $MachinePrecision]]
                                          
                                          \begin{array}{l}
                                          
                                          \\
                                          \begin{array}{l}
                                          \mathbf{if}\;\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \leq 0.0001:\\
                                          \;\;\;\;\left({\sin kx}^{-1} \cdot \sin th\right) \cdot ky\\
                                          
                                          \mathbf{else}:\\
                                          \;\;\;\;\sin th\\
                                          
                                          
                                          \end{array}
                                          \end{array}
                                          
                                          Derivation
                                          1. Split input into 2 regimes
                                          2. if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 1.00000000000000005e-4

                                            1. Initial program 97.8%

                                              \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                            2. Add Preprocessing
                                            3. Taylor expanded in kx around inf

                                              \[\leadsto \color{blue}{\left(\sin ky \cdot \sin th\right) \cdot \sqrt{\frac{1}{{\sin kx}^{2} + {\sin ky}^{2}}}} \]
                                            4. Step-by-step derivation
                                              1. *-commutativeN/A

                                                \[\leadsto \sqrt{\frac{1}{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \color{blue}{\left(\sin ky \cdot \sin th\right)} \]
                                              2. lower-*.f64N/A

                                                \[\leadsto \sqrt{\frac{1}{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \color{blue}{\left(\sin ky \cdot \sin th\right)} \]
                                              3. sqrt-divN/A

                                                \[\leadsto \frac{\sqrt{1}}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \left(\color{blue}{\sin ky} \cdot \sin th\right) \]
                                              4. metadata-evalN/A

                                                \[\leadsto \frac{1}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \left(\sin \color{blue}{ky} \cdot \sin th\right) \]
                                              5. inv-powN/A

                                                \[\leadsto {\left(\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}\right)}^{-1} \cdot \left(\color{blue}{\sin ky} \cdot \sin th\right) \]
                                              6. lower-pow.f64N/A

                                                \[\leadsto {\left(\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}\right)}^{-1} \cdot \left(\color{blue}{\sin ky} \cdot \sin th\right) \]
                                              7. unpow2N/A

                                                \[\leadsto {\left(\sqrt{\sin kx \cdot \sin kx + {\sin ky}^{2}}\right)}^{-1} \cdot \left(\sin ky \cdot \sin th\right) \]
                                              8. unpow2N/A

                                                \[\leadsto {\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \cdot \left(\sin ky \cdot \sin th\right) \]
                                              9. lower-hypot.f64N/A

                                                \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin \color{blue}{ky} \cdot \sin th\right) \]
                                              10. lift-sin.f64N/A

                                                \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin ky \cdot \sin th\right) \]
                                              11. lift-sin.f64N/A

                                                \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin ky \cdot \sin th\right) \]
                                              12. *-commutativeN/A

                                                \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin th \cdot \color{blue}{\sin ky}\right) \]
                                              13. lower-*.f64N/A

                                                \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin th \cdot \color{blue}{\sin ky}\right) \]
                                              14. lift-sin.f64N/A

                                                \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin th \cdot \sin \color{blue}{ky}\right) \]
                                              15. lift-sin.f6496.2

                                                \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin th \cdot \sin ky\right) \]
                                            5. Applied rewrites96.2%

                                              \[\leadsto \color{blue}{{\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin th \cdot \sin ky\right)} \]
                                            6. Step-by-step derivation
                                              1. lift-*.f64N/A

                                                \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \color{blue}{\left(\sin th \cdot \sin ky\right)} \]
                                              2. lift-pow.f64N/A

                                                \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\color{blue}{\sin th} \cdot \sin ky\right) \]
                                              3. lift-sin.f64N/A

                                                \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin th \cdot \sin ky\right) \]
                                              4. lift-sin.f64N/A

                                                \[\leadsto {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \left(\sin th \cdot \sin ky\right) \]
                                              5. lift-hypot.f64N/A

                                                \[\leadsto {\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \cdot \left(\sin \color{blue}{th} \cdot \sin ky\right) \]
                                              6. lift-*.f64N/A

                                                \[\leadsto {\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \cdot \left(\sin th \cdot \color{blue}{\sin ky}\right) \]
                                              7. lift-sin.f64N/A

                                                \[\leadsto {\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \cdot \left(\sin th \cdot \sin \color{blue}{ky}\right) \]
                                              8. lift-sin.f64N/A

                                                \[\leadsto {\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \cdot \left(\sin th \cdot \sin ky\right) \]
                                              9. associate-*r*N/A

                                                \[\leadsto \left({\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \cdot \sin th\right) \cdot \color{blue}{\sin ky} \]
                                              10. lower-*.f64N/A

                                                \[\leadsto \left({\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \cdot \sin th\right) \cdot \color{blue}{\sin ky} \]
                                            7. Applied rewrites99.4%

                                              \[\leadsto \left({\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \cdot \sin th\right) \cdot \color{blue}{\sin ky} \]
                                            8. Taylor expanded in ky around 0

                                              \[\leadsto \left({\sin kx}^{-1} \cdot \sin th\right) \cdot \sin ky \]
                                            9. Step-by-step derivation
                                              1. lift-sin.f6440.6

                                                \[\leadsto \left({\sin kx}^{-1} \cdot \sin th\right) \cdot \sin ky \]
                                            10. Applied rewrites40.6%

                                              \[\leadsto \left({\sin kx}^{-1} \cdot \sin th\right) \cdot \sin ky \]
                                            11. Taylor expanded in ky around 0

                                              \[\leadsto \left({\sin kx}^{-1} \cdot \sin th\right) \cdot ky \]
                                            12. Step-by-step derivation
                                              1. Applied rewrites38.3%

                                                \[\leadsto \left({\sin kx}^{-1} \cdot \sin th\right) \cdot ky \]

                                              if 1.00000000000000005e-4 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))

                                              1. Initial program 87.0%

                                                \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                              2. Add Preprocessing
                                              3. Taylor expanded in kx around 0

                                                \[\leadsto \color{blue}{\sin th} \]
                                              4. Step-by-step derivation
                                                1. lift-sin.f6465.1

                                                  \[\leadsto \sin th \]
                                              5. Applied rewrites65.1%

                                                \[\leadsto \color{blue}{\sin th} \]
                                            13. Recombined 2 regimes into one program.
                                            14. Add Preprocessing

                                            Alternative 15: 45.0% accurate, 0.8× speedup?

                                            \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \leq 0.0001:\\ \;\;\;\;\frac{ky}{\sin kx} \cdot \sin th\\ \mathbf{else}:\\ \;\;\;\;\sin th\\ \end{array} \end{array} \]
                                            (FPCore (kx ky th)
                                             :precision binary64
                                             (if (<= (/ (sin ky) (sqrt (+ (pow (sin kx) 2.0) (pow (sin ky) 2.0)))) 0.0001)
                                               (* (/ ky (sin kx)) (sin th))
                                               (sin th)))
                                            double code(double kx, double ky, double th) {
                                            	double tmp;
                                            	if ((sin(ky) / sqrt((pow(sin(kx), 2.0) + pow(sin(ky), 2.0)))) <= 0.0001) {
                                            		tmp = (ky / sin(kx)) * sin(th);
                                            	} else {
                                            		tmp = sin(th);
                                            	}
                                            	return tmp;
                                            }
                                            
                                            module fmin_fmax_functions
                                                implicit none
                                                private
                                                public fmax
                                                public fmin
                                            
                                                interface fmax
                                                    module procedure fmax88
                                                    module procedure fmax44
                                                    module procedure fmax84
                                                    module procedure fmax48
                                                end interface
                                                interface fmin
                                                    module procedure fmin88
                                                    module procedure fmin44
                                                    module procedure fmin84
                                                    module procedure fmin48
                                                end interface
                                            contains
                                                real(8) function fmax88(x, y) result (res)
                                                    real(8), intent (in) :: x
                                                    real(8), intent (in) :: y
                                                    res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                                end function
                                                real(4) function fmax44(x, y) result (res)
                                                    real(4), intent (in) :: x
                                                    real(4), intent (in) :: y
                                                    res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                                end function
                                                real(8) function fmax84(x, y) result(res)
                                                    real(8), intent (in) :: x
                                                    real(4), intent (in) :: y
                                                    res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                                                end function
                                                real(8) function fmax48(x, y) result(res)
                                                    real(4), intent (in) :: x
                                                    real(8), intent (in) :: y
                                                    res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                                                end function
                                                real(8) function fmin88(x, y) result (res)
                                                    real(8), intent (in) :: x
                                                    real(8), intent (in) :: y
                                                    res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                                end function
                                                real(4) function fmin44(x, y) result (res)
                                                    real(4), intent (in) :: x
                                                    real(4), intent (in) :: y
                                                    res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                                end function
                                                real(8) function fmin84(x, y) result(res)
                                                    real(8), intent (in) :: x
                                                    real(4), intent (in) :: y
                                                    res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                                                end function
                                                real(8) function fmin48(x, y) result(res)
                                                    real(4), intent (in) :: x
                                                    real(8), intent (in) :: y
                                                    res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                                                end function
                                            end module
                                            
                                            real(8) function code(kx, ky, th)
                                            use fmin_fmax_functions
                                                real(8), intent (in) :: kx
                                                real(8), intent (in) :: ky
                                                real(8), intent (in) :: th
                                                real(8) :: tmp
                                                if ((sin(ky) / sqrt(((sin(kx) ** 2.0d0) + (sin(ky) ** 2.0d0)))) <= 0.0001d0) then
                                                    tmp = (ky / sin(kx)) * sin(th)
                                                else
                                                    tmp = sin(th)
                                                end if
                                                code = tmp
                                            end function
                                            
                                            public static double code(double kx, double ky, double th) {
                                            	double tmp;
                                            	if ((Math.sin(ky) / Math.sqrt((Math.pow(Math.sin(kx), 2.0) + Math.pow(Math.sin(ky), 2.0)))) <= 0.0001) {
                                            		tmp = (ky / Math.sin(kx)) * Math.sin(th);
                                            	} else {
                                            		tmp = Math.sin(th);
                                            	}
                                            	return tmp;
                                            }
                                            
                                            def code(kx, ky, th):
                                            	tmp = 0
                                            	if (math.sin(ky) / math.sqrt((math.pow(math.sin(kx), 2.0) + math.pow(math.sin(ky), 2.0)))) <= 0.0001:
                                            		tmp = (ky / math.sin(kx)) * math.sin(th)
                                            	else:
                                            		tmp = math.sin(th)
                                            	return tmp
                                            
                                            function code(kx, ky, th)
                                            	tmp = 0.0
                                            	if (Float64(sin(ky) / sqrt(Float64((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) <= 0.0001)
                                            		tmp = Float64(Float64(ky / sin(kx)) * sin(th));
                                            	else
                                            		tmp = sin(th);
                                            	end
                                            	return tmp
                                            end
                                            
                                            function tmp_2 = code(kx, ky, th)
                                            	tmp = 0.0;
                                            	if ((sin(ky) / sqrt(((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) <= 0.0001)
                                            		tmp = (ky / sin(kx)) * sin(th);
                                            	else
                                            		tmp = sin(th);
                                            	end
                                            	tmp_2 = tmp;
                                            end
                                            
                                            code[kx_, ky_, th_] := If[LessEqual[N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision], 0.0001], N[(N[(ky / N[Sin[kx], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision], N[Sin[th], $MachinePrecision]]
                                            
