
(FPCore (w0 M D h l d) :precision binary64 (* w0 (sqrt (- 1.0 (* (pow (/ (* M D) (* 2.0 d)) 2.0) (/ h l))))))
double code(double w0, double M, double D, double h, double l, double d) {
return w0 * sqrt((1.0 - (pow(((M * D) / (2.0 * d)), 2.0) * (h / l))));
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(w0, m, d, h, l, d_1)
use fmin_fmax_functions
real(8), intent (in) :: w0
real(8), intent (in) :: m
real(8), intent (in) :: d
real(8), intent (in) :: h
real(8), intent (in) :: l
real(8), intent (in) :: d_1
code = w0 * sqrt((1.0d0 - ((((m * d) / (2.0d0 * d_1)) ** 2.0d0) * (h / l))))
end function
public static double code(double w0, double M, double D, double h, double l, double d) {
return w0 * Math.sqrt((1.0 - (Math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l))));
}
def code(w0, M, D, h, l, d): return w0 * math.sqrt((1.0 - (math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l))))
function code(w0, M, D, h, l, d) return Float64(w0 * sqrt(Float64(1.0 - Float64((Float64(Float64(M * D) / Float64(2.0 * d)) ^ 2.0) * Float64(h / l))))) end
function tmp = code(w0, M, D, h, l, d) tmp = w0 * sqrt((1.0 - ((((M * D) / (2.0 * d)) ^ 2.0) * (h / l)))); end
code[w0_, M_, D_, h_, l_, d_] := N[(w0 * N[Sqrt[N[(1.0 - N[(N[Power[N[(N[(M * D), $MachinePrecision] / N[(2.0 * d), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]
\begin{array}{l}
\\
w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}}
\end{array}
Sampling outcomes in binary64 precision:
Herbie found 14 alternatives:
| Alternative | Accuracy | Speedup |
|---|
(FPCore (w0 M D h l d) :precision binary64 (* w0 (sqrt (- 1.0 (* (pow (/ (* M D) (* 2.0 d)) 2.0) (/ h l))))))
double code(double w0, double M, double D, double h, double l, double d) {
return w0 * sqrt((1.0 - (pow(((M * D) / (2.0 * d)), 2.0) * (h / l))));
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(w0, m, d, h, l, d_1)
use fmin_fmax_functions
real(8), intent (in) :: w0
real(8), intent (in) :: m
real(8), intent (in) :: d
real(8), intent (in) :: h
real(8), intent (in) :: l
real(8), intent (in) :: d_1
code = w0 * sqrt((1.0d0 - ((((m * d) / (2.0d0 * d_1)) ** 2.0d0) * (h / l))))
end function
public static double code(double w0, double M, double D, double h, double l, double d) {
return w0 * Math.sqrt((1.0 - (Math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l))));
}
def code(w0, M, D, h, l, d): return w0 * math.sqrt((1.0 - (math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l))))
function code(w0, M, D, h, l, d) return Float64(w0 * sqrt(Float64(1.0 - Float64((Float64(Float64(M * D) / Float64(2.0 * d)) ^ 2.0) * Float64(h / l))))) end
function tmp = code(w0, M, D, h, l, d) tmp = w0 * sqrt((1.0 - ((((M * D) / (2.0 * d)) ^ 2.0) * (h / l)))); end
code[w0_, M_, D_, h_, l_, d_] := N[(w0 * N[Sqrt[N[(1.0 - N[(N[Power[N[(N[(M * D), $MachinePrecision] / N[(2.0 * d), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]
\begin{array}{l}
\\
w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}}
\end{array}
(FPCore (w0 M D h l d)
:precision binary64
(if (<=
(* w0 (sqrt (- 1.0 (* (pow (/ (* M D) (* 2.0 d)) 2.0) (/ h l)))))
5e+267)
(* w0 (sqrt (- 1.0 (* (pow (/ (* M D) (+ d d)) 2.0) (/ h l)))))
(*
w0
(sqrt
(- 1.0 (* (* (/ D d) (* 0.5 M)) (/ (* 0.5 (* (* h M) D)) (* l d))))))))
double code(double w0, double M, double D, double h, double l, double d) {
double tmp;
if ((w0 * sqrt((1.0 - (pow(((M * D) / (2.0 * d)), 2.0) * (h / l))))) <= 5e+267) {
tmp = w0 * sqrt((1.0 - (pow(((M * D) / (d + d)), 2.0) * (h / l))));
} else {
tmp = w0 * sqrt((1.0 - (((D / d) * (0.5 * M)) * ((0.5 * ((h * M) * D)) / (l * d)))));
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(w0, m, d, h, l, d_1)
use fmin_fmax_functions
real(8), intent (in) :: w0
real(8), intent (in) :: m
real(8), intent (in) :: d
real(8), intent (in) :: h
real(8), intent (in) :: l
real(8), intent (in) :: d_1
real(8) :: tmp
if ((w0 * sqrt((1.0d0 - ((((m * d) / (2.0d0 * d_1)) ** 2.0d0) * (h / l))))) <= 5d+267) then
tmp = w0 * sqrt((1.0d0 - ((((m * d) / (d_1 + d_1)) ** 2.0d0) * (h / l))))
else
tmp = w0 * sqrt((1.0d0 - (((d / d_1) * (0.5d0 * m)) * ((0.5d0 * ((h * m) * d)) / (l * d_1)))))
end if
code = tmp
end function
public static double code(double w0, double M, double D, double h, double l, double d) {
double tmp;
if ((w0 * Math.sqrt((1.0 - (Math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l))))) <= 5e+267) {
tmp = w0 * Math.sqrt((1.0 - (Math.pow(((M * D) / (d + d)), 2.0) * (h / l))));
} else {
tmp = w0 * Math.sqrt((1.0 - (((D / d) * (0.5 * M)) * ((0.5 * ((h * M) * D)) / (l * d)))));
}
return tmp;
}
def code(w0, M, D, h, l, d): tmp = 0 if (w0 * math.sqrt((1.0 - (math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l))))) <= 5e+267: tmp = w0 * math.sqrt((1.0 - (math.pow(((M * D) / (d + d)), 2.0) * (h / l)))) else: tmp = w0 * math.sqrt((1.0 - (((D / d) * (0.5 * M)) * ((0.5 * ((h * M) * D)) / (l * d))))) return tmp
function code(w0, M, D, h, l, d) tmp = 0.0 if (Float64(w0 * sqrt(Float64(1.0 - Float64((Float64(Float64(M * D) / Float64(2.0 * d)) ^ 2.0) * Float64(h / l))))) <= 5e+267) tmp = Float64(w0 * sqrt(Float64(1.0 - Float64((Float64(Float64(M * D) / Float64(d + d)) ^ 2.0) * Float64(h / l))))); else tmp = Float64(w0 * sqrt(Float64(1.0 - Float64(Float64(Float64(D / d) * Float64(0.5 * M)) * Float64(Float64(0.5 * Float64(Float64(h * M) * D)) / Float64(l * d)))))); end return tmp end
function tmp_2 = code(w0, M, D, h, l, d) tmp = 0.0; if ((w0 * sqrt((1.0 - ((((M * D) / (2.0 * d)) ^ 2.0) * (h / l))))) <= 5e+267) tmp = w0 * sqrt((1.0 - ((((M * D) / (d + d)) ^ 2.0) * (h / l)))); else tmp = w0 * sqrt((1.0 - (((D / d) * (0.5 * M)) * ((0.5 * ((h * M) * D)) / (l * d))))); end tmp_2 = tmp; end
code[w0_, M_, D_, h_, l_, d_] := If[LessEqual[N[(w0 * N[Sqrt[N[(1.0 - N[(N[Power[N[(N[(M * D), $MachinePrecision] / N[(2.0 * d), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision], 5e+267], N[(w0 * N[Sqrt[N[(1.0 - N[(N[Power[N[(N[(M * D), $MachinePrecision] / N[(d + d), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision], N[(w0 * N[Sqrt[N[(1.0 - N[(N[(N[(D / d), $MachinePrecision] * N[(0.5 * M), $MachinePrecision]), $MachinePrecision] * N[(N[(0.5 * N[(N[(h * M), $MachinePrecision] * D), $MachinePrecision]), $MachinePrecision] / N[(l * d), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \leq 5 \cdot 10^{+267}:\\
