Data.Metrics.Snapshot:quantile from metrics-0.3.0.2

Percentage Accurate: 100.0% → 100.0%
Time: 3.9s
Alternatives: 12
Speedup: 1.0×

Specification

?
\[\begin{array}{l} \\ x + \left(y - z\right) \cdot \left(t - x\right) \end{array} \]
(FPCore (x y z t) :precision binary64 (+ x (* (- y z) (- t x))))
double code(double x, double y, double z, double t) {
	return x + ((y - z) * (t - x));
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z, t)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8), intent (in) :: t
    code = x + ((y - z) * (t - x))
end function
public static double code(double x, double y, double z, double t) {
	return x + ((y - z) * (t - x));
}
def code(x, y, z, t):
	return x + ((y - z) * (t - x))
function code(x, y, z, t)
	return Float64(x + Float64(Float64(y - z) * Float64(t - x)))
end
function tmp = code(x, y, z, t)
	tmp = x + ((y - z) * (t - x));
end
code[x_, y_, z_, t_] := N[(x + N[(N[(y - z), $MachinePrecision] * N[(t - x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
\begin{array}{l}

\\
x + \left(y - z\right) \cdot \left(t - x\right)
\end{array}

Sampling outcomes in binary64 precision:

Local Percentage Accuracy vs ?

The average percentage accuracy by input value. Horizontal axis shows value of an input variable; the variable is choosen in the title. Vertical axis is accuracy; higher is better. Red represent the original program, while blue represents Herbie's suggestion. These can be toggled with buttons below the plot. The line is an average while dots represent individual samples.

Accuracy vs Speed?

Herbie found 12 alternatives:

AlternativeAccuracySpeedup
The accuracy (vertical axis) and speed (horizontal axis) of each alternatives. Up and to the right is better. The red square shows the initial program, and each blue circle shows an alternative.The line shows the best available speed-accuracy tradeoffs.

Initial Program: 100.0% accurate, 1.0× speedup?

\[\begin{array}{l} \\ x + \left(y - z\right) \cdot \left(t - x\right) \end{array} \]
(FPCore (x y z t) :precision binary64 (+ x (* (- y z) (- t x))))
double code(double x, double y, double z, double t) {
	return x + ((y - z) * (t - x));
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z, t)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8), intent (in) :: t
    code = x + ((y - z) * (t - x))
end function
public static double code(double x, double y, double z, double t) {
	return x + ((y - z) * (t - x));
}
def code(x, y, z, t):
	return x + ((y - z) * (t - x))
function code(x, y, z, t)
	return Float64(x + Float64(Float64(y - z) * Float64(t - x)))
end
function tmp = code(x, y, z, t)
	tmp = x + ((y - z) * (t - x));
end
code[x_, y_, z_, t_] := N[(x + N[(N[(y - z), $MachinePrecision] * N[(t - x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
\begin{array}{l}

\\
x + \left(y - z\right) \cdot \left(t - x\right)
\end{array}

Alternative 1: 100.0% accurate, 1.0× speedup?

\[\begin{array}{l} \\ x + \left(y - z\right) \cdot \left(t - x\right) \end{array} \]
(FPCore (x y z t) :precision binary64 (+ x (* (- y z) (- t x))))
double code(double x, double y, double z, double t) {
	return x + ((y - z) * (t - x));
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z, t)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8), intent (in) :: t
    code = x + ((y - z) * (t - x))
end function
public static double code(double x, double y, double z, double t) {
	return x + ((y - z) * (t - x));
}
def code(x, y, z, t):
	return x + ((y - z) * (t - x))
function code(x, y, z, t)
	return Float64(x + Float64(Float64(y - z) * Float64(t - x)))
end
function tmp = code(x, y, z, t)
	tmp = x + ((y - z) * (t - x));
end
code[x_, y_, z_, t_] := N[(x + N[(N[(y - z), $MachinePrecision] * N[(t - x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
\begin{array}{l}

\\
x + \left(y - z\right) \cdot \left(t - x\right)
\end{array}
Derivation
  1. Initial program 100.0%

    \[x + \left(y - z\right) \cdot \left(t - x\right) \]
  2. Add Preprocessing
  3. Add Preprocessing

Alternative 2: 70.5% accurate, 0.6× speedup?