                                            \begin{array}{l}
                                            
                                            \\
                                            \begin{array}{l}
                                            \mathbf{if}\;\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \leq 0.0001:\\
                                            \;\;\;\;\frac{ky}{\sin kx} \cdot \sin th\\
                                            
                                            \mathbf{else}:\\
                                            \;\;\;\;\sin th\\
                                            
                                            
                                            \end{array}
                                            \end{array}
                                            
                                            Derivation
                                            1. Split input into 2 regimes
                                            2. if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 1.00000000000000005e-4

                                              1. Initial program 97.8%

                                                \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                              2. Add Preprocessing
                                              3. Taylor expanded in ky around 0

                                                \[\leadsto \color{blue}{\frac{ky}{\sin kx}} \cdot \sin th \]
                                              4. Step-by-step derivation
                                                1. lower-/.f64N/A

                                                  \[\leadsto \frac{ky}{\color{blue}{\sin kx}} \cdot \sin th \]
                                                2. lift-sin.f6438.3

                                                  \[\leadsto \frac{ky}{\sin kx} \cdot \sin th \]
                                              5. Applied rewrites38.3%

                                                \[\leadsto \color{blue}{\frac{ky}{\sin kx}} \cdot \sin th \]

                                              if 1.00000000000000005e-4 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))

                                              1. Initial program 87.0%

                                                \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                              2. Add Preprocessing
                                              3. Taylor expanded in kx around 0

                                                \[\leadsto \color{blue}{\sin th} \]
                                              4. Step-by-step derivation
                                                1. lift-sin.f6465.1

                                                  \[\leadsto \sin th \]
                                              5. Applied rewrites65.1%

                                                \[\leadsto \color{blue}{\sin th} \]
                                            3. Recombined 2 regimes into one program.
                                            4. Add Preprocessing

                                            Alternative 16: 44.3% accurate, 0.8× speedup?

                                            \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \leq 0.0001:\\ \;\;\;\;\frac{\sin th \cdot ky}{\sin kx}\\ \mathbf{else}:\\ \;\;\;\;\sin th\\ \end{array} \end{array} \]
                                            (FPCore (kx ky th)
                                             :precision binary64
                                             (if (<= (/ (sin ky) (sqrt (+ (pow (sin kx) 2.0) (pow (sin ky) 2.0)))) 0.0001)
                                               (/ (* (sin th) ky) (sin kx))
                                               (sin th)))
                                            double code(double kx, double ky, double th) {
                                            	double tmp;
                                            	if ((sin(ky) / sqrt((pow(sin(kx), 2.0) + pow(sin(ky), 2.0)))) <= 0.0001) {
                                            		tmp = (sin(th) * ky) / sin(kx);
                                            	} else {
                                            		tmp = sin(th);
                                            	}
                                            	return tmp;
                                            }
                                            
                                            module fmin_fmax_functions
                                                implicit none
                                                private
                                                public fmax
                                                public fmin
                                            
                                                interface fmax
                                                    module procedure fmax88
                                                    module procedure fmax44
                                                    module procedure fmax84
                                                    module procedure fmax48
                                                end interface
                                                interface fmin
                                                    module procedure fmin88
                                                    module procedure fmin44
                                                    module procedure fmin84
                                                    module procedure fmin48
                                                end interface
                                            contains
                                                real(8) function fmax88(x, y) result (res)
                                                    real(8), intent (in) :: x
                                                    real(8), intent (in) :: y
                                                    res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                                end function
                                                real(4) function fmax44(x, y) result (res)
                                                    real(4), intent (in) :: x
                                                    real(4), intent (in) :: y
                                                    res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                                end function
                                                real(8) function fmax84(x, y) result(res)
                                                    real(8), intent (in) :: x
                                                    real(4), intent (in) :: y
                                                    res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                                                end function
                                                real(8) function fmax48(x, y) result(res)
                                                    real(4), intent (in) :: x
                                                    real(8), intent (in) :: y
                                                    res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                                                end function
                                                real(8) function fmin88(x, y) result (res)
                                                    real(8), intent (in) :: x
                                                    real(8), intent (in) :: y
                                                    res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                                end function
                                                real(4) function fmin44(x, y) result (res)
                                                    real(4), intent (in) :: x
                                                    real(4), intent (in) :: y
                                                    res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                                end function
                                                real(8) function fmin84(x, y) result(res)
                                                    real(8), intent (in) :: x
                                                    real(4), intent (in) :: y
                                                    res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                                                end function
                                                real(8) function fmin48(x, y) result(res)
                                                    real(4), intent (in) :: x
                                                    real(8), intent (in) :: y
                                                    res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                                                end function
                                            end module
                                            
                                            real(8) function code(kx, ky, th)
                                            use fmin_fmax_functions
                                                real(8), intent (in) :: kx
                                                real(8), intent (in) :: ky
                                                real(8), intent (in) :: th
                                                real(8) :: tmp
                                                if ((sin(ky) / sqrt(((sin(kx) ** 2.0d0) + (sin(ky) ** 2.0d0)))) <= 0.0001d0) then
                                                    tmp = (sin(th) * ky) / sin(kx)
                                                else
                                                    tmp = sin(th)
                                                end if
                                                code = tmp
                                            end function
                                            
                                            public static double code(double kx, double ky, double th) {
                                            	double tmp;
                                            	if ((Math.sin(ky) / Math.sqrt((Math.pow(Math.sin(kx), 2.0) + Math.pow(Math.sin(ky), 2.0)))) <= 0.0001) {
                                            		tmp = (Math.sin(th) * ky) / Math.sin(kx);
                                            	} else {
                                            		tmp = Math.sin(th);
                                            	}
                                            	return tmp;
                                            }
                                            
                                            def code(kx, ky, th):
                                            	tmp = 0
                                            	if (math.sin(ky) / math.sqrt((math.pow(math.sin(kx), 2.0) + math.pow(math.sin(ky), 2.0)))) <= 0.0001:
                                            		tmp = (math.sin(th) * ky) / math.sin(kx)
                                            	else:
                                            		tmp = math.sin(th)
                                            	return tmp
                                            
                                            function code(kx, ky, th)
                                            	tmp = 0.0
                                            	if (Float64(sin(ky) / sqrt(Float64((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) <= 0.0001)
                                            		tmp = Float64(Float64(sin(th) * ky) / sin(kx));
                                            	else
                                            		tmp = sin(th);
                                            	end
                                            	return tmp
                                            end
                                            
                                            function tmp_2 = code(kx, ky, th)
                                            	tmp = 0.0;
                                            	if ((sin(ky) / sqrt(((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) <= 0.0001)
                                            		tmp = (sin(th) * ky) / sin(kx);
                                            	else
                                            		tmp = sin(th);
                                            	end
                                            	tmp_2 = tmp;
                                            end
                                            
                                            code[kx_, ky_, th_] := If[LessEqual[N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision], 0.0001], N[(N[(N[Sin[th], $MachinePrecision] * ky), $MachinePrecision] / N[Sin[kx], $MachinePrecision]), $MachinePrecision], N[Sin[th], $MachinePrecision]]
                                            
                                            \begin{array}{l}
                                            
                                            \\
                                            \begin{array}{l}
                                            \mathbf{if}\;\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \leq 0.0001:\\
                                            \;\;\;\;\frac{\sin th \cdot ky}{\sin kx}\\
                                            
                                            \mathbf{else}:\\
                                            \;\;\;\;\sin th\\
                                            
                                            
                                            \end{array}
                                            \end{array}
                                            
                                            Derivation
                                            1. Split input into 2 regimes
                                            2. if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 1.00000000000000005e-4

                                              1. Initial program 97.8%

                                                \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                              2. Add Preprocessing
                                              3. Taylor expanded in ky around 0

                                                \[\leadsto \color{blue}{\frac{ky \cdot \sin th}{\sin kx}} \]
                                              4. Step-by-step derivation
                                                1. lower-/.f64N/A

                                                  \[\leadsto \frac{ky \cdot \sin th}{\color{blue}{\sin kx}} \]
                                                2. *-commutativeN/A

                                                  \[\leadsto \frac{\sin th \cdot ky}{\sin \color{blue}{kx}} \]
                                                3. lower-*.f64N/A

                                                  \[\leadsto \frac{\sin th \cdot ky}{\sin \color{blue}{kx}} \]
                                                4. lift-sin.f64N/A

                                                  \[\leadsto \frac{\sin th \cdot ky}{\sin kx} \]
                                                5. lift-sin.f6436.8

                                                  \[\leadsto \frac{\sin th \cdot ky}{\sin kx} \]
                                              5. Applied rewrites36.8%

                                                \[\leadsto \color{blue}{\frac{\sin th \cdot ky}{\sin kx}} \]

                                              if 1.00000000000000005e-4 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))

                                              1. Initial program 87.0%

                                                \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                              2. Add Preprocessing
                                              3. Taylor expanded in kx around 0

                                                \[\leadsto \color{blue}{\sin th} \]
                                              4. Step-by-step derivation
                                                1. lift-sin.f6465.1

                                                  \[\leadsto \sin th \]
                                              5. Applied rewrites65.1%

                                                \[\leadsto \color{blue}{\sin th} \]
                                            3. Recombined 2 regimes into one program.
                                            4. Add Preprocessing

                                            Alternative 17: 36.9% accurate, 0.8× speedup?

                                            \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \leq 0.0001:\\ \;\;\;\;\sin ky \cdot \frac{th}{\sin kx}\\ \mathbf{else}:\\ \;\;\;\;\sin th\\ \end{array} \end{array} \]
                                            (FPCore (kx ky th)
                                             :precision binary64
                                             (if (<= (/ (sin ky) (sqrt (+ (pow (sin kx) 2.0) (pow (sin ky) 2.0)))) 0.0001)
                                               (* (sin ky) (/ th (sin kx)))
                                               (sin th)))
                                            double code(double kx, double ky, double th) {
                                            	double tmp;
                                            	if ((sin(ky) / sqrt((pow(sin(kx), 2.0) + pow(sin(ky), 2.0)))) <= 0.0001) {
                                            		tmp = sin(ky) * (th / sin(kx));
                                            	} else {
                                            		tmp = sin(th);
                                            	}
                                            	return tmp;
                                            }
                                            
                                            module fmin_fmax_functions
                                                implicit none
                                                private
                                                public fmax
                                                public fmin
                                            
                                                interface fmax
                                                    module procedure fmax88
                                                    module procedure fmax44
                                                    module procedure fmax84
                                                    module procedure fmax48
                                                end interface
                                                interface fmin
                                                    module procedure fmin88
                                                    module procedure fmin44
                                                    module procedure fmin84
                                                    module procedure fmin48
                                                end interface
                                            contains
                                                real(8) function fmax88(x, y) result (res)
                                                    real(8), intent (in) :: x
                                                    real(8), intent (in) :: y
                                                    res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                                end function
                                                real(4) function fmax44(x, y) result (res)
                                                    real(4), intent (in) :: x
                                                    real(4), intent (in) :: y
                                                    res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                                end function
                                                real(8) function fmax84(x, y) result(res)
                                                    real(8), intent (in) :: x
                                                    real(4), intent (in) :: y
                                                    res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                                                end function
                                                real(8) function fmax48(x, y) result(res)
                                                    real(4), intent (in) :: x
                                                    real(8), intent (in) :: y
                                                    res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                                                end function
                                                real(8) function fmin88(x, y) result (res)
                                                    real(8), intent (in) :: x
                                                    real(8), intent (in) :: y
                                                    res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                                end function
                                                real(4) function fmin44(x, y) result (res)
                                                    real(4), intent (in) :: x
                                                    real(4), intent (in) :: y
                                                    res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                                end function
                                                real(8) function fmin84(x, y) result(res)
                                                    real(8), intent (in) :: x
                                                    real(4), intent (in) :: y
                                                    res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                                                end function
                                                real(8) function fmin48(x, y) result(res)
                                                    real(4), intent (in) :: x
                                                    real(8), intent (in) :: y
                                                    res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                                                end function
                                            end module
                                            
