Henrywood and Agarwal, Equation (9a)

Percentage Accurate: 80.8% → 87.0%
Time: 6.8s
Alternatives: 14
Speedup: 0.8×

Specification

?
\[\begin{array}{l} \\ w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \end{array} \]
(FPCore (w0 M D h l d)
 :precision binary64
 (* w0 (sqrt (- 1.0 (* (pow (/ (* M D) (* 2.0 d)) 2.0) (/ h l))))))
double code(double w0, double M, double D, double h, double l, double d) {
	return w0 * sqrt((1.0 - (pow(((M * D) / (2.0 * d)), 2.0) * (h / l))));
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(w0, m, d, h, l, d_1)
use fmin_fmax_functions
    real(8), intent (in) :: w0
    real(8), intent (in) :: m
    real(8), intent (in) :: d
    real(8), intent (in) :: h
    real(8), intent (in) :: l
    real(8), intent (in) :: d_1
    code = w0 * sqrt((1.0d0 - ((((m * d) / (2.0d0 * d_1)) ** 2.0d0) * (h / l))))
end function
public static double code(double w0, double M, double D, double h, double l, double d) {
	return w0 * Math.sqrt((1.0 - (Math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l))));
}
def code(w0, M, D, h, l, d):
	return w0 * math.sqrt((1.0 - (math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l))))
function code(w0, M, D, h, l, d)
	return Float64(w0 * sqrt(Float64(1.0 - Float64((Float64(Float64(M * D) / Float64(2.0 * d)) ^ 2.0) * Float64(h / l)))))
end
function tmp = code(w0, M, D, h, l, d)
	tmp = w0 * sqrt((1.0 - ((((M * D) / (2.0 * d)) ^ 2.0) * (h / l))));
end
code[w0_, M_, D_, h_, l_, d_] := N[(w0 * N[Sqrt[N[(1.0 - N[(N[Power[N[(N[(M * D), $MachinePrecision] / N[(2.0 * d), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]
\begin{array}{l}

\\
w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}}
\end{array}

Sampling outcomes in binary64 precision:

Local Percentage Accuracy vs ?

The average percentage accuracy by input value. Horizontal axis shows value of an input variable; the variable is choosen in the title. Vertical axis is accuracy; higher is better. Red represent the original program, while blue represents Herbie's suggestion. These can be toggled with buttons below the plot. The line is an average while dots represent individual samples.

Accuracy vs Speed?

Herbie found 14 alternatives:

AlternativeAccuracySpeedup
The accuracy (vertical axis) and speed (horizontal axis) of each alternatives. Up and to the right is better. The red square shows the initial program, and each blue circle shows an alternative.The line shows the best available speed-accuracy tradeoffs.

Initial Program: 80.8% accurate, 1.0× speedup?

\[\begin{array}{l} \\ w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \end{array} \]
(FPCore (w0 M D h l d)
 :precision binary64
 (* w0 (sqrt (- 1.0 (* (pow (/ (* M D) (* 2.0 d)) 2.0) (/ h l))))))
double code(double w0, double M, double D, double h, double l, double d) {
	return w0 * sqrt((1.0 - (pow(((M * D) / (2.0 * d)), 2.0) * (h / l))));
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(w0, m, d, h, l, d_1)
use fmin_fmax_functions
    real(8), intent (in) :: w0
    real(8), intent (in) :: m
    real(8), intent (in) :: d
    real(8), intent (in) :: h
    real(8), intent (in) :: l
    real(8), intent (in) :: d_1
    code = w0 * sqrt((1.0d0 - ((((m * d) / (2.0d0 * d_1)) ** 2.0d0) * (h / l))))
end function
public static double code(double w0, double M, double D, double h, double l, double d) {
	return w0 * Math.sqrt((1.0 - (Math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l))));
}
def code(w0, M, D, h, l, d):
	return w0 * math.sqrt((1.0 - (math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l))))
function code(w0, M, D, h, l, d)
	return Float64(w0 * sqrt(Float64(1.0 - Float64((Float64(Float64(M * D) / Float64(2.0 * d)) ^ 2.0) * Float64(h / l)))))
end
function tmp = code(w0, M, D, h, l, d)
	tmp = w0 * sqrt((1.0 - ((((M * D) / (2.0 * d)) ^ 2.0) * (h / l))));
end
code[w0_, M_, D_, h_, l_, d_] := N[(w0 * N[Sqrt[N[(1.0 - N[(N[Power[N[(N[(M * D), $MachinePrecision] / N[(2.0 * d), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]
\begin{array}{l}

\\
w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}}
\end{array}

Alternative 1: 87.0% accurate, 0.5× speedup?

\[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \leq 5 \cdot 10^{+267}:\\ \;\;\;\;w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{d + d}\right)}^{2} \cdot \frac{h}{\ell}}\\ \mathbf{else}:\\ \;\;\;\;w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \left(0.5 \cdot M\right)\right) \cdot \frac{0.5 \cdot \left(\left(h \cdot M\right) \cdot D\right)}{\ell \cdot d}}\\ \end{array} \end{array} \]
(FPCore (w0 M D h l d)
 :precision binary64
 (if (<=
      (* w0 (sqrt (- 1.0 (* (pow (/ (* M D) (* 2.0 d)) 2.0) (/ h l)))))
      5e+267)
   (* w0 (sqrt (- 1.0 (* (pow (/ (* M D) (+ d d)) 2.0) (/ h l)))))
   (*
    w0
    (sqrt
     (- 1.0 (* (* (/ D d) (* 0.5 M)) (/ (* 0.5 (* (* h M) D)) (* l d))))))))
double code(double w0, double M, double D, double h, double l, double d) {
	double tmp;
	if ((w0 * sqrt((1.0 - (pow(((M * D) / (2.0 * d)), 2.0) * (h / l))))) <= 5e+267) {
		tmp = w0 * sqrt((1.0 - (pow(((M * D) / (d + d)), 2.0) * (h / l))));
	} else {
		tmp = w0 * sqrt((1.0 - (((D / d) * (0.5 * M)) * ((0.5 * ((h * M) * D)) / (l * d)))));
	}
	return tmp;
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(w0, m, d, h, l, d_1)
use fmin_fmax_functions
    real(8), intent (in) :: w0
    real(8), intent (in) :: m
    real(8), intent (in) :: d
    real(8), intent (in) :: h
    real(8), intent (in) :: l
    real(8), intent (in) :: d_1
    real(8) :: tmp
    if ((w0 * sqrt((1.0d0 - ((((m * d) / (2.0d0 * d_1)) ** 2.0d0) * (h / l))))) <= 5d+267) then
        tmp = w0 * sqrt((1.0d0 - ((((m * d) / (d_1 + d_1)) ** 2.0d0) * (h / l))))
    else
        tmp = w0 * sqrt((1.0d0 - (((d / d_1) * (0.5d0 * m)) * ((0.5d0 * ((h * m) * d)) / (l * d_1)))))
    end if
    code = tmp
end function
public static double code(double w0, double M, double D, double h, double l, double d) {
	double tmp;
	if ((w0 * Math.sqrt((1.0 - (Math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l))))) <= 5e+267) {
		tmp = w0 * Math.sqrt((1.0 - (Math.pow(((M * D) / (d + d)), 2.0) * (h / l))));
	} else {
		tmp = w0 * Math.sqrt((1.0 - (((D / d) * (0.5 * M)) * ((0.5 * ((h * M) * D)) / (l * d)))));
	}
	return tmp;
}
def code(w0, M, D, h, l, d):
	tmp = 0
	if (w0 * math.sqrt((1.0 - (math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l))))) <= 5e+267:
		tmp = w0 * math.sqrt((1.0 - (math.pow(((M * D) / (d + d)), 2.0) * (h / l))))
	else:
		tmp = w0 * math.sqrt((1.0 - (((D / d) * (0.5 * M)) * ((0.5 * ((h * M) * D)) / (l * d)))))
	return tmp
function code(w0, M, D, h, l, d)
	tmp = 0.0
	if (Float64(w0 * sqrt(Float64(1.0 - Float64((Float64(Float64(M * D) / Float64(2.0 * d)) ^ 2.0) * Float64(h / l))))) <= 5e+267)
		tmp = Float64(w0 * sqrt(Float64(1.0 - Float64((Float64(Float64(M * D) / Float64(d + d)) ^ 2.0) * Float64(h / l)))));
	else
		tmp = Float64(w0 * sqrt(Float64(1.0 - Float64(Float64(Float64(D / d) * Float64(0.5 * M)) * Float64(Float64(0.5 * Float64(Float64(h * M) * D)) / Float64(l * d))))));
	end
	return tmp
end
function tmp_2 = code(w0, M, D, h, l, d)
	tmp = 0.0;
	if ((w0 * sqrt((1.0 - ((((M * D) / (2.0 * d)) ^ 2.0) * (h / l))))) <= 5e+267)
		tmp = w0 * sqrt((1.0 - ((((M * D) / (d + d)) ^ 2.0) * (h / l))));
	else
		tmp = w0 * sqrt((1.0 - (((D / d) * (0.5 * M)) * ((0.5 * ((h * M) * D)) / (l * d)))));
	end
	tmp_2 = tmp;
end
code[w0_, M_, D_, h_, l_, d_] := If[LessEqual[N[(w0 * N[Sqrt[N[(1.0 - N[(N[Power[N[(N[(M * D), $MachinePrecision] / N[(2.0 * d), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision], 5e+267], N[(w0 * N[Sqrt[N[(1.0 - N[(N[Power[N[(N[(M * D), $MachinePrecision] / N[(d + d), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision], N[(w0 * N[Sqrt[N[(1.0 - N[(N[(N[(D / d), $MachinePrecision] * N[(0.5 * M), $MachinePrecision]), $MachinePrecision] * N[(N[(0.5 * N[(N[(h * M), $MachinePrecision] * D), $MachinePrecision]), $MachinePrecision] / N[(l * d), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]]
\begin{array}{l}

\\
\begin{array}{l}
\mathbf{if}\;w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \leq 5 \cdot 10^{+267}:\\
\;\;\;\;w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{d + d}\right)}^{2} \cdot \frac{h}{\ell}}\\

\mathbf{else}:\\
\;\;\;\;w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \left(0.5 \cdot M\right)\right) \cdot \frac{0.5 \cdot \left(\left(h \cdot M\right) \cdot D\right)}{\ell \cdot d}}\\


\end{array}
\end{array}
Derivation
  1. Split input into 2 regimes
  2. if (*.f64 w0 (sqrt.f64 (-.f64 #s(literal 1 binary64) (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l))))) < 4.9999999999999999e267

    1. Initial program 96.1%

      \[w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \]
    2. Add Preprocessing
    3. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{\color{blue}{2 \cdot d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
      2. count-2-revN/A

        \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{\color{blue}{d + d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
      3. lower-+.f6496.1

        \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{\color{blue}{d + d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
    4. Applied rewrites96.1%

      \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{\color{blue}{d + d}}\right)}^{2} \cdot \frac{h}{\ell}} \]

    if 4.9999999999999999e267 < (*.f64 w0 (sqrt.f64 (-.f64 #s(literal 1 binary64) (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l)))))

    1. Initial program 34.8%

      \[w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \]
    2. Add Preprocessing
    3. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{\color{blue}{2 \cdot d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
      2. count-2-revN/A

        \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{\color{blue}{d + d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
      3. lower-+.f6434.8

        \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{\color{blue}{d + d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
    4. Applied rewrites34.8%

      \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{\color{blue}{d + d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
    5. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{{\left(\frac{M \cdot D}{d + d}\right)}^{2} \cdot \frac{h}{\ell}}} \]
      2. lift-pow.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{{\left(\frac{M \cdot D}{d + d}\right)}^{2}} \cdot \frac{h}{\ell}} \]
      3. lift-*.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{\color{blue}{M \cdot D}}{d + d}\right)}^{2} \cdot \frac{h}{\ell}} \]
      4. lift-+.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{\color{blue}{d + d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
      5. lift-/.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - {\color{blue}{\left(\frac{M \cdot D}{d + d}\right)}}^{2} \cdot \frac{h}{\ell}} \]
      6. count-2-revN/A

        \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{\color{blue}{2 \cdot d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
      7. frac-timesN/A

        \[\leadsto w0 \cdot \sqrt{1 - {\color{blue}{\left(\frac{M}{2} \cdot \frac{D}{d}\right)}}^{2} \cdot \frac{h}{\ell}} \]
      8. lift-/.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - {\left(\color{blue}{\frac{M}{2}} \cdot \frac{D}{d}\right)}^{2} \cdot \frac{h}{\ell}} \]
      9. lift-/.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M}{2} \cdot \color{blue}{\frac{D}{d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
      10. lift-*.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - {\color{blue}{\left(\frac{M}{2} \cdot \frac{D}{d}\right)}}^{2} \cdot \frac{h}{\ell}} \]
      11. pow2N/A

        \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \left(\frac{M}{2} \cdot \frac{D}{d}\right)\right)} \cdot \frac{h}{\ell}} \]
      12. lift-/.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \left(\frac{M}{2} \cdot \frac{D}{d}\right)\right) \cdot \color{blue}{\frac{h}{\ell}}} \]
      13. associate-*l*N/A

        \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)}} \]
      14. lower-*.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)}} \]
      15. lift-*.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\frac{M}{2} \cdot \frac{D}{d}\right)} \cdot \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)} \]
      16. lift-/.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{M}{2} \cdot \color{blue}{\frac{D}{d}}\right) \cdot \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)} \]
      17. *-commutativeN/A

        \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\frac{D}{d} \cdot \frac{M}{2}\right)} \cdot \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)} \]
      18. lower-*.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\frac{D}{d} \cdot \frac{M}{2}\right)} \cdot \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)} \]
      19. lift-/.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \left(\color{blue}{\frac{D}{d}} \cdot \frac{M}{2}\right) \cdot \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)} \]
      20. lower-*.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \color{blue}{\left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)}} \]
    6. Applied rewrites47.8%

      \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \left(\left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{h}{\ell}\right)}} \]
    7. Taylor expanded in M around 0

      \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \color{blue}{\left(\frac{1}{2} \cdot \frac{D \cdot \left(M \cdot h\right)}{d \cdot \ell}\right)}} \]
    8. Step-by-step derivation
      1. associate-*r/N/A

        \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{\frac{1}{2} \cdot \left(D \cdot \left(M \cdot h\right)\right)}{\color{blue}{d \cdot \ell}}} \]
      2. lower-/.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{\frac{1}{2} \cdot \left(D \cdot \left(M \cdot h\right)\right)}{\color{blue}{d \cdot \ell}}} \]
      3. lower-*.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{\frac{1}{2} \cdot \left(D \cdot \left(M \cdot h\right)\right)}{\color{blue}{d} \cdot \ell}} \]
      4. *-commutativeN/A

        \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{\frac{1}{2} \cdot \left(\left(M \cdot h\right) \cdot D\right)}{d \cdot \ell}} \]
      5. lower-*.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{\frac{1}{2} \cdot \left(\left(M \cdot h\right) \cdot D\right)}{d \cdot \ell}} \]
      6. *-commutativeN/A

        \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{\frac{1}{2} \cdot \left(\left(h \cdot M\right) \cdot D\right)}{d \cdot \ell}} \]
      7. lower-*.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{\frac{1}{2} \cdot \left(\left(h \cdot M\right) \cdot D\right)}{d \cdot \ell}} \]
      8. *-commutativeN/A

        \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{\frac{1}{2} \cdot \left(\left(h \cdot M\right) \cdot D\right)}{\ell \cdot \color{blue}{d}}} \]
      9. lower-*.f6469.9

        \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{0.5 \cdot \left(\left(h \cdot M\right) \cdot D\right)}{\ell \cdot \color{blue}{d}}} \]
    9. Applied rewrites69.9%

      \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \color{blue}{\frac{0.5 \cdot \left(\left(h \cdot M\right) \cdot D\right)}{\ell \cdot d}}} \]
    10. Taylor expanded in M around 0

      \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \color{blue}{\left(\frac{1}{2} \cdot M\right)}\right) \cdot \frac{\frac{1}{2} \cdot \left(\left(h \cdot M\right) \cdot D\right)}{\ell \cdot d}} \]
    11. Step-by-step derivation
      1. lower-*.f6469.9

        \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \left(0.5 \cdot \color{blue}{M}\right)\right) \cdot \frac{0.5 \cdot \left(\left(h \cdot M\right) \cdot D\right)}{\ell \cdot d}} \]
    12. Applied rewrites69.9%

      \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \color{blue}{\left(0.5 \cdot M\right)}\right) \cdot \frac{0.5 \cdot \left(\left(h \cdot M\right) \cdot D\right)}{\ell \cdot d}} \]
  3. Recombined 2 regimes into one program.
  4. Add Preprocessing

Alternative 2: 86.6% accurate, 0.6× speedup?

\[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \leq 5 \cdot 10^{+267}:\\ \;\;\;\;w0 \cdot \sqrt{1 - \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \left(\left(0.5 \cdot M\right) \cdot \frac{D}{d}\right)\right) \cdot \frac{h}{\ell}}\\ \mathbf{else}:\\ \;\;\;\;w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \left(0.5 \cdot M\right)\right) \cdot \frac{0.5 \cdot \left(\left(h \cdot M\right) \cdot D\right)}{\ell \cdot d}}\\ \end{array} \end{array} \]
(FPCore (w0 M D h l d)
 :precision binary64
 (if (<=
      (* w0 (sqrt (- 1.0 (* (pow (/ (* M D) (* 2.0 d)) 2.0) (/ h l)))))
      5e+267)
   (*
    w0
    (sqrt (- 1.0 (* (* (* (/ M 2.0) (/ D d)) (* (* 0.5 M) (/ D d))) (/ h l)))))
   (*
    w0
    (sqrt
     (- 1.0 (* (* (/ D d) (* 0.5 M)) (/ (* 0.5 (* (* h M) D)) (* l d))))))))
double code(double w0, double M, double D, double h, double l, double d) {
	double tmp;
	if ((w0 * sqrt((1.0 - (pow(((M * D) / (2.0 * d)), 2.0) * (h / l))))) <= 5e+267) {
		tmp = w0 * sqrt((1.0 - ((((M / 2.0) * (D / d)) * ((0.5 * M) * (D / d))) * (h / l))));
	} else {
		tmp = w0 * sqrt((1.0 - (((D / d) * (0.5 * M)) * ((0.5 * ((h * M) * D)) / (l * d)))));
	}
	return tmp;
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(w0, m, d, h, l, d_1)
use fmin_fmax_functions
    real(8), intent (in) :: w0
    real(8), intent (in) :: m
    real(8), intent (in) :: d
    real(8), intent (in) :: h
    real(8), intent (in) :: l
    real(8), intent (in) :: d_1
    real(8) :: tmp
    if ((w0 * sqrt((1.0d0 - ((((m * d) / (2.0d0 * d_1)) ** 2.0d0) * (h / l))))) <= 5d+267) then
        tmp = w0 * sqrt((1.0d0 - ((((m / 2.0d0) * (d / d_1)) * ((0.5d0 * m) * (d / d_1))) * (h / l))))
    else
        tmp = w0 * sqrt((1.0d0 - (((d / d_1) * (0.5d0 * m)) * ((0.5d0 * ((h * m) * d)) / (l * d_1)))))
    end if
    code = tmp
end function
public static double code(double w0, double M, double D, double h, double l, double d) {
	double tmp;
	if ((w0 * Math.sqrt((1.0 - (Math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l))))) <= 5e+267) {
		tmp = w0 * Math.sqrt((1.0 - ((((M / 2.0) * (D / d)) * ((0.5 * M) * (D / d))) * (h / l))));
	} else {
		tmp = w0 * Math.sqrt((1.0 - (((D / d) * (0.5 * M)) * ((0.5 * ((h * M) * D)) / (l * d)))));
	}
	return tmp;
}
def code(w0, M, D, h, l, d):
	tmp = 0
	if (w0 * math.sqrt((1.0 - (math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l))))) <= 5e+267:
		tmp = w0 * math.sqrt((1.0 - ((((M / 2.0) * (D / d)) * ((0.5 * M) * (D / d))) * (h / l))))
	else:
		tmp = w0 * math.sqrt((1.0 - (((D / d) * (0.5 * M)) * ((0.5 * ((h * M) * D)) / (l * d)))))
	return tmp
function code(w0, M, D, h, l, d)
	tmp = 0.0
	if (Float64(w0 * sqrt(Float64(1.0 - Float64((Float64(Float64(M * D) / Float64(2.0 * d)) ^ 2.0) * Float64(h / l))))) <= 5e+267)
		tmp = Float64(w0 * sqrt(Float64(1.0 - Float64(Float64(Float64(Float64(M / 2.0) * Float64(D / d)) * Float64(Float64(0.5 * M) * Float64(D / d))) * Float64(h / l)))));
	else
		tmp = Float64(w0 * sqrt(Float64(1.0 - Float64(Float64(Float64(D / d) * Float64(0.5 * M)) * Float64(Float64(0.5 * Float64(Float64(h * M) * D)) / Float64(l * d))))));
	end
	return tmp
end
function tmp_2 = code(w0, M, D, h, l, d)
	tmp = 0.0;
	if ((w0 * sqrt((1.0 - ((((M * D) / (2.0 * d)) ^ 2.0) * (h / l))))) <= 5e+267)
		tmp = w0 * sqrt((1.0 - ((((M / 2.0) * (D / d)) * ((0.5 * M) * (D / d))) * (h / l))));
	else
		tmp = w0 * sqrt((1.0 - (((D / d) * (0.5 * M)) * ((0.5 * ((h * M) * D)) / (l * d)))));
	end
	tmp_2 = tmp;
end
code[w0_, M_, D_, h_, l_, d_] := If[LessEqual[N[(w0 * N[Sqrt[N[(1.0 - N[(N[Power[N[(N[(M * D), $MachinePrecision] / N[(2.0 * d), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision], 5e+267], N[(w0 * N[Sqrt[N[(1.0 - N[(N[(N[(N[(M / 2.0), $MachinePrecision] * N[(D / d), $MachinePrecision]), $MachinePrecision] * N[(N[(0.5 * M), $MachinePrecision] * N[(D / d), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision], N[(w0 * N[Sqrt[N[(1.0 - N[(N[(N[(D / d), $MachinePrecision] * N[(0.5 * M), $MachinePrecision]), $MachinePrecision] * N[(N[(0.5 * N[(N[(h * M), $MachinePrecision] * D), $MachinePrecision]), $MachinePrecision] / N[(l * d), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]]
\begin{array}{l}