\[\begin{array}{l} \\ \begin{array}{l} t_1 := \left(y - z\right) \cdot t\\ \mathbf{if}\;z \leq -1.02 \cdot 10^{+62}:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;z \leq 2.3 \cdot 10^{+107}:\\ \;\;\;\;\mathsf{fma}\left(t - x, y, x\right)\\ \mathbf{elif}\;z \leq 7 \cdot 10^{+182}:\\ \;\;\;\;t\_1\\ \mathbf{else}:\\ \;\;\;\;z \cdot x\\ \end{array} \end{array} \]
(FPCore (x y z t)
 :precision binary64
 (let* ((t_1 (* (- y z) t)))
   (if (<= z -1.02e+62)
     t_1
     (if (<= z 2.3e+107) (fma (- t x) y x) (if (<= z 7e+182) t_1 (* z x))))))
double code(double x, double y, double z, double t) {
	double t_1 = (y - z) * t;
	double tmp;
	if (z <= -1.02e+62) {
		tmp = t_1;
	} else if (z <= 2.3e+107) {
		tmp = fma((t - x), y, x);
	} else if (z <= 7e+182) {
		tmp = t_1;
	} else {
		tmp = z * x;
	}
	return tmp;
}
function code(x, y, z, t)
	t_1 = Float64(Float64(y - z) * t)
	tmp = 0.0
	if (z <= -1.02e+62)
		tmp = t_1;
	elseif (z <= 2.3e+107)
		tmp = fma(Float64(t - x), y, x);
	elseif (z <= 7e+182)
		tmp = t_1;
	else
		tmp = Float64(z * x);
	end
	return tmp
end
code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(y - z), $MachinePrecision] * t), $MachinePrecision]}, If[LessEqual[z, -1.02e+62], t$95$1, If[LessEqual[z, 2.3e+107], N[(N[(t - x), $MachinePrecision] * y + x), $MachinePrecision], If[LessEqual[z, 7e+182], t$95$1, N[(z * x), $MachinePrecision]]]]]
\begin{array}{l}

\\
\begin{array}{l}
t_1 := \left(y - z\right) \cdot t\\
\mathbf{if}\;z \leq -1.02 \cdot 10^{+62}:\\
\;\;\;\;t\_1\\

\mathbf{elif}\;z \leq 2.3 \cdot 10^{+107}:\\
\;\;\;\;\mathsf{fma}\left(t - x, y, x\right)\\

\mathbf{elif}\;z \leq 7 \cdot 10^{+182}:\\
\;\;\;\;t\_1\\

\mathbf{else}:\\
\;\;\;\;z \cdot x\\


\end{array}
\end{array}
Derivation
  1. Split input into 3 regimes
  2. if z < -1.02000000000000002e62 or 2.3e107 < z < 7.00000000000000045e182

    1. Initial program 100.0%

      \[x + \left(y - z\right) \cdot \left(t - x\right) \]
    2. Add Preprocessing
    3. Taylor expanded in x around 0

      \[\leadsto \color{blue}{t \cdot \left(y - z\right)} \]
    4. Step-by-step derivation
      1. *-commutativeN/A

        \[\leadsto \left(y - z\right) \cdot \color{blue}{t} \]
      2. lower-*.f64N/A

        \[\leadsto \left(y - z\right) \cdot \color{blue}{t} \]
      3. lift--.f6464.1

        \[\leadsto \left(y - z\right) \cdot t \]
    5. Applied rewrites64.1%

      \[\leadsto \color{blue}{\left(y - z\right) \cdot t} \]

    if -1.02000000000000002e62 < z < 2.3e107

    1. Initial program 100.0%

      \[x + \left(y - z\right) \cdot \left(t - x\right) \]
    2. Add Preprocessing
    3. Taylor expanded in z around 0

      \[\leadsto \color{blue}{x + y \cdot \left(t - x\right)} \]
    4. Step-by-step derivation
      1. +-commutativeN/A

        \[\leadsto y \cdot \left(t - x\right) + \color{blue}{x} \]
      2. *-commutativeN/A

        \[\leadsto \left(t - x\right) \cdot y + x \]
      3. lower-fma.f64N/A

        \[\leadsto \mathsf{fma}\left(t - x, \color{blue}{y}, x\right) \]
      4. lift--.f6486.5

        \[\leadsto \mathsf{fma}\left(t - x, y, x\right) \]
    5. Applied rewrites86.5%

      \[\leadsto \color{blue}{\mathsf{fma}\left(t - x, y, x\right)} \]

    if 7.00000000000000045e182 < z

    1. Initial program 100.0%

      \[x + \left(y - z\right) \cdot \left(t - x\right) \]
    2. Add Preprocessing
    3. Taylor expanded in y around 0

      \[\leadsto \color{blue}{x + -1 \cdot \left(z \cdot \left(t - x\right)\right)} \]
    4. Step-by-step derivation
      1. +-commutativeN/A

        \[\leadsto -1 \cdot \left(z \cdot \left(t - x\right)\right) + \color{blue}{x} \]
      2. associate-*r*N/A

        \[\leadsto \left(-1 \cdot z\right) \cdot \left(t - x\right) + x \]
      3. lower-fma.f64N/A

        \[\leadsto \mathsf{fma}\left(-1 \cdot z, \color{blue}{t - x}, x\right) \]
      4. mul-1-negN/A

        \[\leadsto \mathsf{fma}\left(\mathsf{neg}\left(z\right), \color{blue}{t} - x, x\right) \]
      5. lower-neg.f64N/A

        \[\leadsto \mathsf{fma}\left(-z, \color{blue}{t} - x, x\right) \]
      6. lift--.f6492.4