                                            real(8) function code(kx, ky, th)
                                            use fmin_fmax_functions
                                                real(8), intent (in) :: kx
                                                real(8), intent (in) :: ky
                                                real(8), intent (in) :: th
                                                real(8) :: tmp
                                                if ((sin(ky) / sqrt(((sin(kx) ** 2.0d0) + (sin(ky) ** 2.0d0)))) <= 0.0001d0) then
                                                    tmp = sin(ky) * (th / sin(kx))
                                                else
                                                    tmp = sin(th)
                                                end if
                                                code = tmp
                                            end function
                                            
                                            public static double code(double kx, double ky, double th) {
                                            	double tmp;
                                            	if ((Math.sin(ky) / Math.sqrt((Math.pow(Math.sin(kx), 2.0) + Math.pow(Math.sin(ky), 2.0)))) <= 0.0001) {
                                            		tmp = Math.sin(ky) * (th / Math.sin(kx));
                                            	} else {
                                            		tmp = Math.sin(th);
                                            	}
                                            	return tmp;
                                            }
                                            
                                            def code(kx, ky, th):
                                            	tmp = 0
                                            	if (math.sin(ky) / math.sqrt((math.pow(math.sin(kx), 2.0) + math.pow(math.sin(ky), 2.0)))) <= 0.0001:
                                            		tmp = math.sin(ky) * (th / math.sin(kx))
                                            	else:
                                            		tmp = math.sin(th)
                                            	return tmp
                                            
                                            function code(kx, ky, th)
                                            	tmp = 0.0
                                            	if (Float64(sin(ky) / sqrt(Float64((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) <= 0.0001)
                                            		tmp = Float64(sin(ky) * Float64(th / sin(kx)));
                                            	else
                                            		tmp = sin(th);
                                            	end
                                            	return tmp
                                            end
                                            
                                            function tmp_2 = code(kx, ky, th)
                                            	tmp = 0.0;
                                            	if ((sin(ky) / sqrt(((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) <= 0.0001)
                                            		tmp = sin(ky) * (th / sin(kx));
                                            	else
                                            		tmp = sin(th);
                                            	end
                                            	tmp_2 = tmp;
                                            end
                                            
                                            code[kx_, ky_, th_] := If[LessEqual[N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision], 0.0001], N[(N[Sin[ky], $MachinePrecision] * N[(th / N[Sin[kx], $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[Sin[th], $MachinePrecision]]
                                            
                                            \begin{array}{l}
                                            
                                            \\
                                            \begin{array}{l}
                                            \mathbf{if}\;\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \leq 0.0001:\\
                                            \;\;\;\;\sin ky \cdot \frac{th}{\sin kx}\\
                                            
                                            \mathbf{else}:\\
                                            \;\;\;\;\sin th\\
                                            
                                            
                                            \end{array}
                                            \end{array}
                                            
                                            Derivation
                                            1. Split input into 2 regimes
                                            2. if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 1.00000000000000005e-4

                                              1. Initial program 97.8%

                                                \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                              2. Add Preprocessing
                                              3. Taylor expanded in th around 0

                                                \[\leadsto \color{blue}{\left(th \cdot \sin ky\right) \cdot \sqrt{\frac{1}{{\sin kx}^{2} + {\sin ky}^{2}}}} \]
                                              4. Step-by-step derivation
                                                1. lower-*.f64N/A

                                                  \[\leadsto \left(th \cdot \sin ky\right) \cdot \color{blue}{\sqrt{\frac{1}{{\sin kx}^{2} + {\sin ky}^{2}}}} \]
                                                2. *-commutativeN/A

                                                  \[\leadsto \left(\sin ky \cdot th\right) \cdot \sqrt{\color{blue}{\frac{1}{{\sin kx}^{2} + {\sin ky}^{2}}}} \]
                                                3. lower-*.f64N/A

                                                  \[\leadsto \left(\sin ky \cdot th\right) \cdot \sqrt{\color{blue}{\frac{1}{{\sin kx}^{2} + {\sin ky}^{2}}}} \]
                                                4. lift-sin.f64N/A

                                                  \[\leadsto \left(\sin ky \cdot th\right) \cdot \sqrt{\frac{\color{blue}{1}}{{\sin kx}^{2} + {\sin ky}^{2}}} \]
                                                5. sqrt-divN/A

                                                  \[\leadsto \left(\sin ky \cdot th\right) \cdot \frac{\sqrt{1}}{\color{blue}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}} \]
                                                6. metadata-evalN/A

                                                  \[\leadsto \left(\sin ky \cdot th\right) \cdot \frac{1}{\sqrt{\color{blue}{{\sin kx}^{2} + {\sin ky}^{2}}}} \]
                                                7. inv-powN/A

                                                  \[\leadsto \left(\sin ky \cdot th\right) \cdot {\left(\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}\right)}^{\color{blue}{-1}} \]
                                                8. lower-pow.f64N/A

                                                  \[\leadsto \left(\sin ky \cdot th\right) \cdot {\left(\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}\right)}^{\color{blue}{-1}} \]
                                                9. unpow2N/A

                                                  \[\leadsto \left(\sin ky \cdot th\right) \cdot {\left(\sqrt{\sin kx \cdot \sin kx + {\sin ky}^{2}}\right)}^{-1} \]
                                                10. unpow2N/A

                                                  \[\leadsto \left(\sin ky \cdot th\right) \cdot {\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \]
                                                11. lower-hypot.f64N/A

                                                  \[\leadsto \left(\sin ky \cdot th\right) \cdot {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \]
                                                12. lift-sin.f64N/A

                                                  \[\leadsto \left(\sin ky \cdot th\right) \cdot {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \]
                                                13. lift-sin.f6447.1

                                                  \[\leadsto \left(\sin ky \cdot th\right) \cdot {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \]
                                              5. Applied rewrites47.1%

                                                \[\leadsto \color{blue}{\left(\sin ky \cdot th\right) \cdot {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1}} \]
                                              6. Taylor expanded in kx around 0

                                                \[\leadsto \left(\sin ky \cdot th\right) \cdot \frac{1}{\color{blue}{\sin ky}} \]
                                              7. Step-by-step derivation
                                                1. inv-powN/A

                                                  \[\leadsto \left(\sin ky \cdot th\right) \cdot {\sin ky}^{-1} \]
                                                2. lower-pow.f64N/A

                                                  \[\leadsto \left(\sin ky \cdot th\right) \cdot {\sin ky}^{-1} \]
                                                3. lift-sin.f6414.7

                                                  \[\leadsto \left(\sin ky \cdot th\right) \cdot {\sin ky}^{-1} \]
                                              8. Applied rewrites14.7%

                                                \[\leadsto \left(\sin ky \cdot th\right) \cdot {\sin ky}^{\color{blue}{-1}} \]
                                              9. Step-by-step derivation
                                                1. lift-*.f64N/A

                                                  \[\leadsto \left(\sin ky \cdot th\right) \cdot \color{blue}{{\sin ky}^{-1}} \]
                                                2. lift-*.f64N/A

                                                  \[\leadsto \left(\sin ky \cdot th\right) \cdot {\color{blue}{\sin ky}}^{-1} \]
                                                3. lift-sin.f64N/A

                                                  \[\leadsto \left(\sin ky \cdot th\right) \cdot {\sin \color{blue}{ky}}^{-1} \]
                                                4. associate-*l*N/A

                                                  \[\leadsto \sin ky \cdot \color{blue}{\left(th \cdot {\sin ky}^{-1}\right)} \]
                                                5. lower-*.f64N/A

                                                  \[\leadsto \sin ky \cdot \color{blue}{\left(th \cdot {\sin ky}^{-1}\right)} \]
                                                6. lift-sin.f64N/A

                                                  \[\leadsto \sin ky \cdot \left(\color{blue}{th} \cdot {\sin ky}^{-1}\right) \]
                                                7. lower-*.f643.8

                                                  \[\leadsto \sin ky \cdot \left(th \cdot \color{blue}{{\sin ky}^{-1}}\right) \]
                                              10. Applied rewrites3.8%

                                                \[\leadsto \sin ky \cdot \color{blue}{\left(th \cdot {\sin ky}^{-1}\right)} \]
                                              11. Taylor expanded in ky around 0

                                                \[\leadsto \sin ky \cdot \frac{th}{\color{blue}{\sin kx}} \]
                                              12. Step-by-step derivation
                                                1. lower-/.f64N/A

                                                  \[\leadsto \sin ky \cdot \frac{th}{\sin kx} \]
                                                2. lift-sin.f6424.4

                                                  \[\leadsto \sin ky \cdot \frac{th}{\sin kx} \]
                                              13. Applied rewrites24.4%

                                                \[\leadsto \sin ky \cdot \frac{th}{\color{blue}{\sin kx}} \]

                                              if 1.00000000000000005e-4 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))

                                              1. Initial program 87.0%

                                                \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                              2. Add Preprocessing
                                              3. Taylor expanded in kx around 0

                                                \[\leadsto \color{blue}{\sin th} \]
                                              4. Step-by-step derivation
                                                1. lift-sin.f6465.1

                                                  \[\leadsto \sin th \]
                                              5. Applied rewrites65.1%

                                                \[\leadsto \color{blue}{\sin th} \]
                                            3. Recombined 2 regimes into one program.
                                            4. Add Preprocessing

                                            Alternative 18: 15.7% accurate, 1.0× speedup?