\\
\begin{array}{l}
\mathbf{if}\;w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \leq 5 \cdot 10^{+267}:\\
\;\;\;\;w0 \cdot \sqrt{1 - \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \left(\left(0.5 \cdot M\right) \cdot \frac{D}{d}\right)\right) \cdot \frac{h}{\ell}}\\

\mathbf{else}:\\
\;\;\;\;w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \left(0.5 \cdot M\right)\right) \cdot \frac{0.5 \cdot \left(\left(h \cdot M\right) \cdot D\right)}{\ell \cdot d}}\\


\end{array}
\end{array}
Derivation
  1. Split input into 2 regimes
  2. if (*.f64 w0 (sqrt.f64 (-.f64 #s(literal 1 binary64) (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l))))) < 4.9999999999999999e267

    1. Initial program 96.1%

      \[w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \]
    2. Add Preprocessing
    3. Step-by-step derivation
      1. lift-pow.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{{\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2}} \cdot \frac{h}{\ell}} \]
      2. lift-*.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{\color{blue}{M \cdot D}}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \]
      3. lift-*.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{\color{blue}{2 \cdot d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
      4. lift-/.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - {\color{blue}{\left(\frac{M \cdot D}{2 \cdot d}\right)}}^{2} \cdot \frac{h}{\ell}} \]
      5. unpow2N/A

        \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\frac{M \cdot D}{2 \cdot d} \cdot \frac{M \cdot D}{2 \cdot d}\right)} \cdot \frac{h}{\ell}} \]
      6. lower-*.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\frac{M \cdot D}{2 \cdot d} \cdot \frac{M \cdot D}{2 \cdot d}\right)} \cdot \frac{h}{\ell}} \]
      7. times-fracN/A

        \[\leadsto w0 \cdot \sqrt{1 - \left(\color{blue}{\left(\frac{M}{2} \cdot \frac{D}{d}\right)} \cdot \frac{M \cdot D}{2 \cdot d}\right) \cdot \frac{h}{\ell}} \]
      8. lower-*.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \left(\color{blue}{\left(\frac{M}{2} \cdot \frac{D}{d}\right)} \cdot \frac{M \cdot D}{2 \cdot d}\right) \cdot \frac{h}{\ell}} \]
      9. lower-/.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \left(\left(\color{blue}{\frac{M}{2}} \cdot \frac{D}{d}\right) \cdot \frac{M \cdot D}{2 \cdot d}\right) \cdot \frac{h}{\ell}} \]
      10. lower-/.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \left(\left(\frac{M}{2} \cdot \color{blue}{\frac{D}{d}}\right) \cdot \frac{M \cdot D}{2 \cdot d}\right) \cdot \frac{h}{\ell}} \]
      11. times-fracN/A

        \[\leadsto w0 \cdot \sqrt{1 - \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \color{blue}{\left(\frac{M}{2} \cdot \frac{D}{d}\right)}\right) \cdot \frac{h}{\ell}} \]
      12. lower-*.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \color{blue}{\left(\frac{M}{2} \cdot \frac{D}{d}\right)}\right) \cdot \frac{h}{\ell}} \]
      13. lower-/.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \left(\color{blue}{\frac{M}{2}} \cdot \frac{D}{d}\right)\right) \cdot \frac{h}{\ell}} \]
      14. lower-/.f6495.1

        \[\leadsto w0 \cdot \sqrt{1 - \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \left(\frac{M}{2} \cdot \color{blue}{\frac{D}{d}}\right)\right) \cdot \frac{h}{\ell}} \]
    4. Applied rewrites95.1%

      \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \left(\frac{M}{2} \cdot \frac{D}{d}\right)\right)} \cdot \frac{h}{\ell}} \]
    5. Taylor expanded in M around 0

      \[\leadsto w0 \cdot \sqrt{1 - \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \left(\color{blue}{\left(\frac{1}{2} \cdot M\right)} \cdot \frac{D}{d}\right)\right) \cdot \frac{h}{\ell}} \]
    6. Step-by-step derivation
      1. lower-*.f6495.1

        \[\leadsto w0 \cdot \sqrt{1 - \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \left(\left(0.5 \cdot \color{blue}{M}\right) \cdot \frac{D}{d}\right)\right) \cdot \frac{h}{\ell}} \]
    7. Applied rewrites95.1%

      \[\leadsto w0 \cdot \sqrt{1 - \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \left(\color{blue}{\left(0.5 \cdot M\right)} \cdot \frac{D}{d}\right)\right) \cdot \frac{h}{\ell}} \]

    if 4.9999999999999999e267 < (*.f64 w0 (sqrt.f64 (-.f64 #s(literal 1 binary64) (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l)))))

    1. Initial program 34.8%

      \[w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \]
    2. Add Preprocessing
    3. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{\color{blue}{2 \cdot d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
      2. count-2-revN/A

        \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{\color{blue}{d + d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
      3. lower-+.f6434.8

        \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{\color{blue}{d + d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
    4. Applied rewrites34.8%

      \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{\color{blue}{d + d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
    5. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{{\left(\frac{M \cdot D}{d + d}\right)}^{2} \cdot \frac{h}{\ell}}} \]
      2. lift-pow.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{{\left(\frac{M \cdot D}{d + d}\right)}^{2}} \cdot \frac{h}{\ell}} \]
      3. lift-*.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{\color{blue}{M \cdot D}}{d + d}\right)}^{2} \cdot \frac{h}{\ell}} \]
      4. lift-+.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{\color{blue}{d + d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
      5. lift-/.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - {\color{blue}{\left(\frac{M \cdot D}{d + d}\right)}}^{2} \cdot \frac{h}{\ell}} \]
      6. count-2-revN/A

        \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{\color{blue}{2 \cdot d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
      7. frac-timesN/A

        \[\leadsto w0 \cdot \sqrt{1 - {\color{blue}{\left(\frac{M}{2} \cdot \frac{D}{d}\right)}}^{2} \cdot \frac{h}{\ell}} \]
      8. lift-/.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - {\left(\color{blue}{\frac{M}{2}} \cdot \frac{D}{d}\right)}^{2} \cdot \frac{h}{\ell}} \]
      9. lift-/.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M}{2} \cdot \color{blue}{\frac{D}{d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
      10. lift-*.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - {\color{blue}{\left(\frac{M}{2} \cdot \frac{D}{d}\right)}}^{2} \cdot \frac{h}{\ell}} \]
      11. pow2N/A

        \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \left(\frac{M}{2} \cdot \frac{D}{d}\right)\right)} \cdot \frac{h}{\ell}} \]
      12. lift-/.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \left(\frac{M}{2} \cdot \frac{D}{d}\right)\right) \cdot \color{blue}{\frac{h}{\ell}}} \]
      13. associate-*l*N/A

        \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)}} \]
      14. lower-*.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)}} \]
      15. lift-*.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\frac{M}{2} \cdot \frac{D}{d}\right)} \cdot \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)} \]
      16. lift-/.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{M}{2} \cdot \color{blue}{\frac{D}{d}}\right) \cdot \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)} \]
      17. *-commutativeN/A

        \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\frac{D}{d} \cdot \frac{M}{2}\right)} \cdot \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)} \]
      18. lower-*.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\frac{D}{d} \cdot \frac{M}{2}\right)} \cdot \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)} \]
      19. lift-/.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \left(\color{blue}{\frac{D}{d}} \cdot \frac{M}{2}\right) \cdot \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)} \]
      20. lower-*.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \color{blue}{\left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)}} \]
    6. Applied rewrites47.8%

      \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \left(\left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{h}{\ell}\right)}} \]
    7. Taylor expanded in M around 0

      \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \color{blue}{\left(\frac{1}{2} \cdot \frac{D \cdot \left(M \cdot h\right)}{d \cdot \ell}\right)}} \]
    8. Step-by-step derivation
      1. associate-*r/N/A

        \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{\frac{1}{2} \cdot \left(D \cdot \left(M \cdot h\right)\right)}{\color{blue}{d \cdot \ell}}} \]
      2. lower-/.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{\frac{1}{2} \cdot \left(D \cdot \left(M \cdot h\right)\right)}{\color{blue}{d \cdot \ell}}} \]
      3. lower-*.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{\frac{1}{2} \cdot \left(D \cdot \left(M \cdot h\right)\right)}{\color{blue}{d} \cdot \ell}} \]
      4. *-commutativeN/A

        \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{\frac{1}{2} \cdot \left(\left(M \cdot h\right) \cdot D\right)}{d \cdot \ell}} \]
      5. lower-*.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{\frac{1}{2} \cdot \left(\left(M \cdot h\right) \cdot D\right)}{d \cdot \ell}} \]
      6. *-commutativeN/A

        \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{\frac{1}{2} \cdot \left(\left(h \cdot M\right) \cdot D\right)}{d \cdot \ell}} \]
      7. lower-*.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{\frac{1}{2} \cdot \left(\left(h \cdot M\right) \cdot D\right)}{d \cdot \ell}} \]
      8. *-commutativeN/A

        \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{\frac{1}{2} \cdot \left(\left(h \cdot M\right) \cdot D\right)}{\ell \cdot \color{blue}{d}}} \]
      9. lower-*.f6469.9

        \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{0.5 \cdot \left(\left(h \cdot M\right) \cdot D\right)}{\ell \cdot \color{blue}{d}}} \]
    9. Applied rewrites69.9%

      \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \color{blue}{\frac{0.5 \cdot \left(\left(h \cdot M\right) \cdot D\right)}{\ell \cdot d}}} \]
    10. Taylor expanded in M around 0

      \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \color{blue}{\left(\frac{1}{2} \cdot M\right)}\right) \cdot \frac{\frac{1}{2} \cdot \left(\left(h \cdot M\right) \cdot D\right)}{\ell \cdot d}} \]
    11. Step-by-step derivation
      1. lower-*.f6469.9

        \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \left(0.5 \cdot \color{blue}{M}\right)\right) \cdot \frac{0.5 \cdot \left(\left(h \cdot M\right) \cdot D\right)}{\ell \cdot d}} \]
    12. Applied rewrites69.9%

      \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \color{blue}{\left(0.5 \cdot M\right)}\right) \cdot \frac{0.5 \cdot \left(\left(h \cdot M\right) \cdot D\right)}{\ell \cdot d}} \]
  3. Recombined 2 regimes into one program.
  4. Add Preprocessing

Alternative 3: 87.4% accurate, 0.7× speedup?

\[\begin{array}{l} \\ \begin{array}{l} t_0 := \frac{D}{d} \cdot \frac{M}{2}\\ \mathbf{if}\;{\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell} \leq -1 \cdot 10^{-9}:\\ \;\;\;\;w0 \cdot \sqrt{1 - t\_0 \cdot \left(t\_0 \cdot \frac{h}{\ell}\right)}\\ \mathbf{else}:\\ \;\;\;\;w0\\ \end{array} \end{array} \]
(FPCore (w0 M D h l d)
 :precision binary64
 (let* ((t_0 (* (/ D d) (/ M 2.0))))
   (if (<= (* (pow (/ (* M D) (* 2.0 d)) 2.0) (/ h l)) -1e-9)
     (* w0 (sqrt (- 1.0 (* t_0 (* t_0 (/ h l))))))
     w0)))
double code(double w0, double M, double D, double h, double l, double d) {
	double t_0 = (D / d) * (M / 2.0);
	double tmp;
	if ((pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -1e-9) {
		tmp = w0 * sqrt((1.0 - (t_0 * (t_0 * (h / l)))));
	} else {
		tmp = w0;
	}
	return tmp;
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(w0, m, d, h, l, d_1)
use fmin_fmax_functions
    real(8), intent (in) :: w0
    real(8), intent (in) :: m
    real(8), intent (in) :: d
    real(8), intent (in) :: h
    real(8), intent (in) :: l
    real(8), intent (in) :: d_1
    real(8) :: t_0
    real(8) :: tmp
    t_0 = (d / d_1) * (m / 2.0d0)
    if (((((m * d) / (2.0d0 * d_1)) ** 2.0d0) * (h / l)) <= (-1d-9)) then
        tmp = w0 * sqrt((1.0d0 - (t_0 * (t_0 * (h / l)))))
    else
        tmp = w0
    end if
    code = tmp
end function
public static double code(double w0, double M, double D, double h, double l, double d) {
	double t_0 = (D / d) * (M / 2.0);
	double tmp;
	if ((Math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -1e-9) {
		tmp = w0 * Math.sqrt((1.0 - (t_0 * (t_0 * (h / l)))));
	} else {
		tmp = w0;
	}
	return tmp;
}
def code(w0, M, D, h, l, d):
	t_0 = (D / d) * (M / 2.0)
	tmp = 0
	if (math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -1e-9:
		tmp = w0 * math.sqrt((1.0 - (t_0 * (t_0 * (h / l)))))
	else:
		tmp = w0
	return tmp
function code(w0, M, D, h, l, d)
	t_0 = Float64(Float64(D / d) * Float64(M / 2.0))
	tmp = 0.0
	if (Float64((Float64(Float64(M * D) / Float64(2.0 * d)) ^ 2.0) * Float64(h / l)) <= -1e-9)
		tmp = Float64(w0 * sqrt(Float64(1.0 - Float64(t_0 * Float64(t_0 * Float64(h / l))))));
	else
		tmp = w0;
	end
	return tmp
end
function tmp_2 = code(w0, M, D, h, l, d)
	t_0 = (D / d) * (M / 2.0);
	tmp = 0.0;
	if (((((M * D) / (2.0 * d)) ^ 2.0) * (h / l)) <= -1e-9)
		tmp = w0 * sqrt((1.0 - (t_0 * (t_0 * (h / l)))));
	else
		tmp = w0;
	end
	tmp_2 = tmp;
end
code[w0_, M_, D_, h_, l_, d_] := Block[{t$95$0 = N[(N[(D / d), $MachinePrecision] * N[(M / 2.0), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[N[(N[Power[N[(N[(M * D), $MachinePrecision] / N[(2.0 * d), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision], -1e-9], N[(w0 * N[Sqrt[N[(1.0 - N[(t$95$0 * N[(t$95$0 * N[(h / l), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision], w0]]
\begin{array}{l}

\\
\begin{array}{l}
t_0 := \frac{D}{d} \cdot \frac{M}{2}\\
\mathbf{if}\;{\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell} \leq -1 \cdot 10^{-9}:\\
\;\;\;\;w0 \cdot \sqrt{1 - t\_0 \cdot \left(t\_0 \cdot \frac{h}{\ell}\right)}\\

\mathbf{else}:\\
\;\;\;\;w0\\


\end{array}
\end{array}
Derivation
  1. Split input into 2 regimes
  2. if (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l)) < -1.00000000000000006e-9

    1. Initial program 66.5%

      \[w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \]
    2. Add Preprocessing
    3. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{\color{blue}{2 \cdot d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
      2. count-2-revN/A

        \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{\color{blue}{d + d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
      3. lower-+.f6466.5

        \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{\color{blue}{d + d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
    4. Applied rewrites66.5%

      \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{\color{blue}{d + d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
    5. Step-by-step derivation
      1. lift-*.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{{\left(\frac{M \cdot D}{d + d}\right)}^{2} \cdot \frac{h}{\ell}}} \]
      2. lift-pow.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{{\left(\frac{M \cdot D}{d + d}\right)}^{2}} \cdot \frac{h}{\ell}} \]
      3. lift-*.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{\color{blue}{M \cdot D}}{d + d}\right)}^{2} \cdot \frac{h}{\ell}} \]
      4. lift-+.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{\color{blue}{d + d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
      5. lift-/.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - {\color{blue}{\left(\frac{M \cdot D}{d + d}\right)}}^{2} \cdot \frac{h}{\ell}} \]
      6. count-2-revN/A

        \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{\color{blue}{2 \cdot d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
      7. frac-timesN/A

        \[\leadsto w0 \cdot \sqrt{1 - {\color{blue}{\left(\frac{M}{2} \cdot \frac{D}{d}\right)}}^{2} \cdot \frac{h}{\ell}} \]
      8. lift-/.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - {\left(\color{blue}{\frac{M}{2}} \cdot \frac{D}{d}\right)}^{2} \cdot \frac{h}{\ell}} \]
      9. lift-/.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M}{2} \cdot \color{blue}{\frac{D}{d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
      10. lift-*.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - {\color{blue}{\left(\frac{M}{2} \cdot \frac{D}{d}\right)}}^{2} \cdot \frac{h}{\ell}} \]
      11. pow2N/A

        \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \left(\frac{M}{2} \cdot \frac{D}{d}\right)\right)} \cdot \frac{h}{\ell}} \]
      12. lift-/.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \left(\frac{M}{2} \cdot \frac{D}{d}\right)\right) \cdot \color{blue}{\frac{h}{\ell}}} \]
      13. associate-*l*N/A

        \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)}} \]
      14. lower-*.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)}} \]
      15. lift-*.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\frac{M}{2} \cdot \frac{D}{d}\right)} \cdot \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)} \]
      16. lift-/.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{M}{2} \cdot \color{blue}{\frac{D}{d}}\right) \cdot \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)} \]
      17. *-commutativeN/A

        \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\frac{D}{d} \cdot \frac{M}{2}\right)} \cdot \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)} \]
      18. lower-*.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\frac{D}{d} \cdot \frac{M}{2}\right)} \cdot \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)} \]
      19. lift-/.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \left(\color{blue}{\frac{D}{d}} \cdot \frac{M}{2}\right) \cdot \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)} \]
      20. lower-*.f64N/A

        \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \color{blue}{\left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)}} \]
    6. Applied rewrites70.3%

      \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \left(\left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{h}{\ell}\right)}} \]

    if -1.00000000000000006e-9 < (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l))

    1. Initial program 87.2%

      \[w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \]
    2. Add Preprocessing
    3. Taylor expanded in M around 0

      \[\leadsto \color{blue}{w0} \]
    4. Step-by-step derivation
      1. Applied rewrites96.0%

        \[\leadsto \color{blue}{w0} \]
    5. Recombined 2 regimes into one program.
    6. Add Preprocessing

    Alternative 4: 85.3% accurate, 0.7× speedup?