        \[\leadsto \mathsf{fma}\left(-z, t - \color{blue}{x}, x\right) \]
    5. Applied rewrites92.4%

      \[\leadsto \color{blue}{\mathsf{fma}\left(-z, t - x, x\right)} \]
    6. Taylor expanded in t around 0

      \[\leadsto x + \color{blue}{x \cdot z} \]
    7. Step-by-step derivation
      1. +-commutativeN/A

        \[\leadsto x \cdot z + x \]
      2. lower-fma.f6458.8

        \[\leadsto \mathsf{fma}\left(x, z, x\right) \]
    8. Applied rewrites58.8%

      \[\leadsto \mathsf{fma}\left(x, \color{blue}{z}, x\right) \]
    9. Taylor expanded in z around inf

      \[\leadsto x \cdot z \]
    10. Step-by-step derivation
      1. *-commutativeN/A

        \[\leadsto z \cdot x \]
      2. lower-*.f6458.8

        \[\leadsto z \cdot x \]
    11. Applied rewrites58.8%

      \[\leadsto z \cdot x \]
  3. Recombined 3 regimes into one program.
  4. Add Preprocessing

Alternative 3: 50.6% accurate, 0.6× speedup?

\[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;y \leq -1.8 \cdot 10^{+217}:\\ \;\;\;\;t \cdot y\\ \mathbf{elif}\;y \leq -1700000000000 \lor \neg \left(y \leq 26\right):\\ \;\;\;\;\left(-x\right) \cdot y\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(x, z, x\right)\\ \end{array} \end{array} \]
(FPCore (x y z t)
 :precision binary64
 (if (<= y -1.8e+217)
   (* t y)
   (if (or (<= y -1700000000000.0) (not (<= y 26.0)))
     (* (- x) y)
     (fma x z x))))
double code(double x, double y, double z, double t) {
	double tmp;
	if (y <= -1.8e+217) {
		tmp = t * y;
	} else if ((y <= -1700000000000.0) || !(y <= 26.0)) {
		tmp = -x * y;
	} else {
		tmp = fma(x, z, x);
	}
	return tmp;
}
function code(x, y, z, t)
	tmp = 0.0
	if (y <= -1.8e+217)
		tmp = Float64(t * y);
	elseif ((y <= -1700000000000.0) || !(y <= 26.0))
		tmp = Float64(Float64(-x) * y);
	else
		tmp = fma(x, z, x);
	end
	return tmp
end
code[x_, y_, z_, t_] := If[LessEqual[y, -1.8e+217], N[(t * y), $MachinePrecision], If[Or[LessEqual[y, -1700000000000.0], N[Not[LessEqual[y, 26.0]], $MachinePrecision]], N[((-x) * y), $MachinePrecision], N[(x * z + x), $MachinePrecision]]]
\begin{array}{l}

\\
\begin{array}{l}
\mathbf{if}\;y \leq -1.8 \cdot 10^{+217}:\\
\;\;\;\;t \cdot y\\

\mathbf{elif}\;y \leq -1700000000000 \lor \neg \left(y \leq 26\right):\\
\;\;\;\;\left(-x\right) \cdot y\\

\mathbf{else}:\\
\;\;\;\;\mathsf{fma}\left(x, z, x\right)\\


\end{array}
\end{array}
Derivation
  1. Split input into 3 regimes
  2. if y < -1.8000000000000001e217

    1. Initial program 100.0%

      \[x + \left(y - z\right) \cdot \left(t - x\right) \]
    2. Add Preprocessing
    3. Taylor expanded in z around 0

      \[\leadsto \color{blue}{x + y \cdot \left(t - x\right)} \]
    4. Step-by-step derivation
      1. +-commutativeN/A

        \[\leadsto y \cdot \left(t - x\right) + \color{blue}{x} \]
      2. *-commutativeN/A

        \[\leadsto \left(t - x\right) \cdot y + x \]
      3. lower-fma.f64N/A

        \[\leadsto \mathsf{fma}\left(t - x, \color{blue}{y}, x\right) \]
      4. lift--.f6494.4

        \[\leadsto \mathsf{fma}\left(t - x, y, x\right) \]
    5. Applied rewrites94.4%

      \[\leadsto \color{blue}{\mathsf{fma}\left(t - x, y, x\right)} \]
    6. Taylor expanded in x around 0

      \[\leadsto t \cdot \color{blue}{y} \]
    7. Step-by-step derivation
      1. lower-*.f6473.6

        \[\leadsto t \cdot y \]
    8. Applied rewrites73.6%

      \[\leadsto t \cdot \color{blue}{y} \]

    if -1.8000000000000001e217 < y < -1.7e12 or 26 < y

    1. Initial program 100.0%

      \[x + \left(y - z\right) \cdot \left(t - x\right) \]
    2. Add Preprocessing
    3. Taylor expanded in y around inf

      \[\leadsto \color{blue}{y \cdot \left(t - x\right)} \]
    4. Step-by-step derivation
      1. *-commutativeN/A