                                            \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \leq 5 \cdot 10^{-316}:\\ \;\;\;\;\left(\left(th \cdot th\right) \cdot -0.16666666666666666\right) \cdot th\\ \mathbf{else}:\\ \;\;\;\;th\\ \end{array} \end{array} \]
                                            (FPCore (kx ky th)
                                             :precision binary64
                                             (if (<=
                                                  (*
                                                   (/ (sin ky) (sqrt (+ (pow (sin kx) 2.0) (pow (sin ky) 2.0))))
                                                   (sin th))
                                                  5e-316)
                                               (* (* (* th th) -0.16666666666666666) th)
                                               th))
                                            double code(double kx, double ky, double th) {
                                            	double tmp;
                                            	if (((sin(ky) / sqrt((pow(sin(kx), 2.0) + pow(sin(ky), 2.0)))) * sin(th)) <= 5e-316) {
                                            		tmp = ((th * th) * -0.16666666666666666) * th;
                                            	} else {
                                            		tmp = th;
                                            	}
                                            	return tmp;
                                            }
                                            
                                            module fmin_fmax_functions
                                                implicit none
                                                private
                                                public fmax
                                                public fmin
                                            
                                                interface fmax
                                                    module procedure fmax88
                                                    module procedure fmax44
                                                    module procedure fmax84
                                                    module procedure fmax48
                                                end interface
                                                interface fmin
                                                    module procedure fmin88
                                                    module procedure fmin44
                                                    module procedure fmin84
                                                    module procedure fmin48
                                                end interface
                                            contains
                                                real(8) function fmax88(x, y) result (res)
                                                    real(8), intent (in) :: x
                                                    real(8), intent (in) :: y
                                                    res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                                end function
                                                real(4) function fmax44(x, y) result (res)
                                                    real(4), intent (in) :: x
                                                    real(4), intent (in) :: y
                                                    res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                                end function
                                                real(8) function fmax84(x, y) result(res)
                                                    real(8), intent (in) :: x
                                                    real(4), intent (in) :: y
                                                    res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                                                end function
                                                real(8) function fmax48(x, y) result(res)
                                                    real(4), intent (in) :: x
                                                    real(8), intent (in) :: y
                                                    res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                                                end function
                                                real(8) function fmin88(x, y) result (res)
                                                    real(8), intent (in) :: x
                                                    real(8), intent (in) :: y
                                                    res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                                end function
                                                real(4) function fmin44(x, y) result (res)
                                                    real(4), intent (in) :: x
                                                    real(4), intent (in) :: y
                                                    res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                                end function
                                                real(8) function fmin84(x, y) result(res)
                                                    real(8), intent (in) :: x
                                                    real(4), intent (in) :: y
                                                    res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                                                end function
                                                real(8) function fmin48(x, y) result(res)
                                                    real(4), intent (in) :: x
                                                    real(8), intent (in) :: y
                                                    res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                                                end function
                                            end module
                                            
                                            real(8) function code(kx, ky, th)
                                            use fmin_fmax_functions
                                                real(8), intent (in) :: kx
                                                real(8), intent (in) :: ky
                                                real(8), intent (in) :: th
                                                real(8) :: tmp
                                                if (((sin(ky) / sqrt(((sin(kx) ** 2.0d0) + (sin(ky) ** 2.0d0)))) * sin(th)) <= 5d-316) then
                                                    tmp = ((th * th) * (-0.16666666666666666d0)) * th
                                                else
                                                    tmp = th
                                                end if
                                                code = tmp
                                            end function
                                            
                                            public static double code(double kx, double ky, double th) {
                                            	double tmp;
                                            	if (((Math.sin(ky) / Math.sqrt((Math.pow(Math.sin(kx), 2.0) + Math.pow(Math.sin(ky), 2.0)))) * Math.sin(th)) <= 5e-316) {
                                            		tmp = ((th * th) * -0.16666666666666666) * th;
                                            	} else {
                                            		tmp = th;
                                            	}
                                            	return tmp;
                                            }
                                            
                                            def code(kx, ky, th):
                                            	tmp = 0
                                            	if ((math.sin(ky) / math.sqrt((math.pow(math.sin(kx), 2.0) + math.pow(math.sin(ky), 2.0)))) * math.sin(th)) <= 5e-316:
                                            		tmp = ((th * th) * -0.16666666666666666) * th
                                            	else:
                                            		tmp = th
                                            	return tmp
                                            
                                            function code(kx, ky, th)
                                            	tmp = 0.0
                                            	if (Float64(Float64(sin(ky) / sqrt(Float64((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) * sin(th)) <= 5e-316)
                                            		tmp = Float64(Float64(Float64(th * th) * -0.16666666666666666) * th);
                                            	else
                                            		tmp = th;
                                            	end
                                            	return tmp
                                            end
                                            
                                            function tmp_2 = code(kx, ky, th)
                                            	tmp = 0.0;
                                            	if (((sin(ky) / sqrt(((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) * sin(th)) <= 5e-316)
                                            		tmp = ((th * th) * -0.16666666666666666) * th;
                                            	else
                                            		tmp = th;
                                            	end
                                            	tmp_2 = tmp;
                                            end
                                            
                                            code[kx_, ky_, th_] := If[LessEqual[N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision], 5e-316], N[(N[(N[(th * th), $MachinePrecision] * -0.16666666666666666), $MachinePrecision] * th), $MachinePrecision], th]
                                            
                                            \begin{array}{l}
                                            
                                            \\
                                            \begin{array}{l}
                                            \mathbf{if}\;\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \leq 5 \cdot 10^{-316}:\\
                                            \;\;\;\;\left(\left(th \cdot th\right) \cdot -0.16666666666666666\right) \cdot th\\
                                            
                                            \mathbf{else}:\\
                                            \;\;\;\;th\\
                                            
                                            
                                            \end{array}
                                            \end{array}
                                            
                                            Derivation
                                            1. Split input into 2 regimes
                                            2. if (*.f64 (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) (sin.f64 th)) < 5.000000017e-316

                                              1. Initial program 96.1%

                                                \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                              2. Add Preprocessing
                                              3. Taylor expanded in kx around 0

                                                \[\leadsto \color{blue}{\sin th} \]
                                              4. Step-by-step derivation
                                                1. lift-sin.f6421.9

                                                  \[\leadsto \sin th \]
                                              5. Applied rewrites21.9%

                                                \[\leadsto \color{blue}{\sin th} \]
                                              6. Taylor expanded in th around 0

                                                \[\leadsto th \cdot \color{blue}{\left(1 + \frac{-1}{6} \cdot {th}^{2}\right)} \]
                                              7. Step-by-step derivation
                                                1. *-commutativeN/A

                                                  \[\leadsto \left(1 + \frac{-1}{6} \cdot {th}^{2}\right) \cdot th \]
                                                2. lower-*.f64N/A

                                                  \[\leadsto \left(1 + \frac{-1}{6} \cdot {th}^{2}\right) \cdot th \]
                                                3. +-commutativeN/A

                                                  \[\leadsto \left(\frac{-1}{6} \cdot {th}^{2} + 1\right) \cdot th \]
                                                4. *-commutativeN/A

                                                  \[\leadsto \left({th}^{2} \cdot \frac{-1}{6} + 1\right) \cdot th \]
                                                5. lower-fma.f64N/A

                                                  \[\leadsto \mathsf{fma}\left({th}^{2}, \frac{-1}{6}, 1\right) \cdot th \]
                                                6. unpow2N/A

                                                  \[\leadsto \mathsf{fma}\left(th \cdot th, \frac{-1}{6}, 1\right) \cdot th \]
                                                7. lower-*.f6413.6

                                                  \[\leadsto \mathsf{fma}\left(th \cdot th, -0.16666666666666666, 1\right) \cdot th \]
                                              8. Applied rewrites13.6%

                                                \[\leadsto \mathsf{fma}\left(th \cdot th, -0.16666666666666666, 1\right) \cdot \color{blue}{th} \]
                                              9. Taylor expanded in th around inf

                                                \[\leadsto \left(\frac{-1}{6} \cdot {th}^{2}\right) \cdot th \]
                                              10. Step-by-step derivation
                                                1. *-commutativeN/A

                                                  \[\leadsto \left({th}^{2} \cdot \frac{-1}{6}\right) \cdot th \]
                                                2. lower-*.f64N/A

                                                  \[\leadsto \left({th}^{2} \cdot \frac{-1}{6}\right) \cdot th \]
                                                3. pow2N/A

                                                  \[\leadsto \left(\left(th \cdot th\right) \cdot \frac{-1}{6}\right) \cdot th \]
                                                4. lift-*.f6416.0

                                                  \[\leadsto \left(\left(th \cdot th\right) \cdot -0.16666666666666666\right) \cdot th \]
                                              11. Applied rewrites16.0%

                                                \[\leadsto \left(\left(th \cdot th\right) \cdot -0.16666666666666666\right) \cdot th \]

                                              if 5.000000017e-316 < (*.f64 (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) (sin.f64 th))

                                              1. Initial program 92.5%

                                                \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                              2. Add Preprocessing
                                              3. Taylor expanded in th around 0

                                                \[\leadsto \color{blue}{\left(th \cdot \sin ky\right) \cdot \sqrt{\frac{1}{{\sin kx}^{2} + {\sin ky}^{2}}}} \]
                                              4. Step-by-step derivation
                                                1. lower-*.f64N/A

                                                  \[\leadsto \left(th \cdot \sin ky\right) \cdot \color{blue}{\sqrt{\frac{1}{{\sin kx}^{2} + {\sin ky}^{2}}}} \]
                                                2. *-commutativeN/A

                                                  \[\leadsto \left(\sin ky \cdot th\right) \cdot \sqrt{\color{blue}{\frac{1}{{\sin kx}^{2} + {\sin ky}^{2}}}} \]
                                                3. lower-*.f64N/A

                                                  \[\leadsto \left(\sin ky \cdot th\right) \cdot \sqrt{\color{blue}{\frac{1}{{\sin kx}^{2} + {\sin ky}^{2}}}} \]
                                                4. lift-sin.f64N/A

                                                  \[\leadsto \left(\sin ky \cdot th\right) \cdot \sqrt{\frac{\color{blue}{1}}{{\sin kx}^{2} + {\sin ky}^{2}}} \]
                                                5. sqrt-divN/A

                                                  \[\leadsto \left(\sin ky \cdot th\right) \cdot \frac{\sqrt{1}}{\color{blue}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}} \]
                                                6. metadata-evalN/A

                                                  \[\leadsto \left(\sin ky \cdot th\right) \cdot \frac{1}{\sqrt{\color{blue}{{\sin kx}^{2} + {\sin ky}^{2}}}} \]
                                                7. inv-powN/A

                                                  \[\leadsto \left(\sin ky \cdot th\right) \cdot {\left(\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}\right)}^{\color{blue}{-1}} \]
                                                8. lower-pow.f64N/A

                                                  \[\leadsto \left(\sin ky \cdot th\right) \cdot {\left(\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}\right)}^{\color{blue}{-1}} \]
                                                9. unpow2N/A

                                                  \[\leadsto \left(\sin ky \cdot th\right) \cdot {\left(\sqrt{\sin kx \cdot \sin kx + {\sin ky}^{2}}\right)}^{-1} \]
                                                10. unpow2N/A

                                                  \[\leadsto \left(\sin ky \cdot th\right) \cdot {\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \]
                                                11. lower-hypot.f64N/A

                                                  \[\leadsto \left(\sin ky \cdot th\right) \cdot {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \]
                                                12. lift-sin.f64N/A

                                                  \[\leadsto \left(\sin ky \cdot th\right) \cdot {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \]
                                                13. lift-sin.f6439.2

                                                  \[\leadsto \left(\sin ky \cdot th\right) \cdot {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \]
                                              5. Applied rewrites39.2%

                                                \[\leadsto \color{blue}{\left(\sin ky \cdot th\right) \cdot {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1}} \]
                                              6. Taylor expanded in kx around 0

                                                \[\leadsto th \]
                                              7. Step-by-step derivation
                                                1. Applied rewrites12.1%

                                                  \[\leadsto th \]
                                              8. Recombined 2 regimes into one program.
                                              9. Add Preprocessing

                                              Alternative 19: 36.2% accurate, 1.0× speedup?