\;\;\;\;w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{d + d}\right)}^{2} \cdot \frac{h}{\ell}}\\
\mathbf{else}:\\
\;\;\;\;w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \left(0.5 \cdot M\right)\right) \cdot \frac{0.5 \cdot \left(\left(h \cdot M\right) \cdot D\right)}{\ell \cdot d}}\\
\end{array}
\end{array}
if (*.f64 w0 (sqrt.f64 (-.f64 #s(literal 1 binary64) (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l))))) < 4.9999999999999999e267Initial program 96.1%
lift-*.f64N/A
count-2-revN/A
lower-+.f6496.1
Applied rewrites96.1%
if 4.9999999999999999e267 < (*.f64 w0 (sqrt.f64 (-.f64 #s(literal 1 binary64) (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l))))) Initial program 34.8%
lift-*.f64N/A
count-2-revN/A
lower-+.f6434.8
Applied rewrites34.8%
lift-*.f64N/A
lift-pow.f64N/A
lift-*.f64N/A
lift-+.f64N/A
lift-/.f64N/A
count-2-revN/A
frac-timesN/A
lift-/.f64N/A
lift-/.f64N/A
lift-*.f64N/A
pow2N/A
lift-/.f64N/A
associate-*l*N/A
lower-*.f64N/A
lift-*.f64N/A
lift-/.f64N/A
*-commutativeN/A
lower-*.f64N/A
lift-/.f64N/A
lower-*.f64N/A
Applied rewrites47.8%
Taylor expanded in M around 0
associate-*r/N/A
lower-/.f64N/A
lower-*.f64N/A
*-commutativeN/A
lower-*.f64N/A
*-commutativeN/A
lower-*.f64N/A
*-commutativeN/A
lower-*.f6469.9
Applied rewrites69.9%
Taylor expanded in M around 0
lower-*.f6469.9
Applied rewrites69.9%
(FPCore (w0 M D h l d)
:precision binary64
(if (<=
(* w0 (sqrt (- 1.0 (* (pow (/ (* M D) (* 2.0 d)) 2.0) (/ h l)))))
5e+267)
(*
w0
(sqrt (- 1.0 (* (* (* (/ M 2.0) (/ D d)) (* (* 0.5 M) (/ D d))) (/ h l)))))
(*
w0
(sqrt
(- 1.0 (* (* (/ D d) (* 0.5 M)) (/ (* 0.5 (* (* h M) D)) (* l d))))))))
double code(double w0, double M, double D, double h, double l, double d) {
double tmp;
if ((w0 * sqrt((1.0 - (pow(((M * D) / (2.0 * d)), 2.0) * (h / l))))) <= 5e+267) {
tmp = w0 * sqrt((1.0 - ((((M / 2.0) * (D / d)) * ((0.5 * M) * (D / d))) * (h / l))));
} else {
tmp = w0 * sqrt((1.0 - (((D / d) * (0.5 * M)) * ((0.5 * ((h * M) * D)) / (l * d)))));
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(w0, m, d, h, l, d_1)
use fmin_fmax_functions
real(8), intent (in) :: w0
real(8), intent (in) :: m
real(8), intent (in) :: d
real(8), intent (in) :: h
real(8), intent (in) :: l
real(8), intent (in) :: d_1
real(8) :: tmp
if ((w0 * sqrt((1.0d0 - ((((m * d) / (2.0d0 * d_1)) ** 2.0d0) * (h / l))))) <= 5d+267) then
tmp = w0 * sqrt((1.0d0 - ((((m / 2.0d0) * (d / d_1)) * ((0.5d0 * m) * (d / d_1))) * (h / l))))
else
tmp = w0 * sqrt((1.0d0 - (((d / d_1) * (0.5d0 * m)) * ((0.5d0 * ((h * m) * d)) / (l * d_1)))))
end if
code = tmp
end function
public static double code(double w0, double M, double D, double h, double l, double d) {
double tmp;
if ((w0 * Math.sqrt((1.0 - (Math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l))))) <= 5e+267) {
tmp = w0 * Math.sqrt((1.0 - ((((M / 2.0) * (D / d)) * ((0.5 * M) * (D / d))) * (h / l))));
} else {
tmp = w0 * Math.sqrt((1.0 - (((D / d) * (0.5 * M)) * ((0.5 * ((h * M) * D)) / (l * d)))));
}
return tmp;
}
def code(w0, M, D, h, l, d): tmp = 0 if (w0 * math.sqrt((1.0 - (math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l))))) <= 5e+267: tmp = w0 * math.sqrt((1.0 - ((((M / 2.0) * (D / d)) * ((0.5 * M) * (D / d))) * (h / l)))) else: tmp = w0 * math.sqrt((1.0 - (((D / d) * (0.5 * M)) * ((0.5 * ((h * M) * D)) / (l * d))))) return tmp
function code(w0, M, D, h, l, d) tmp = 0.0 if (Float64(w0 * sqrt(Float64(1.0 - Float64((Float64(Float64(M * D) / Float64(2.0 * d)) ^ 2.0) * Float64(h / l))))) <= 5e+267) tmp = Float64(w0 * sqrt(Float64(1.0 - Float64(Float64(Float64(Float64(M / 2.0) * Float64(D / d)) * Float64(Float64(0.5 * M) * Float64(D / d))) * Float64(h / l))))); else tmp = Float64(w0 * sqrt(Float64(1.0 - Float64(Float64(Float64(D / d) * Float64(0.5 * M)) * Float64(Float64(0.5 * Float64(Float64(h * M) * D)) / Float64(l * d)))))); end return tmp end
function tmp_2 = code(w0, M, D, h, l, d) tmp = 0.0; if ((w0 * sqrt((1.0 - ((((M * D) / (2.0 * d)) ^ 2.0) * (h / l))))) <= 5e+267) tmp = w0 * sqrt((1.0 - ((((M / 2.0) * (D / d)) * ((0.5 * M) * (D / d))) * (h / l)))); else tmp = w0 * sqrt((1.0 - (((D / d) * (0.5 * M)) * ((0.5 * ((h * M) * D)) / (l * d))))); end tmp_2 = tmp; end
code[w0_, M_, D_, h_, l_, d_] := If[LessEqual[N[(w0 * N[Sqrt[N[(1.0 - N[(N[Power[N[(N[(M * D), $MachinePrecision] / N[(2.0 * d), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision], 5e+267], N[(w0 * N[Sqrt[N[(1.0 - N[(N[(N[(N[(M / 2.0), $MachinePrecision] * N[(D / d), $MachinePrecision]), $MachinePrecision] * N[(N[(0.5 * M), $MachinePrecision] * N[(D / d), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision], N[(w0 * N[Sqrt[N[(1.0 - N[(N[(N[(D / d), $MachinePrecision] * N[(0.5 * M), $MachinePrecision]), $MachinePrecision] * N[(N[(0.5 * N[(N[(h * M), $MachinePrecision] * D), $MachinePrecision]), $MachinePrecision] / N[(l * d), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;w0 \cdot \sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \leq 5 \cdot 10^{+267}:\\
\;\;\;\;w0 \cdot \sqrt{1 - \left(\left(\frac{M}{2} \cdot \frac{D}{d}\right) \cdot \left(\left(0.5 \cdot M\right) \cdot \frac{D}{d}\right)\right) \cdot \frac{h}{\ell}}\\
\mathbf{else}:\\
\;\;\;\;w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \left(0.5 \cdot M\right)\right) \cdot \frac{0.5 \cdot \left(\left(h \cdot M\right) \cdot D\right)}{\ell \cdot d}}\\
\end{array}
\end{array}
if (*.f64 w0 (sqrt.f64 (-.f64 #s(literal 1 binary64) (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l))))) < 4.9999999999999999e267Initial program 96.1%
lift-pow.f64N/A
lift-*.f64N/A
lift-*.f64N/A
lift-/.f64N/A
unpow2N/A
lower-*.f64N/A
times-fracN/A
lower-*.f64N/A
lower-/.f64N/A
lower-/.f64N/A
times-fracN/A
lower-*.f64N/A
lower-/.f64N/A
lower-/.f6495.1
Applied rewrites95.1%
Taylor expanded in M around 0
lower-*.f6495.1
Applied rewrites95.1%
if 4.9999999999999999e267 < (*.f64 w0 (sqrt.f64 (-.f64 #s(literal 1 binary64) (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l))))) Initial program 34.8%
lift-*.f64N/A