    \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;\sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \leq 1:\\ \;\;\;\;w0\\ \mathbf{else}:\\ \;\;\;\;w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \left(0.5 \cdot M\right)\right) \cdot \frac{0.5 \cdot \left(\left(h \cdot M\right) \cdot D\right)}{\ell \cdot d}}\\ \end{array} \end{array} \]
    (FPCore (w0 M D h l d)
     :precision binary64
     (if (<= (sqrt (- 1.0 (* (pow (/ (* M D) (* 2.0 d)) 2.0) (/ h l)))) 1.0)
       w0
       (*
        w0
        (sqrt
         (- 1.0 (* (* (/ D d) (* 0.5 M)) (/ (* 0.5 (* (* h M) D)) (* l d))))))))
    double code(double w0, double M, double D, double h, double l, double d) {
    	double tmp;
    	if (sqrt((1.0 - (pow(((M * D) / (2.0 * d)), 2.0) * (h / l)))) <= 1.0) {
    		tmp = w0;
    	} else {
    		tmp = w0 * sqrt((1.0 - (((D / d) * (0.5 * M)) * ((0.5 * ((h * M) * D)) / (l * d)))));
    	}
    	return tmp;
    }
    
    module fmin_fmax_functions
        implicit none
        private
        public fmax
        public fmin
    
        interface fmax
            module procedure fmax88
            module procedure fmax44
            module procedure fmax84
            module procedure fmax48
        end interface
        interface fmin
            module procedure fmin88
            module procedure fmin44
            module procedure fmin84
            module procedure fmin48
        end interface
    contains
        real(8) function fmax88(x, y) result (res)
            real(8), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(x, max(x, y), y /= y), x /= x)
        end function
        real(4) function fmax44(x, y) result (res)
            real(4), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(y, merge(x, max(x, y), y /= y), x /= x)
        end function
        real(8) function fmax84(x, y) result(res)
            real(8), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
        end function
        real(8) function fmax48(x, y) result(res)
            real(4), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
        end function
        real(8) function fmin88(x, y) result (res)
            real(8), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(x, min(x, y), y /= y), x /= x)
        end function
        real(4) function fmin44(x, y) result (res)
            real(4), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(y, merge(x, min(x, y), y /= y), x /= x)
        end function
        real(8) function fmin84(x, y) result(res)
            real(8), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
        end function
        real(8) function fmin48(x, y) result(res)
            real(4), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
        end function
    end module
    
    real(8) function code(w0, m, d, h, l, d_1)
    use fmin_fmax_functions
        real(8), intent (in) :: w0
        real(8), intent (in) :: m
        real(8), intent (in) :: d
        real(8), intent (in) :: h
        real(8), intent (in) :: l
        real(8), intent (in) :: d_1
        real(8) :: tmp
        if (sqrt((1.0d0 - ((((m * d) / (2.0d0 * d_1)) ** 2.0d0) * (h / l)))) <= 1.0d0) then
            tmp = w0
        else
            tmp = w0 * sqrt((1.0d0 - (((d / d_1) * (0.5d0 * m)) * ((0.5d0 * ((h * m) * d)) / (l * d_1)))))
        end if
        code = tmp
    end function
    
    public static double code(double w0, double M, double D, double h, double l, double d) {
    	double tmp;
    	if (Math.sqrt((1.0 - (Math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l)))) <= 1.0) {
    		tmp = w0;
    	} else {
    		tmp = w0 * Math.sqrt((1.0 - (((D / d) * (0.5 * M)) * ((0.5 * ((h * M) * D)) / (l * d)))));
    	}
    	return tmp;
    }
    
    def code(w0, M, D, h, l, d):
    	tmp = 0
    	if math.sqrt((1.0 - (math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l)))) <= 1.0:
    		tmp = w0
    	else:
    		tmp = w0 * math.sqrt((1.0 - (((D / d) * (0.5 * M)) * ((0.5 * ((h * M) * D)) / (l * d)))))
    	return tmp
    
    function code(w0, M, D, h, l, d)
    	tmp = 0.0
    	if (sqrt(Float64(1.0 - Float64((Float64(Float64(M * D) / Float64(2.0 * d)) ^ 2.0) * Float64(h / l)))) <= 1.0)
    		tmp = w0;
    	else
    		tmp = Float64(w0 * sqrt(Float64(1.0 - Float64(Float64(Float64(D / d) * Float64(0.5 * M)) * Float64(Float64(0.5 * Float64(Float64(h * M) * D)) / Float64(l * d))))));
    	end
    	return tmp
    end
    
    function tmp_2 = code(w0, M, D, h, l, d)
    	tmp = 0.0;
    	if (sqrt((1.0 - ((((M * D) / (2.0 * d)) ^ 2.0) * (h / l)))) <= 1.0)
    		tmp = w0;
    	else
    		tmp = w0 * sqrt((1.0 - (((D / d) * (0.5 * M)) * ((0.5 * ((h * M) * D)) / (l * d)))));
    	end
    	tmp_2 = tmp;
    end
    
    code[w0_, M_, D_, h_, l_, d_] := If[LessEqual[N[Sqrt[N[(1.0 - N[(N[Power[N[(N[(M * D), $MachinePrecision] / N[(2.0 * d), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], 1.0], w0, N[(w0 * N[Sqrt[N[(1.0 - N[(N[(N[(D / d), $MachinePrecision] * N[(0.5 * M), $MachinePrecision]), $MachinePrecision] * N[(N[(0.5 * N[(N[(h * M), $MachinePrecision] * D), $MachinePrecision]), $MachinePrecision] / N[(l * d), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]]
    
    \begin{array}{l}
    
    \\
    \begin{array}{l}
    \mathbf{if}\;\sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \leq 1:\\
    \;\;\;\;w0\\
    
    \mathbf{else}:\\
    \;\;\;\;w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \left(0.5 \cdot M\right)\right) \cdot \frac{0.5 \cdot \left(\left(h \cdot M\right) \cdot D\right)}{\ell \cdot d}}\\
    
    
    \end{array}
    \end{array}
    
    Derivation
    1. Split input into 2 regimes
    2. if (sqrt.f64 (-.f64 #s(literal 1 binary64) (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l)))) < 1

      1. Initial program 100.0%

        \[w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \]
      2. Add Preprocessing
      3. Taylor expanded in M around 0

        \[\leadsto \color{blue}{w0} \]
      4. Step-by-step derivation
        1. Applied rewrites100.0%

          \[\leadsto \color{blue}{w0} \]

        if 1 < (sqrt.f64 (-.f64 #s(literal 1 binary64) (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l))))

        1. Initial program 49.1%

          \[w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \]
        2. Add Preprocessing
        3. Step-by-step derivation
          1. lift-*.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{\color{blue}{2 \cdot d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
          2. count-2-revN/A

            \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{\color{blue}{d + d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
          3. lower-+.f6449.1

            \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{\color{blue}{d + d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
        4. Applied rewrites49.1%

          \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{\color{blue}{d + d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
        5. Step-by-step derivation
          1. lift-*.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{{\left(\frac{M \cdot D}{d + d}\right)}^{2} \cdot \frac{h}{\ell}}} \]
          2. lift-pow.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{{\left(\frac{M \cdot D}{d + d}\right)}^{2}} \cdot \frac{h}{\ell}} \]
          3. lift-*.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{\color{blue}{M \cdot D}}{d + d}\right)}^{2} \cdot \frac{h}{\ell}} \]
          4. lift-+.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{\color{blue}{d + d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
          5. lift-/.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - {\color{blue}{\left(\frac{M \cdot D}{d + d}\right)}}^{2} \cdot \frac{h}{\ell}} \]
          6. count-2-revN/A

            \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{\color{blue}{2 \cdot d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
          7. frac-timesN/A

            \[\leadsto w0 \cdot \sqrt{1 - {\color{blue}{\left(\frac{M}{2} \cdot \frac{D}{d}\right)}}^{2} \cdot \frac{h}{\ell}} \]
          8. lift-/.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - {\left(\color{blue}{\frac{M}{2}} \cdot \frac{D}{d}\right)}^{2} \cdot \frac{h}{\ell}} \]
          9. lift-/.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M}{2} \cdot \color{blue}{\frac{D}{d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
          10. lift-*.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - {\color{blue}{\left(\frac{M}{2} \cdot \frac{D}{d}\right)}}^{2} \cdot \frac{h}{\ell}} \]
          11. pow2N/A

            \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \left(\frac{M}{2} \cdot \frac{D}{d}\right)\right)} \cdot \frac{h}{\ell}} \]
          12. lift-/.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \left(\frac{M}{2} \cdot \frac{D}{d}\right)\right) \cdot \color{blue}{\frac{h}{\ell}}} \]
          13. associate-*l*N/A

            \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)}} \]
          14. lower-*.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)}} \]
          15. lift-*.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\frac{M}{2} \cdot \frac{D}{d}\right)} \cdot \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)} \]
          16. lift-/.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{M}{2} \cdot \color{blue}{\frac{D}{d}}\right) \cdot \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)} \]
          17. *-commutativeN/A

            \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\frac{D}{d} \cdot \frac{M}{2}\right)} \cdot \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)} \]
          18. lower-*.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\frac{D}{d} \cdot \frac{M}{2}\right)} \cdot \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)} \]
          19. lift-/.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - \left(\color{blue}{\frac{D}{d}} \cdot \frac{M}{2}\right) \cdot \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)} \]
          20. lower-*.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \color{blue}{\left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)}} \]
        6. Applied rewrites57.6%

          \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \left(\left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{h}{\ell}\right)}} \]
        7. Taylor expanded in M around 0

          \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \color{blue}{\left(\frac{1}{2} \cdot \frac{D \cdot \left(M \cdot h\right)}{d \cdot \ell}\right)}} \]
        8. Step-by-step derivation
          1. associate-*r/N/A

            \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{\frac{1}{2} \cdot \left(D \cdot \left(M \cdot h\right)\right)}{\color{blue}{d \cdot \ell}}} \]
          2. lower-/.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{\frac{1}{2} \cdot \left(D \cdot \left(M \cdot h\right)\right)}{\color{blue}{d \cdot \ell}}} \]
          3. lower-*.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{\frac{1}{2} \cdot \left(D \cdot \left(M \cdot h\right)\right)}{\color{blue}{d} \cdot \ell}} \]
          4. *-commutativeN/A

            \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{\frac{1}{2} \cdot \left(\left(M \cdot h\right) \cdot D\right)}{d \cdot \ell}} \]
          5. lower-*.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{\frac{1}{2} \cdot \left(\left(M \cdot h\right) \cdot D\right)}{d \cdot \ell}} \]
          6. *-commutativeN/A

            \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{\frac{1}{2} \cdot \left(\left(h \cdot M\right) \cdot D\right)}{d \cdot \ell}} \]
          7. lower-*.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{\frac{1}{2} \cdot \left(\left(h \cdot M\right) \cdot D\right)}{d \cdot \ell}} \]
          8. *-commutativeN/A

            \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{\frac{1}{2} \cdot \left(\left(h \cdot M\right) \cdot D\right)}{\ell \cdot \color{blue}{d}}} \]
          9. lower-*.f6462.2

            \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{0.5 \cdot \left(\left(h \cdot M\right) \cdot D\right)}{\ell \cdot \color{blue}{d}}} \]
        9. Applied rewrites62.2%

          \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \color{blue}{\frac{0.5 \cdot \left(\left(h \cdot M\right) \cdot D\right)}{\ell \cdot d}}} \]
        10. Taylor expanded in M around 0

          \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \color{blue}{\left(\frac{1}{2} \cdot M\right)}\right) \cdot \frac{\frac{1}{2} \cdot \left(\left(h \cdot M\right) \cdot D\right)}{\ell \cdot d}} \]
        11. Step-by-step derivation
          1. lower-*.f6462.2

            \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \left(0.5 \cdot \color{blue}{M}\right)\right) \cdot \frac{0.5 \cdot \left(\left(h \cdot M\right) \cdot D\right)}{\ell \cdot d}} \]
        12. Applied rewrites62.2%

          \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \color{blue}{\left(0.5 \cdot M\right)}\right) \cdot \frac{0.5 \cdot \left(\left(h \cdot M\right) \cdot D\right)}{\ell \cdot d}} \]
      5. Recombined 2 regimes into one program.
      6. Add Preprocessing

      Alternative 5: 86.8% accurate, 0.7× speedup?

      \[\begin{array}{l} \\ \begin{array}{l} t_0 := \frac{M \cdot D}{2 \cdot d}\\ \mathbf{if}\;{t\_0}^{2} \cdot \frac{h}{\ell} \leq -1 \cdot 10^{-9}:\\ \;\;\;\;w0 \cdot \sqrt{1 - t\_0 \cdot \left(\left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{h}{\ell}\right)}\\ \mathbf{else}:\\ \;\;\;\;w0\\ \end{array} \end{array} \]
      (FPCore (w0 M D h l d)
       :precision binary64
       (let* ((t_0 (/ (* M D) (* 2.0 d))))
         (if (<= (* (pow t_0 2.0) (/ h l)) -1e-9)
           (* w0 (sqrt (- 1.0 (* t_0 (* (* (/ D d) (/ M 2.0)) (/ h l))))))
           w0)))
      double code(double w0, double M, double D, double h, double l, double d) {
      	double t_0 = (M * D) / (2.0 * d);
      	double tmp;
      	if ((pow(t_0, 2.0) * (h / l)) <= -1e-9) {
      		tmp = w0 * sqrt((1.0 - (t_0 * (((D / d) * (M / 2.0)) * (h / l)))));
      	} else {
      		tmp = w0;
      	}
      	return tmp;
      }
      
      module fmin_fmax_functions
          implicit none
          private
          public fmax
          public fmin
      
          interface fmax
              module procedure fmax88
              module procedure fmax44
              module procedure fmax84
              module procedure fmax48
          end interface
          interface fmin
              module procedure fmin88
              module procedure fmin44
              module procedure fmin84
              module procedure fmin48
          end interface
      contains
          real(8) function fmax88(x, y) result (res)
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
          end function
          real(4) function fmax44(x, y) result (res)
              real(4), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
          end function
          real(8) function fmax84(x, y) result(res)
              real(8), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
          end function
          real(8) function fmax48(x, y) result(res)
              real(4), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
          end function
          real(8) function fmin88(x, y) result (res)
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
          end function
          real(4) function fmin44(x, y) result (res)
              real(4), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
          end function
          real(8) function fmin84(x, y) result(res)
              real(8), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
          end function
          real(8) function fmin48(x, y) result(res)
              real(4), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
          end function
      end module
      
      real(8) function code(w0, m, d, h, l, d_1)
      use fmin_fmax_functions
          real(8), intent (in) :: w0
          real(8), intent (in) :: m
          real(8), intent (in) :: d
          real(8), intent (in) :: h
          real(8), intent (in) :: l
          real(8), intent (in) :: d_1
          real(8) :: t_0
          real(8) :: tmp
          t_0 = (m * d) / (2.0d0 * d_1)
          if (((t_0 ** 2.0d0) * (h / l)) <= (-1d-9)) then
              tmp = w0 * sqrt((1.0d0 - (t_0 * (((d / d_1) * (m / 2.0d0)) * (h / l)))))
          else
              tmp = w0
          end if
          code = tmp
      end function
      
      public static double code(double w0, double M, double D, double h, double l, double d) {
      	double t_0 = (M * D) / (2.0 * d);
      	double tmp;
      	if ((Math.pow(t_0, 2.0) * (h / l)) <= -1e-9) {
      		tmp = w0 * Math.sqrt((1.0 - (t_0 * (((D / d) * (M / 2.0)) * (h / l)))));
      	} else {
      		tmp = w0;
      	}
      	return tmp;
      }
      
      def code(w0, M, D, h, l, d):
      	t_0 = (M * D) / (2.0 * d)
      	tmp = 0
      	if (math.pow(t_0, 2.0) * (h / l)) <= -1e-9:
      		tmp = w0 * math.sqrt((1.0 - (t_0 * (((D / d) * (M / 2.0)) * (h / l)))))
      	else:
      		tmp = w0
      	return tmp
      
      function code(w0, M, D, h, l, d)
      	t_0 = Float64(Float64(M * D) / Float64(2.0 * d))
      	tmp = 0.0
      	if (Float64((t_0 ^ 2.0) * Float64(h / l)) <= -1e-9)
      		tmp = Float64(w0 * sqrt(Float64(1.0 - Float64(t_0 * Float64(Float64(Float64(D / d) * Float64(M / 2.0)) * Float64(h / l))))));
      	else
      		tmp = w0;
      	end
      	return tmp
      end
      
      function tmp_2 = code(w0, M, D, h, l, d)
      	t_0 = (M * D) / (2.0 * d);
      	tmp = 0.0;
      	if (((t_0 ^ 2.0) * (h / l)) <= -1e-9)
      		tmp = w0 * sqrt((1.0 - (t_0 * (((D / d) * (M / 2.0)) * (h / l)))));
      	else
      		tmp = w0;
      	end
      	tmp_2 = tmp;
      end
      
      code[w0_, M_, D_, h_, l_, d_] := Block[{t$95$0 = N[(N[(M * D), $MachinePrecision] / N[(2.0 * d), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[N[(N[Power[t$95$0, 2.0], $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision], -1e-9], N[(w0 * N[Sqrt[N[(1.0 - N[(t$95$0 * N[(N[(N[(D / d), $MachinePrecision] * N[(M / 2.0), $MachinePrecision]), $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision], w0]]
      
      \begin{array}{l}
      
      \\
      \begin{array}{l}
      t_0 := \frac{M \cdot D}{2 \cdot d}\\
      \mathbf{if}\;{t\_0}^{2} \cdot \frac{h}{\ell} \leq -1 \cdot 10^{-9}:\\
      \;\;\;\;w0 \cdot \sqrt{1 - t\_0 \cdot \left(\left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{h}{\ell}\right)}\\
      
      \mathbf{else}:\\
      \;\;\;\;w0\\
      
      
      \end{array}
      \end{array}
      
      Derivation
      1. Split input into 2 regimes
      2. if (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l)) < -1.00000000000000006e-9

        1. Initial program 66.5%

          \[w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \]
        2. Add Preprocessing
        3. Step-by-step derivation
          1. lift-*.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{\color{blue}{2 \cdot d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
          2. count-2-revN/A

            \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{\color{blue}{d + d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
          3. lower-+.f6466.5

            \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{\color{blue}{d + d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
        4. Applied rewrites66.5%

          \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{\color{blue}{d + d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
        5. Step-by-step derivation
          1. lift-*.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{{\left(\frac{M \cdot D}{d + d}\right)}^{2} \cdot \frac{h}{\ell}}} \]
          2. lift-pow.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{{\left(\frac{M \cdot D}{d + d}\right)}^{2}} \cdot \frac{h}{\ell}} \]
          3. lift-*.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{\color{blue}{M \cdot D}}{d + d}\right)}^{2} \cdot \frac{h}{\ell}} \]
          4. lift-+.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{\color{blue}{d + d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
          5. lift-/.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - {\color{blue}{\left(\frac{M \cdot D}{d + d}\right)}}^{2} \cdot \frac{h}{\ell}} \]
          6. count-2-revN/A

            \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{\color{blue}{2 \cdot d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
          7. frac-timesN/A

            \[\leadsto w0 \cdot \sqrt{1 - {\color{blue}{\left(\frac{M}{2} \cdot \frac{D}{d}\right)}}^{2} \cdot \frac{h}{\ell}} \]
          8. lift-/.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - {\left(\color{blue}{\frac{M}{2}} \cdot \frac{D}{d}\right)}^{2} \cdot \frac{h}{\ell}} \]
          9. lift-/.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - {\left(\frac{M}{2} \cdot \color{blue}{\frac{D}{d}}\right)}^{2} \cdot \frac{h}{\ell}} \]
          10. lift-*.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - {\color{blue}{\left(\frac{M}{2} \cdot \frac{D}{d}\right)}}^{2} \cdot \frac{h}{\ell}} \]
          11. pow2N/A

            \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \left(\frac{M}{2} \cdot \frac{D}{d}\right)\right)} \cdot \frac{h}{\ell}} \]
          12. lift-/.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \left(\frac{M}{2} \cdot \frac{D}{d}\right)\right) \cdot \color{blue}{\frac{h}{\ell}}} \]
          13. associate-*l*N/A

            \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)}} \]
          14. lower-*.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)}} \]
          15. lift-*.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\frac{M}{2} \cdot \frac{D}{d}\right)} \cdot \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)} \]
          16. lift-/.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{M}{2} \cdot \color{blue}{\frac{D}{d}}\right) \cdot \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)} \]
          17. *-commutativeN/A

            \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\frac{D}{d} \cdot \frac{M}{2}\right)} \cdot \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)} \]
          18. lower-*.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\frac{D}{d} \cdot \frac{M}{2}\right)} \cdot \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)} \]
          19. lift-/.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - \left(\color{blue}{\frac{D}{d}} \cdot \frac{M}{2}\right) \cdot \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)} \]
          20. lower-*.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \color{blue}{\left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \frac{h}{\ell}\right)}} \]
        6. Applied rewrites70.3%

          \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \left(\left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{h}{\ell}\right)}} \]
        7. Step-by-step derivation
          1. lift-*.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\left(\frac{D}{d} \cdot \frac{M}{2}\right)} \cdot \left(\left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{h}{\ell}\right)} \]
          2. lift-/.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - \left(\color{blue}{\frac{D}{d}} \cdot \frac{M}{2}\right) \cdot \left(\left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{h}{\ell}\right)} \]
          3. lift-/.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \color{blue}{\frac{M}{2}}\right) \cdot \left(\left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{h}{\ell}\right)} \]
          4. frac-timesN/A

            \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\frac{D \cdot M}{d \cdot 2}} \cdot \left(\left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{h}{\ell}\right)} \]
          5. *-commutativeN/A

            \[\leadsto w0 \cdot \sqrt{1 - \frac{D \cdot M}{\color{blue}{2 \cdot d}} \cdot \left(\left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{h}{\ell}\right)} \]
          6. lower-/.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\frac{D \cdot M}{2 \cdot d}} \cdot \left(\left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{h}{\ell}\right)} \]
          7. *-commutativeN/A

            \[\leadsto w0 \cdot \sqrt{1 - \frac{\color{blue}{M \cdot D}}{2 \cdot d} \cdot \left(\left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{h}{\ell}\right)} \]
          8. lower-*.f64N/A

            \[\leadsto w0 \cdot \sqrt{1 - \frac{\color{blue}{M \cdot D}}{2 \cdot d} \cdot \left(\left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{h}{\ell}\right)} \]
          9. lower-*.f6468.9

            \[\leadsto w0 \cdot \sqrt{1 - \frac{M \cdot D}{\color{blue}{2 \cdot d}} \cdot \left(\left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{h}{\ell}\right)} \]
        8. Applied rewrites68.9%

          \[\leadsto w0 \cdot \sqrt{1 - \color{blue}{\frac{M \cdot D}{2 \cdot d}} \cdot \left(\left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{h}{\ell}\right)} \]

        if -1.00000000000000006e-9 < (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l))

        1. Initial program 87.2%

          \[w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \]
        2. Add Preprocessing
        3. Taylor expanded in M around 0

          \[\leadsto \color{blue}{w0} \]
        4. Step-by-step derivation
          1. Applied rewrites96.0%

            \[\leadsto \color{blue}{w0} \]
        5. Recombined 2 regimes into one program.
        6. Add Preprocessing

        Alternative 6: 81.9% accurate, 0.7× speedup?