                                              \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \leq 0.0001:\\ \;\;\;\;\frac{ky}{\sin kx} \cdot th\\ \mathbf{else}:\\ \;\;\;\;\sin th\\ \end{array} \end{array} \]
                                              (FPCore (kx ky th)
                                               :precision binary64
                                               (if (<= (/ (sin ky) (sqrt (+ (pow (sin kx) 2.0) (pow (sin ky) 2.0)))) 0.0001)
                                                 (* (/ ky (sin kx)) th)
                                                 (sin th)))
                                              double code(double kx, double ky, double th) {
                                              	double tmp;
                                              	if ((sin(ky) / sqrt((pow(sin(kx), 2.0) + pow(sin(ky), 2.0)))) <= 0.0001) {
                                              		tmp = (ky / sin(kx)) * th;
                                              	} else {
                                              		tmp = sin(th);
                                              	}
                                              	return tmp;
                                              }
                                              
                                              module fmin_fmax_functions
                                                  implicit none
                                                  private
                                                  public fmax
                                                  public fmin
                                              
                                                  interface fmax
                                                      module procedure fmax88
                                                      module procedure fmax44
                                                      module procedure fmax84
                                                      module procedure fmax48
                                                  end interface
                                                  interface fmin
                                                      module procedure fmin88
                                                      module procedure fmin44
                                                      module procedure fmin84
                                                      module procedure fmin48
                                                  end interface
                                              contains
                                                  real(8) function fmax88(x, y) result (res)
                                                      real(8), intent (in) :: x
                                                      real(8), intent (in) :: y
                                                      res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                                  end function
                                                  real(4) function fmax44(x, y) result (res)
                                                      real(4), intent (in) :: x
                                                      real(4), intent (in) :: y
                                                      res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                                  end function
                                                  real(8) function fmax84(x, y) result(res)
                                                      real(8), intent (in) :: x
                                                      real(4), intent (in) :: y
                                                      res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                                                  end function
                                                  real(8) function fmax48(x, y) result(res)
                                                      real(4), intent (in) :: x
                                                      real(8), intent (in) :: y
                                                      res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                                                  end function
                                                  real(8) function fmin88(x, y) result (res)
                                                      real(8), intent (in) :: x
                                                      real(8), intent (in) :: y
                                                      res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                                  end function
                                                  real(4) function fmin44(x, y) result (res)
                                                      real(4), intent (in) :: x
                                                      real(4), intent (in) :: y
                                                      res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                                  end function
                                                  real(8) function fmin84(x, y) result(res)
                                                      real(8), intent (in) :: x
                                                      real(4), intent (in) :: y
                                                      res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                                                  end function
                                                  real(8) function fmin48(x, y) result(res)
                                                      real(4), intent (in) :: x
                                                      real(8), intent (in) :: y
                                                      res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                                                  end function
                                              end module
                                              
                                              real(8) function code(kx, ky, th)
                                              use fmin_fmax_functions
                                                  real(8), intent (in) :: kx
                                                  real(8), intent (in) :: ky
                                                  real(8), intent (in) :: th
                                                  real(8) :: tmp
                                                  if ((sin(ky) / sqrt(((sin(kx) ** 2.0d0) + (sin(ky) ** 2.0d0)))) <= 0.0001d0) then
                                                      tmp = (ky / sin(kx)) * th
                                                  else
                                                      tmp = sin(th)
                                                  end if
                                                  code = tmp
                                              end function
                                              
                                              public static double code(double kx, double ky, double th) {
                                              	double tmp;
                                              	if ((Math.sin(ky) / Math.sqrt((Math.pow(Math.sin(kx), 2.0) + Math.pow(Math.sin(ky), 2.0)))) <= 0.0001) {
                                              		tmp = (ky / Math.sin(kx)) * th;
                                              	} else {
                                              		tmp = Math.sin(th);
                                              	}
                                              	return tmp;
                                              }
                                              
                                              def code(kx, ky, th):
                                              	tmp = 0
                                              	if (math.sin(ky) / math.sqrt((math.pow(math.sin(kx), 2.0) + math.pow(math.sin(ky), 2.0)))) <= 0.0001:
                                              		tmp = (ky / math.sin(kx)) * th
                                              	else:
                                              		tmp = math.sin(th)
                                              	return tmp
                                              
                                              function code(kx, ky, th)
                                              	tmp = 0.0
                                              	if (Float64(sin(ky) / sqrt(Float64((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) <= 0.0001)
                                              		tmp = Float64(Float64(ky / sin(kx)) * th);
                                              	else
                                              		tmp = sin(th);
                                              	end
                                              	return tmp
                                              end
                                              
                                              function tmp_2 = code(kx, ky, th)
                                              	tmp = 0.0;
                                              	if ((sin(ky) / sqrt(((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) <= 0.0001)
                                              		tmp = (ky / sin(kx)) * th;
                                              	else
                                              		tmp = sin(th);
                                              	end
                                              	tmp_2 = tmp;
                                              end
                                              
                                              code[kx_, ky_, th_] := If[LessEqual[N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision], 0.0001], N[(N[(ky / N[Sin[kx], $MachinePrecision]), $MachinePrecision] * th), $MachinePrecision], N[Sin[th], $MachinePrecision]]
                                              
                                              \begin{array}{l}
                                              
                                              \\
                                              \begin{array}{l}
                                              \mathbf{if}\;\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \leq 0.0001:\\
                                              \;\;\;\;\frac{ky}{\sin kx} \cdot th\\
                                              
                                              \mathbf{else}:\\
                                              \;\;\;\;\sin th\\
                                              
                                              
                                              \end{array}
                                              \end{array}
                                              
                                              Derivation
                                              1. Split input into 2 regimes
                                              2. if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 1.00000000000000005e-4

                                                1. Initial program 97.8%

                                                  \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                                2. Add Preprocessing
                                                3. Step-by-step derivation
                                                  1. lift-sqrt.f64N/A

                                                    \[\leadsto \frac{\sin ky}{\color{blue}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                                                  2. lift-+.f64N/A

                                                    \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                                                  3. lift-pow.f64N/A

                                                    \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}} + {\sin ky}^{2}}} \cdot \sin th \]
                                                  4. lift-sin.f64N/A

                                                    \[\leadsto \frac{\sin ky}{\sqrt{{\color{blue}{\sin kx}}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                                  5. lift-pow.f64N/A

                                                    \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + \color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
                                                  6. lift-sin.f64N/A

                                                    \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\color{blue}{\sin ky}}^{2}}} \cdot \sin th \]
                                                  7. +-commutativeN/A

                                                    \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2} + {\sin kx}^{2}}}} \cdot \sin th \]
                                                  8. unpow2N/A

                                                    \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{\sin ky \cdot \sin ky} + {\sin kx}^{2}}} \cdot \sin th \]
                                                  9. unpow2N/A

                                                    \[\leadsto \frac{\sin ky}{\sqrt{\sin ky \cdot \sin ky + \color{blue}{\sin kx \cdot \sin kx}}} \cdot \sin th \]
                                                  10. lower-hypot.f64N/A

                                                    \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                                                  11. lift-sin.f64N/A

                                                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\color{blue}{\sin ky}, \sin kx\right)} \cdot \sin th \]
                                                  12. lift-sin.f6499.6

                                                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\sin kx}\right)} \cdot \sin th \]
                                                4. Applied rewrites99.6%

                                                  \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                                                5. Taylor expanded in th around 0

                                                  \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \color{blue}{th} \]
                                                6. Step-by-step derivation
                                                  1. Applied rewrites50.2%

                                                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \sin kx\right)} \cdot \color{blue}{th} \]
                                                  2. Taylor expanded in ky around 0

                                                    \[\leadsto \color{blue}{\frac{ky}{\sin kx}} \cdot th \]
                                                  3. Step-by-step derivation
                                                    1. lower-/.f64N/A

                                                      \[\leadsto \frac{ky}{\color{blue}{\sin kx}} \cdot th \]
                                                    2. lift-sin.f6423.2

                                                      \[\leadsto \frac{ky}{\sin kx} \cdot th \]
                                                  4. Applied rewrites23.2%

                                                    \[\leadsto \color{blue}{\frac{ky}{\sin kx}} \cdot th \]

                                                  if 1.00000000000000005e-4 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))

                                                  1. Initial program 87.0%

                                                    \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                                  2. Add Preprocessing
                                                  3. Taylor expanded in kx around 0

                                                    \[\leadsto \color{blue}{\sin th} \]
                                                  4. Step-by-step derivation
                                                    1. lift-sin.f6465.1

                                                      \[\leadsto \sin th \]
                                                  5. Applied rewrites65.1%

                                                    \[\leadsto \color{blue}{\sin th} \]
                                                7. Recombined 2 regimes into one program.
                                                8. Final simplification36.1%

                                                  \[\leadsto \begin{array}{l} \mathbf{if}\;\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \leq 0.0001:\\ \;\;\;\;\frac{ky}{\sin kx} \cdot th\\ \mathbf{else}:\\ \;\;\;\;\sin th\\ \end{array} \]
                                                9. Add Preprocessing

                                                Alternative 20: 36.2% accurate, 1.0× speedup?

                                                \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \leq 0.0001:\\ \;\;\;\;ky \cdot \frac{th}{\sin kx}\\ \mathbf{else}:\\ \;\;\;\;\sin th\\ \end{array} \end{array} \]
                                                (FPCore (kx ky th)
                                                 :precision binary64
                                                 (if (<= (/ (sin ky) (sqrt (+ (pow (sin kx) 2.0) (pow (sin ky) 2.0)))) 0.0001)
                                                   (* ky (/ th (sin kx)))
                                                   (sin th)))
                                                double code(double kx, double ky, double th) {
                                                	double tmp;
                                                	if ((sin(ky) / sqrt((pow(sin(kx), 2.0) + pow(sin(ky), 2.0)))) <= 0.0001) {
                                                		tmp = ky * (th / sin(kx));
                                                	} else {
                                                		tmp = sin(th);
                                                	}
                                                	return tmp;
                                                }
                                                
                                                module fmin_fmax_functions
                                                    implicit none
                                                    private
                                                    public fmax
                                                    public fmin
                                                
                                                    interface fmax
                                                        module procedure fmax88
                                                        module procedure fmax44
                                                        module procedure fmax84
                                                        module procedure fmax48
                                                    end interface
                                                    interface fmin
                                                        module procedure fmin88
                                                        module procedure fmin44
                                                        module procedure fmin84
                                                        module procedure fmin48
                                                    end interface
                                                contains
                                                    real(8) function fmax88(x, y) result (res)
                                                        real(8), intent (in) :: x
                                                        real(8), intent (in) :: y
                                                        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                                    end function
                                                    real(4) function fmax44(x, y) result (res)
                                                        real(4), intent (in) :: x
                                                        real(4), intent (in) :: y
                                                        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                                    end function
                                                    real(8) function fmax84(x, y) result(res)
                                                        real(8), intent (in) :: x
                                                        real(4), intent (in) :: y
                                                        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                                                    end function
                                                    real(8) function fmax48(x, y) result(res)
                                                        real(4), intent (in) :: x
                                                        real(8), intent (in) :: y
                                                        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                                                    end function
                                                    real(8) function fmin88(x, y) result (res)
                                                        real(8), intent (in) :: x
                                                        real(8), intent (in) :: y
                                                        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                                    end function
                                                    real(4) function fmin44(x, y) result (res)
                                                        real(4), intent (in) :: x
                                                        real(4), intent (in) :: y
                                                        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                                    end function
                                                    real(8) function fmin84(x, y) result(res)
                                                        real(8), intent (in) :: x
                                                        real(4), intent (in) :: y
                                                        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                                                    end function
                                                    real(8) function fmin48(x, y) result(res)
                                                        real(4), intent (in) :: x
                                                        real(8), intent (in) :: y
                                                        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                                                    end function
                                                end module
                                                