        \[\leadsto \left(t - x\right) \cdot \color{blue}{y} \]
      2. lower-*.f64N/A

        \[\leadsto \left(t - x\right) \cdot \color{blue}{y} \]
      3. lift--.f6480.0

        \[\leadsto \left(t - x\right) \cdot y \]
    5. Applied rewrites80.0%

      \[\leadsto \color{blue}{\left(t - x\right) \cdot y} \]
    6. Taylor expanded in x around inf

      \[\leadsto \left(-1 \cdot x\right) \cdot y \]
    7. Step-by-step derivation
      1. mul-1-negN/A

        \[\leadsto \left(\mathsf{neg}\left(x\right)\right) \cdot y \]
      2. lift-neg.f6449.1

        \[\leadsto \left(-x\right) \cdot y \]
    8. Applied rewrites49.1%

      \[\leadsto \left(-x\right) \cdot y \]

    if -1.7e12 < y < 26

    1. Initial program 100.0%

      \[x + \left(y - z\right) \cdot \left(t - x\right) \]
    2. Add Preprocessing
    3. Taylor expanded in y around 0

      \[\leadsto \color{blue}{x + -1 \cdot \left(z \cdot \left(t - x\right)\right)} \]
    4. Step-by-step derivation
      1. +-commutativeN/A

        \[\leadsto -1 \cdot \left(z \cdot \left(t - x\right)\right) + \color{blue}{x} \]
      2. associate-*r*N/A

        \[\leadsto \left(-1 \cdot z\right) \cdot \left(t - x\right) + x \]
      3. lower-fma.f64N/A

        \[\leadsto \mathsf{fma}\left(-1 \cdot z, \color{blue}{t - x}, x\right) \]
      4. mul-1-negN/A

        \[\leadsto \mathsf{fma}\left(\mathsf{neg}\left(z\right), \color{blue}{t} - x, x\right) \]
      5. lower-neg.f64N/A

        \[\leadsto \mathsf{fma}\left(-z, \color{blue}{t} - x, x\right) \]
      6. lift--.f6488.4

        \[\leadsto \mathsf{fma}\left(-z, t - \color{blue}{x}, x\right) \]
    5. Applied rewrites88.4%

      \[\leadsto \color{blue}{\mathsf{fma}\left(-z, t - x, x\right)} \]
    6. Taylor expanded in t around 0

      \[\leadsto x + \color{blue}{x \cdot z} \]
    7. Step-by-step derivation
      1. +-commutativeN/A

        \[\leadsto x \cdot z + x \]
      2. lower-fma.f6456.2

        \[\leadsto \mathsf{fma}\left(x, z, x\right) \]
    8. Applied rewrites56.2%

      \[\leadsto \mathsf{fma}\left(x, \color{blue}{z}, x\right) \]
  3. Recombined 3 regimes into one program.
  4. Final simplification54.3%

    \[\leadsto \begin{array}{l} \mathbf{if}\;y \leq -1.8 \cdot 10^{+217}:\\ \;\;\;\;t \cdot y\\ \mathbf{elif}\;y \leq -1700000000000 \lor \neg \left(y \leq 26\right):\\ \;\;\;\;\left(-x\right) \cdot y\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(x, z, x\right)\\ \end{array} \]
  5. Add Preprocessing

Alternative 4: 84.9% accurate, 0.6× speedup?

\[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;y \leq -0.5 \lor \neg \left(y \leq 100\right):\\ \;\;\;\;\mathsf{fma}\left(t - x, y, x\right)\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(-z, t - x, x\right)\\ \end{array} \end{array} \]
(FPCore (x y z t)
 :precision binary64
 (if (or (<= y -0.5) (not (<= y 100.0)))
   (fma (- t x) y x)
   (fma (- z) (- t x) x)))
double code(double x, double y, double z, double t) {
	double tmp;
	if ((y <= -0.5) || !(y <= 100.0)) {
		tmp = fma((t - x), y, x);
	} else {
		tmp = fma(-z, (t - x), x);
	}
	return tmp;
}
function code(x, y, z, t)
	tmp = 0.0
	if ((y <= -0.5) || !(y <= 100.0))
		tmp = fma(Float64(t - x), y, x);
	else
		tmp = fma(Float64(-z), Float64(t - x), x);
	end
	return tmp
end
code[x_, y_, z_, t_] := If[Or[LessEqual[y, -0.5], N[Not[LessEqual[y, 100.0]], $MachinePrecision]], N[(N[(t - x), $MachinePrecision] * y + x), $MachinePrecision], N[((-z) * N[(t - x), $MachinePrecision] + x), $MachinePrecision]]
\begin{array}{l}

\\
\begin{array}{l}
\mathbf{if}\;y \leq -0.5 \lor \neg \left(y \leq 100\right):\\
\;\;\;\;\mathsf{fma}\left(t - x, y, x\right)\\