        \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;{\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell} \leq -5 \cdot 10^{+19}:\\ \;\;\;\;w0 \cdot \sqrt{-0.25 \cdot \left(\left(D \cdot D\right) \cdot \left(\left(\frac{M}{d} \cdot \frac{M}{d}\right) \cdot \frac{h}{\ell}\right)\right)}\\ \mathbf{else}:\\ \;\;\;\;w0\\ \end{array} \end{array} \]
        (FPCore (w0 M D h l d)
         :precision binary64
         (if (<= (* (pow (/ (* M D) (* 2.0 d)) 2.0) (/ h l)) -5e+19)
           (* w0 (sqrt (* -0.25 (* (* D D) (* (* (/ M d) (/ M d)) (/ h l))))))
           w0))
        double code(double w0, double M, double D, double h, double l, double d) {
        	double tmp;
        	if ((pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -5e+19) {
        		tmp = w0 * sqrt((-0.25 * ((D * D) * (((M / d) * (M / d)) * (h / l)))));
        	} else {
        		tmp = w0;
        	}
        	return tmp;
        }
        
        module fmin_fmax_functions
            implicit none
            private
            public fmax
            public fmin
        
            interface fmax
                module procedure fmax88
                module procedure fmax44
                module procedure fmax84
                module procedure fmax48
            end interface
            interface fmin
                module procedure fmin88
                module procedure fmin44
                module procedure fmin84
                module procedure fmin48
            end interface
        contains
            real(8) function fmax88(x, y) result (res)
                real(8), intent (in) :: x
                real(8), intent (in) :: y
                res = merge(y, merge(x, max(x, y), y /= y), x /= x)
            end function
            real(4) function fmax44(x, y) result (res)
                real(4), intent (in) :: x
                real(4), intent (in) :: y
                res = merge(y, merge(x, max(x, y), y /= y), x /= x)
            end function
            real(8) function fmax84(x, y) result(res)
                real(8), intent (in) :: x
                real(4), intent (in) :: y
                res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
            end function
            real(8) function fmax48(x, y) result(res)
                real(4), intent (in) :: x
                real(8), intent (in) :: y
                res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
            end function
            real(8) function fmin88(x, y) result (res)
                real(8), intent (in) :: x
                real(8), intent (in) :: y
                res = merge(y, merge(x, min(x, y), y /= y), x /= x)
            end function
            real(4) function fmin44(x, y) result (res)
                real(4), intent (in) :: x
                real(4), intent (in) :: y
                res = merge(y, merge(x, min(x, y), y /= y), x /= x)
            end function
            real(8) function fmin84(x, y) result(res)
                real(8), intent (in) :: x
                real(4), intent (in) :: y
                res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
            end function
            real(8) function fmin48(x, y) result(res)
                real(4), intent (in) :: x
                real(8), intent (in) :: y
                res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
            end function
        end module
        
        real(8) function code(w0, m, d, h, l, d_1)
        use fmin_fmax_functions
            real(8), intent (in) :: w0
            real(8), intent (in) :: m
            real(8), intent (in) :: d
            real(8), intent (in) :: h
            real(8), intent (in) :: l
            real(8), intent (in) :: d_1
            real(8) :: tmp
            if (((((m * d) / (2.0d0 * d_1)) ** 2.0d0) * (h / l)) <= (-5d+19)) then
                tmp = w0 * sqrt(((-0.25d0) * ((d * d) * (((m / d_1) * (m / d_1)) * (h / l)))))
            else
                tmp = w0
            end if
            code = tmp
        end function
        
        public static double code(double w0, double M, double D, double h, double l, double d) {
        	double tmp;
        	if ((Math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -5e+19) {
        		tmp = w0 * Math.sqrt((-0.25 * ((D * D) * (((M / d) * (M / d)) * (h / l)))));
        	} else {
        		tmp = w0;
        	}
        	return tmp;
        }
        
        def code(w0, M, D, h, l, d):
        	tmp = 0
        	if (math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -5e+19:
        		tmp = w0 * math.sqrt((-0.25 * ((D * D) * (((M / d) * (M / d)) * (h / l)))))
        	else:
        		tmp = w0
        	return tmp
        
        function code(w0, M, D, h, l, d)
        	tmp = 0.0
        	if (Float64((Float64(Float64(M * D) / Float64(2.0 * d)) ^ 2.0) * Float64(h / l)) <= -5e+19)
        		tmp = Float64(w0 * sqrt(Float64(-0.25 * Float64(Float64(D * D) * Float64(Float64(Float64(M / d) * Float64(M / d)) * Float64(h / l))))));
        	else
        		tmp = w0;
        	end
        	return tmp
        end
        
        function tmp_2 = code(w0, M, D, h, l, d)
        	tmp = 0.0;
        	if (((((M * D) / (2.0 * d)) ^ 2.0) * (h / l)) <= -5e+19)
        		tmp = w0 * sqrt((-0.25 * ((D * D) * (((M / d) * (M / d)) * (h / l)))));
        	else
        		tmp = w0;
        	end
        	tmp_2 = tmp;
        end
        
        code[w0_, M_, D_, h_, l_, d_] := If[LessEqual[N[(N[Power[N[(N[(M * D), $MachinePrecision] / N[(2.0 * d), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision], -5e+19], N[(w0 * N[Sqrt[N[(-0.25 * N[(N[(D * D), $MachinePrecision] * N[(N[(N[(M / d), $MachinePrecision] * N[(M / d), $MachinePrecision]), $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision], w0]
        
        \begin{array}{l}
        
        \\
        \begin{array}{l}
        \mathbf{if}\;{\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell} \leq -5 \cdot 10^{+19}:\\
        \;\;\;\;w0 \cdot \sqrt{-0.25 \cdot \left(\left(D \cdot D\right) \cdot \left(\left(\frac{M}{d} \cdot \frac{M}{d}\right) \cdot \frac{h}{\ell}\right)\right)}\\
        
        \mathbf{else}:\\
        \;\;\;\;w0\\
        
        
        \end{array}
        \end{array}
        
        Derivation
        1. Split input into 2 regimes
        2. if (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l)) < -5e19

          1. Initial program 65.5%

            \[w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \]
          2. Add Preprocessing
          3. Taylor expanded in M around inf

            \[\leadsto w0 \cdot \sqrt{\color{blue}{\frac{-1}{4} \cdot \frac{{D}^{2} \cdot \left({M}^{2} \cdot h\right)}{{d}^{2} \cdot \ell}}} \]
          4. Step-by-step derivation
            1. lower-*.f64N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \color{blue}{\frac{{D}^{2} \cdot \left({M}^{2} \cdot h\right)}{{d}^{2} \cdot \ell}}} \]
            2. lower-/.f64N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{D}^{2} \cdot \left({M}^{2} \cdot h\right)}{\color{blue}{{d}^{2} \cdot \ell}}} \]
            3. associate-*r*N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left({D}^{2} \cdot {M}^{2}\right) \cdot h}{\color{blue}{{d}^{2}} \cdot \ell}} \]
            4. lower-*.f64N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left({D}^{2} \cdot {M}^{2}\right) \cdot h}{\color{blue}{{d}^{2}} \cdot \ell}} \]
            5. pow-prod-downN/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{{\color{blue}{d}}^{2} \cdot \ell}} \]
            6. lower-pow.f64N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{{\color{blue}{d}}^{2} \cdot \ell}} \]
            7. lower-*.f64N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{{d}^{2} \cdot \ell}} \]
            8. lower-*.f64N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{{d}^{2} \cdot \color{blue}{\ell}}} \]
            9. unpow2N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{\left(d \cdot d\right) \cdot \ell}} \]
            10. lower-*.f6444.3

              \[\leadsto w0 \cdot \sqrt{-0.25 \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{\left(d \cdot d\right) \cdot \ell}} \]
          5. Applied rewrites44.3%

            \[\leadsto w0 \cdot \sqrt{\color{blue}{-0.25 \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{\left(d \cdot d\right) \cdot \ell}}} \]
          6. Step-by-step derivation
            1. lift-*.f64N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{\color{blue}{\left(d \cdot d\right)} \cdot \ell}} \]
            2. lift-*.f64N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{\left(d \cdot d\right) \cdot \ell}} \]
            3. lift-pow.f64N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{\left(\color{blue}{d} \cdot d\right) \cdot \ell}} \]
            4. unpow-prod-downN/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left({D}^{2} \cdot {M}^{2}\right) \cdot h}{\left(\color{blue}{d} \cdot d\right) \cdot \ell}} \]
            5. associate-*r*N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{D}^{2} \cdot \left({M}^{2} \cdot h\right)}{\color{blue}{\left(d \cdot d\right)} \cdot \ell}} \]
            6. *-commutativeN/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left({M}^{2} \cdot h\right) \cdot {D}^{2}}{\color{blue}{\left(d \cdot d\right)} \cdot \ell}} \]
            7. lower-*.f64N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left({M}^{2} \cdot h\right) \cdot {D}^{2}}{\color{blue}{\left(d \cdot d\right)} \cdot \ell}} \]
            8. lower-*.f64N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left({M}^{2} \cdot h\right) \cdot {D}^{2}}{\left(\color{blue}{d} \cdot d\right) \cdot \ell}} \]
            9. unpow2N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot {D}^{2}}{\left(d \cdot d\right) \cdot \ell}} \]
            10. lower-*.f64N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot {D}^{2}}{\left(d \cdot d\right) \cdot \ell}} \]
            11. unpow2N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot \left(D \cdot D\right)}{\left(d \cdot \color{blue}{d}\right) \cdot \ell}} \]
            12. lower-*.f6434.9

              \[\leadsto w0 \cdot \sqrt{-0.25 \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot \left(D \cdot D\right)}{\left(d \cdot \color{blue}{d}\right) \cdot \ell}} \]
          7. Applied rewrites34.9%

            \[\leadsto w0 \cdot \sqrt{-0.25 \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot \left(D \cdot D\right)}{\color{blue}{\left(d \cdot d\right)} \cdot \ell}} \]
          8. Step-by-step derivation
            1. lift-*.f64N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot \left(D \cdot D\right)}{\left(\color{blue}{d} \cdot d\right) \cdot \ell}} \]
            2. lift-*.f64N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot \left(D \cdot D\right)}{\left(d \cdot d\right) \cdot \ell}} \]
            3. associate-*l*N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left(M \cdot \left(M \cdot h\right)\right) \cdot \left(D \cdot D\right)}{\left(\color{blue}{d} \cdot d\right) \cdot \ell}} \]
            4. lower-*.f64N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left(M \cdot \left(M \cdot h\right)\right) \cdot \left(D \cdot D\right)}{\left(\color{blue}{d} \cdot d\right) \cdot \ell}} \]
            5. *-commutativeN/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left(M \cdot \left(h \cdot M\right)\right) \cdot \left(D \cdot D\right)}{\left(d \cdot d\right) \cdot \ell}} \]
            6. lower-*.f6436.6

              \[\leadsto w0 \cdot \sqrt{-0.25 \cdot \frac{\left(M \cdot \left(h \cdot M\right)\right) \cdot \left(D \cdot D\right)}{\left(d \cdot d\right) \cdot \ell}} \]
          9. Applied rewrites36.6%

            \[\leadsto w0 \cdot \sqrt{-0.25 \cdot \frac{\left(M \cdot \left(h \cdot M\right)\right) \cdot \left(D \cdot D\right)}{\left(\color{blue}{d} \cdot d\right) \cdot \ell}} \]
          10. Step-by-step derivation
            1. lift-*.f64N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left(M \cdot \left(h \cdot M\right)\right) \cdot \left(D \cdot D\right)}{\left(d \cdot d\right) \cdot \color{blue}{\ell}}} \]
            2. lift-*.f64N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left(M \cdot \left(h \cdot M\right)\right) \cdot \left(D \cdot D\right)}{\left(d \cdot d\right) \cdot \ell}} \]
            3. pow2N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left(M \cdot \left(h \cdot M\right)\right) \cdot \left(D \cdot D\right)}{{d}^{2} \cdot \ell}} \]
            4. lower-/.f64N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left(M \cdot \left(h \cdot M\right)\right) \cdot \left(D \cdot D\right)}{\color{blue}{{d}^{2} \cdot \ell}}} \]
            5. lift-*.f64N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left(M \cdot \left(h \cdot M\right)\right) \cdot \left(D \cdot D\right)}{\color{blue}{{d}^{2}} \cdot \ell}} \]
            6. lift-*.f64N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left(M \cdot \left(h \cdot M\right)\right) \cdot \left(D \cdot D\right)}{{d}^{\color{blue}{2}} \cdot \ell}} \]
            7. pow2N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left(M \cdot \left(h \cdot M\right)\right) \cdot {D}^{2}}{{d}^{\color{blue}{2}} \cdot \ell}} \]
            8. *-commutativeN/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{D}^{2} \cdot \left(M \cdot \left(h \cdot M\right)\right)}{\color{blue}{{d}^{2}} \cdot \ell}} \]
            9. lift-*.f64N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{D}^{2} \cdot \left(M \cdot \left(h \cdot M\right)\right)}{{d}^{\color{blue}{2}} \cdot \ell}} \]
            10. lift-*.f64N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{D}^{2} \cdot \left(M \cdot \left(h \cdot M\right)\right)}{{d}^{2} \cdot \ell}} \]
            11. *-commutativeN/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{D}^{2} \cdot \left(M \cdot \left(M \cdot h\right)\right)}{{d}^{2} \cdot \ell}} \]
            12. associate-*l*N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{D}^{2} \cdot \left(\left(M \cdot M\right) \cdot h\right)}{{d}^{\color{blue}{2}} \cdot \ell}} \]
            13. pow2N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{D}^{2} \cdot \left({M}^{2} \cdot h\right)}{{d}^{2} \cdot \ell}} \]
            14. associate-/l*N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left({D}^{2} \cdot \color{blue}{\frac{{M}^{2} \cdot h}{{d}^{2} \cdot \ell}}\right)} \]
            15. lower-*.f64N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left({D}^{2} \cdot \color{blue}{\frac{{M}^{2} \cdot h}{{d}^{2} \cdot \ell}}\right)} \]
            16. pow2N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left(\left(D \cdot D\right) \cdot \frac{\color{blue}{{M}^{2} \cdot h}}{{d}^{2} \cdot \ell}\right)} \]
            17. lift-*.f64N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left(\left(D \cdot D\right) \cdot \frac{\color{blue}{{M}^{2} \cdot h}}{{d}^{2} \cdot \ell}\right)} \]
            18. times-fracN/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left(\left(D \cdot D\right) \cdot \left(\frac{{M}^{2}}{{d}^{2}} \cdot \color{blue}{\frac{h}{\ell}}\right)\right)} \]
            19. pow2N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left(\left(D \cdot D\right) \cdot \left(\frac{M \cdot M}{{d}^{2}} \cdot \frac{h}{\ell}\right)\right)} \]
            20. pow2N/A

              \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left(\left(D \cdot D\right) \cdot \left(\frac{M \cdot M}{d \cdot d} \cdot \frac{h}{\ell}\right)\right)} \]
          11. Applied rewrites50.3%

            \[\leadsto w0 \cdot \sqrt{-0.25 \cdot \left(\left(D \cdot D\right) \cdot \color{blue}{\left(\left(\frac{M}{d} \cdot \frac{M}{d}\right) \cdot \frac{h}{\ell}\right)}\right)} \]

          if -5e19 < (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l))

          1. Initial program 87.4%

            \[w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \]
          2. Add Preprocessing
          3. Taylor expanded in M around 0

            \[\leadsto \color{blue}{w0} \]
          4. Step-by-step derivation
            1. Applied rewrites95.6%

              \[\leadsto \color{blue}{w0} \]
          5. Recombined 2 regimes into one program.
          6. Add Preprocessing

          Alternative 7: 81.1% accurate, 0.8× speedup?

          \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;{\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell} \leq -2 \cdot 10^{+25}:\\ \;\;\;\;w0 \cdot \sqrt{-0.25 \cdot \frac{\left(\left(D \cdot M\right) \cdot \left(D \cdot M\right)\right) \cdot h}{\left(d \cdot d\right) \cdot \ell}}\\ \mathbf{else}:\\ \;\;\;\;w0\\ \end{array} \end{array} \]
          (FPCore (w0 M D h l d)
           :precision binary64
           (if (<= (* (pow (/ (* M D) (* 2.0 d)) 2.0) (/ h l)) -2e+25)
             (* w0 (sqrt (* -0.25 (/ (* (* (* D M) (* D M)) h) (* (* d d) l)))))
             w0))
          double code(double w0, double M, double D, double h, double l, double d) {
          	double tmp;
          	if ((pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -2e+25) {
          		tmp = w0 * sqrt((-0.25 * ((((D * M) * (D * M)) * h) / ((d * d) * l))));
          	} else {
          		tmp = w0;
          	}
          	return tmp;
          }
          
          module fmin_fmax_functions
              implicit none
              private
              public fmax
              public fmin
          
              interface fmax
                  module procedure fmax88
                  module procedure fmax44
                  module procedure fmax84
                  module procedure fmax48
              end interface
              interface fmin
                  module procedure fmin88
                  module procedure fmin44
                  module procedure fmin84
                  module procedure fmin48
              end interface
          contains
              real(8) function fmax88(x, y) result (res)
                  real(8), intent (in) :: x
                  real(8), intent (in) :: y
                  res = merge(y, merge(x, max(x, y), y /= y), x /= x)
              end function
              real(4) function fmax44(x, y) result (res)
                  real(4), intent (in) :: x
                  real(4), intent (in) :: y
                  res = merge(y, merge(x, max(x, y), y /= y), x /= x)
              end function
              real(8) function fmax84(x, y) result(res)
                  real(8), intent (in) :: x
                  real(4), intent (in) :: y
                  res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
              end function
              real(8) function fmax48(x, y) result(res)
                  real(4), intent (in) :: x
                  real(8), intent (in) :: y
                  res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
              end function
              real(8) function fmin88(x, y) result (res)
                  real(8), intent (in) :: x
                  real(8), intent (in) :: y
                  res = merge(y, merge(x, min(x, y), y /= y), x /= x)
              end function
              real(4) function fmin44(x, y) result (res)
                  real(4), intent (in) :: x
                  real(4), intent (in) :: y
                  res = merge(y, merge(x, min(x, y), y /= y), x /= x)
              end function
              real(8) function fmin84(x, y) result(res)
                  real(8), intent (in) :: x
                  real(4), intent (in) :: y
                  res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
              end function
              real(8) function fmin48(x, y) result(res)
                  real(4), intent (in) :: x
                  real(8), intent (in) :: y
                  res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
              end function
          end module
          
          real(8) function code(w0, m, d, h, l, d_1)
          use fmin_fmax_functions
              real(8), intent (in) :: w0
              real(8), intent (in) :: m
              real(8), intent (in) :: d
              real(8), intent (in) :: h
              real(8), intent (in) :: l
              real(8), intent (in) :: d_1
              real(8) :: tmp
              if (((((m * d) / (2.0d0 * d_1)) ** 2.0d0) * (h / l)) <= (-2d+25)) then
                  tmp = w0 * sqrt(((-0.25d0) * ((((d * m) * (d * m)) * h) / ((d_1 * d_1) * l))))
              else
                  tmp = w0
              end if
              code = tmp
          end function
          
          public static double code(double w0, double M, double D, double h, double l, double d) {
          	double tmp;
          	if ((Math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -2e+25) {
          		tmp = w0 * Math.sqrt((-0.25 * ((((D * M) * (D * M)) * h) / ((d * d) * l))));
          	} else {
          		tmp = w0;
          	}
          	return tmp;
          }
          
          def code(w0, M, D, h, l, d):
          	tmp = 0
          	if (math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -2e+25:
          		tmp = w0 * math.sqrt((-0.25 * ((((D * M) * (D * M)) * h) / ((d * d) * l))))
          	else:
          		tmp = w0
          	return tmp
          
          function code(w0, M, D, h, l, d)
          	tmp = 0.0
          	if (Float64((Float64(Float64(M * D) / Float64(2.0 * d)) ^ 2.0) * Float64(h / l)) <= -2e+25)
          		tmp = Float64(w0 * sqrt(Float64(-0.25 * Float64(Float64(Float64(Float64(D * M) * Float64(D * M)) * h) / Float64(Float64(d * d) * l)))));
          	else
          		tmp = w0;
          	end
          	return tmp
          end
          
          function tmp_2 = code(w0, M, D, h, l, d)
          	tmp = 0.0;
          	if (((((M * D) / (2.0 * d)) ^ 2.0) * (h / l)) <= -2e+25)
          		tmp = w0 * sqrt((-0.25 * ((((D * M) * (D * M)) * h) / ((d * d) * l))));
          	else
          		tmp = w0;
          	end
          	tmp_2 = tmp;
          end
          
          code[w0_, M_, D_, h_, l_, d_] := If[LessEqual[N[(N[Power[N[(N[(M * D), $MachinePrecision] / N[(2.0 * d), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision], -2e+25], N[(w0 * N[Sqrt[N[(-0.25 * N[(N[(N[(N[(D * M), $MachinePrecision] * N[(D * M), $MachinePrecision]), $MachinePrecision] * h), $MachinePrecision] / N[(N[(d * d), $MachinePrecision] * l), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision], w0]
          
          \begin{array}{l}
          
          \\
          \begin{array}{l}
          \mathbf{if}\;{\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell} \leq -2 \cdot 10^{+25}:\\
          \;\;\;\;w0 \cdot \sqrt{-0.25 \cdot \frac{\left(\left(D \cdot M\right) \cdot \left(D \cdot M\right)\right) \cdot h}{\left(d \cdot d\right) \cdot \ell}}\\
          