                                                real(8) function code(kx, ky, th)
                                                use fmin_fmax_functions
                                                    real(8), intent (in) :: kx
                                                    real(8), intent (in) :: ky
                                                    real(8), intent (in) :: th
                                                    real(8) :: tmp
                                                    if ((sin(ky) / sqrt(((sin(kx) ** 2.0d0) + (sin(ky) ** 2.0d0)))) <= 0.0001d0) then
                                                        tmp = ky * (th / sin(kx))
                                                    else
                                                        tmp = sin(th)
                                                    end if
                                                    code = tmp
                                                end function
                                                
                                                public static double code(double kx, double ky, double th) {
                                                	double tmp;
                                                	if ((Math.sin(ky) / Math.sqrt((Math.pow(Math.sin(kx), 2.0) + Math.pow(Math.sin(ky), 2.0)))) <= 0.0001) {
                                                		tmp = ky * (th / Math.sin(kx));
                                                	} else {
                                                		tmp = Math.sin(th);
                                                	}
                                                	return tmp;
                                                }
                                                
                                                def code(kx, ky, th):
                                                	tmp = 0
                                                	if (math.sin(ky) / math.sqrt((math.pow(math.sin(kx), 2.0) + math.pow(math.sin(ky), 2.0)))) <= 0.0001:
                                                		tmp = ky * (th / math.sin(kx))
                                                	else:
                                                		tmp = math.sin(th)
                                                	return tmp
                                                
                                                function code(kx, ky, th)
                                                	tmp = 0.0
                                                	if (Float64(sin(ky) / sqrt(Float64((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) <= 0.0001)
                                                		tmp = Float64(ky * Float64(th / sin(kx)));
                                                	else
                                                		tmp = sin(th);
                                                	end
                                                	return tmp
                                                end
                                                
                                                function tmp_2 = code(kx, ky, th)
                                                	tmp = 0.0;
                                                	if ((sin(ky) / sqrt(((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) <= 0.0001)
                                                		tmp = ky * (th / sin(kx));
                                                	else
                                                		tmp = sin(th);
                                                	end
                                                	tmp_2 = tmp;
                                                end
                                                
                                                code[kx_, ky_, th_] := If[LessEqual[N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision], 0.0001], N[(ky * N[(th / N[Sin[kx], $MachinePrecision]), $MachinePrecision]), $MachinePrecision], N[Sin[th], $MachinePrecision]]
                                                
                                                \begin{array}{l}
                                                
                                                \\
                                                \begin{array}{l}
                                                \mathbf{if}\;\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \leq 0.0001:\\
                                                \;\;\;\;ky \cdot \frac{th}{\sin kx}\\
                                                
                                                \mathbf{else}:\\
                                                \;\;\;\;\sin th\\
                                                
                                                
                                                \end{array}
                                                \end{array}
                                                
                                                Derivation
                                                1. Split input into 2 regimes
                                                2. if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 1.00000000000000005e-4

                                                  1. Initial program 97.8%

                                                    \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                                  2. Add Preprocessing
                                                  3. Taylor expanded in th around 0

                                                    \[\leadsto \color{blue}{\left(th \cdot \sin ky\right) \cdot \sqrt{\frac{1}{{\sin kx}^{2} + {\sin ky}^{2}}}} \]
                                                  4. Step-by-step derivation
                                                    1. lower-*.f64N/A

                                                      \[\leadsto \left(th \cdot \sin ky\right) \cdot \color{blue}{\sqrt{\frac{1}{{\sin kx}^{2} + {\sin ky}^{2}}}} \]
                                                    2. *-commutativeN/A

                                                      \[\leadsto \left(\sin ky \cdot th\right) \cdot \sqrt{\color{blue}{\frac{1}{{\sin kx}^{2} + {\sin ky}^{2}}}} \]
                                                    3. lower-*.f64N/A

                                                      \[\leadsto \left(\sin ky \cdot th\right) \cdot \sqrt{\color{blue}{\frac{1}{{\sin kx}^{2} + {\sin ky}^{2}}}} \]
                                                    4. lift-sin.f64N/A

                                                      \[\leadsto \left(\sin ky \cdot th\right) \cdot \sqrt{\frac{\color{blue}{1}}{{\sin kx}^{2} + {\sin ky}^{2}}} \]
                                                    5. sqrt-divN/A

                                                      \[\leadsto \left(\sin ky \cdot th\right) \cdot \frac{\sqrt{1}}{\color{blue}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}} \]
                                                    6. metadata-evalN/A

                                                      \[\leadsto \left(\sin ky \cdot th\right) \cdot \frac{1}{\sqrt{\color{blue}{{\sin kx}^{2} + {\sin ky}^{2}}}} \]
                                                    7. inv-powN/A

                                                      \[\leadsto \left(\sin ky \cdot th\right) \cdot {\left(\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}\right)}^{\color{blue}{-1}} \]
                                                    8. lower-pow.f64N/A

                                                      \[\leadsto \left(\sin ky \cdot th\right) \cdot {\left(\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}\right)}^{\color{blue}{-1}} \]
                                                    9. unpow2N/A

                                                      \[\leadsto \left(\sin ky \cdot th\right) \cdot {\left(\sqrt{\sin kx \cdot \sin kx + {\sin ky}^{2}}\right)}^{-1} \]
                                                    10. unpow2N/A

                                                      \[\leadsto \left(\sin ky \cdot th\right) \cdot {\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \]
                                                    11. lower-hypot.f64N/A

                                                      \[\leadsto \left(\sin ky \cdot th\right) \cdot {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \]
                                                    12. lift-sin.f64N/A

                                                      \[\leadsto \left(\sin ky \cdot th\right) \cdot {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \]
                                                    13. lift-sin.f6447.1

                                                      \[\leadsto \left(\sin ky \cdot th\right) \cdot {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \]
                                                  5. Applied rewrites47.1%

                                                    \[\leadsto \color{blue}{\left(\sin ky \cdot th\right) \cdot {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1}} \]
                                                  6. Taylor expanded in ky around 0

                                                    \[\leadsto \frac{ky \cdot th}{\color{blue}{\sin kx}} \]
                                                  7. Step-by-step derivation
                                                    1. associate-/l*N/A

                                                      \[\leadsto ky \cdot \frac{th}{\color{blue}{\sin kx}} \]
                                                    2. lower-*.f64N/A

                                                      \[\leadsto ky \cdot \frac{th}{\color{blue}{\sin kx}} \]
                                                    3. lower-/.f64N/A

                                                      \[\leadsto ky \cdot \frac{th}{\sin kx} \]
                                                    4. lift-sin.f6423.2

                                                      \[\leadsto ky \cdot \frac{th}{\sin kx} \]
                                                  8. Applied rewrites23.2%

                                                    \[\leadsto ky \cdot \color{blue}{\frac{th}{\sin kx}} \]

                                                  if 1.00000000000000005e-4 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))

                                                  1. Initial program 87.0%

                                                    \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                                  2. Add Preprocessing
                                                  3. Taylor expanded in kx around 0

                                                    \[\leadsto \color{blue}{\sin th} \]
                                                  4. Step-by-step derivation
                                                    1. lift-sin.f6465.1

                                                      \[\leadsto \sin th \]
                                                  5. Applied rewrites65.1%

                                                    \[\leadsto \color{blue}{\sin th} \]
                                                3. Recombined 2 regimes into one program.
                                                4. Add Preprocessing

                                                Alternative 21: 31.3% accurate, 1.0× speedup?

                                                \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \leq 7.8 \cdot 10^{-56}:\\ \;\;\;\;\left(\left(th \cdot th\right) \cdot -0.16666666666666666\right) \cdot th\\ \mathbf{else}:\\ \;\;\;\;\sin th\\ \end{array} \end{array} \]
                                                (FPCore (kx ky th)
                                                 :precision binary64
                                                 (if (<= (/ (sin ky) (sqrt (+ (pow (sin kx) 2.0) (pow (sin ky) 2.0)))) 7.8e-56)
                                                   (* (* (* th th) -0.16666666666666666) th)
                                                   (sin th)))
                                                double code(double kx, double ky, double th) {
                                                	double tmp;
                                                	if ((sin(ky) / sqrt((pow(sin(kx), 2.0) + pow(sin(ky), 2.0)))) <= 7.8e-56) {
                                                		tmp = ((th * th) * -0.16666666666666666) * th;
                                                	} else {
                                                		tmp = sin(th);
                                                	}
                                                	return tmp;
                                                }
                                                
                                                module fmin_fmax_functions
                                                    implicit none
                                                    private
                                                    public fmax
                                                    public fmin
                                                
                                                    interface fmax
                                                        module procedure fmax88
                                                        module procedure fmax44
                                                        module procedure fmax84
                                                        module procedure fmax48
                                                    end interface
                                                    interface fmin
                                                        module procedure fmin88
                                                        module procedure fmin44
                                                        module procedure fmin84
                                                        module procedure fmin48
                                                    end interface
                                                contains
                                                    real(8) function fmax88(x, y) result (res)
                                                        real(8), intent (in) :: x
                                                        real(8), intent (in) :: y
                                                        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                                    end function
                                                    real(4) function fmax44(x, y) result (res)
                                                        real(4), intent (in) :: x
                                                        real(4), intent (in) :: y
                                                        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                                    end function
                                                    real(8) function fmax84(x, y) result(res)
                                                        real(8), intent (in) :: x
                                                        real(4), intent (in) :: y
                                                        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                                                    end function
                                                    real(8) function fmax48(x, y) result(res)
                                                        real(4), intent (in) :: x
                                                        real(8), intent (in) :: y
                                                        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                                                    end function
                                                    real(8) function fmin88(x, y) result (res)
                                                        real(8), intent (in) :: x
                                                        real(8), intent (in) :: y
                                                        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                                    end function
                                                    real(4) function fmin44(x, y) result (res)
                                                        real(4), intent (in) :: x
                                                        real(4), intent (in) :: y
                                                        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                                    end function
                                                    real(8) function fmin84(x, y) result(res)
                                                        real(8), intent (in) :: x
                                                        real(4), intent (in) :: y
                                                        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                                                    end function
                                                    real(8) function fmin48(x, y) result(res)
                                                        real(4), intent (in) :: x
                                                        real(8), intent (in) :: y
                                                        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                                                    end function
                                                end module
                                                
                                                real(8) function code(kx, ky, th)
                                                use fmin_fmax_functions
                                                    real(8), intent (in) :: kx
                                                    real(8), intent (in) :: ky
                                                    real(8), intent (in) :: th
                                                    real(8) :: tmp
                                                    if ((sin(ky) / sqrt(((sin(kx) ** 2.0d0) + (sin(ky) ** 2.0d0)))) <= 7.8d-56) then
                                                        tmp = ((th * th) * (-0.16666666666666666d0)) * th
                                                    else
                                                        tmp = sin(th)
                                                    end if
                                                    code = tmp
                                                end function
                                                
                                                public static double code(double kx, double ky, double th) {
                                                	double tmp;
                                                	if ((Math.sin(ky) / Math.sqrt((Math.pow(Math.sin(kx), 2.0) + Math.pow(Math.sin(ky), 2.0)))) <= 7.8e-56) {
                                                		tmp = ((th * th) * -0.16666666666666666) * th;
                                                	} else {
                                                		tmp = Math.sin(th);
                                                	}
                                                	return tmp;
                                                }
                                                