count-2-revN/A
lower-+.f6434.8
Applied rewrites34.8%
lift-*.f64N/A
lift-pow.f64N/A
lift-*.f64N/A
lift-+.f64N/A
lift-/.f64N/A
count-2-revN/A
frac-timesN/A
lift-/.f64N/A
lift-/.f64N/A
lift-*.f64N/A
pow2N/A
lift-/.f64N/A
associate-*l*N/A
lower-*.f64N/A
lift-*.f64N/A
lift-/.f64N/A
*-commutativeN/A
lower-*.f64N/A
lift-/.f64N/A
lower-*.f64N/A
Applied rewrites47.8%
Taylor expanded in M around 0
associate-*r/N/A
lower-/.f64N/A
lower-*.f64N/A
*-commutativeN/A
lower-*.f64N/A
*-commutativeN/A
lower-*.f64N/A
*-commutativeN/A
lower-*.f6469.9
Applied rewrites69.9%
Taylor expanded in M around 0
lower-*.f6469.9
Applied rewrites69.9%
(FPCore (w0 M D h l d)
:precision binary64
(let* ((t_0 (* (/ D d) (/ M 2.0))))
(if (<= (* (pow (/ (* M D) (* 2.0 d)) 2.0) (/ h l)) -1e-9)
(* w0 (sqrt (- 1.0 (* t_0 (* t_0 (/ h l))))))
w0)))
double code(double w0, double M, double D, double h, double l, double d) {
double t_0 = (D / d) * (M / 2.0);
double tmp;
if ((pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -1e-9) {
tmp = w0 * sqrt((1.0 - (t_0 * (t_0 * (h / l)))));
} else {
tmp = w0;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(w0, m, d, h, l, d_1)
use fmin_fmax_functions
real(8), intent (in) :: w0
real(8), intent (in) :: m
real(8), intent (in) :: d
real(8), intent (in) :: h
real(8), intent (in) :: l
real(8), intent (in) :: d_1
real(8) :: t_0
real(8) :: tmp
t_0 = (d / d_1) * (m / 2.0d0)
if (((((m * d) / (2.0d0 * d_1)) ** 2.0d0) * (h / l)) <= (-1d-9)) then
tmp = w0 * sqrt((1.0d0 - (t_0 * (t_0 * (h / l)))))
else
tmp = w0
end if
code = tmp
end function
public static double code(double w0, double M, double D, double h, double l, double d) {
double t_0 = (D / d) * (M / 2.0);
double tmp;
if ((Math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -1e-9) {
tmp = w0 * Math.sqrt((1.0 - (t_0 * (t_0 * (h / l)))));
} else {
tmp = w0;
}
return tmp;
}
def code(w0, M, D, h, l, d): t_0 = (D / d) * (M / 2.0) tmp = 0 if (math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -1e-9: tmp = w0 * math.sqrt((1.0 - (t_0 * (t_0 * (h / l))))) else: tmp = w0 return tmp
function code(w0, M, D, h, l, d) t_0 = Float64(Float64(D / d) * Float64(M / 2.0)) tmp = 0.0 if (Float64((Float64(Float64(M * D) / Float64(2.0 * d)) ^ 2.0) * Float64(h / l)) <= -1e-9) tmp = Float64(w0 * sqrt(Float64(1.0 - Float64(t_0 * Float64(t_0 * Float64(h / l)))))); else tmp = w0; end return tmp end
function tmp_2 = code(w0, M, D, h, l, d) t_0 = (D / d) * (M / 2.0); tmp = 0.0; if (((((M * D) / (2.0 * d)) ^ 2.0) * (h / l)) <= -1e-9) tmp = w0 * sqrt((1.0 - (t_0 * (t_0 * (h / l))))); else tmp = w0; end tmp_2 = tmp; end
code[w0_, M_, D_, h_, l_, d_] := Block[{t$95$0 = N[(N[(D / d), $MachinePrecision] * N[(M / 2.0), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[N[(N[Power[N[(N[(M * D), $MachinePrecision] / N[(2.0 * d), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision], -1e-9], N[(w0 * N[Sqrt[N[(1.0 - N[(t$95$0 * N[(t$95$0 * N[(h / l), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision], w0]]
\begin{array}{l}
\\
\begin{array}{l}
t_0 := \frac{D}{d} \cdot \frac{M}{2}\\
\mathbf{if}\;{\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell} \leq -1 \cdot 10^{-9}:\\
\;\;\;\;w0 \cdot \sqrt{1 - t\_0 \cdot \left(t\_0 \cdot \frac{h}{\ell}\right)}\\
\mathbf{else}:\\
\;\;\;\;w0\\
\end{array}
\end{array}
if (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l)) < -1.00000000000000006e-9Initial program 66.5%
lift-*.f64N/A
count-2-revN/A
lower-+.f6466.5
Applied rewrites66.5%
lift-*.f64N/A
lift-pow.f64N/A
lift-*.f64N/A
lift-+.f64N/A
lift-/.f64N/A
count-2-revN/A
frac-timesN/A
lift-/.f64N/A
lift-/.f64N/A
lift-*.f64N/A
pow2N/A
lift-/.f64N/A
associate-*l*N/A
lower-*.f64N/A
lift-*.f64N/A
lift-/.f64N/A
*-commutativeN/A
lower-*.f64N/A
lift-/.f64N/A
lower-*.f64N/A
Applied rewrites70.3%
if -1.00000000000000006e-9 < (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l)) Initial program 87.2%
Taylor expanded in M around 0
Applied rewrites96.0%
(FPCore (w0 M D h l d)
:precision binary64
(if (<= (sqrt (- 1.0 (* (pow (/ (* M D) (* 2.0 d)) 2.0) (/ h l)))) 1.0)
w0
(*
w0
(sqrt
(- 1.0 (* (* (/ D d) (* 0.5 M)) (/ (* 0.5 (* (* h M) D)) (* l d))))))))
double code(double w0, double M, double D, double h, double l, double d) {
double tmp;
if (sqrt((1.0 - (pow(((M * D) / (2.0 * d)), 2.0) * (h / l)))) <= 1.0) {
tmp = w0;
} else {
tmp = w0 * sqrt((1.0 - (((D / d) * (0.5 * M)) * ((0.5 * ((h * M) * D)) / (l * d)))));
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(w0, m, d, h, l, d_1)
use fmin_fmax_functions
real(8), intent (in) :: w0
real(8), intent (in) :: m
real(8), intent (in) :: d
real(8), intent (in) :: h
real(8), intent (in) :: l
real(8), intent (in) :: d_1
real(8) :: tmp
if (sqrt((1.0d0 - ((((m * d) / (2.0d0 * d_1)) ** 2.0d0) * (h / l)))) <= 1.0d0) then
tmp = w0
else
tmp = w0 * sqrt((1.0d0 - (((d / d_1) * (0.5d0 * m)) * ((0.5d0 * ((h * m) * d)) / (l * d_1)))))
end if
code = tmp
end function
public static double code(double w0, double M, double D, double h, double l, double d) {
double tmp;
if (Math.sqrt((1.0 - (Math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l)))) <= 1.0) {
tmp = w0;
} else {
tmp = w0 * Math.sqrt((1.0 - (((D / d) * (0.5 * M)) * ((0.5 * ((h * M) * D)) / (l * d)))));
}
return tmp;
}
def code(w0, M, D, h, l, d): tmp = 0 if math.sqrt((1.0 - (math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l)))) <= 1.0: tmp = w0 else: tmp = w0 * math.sqrt((1.0 - (((D / d) * (0.5 * M)) * ((0.5 * ((h * M) * D)) / (l * d))))) return tmp
function code(w0, M, D, h, l, d) tmp = 0.0 if (sqrt(Float64(1.0 - Float64((Float64(Float64(M * D) / Float64(2.0 * d)) ^ 2.0) * Float64(h / l)))) <= 1.0) tmp = w0; else tmp = Float64(w0 * sqrt(Float64(1.0 - Float64(Float64(Float64(D / d) * Float64(0.5 * M)) * Float64(Float64(0.5 * Float64(Float64(h * M) * D)) / Float64(l * d)))))); end return tmp end
function tmp_2 = code(w0, M, D, h, l, d) tmp = 0.0; if (sqrt((1.0 - ((((M * D) / (2.0 * d)) ^ 2.0) * (h / l)))) <= 1.0) tmp = w0; else tmp = w0 * sqrt((1.0 - (((D / d) * (0.5 * M)) * ((0.5 * ((h * M) * D)) / (l * d))))); end tmp_2 = tmp; end