          \mathbf{else}:\\
          \;\;\;\;w0\\
          
          
          \end{array}
          \end{array}
          
          Derivation
          1. Split input into 2 regimes
          2. if (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l)) < -2.00000000000000018e25

            1. Initial program 64.4%

              \[w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \]
            2. Add Preprocessing
            3. Taylor expanded in M around inf

              \[\leadsto w0 \cdot \sqrt{\color{blue}{\frac{-1}{4} \cdot \frac{{D}^{2} \cdot \left({M}^{2} \cdot h\right)}{{d}^{2} \cdot \ell}}} \]
            4. Step-by-step derivation
              1. lower-*.f64N/A

                \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \color{blue}{\frac{{D}^{2} \cdot \left({M}^{2} \cdot h\right)}{{d}^{2} \cdot \ell}}} \]
              2. lower-/.f64N/A

                \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{D}^{2} \cdot \left({M}^{2} \cdot h\right)}{\color{blue}{{d}^{2} \cdot \ell}}} \]
              3. associate-*r*N/A

                \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left({D}^{2} \cdot {M}^{2}\right) \cdot h}{\color{blue}{{d}^{2}} \cdot \ell}} \]
              4. lower-*.f64N/A

                \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left({D}^{2} \cdot {M}^{2}\right) \cdot h}{\color{blue}{{d}^{2}} \cdot \ell}} \]
              5. pow-prod-downN/A

                \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{{\color{blue}{d}}^{2} \cdot \ell}} \]
              6. lower-pow.f64N/A

                \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{{\color{blue}{d}}^{2} \cdot \ell}} \]
              7. lower-*.f64N/A

                \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{{d}^{2} \cdot \ell}} \]
              8. lower-*.f64N/A

                \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{{d}^{2} \cdot \color{blue}{\ell}}} \]
              9. unpow2N/A

                \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{\left(d \cdot d\right) \cdot \ell}} \]
              10. lower-*.f6445.7

                \[\leadsto w0 \cdot \sqrt{-0.25 \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{\left(d \cdot d\right) \cdot \ell}} \]
            5. Applied rewrites45.7%

              \[\leadsto w0 \cdot \sqrt{\color{blue}{-0.25 \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{\left(d \cdot d\right) \cdot \ell}}} \]
            6. Step-by-step derivation
              1. lift-*.f64N/A

                \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{\left(d \cdot d\right) \cdot \ell}} \]
              2. lift-pow.f64N/A

                \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{\left(\color{blue}{d} \cdot d\right) \cdot \ell}} \]
              3. unpow2N/A

                \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left(\left(D \cdot M\right) \cdot \left(D \cdot M\right)\right) \cdot h}{\left(\color{blue}{d} \cdot d\right) \cdot \ell}} \]
              4. lower-*.f64N/A

                \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left(\left(D \cdot M\right) \cdot \left(D \cdot M\right)\right) \cdot h}{\left(\color{blue}{d} \cdot d\right) \cdot \ell}} \]
              5. lift-*.f64N/A

                \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left(\left(D \cdot M\right) \cdot \left(D \cdot M\right)\right) \cdot h}{\left(d \cdot d\right) \cdot \ell}} \]
              6. lift-*.f6445.7

                \[\leadsto w0 \cdot \sqrt{-0.25 \cdot \frac{\left(\left(D \cdot M\right) \cdot \left(D \cdot M\right)\right) \cdot h}{\left(d \cdot d\right) \cdot \ell}} \]
            7. Applied rewrites45.7%

              \[\leadsto w0 \cdot \sqrt{-0.25 \cdot \frac{\left(\left(D \cdot M\right) \cdot \left(D \cdot M\right)\right) \cdot h}{\left(\color{blue}{d} \cdot d\right) \cdot \ell}} \]

            if -2.00000000000000018e25 < (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l))

            1. Initial program 87.5%

              \[w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \]
            2. Add Preprocessing
            3. Taylor expanded in M around 0

              \[\leadsto \color{blue}{w0} \]
            4. Step-by-step derivation
              1. Applied rewrites94.7%

                \[\leadsto \color{blue}{w0} \]
            5. Recombined 2 regimes into one program.
            6. Add Preprocessing

            Alternative 8: 78.9% accurate, 0.8× speedup?

            \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;{\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell} \leq -2 \cdot 10^{+25}:\\ \;\;\;\;w0 \cdot \sqrt{-0.25 \cdot \left(\left(\left(h \cdot M\right) \cdot M\right) \cdot \frac{D \cdot D}{\left(d \cdot d\right) \cdot \ell}\right)}\\ \mathbf{else}:\\ \;\;\;\;w0\\ \end{array} \end{array} \]
            (FPCore (w0 M D h l d)
             :precision binary64
             (if (<= (* (pow (/ (* M D) (* 2.0 d)) 2.0) (/ h l)) -2e+25)
               (* w0 (sqrt (* -0.25 (* (* (* h M) M) (/ (* D D) (* (* d d) l))))))
               w0))
            double code(double w0, double M, double D, double h, double l, double d) {
            	double tmp;
            	if ((pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -2e+25) {
            		tmp = w0 * sqrt((-0.25 * (((h * M) * M) * ((D * D) / ((d * d) * l)))));
            	} else {
            		tmp = w0;
            	}
            	return tmp;
            }
            
            module fmin_fmax_functions
                implicit none
                private
                public fmax
                public fmin
            
                interface fmax
                    module procedure fmax88
                    module procedure fmax44
                    module procedure fmax84
                    module procedure fmax48
                end interface
                interface fmin
                    module procedure fmin88
                    module procedure fmin44
                    module procedure fmin84
                    module procedure fmin48
                end interface
            contains
                real(8) function fmax88(x, y) result (res)
                    real(8), intent (in) :: x
                    real(8), intent (in) :: y
                    res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                end function
                real(4) function fmax44(x, y) result (res)
                    real(4), intent (in) :: x
                    real(4), intent (in) :: y
                    res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                end function
                real(8) function fmax84(x, y) result(res)
                    real(8), intent (in) :: x
                    real(4), intent (in) :: y
                    res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                end function
                real(8) function fmax48(x, y) result(res)
                    real(4), intent (in) :: x
                    real(8), intent (in) :: y
                    res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                end function
                real(8) function fmin88(x, y) result (res)
                    real(8), intent (in) :: x
                    real(8), intent (in) :: y
                    res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                end function
                real(4) function fmin44(x, y) result (res)
                    real(4), intent (in) :: x
                    real(4), intent (in) :: y
                    res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                end function
                real(8) function fmin84(x, y) result(res)
                    real(8), intent (in) :: x
                    real(4), intent (in) :: y
                    res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                end function
                real(8) function fmin48(x, y) result(res)
                    real(4), intent (in) :: x
                    real(8), intent (in) :: y
                    res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                end function
            end module
            
            real(8) function code(w0, m, d, h, l, d_1)
            use fmin_fmax_functions
                real(8), intent (in) :: w0
                real(8), intent (in) :: m
                real(8), intent (in) :: d
                real(8), intent (in) :: h
                real(8), intent (in) :: l
                real(8), intent (in) :: d_1
                real(8) :: tmp
                if (((((m * d) / (2.0d0 * d_1)) ** 2.0d0) * (h / l)) <= (-2d+25)) then
                    tmp = w0 * sqrt(((-0.25d0) * (((h * m) * m) * ((d * d) / ((d_1 * d_1) * l)))))
                else
                    tmp = w0
                end if
                code = tmp
            end function
            
            public static double code(double w0, double M, double D, double h, double l, double d) {
            	double tmp;
            	if ((Math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -2e+25) {
            		tmp = w0 * Math.sqrt((-0.25 * (((h * M) * M) * ((D * D) / ((d * d) * l)))));
            	} else {
            		tmp = w0;
            	}
            	return tmp;
            }
            
            def code(w0, M, D, h, l, d):
            	tmp = 0
            	if (math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -2e+25:
            		tmp = w0 * math.sqrt((-0.25 * (((h * M) * M) * ((D * D) / ((d * d) * l)))))
            	else:
            		tmp = w0
            	return tmp
            
            function code(w0, M, D, h, l, d)
            	tmp = 0.0
            	if (Float64((Float64(Float64(M * D) / Float64(2.0 * d)) ^ 2.0) * Float64(h / l)) <= -2e+25)
            		tmp = Float64(w0 * sqrt(Float64(-0.25 * Float64(Float64(Float64(h * M) * M) * Float64(Float64(D * D) / Float64(Float64(d * d) * l))))));
            	else
            		tmp = w0;
            	end
            	return tmp
            end
            
            function tmp_2 = code(w0, M, D, h, l, d)
            	tmp = 0.0;
            	if (((((M * D) / (2.0 * d)) ^ 2.0) * (h / l)) <= -2e+25)
            		tmp = w0 * sqrt((-0.25 * (((h * M) * M) * ((D * D) / ((d * d) * l)))));
            	else
            		tmp = w0;
            	end
            	tmp_2 = tmp;
            end
            
            code[w0_, M_, D_, h_, l_, d_] := If[LessEqual[N[(N[Power[N[(N[(M * D), $MachinePrecision] / N[(2.0 * d), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision], -2e+25], N[(w0 * N[Sqrt[N[(-0.25 * N[(N[(N[(h * M), $MachinePrecision] * M), $MachinePrecision] * N[(N[(D * D), $MachinePrecision] / N[(N[(d * d), $MachinePrecision] * l), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision], w0]
            
            \begin{array}{l}
            
            \\
            \begin{array}{l}
            \mathbf{if}\;{\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell} \leq -2 \cdot 10^{+25}:\\
            \;\;\;\;w0 \cdot \sqrt{-0.25 \cdot \left(\left(\left(h \cdot M\right) \cdot M\right) \cdot \frac{D \cdot D}{\left(d \cdot d\right) \cdot \ell}\right)}\\
            
            \mathbf{else}:\\
            \;\;\;\;w0\\
            
            
            \end{array}
            \end{array}
            
            Derivation
            1. Split input into 2 regimes
            2. if (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l)) < -2.00000000000000018e25

              1. Initial program 64.4%

                \[w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \]
              2. Add Preprocessing
              3. Taylor expanded in M around inf

                \[\leadsto w0 \cdot \sqrt{\color{blue}{\frac{-1}{4} \cdot \frac{{D}^{2} \cdot \left({M}^{2} \cdot h\right)}{{d}^{2} \cdot \ell}}} \]
              4. Step-by-step derivation
                1. lower-*.f64N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \color{blue}{\frac{{D}^{2} \cdot \left({M}^{2} \cdot h\right)}{{d}^{2} \cdot \ell}}} \]
                2. lower-/.f64N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{D}^{2} \cdot \left({M}^{2} \cdot h\right)}{\color{blue}{{d}^{2} \cdot \ell}}} \]
                3. associate-*r*N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left({D}^{2} \cdot {M}^{2}\right) \cdot h}{\color{blue}{{d}^{2}} \cdot \ell}} \]
                4. lower-*.f64N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left({D}^{2} \cdot {M}^{2}\right) \cdot h}{\color{blue}{{d}^{2}} \cdot \ell}} \]
                5. pow-prod-downN/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{{\color{blue}{d}}^{2} \cdot \ell}} \]
                6. lower-pow.f64N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{{\color{blue}{d}}^{2} \cdot \ell}} \]
                7. lower-*.f64N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{{d}^{2} \cdot \ell}} \]
                8. lower-*.f64N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{{d}^{2} \cdot \color{blue}{\ell}}} \]
                9. unpow2N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{\left(d \cdot d\right) \cdot \ell}} \]
                10. lower-*.f6445.7

                  \[\leadsto w0 \cdot \sqrt{-0.25 \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{\left(d \cdot d\right) \cdot \ell}} \]
              5. Applied rewrites45.7%

                \[\leadsto w0 \cdot \sqrt{\color{blue}{-0.25 \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{\left(d \cdot d\right) \cdot \ell}}} \]
              6. Step-by-step derivation
                1. lift-*.f64N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{\color{blue}{\left(d \cdot d\right)} \cdot \ell}} \]
                2. lift-*.f64N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{\left(d \cdot d\right) \cdot \ell}} \]
                3. lift-pow.f64N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{\left(\color{blue}{d} \cdot d\right) \cdot \ell}} \]
                4. unpow-prod-downN/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left({D}^{2} \cdot {M}^{2}\right) \cdot h}{\left(\color{blue}{d} \cdot d\right) \cdot \ell}} \]
                5. associate-*r*N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{D}^{2} \cdot \left({M}^{2} \cdot h\right)}{\color{blue}{\left(d \cdot d\right)} \cdot \ell}} \]
                6. *-commutativeN/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left({M}^{2} \cdot h\right) \cdot {D}^{2}}{\color{blue}{\left(d \cdot d\right)} \cdot \ell}} \]
                7. lower-*.f64N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left({M}^{2} \cdot h\right) \cdot {D}^{2}}{\color{blue}{\left(d \cdot d\right)} \cdot \ell}} \]
                8. lower-*.f64N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left({M}^{2} \cdot h\right) \cdot {D}^{2}}{\left(\color{blue}{d} \cdot d\right) \cdot \ell}} \]
                9. unpow2N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot {D}^{2}}{\left(d \cdot d\right) \cdot \ell}} \]
                10. lower-*.f64N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot {D}^{2}}{\left(d \cdot d\right) \cdot \ell}} \]
                11. unpow2N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot \left(D \cdot D\right)}{\left(d \cdot \color{blue}{d}\right) \cdot \ell}} \]
                12. lower-*.f6436.0

                  \[\leadsto w0 \cdot \sqrt{-0.25 \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot \left(D \cdot D\right)}{\left(d \cdot \color{blue}{d}\right) \cdot \ell}} \]
              7. Applied rewrites36.0%

                \[\leadsto w0 \cdot \sqrt{-0.25 \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot \left(D \cdot D\right)}{\color{blue}{\left(d \cdot d\right)} \cdot \ell}} \]
              8. Step-by-step derivation
                1. lift-*.f64N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot \left(D \cdot D\right)}{\left(\color{blue}{d} \cdot d\right) \cdot \ell}} \]
                2. lift-*.f64N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot \left(D \cdot D\right)}{\left(d \cdot d\right) \cdot \ell}} \]
                3. associate-*l*N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left(M \cdot \left(M \cdot h\right)\right) \cdot \left(D \cdot D\right)}{\left(\color{blue}{d} \cdot d\right) \cdot \ell}} \]
                4. lower-*.f64N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left(M \cdot \left(M \cdot h\right)\right) \cdot \left(D \cdot D\right)}{\left(\color{blue}{d} \cdot d\right) \cdot \ell}} \]
                5. *-commutativeN/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left(M \cdot \left(h \cdot M\right)\right) \cdot \left(D \cdot D\right)}{\left(d \cdot d\right) \cdot \ell}} \]
                6. lower-*.f6437.7

                  \[\leadsto w0 \cdot \sqrt{-0.25 \cdot \frac{\left(M \cdot \left(h \cdot M\right)\right) \cdot \left(D \cdot D\right)}{\left(d \cdot d\right) \cdot \ell}} \]
              9. Applied rewrites37.7%

                \[\leadsto w0 \cdot \sqrt{-0.25 \cdot \frac{\left(M \cdot \left(h \cdot M\right)\right) \cdot \left(D \cdot D\right)}{\left(\color{blue}{d} \cdot d\right) \cdot \ell}} \]
              10. Step-by-step derivation
                1. lift-/.f64N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left(M \cdot \left(h \cdot M\right)\right) \cdot \left(D \cdot D\right)}{\color{blue}{\left(d \cdot d\right) \cdot \ell}}} \]
                2. lift-*.f64N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left(M \cdot \left(h \cdot M\right)\right) \cdot \left(D \cdot D\right)}{\color{blue}{\left(d \cdot d\right)} \cdot \ell}} \]
                3. lift-*.f64N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left(M \cdot \left(h \cdot M\right)\right) \cdot \left(D \cdot D\right)}{\left(d \cdot \color{blue}{d}\right) \cdot \ell}} \]
                4. pow2N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left(M \cdot \left(h \cdot M\right)\right) \cdot {D}^{2}}{\left(d \cdot \color{blue}{d}\right) \cdot \ell}} \]
                5. associate-/l*N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left(\left(M \cdot \left(h \cdot M\right)\right) \cdot \color{blue}{\frac{{D}^{2}}{\left(d \cdot d\right) \cdot \ell}}\right)} \]
                6. lift-*.f64N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left(\left(M \cdot \left(h \cdot M\right)\right) \cdot \frac{\color{blue}{{D}^{2}}}{\left(d \cdot d\right) \cdot \ell}\right)} \]
                7. lift-*.f64N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left(\left(M \cdot \left(h \cdot M\right)\right) \cdot \frac{{D}^{\color{blue}{2}}}{\left(d \cdot d\right) \cdot \ell}\right)} \]
                8. *-commutativeN/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left(\left(M \cdot \left(M \cdot h\right)\right) \cdot \frac{{D}^{\color{blue}{2}}}{\left(d \cdot d\right) \cdot \ell}\right)} \]
                9. associate-*l*N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{\color{blue}{{D}^{2}}}{\left(d \cdot d\right) \cdot \ell}\right)} \]
                10. lift-*.f64N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{\color{blue}{{D}^{2}}}{\left(d \cdot d\right) \cdot \ell}\right)} \]
                11. lift-*.f64N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{{\color{blue}{D}}^{2}}{\left(d \cdot d\right) \cdot \ell}\right)} \]
                12. lower-*.f64N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \color{blue}{\frac{{D}^{2}}{\left(d \cdot d\right) \cdot \ell}}\right)} \]
                13. lift-*.f64N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{{\color{blue}{D}}^{2}}{\left(d \cdot d\right) \cdot \ell}\right)} \]
                14. lift-*.f64N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{\color{blue}{{D}^{2}}}{\left(d \cdot d\right) \cdot \ell}\right)} \]
                15. associate-*l*N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left(\left(M \cdot \left(M \cdot h\right)\right) \cdot \frac{\color{blue}{{D}^{2}}}{\left(d \cdot d\right) \cdot \ell}\right)} \]
                16. *-commutativeN/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left(\left(M \cdot \left(h \cdot M\right)\right) \cdot \frac{{D}^{\color{blue}{2}}}{\left(d \cdot d\right) \cdot \ell}\right)} \]
                17. lift-*.f64N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left(\left(M \cdot \left(h \cdot M\right)\right) \cdot \frac{{D}^{\color{blue}{2}}}{\left(d \cdot d\right) \cdot \ell}\right)} \]
                18. *-commutativeN/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left(\left(\left(h \cdot M\right) \cdot M\right) \cdot \frac{\color{blue}{{D}^{2}}}{\left(d \cdot d\right) \cdot \ell}\right)} \]
                19. lower-*.f64N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left(\left(\left(h \cdot M\right) \cdot M\right) \cdot \frac{\color{blue}{{D}^{2}}}{\left(d \cdot d\right) \cdot \ell}\right)} \]
                20. lift-*.f64N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left(\left(\left(h \cdot M\right) \cdot M\right) \cdot \frac{{D}^{2}}{\left(d \cdot d\right) \cdot \color{blue}{\ell}}\right)} \]
                21. lift-*.f64N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left(\left(\left(h \cdot M\right) \cdot M\right) \cdot \frac{{D}^{2}}{\left(d \cdot d\right) \cdot \ell}\right)} \]
                22. pow2N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left(\left(\left(h \cdot M\right) \cdot M\right) \cdot \frac{{D}^{2}}{{d}^{2} \cdot \ell}\right)} \]
                23. lower-/.f64N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left(\left(\left(h \cdot M\right) \cdot M\right) \cdot \frac{{D}^{2}}{\color{blue}{{d}^{2} \cdot \ell}}\right)} \]
                24. pow2N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left(\left(\left(h \cdot M\right) \cdot M\right) \cdot \frac{D \cdot D}{\color{blue}{{d}^{2}} \cdot \ell}\right)} \]
                25. lift-*.f64N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left(\left(\left(h \cdot M\right) \cdot M\right) \cdot \frac{D \cdot D}{\color{blue}{{d}^{2}} \cdot \ell}\right)} \]
                26. pow2N/A

                  \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left(\left(\left(h \cdot M\right) \cdot M\right) \cdot \frac{D \cdot D}{\left(d \cdot d\right) \cdot \ell}\right)} \]
              11. Applied rewrites40.8%

                \[\leadsto w0 \cdot \sqrt{-0.25 \cdot \left(\left(\left(h \cdot M\right) \cdot M\right) \cdot \color{blue}{\frac{D \cdot D}{\left(d \cdot d\right) \cdot \ell}}\right)} \]

              if -2.00000000000000018e25 < (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l))

              1. Initial program 87.5%

                \[w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \]
              2. Add Preprocessing
              3. Taylor expanded in M around 0

                \[\leadsto \color{blue}{w0} \]
              4. Step-by-step derivation
                1. Applied rewrites94.7%

                  \[\leadsto \color{blue}{w0} \]
              5. Recombined 2 regimes into one program.
              6. Add Preprocessing

              Alternative 9: 78.7% accurate, 0.8× speedup?