\mathbf{else}:\\
\;\;\;\;\mathsf{fma}\left(-z, t - x, x\right)\\


\end{array}
\end{array}
Derivation
  1. Split input into 2 regimes
  2. if y < -0.5 or 100 < y

    1. Initial program 100.0%

      \[x + \left(y - z\right) \cdot \left(t - x\right) \]
    2. Add Preprocessing
    3. Taylor expanded in z around 0

      \[\leadsto \color{blue}{x + y \cdot \left(t - x\right)} \]
    4. Step-by-step derivation
      1. +-commutativeN/A

        \[\leadsto y \cdot \left(t - x\right) + \color{blue}{x} \]
      2. *-commutativeN/A

        \[\leadsto \left(t - x\right) \cdot y + x \]
      3. lower-fma.f64N/A

        \[\leadsto \mathsf{fma}\left(t - x, \color{blue}{y}, x\right) \]
      4. lift--.f6482.3

        \[\leadsto \mathsf{fma}\left(t - x, y, x\right) \]
    5. Applied rewrites82.3%

      \[\leadsto \color{blue}{\mathsf{fma}\left(t - x, y, x\right)} \]

    if -0.5 < y < 100

    1. Initial program 100.0%

      \[x + \left(y - z\right) \cdot \left(t - x\right) \]
    2. Add Preprocessing
    3. Taylor expanded in y around 0

      \[\leadsto \color{blue}{x + -1 \cdot \left(z \cdot \left(t - x\right)\right)} \]
    4. Step-by-step derivation
      1. +-commutativeN/A

        \[\leadsto -1 \cdot \left(z \cdot \left(t - x\right)\right) + \color{blue}{x} \]
      2. associate-*r*N/A

        \[\leadsto \left(-1 \cdot z\right) \cdot \left(t - x\right) + x \]
      3. lower-fma.f64N/A

        \[\leadsto \mathsf{fma}\left(-1 \cdot z, \color{blue}{t - x}, x\right) \]
      4. mul-1-negN/A

        \[\leadsto \mathsf{fma}\left(\mathsf{neg}\left(z\right), \color{blue}{t} - x, x\right) \]
      5. lower-neg.f64N/A

        \[\leadsto \mathsf{fma}\left(-z, \color{blue}{t} - x, x\right) \]
      6. lift--.f6491.5

        \[\leadsto \mathsf{fma}\left(-z, t - \color{blue}{x}, x\right) \]
    5. Applied rewrites91.5%

      \[\leadsto \color{blue}{\mathsf{fma}\left(-z, t - x, x\right)} \]
  3. Recombined 2 regimes into one program.
  4. Final simplification86.5%

    \[\leadsto \begin{array}{l} \mathbf{if}\;y \leq -0.5 \lor \neg \left(y \leq 100\right):\\ \;\;\;\;\mathsf{fma}\left(t - x, y, x\right)\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(-z, t - x, x\right)\\ \end{array} \]
  5. Add Preprocessing

Alternative 5: 38.1% accurate, 0.6× speedup?

\[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;z \leq -1.16 \cdot 10^{+44}:\\ \;\;\;\;z \cdot x\\ \mathbf{elif}\;z \leq 2.5 \cdot 10^{-276}:\\ \;\;\;\;t \cdot y\\ \mathbf{elif}\;z \leq 3.2 \cdot 10^{-21}:\\ \;\;\;\;x\\ \mathbf{else}:\\ \;\;\;\;z \cdot x\\ \end{array} \end{array} \]
(FPCore (x y z t)
 :precision binary64
 (if (<= z -1.16e+44)
   (* z x)
   (if (<= z 2.5e-276) (* t y) (if (<= z 3.2e-21) x (* z x)))))
double code(double x, double y, double z, double t) {
	double tmp;
	if (z <= -1.16e+44) {
		tmp = z * x;
	} else if (z <= 2.5e-276) {
		tmp = t * y;
	} else if (z <= 3.2e-21) {
		tmp = x;
	} else {
		tmp = z * x;
	}
	return tmp;
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z, t)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8), intent (in) :: t
    real(8) :: tmp
    if (z <= (-1.16d+44)) then
        tmp = z * x
    else if (z <= 2.5d-276) then
        tmp = t * y
    else if (z <= 3.2d-21) then
        tmp = x
    else
        tmp = z * x
    end if
    code = tmp
end function
public static double code(double x, double y, double z, double t) {
	double tmp;
	if (z <= -1.16e+44) {
		tmp = z * x;
	} else if (z <= 2.5e-276) {
		tmp = t * y;
	} else if (z <= 3.2e-21) {
		tmp = x;
	} else {
		tmp = z * x;
	}
	return tmp;
}
def code(x, y, z, t):
	tmp = 0
	if z <= -1.16e+44:
		tmp = z * x
	elif z <= 2.5e-276:
		tmp = t * y
	elif z <= 3.2e-21:
		tmp = x
	else:
		tmp = z * x
	return tmp
function code(x, y, z, t)
	tmp = 0.0
	if (z <= -1.16e+44)
		tmp = Float64(z * x);
	elseif (z <= 2.5e-276)
		tmp = Float64(t * y);
	elseif (z <= 3.2e-21)
		tmp = x;
	else
		tmp = Float64(z * x);
	end
	return tmp
end
function tmp_2 = code(x, y, z, t)
	tmp = 0.0;
	if (z <= -1.16e+44)
		tmp = z * x;
	elseif (z <= 2.5e-276)
		tmp = t * y;
	elseif (z <= 3.2e-21)
		tmp = x;
	else
		tmp = z * x;
	end
	tmp_2 = tmp;
end
code[x_, y_, z_, t_] := If[LessEqual[z, -1.16e+44], N[(z * x), $MachinePrecision], If[LessEqual[z, 2.5e-276], N[(t * y), $MachinePrecision], If[LessEqual[z, 3.2e-21], x, N[(z * x), $MachinePrecision]]]]
\begin{array}{l}