code[w0_, M_, D_, h_, l_, d_] := If[LessEqual[N[Sqrt[N[(1.0 - N[(N[Power[N[(N[(M * D), $MachinePrecision] / N[(2.0 * d), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision], 1.0], w0, N[(w0 * N[Sqrt[N[(1.0 - N[(N[(N[(D / d), $MachinePrecision] * N[(0.5 * M), $MachinePrecision]), $MachinePrecision] * N[(N[(0.5 * N[(N[(h * M), $MachinePrecision] * D), $MachinePrecision]), $MachinePrecision] / N[(l * d), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;\sqrt{1 - {\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell}} \leq 1:\\
\;\;\;\;w0\\
\mathbf{else}:\\
\;\;\;\;w0 \cdot \sqrt{1 - \left(\frac{D}{d} \cdot \left(0.5 \cdot M\right)\right) \cdot \frac{0.5 \cdot \left(\left(h \cdot M\right) \cdot D\right)}{\ell \cdot d}}\\
\end{array}
\end{array}
if (sqrt.f64 (-.f64 #s(literal 1 binary64) (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l)))) < 1Initial program 100.0%
Taylor expanded in M around 0
Applied rewrites100.0%
if 1 < (sqrt.f64 (-.f64 #s(literal 1 binary64) (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l)))) Initial program 49.1%
lift-*.f64N/A
count-2-revN/A
lower-+.f6449.1
Applied rewrites49.1%
lift-*.f64N/A
lift-pow.f64N/A
lift-*.f64N/A
lift-+.f64N/A
lift-/.f64N/A
count-2-revN/A
frac-timesN/A
lift-/.f64N/A
lift-/.f64N/A
lift-*.f64N/A
pow2N/A
lift-/.f64N/A
associate-*l*N/A
lower-*.f64N/A
lift-*.f64N/A
lift-/.f64N/A
*-commutativeN/A
lower-*.f64N/A
lift-/.f64N/A
lower-*.f64N/A
Applied rewrites57.6%
Taylor expanded in M around 0
associate-*r/N/A
lower-/.f64N/A
lower-*.f64N/A
*-commutativeN/A
lower-*.f64N/A
*-commutativeN/A
lower-*.f64N/A
*-commutativeN/A
lower-*.f6462.2
Applied rewrites62.2%
Taylor expanded in M around 0
lower-*.f6462.2
Applied rewrites62.2%
(FPCore (w0 M D h l d)
:precision binary64
(let* ((t_0 (/ (* M D) (* 2.0 d))))
(if (<= (* (pow t_0 2.0) (/ h l)) -1e-9)
(* w0 (sqrt (- 1.0 (* t_0 (* (* (/ D d) (/ M 2.0)) (/ h l))))))
w0)))
double code(double w0, double M, double D, double h, double l, double d) {
double t_0 = (M * D) / (2.0 * d);
double tmp;
if ((pow(t_0, 2.0) * (h / l)) <= -1e-9) {
tmp = w0 * sqrt((1.0 - (t_0 * (((D / d) * (M / 2.0)) * (h / l)))));
} else {
tmp = w0;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(w0, m, d, h, l, d_1)
use fmin_fmax_functions
real(8), intent (in) :: w0
real(8), intent (in) :: m
real(8), intent (in) :: d
real(8), intent (in) :: h
real(8), intent (in) :: l
real(8), intent (in) :: d_1
real(8) :: t_0
real(8) :: tmp
t_0 = (m * d) / (2.0d0 * d_1)
if (((t_0 ** 2.0d0) * (h / l)) <= (-1d-9)) then
tmp = w0 * sqrt((1.0d0 - (t_0 * (((d / d_1) * (m / 2.0d0)) * (h / l)))))
else
tmp = w0
end if
code = tmp
end function
public static double code(double w0, double M, double D, double h, double l, double d) {
double t_0 = (M * D) / (2.0 * d);
double tmp;
if ((Math.pow(t_0, 2.0) * (h / l)) <= -1e-9) {
tmp = w0 * Math.sqrt((1.0 - (t_0 * (((D / d) * (M / 2.0)) * (h / l)))));
} else {
tmp = w0;
}
return tmp;
}
def code(w0, M, D, h, l, d): t_0 = (M * D) / (2.0 * d) tmp = 0 if (math.pow(t_0, 2.0) * (h / l)) <= -1e-9: tmp = w0 * math.sqrt((1.0 - (t_0 * (((D / d) * (M / 2.0)) * (h / l))))) else: tmp = w0 return tmp
function code(w0, M, D, h, l, d) t_0 = Float64(Float64(M * D) / Float64(2.0 * d)) tmp = 0.0 if (Float64((t_0 ^ 2.0) * Float64(h / l)) <= -1e-9) tmp = Float64(w0 * sqrt(Float64(1.0 - Float64(t_0 * Float64(Float64(Float64(D / d) * Float64(M / 2.0)) * Float64(h / l)))))); else tmp = w0; end return tmp end
function tmp_2 = code(w0, M, D, h, l, d) t_0 = (M * D) / (2.0 * d); tmp = 0.0; if (((t_0 ^ 2.0) * (h / l)) <= -1e-9) tmp = w0 * sqrt((1.0 - (t_0 * (((D / d) * (M / 2.0)) * (h / l))))); else tmp = w0; end tmp_2 = tmp; end
code[w0_, M_, D_, h_, l_, d_] := Block[{t$95$0 = N[(N[(M * D), $MachinePrecision] / N[(2.0 * d), $MachinePrecision]), $MachinePrecision]}, If[LessEqual[N[(N[Power[t$95$0, 2.0], $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision], -1e-9], N[(w0 * N[Sqrt[N[(1.0 - N[(t$95$0 * N[(N[(N[(D / d), $MachinePrecision] * N[(M / 2.0), $MachinePrecision]), $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision], w0]]
\begin{array}{l}
\\
\begin{array}{l}
t_0 := \frac{M \cdot D}{2 \cdot d}\\
\mathbf{if}\;{t\_0}^{2} \cdot \frac{h}{\ell} \leq -1 \cdot 10^{-9}:\\
\;\;\;\;w0 \cdot \sqrt{1 - t\_0 \cdot \left(\left(\frac{D}{d} \cdot \frac{M}{2}\right) \cdot \frac{h}{\ell}\right)}\\
\mathbf{else}:\\
\;\;\;\;w0\\
\end{array}
\end{array}
if (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l)) < -1.00000000000000006e-9Initial program 66.5%
lift-*.f64N/A
count-2-revN/A
lower-+.f6466.5
Applied rewrites66.5%
lift-*.f64N/A
lift-pow.f64N/A
lift-*.f64N/A
lift-+.f64N/A
lift-/.f64N/A
count-2-revN/A
frac-timesN/A
lift-/.f64N/A
lift-/.f64N/A
lift-*.f64N/A
pow2N/A
lift-/.f64N/A
associate-*l*N/A
lower-*.f64N/A
lift-*.f64N/A
lift-/.f64N/A
*-commutativeN/A
lower-*.f64N/A
lift-/.f64N/A
lower-*.f64N/A
Applied rewrites70.3%
lift-*.f64N/A
lift-/.f64N/A
lift-/.f64N/A
frac-timesN/A
*-commutativeN/A
lower-/.f64N/A
*-commutativeN/A
lower-*.f64N/A
lower-*.f6468.9
Applied rewrites68.9%
if -1.00000000000000006e-9 < (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l)) Initial program 87.2%
Taylor expanded in M around 0
Applied rewrites96.0%
(FPCore (w0 M D h l d) :precision binary64 (if (<= (* (pow (/ (* M D) (* 2.0 d)) 2.0) (/ h l)) -5e+19) (* w0 (sqrt (* -0.25 (* (* D D) (* (* (/ M d) (/ M d)) (/ h l)))))) w0))
double code(double w0, double M, double D, double h, double l, double d) {
double tmp;
if ((pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -5e+19) {
tmp = w0 * sqrt((-0.25 * ((D * D) * (((M / d) * (M / d)) * (h / l)))));
} else {
tmp = w0;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(w0, m, d, h, l, d_1)
use fmin_fmax_functions
real(8), intent (in) :: w0
real(8), intent (in) :: m
real(8), intent (in) :: d
real(8), intent (in) :: h
real(8), intent (in) :: l
real(8), intent (in) :: d_1
real(8) :: tmp
if (((((m * d) / (2.0d0 * d_1)) ** 2.0d0) * (h / l)) <= (-5d+19)) then
tmp = w0 * sqrt(((-0.25d0) * ((d * d) * (((m / d_1) * (m / d_1)) * (h / l)))))
else
tmp = w0
end if
code = tmp
end function
public static double code(double w0, double M, double D, double h, double l, double d) {
double tmp;