              \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;{\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell} \leq -2 \cdot 10^{+25}:\\ \;\;\;\;w0 \cdot \sqrt{-0.25 \cdot \left(\left(D \cdot D\right) \cdot \left(\left(M \cdot M\right) \cdot \frac{h}{\left(d \cdot d\right) \cdot \ell}\right)\right)}\\ \mathbf{else}:\\ \;\;\;\;w0\\ \end{array} \end{array} \]
              (FPCore (w0 M D h l d)
               :precision binary64
               (if (<= (* (pow (/ (* M D) (* 2.0 d)) 2.0) (/ h l)) -2e+25)
                 (* w0 (sqrt (* -0.25 (* (* D D) (* (* M M) (/ h (* (* d d) l)))))))
                 w0))
              double code(double w0, double M, double D, double h, double l, double d) {
              	double tmp;
              	if ((pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -2e+25) {
              		tmp = w0 * sqrt((-0.25 * ((D * D) * ((M * M) * (h / ((d * d) * l))))));
              	} else {
              		tmp = w0;
              	}
              	return tmp;
              }
              
              module fmin_fmax_functions
                  implicit none
                  private
                  public fmax
                  public fmin
              
                  interface fmax
                      module procedure fmax88
                      module procedure fmax44
                      module procedure fmax84
                      module procedure fmax48
                  end interface
                  interface fmin
                      module procedure fmin88
                      module procedure fmin44
                      module procedure fmin84
                      module procedure fmin48
                  end interface
              contains
                  real(8) function fmax88(x, y) result (res)
                      real(8), intent (in) :: x
                      real(8), intent (in) :: y
                      res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                  end function
                  real(4) function fmax44(x, y) result (res)
                      real(4), intent (in) :: x
                      real(4), intent (in) :: y
                      res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                  end function
                  real(8) function fmax84(x, y) result(res)
                      real(8), intent (in) :: x
                      real(4), intent (in) :: y
                      res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                  end function
                  real(8) function fmax48(x, y) result(res)
                      real(4), intent (in) :: x
                      real(8), intent (in) :: y
                      res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                  end function
                  real(8) function fmin88(x, y) result (res)
                      real(8), intent (in) :: x
                      real(8), intent (in) :: y
                      res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                  end function
                  real(4) function fmin44(x, y) result (res)
                      real(4), intent (in) :: x
                      real(4), intent (in) :: y
                      res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                  end function
                  real(8) function fmin84(x, y) result(res)
                      real(8), intent (in) :: x
                      real(4), intent (in) :: y
                      res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                  end function
                  real(8) function fmin48(x, y) result(res)
                      real(4), intent (in) :: x
                      real(8), intent (in) :: y
                      res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                  end function
              end module
              
              real(8) function code(w0, m, d, h, l, d_1)
              use fmin_fmax_functions
                  real(8), intent (in) :: w0
                  real(8), intent (in) :: m
                  real(8), intent (in) :: d
                  real(8), intent (in) :: h
                  real(8), intent (in) :: l
                  real(8), intent (in) :: d_1
                  real(8) :: tmp
                  if (((((m * d) / (2.0d0 * d_1)) ** 2.0d0) * (h / l)) <= (-2d+25)) then
                      tmp = w0 * sqrt(((-0.25d0) * ((d * d) * ((m * m) * (h / ((d_1 * d_1) * l))))))
                  else
                      tmp = w0
                  end if
                  code = tmp
              end function
              
              public static double code(double w0, double M, double D, double h, double l, double d) {
              	double tmp;
              	if ((Math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -2e+25) {
              		tmp = w0 * Math.sqrt((-0.25 * ((D * D) * ((M * M) * (h / ((d * d) * l))))));
              	} else {
              		tmp = w0;
              	}
              	return tmp;
              }
              
              def code(w0, M, D, h, l, d):
              	tmp = 0
              	if (math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -2e+25:
              		tmp = w0 * math.sqrt((-0.25 * ((D * D) * ((M * M) * (h / ((d * d) * l))))))
              	else:
              		tmp = w0
              	return tmp
              
              function code(w0, M, D, h, l, d)
              	tmp = 0.0
              	if (Float64((Float64(Float64(M * D) / Float64(2.0 * d)) ^ 2.0) * Float64(h / l)) <= -2e+25)
              		tmp = Float64(w0 * sqrt(Float64(-0.25 * Float64(Float64(D * D) * Float64(Float64(M * M) * Float64(h / Float64(Float64(d * d) * l)))))));
              	else
              		tmp = w0;
              	end
              	return tmp
              end
              
              function tmp_2 = code(w0, M, D, h, l, d)
              	tmp = 0.0;
              	if (((((M * D) / (2.0 * d)) ^ 2.0) * (h / l)) <= -2e+25)
              		tmp = w0 * sqrt((-0.25 * ((D * D) * ((M * M) * (h / ((d * d) * l))))));
              	else
              		tmp = w0;
              	end
              	tmp_2 = tmp;
              end
              
              code[w0_, M_, D_, h_, l_, d_] := If[LessEqual[N[(N[Power[N[(N[(M * D), $MachinePrecision] / N[(2.0 * d), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision], -2e+25], N[(w0 * N[Sqrt[N[(-0.25 * N[(N[(D * D), $MachinePrecision] * N[(N[(M * M), $MachinePrecision] * N[(h / N[(N[(d * d), $MachinePrecision] * l), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision], w0]
              
              \begin{array}{l}
              
              \\
              \begin{array}{l}
              \mathbf{if}\;{\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell} \leq -2 \cdot 10^{+25}:\\
              \;\;\;\;w0 \cdot \sqrt{-0.25 \cdot \left(\left(D \cdot D\right) \cdot \left(\left(M \cdot M\right) \cdot \frac{h}{\left(d \cdot d\right) \cdot \ell}\right)\right)}\\
              
              \mathbf{else}:\\
              \;\;\;\;w0\\
              
              
              \end{array}
              \end{array}
              
              Derivation
              1. Split input into 2 regimes
              2. if (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l)) < -2.00000000000000018e25

                1. Initial program 64.4%

                  \[w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \]
                2. Add Preprocessing
                3. Taylor expanded in M around inf

                  \[\leadsto w0 \cdot \sqrt{\color{blue}{\frac{-1}{4} \cdot \frac{{D}^{2} \cdot \left({M}^{2} \cdot h\right)}{{d}^{2} \cdot \ell}}} \]
                4. Step-by-step derivation
                  1. lower-*.f64N/A

                    \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \color{blue}{\frac{{D}^{2} \cdot \left({M}^{2} \cdot h\right)}{{d}^{2} \cdot \ell}}} \]
                  2. lower-/.f64N/A

                    \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{D}^{2} \cdot \left({M}^{2} \cdot h\right)}{\color{blue}{{d}^{2} \cdot \ell}}} \]
                  3. associate-*r*N/A

                    \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left({D}^{2} \cdot {M}^{2}\right) \cdot h}{\color{blue}{{d}^{2}} \cdot \ell}} \]
                  4. lower-*.f64N/A

                    \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left({D}^{2} \cdot {M}^{2}\right) \cdot h}{\color{blue}{{d}^{2}} \cdot \ell}} \]
                  5. pow-prod-downN/A

                    \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{{\color{blue}{d}}^{2} \cdot \ell}} \]
                  6. lower-pow.f64N/A

                    \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{{\color{blue}{d}}^{2} \cdot \ell}} \]
                  7. lower-*.f64N/A

                    \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{{d}^{2} \cdot \ell}} \]
                  8. lower-*.f64N/A

                    \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{{d}^{2} \cdot \color{blue}{\ell}}} \]
                  9. unpow2N/A

                    \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{\left(d \cdot d\right) \cdot \ell}} \]
                  10. lower-*.f6445.7

                    \[\leadsto w0 \cdot \sqrt{-0.25 \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{\left(d \cdot d\right) \cdot \ell}} \]
                5. Applied rewrites45.7%

                  \[\leadsto w0 \cdot \sqrt{\color{blue}{-0.25 \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{\left(d \cdot d\right) \cdot \ell}}} \]
                6. Step-by-step derivation
                  1. lift-/.f64N/A

                    \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{\color{blue}{\left(d \cdot d\right) \cdot \ell}}} \]
                  2. lift-*.f64N/A

                    \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{\color{blue}{\left(d \cdot d\right)} \cdot \ell}} \]
                  3. lift-*.f64N/A

                    \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{\left(d \cdot d\right) \cdot \ell}} \]
                  4. lift-*.f64N/A

                    \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{\left(d \cdot d\right) \cdot \color{blue}{\ell}}} \]
                  5. pow2N/A

                    \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{{d}^{2} \cdot \ell}} \]
                  6. lift-*.f64N/A

                    \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{{d}^{2} \cdot \ell}} \]
                  7. lift-pow.f64N/A

                    \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{\left(D \cdot M\right)}^{2} \cdot h}{{\color{blue}{d}}^{2} \cdot \ell}} \]
                  8. unpow-prod-downN/A

                    \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{\left({D}^{2} \cdot {M}^{2}\right) \cdot h}{{\color{blue}{d}}^{2} \cdot \ell}} \]
                  9. associate-*r*N/A

                    \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \frac{{D}^{2} \cdot \left({M}^{2} \cdot h\right)}{\color{blue}{{d}^{2}} \cdot \ell}} \]
                  10. associate-/l*N/A

                    \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left({D}^{2} \cdot \color{blue}{\frac{{M}^{2} \cdot h}{{d}^{2} \cdot \ell}}\right)} \]
                  11. lower-*.f64N/A

                    \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left({D}^{2} \cdot \color{blue}{\frac{{M}^{2} \cdot h}{{d}^{2} \cdot \ell}}\right)} \]
                  12. unpow2N/A

                    \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left(\left(D \cdot D\right) \cdot \frac{\color{blue}{{M}^{2} \cdot h}}{{d}^{2} \cdot \ell}\right)} \]
                  13. lower-*.f64N/A

                    \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left(\left(D \cdot D\right) \cdot \frac{\color{blue}{{M}^{2} \cdot h}}{{d}^{2} \cdot \ell}\right)} \]
                  14. associate-/l*N/A

                    \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left(\left(D \cdot D\right) \cdot \left({M}^{2} \cdot \color{blue}{\frac{h}{{d}^{2} \cdot \ell}}\right)\right)} \]
                  15. lower-*.f64N/A

                    \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left(\left(D \cdot D\right) \cdot \left({M}^{2} \cdot \color{blue}{\frac{h}{{d}^{2} \cdot \ell}}\right)\right)} \]
                  16. unpow2N/A

                    \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left(\left(D \cdot D\right) \cdot \left(\left(M \cdot M\right) \cdot \frac{\color{blue}{h}}{{d}^{2} \cdot \ell}\right)\right)} \]
                  17. lower-*.f64N/A

                    \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left(\left(D \cdot D\right) \cdot \left(\left(M \cdot M\right) \cdot \frac{\color{blue}{h}}{{d}^{2} \cdot \ell}\right)\right)} \]
                  18. lower-/.f64N/A

                    \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left(\left(D \cdot D\right) \cdot \left(\left(M \cdot M\right) \cdot \frac{h}{\color{blue}{{d}^{2} \cdot \ell}}\right)\right)} \]
                  19. pow2N/A

                    \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left(\left(D \cdot D\right) \cdot \left(\left(M \cdot M\right) \cdot \frac{h}{\left(d \cdot d\right) \cdot \ell}\right)\right)} \]
                  20. lift-*.f64N/A

                    \[\leadsto w0 \cdot \sqrt{\frac{-1}{4} \cdot \left(\left(D \cdot D\right) \cdot \left(\left(M \cdot M\right) \cdot \frac{h}{\left(d \cdot d\right) \cdot \color{blue}{\ell}}\right)\right)} \]
                  21. lift-*.f6440.7

                    \[\leadsto w0 \cdot \sqrt{-0.25 \cdot \left(\left(D \cdot D\right) \cdot \left(\left(M \cdot M\right) \cdot \frac{h}{\left(d \cdot d\right) \cdot \ell}\right)\right)} \]
                7. Applied rewrites40.7%

                  \[\leadsto w0 \cdot \sqrt{-0.25 \cdot \left(\left(D \cdot D\right) \cdot \color{blue}{\left(\left(M \cdot M\right) \cdot \frac{h}{\left(d \cdot d\right) \cdot \ell}\right)}\right)} \]

                if -2.00000000000000018e25 < (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l))

                1. Initial program 87.5%

                  \[w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \]
                2. Add Preprocessing
                3. Taylor expanded in M around 0

                  \[\leadsto \color{blue}{w0} \]
                4. Step-by-step derivation
                  1. Applied rewrites94.7%

                    \[\leadsto \color{blue}{w0} \]
                5. Recombined 2 regimes into one program.
                6. Add Preprocessing

                Alternative 10: 78.9% accurate, 0.8× speedup?

                \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;{\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell} \leq -1 \cdot 10^{+272}:\\ \;\;\;\;\mathsf{fma}\left(\frac{\left(\left(M \cdot D\right) \cdot \left(M \cdot D\right)\right) \cdot \left(h \cdot w0\right)}{d \cdot \left(d \cdot \ell\right)}, -0.125, w0\right)\\ \mathbf{else}:\\ \;\;\;\;w0\\ \end{array} \end{array} \]
                (FPCore (w0 M D h l d)
                 :precision binary64
                 (if (<= (* (pow (/ (* M D) (* 2.0 d)) 2.0) (/ h l)) -1e+272)
                   (fma (/ (* (* (* M D) (* M D)) (* h w0)) (* d (* d l))) -0.125 w0)
                   w0))
                double code(double w0, double M, double D, double h, double l, double d) {
                	double tmp;
                	if ((pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -1e+272) {
                		tmp = fma(((((M * D) * (M * D)) * (h * w0)) / (d * (d * l))), -0.125, w0);
                	} else {
                		tmp = w0;
                	}
                	return tmp;
                }
                
                function code(w0, M, D, h, l, d)
                	tmp = 0.0
                	if (Float64((Float64(Float64(M * D) / Float64(2.0 * d)) ^ 2.0) * Float64(h / l)) <= -1e+272)
                		tmp = fma(Float64(Float64(Float64(Float64(M * D) * Float64(M * D)) * Float64(h * w0)) / Float64(d * Float64(d * l))), -0.125, w0);
                	else
                		tmp = w0;
                	end
                	return tmp
                end
                
                code[w0_, M_, D_, h_, l_, d_] := If[LessEqual[N[(N[Power[N[(N[(M * D), $MachinePrecision] / N[(2.0 * d), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision], -1e+272], N[(N[(N[(N[(N[(M * D), $MachinePrecision] * N[(M * D), $MachinePrecision]), $MachinePrecision] * N[(h * w0), $MachinePrecision]), $MachinePrecision] / N[(d * N[(d * l), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] * -0.125 + w0), $MachinePrecision], w0]
                
                \begin{array}{l}
                
                \\
                \begin{array}{l}
                \mathbf{if}\;{\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell} \leq -1 \cdot 10^{+272}:\\
                \;\;\;\;\mathsf{fma}\left(\frac{\left(\left(M \cdot D\right) \cdot \left(M \cdot D\right)\right) \cdot \left(h \cdot w0\right)}{d \cdot \left(d \cdot \ell\right)}, -0.125, w0\right)\\
                
                \mathbf{else}:\\
                \;\;\;\;w0\\
                
                
                \end{array}
                \end{array}
                
                Derivation
                1. Split input into 2 regimes
                2. if (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l)) < -1.0000000000000001e272

                  1. Initial program 54.5%

                    \[w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \]
                  2. Add Preprocessing
                  3. Taylor expanded in M around 0

                    \[\leadsto \color{blue}{w0 + \frac{-1}{8} \cdot \frac{{D}^{2} \cdot \left({M}^{2} \cdot \left(h \cdot w0\right)\right)}{{d}^{2} \cdot \ell}} \]
                  4. Step-by-step derivation
                    1. +-commutativeN/A

                      \[\leadsto \frac{-1}{8} \cdot \frac{{D}^{2} \cdot \left({M}^{2} \cdot \left(h \cdot w0\right)\right)}{{d}^{2} \cdot \ell} + \color{blue}{w0} \]
                    2. *-commutativeN/A

                      \[\leadsto \frac{{D}^{2} \cdot \left({M}^{2} \cdot \left(h \cdot w0\right)\right)}{{d}^{2} \cdot \ell} \cdot \frac{-1}{8} + w0 \]
                    3. lower-fma.f64N/A

                      \[\leadsto \mathsf{fma}\left(\frac{{D}^{2} \cdot \left({M}^{2} \cdot \left(h \cdot w0\right)\right)}{{d}^{2} \cdot \ell}, \color{blue}{\frac{-1}{8}}, w0\right) \]
                    4. lower-/.f64N/A

                      \[\leadsto \mathsf{fma}\left(\frac{{D}^{2} \cdot \left({M}^{2} \cdot \left(h \cdot w0\right)\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                    5. associate-*r*N/A

                      \[\leadsto \mathsf{fma}\left(\frac{\left({D}^{2} \cdot {M}^{2}\right) \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                    6. lower-*.f64N/A

                      \[\leadsto \mathsf{fma}\left(\frac{\left({D}^{2} \cdot {M}^{2}\right) \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                    7. pow-prod-downN/A

                      \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                    8. lower-pow.f64N/A

                      \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                    9. lower-*.f64N/A

                      \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                    10. lower-*.f64N/A

                      \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                    11. lower-*.f64N/A

                      \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                    12. unpow2N/A

                      \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                    13. lower-*.f6448.1

                      \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}, -0.125, w0\right) \]
                  5. Applied rewrites48.1%

                    \[\leadsto \color{blue}{\mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}, -0.125, w0\right)} \]
                  6. Step-by-step derivation
                    1. lift-*.f64N/A

                      \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                    2. lift-*.f64N/A

                      \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                    3. associate-*l*N/A

                      \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{d \cdot \left(d \cdot \ell\right)}, \frac{-1}{8}, w0\right) \]
                    4. lower-*.f64N/A