                                                def code(kx, ky, th):
                                                	tmp = 0
                                                	if (math.sin(ky) / math.sqrt((math.pow(math.sin(kx), 2.0) + math.pow(math.sin(ky), 2.0)))) <= 7.8e-56:
                                                		tmp = ((th * th) * -0.16666666666666666) * th
                                                	else:
                                                		tmp = math.sin(th)
                                                	return tmp
                                                
                                                function code(kx, ky, th)
                                                	tmp = 0.0
                                                	if (Float64(sin(ky) / sqrt(Float64((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) <= 7.8e-56)
                                                		tmp = Float64(Float64(Float64(th * th) * -0.16666666666666666) * th);
                                                	else
                                                		tmp = sin(th);
                                                	end
                                                	return tmp
                                                end
                                                
                                                function tmp_2 = code(kx, ky, th)
                                                	tmp = 0.0;
                                                	if ((sin(ky) / sqrt(((sin(kx) ^ 2.0) + (sin(ky) ^ 2.0)))) <= 7.8e-56)
                                                		tmp = ((th * th) * -0.16666666666666666) * th;
                                                	else
                                                		tmp = sin(th);
                                                	end
                                                	tmp_2 = tmp;
                                                end
                                                
                                                code[kx_, ky_, th_] := If[LessEqual[N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(N[Power[N[Sin[kx], $MachinePrecision], 2.0], $MachinePrecision] + N[Power[N[Sin[ky], $MachinePrecision], 2.0], $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision], 7.8e-56], N[(N[(N[(th * th), $MachinePrecision] * -0.16666666666666666), $MachinePrecision] * th), $MachinePrecision], N[Sin[th], $MachinePrecision]]
                                                
                                                \begin{array}{l}
                                                
                                                \\
                                                \begin{array}{l}
                                                \mathbf{if}\;\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \leq 7.8 \cdot 10^{-56}:\\
                                                \;\;\;\;\left(\left(th \cdot th\right) \cdot -0.16666666666666666\right) \cdot th\\
                                                
                                                \mathbf{else}:\\
                                                \;\;\;\;\sin th\\
                                                
                                                
                                                \end{array}
                                                \end{array}
                                                
                                                Derivation
                                                1. Split input into 2 regimes
                                                2. if (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64))))) < 7.8e-56

                                                  1. Initial program 97.9%

                                                    \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                                  2. Add Preprocessing
                                                  3. Taylor expanded in kx around 0

                                                    \[\leadsto \color{blue}{\sin th} \]
                                                  4. Step-by-step derivation
                                                    1. lift-sin.f643.5

                                                      \[\leadsto \sin th \]
                                                  5. Applied rewrites3.5%

                                                    \[\leadsto \color{blue}{\sin th} \]
                                                  6. Taylor expanded in th around 0

                                                    \[\leadsto th \cdot \color{blue}{\left(1 + \frac{-1}{6} \cdot {th}^{2}\right)} \]
                                                  7. Step-by-step derivation
                                                    1. *-commutativeN/A

                                                      \[\leadsto \left(1 + \frac{-1}{6} \cdot {th}^{2}\right) \cdot th \]
                                                    2. lower-*.f64N/A

                                                      \[\leadsto \left(1 + \frac{-1}{6} \cdot {th}^{2}\right) \cdot th \]
                                                    3. +-commutativeN/A

                                                      \[\leadsto \left(\frac{-1}{6} \cdot {th}^{2} + 1\right) \cdot th \]
                                                    4. *-commutativeN/A

                                                      \[\leadsto \left({th}^{2} \cdot \frac{-1}{6} + 1\right) \cdot th \]
                                                    5. lower-fma.f64N/A

                                                      \[\leadsto \mathsf{fma}\left({th}^{2}, \frac{-1}{6}, 1\right) \cdot th \]
                                                    6. unpow2N/A

                                                      \[\leadsto \mathsf{fma}\left(th \cdot th, \frac{-1}{6}, 1\right) \cdot th \]
                                                    7. lower-*.f643.1

                                                      \[\leadsto \mathsf{fma}\left(th \cdot th, -0.16666666666666666, 1\right) \cdot th \]
                                                  8. Applied rewrites3.1%

                                                    \[\leadsto \mathsf{fma}\left(th \cdot th, -0.16666666666666666, 1\right) \cdot \color{blue}{th} \]
                                                  9. Taylor expanded in th around inf

                                                    \[\leadsto \left(\frac{-1}{6} \cdot {th}^{2}\right) \cdot th \]
                                                  10. Step-by-step derivation
                                                    1. *-commutativeN/A

                                                      \[\leadsto \left({th}^{2} \cdot \frac{-1}{6}\right) \cdot th \]
                                                    2. lower-*.f64N/A

                                                      \[\leadsto \left({th}^{2} \cdot \frac{-1}{6}\right) \cdot th \]
                                                    3. pow2N/A

                                                      \[\leadsto \left(\left(th \cdot th\right) \cdot \frac{-1}{6}\right) \cdot th \]
                                                    4. lift-*.f6414.0

                                                      \[\leadsto \left(\left(th \cdot th\right) \cdot -0.16666666666666666\right) \cdot th \]
                                                  11. Applied rewrites14.0%

                                                    \[\leadsto \left(\left(th \cdot th\right) \cdot -0.16666666666666666\right) \cdot th \]

                                                  if 7.8e-56 < (/.f64 (sin.f64 ky) (sqrt.f64 (+.f64 (pow.f64 (sin.f64 kx) #s(literal 2 binary64)) (pow.f64 (sin.f64 ky) #s(literal 2 binary64)))))

                                                  1. Initial program 88.2%

                                                    \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                                  2. Add Preprocessing
                                                  3. Taylor expanded in kx around 0

                                                    \[\leadsto \color{blue}{\sin th} \]
                                                  4. Step-by-step derivation
                                                    1. lift-sin.f6458.2

                                                      \[\leadsto \sin th \]
                                                  5. Applied rewrites58.2%

                                                    \[\leadsto \color{blue}{\sin th} \]
                                                3. Recombined 2 regimes into one program.
                                                4. Add Preprocessing

                                                Alternative 22: 66.6% accurate, 1.5× speedup?

                                                \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;ky \leq 0.0275:\\ \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(ky, \sin kx\right)} \cdot \sin th\\ \mathbf{else}:\\ \;\;\;\;\frac{\sin ky}{\sqrt{0.5 - 0.5 \cdot \cos \left(ky + ky\right)}} \cdot \sin th\\ \end{array} \end{array} \]
                                                (FPCore (kx ky th)
                                                 :precision binary64
                                                 (if (<= ky 0.0275)
                                                   (* (/ (sin ky) (hypot ky (sin kx))) (sin th))
                                                   (* (/ (sin ky) (sqrt (- 0.5 (* 0.5 (cos (+ ky ky)))))) (sin th))))
                                                double code(double kx, double ky, double th) {
                                                	double tmp;
                                                	if (ky <= 0.0275) {
                                                		tmp = (sin(ky) / hypot(ky, sin(kx))) * sin(th);
                                                	} else {
                                                		tmp = (sin(ky) / sqrt((0.5 - (0.5 * cos((ky + ky)))))) * sin(th);
                                                	}
                                                	return tmp;
                                                }
                                                
                                                public static double code(double kx, double ky, double th) {
                                                	double tmp;
                                                	if (ky <= 0.0275) {
                                                		tmp = (Math.sin(ky) / Math.hypot(ky, Math.sin(kx))) * Math.sin(th);
                                                	} else {
                                                		tmp = (Math.sin(ky) / Math.sqrt((0.5 - (0.5 * Math.cos((ky + ky)))))) * Math.sin(th);
                                                	}
                                                	return tmp;
                                                }
                                                
                                                def code(kx, ky, th):
                                                	tmp = 0
                                                	if ky <= 0.0275:
                                                		tmp = (math.sin(ky) / math.hypot(ky, math.sin(kx))) * math.sin(th)
                                                	else:
                                                		tmp = (math.sin(ky) / math.sqrt((0.5 - (0.5 * math.cos((ky + ky)))))) * math.sin(th)
                                                	return tmp
                                                
                                                function code(kx, ky, th)
                                                	tmp = 0.0
                                                	if (ky <= 0.0275)
                                                		tmp = Float64(Float64(sin(ky) / hypot(ky, sin(kx))) * sin(th));
                                                	else
                                                		tmp = Float64(Float64(sin(ky) / sqrt(Float64(0.5 - Float64(0.5 * cos(Float64(ky + ky)))))) * sin(th));
                                                	end
                                                	return tmp
                                                end
                                                
                                                function tmp_2 = code(kx, ky, th)
                                                	tmp = 0.0;
                                                	if (ky <= 0.0275)
                                                		tmp = (sin(ky) / hypot(ky, sin(kx))) * sin(th);
                                                	else
                                                		tmp = (sin(ky) / sqrt((0.5 - (0.5 * cos((ky + ky)))))) * sin(th);
                                                	end
                                                	tmp_2 = tmp;
                                                end
                                                
                                                code[kx_, ky_, th_] := If[LessEqual[ky, 0.0275], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[ky ^ 2 + N[Sin[kx], $MachinePrecision] ^ 2], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision], N[(N[(N[Sin[ky], $MachinePrecision] / N[Sqrt[N[(0.5 - N[(0.5 * N[Cos[N[(ky + ky), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision] * N[Sin[th], $MachinePrecision]), $MachinePrecision]]
                                                
                                                \begin{array}{l}
                                                
                                                \\
                                                \begin{array}{l}
                                                \mathbf{if}\;ky \leq 0.0275:\\
                                                \;\;\;\;\frac{\sin ky}{\mathsf{hypot}\left(ky, \sin kx\right)} \cdot \sin th\\
                                                
                                                \mathbf{else}:\\
                                                \;\;\;\;\frac{\sin ky}{\sqrt{0.5 - 0.5 \cdot \cos \left(ky + ky\right)}} \cdot \sin th\\
                                                
                                                
                                                \end{array}
                                                \end{array}
                                                
                                                Derivation
                                                1. Split input into 2 regimes
                                                2. if ky < 0.0275000000000000001

                                                  1. Initial program 92.4%

                                                    \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                                  2. Add Preprocessing
                                                  3. Step-by-step derivation
                                                    1. lift-sqrt.f64N/A

                                                      \[\leadsto \frac{\sin ky}{\color{blue}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                                                    2. lift-+.f64N/A

                                                      \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2} + {\sin ky}^{2}}}} \cdot \sin th \]
                                                    3. lift-pow.f64N/A

                                                      \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin kx}^{2}} + {\sin ky}^{2}}} \cdot \sin th \]
                                                    4. lift-sin.f64N/A

                                                      \[\leadsto \frac{\sin ky}{\sqrt{{\color{blue}{\sin kx}}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                                    5. lift-pow.f64N/A

                                                      \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + \color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
                                                    6. lift-sin.f64N/A

                                                      \[\leadsto \frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\color{blue}{\sin ky}}^{2}}} \cdot \sin th \]
                                                    7. +-commutativeN/A

                                                      \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2} + {\sin kx}^{2}}}} \cdot \sin th \]
                                                    8. unpow2N/A

                                                      \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{\sin ky \cdot \sin ky} + {\sin kx}^{2}}} \cdot \sin th \]
                                                    9. unpow2N/A

                                                      \[\leadsto \frac{\sin ky}{\sqrt{\sin ky \cdot \sin ky + \color{blue}{\sin kx \cdot \sin kx}}} \cdot \sin th \]
                                                    10. lower-hypot.f64N/A