if ((Math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -5e+19) {
tmp = w0 * Math.sqrt((-0.25 * ((D * D) * (((M / d) * (M / d)) * (h / l)))));
} else {
tmp = w0;
}
return tmp;
}
def code(w0, M, D, h, l, d): tmp = 0 if (math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -5e+19: tmp = w0 * math.sqrt((-0.25 * ((D * D) * (((M / d) * (M / d)) * (h / l))))) else: tmp = w0 return tmp
function code(w0, M, D, h, l, d) tmp = 0.0 if (Float64((Float64(Float64(M * D) / Float64(2.0 * d)) ^ 2.0) * Float64(h / l)) <= -5e+19) tmp = Float64(w0 * sqrt(Float64(-0.25 * Float64(Float64(D * D) * Float64(Float64(Float64(M / d) * Float64(M / d)) * Float64(h / l)))))); else tmp = w0; end return tmp end
function tmp_2 = code(w0, M, D, h, l, d) tmp = 0.0; if (((((M * D) / (2.0 * d)) ^ 2.0) * (h / l)) <= -5e+19) tmp = w0 * sqrt((-0.25 * ((D * D) * (((M / d) * (M / d)) * (h / l))))); else tmp = w0; end tmp_2 = tmp; end
code[w0_, M_, D_, h_, l_, d_] := If[LessEqual[N[(N[Power[N[(N[(M * D), $MachinePrecision] / N[(2.0 * d), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision], -5e+19], N[(w0 * N[Sqrt[N[(-0.25 * N[(N[(D * D), $MachinePrecision] * N[(N[(N[(M / d), $MachinePrecision] * N[(M / d), $MachinePrecision]), $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision], w0]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;{\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell} \leq -5 \cdot 10^{+19}:\\
\;\;\;\;w0 \cdot \sqrt{-0.25 \cdot \left(\left(D \cdot D\right) \cdot \left(\left(\frac{M}{d} \cdot \frac{M}{d}\right) \cdot \frac{h}{\ell}\right)\right)}\\
\mathbf{else}:\\
\;\;\;\;w0\\
\end{array}
\end{array}
if (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l)) < -5e19Initial program 65.5%
Taylor expanded in M around inf
lower-*.f64N/A
lower-/.f64N/A
associate-*r*N/A
lower-*.f64N/A
pow-prod-downN/A
lower-pow.f64N/A
lower-*.f64N/A
lower-*.f64N/A
unpow2N/A
lower-*.f6444.3
Applied rewrites44.3%
lift-*.f64N/A
lift-*.f64N/A
lift-pow.f64N/A
unpow-prod-downN/A
associate-*r*N/A
*-commutativeN/A
lower-*.f64N/A
lower-*.f64N/A
unpow2N/A
lower-*.f64N/A
unpow2N/A
lower-*.f6434.9
Applied rewrites34.9%
lift-*.f64N/A
lift-*.f64N/A
associate-*l*N/A
lower-*.f64N/A
*-commutativeN/A
lower-*.f6436.6
Applied rewrites36.6%
lift-*.f64N/A
lift-*.f64N/A
pow2N/A
lower-/.f64N/A
lift-*.f64N/A
lift-*.f64N/A
pow2N/A
*-commutativeN/A
lift-*.f64N/A
lift-*.f64N/A
*-commutativeN/A
associate-*l*N/A
pow2N/A
associate-/l*N/A
lower-*.f64N/A
pow2N/A
lift-*.f64N/A
times-fracN/A
pow2N/A
pow2N/A
Applied rewrites50.3%
if -5e19 < (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l)) Initial program 87.4%
Taylor expanded in M around 0
Applied rewrites95.6%
(FPCore (w0 M D h l d) :precision binary64 (if (<= (* (pow (/ (* M D) (* 2.0 d)) 2.0) (/ h l)) -2e+25) (* w0 (sqrt (* -0.25 (/ (* (* (* D M) (* D M)) h) (* (* d d) l))))) w0))
double code(double w0, double M, double D, double h, double l, double d) {
double tmp;
if ((pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -2e+25) {
tmp = w0 * sqrt((-0.25 * ((((D * M) * (D * M)) * h) / ((d * d) * l))));
} else {
tmp = w0;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(w0, m, d, h, l, d_1)
use fmin_fmax_functions
real(8), intent (in) :: w0
real(8), intent (in) :: m
real(8), intent (in) :: d
real(8), intent (in) :: h
real(8), intent (in) :: l
real(8), intent (in) :: d_1
real(8) :: tmp
if (((((m * d) / (2.0d0 * d_1)) ** 2.0d0) * (h / l)) <= (-2d+25)) then
tmp = w0 * sqrt(((-0.25d0) * ((((d * m) * (d * m)) * h) / ((d_1 * d_1) * l))))
else
tmp = w0
end if
code = tmp
end function
public static double code(double w0, double M, double D, double h, double l, double d) {
double tmp;
if ((Math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -2e+25) {
tmp = w0 * Math.sqrt((-0.25 * ((((D * M) * (D * M)) * h) / ((d * d) * l))));
} else {
tmp = w0;
}
return tmp;
}
def code(w0, M, D, h, l, d): tmp = 0 if (math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -2e+25: tmp = w0 * math.sqrt((-0.25 * ((((D * M) * (D * M)) * h) / ((d * d) * l)))) else: tmp = w0 return tmp
function code(w0, M, D, h, l, d) tmp = 0.0 if (Float64((Float64(Float64(M * D) / Float64(2.0 * d)) ^ 2.0) * Float64(h / l)) <= -2e+25) tmp = Float64(w0 * sqrt(Float64(-0.25 * Float64(Float64(Float64(Float64(D * M) * Float64(D * M)) * h) / Float64(Float64(d * d) * l))))); else tmp = w0; end return tmp end
function tmp_2 = code(w0, M, D, h, l, d) tmp = 0.0; if (((((M * D) / (2.0 * d)) ^ 2.0) * (h / l)) <= -2e+25) tmp = w0 * sqrt((-0.25 * ((((D * M) * (D * M)) * h) / ((d * d) * l)))); else tmp = w0; end tmp_2 = tmp; end
code[w0_, M_, D_, h_, l_, d_] := If[LessEqual[N[(N[Power[N[(N[(M * D), $MachinePrecision] / N[(2.0 * d), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision], -2e+25], N[(w0 * N[Sqrt[N[(-0.25 * N[(N[(N[(N[(D * M), $MachinePrecision] * N[(D * M), $MachinePrecision]), $MachinePrecision] * h), $MachinePrecision] / N[(N[(d * d), $MachinePrecision] * l), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision], w0]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;{\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell} \leq -2 \cdot 10^{+25}:\\
\;\;\;\;w0 \cdot \sqrt{-0.25 \cdot \frac{\left(\left(D \cdot M\right) \cdot \left(D \cdot M\right)\right) \cdot h}{\left(d \cdot d\right) \cdot \ell}}\\
\mathbf{else}:\\
\;\;\;\;w0\\
\end{array}
\end{array}
if (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l)) < -2.00000000000000018e25Initial program 64.4%
Taylor expanded in M around inf
lower-*.f64N/A
lower-/.f64N/A
associate-*r*N/A
lower-*.f64N/A
pow-prod-downN/A
lower-pow.f64N/A
lower-*.f64N/A
lower-*.f64N/A
unpow2N/A
lower-*.f6445.7
Applied rewrites45.7%
lift-*.f64N/A
lift-pow.f64N/A
unpow2N/A
lower-*.f64N/A
lift-*.f64N/A
lift-*.f6445.7
Applied rewrites45.7%
if -2.00000000000000018e25 < (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l)) Initial program 87.5%
Taylor expanded in M around 0
Applied rewrites94.7%
(FPCore (w0 M D h l d) :precision binary64 (if (<= (* (pow (/ (* M D) (* 2.0 d)) 2.0) (/ h l)) -2e+25) (* w0 (sqrt (* -0.25 (* (* (* h M) M) (/ (* D D) (* (* d d) l)))))) w0))
double code(double w0, double M, double D, double h, double l, double d) {