                      \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{d \cdot \left(d \cdot \ell\right)}, \frac{-1}{8}, w0\right) \]
                    5. lower-*.f6450.2

                      \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{d \cdot \left(d \cdot \ell\right)}, -0.125, w0\right) \]
                  7. Applied rewrites50.2%

                    \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{d \cdot \left(d \cdot \ell\right)}, -0.125, w0\right) \]
                  8. Step-by-step derivation
                    1. lift-*.f64N/A

                      \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{d \cdot \left(d \cdot \ell\right)}, \frac{-1}{8}, w0\right) \]
                    2. lift-pow.f64N/A

                      \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{d \cdot \left(d \cdot \ell\right)}, \frac{-1}{8}, w0\right) \]
                    3. unpow2N/A

                      \[\leadsto \mathsf{fma}\left(\frac{\left(\left(D \cdot M\right) \cdot \left(D \cdot M\right)\right) \cdot \left(h \cdot w0\right)}{d \cdot \left(d \cdot \ell\right)}, \frac{-1}{8}, w0\right) \]
                    4. lower-*.f64N/A

                      \[\leadsto \mathsf{fma}\left(\frac{\left(\left(D \cdot M\right) \cdot \left(D \cdot M\right)\right) \cdot \left(h \cdot w0\right)}{d \cdot \left(d \cdot \ell\right)}, \frac{-1}{8}, w0\right) \]
                    5. *-commutativeN/A

                      \[\leadsto \mathsf{fma}\left(\frac{\left(\left(M \cdot D\right) \cdot \left(D \cdot M\right)\right) \cdot \left(h \cdot w0\right)}{d \cdot \left(d \cdot \ell\right)}, \frac{-1}{8}, w0\right) \]
                    6. lower-*.f64N/A

                      \[\leadsto \mathsf{fma}\left(\frac{\left(\left(M \cdot D\right) \cdot \left(D \cdot M\right)\right) \cdot \left(h \cdot w0\right)}{d \cdot \left(d \cdot \ell\right)}, \frac{-1}{8}, w0\right) \]
                    7. *-commutativeN/A

                      \[\leadsto \mathsf{fma}\left(\frac{\left(\left(M \cdot D\right) \cdot \left(M \cdot D\right)\right) \cdot \left(h \cdot w0\right)}{d \cdot \left(d \cdot \ell\right)}, \frac{-1}{8}, w0\right) \]
                    8. lower-*.f6450.2

                      \[\leadsto \mathsf{fma}\left(\frac{\left(\left(M \cdot D\right) \cdot \left(M \cdot D\right)\right) \cdot \left(h \cdot w0\right)}{d \cdot \left(d \cdot \ell\right)}, -0.125, w0\right) \]
                  9. Applied rewrites50.2%

                    \[\leadsto \mathsf{fma}\left(\frac{\left(\left(M \cdot D\right) \cdot \left(M \cdot D\right)\right) \cdot \left(h \cdot w0\right)}{d \cdot \left(d \cdot \ell\right)}, -0.125, w0\right) \]

                  if -1.0000000000000001e272 < (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l))

                  1. Initial program 88.3%

                    \[w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \]
                  2. Add Preprocessing
                  3. Taylor expanded in M around 0

                    \[\leadsto \color{blue}{w0} \]
                  4. Step-by-step derivation
                    1. Applied rewrites88.8%

                      \[\leadsto \color{blue}{w0} \]
                  5. Recombined 2 regimes into one program.
                  6. Add Preprocessing

                  Alternative 11: 78.5% accurate, 0.8× speedup?

                  \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;{\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell} \leq -1 \cdot 10^{+272}:\\ \;\;\;\;\mathsf{fma}\left(\frac{\left(\left(D \cdot M\right) \cdot \left(D \cdot M\right)\right) \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}, -0.125, w0\right)\\ \mathbf{else}:\\ \;\;\;\;w0\\ \end{array} \end{array} \]
                  (FPCore (w0 M D h l d)
                   :precision binary64
                   (if (<= (* (pow (/ (* M D) (* 2.0 d)) 2.0) (/ h l)) -1e+272)
                     (fma (/ (* (* (* D M) (* D M)) (* h w0)) (* (* d d) l)) -0.125 w0)
                     w0))
                  double code(double w0, double M, double D, double h, double l, double d) {
                  	double tmp;
                  	if ((pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -1e+272) {
                  		tmp = fma(((((D * M) * (D * M)) * (h * w0)) / ((d * d) * l)), -0.125, w0);
                  	} else {
                  		tmp = w0;
                  	}
                  	return tmp;
                  }
                  
                  function code(w0, M, D, h, l, d)
                  	tmp = 0.0
                  	if (Float64((Float64(Float64(M * D) / Float64(2.0 * d)) ^ 2.0) * Float64(h / l)) <= -1e+272)
                  		tmp = fma(Float64(Float64(Float64(Float64(D * M) * Float64(D * M)) * Float64(h * w0)) / Float64(Float64(d * d) * l)), -0.125, w0);
                  	else
                  		tmp = w0;
                  	end
                  	return tmp
                  end
                  
                  code[w0_, M_, D_, h_, l_, d_] := If[LessEqual[N[(N[Power[N[(N[(M * D), $MachinePrecision] / N[(2.0 * d), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision], -1e+272], N[(N[(N[(N[(N[(D * M), $MachinePrecision] * N[(D * M), $MachinePrecision]), $MachinePrecision] * N[(h * w0), $MachinePrecision]), $MachinePrecision] / N[(N[(d * d), $MachinePrecision] * l), $MachinePrecision]), $MachinePrecision] * -0.125 + w0), $MachinePrecision], w0]
                  
                  \begin{array}{l}
                  
                  \\
                  \begin{array}{l}
                  \mathbf{if}\;{\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell} \leq -1 \cdot 10^{+272}:\\
                  \;\;\;\;\mathsf{fma}\left(\frac{\left(\left(D \cdot M\right) \cdot \left(D \cdot M\right)\right) \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}, -0.125, w0\right)\\
                  
                  \mathbf{else}:\\
                  \;\;\;\;w0\\
                  
                  
                  \end{array}
                  \end{array}
                  
                  Derivation
                  1. Split input into 2 regimes
                  2. if (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l)) < -1.0000000000000001e272

                    1. Initial program 54.5%

                      \[w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \]
                    2. Add Preprocessing
                    3. Taylor expanded in M around 0

                      \[\leadsto \color{blue}{w0 + \frac{-1}{8} \cdot \frac{{D}^{2} \cdot \left({M}^{2} \cdot \left(h \cdot w0\right)\right)}{{d}^{2} \cdot \ell}} \]
                    4. Step-by-step derivation
                      1. +-commutativeN/A

                        \[\leadsto \frac{-1}{8} \cdot \frac{{D}^{2} \cdot \left({M}^{2} \cdot \left(h \cdot w0\right)\right)}{{d}^{2} \cdot \ell} + \color{blue}{w0} \]
                      2. *-commutativeN/A

                        \[\leadsto \frac{{D}^{2} \cdot \left({M}^{2} \cdot \left(h \cdot w0\right)\right)}{{d}^{2} \cdot \ell} \cdot \frac{-1}{8} + w0 \]
                      3. lower-fma.f64N/A

                        \[\leadsto \mathsf{fma}\left(\frac{{D}^{2} \cdot \left({M}^{2} \cdot \left(h \cdot w0\right)\right)}{{d}^{2} \cdot \ell}, \color{blue}{\frac{-1}{8}}, w0\right) \]
                      4. lower-/.f64N/A

                        \[\leadsto \mathsf{fma}\left(\frac{{D}^{2} \cdot \left({M}^{2} \cdot \left(h \cdot w0\right)\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                      5. associate-*r*N/A

                        \[\leadsto \mathsf{fma}\left(\frac{\left({D}^{2} \cdot {M}^{2}\right) \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                      6. lower-*.f64N/A

                        \[\leadsto \mathsf{fma}\left(\frac{\left({D}^{2} \cdot {M}^{2}\right) \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                      7. pow-prod-downN/A

                        \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                      8. lower-pow.f64N/A

                        \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                      9. lower-*.f64N/A

                        \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                      10. lower-*.f64N/A

                        \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                      11. lower-*.f64N/A

                        \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                      12. unpow2N/A

                        \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                      13. lower-*.f6448.1

                        \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}, -0.125, w0\right) \]
                    5. Applied rewrites48.1%

                      \[\leadsto \color{blue}{\mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}, -0.125, w0\right)} \]
                    6. Step-by-step derivation
                      1. lift-*.f64N/A

                        \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                      2. lift-pow.f64N/A

                        \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                      3. unpow2N/A

                        \[\leadsto \mathsf{fma}\left(\frac{\left(\left(D \cdot M\right) \cdot \left(D \cdot M\right)\right) \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                      4. lower-*.f64N/A

                        \[\leadsto \mathsf{fma}\left(\frac{\left(\left(D \cdot M\right) \cdot \left(D \cdot M\right)\right) \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                      5. lift-*.f64N/A

                        \[\leadsto \mathsf{fma}\left(\frac{\left(\left(D \cdot M\right) \cdot \left(D \cdot M\right)\right) \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                      6. lift-*.f6448.1

                        \[\leadsto \mathsf{fma}\left(\frac{\left(\left(D \cdot M\right) \cdot \left(D \cdot M\right)\right) \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}, -0.125, w0\right) \]
                    7. Applied rewrites48.1%

                      \[\leadsto \mathsf{fma}\left(\frac{\left(\left(D \cdot M\right) \cdot \left(D \cdot M\right)\right) \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}, -0.125, w0\right) \]

                    if -1.0000000000000001e272 < (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l))

                    1. Initial program 88.3%

                      \[w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \]
                    2. Add Preprocessing
                    3. Taylor expanded in M around 0

                      \[\leadsto \color{blue}{w0} \]
                    4. Step-by-step derivation
                      1. Applied rewrites88.8%

                        \[\leadsto \color{blue}{w0} \]
                    5. Recombined 2 regimes into one program.
                    6. Add Preprocessing

                    Alternative 12: 78.7% accurate, 0.8× speedup?

                    \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;{\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell} \leq -2 \cdot 10^{+103}:\\ \;\;\;\;\mathsf{fma}\left(D \cdot \frac{\left(\left(\left(h \cdot M\right) \cdot M\right) \cdot w0\right) \cdot D}{\left(d \cdot d\right) \cdot \ell}, -0.125, w0\right)\\ \mathbf{else}:\\ \;\;\;\;w0\\ \end{array} \end{array} \]
                    (FPCore (w0 M D h l d)
                     :precision binary64
                     (if (<= (* (pow (/ (* M D) (* 2.0 d)) 2.0) (/ h l)) -2e+103)
                       (fma (* D (/ (* (* (* (* h M) M) w0) D) (* (* d d) l))) -0.125 w0)
                       w0))
                    double code(double w0, double M, double D, double h, double l, double d) {
                    	double tmp;
                    	if ((pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -2e+103) {
                    		tmp = fma((D * (((((h * M) * M) * w0) * D) / ((d * d) * l))), -0.125, w0);
                    	} else {
                    		tmp = w0;
                    	}
                    	return tmp;
                    }
                    
                    function code(w0, M, D, h, l, d)
                    	tmp = 0.0
                    	if (Float64((Float64(Float64(M * D) / Float64(2.0 * d)) ^ 2.0) * Float64(h / l)) <= -2e+103)
                    		tmp = fma(Float64(D * Float64(Float64(Float64(Float64(Float64(h * M) * M) * w0) * D) / Float64(Float64(d * d) * l))), -0.125, w0);
                    	else
                    		tmp = w0;
                    	end
                    	return tmp
                    end
                    
                    code[w0_, M_, D_, h_, l_, d_] := If[LessEqual[N[(N[Power[N[(N[(M * D), $MachinePrecision] / N[(2.0 * d), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision], -2e+103], N[(N[(D * N[(N[(N[(N[(N[(h * M), $MachinePrecision] * M), $MachinePrecision] * w0), $MachinePrecision] * D), $MachinePrecision] / N[(N[(d * d), $MachinePrecision] * l), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] * -0.125 + w0), $MachinePrecision], w0]
                    
                    \begin{array}{l}
                    
                    \\
                    \begin{array}{l}
                    \mathbf{if}\;{\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell} \leq -2 \cdot 10^{+103}:\\
                    \;\;\;\;\mathsf{fma}\left(D \cdot \frac{\left(\left(\left(h \cdot M\right) \cdot M\right) \cdot w0\right) \cdot D}{\left(d \cdot d\right) \cdot \ell}, -0.125, w0\right)\\
                    
                    \mathbf{else}:\\
                    \;\;\;\;w0\\
                    
                    
                    \end{array}
                    \end{array}
                    
                    Derivation
                    1. Split input into 2 regimes
                    2. if (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l)) < -2e103

                      1. Initial program 60.8%

                        \[w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \]
                      2. Add Preprocessing
                      3. Taylor expanded in M around 0

                        \[\leadsto \color{blue}{w0 + \frac{-1}{8} \cdot \frac{{D}^{2} \cdot \left({M}^{2} \cdot \left(h \cdot w0\right)\right)}{{d}^{2} \cdot \ell}} \]
                      4. Step-by-step derivation
                        1. +-commutativeN/A

                          \[\leadsto \frac{-1}{8} \cdot \frac{{D}^{2} \cdot \left({M}^{2} \cdot \left(h \cdot w0\right)\right)}{{d}^{2} \cdot \ell} + \color{blue}{w0} \]
                        2. *-commutativeN/A

                          \[\leadsto \frac{{D}^{2} \cdot \left({M}^{2} \cdot \left(h \cdot w0\right)\right)}{{d}^{2} \cdot \ell} \cdot \frac{-1}{8} + w0 \]
                        3. lower-fma.f64N/A

                          \[\leadsto \mathsf{fma}\left(\frac{{D}^{2} \cdot \left({M}^{2} \cdot \left(h \cdot w0\right)\right)}{{d}^{2} \cdot \ell}, \color{blue}{\frac{-1}{8}}, w0\right) \]
                        4. lower-/.f64N/A

                          \[\leadsto \mathsf{fma}\left(\frac{{D}^{2} \cdot \left({M}^{2} \cdot \left(h \cdot w0\right)\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                        5. associate-*r*N/A

                          \[\leadsto \mathsf{fma}\left(\frac{\left({D}^{2} \cdot {M}^{2}\right) \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                        6. lower-*.f64N/A

                          \[\leadsto \mathsf{fma}\left(\frac{\left({D}^{2} \cdot {M}^{2}\right) \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                        7. pow-prod-downN/A

                          \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                        8. lower-pow.f64N/A

                          \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                        9. lower-*.f64N/A

                          \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                        10. lower-*.f64N/A

                          \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                        11. lower-*.f64N/A

                          \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                        12. unpow2N/A

                          \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                        13. lower-*.f6441.9

                          \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}, -0.125, w0\right) \]
                      5. Applied rewrites41.9%

                        \[\leadsto \color{blue}{\mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}, -0.125, w0\right)} \]
                      6. Step-by-step derivation
                        1. lift-/.f64N/A

                          \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                        2. lift-*.f64N/A

                          \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                        3. lift-*.f64N/A

                          \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                        4. lift-pow.f64N/A

                          \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                        5. unpow-prod-downN/A

                          \[\leadsto \mathsf{fma}\left(\frac{\left({D}^{2} \cdot {M}^{2}\right) \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                        6. lift-*.f64N/A

                          \[\leadsto \mathsf{fma}\left(\frac{\left({D}^{2} \cdot {M}^{2}\right) \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                        7. associate-*r*N/A

                          \[\leadsto \mathsf{fma}\left(\frac{{D}^{2} \cdot \left({M}^{2} \cdot \left(h \cdot w0\right)\right)}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                        8. lift-*.f64N/A

                          \[\leadsto \mathsf{fma}\left(\frac{{D}^{2} \cdot \left({M}^{2} \cdot \left(h \cdot w0\right)\right)}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                        9. lift-*.f64N/A

                          \[\leadsto \mathsf{fma}\left(\frac{{D}^{2} \cdot \left({M}^{2} \cdot \left(h \cdot w0\right)\right)}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                        10. pow2N/A

                          \[\leadsto \mathsf{fma}\left(\frac{{D}^{2} \cdot \left({M}^{2} \cdot \left(h \cdot w0\right)\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                        11. associate-/l*N/A

                          \[\leadsto \mathsf{fma}\left({D}^{2} \cdot \frac{{M}^{2} \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                        12. lower-*.f64N/A

                          \[\leadsto \mathsf{fma}\left({D}^{2} \cdot \frac{{M}^{2} \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                        13. unpow2N/A

                          \[\leadsto \mathsf{fma}\left(\left(D \cdot D\right) \cdot \frac{{M}^{2} \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                        14. lower-*.f64N/A

                          \[\leadsto \mathsf{fma}\left(\left(D \cdot D\right) \cdot \frac{{M}^{2} \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                        15. lower-/.f64N/A

                          \[\leadsto \mathsf{fma}\left(\left(D \cdot D\right) \cdot \frac{{M}^{2} \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                        16. associate-*r*N/A

                          \[\leadsto \mathsf{fma}\left(\left(D \cdot D\right) \cdot \frac{\left({M}^{2} \cdot h\right) \cdot w0}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                        17. lower-*.f64N/A

                          \[\leadsto \mathsf{fma}\left(\left(D \cdot D\right) \cdot \frac{\left({M}^{2} \cdot h\right) \cdot w0}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                        18. lower-*.f64N/A

                          \[\leadsto \mathsf{fma}\left(\left(D \cdot D\right) \cdot \frac{\left({M}^{2} \cdot h\right) \cdot w0}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                        19. unpow2N/A

                          \[\leadsto \mathsf{fma}\left(\left(D \cdot D\right) \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot w0}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                        20. lower-*.f64N/A

                          \[\leadsto \mathsf{fma}\left(\left(D \cdot D\right) \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot w0}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                        21. pow2N/A

                          \[\leadsto \mathsf{fma}\left(\left(D \cdot D\right) \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot w0}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                        22. lift-*.f64N/A

                          \[\leadsto \mathsf{fma}\left(\left(D \cdot D\right) \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot w0}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                        23. lift-*.f6439.6

                          \[\leadsto \mathsf{fma}\left(\left(D \cdot D\right) \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot w0}{\left(d \cdot d\right) \cdot \ell}, -0.125, w0\right) \]
                      7. Applied rewrites39.6%

                        \[\leadsto \mathsf{fma}\left(\left(D \cdot D\right) \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot w0}{\left(d \cdot d\right) \cdot \ell}, -0.125, w0\right) \]
                      8. Step-by-step derivation
                        1. lift-*.f64N/A

                          \[\leadsto \mathsf{fma}\left(\left(D \cdot D\right) \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot w0}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                        2. lift-*.f64N/A

                          \[\leadsto \mathsf{fma}\left(\left(D \cdot D\right) \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot w0}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                        3. associate-*l*N/A

                          \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot w0}{\left(d \cdot d\right) \cdot \ell}\right), \frac{-1}{8}, w0\right) \]
                        4. lower-*.f64N/A

                          \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot w0}{\left(d \cdot d\right) \cdot \ell}\right), \frac{-1}{8}, w0\right) \]
                        5. lower-*.f6440.5

                          \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot w0}{\left(d \cdot d\right) \cdot \ell}\right), -0.125, w0\right) \]
                        6. lift-/.f64N/A

                          \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot w0}{\left(d \cdot d\right) \cdot \ell}\right), \frac{-1}{8}, w0\right) \]
                        7. lift-*.f64N/A

                          \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot w0}{\left(d \cdot d\right) \cdot \ell}\right), \frac{-1}{8}, w0\right) \]
                        8. associate-/l*N/A

                          \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{w0}{\left(d \cdot d\right) \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                        9. lower-*.f64N/A

                          \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{w0}{\left(d \cdot d\right) \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                        10. lift-*.f64N/A

                          \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{w0}{\left(d \cdot d\right) \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                        11. lift-*.f64N/A

                          \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{w0}{\left(d \cdot d\right) \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                        12. pow2N/A

                          \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{w0}{{d}^{2} \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                        13. lower-/.f64N/A

                          \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{w0}{{d}^{2} \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                        14. pow2N/A

                          \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{w0}{\left(d \cdot d\right) \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                        15. lift-*.f64N/A

                          \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{w0}{\left(d \cdot d\right) \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                        16. lift-*.f6440.3

                          \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{w0}{\left(d \cdot d\right) \cdot \ell}\right)\right), -0.125, w0\right) \]
                      9. Applied rewrites40.3%

                        \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{w0}{\left(d \cdot d\right) \cdot \ell}\right)\right), -0.125, w0\right) \]
                      10. Step-by-step derivation
                        1. lift-*.f64N/A

                          \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{w0}{\left(d \cdot d\right) \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                        2. lift-*.f64N/A

                          \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{w0}{\left(d \cdot d\right) \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                        3. lift-*.f64N/A

                          \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{w0}{\left(d \cdot d\right) \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                        4. lift-*.f64N/A

                          \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{w0}{\left(d \cdot d\right) \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                        5. lift-/.f64N/A

                          \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{w0}{\left(d \cdot d\right) \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                        6. lift-*.f64N/A

                          \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{w0}{\left(d \cdot d\right) \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                        7. lift-*.f64N/A

                          \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{w0}{\left(d \cdot d\right) \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                        8. lift-*.f64N/A

                          \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{w0}{\left(d \cdot d\right) \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                        9. lift-*.f64N/A

                          \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{w0}{\left(d \cdot d\right) \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                        10. lift-*.f64N/A

                          \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{w0}{\left(d \cdot d\right) \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                        11. lift-*.f64N/A

                          \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{w0}{\left(d \cdot d\right) \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                        12. associate-*r/N/A

                          \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot w0}{\left(d \cdot d\right) \cdot \ell}\right), \frac{-1}{8}, w0\right) \]
                        13. lift-*.f64N/A

                          \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot w0}{\left(d \cdot d\right) \cdot \ell}\right), \frac{-1}{8}, w0\right) \]
                        14. lift-*.f64N/A

                          \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot w0}{\left(d \cdot d\right) \cdot \ell}\right), \frac{-1}{8}, w0\right) \]
                        15. pow2N/A

                          \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \frac{\left({M}^{2} \cdot h\right) \cdot w0}{\left(d \cdot d\right) \cdot \ell}\right), \frac{-1}{8}, w0\right) \]
                        16. associate-*r*N/A

                          \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \frac{{M}^{2} \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}\right), \frac{-1}{8}, w0\right) \]
                        17. lift-*.f64N/A

                          \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \frac{{M}^{2} \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}\right), \frac{-1}{8}, w0\right) \]
                        18. lift-*.f64N/A

                          \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \frac{{M}^{2} \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}\right), \frac{-1}{8}, w0\right) \]
                        19. pow2N/A

                          \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \frac{{M}^{2} \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}\right), \frac{-1}{8}, w0\right) \]
                      11. Applied rewrites42.3%

                        \[\leadsto \mathsf{fma}\left(D \cdot \frac{\left(\left(\left(h \cdot M\right) \cdot M\right) \cdot w0\right) \cdot D}{\left(d \cdot d\right) \cdot \ell}, -0.125, w0\right) \]

                      if -2e103 < (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l))

                      1. Initial program 87.9%

                        \[w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \]
                      2. Add Preprocessing
                      3. Taylor expanded in M around 0

                        \[\leadsto \color{blue}{w0} \]
                      4. Step-by-step derivation
                        1. Applied rewrites92.1%

                          \[\leadsto \color{blue}{w0} \]
                      5. Recombined 2 regimes into one program.
                      6. Add Preprocessing

                      Alternative 13: 78.5% accurate, 0.8× speedup?