\\
\begin{array}{l}
\mathbf{if}\;z \leq -1.16 \cdot 10^{+44}:\\
\;\;\;\;z \cdot x\\

\mathbf{elif}\;z \leq 2.5 \cdot 10^{-276}:\\
\;\;\;\;t \cdot y\\

\mathbf{elif}\;z \leq 3.2 \cdot 10^{-21}:\\
\;\;\;\;x\\

\mathbf{else}:\\
\;\;\;\;z \cdot x\\


\end{array}
\end{array}
Derivation
  1. Split input into 3 regimes
  2. if z < -1.1600000000000001e44 or 3.2000000000000002e-21 < z

    1. Initial program 100.0%

      \[x + \left(y - z\right) \cdot \left(t - x\right) \]
    2. Add Preprocessing
    3. Taylor expanded in y around 0

      \[\leadsto \color{blue}{x + -1 \cdot \left(z \cdot \left(t - x\right)\right)} \]
    4. Step-by-step derivation
      1. +-commutativeN/A

        \[\leadsto -1 \cdot \left(z \cdot \left(t - x\right)\right) + \color{blue}{x} \]
      2. associate-*r*N/A

        \[\leadsto \left(-1 \cdot z\right) \cdot \left(t - x\right) + x \]
      3. lower-fma.f64N/A

        \[\leadsto \mathsf{fma}\left(-1 \cdot z, \color{blue}{t - x}, x\right) \]
      4. mul-1-negN/A

        \[\leadsto \mathsf{fma}\left(\mathsf{neg}\left(z\right), \color{blue}{t} - x, x\right) \]
      5. lower-neg.f64N/A

        \[\leadsto \mathsf{fma}\left(-z, \color{blue}{t} - x, x\right) \]
      6. lift--.f6477.3

        \[\leadsto \mathsf{fma}\left(-z, t - \color{blue}{x}, x\right) \]
    5. Applied rewrites77.3%

      \[\leadsto \color{blue}{\mathsf{fma}\left(-z, t - x, x\right)} \]
    6. Taylor expanded in t around 0

      \[\leadsto x + \color{blue}{x \cdot z} \]
    7. Step-by-step derivation
      1. +-commutativeN/A

        \[\leadsto x \cdot z + x \]
      2. lower-fma.f6440.1

        \[\leadsto \mathsf{fma}\left(x, z, x\right) \]
    8. Applied rewrites40.1%

      \[\leadsto \mathsf{fma}\left(x, \color{blue}{z}, x\right) \]
    9. Taylor expanded in z around inf

      \[\leadsto x \cdot z \]
    10. Step-by-step derivation
      1. *-commutativeN/A

        \[\leadsto z \cdot x \]
      2. lower-*.f6439.6

        \[\leadsto z \cdot x \]
    11. Applied rewrites39.6%

      \[\leadsto z \cdot x \]

    if -1.1600000000000001e44 < z < 2.49999999999999984e-276

    1. Initial program 99.9%

      \[x + \left(y - z\right) \cdot \left(t - x\right) \]
    2. Add Preprocessing
    3. Taylor expanded in z around 0

      \[\leadsto \color{blue}{x + y \cdot \left(t - x\right)} \]
    4. Step-by-step derivation
      1. +-commutativeN/A

        \[\leadsto y \cdot \left(t - x\right) + \color{blue}{x} \]
      2. *-commutativeN/A

        \[\leadsto \left(t - x\right) \cdot y + x \]
      3. lower-fma.f64N/A

        \[\leadsto \mathsf{fma}\left(t - x, \color{blue}{y}, x\right) \]
      4. lift--.f6490.3

        \[\leadsto \mathsf{fma}\left(t - x, y, x\right) \]
    5. Applied rewrites90.3%

      \[\leadsto \color{blue}{\mathsf{fma}\left(t - x, y, x\right)} \]
    6. Taylor expanded in x around 0

      \[\leadsto t \cdot \color{blue}{y} \]
    7. Step-by-step derivation
      1. lower-*.f6441.8