                                                      \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                                                    11. lift-sin.f64N/A

                                                      \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\color{blue}{\sin ky}, \sin kx\right)} \cdot \sin th \]
                                                    12. lift-sin.f6499.7

                                                      \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\sin ky, \color{blue}{\sin kx}\right)} \cdot \sin th \]
                                                  4. Applied rewrites99.7%

                                                    \[\leadsto \frac{\sin ky}{\color{blue}{\mathsf{hypot}\left(\sin ky, \sin kx\right)}} \cdot \sin th \]
                                                  5. Taylor expanded in ky around 0

                                                    \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\color{blue}{ky}, \sin kx\right)} \cdot \sin th \]
                                                  6. Step-by-step derivation
                                                    1. Applied rewrites71.6%

                                                      \[\leadsto \frac{\sin ky}{\mathsf{hypot}\left(\color{blue}{ky}, \sin kx\right)} \cdot \sin th \]

                                                    if 0.0275000000000000001 < ky

                                                    1. Initial program 99.6%

                                                      \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                                    2. Add Preprocessing
                                                    3. Taylor expanded in kx around 0

                                                      \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
                                                    4. Step-by-step derivation
                                                      1. lift-sin.f64N/A

                                                        \[\leadsto \frac{\sin ky}{\sqrt{{\sin ky}^{2}}} \cdot \sin th \]
                                                      2. lift-pow.f6459.3

                                                        \[\leadsto \frac{\sin ky}{\sqrt{{\sin ky}^{\color{blue}{2}}}} \cdot \sin th \]
                                                    5. Applied rewrites59.3%

                                                      \[\leadsto \frac{\sin ky}{\sqrt{\color{blue}{{\sin ky}^{2}}}} \cdot \sin th \]
                                                    6. Step-by-step derivation
                                                      1. lift-pow.f64N/A

                                                        \[\leadsto \frac{\sin ky}{\sqrt{{\sin ky}^{\color{blue}{2}}}} \cdot \sin th \]
                                                      2. lift-sin.f64N/A

                                                        \[\leadsto \frac{\sin ky}{\sqrt{{\sin ky}^{2}}} \cdot \sin th \]
                                                      3. pow2N/A

                                                        \[\leadsto \frac{\sin ky}{\sqrt{\sin ky \cdot \color{blue}{\sin ky}}} \cdot \sin th \]
                                                      4. sqr-sin-aN/A

                                                        \[\leadsto \frac{\sin ky}{\sqrt{\frac{1}{2} - \color{blue}{\frac{1}{2} \cdot \cos \left(2 \cdot ky\right)}}} \cdot \sin th \]
                                                      5. lower--.f64N/A

                                                        \[\leadsto \frac{\sin ky}{\sqrt{\frac{1}{2} - \color{blue}{\frac{1}{2} \cdot \cos \left(2 \cdot ky\right)}}} \cdot \sin th \]
                                                      6. lower-*.f64N/A

                                                        \[\leadsto \frac{\sin ky}{\sqrt{\frac{1}{2} - \frac{1}{2} \cdot \color{blue}{\cos \left(2 \cdot ky\right)}}} \cdot \sin th \]
                                                      7. cos-2N/A

                                                        \[\leadsto \frac{\sin ky}{\sqrt{\frac{1}{2} - \frac{1}{2} \cdot \left(\cos ky \cdot \cos ky - \color{blue}{\sin ky \cdot \sin ky}\right)}} \cdot \sin th \]
                                                      8. cos-sumN/A

                                                        \[\leadsto \frac{\sin ky}{\sqrt{\frac{1}{2} - \frac{1}{2} \cdot \cos \left(ky + ky\right)}} \cdot \sin th \]
                                                      9. lower-cos.f64N/A

                                                        \[\leadsto \frac{\sin ky}{\sqrt{\frac{1}{2} - \frac{1}{2} \cdot \cos \left(ky + ky\right)}} \cdot \sin th \]
                                                      10. lower-+.f6458.6

                                                        \[\leadsto \frac{\sin ky}{\sqrt{0.5 - 0.5 \cdot \cos \left(ky + ky\right)}} \cdot \sin th \]
                                                    7. Applied rewrites58.6%

                                                      \[\leadsto \frac{\sin ky}{\sqrt{0.5 - \color{blue}{0.5 \cdot \cos \left(ky + ky\right)}}} \cdot \sin th \]
                                                  7. Recombined 2 regimes into one program.
                                                  8. Add Preprocessing

                                                  Alternative 23: 14.6% accurate, 632.0× speedup?

                                                  \[\begin{array}{l} \\ th \end{array} \]
                                                  (FPCore (kx ky th) :precision binary64 th)
                                                  double code(double kx, double ky, double th) {
                                                  	return th;
                                                  }
                                                  
                                                  module fmin_fmax_functions
                                                      implicit none
                                                      private
                                                      public fmax
                                                      public fmin
                                                  
                                                      interface fmax
                                                          module procedure fmax88
                                                          module procedure fmax44
                                                          module procedure fmax84
                                                          module procedure fmax48
                                                      end interface
                                                      interface fmin
                                                          module procedure fmin88
                                                          module procedure fmin44
                                                          module procedure fmin84
                                                          module procedure fmin48
                                                      end interface
                                                  contains
                                                      real(8) function fmax88(x, y) result (res)
                                                          real(8), intent (in) :: x
                                                          real(8), intent (in) :: y
                                                          res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                                      end function
                                                      real(4) function fmax44(x, y) result (res)
                                                          real(4), intent (in) :: x
                                                          real(4), intent (in) :: y
                                                          res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                                                      end function
                                                      real(8) function fmax84(x, y) result(res)
                                                          real(8), intent (in) :: x
                                                          real(4), intent (in) :: y
                                                          res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                                                      end function
                                                      real(8) function fmax48(x, y) result(res)
                                                          real(4), intent (in) :: x
                                                          real(8), intent (in) :: y
                                                          res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                                                      end function
                                                      real(8) function fmin88(x, y) result (res)
                                                          real(8), intent (in) :: x
                                                          real(8), intent (in) :: y
                                                          res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                                      end function
                                                      real(4) function fmin44(x, y) result (res)
                                                          real(4), intent (in) :: x
                                                          real(4), intent (in) :: y
                                                          res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                                                      end function
                                                      real(8) function fmin84(x, y) result(res)
                                                          real(8), intent (in) :: x
                                                          real(4), intent (in) :: y
                                                          res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                                                      end function
                                                      real(8) function fmin48(x, y) result(res)
                                                          real(4), intent (in) :: x
                                                          real(8), intent (in) :: y
                                                          res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                                                      end function
                                                  end module
                                                  
                                                  real(8) function code(kx, ky, th)
                                                  use fmin_fmax_functions
                                                      real(8), intent (in) :: kx
                                                      real(8), intent (in) :: ky
                                                      real(8), intent (in) :: th
                                                      code = th
                                                  end function
                                                  
                                                  public static double code(double kx, double ky, double th) {
                                                  	return th;
                                                  }
                                                  
                                                  def code(kx, ky, th):
                                                  	return th
                                                  
                                                  function code(kx, ky, th)
                                                  	return th
                                                  end
                                                  
                                                  function tmp = code(kx, ky, th)
                                                  	tmp = th;
                                                  end
                                                  
                                                  code[kx_, ky_, th_] := th
                                                  
                                                  \begin{array}{l}
                                                  
                                                  \\
                                                  th
                                                  \end{array}
                                                  
                                                  Derivation
                                                  1. Initial program 94.4%

                                                    \[\frac{\sin ky}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}} \cdot \sin th \]
                                                  2. Add Preprocessing
                                                  3. Taylor expanded in th around 0

                                                    \[\leadsto \color{blue}{\left(th \cdot \sin ky\right) \cdot \sqrt{\frac{1}{{\sin kx}^{2} + {\sin ky}^{2}}}} \]
                                                  4. Step-by-step derivation
                                                    1. lower-*.f64N/A

                                                      \[\leadsto \left(th \cdot \sin ky\right) \cdot \color{blue}{\sqrt{\frac{1}{{\sin kx}^{2} + {\sin ky}^{2}}}} \]
                                                    2. *-commutativeN/A

                                                      \[\leadsto \left(\sin ky \cdot th\right) \cdot \sqrt{\color{blue}{\frac{1}{{\sin kx}^{2} + {\sin ky}^{2}}}} \]
                                                    3. lower-*.f64N/A

                                                      \[\leadsto \left(\sin ky \cdot th\right) \cdot \sqrt{\color{blue}{\frac{1}{{\sin kx}^{2} + {\sin ky}^{2}}}} \]
                                                    4. lift-sin.f64N/A

                                                      \[\leadsto \left(\sin ky \cdot th\right) \cdot \sqrt{\frac{\color{blue}{1}}{{\sin kx}^{2} + {\sin ky}^{2}}} \]
                                                    5. sqrt-divN/A

                                                      \[\leadsto \left(\sin ky \cdot th\right) \cdot \frac{\sqrt{1}}{\color{blue}{\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}}} \]
                                                    6. metadata-evalN/A

                                                      \[\leadsto \left(\sin ky \cdot th\right) \cdot \frac{1}{\sqrt{\color{blue}{{\sin kx}^{2} + {\sin ky}^{2}}}} \]
                                                    7. inv-powN/A

                                                      \[\leadsto \left(\sin ky \cdot th\right) \cdot {\left(\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}\right)}^{\color{blue}{-1}} \]
                                                    8. lower-pow.f64N/A

                                                      \[\leadsto \left(\sin ky \cdot th\right) \cdot {\left(\sqrt{{\sin kx}^{2} + {\sin ky}^{2}}\right)}^{\color{blue}{-1}} \]
                                                    9. unpow2N/A

                                                      \[\leadsto \left(\sin ky \cdot th\right) \cdot {\left(\sqrt{\sin kx \cdot \sin kx + {\sin ky}^{2}}\right)}^{-1} \]
                                                    10. unpow2N/A

                                                      \[\leadsto \left(\sin ky \cdot th\right) \cdot {\left(\sqrt{\sin kx \cdot \sin kx + \sin ky \cdot \sin ky}\right)}^{-1} \]
                                                    11. lower-hypot.f64N/A

                                                      \[\leadsto \left(\sin ky \cdot th\right) \cdot {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \]
                                                    12. lift-sin.f64N/A

                                                      \[\leadsto \left(\sin ky \cdot th\right) \cdot {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \]
                                                    13. lift-sin.f6446.0

                                                      \[\leadsto \left(\sin ky \cdot th\right) \cdot {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1} \]
                                                  5. Applied rewrites46.0%

                                                    \[\leadsto \color{blue}{\left(\sin ky \cdot th\right) \cdot {\left(\mathsf{hypot}\left(\sin kx, \sin ky\right)\right)}^{-1}} \]
                                                  6. Taylor expanded in kx around 0

                                                    \[\leadsto th \]
                                                  7. Step-by-step derivation
                                                    1. Applied rewrites13.3%

                                                      \[\leadsto th \]
                                                    2. Add Preprocessing

                                                    Reproduce

                                                    ?
                                                    herbie shell --seed 2025043 
                                                    (FPCore (kx ky th)
                                                      :name "Toniolo and Linder, Equation (3b), real"
                                                      :precision binary64
                                                      (* (/ (sin ky) (sqrt (+ (pow (sin kx) 2.0) (pow (sin ky) 2.0)))) (sin th)))