double tmp;
if ((pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -2e+25) {
tmp = w0 * sqrt((-0.25 * (((h * M) * M) * ((D * D) / ((d * d) * l)))));
} else {
tmp = w0;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(w0, m, d, h, l, d_1)
use fmin_fmax_functions
real(8), intent (in) :: w0
real(8), intent (in) :: m
real(8), intent (in) :: d
real(8), intent (in) :: h
real(8), intent (in) :: l
real(8), intent (in) :: d_1
real(8) :: tmp
if (((((m * d) / (2.0d0 * d_1)) ** 2.0d0) * (h / l)) <= (-2d+25)) then
tmp = w0 * sqrt(((-0.25d0) * (((h * m) * m) * ((d * d) / ((d_1 * d_1) * l)))))
else
tmp = w0
end if
code = tmp
end function
public static double code(double w0, double M, double D, double h, double l, double d) {
double tmp;
if ((Math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -2e+25) {
tmp = w0 * Math.sqrt((-0.25 * (((h * M) * M) * ((D * D) / ((d * d) * l)))));
} else {
tmp = w0;
}
return tmp;
}
def code(w0, M, D, h, l, d): tmp = 0 if (math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -2e+25: tmp = w0 * math.sqrt((-0.25 * (((h * M) * M) * ((D * D) / ((d * d) * l))))) else: tmp = w0 return tmp
function code(w0, M, D, h, l, d) tmp = 0.0 if (Float64((Float64(Float64(M * D) / Float64(2.0 * d)) ^ 2.0) * Float64(h / l)) <= -2e+25) tmp = Float64(w0 * sqrt(Float64(-0.25 * Float64(Float64(Float64(h * M) * M) * Float64(Float64(D * D) / Float64(Float64(d * d) * l)))))); else tmp = w0; end return tmp end
function tmp_2 = code(w0, M, D, h, l, d) tmp = 0.0; if (((((M * D) / (2.0 * d)) ^ 2.0) * (h / l)) <= -2e+25) tmp = w0 * sqrt((-0.25 * (((h * M) * M) * ((D * D) / ((d * d) * l))))); else tmp = w0; end tmp_2 = tmp; end
code[w0_, M_, D_, h_, l_, d_] := If[LessEqual[N[(N[Power[N[(N[(M * D), $MachinePrecision] / N[(2.0 * d), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision], -2e+25], N[(w0 * N[Sqrt[N[(-0.25 * N[(N[(N[(h * M), $MachinePrecision] * M), $MachinePrecision] * N[(N[(D * D), $MachinePrecision] / N[(N[(d * d), $MachinePrecision] * l), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision], w0]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;{\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell} \leq -2 \cdot 10^{+25}:\\
\;\;\;\;w0 \cdot \sqrt{-0.25 \cdot \left(\left(\left(h \cdot M\right) \cdot M\right) \cdot \frac{D \cdot D}{\left(d \cdot d\right) \cdot \ell}\right)}\\
\mathbf{else}:\\
\;\;\;\;w0\\
\end{array}
\end{array}
if (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l)) < -2.00000000000000018e25Initial program 64.4%
Taylor expanded in M around inf
lower-*.f64N/A
lower-/.f64N/A
associate-*r*N/A
lower-*.f64N/A
pow-prod-downN/A
lower-pow.f64N/A
lower-*.f64N/A
lower-*.f64N/A
unpow2N/A
lower-*.f6445.7
Applied rewrites45.7%
lift-*.f64N/A
lift-*.f64N/A
lift-pow.f64N/A
unpow-prod-downN/A
associate-*r*N/A
*-commutativeN/A
lower-*.f64N/A
lower-*.f64N/A
unpow2N/A
lower-*.f64N/A
unpow2N/A
lower-*.f6436.0
Applied rewrites36.0%
lift-*.f64N/A
lift-*.f64N/A
associate-*l*N/A
lower-*.f64N/A
*-commutativeN/A
lower-*.f6437.7
Applied rewrites37.7%
lift-/.f64N/A
lift-*.f64N/A
lift-*.f64N/A
pow2N/A
associate-/l*N/A
lift-*.f64N/A
lift-*.f64N/A
*-commutativeN/A
associate-*l*N/A
lift-*.f64N/A
lift-*.f64N/A
lower-*.f64N/A
lift-*.f64N/A
lift-*.f64N/A
associate-*l*N/A
*-commutativeN/A
lift-*.f64N/A
*-commutativeN/A
lower-*.f64N/A
lift-*.f64N/A
lift-*.f64N/A
pow2N/A
lower-/.f64N/A
pow2N/A
lift-*.f64N/A
pow2N/A
Applied rewrites40.8%
if -2.00000000000000018e25 < (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l)) Initial program 87.5%
Taylor expanded in M around 0
Applied rewrites94.7%
(FPCore (w0 M D h l d) :precision binary64 (if (<= (* (pow (/ (* M D) (* 2.0 d)) 2.0) (/ h l)) -2e+25) (* w0 (sqrt (* -0.25 (* (* D D) (* (* M M) (/ h (* (* d d) l))))))) w0))
double code(double w0, double M, double D, double h, double l, double d) {
double tmp;
if ((pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -2e+25) {
tmp = w0 * sqrt((-0.25 * ((D * D) * ((M * M) * (h / ((d * d) * l))))));
} else {
tmp = w0;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(w0, m, d, h, l, d_1)
use fmin_fmax_functions
real(8), intent (in) :: w0
real(8), intent (in) :: m
real(8), intent (in) :: d
real(8), intent (in) :: h
real(8), intent (in) :: l
real(8), intent (in) :: d_1
real(8) :: tmp
if (((((m * d) / (2.0d0 * d_1)) ** 2.0d0) * (h / l)) <= (-2d+25)) then
tmp = w0 * sqrt(((-0.25d0) * ((d * d) * ((m * m) * (h / ((d_1 * d_1) * l))))))
else
tmp = w0
end if
code = tmp
end function
public static double code(double w0, double M, double D, double h, double l, double d) {
double tmp;
if ((Math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -2e+25) {
tmp = w0 * Math.sqrt((-0.25 * ((D * D) * ((M * M) * (h / ((d * d) * l))))));
} else {
tmp = w0;
}
return tmp;
}
def code(w0, M, D, h, l, d): tmp = 0 if (math.pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -2e+25: tmp = w0 * math.sqrt((-0.25 * ((D * D) * ((M * M) * (h / ((d * d) * l)))))) else: tmp = w0 return tmp
function code(w0, M, D, h, l, d) tmp = 0.0 if (Float64((Float64(Float64(M * D) / Float64(2.0 * d)) ^ 2.0) * Float64(h / l)) <= -2e+25) tmp = Float64(w0 * sqrt(Float64(-0.25 * Float64(Float64(D * D) * Float64(Float64(M * M) * Float64(h / Float64(Float64(d * d) * l))))))); else tmp = w0; end return tmp end
function tmp_2 = code(w0, M, D, h, l, d) tmp = 0.0; if (((((M * D) / (2.0 * d)) ^ 2.0) * (h / l)) <= -2e+25) tmp = w0 * sqrt((-0.25 * ((D * D) * ((M * M) * (h / ((d * d) * l)))))); else tmp = w0; end tmp_2 = tmp; end
code[w0_, M_, D_, h_, l_, d_] := If[LessEqual[N[(N[Power[N[(N[(M * D), $MachinePrecision] / N[(2.0 * d), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision], -2e+25], N[(w0 * N[Sqrt[N[(-0.25 * N[(N[(D * D), $MachinePrecision] * N[(N[(M * M), $MachinePrecision] * N[(h / N[(N[(d * d), $MachinePrecision] * l), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision], w0]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;{\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell} \leq -2 \cdot 10^{+25}:\\
\;\;\;\;w0 \cdot \sqrt{-0.25 \cdot \left(\left(D \cdot D\right) \cdot \left(\left(M \cdot M\right) \cdot \frac{h}{\left(d \cdot d\right) \cdot \ell}\right)\right)}\\