        \[\leadsto t \cdot y \]
    8. Applied rewrites41.8%

      \[\leadsto t \cdot \color{blue}{y} \]

    if 2.49999999999999984e-276 < z < 3.2000000000000002e-21

    1. Initial program 100.0%

      \[x + \left(y - z\right) \cdot \left(t - x\right) \]
    2. Add Preprocessing
    3. Taylor expanded in z around 0

      \[\leadsto \color{blue}{x + y \cdot \left(t - x\right)} \]
    4. Step-by-step derivation
      1. +-commutativeN/A

        \[\leadsto y \cdot \left(t - x\right) + \color{blue}{x} \]
      2. *-commutativeN/A

        \[\leadsto \left(t - x\right) \cdot y + x \]
      3. lower-fma.f64N/A

        \[\leadsto \mathsf{fma}\left(t - x, \color{blue}{y}, x\right) \]
      4. lift--.f6491.5

        \[\leadsto \mathsf{fma}\left(t - x, y, x\right) \]
    5. Applied rewrites91.5%

      \[\leadsto \color{blue}{\mathsf{fma}\left(t - x, y, x\right)} \]
    6. Taylor expanded in y around 0

      \[\leadsto x \]
    7. Step-by-step derivation
      1. Applied rewrites44.6%

        \[\leadsto x \]
    8. Recombined 3 regimes into one program.
    9. Add Preprocessing

    Alternative 6: 83.4% accurate, 0.7× speedup?

    \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;z \leq -9.8 \cdot 10^{+61} \lor \neg \left(z \leq 2.9 \cdot 10^{+75}\right):\\ \;\;\;\;\left(-z\right) \cdot \left(t - x\right)\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(t - x, y, x\right)\\ \end{array} \end{array} \]
    (FPCore (x y z t)
     :precision binary64
     (if (or (<= z -9.8e+61) (not (<= z 2.9e+75)))
       (* (- z) (- t x))
       (fma (- t x) y x)))
    double code(double x, double y, double z, double t) {
    	double tmp;
    	if ((z <= -9.8e+61) || !(z <= 2.9e+75)) {
    		tmp = -z * (t - x);
    	} else {
    		tmp = fma((t - x), y, x);
    	}
    	return tmp;
    }
    
    function code(x, y, z, t)
    	tmp = 0.0
    	if ((z <= -9.8e+61) || !(z <= 2.9e+75))
    		tmp = Float64(Float64(-z) * Float64(t - x));
    	else
    		tmp = fma(Float64(t - x), y, x);
    	end
    	return tmp
    end
    
    code[x_, y_, z_, t_] := If[Or[LessEqual[z, -9.8e+61], N[Not[LessEqual[z, 2.9e+75]], $MachinePrecision]], N[((-z) * N[(t - x), $MachinePrecision]), $MachinePrecision], N[(N[(t - x), $MachinePrecision] * y + x), $MachinePrecision]]
    
    \begin{array}{l}
    
    \\
    \begin{array}{l}
    \mathbf{if}\;z \leq -9.8 \cdot 10^{+61} \lor \neg \left(z \leq 2.9 \cdot 10^{+75}\right):\\
    \;\;\;\;\left(-z\right) \cdot \left(t - x\right)\\
    
    \mathbf{else}:\\
    \;\;\;\;\mathsf{fma}\left(t - x, y, x\right)\\
    
    
    \end{array}
    \end{array}
    
    Derivation
    1. Split input into 2 regimes
    2. if z < -9.8000000000000005e61 or 2.8999999999999998e75 < z

      1. Initial program 100.0%

        \[x + \left(y - z\right) \cdot \left(t - x\right) \]
      2. Add Preprocessing
      3. Taylor expanded in z around inf

        \[\leadsto \color{blue}{-1 \cdot \left(z \cdot \left(t - x\right)\right)} \]
      4. Step-by-step derivation
        1. associate-*r*N/A

          \[\leadsto \left(-1 \cdot z\right) \cdot \color{blue}{\left(t - x\right)} \]
        2. lower-*.f64N/A

          \[\leadsto \left(-1 \cdot z\right) \cdot \color{blue}{\left(t - x\right)} \]
        3. mul-1-negN/A

          \[\leadsto \left(\mathsf{neg}\left(z\right)\right) \cdot \left(\color{blue}{t} - x\right) \]
        4. lower-neg.f64N/A

          \[\leadsto \left(-z\right) \cdot \left(\color{blue}{t} - x\right) \]
        5. lift--.f6482.1

          \[\leadsto \left(-z\right) \cdot \left(t - \color{blue}{x}\right) \]
      5. Applied rewrites82.1%

        \[\leadsto \color{blue}{\left(-z\right) \cdot \left(t - x\right)} \]

      if -9.8000000000000005e61 < z < 2.8999999999999998e75

      1. Initial program 100.0%

        \[x + \left(y - z\right) \cdot \left(t - x\right) \]
      2. Add Preprocessing
      3. Taylor expanded in z around 0