                      \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;{\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell} \leq -1 \cdot 10^{+135}:\\ \;\;\;\;\mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(M \cdot M\right) \cdot \frac{h \cdot w0}{\left(d \cdot d\right) \cdot \ell}\right)\right), -0.125, w0\right)\\ \mathbf{else}:\\ \;\;\;\;w0\\ \end{array} \end{array} \]
                      (FPCore (w0 M D h l d)
                       :precision binary64
                       (if (<= (* (pow (/ (* M D) (* 2.0 d)) 2.0) (/ h l)) -1e+135)
                         (fma (* D (* D (* (* M M) (/ (* h w0) (* (* d d) l))))) -0.125 w0)
                         w0))
                      double code(double w0, double M, double D, double h, double l, double d) {
                      	double tmp;
                      	if ((pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -1e+135) {
                      		tmp = fma((D * (D * ((M * M) * ((h * w0) / ((d * d) * l))))), -0.125, w0);
                      	} else {
                      		tmp = w0;
                      	}
                      	return tmp;
                      }
                      
                      function code(w0, M, D, h, l, d)
                      	tmp = 0.0
                      	if (Float64((Float64(Float64(M * D) / Float64(2.0 * d)) ^ 2.0) * Float64(h / l)) <= -1e+135)
                      		tmp = fma(Float64(D * Float64(D * Float64(Float64(M * M) * Float64(Float64(h * w0) / Float64(Float64(d * d) * l))))), -0.125, w0);
                      	else
                      		tmp = w0;
                      	end
                      	return tmp
                      end
                      
                      code[w0_, M_, D_, h_, l_, d_] := If[LessEqual[N[(N[Power[N[(N[(M * D), $MachinePrecision] / N[(2.0 * d), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision], -1e+135], N[(N[(D * N[(D * N[(N[(M * M), $MachinePrecision] * N[(N[(h * w0), $MachinePrecision] / N[(N[(d * d), $MachinePrecision] * l), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] * -0.125 + w0), $MachinePrecision], w0]
                      
                      \begin{array}{l}
                      
                      \\
                      \begin{array}{l}
                      \mathbf{if}\;{\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell} \leq -1 \cdot 10^{+135}:\\
                      \;\;\;\;\mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(M \cdot M\right) \cdot \frac{h \cdot w0}{\left(d \cdot d\right) \cdot \ell}\right)\right), -0.125, w0\right)\\
                      
                      \mathbf{else}:\\
                      \;\;\;\;w0\\
                      
                      
                      \end{array}
                      \end{array}
                      
                      Derivation
                      1. Split input into 2 regimes
                      2. if (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l)) < -9.99999999999999962e134

                        1. Initial program 60.1%

                          \[w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \]
                        2. Add Preprocessing
                        3. Taylor expanded in M around 0

                          \[\leadsto \color{blue}{w0 + \frac{-1}{8} \cdot \frac{{D}^{2} \cdot \left({M}^{2} \cdot \left(h \cdot w0\right)\right)}{{d}^{2} \cdot \ell}} \]
                        4. Step-by-step derivation
                          1. +-commutativeN/A

                            \[\leadsto \frac{-1}{8} \cdot \frac{{D}^{2} \cdot \left({M}^{2} \cdot \left(h \cdot w0\right)\right)}{{d}^{2} \cdot \ell} + \color{blue}{w0} \]
                          2. *-commutativeN/A

                            \[\leadsto \frac{{D}^{2} \cdot \left({M}^{2} \cdot \left(h \cdot w0\right)\right)}{{d}^{2} \cdot \ell} \cdot \frac{-1}{8} + w0 \]
                          3. lower-fma.f64N/A

                            \[\leadsto \mathsf{fma}\left(\frac{{D}^{2} \cdot \left({M}^{2} \cdot \left(h \cdot w0\right)\right)}{{d}^{2} \cdot \ell}, \color{blue}{\frac{-1}{8}}, w0\right) \]
                          4. lower-/.f64N/A

                            \[\leadsto \mathsf{fma}\left(\frac{{D}^{2} \cdot \left({M}^{2} \cdot \left(h \cdot w0\right)\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                          5. associate-*r*N/A

                            \[\leadsto \mathsf{fma}\left(\frac{\left({D}^{2} \cdot {M}^{2}\right) \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                          6. lower-*.f64N/A

                            \[\leadsto \mathsf{fma}\left(\frac{\left({D}^{2} \cdot {M}^{2}\right) \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                          7. pow-prod-downN/A

                            \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                          8. lower-pow.f64N/A

                            \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                          9. lower-*.f64N/A

                            \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                          10. lower-*.f64N/A

                            \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                          11. lower-*.f64N/A

                            \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                          12. unpow2N/A

                            \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                          13. lower-*.f6442.6

                            \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}, -0.125, w0\right) \]
                        5. Applied rewrites42.6%

                          \[\leadsto \color{blue}{\mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}, -0.125, w0\right)} \]
                        6. Step-by-step derivation
                          1. lift-/.f64N/A

                            \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                          2. lift-*.f64N/A

                            \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                          3. lift-*.f64N/A

                            \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                          4. lift-pow.f64N/A

                            \[\leadsto \mathsf{fma}\left(\frac{{\left(D \cdot M\right)}^{2} \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                          5. unpow-prod-downN/A

                            \[\leadsto \mathsf{fma}\left(\frac{\left({D}^{2} \cdot {M}^{2}\right) \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                          6. lift-*.f64N/A

                            \[\leadsto \mathsf{fma}\left(\frac{\left({D}^{2} \cdot {M}^{2}\right) \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                          7. associate-*r*N/A

                            \[\leadsto \mathsf{fma}\left(\frac{{D}^{2} \cdot \left({M}^{2} \cdot \left(h \cdot w0\right)\right)}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                          8. lift-*.f64N/A

                            \[\leadsto \mathsf{fma}\left(\frac{{D}^{2} \cdot \left({M}^{2} \cdot \left(h \cdot w0\right)\right)}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                          9. lift-*.f64N/A

                            \[\leadsto \mathsf{fma}\left(\frac{{D}^{2} \cdot \left({M}^{2} \cdot \left(h \cdot w0\right)\right)}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                          10. pow2N/A

                            \[\leadsto \mathsf{fma}\left(\frac{{D}^{2} \cdot \left({M}^{2} \cdot \left(h \cdot w0\right)\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                          11. associate-/l*N/A

                            \[\leadsto \mathsf{fma}\left({D}^{2} \cdot \frac{{M}^{2} \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                          12. lower-*.f64N/A

                            \[\leadsto \mathsf{fma}\left({D}^{2} \cdot \frac{{M}^{2} \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                          13. unpow2N/A

                            \[\leadsto \mathsf{fma}\left(\left(D \cdot D\right) \cdot \frac{{M}^{2} \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                          14. lower-*.f64N/A

                            \[\leadsto \mathsf{fma}\left(\left(D \cdot D\right) \cdot \frac{{M}^{2} \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                          15. lower-/.f64N/A

                            \[\leadsto \mathsf{fma}\left(\left(D \cdot D\right) \cdot \frac{{M}^{2} \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                          16. associate-*r*N/A

                            \[\leadsto \mathsf{fma}\left(\left(D \cdot D\right) \cdot \frac{\left({M}^{2} \cdot h\right) \cdot w0}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                          17. lower-*.f64N/A

                            \[\leadsto \mathsf{fma}\left(\left(D \cdot D\right) \cdot \frac{\left({M}^{2} \cdot h\right) \cdot w0}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                          18. lower-*.f64N/A

                            \[\leadsto \mathsf{fma}\left(\left(D \cdot D\right) \cdot \frac{\left({M}^{2} \cdot h\right) \cdot w0}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                          19. unpow2N/A

                            \[\leadsto \mathsf{fma}\left(\left(D \cdot D\right) \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot w0}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                          20. lower-*.f64N/A

                            \[\leadsto \mathsf{fma}\left(\left(D \cdot D\right) \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot w0}{{d}^{2} \cdot \ell}, \frac{-1}{8}, w0\right) \]
                          21. pow2N/A

                            \[\leadsto \mathsf{fma}\left(\left(D \cdot D\right) \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot w0}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                          22. lift-*.f64N/A

                            \[\leadsto \mathsf{fma}\left(\left(D \cdot D\right) \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot w0}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                          23. lift-*.f6440.3

                            \[\leadsto \mathsf{fma}\left(\left(D \cdot D\right) \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot w0}{\left(d \cdot d\right) \cdot \ell}, -0.125, w0\right) \]
                        7. Applied rewrites40.3%

                          \[\leadsto \mathsf{fma}\left(\left(D \cdot D\right) \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot w0}{\left(d \cdot d\right) \cdot \ell}, -0.125, w0\right) \]
                        8. Step-by-step derivation
                          1. lift-*.f64N/A

                            \[\leadsto \mathsf{fma}\left(\left(D \cdot D\right) \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot w0}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                          2. lift-*.f64N/A

                            \[\leadsto \mathsf{fma}\left(\left(D \cdot D\right) \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot w0}{\left(d \cdot d\right) \cdot \ell}, \frac{-1}{8}, w0\right) \]
                          3. associate-*l*N/A

                            \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot w0}{\left(d \cdot d\right) \cdot \ell}\right), \frac{-1}{8}, w0\right) \]
                          4. lower-*.f64N/A

                            \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot w0}{\left(d \cdot d\right) \cdot \ell}\right), \frac{-1}{8}, w0\right) \]
                          5. lower-*.f6441.1

                            \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot w0}{\left(d \cdot d\right) \cdot \ell}\right), -0.125, w0\right) \]
                          6. lift-/.f64N/A

                            \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot w0}{\left(d \cdot d\right) \cdot \ell}\right), \frac{-1}{8}, w0\right) \]
                          7. lift-*.f64N/A

                            \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot w0}{\left(d \cdot d\right) \cdot \ell}\right), \frac{-1}{8}, w0\right) \]
                          8. associate-/l*N/A

                            \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{w0}{\left(d \cdot d\right) \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                          9. lower-*.f64N/A

                            \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{w0}{\left(d \cdot d\right) \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                          10. lift-*.f64N/A

                            \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{w0}{\left(d \cdot d\right) \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                          11. lift-*.f64N/A

                            \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{w0}{\left(d \cdot d\right) \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                          12. pow2N/A

                            \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{w0}{{d}^{2} \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                          13. lower-/.f64N/A

                            \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{w0}{{d}^{2} \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                          14. pow2N/A

                            \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{w0}{\left(d \cdot d\right) \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                          15. lift-*.f64N/A

                            \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{w0}{\left(d \cdot d\right) \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                          16. lift-*.f6440.9

                            \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{w0}{\left(d \cdot d\right) \cdot \ell}\right)\right), -0.125, w0\right) \]
                        9. Applied rewrites40.9%

                          \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{w0}{\left(d \cdot d\right) \cdot \ell}\right)\right), -0.125, w0\right) \]
                        10. Step-by-step derivation
                          1. lift-*.f64N/A

                            \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{w0}{\left(d \cdot d\right) \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                          2. lift-/.f64N/A

                            \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(\left(M \cdot M\right) \cdot h\right) \cdot \frac{w0}{\left(d \cdot d\right) \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                          3. associate-*r/N/A

                            \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot w0}{\left(d \cdot d\right) \cdot \ell}\right), \frac{-1}{8}, w0\right) \]
                          4. lift-*.f64N/A

                            \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot w0}{\left(d \cdot d\right) \cdot \ell}\right), \frac{-1}{8}, w0\right) \]
                          5. lift-*.f64N/A

                            \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \frac{\left(\left(M \cdot M\right) \cdot h\right) \cdot w0}{\left(d \cdot d\right) \cdot \ell}\right), \frac{-1}{8}, w0\right) \]
                          6. pow2N/A

                            \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \frac{\left({M}^{2} \cdot h\right) \cdot w0}{\left(d \cdot d\right) \cdot \ell}\right), \frac{-1}{8}, w0\right) \]
                          7. associate-*r*N/A

                            \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \frac{{M}^{2} \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}\right), \frac{-1}{8}, w0\right) \]
                          8. lift-*.f64N/A

                            \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \frac{{M}^{2} \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}\right), \frac{-1}{8}, w0\right) \]
                          9. lift-*.f64N/A

                            \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \frac{{M}^{2} \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}\right), \frac{-1}{8}, w0\right) \]
                          10. pow2N/A

                            \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \frac{{M}^{2} \cdot \left(h \cdot w0\right)}{{d}^{2} \cdot \ell}\right), \frac{-1}{8}, w0\right) \]
                          11. associate-/l*N/A

                            \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left({M}^{2} \cdot \frac{h \cdot w0}{{d}^{2} \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                          12. lower-*.f64N/A

                            \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left({M}^{2} \cdot \frac{h \cdot w0}{{d}^{2} \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                          13. pow2N/A

                            \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(M \cdot M\right) \cdot \frac{h \cdot w0}{{d}^{2} \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                          14. lift-*.f64N/A

                            \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(M \cdot M\right) \cdot \frac{h \cdot w0}{{d}^{2} \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                          15. lower-/.f64N/A

                            \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(M \cdot M\right) \cdot \frac{h \cdot w0}{{d}^{2} \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                          16. lift-*.f64N/A

                            \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(M \cdot M\right) \cdot \frac{h \cdot w0}{{d}^{2} \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                          17. pow2N/A

                            \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(M \cdot M\right) \cdot \frac{h \cdot w0}{\left(d \cdot d\right) \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                          18. lift-*.f64N/A

                            \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(M \cdot M\right) \cdot \frac{h \cdot w0}{\left(d \cdot d\right) \cdot \ell}\right)\right), \frac{-1}{8}, w0\right) \]
                          19. lift-*.f6442.6

                            \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(M \cdot M\right) \cdot \frac{h \cdot w0}{\left(d \cdot d\right) \cdot \ell}\right)\right), -0.125, w0\right) \]
                        11. Applied rewrites42.6%

                          \[\leadsto \mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(M \cdot M\right) \cdot \frac{h \cdot w0}{\left(d \cdot d\right) \cdot \ell}\right)\right), -0.125, w0\right) \]

                        if -9.99999999999999962e134 < (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l))

                        1. Initial program 87.9%

                          \[w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \]
                        2. Add Preprocessing
                        3. Taylor expanded in M around 0

                          \[\leadsto \color{blue}{w0} \]
                        4. Step-by-step derivation
                          1. Applied rewrites91.7%

                            \[\leadsto \color{blue}{w0} \]
                        5. Recombined 2 regimes into one program.
                        6. Add Preprocessing

                        Alternative 14: 67.6% accurate, 157.0× speedup?

                        \[\begin{array}{l} \\ w0 \end{array} \]
                        (FPCore (w0 M D h l d) :precision binary64 w0)
                        double code(double w0, double M, double D, double h, double l, double d) {
                        	return w0;
                        }
                        
                        module fmin_fmax_functions
                            implicit none
                            private
                            public fmax
                            public fmin
                        
                            interface fmax
                                module procedure fmax88
                                module procedure fmax44
                                module procedure fmax84
                                module procedure fmax48
                            end interface
                            interface fmin
                                module procedure fmin88
                                module procedure fmin44
                                module procedure fmin84
                                module procedure fmin48
                            end interface
                        contains
                            real(8) function fmax88(x, y) result (res)
                                real(8), intent (in) :: x
                                real(8), intent (in) :: y
                                res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                            end function
                            real(4) function fmax44(x, y) result (res)
                                real(4), intent (in) :: x
                                real(4), intent (in) :: y
                                res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                            end function
                            real(8) function fmax84(x, y) result(res)
                                real(8), intent (in) :: x
                                real(4), intent (in) :: y
                                res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                            end function
                            real(8) function fmax48(x, y) result(res)
                                real(4), intent (in) :: x
                                real(8), intent (in) :: y
                                res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                            end function
                            real(8) function fmin88(x, y) result (res)
                                real(8), intent (in) :: x
                                real(8), intent (in) :: y
                                res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                            end function
                            real(4) function fmin44(x, y) result (res)
                                real(4), intent (in) :: x
                                real(4), intent (in) :: y
                                res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                            end function
                            real(8) function fmin84(x, y) result(res)
                                real(8), intent (in) :: x
                                real(4), intent (in) :: y
                                res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                            end function
                            real(8) function fmin48(x, y) result(res)
                                real(4), intent (in) :: x
                                real(8), intent (in) :: y
                                res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                            end function
                        end module
                        
                        real(8) function code(w0, m, d, h, l, d_1)
                        use fmin_fmax_functions
                            real(8), intent (in) :: w0
                            real(8), intent (in) :: m
                            real(8), intent (in) :: d
                            real(8), intent (in) :: h
                            real(8), intent (in) :: l
                            real(8), intent (in) :: d_1
                            code = w0
                        end function
                        
                        public static double code(double w0, double M, double D, double h, double l, double d) {
                        	return w0;
                        }
                        
                        def code(w0, M, D, h, l, d):
                        	return w0
                        
                        function code(w0, M, D, h, l, d)
                        	return w0
                        end
                        
                        function tmp = code(w0, M, D, h, l, d)
                        	tmp = w0;
                        end
                        
                        code[w0_, M_, D_, h_, l_, d_] := w0
                        
                        \begin{array}{l}
                        
                        \\
                        w0
                        \end{array}
                        
                        Derivation
                        1. Initial program 81.7%

                          \[w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \]
                        2. Add Preprocessing
                        3. Taylor expanded in M around 0

                          \[\leadsto \color{blue}{w0} \]
                        4. Step-by-step derivation
                          1. Applied rewrites72.3%

                            \[\leadsto \color{blue}{w0} \]
                          2. Add Preprocessing

                          Reproduce

                          ?
                          herbie shell --seed 2025040 
                          (FPCore (w0 M D h l d)
                            :name "Henrywood and Agarwal, Equation (9a)"
                            :precision binary64
                            (* w0 (sqrt (- 1.0 (* (pow (/ (* M D) (* 2.0 d)) 2.0) (/ h l))))))