\mathbf{else}:\\
\;\;\;\;w0\\
\end{array}
\end{array}
if (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l)) < -2.00000000000000018e25Initial program 64.4%
Taylor expanded in M around inf
lower-*.f64N/A
lower-/.f64N/A
associate-*r*N/A
lower-*.f64N/A
pow-prod-downN/A
lower-pow.f64N/A
lower-*.f64N/A
lower-*.f64N/A
unpow2N/A
lower-*.f6445.7
Applied rewrites45.7%
lift-/.f64N/A
lift-*.f64N/A
lift-*.f64N/A
lift-*.f64N/A
pow2N/A
lift-*.f64N/A
lift-pow.f64N/A
unpow-prod-downN/A
associate-*r*N/A
associate-/l*N/A
lower-*.f64N/A
unpow2N/A
lower-*.f64N/A
associate-/l*N/A
lower-*.f64N/A
unpow2N/A
lower-*.f64N/A
lower-/.f64N/A
pow2N/A
lift-*.f64N/A
lift-*.f6440.7
Applied rewrites40.7%
if -2.00000000000000018e25 < (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l)) Initial program 87.5%
Taylor expanded in M around 0
Applied rewrites94.7%
(FPCore (w0 M D h l d) :precision binary64 (if (<= (* (pow (/ (* M D) (* 2.0 d)) 2.0) (/ h l)) -1e+272) (fma (/ (* (* (* M D) (* M D)) (* h w0)) (* d (* d l))) -0.125 w0) w0))
double code(double w0, double M, double D, double h, double l, double d) {
double tmp;
if ((pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -1e+272) {
tmp = fma(((((M * D) * (M * D)) * (h * w0)) / (d * (d * l))), -0.125, w0);
} else {
tmp = w0;
}
return tmp;
}
function code(w0, M, D, h, l, d) tmp = 0.0 if (Float64((Float64(Float64(M * D) / Float64(2.0 * d)) ^ 2.0) * Float64(h / l)) <= -1e+272) tmp = fma(Float64(Float64(Float64(Float64(M * D) * Float64(M * D)) * Float64(h * w0)) / Float64(d * Float64(d * l))), -0.125, w0); else tmp = w0; end return tmp end
code[w0_, M_, D_, h_, l_, d_] := If[LessEqual[N[(N[Power[N[(N[(M * D), $MachinePrecision] / N[(2.0 * d), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision], -1e+272], N[(N[(N[(N[(N[(M * D), $MachinePrecision] * N[(M * D), $MachinePrecision]), $MachinePrecision] * N[(h * w0), $MachinePrecision]), $MachinePrecision] / N[(d * N[(d * l), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] * -0.125 + w0), $MachinePrecision], w0]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;{\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell} \leq -1 \cdot 10^{+272}:\\
\;\;\;\;\mathsf{fma}\left(\frac{\left(\left(M \cdot D\right) \cdot \left(M \cdot D\right)\right) \cdot \left(h \cdot w0\right)}{d \cdot \left(d \cdot \ell\right)}, -0.125, w0\right)\\
\mathbf{else}:\\
\;\;\;\;w0\\
\end{array}
\end{array}
if (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l)) < -1.0000000000000001e272Initial program 54.5%
Taylor expanded in M around 0
+-commutativeN/A
*-commutativeN/A
lower-fma.f64N/A
lower-/.f64N/A
associate-*r*N/A
lower-*.f64N/A
pow-prod-downN/A
lower-pow.f64N/A
lower-*.f64N/A
lower-*.f64N/A
lower-*.f64N/A
unpow2N/A
lower-*.f6448.1
Applied rewrites48.1%
lift-*.f64N/A
lift-*.f64N/A
associate-*l*N/A
lower-*.f64N/A
lower-*.f6450.2
Applied rewrites50.2%
lift-*.f64N/A
lift-pow.f64N/A
unpow2N/A
lower-*.f64N/A
*-commutativeN/A
lower-*.f64N/A
*-commutativeN/A
lower-*.f6450.2
Applied rewrites50.2%
if -1.0000000000000001e272 < (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l)) Initial program 88.3%
Taylor expanded in M around 0
Applied rewrites88.8%
(FPCore (w0 M D h l d) :precision binary64 (if (<= (* (pow (/ (* M D) (* 2.0 d)) 2.0) (/ h l)) -1e+272) (fma (/ (* (* (* D M) (* D M)) (* h w0)) (* (* d d) l)) -0.125 w0) w0))
double code(double w0, double M, double D, double h, double l, double d) {
double tmp;
if ((pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -1e+272) {
tmp = fma(((((D * M) * (D * M)) * (h * w0)) / ((d * d) * l)), -0.125, w0);
} else {
tmp = w0;
}
return tmp;
}
function code(w0, M, D, h, l, d) tmp = 0.0 if (Float64((Float64(Float64(M * D) / Float64(2.0 * d)) ^ 2.0) * Float64(h / l)) <= -1e+272) tmp = fma(Float64(Float64(Float64(Float64(D * M) * Float64(D * M)) * Float64(h * w0)) / Float64(Float64(d * d) * l)), -0.125, w0); else tmp = w0; end return tmp end
code[w0_, M_, D_, h_, l_, d_] := If[LessEqual[N[(N[Power[N[(N[(M * D), $MachinePrecision] / N[(2.0 * d), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision], -1e+272], N[(N[(N[(N[(N[(D * M), $MachinePrecision] * N[(D * M), $MachinePrecision]), $MachinePrecision] * N[(h * w0), $MachinePrecision]), $MachinePrecision] / N[(N[(d * d), $MachinePrecision] * l), $MachinePrecision]), $MachinePrecision] * -0.125 + w0), $MachinePrecision], w0]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;{\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell} \leq -1 \cdot 10^{+272}:\\
\;\;\;\;\mathsf{fma}\left(\frac{\left(\left(D \cdot M\right) \cdot \left(D \cdot M\right)\right) \cdot \left(h \cdot w0\right)}{\left(d \cdot d\right) \cdot \ell}, -0.125, w0\right)\\
\mathbf{else}:\\
\;\;\;\;w0\\
\end{array}
\end{array}
if (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l)) < -1.0000000000000001e272Initial program 54.5%
Taylor expanded in M around 0
+-commutativeN/A
*-commutativeN/A
lower-fma.f64N/A
lower-/.f64N/A
associate-*r*N/A
lower-*.f64N/A
pow-prod-downN/A
lower-pow.f64N/A
lower-*.f64N/A
lower-*.f64N/A
lower-*.f64N/A
unpow2N/A
lower-*.f6448.1
Applied rewrites48.1%
lift-*.f64N/A
lift-pow.f64N/A
unpow2N/A
lower-*.f64N/A
lift-*.f64N/A
lift-*.f6448.1
Applied rewrites48.1%
if -1.0000000000000001e272 < (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l)) Initial program 88.3%
Taylor expanded in M around 0
Applied rewrites88.8%
(FPCore (w0 M D h l d) :precision binary64 (if (<= (* (pow (/ (* M D) (* 2.0 d)) 2.0) (/ h l)) -2e+103) (fma (* D (/ (* (* (* (* h M) M) w0) D) (* (* d d) l))) -0.125 w0) w0))
double code(double w0, double M, double D, double h, double l, double d) {
double tmp;
if ((pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -2e+103) {
tmp = fma((D * (((((h * M) * M) * w0) * D) / ((d * d) * l))), -0.125, w0);
} else {
tmp = w0;
}
return tmp;
}
function code(w0, M, D, h, l, d) tmp = 0.0 if (Float64((Float64(Float64(M * D) / Float64(2.0 * d)) ^ 2.0) * Float64(h / l)) <= -2e+103) tmp = fma(Float64(D * Float64(Float64(Float64(Float64(Float64(h * M) * M) * w0) * D) / Float64(Float64(d * d) * l))), -0.125, w0); else tmp = w0; end return tmp end
code[w0_, M_, D_, h_, l_, d_] := If[LessEqual[N[(N[Power[N[(N[(M * D), $MachinePrecision] / N[(2.0 * d), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision], -2e+103], N[(N[(D * N[(N[(N[(N[(N[(h * M), $MachinePrecision] * M), $MachinePrecision] * w0), $MachinePrecision] * D), $MachinePrecision] / N[(N[(d * d), $MachinePrecision] * l), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] * -0.125 + w0), $MachinePrecision], w0]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;{\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell} \leq -2 \cdot 10^{+103}:\\
\;\;\;\;\mathsf{fma}\left(D \cdot \frac{\left(\left(\left(h \cdot M\right) \cdot M\right) \cdot w0\right) \cdot D}{\left(d \cdot d\right) \cdot \ell}, -0.125, w0\right)\\
\mathbf{else}:\\
\;\;\;\;w0\\
\end{array}
\end{array}
if (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l)) < -2e103Initial program 60.8%
Taylor expanded in M around 0
+-commutativeN/A
*-commutativeN/A
lower-fma.f64N/A
lower-/.f64N/A
associate-*r*N/A
lower-*.f64N/A
pow-prod-downN/A
lower-pow.f64N/A
lower-*.f64N/A
lower-*.f64N/A
lower-*.f64N/A
unpow2N/A
lower-*.f6441.9
Applied rewrites41.9%
lift-/.f64N/A
lift-*.f64N/A
lift-*.f64N/A
lift-pow.f64N/A
unpow-prod-downN/A
lift-*.f64N/A
associate-*r*N/A
lift-*.f64N/A
lift-*.f64N/A
pow2N/A
associate-/l*N/A
lower-*.f64N/A
unpow2N/A
lower-*.f64N/A
lower-/.f64N/A
associate-*r*N/A
lower-*.f64N/A
lower-*.f64N/A
unpow2N/A
lower-*.f64N/A
pow2N/A
lift-*.f64N/A
lift-*.f6439.6
Applied rewrites39.6%
lift-*.f64N/A
lift-*.f64N/A
associate-*l*N/A
lower-*.f64N/A
lower-*.f6440.5
lift-/.f64N/A
lift-*.f64N/A
associate-/l*N/A
lower-*.f64N/A
lift-*.f64N/A
lift-*.f64N/A
pow2N/A
lower-/.f64N/A
pow2N/A
lift-*.f64N/A
lift-*.f6440.3
Applied rewrites40.3%
lift-*.f64N/A
lift-*.f64N/A
lift-*.f64N/A
lift-*.f64N/A
lift-/.f64N/A
lift-*.f64N/A
lift-*.f64N/A
lift-*.f64N/A
lift-*.f64N/A
lift-*.f64N/A
lift-*.f64N/A
associate-*r/N/A
lift-*.f64N/A
lift-*.f64N/A
pow2N/A
associate-*r*N/A
lift-*.f64N/A
lift-*.f64N/A
pow2N/A
Applied rewrites42.3%
if -2e103 < (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l)) Initial program 87.9%
Taylor expanded in M around 0
Applied rewrites92.1%
(FPCore (w0 M D h l d) :precision binary64 (if (<= (* (pow (/ (* M D) (* 2.0 d)) 2.0) (/ h l)) -1e+135) (fma (* D (* D (* (* M M) (/ (* h w0) (* (* d d) l))))) -0.125 w0) w0))
double code(double w0, double M, double D, double h, double l, double d) {
double tmp;
if ((pow(((M * D) / (2.0 * d)), 2.0) * (h / l)) <= -1e+135) {
tmp = fma((D * (D * ((M * M) * ((h * w0) / ((d * d) * l))))), -0.125, w0);
} else {
tmp = w0;
}
return tmp;
}
function code(w0, M, D, h, l, d) tmp = 0.0 if (Float64((Float64(Float64(M * D) / Float64(2.0 * d)) ^ 2.0) * Float64(h / l)) <= -1e+135) tmp = fma(Float64(D * Float64(D * Float64(Float64(M * M) * Float64(Float64(h * w0) / Float64(Float64(d * d) * l))))), -0.125, w0); else tmp = w0; end return tmp end
code[w0_, M_, D_, h_, l_, d_] := If[LessEqual[N[(N[Power[N[(N[(M * D), $MachinePrecision] / N[(2.0 * d), $MachinePrecision]), $MachinePrecision], 2.0], $MachinePrecision] * N[(h / l), $MachinePrecision]), $MachinePrecision], -1e+135], N[(N[(D * N[(D * N[(N[(M * M), $MachinePrecision] * N[(N[(h * w0), $MachinePrecision] / N[(N[(d * d), $MachinePrecision] * l), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision] * -0.125 + w0), $MachinePrecision], w0]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;{\left(\frac{M \cdot D}{2 \cdot d}\right)}^{2} \cdot \frac{h}{\ell} \leq -1 \cdot 10^{+135}:\\
\;\;\;\;\mathsf{fma}\left(D \cdot \left(D \cdot \left(\left(M \cdot M\right) \cdot \frac{h \cdot w0}{\left(d \cdot d\right) \cdot \ell}\right)\right), -0.125, w0\right)\\
\mathbf{else}:\\
\;\;\;\;w0\\
\end{array}
\end{array}
if (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l)) < -9.99999999999999962e134Initial program 60.1%
Taylor expanded in M around 0
+-commutativeN/A
*-commutativeN/A
lower-fma.f64N/A
lower-/.f64N/A
associate-*r*N/A
lower-*.f64N/A
pow-prod-downN/A
lower-pow.f64N/A
lower-*.f64N/A
lower-*.f64N/A
lower-*.f64N/A
unpow2N/A
lower-*.f6442.6
Applied rewrites42.6%
lift-/.f64N/A
lift-*.f64N/A
lift-*.f64N/A
lift-pow.f64N/A
unpow-prod-downN/A
lift-*.f64N/A
associate-*r*N/A
lift-*.f64N/A
lift-*.f64N/A
pow2N/A
associate-/l*N/A
lower-*.f64N/A
unpow2N/A
lower-*.f64N/A
lower-/.f64N/A
associate-*r*N/A
lower-*.f64N/A
lower-*.f64N/A
unpow2N/A
lower-*.f64N/A
pow2N/A
lift-*.f64N/A
lift-*.f6440.3
Applied rewrites40.3%
lift-*.f64N/A
lift-*.f64N/A
associate-*l*N/A
lower-*.f64N/A
lower-*.f6441.1
lift-/.f64N/A
lift-*.f64N/A
associate-/l*N/A
lower-*.f64N/A
lift-*.f64N/A
lift-*.f64N/A
pow2N/A
lower-/.f64N/A
pow2N/A
lift-*.f64N/A
lift-*.f6440.9
Applied rewrites40.9%
lift-*.f64N/A
lift-/.f64N/A
associate-*r/N/A
lift-*.f64N/A
lift-*.f64N/A
pow2N/A
associate-*r*N/A
lift-*.f64N/A
lift-*.f64N/A
pow2N/A
associate-/l*N/A
lower-*.f64N/A
pow2N/A
lift-*.f64N/A
lower-/.f64N/A
lift-*.f64N/A
pow2N/A
lift-*.f64N/A
lift-*.f6442.6
Applied rewrites42.6%
if -9.99999999999999962e134 < (*.f64 (pow.f64 (/.f64 (*.f64 M D) (*.f64 #s(literal 2 binary64) d)) #s(literal 2 binary64)) (/.f64 h l)) Initial program 87.9%
Taylor expanded in M around 0
Applied rewrites91.7%
(FPCore (w0 M D h l d) :precision binary64 w0)
double code(double w0, double M, double D, double h, double l, double d) {
return w0;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(w0, m, d, h, l, d_1)
use fmin_fmax_functions
real(8), intent (in) :: w0
real(8), intent (in) :: m
real(8), intent (in) :: d
real(8), intent (in) :: h
real(8), intent (in) :: l
real(8), intent (in) :: d_1
code = w0
end function
public static double code(double w0, double M, double D, double h, double l, double d) {
return w0;
}
def code(w0, M, D, h, l, d): return w0
function code(w0, M, D, h, l, d) return w0 end
function tmp = code(w0, M, D, h, l, d) tmp = w0; end
code[w0_, M_, D_, h_, l_, d_] := w0
\begin{array}{l}
\\
w0
\end{array}
Initial program 81.7%
Taylor expanded in M around 0
Applied rewrites72.3%
herbie shell --seed 2025040
(FPCore (w0 M D h l d)
:name "Henrywood and Agarwal, Equation (9a)"
:precision binary64
(* w0 (sqrt (- 1.0 (* (pow (/ (* M D) (* 2.0 d)) 2.0) (/ h l))))))