        \[\leadsto \color{blue}{x + y \cdot \left(t - x\right)} \]
      4. Step-by-step derivation
        1. +-commutativeN/A

          \[\leadsto y \cdot \left(t - x\right) + \color{blue}{x} \]
        2. *-commutativeN/A

          \[\leadsto \left(t - x\right) \cdot y + x \]
        3. lower-fma.f64N/A

          \[\leadsto \mathsf{fma}\left(t - x, \color{blue}{y}, x\right) \]
        4. lift--.f6488.5

          \[\leadsto \mathsf{fma}\left(t - x, y, x\right) \]
      5. Applied rewrites88.5%

        \[\leadsto \color{blue}{\mathsf{fma}\left(t - x, y, x\right)} \]
    3. Recombined 2 regimes into one program.
    4. Final simplification86.0%

      \[\leadsto \begin{array}{l} \mathbf{if}\;z \leq -9.8 \cdot 10^{+61} \lor \neg \left(z \leq 2.9 \cdot 10^{+75}\right):\\ \;\;\;\;\left(-z\right) \cdot \left(t - x\right)\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(t - x, y, x\right)\\ \end{array} \]
    5. Add Preprocessing

    Alternative 7: 74.0% accurate, 0.7× speedup?

    \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;t \leq -3.15 \cdot 10^{-37} \lor \neg \left(t \leq 1.1 \cdot 10^{-23}\right):\\ \;\;\;\;\mathsf{fma}\left(y - z, t, x\right)\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(t - x, y, x\right)\\ \end{array} \end{array} \]
    (FPCore (x y z t)
     :precision binary64
     (if (or (<= t -3.15e-37) (not (<= t 1.1e-23)))
       (fma (- y z) t x)
       (fma (- t x) y x)))
    double code(double x, double y, double z, double t) {
    	double tmp;
    	if ((t <= -3.15e-37) || !(t <= 1.1e-23)) {
    		tmp = fma((y - z), t, x);
    	} else {
    		tmp = fma((t - x), y, x);
    	}
    	return tmp;
    }
    
    function code(x, y, z, t)
    	tmp = 0.0
    	if ((t <= -3.15e-37) || !(t <= 1.1e-23))
    		tmp = fma(Float64(y - z), t, x);
    	else
    		tmp = fma(Float64(t - x), y, x);
    	end
    	return tmp
    end
    
    code[x_, y_, z_, t_] := If[Or[LessEqual[t, -3.15e-37], N[Not[LessEqual[t, 1.1e-23]], $MachinePrecision]], N[(N[(y - z), $MachinePrecision] * t + x), $MachinePrecision], N[(N[(t - x), $MachinePrecision] * y + x), $MachinePrecision]]
    
    \begin{array}{l}
    
    \\
    \begin{array}{l}
    \mathbf{if}\;t \leq -3.15 \cdot 10^{-37} \lor \neg \left(t \leq 1.1 \cdot 10^{-23}\right):\\
    \;\;\;\;\mathsf{fma}\left(y - z, t, x\right)\\
    
    \mathbf{else}:\\
    \;\;\;\;\mathsf{fma}\left(t - x, y, x\right)\\
    
    
    \end{array}
    \end{array}
    
    Derivation
    1. Split input into 2 regimes
    2. if t < -3.15000000000000011e-37 or 1.1e-23 < t

      1. Initial program 100.0%

        \[x + \left(y - z\right) \cdot \left(t - x\right) \]
      2. Add Preprocessing
      3. Taylor expanded in x around 0

        \[\leadsto x + \left(y - z\right) \cdot \color{blue}{t} \]
      4. Step-by-step derivation
        1. Applied rewrites85.0%

          \[\leadsto x + \left(y - z\right) \cdot \color{blue}{t} \]
        2. Step-by-step derivation
          1. lift-+.f64N/A

            \[\leadsto \color{blue}{x + \left(y - z\right) \cdot t} \]
          2. +-commutativeN/A

            \[\leadsto \color{blue}{\left(y - z\right) \cdot t + x} \]
          3. lift--.f64N/A

            \[\leadsto \color{blue}{\left(y - z\right)} \cdot t + x \]
          4. lift-*.f64N/A

            \[\leadsto \color{blue}{\left(y - z\right) \cdot t} + x \]
          5. lower-fma.f64N/A

            \[\leadsto \color{blue}{\mathsf{fma}\left(y - z, t, x\right)} \]
          6. lift--.f6485.0

            \[\leadsto \mathsf{fma}\left(\color{blue}{y - z}, t, x\right) \]
        3. Applied rewrites85.0%

          \[\leadsto \color{blue}{\mathsf{fma}\left(y - z, t, x\right)} \]

        if -3.15000000000000011e-37 < t < 1.1e-23

        1. Initial program 100.0%

          \[x + \left(y - z\right) \cdot \left(t - x\right) \]
        2. Add Preprocessing
        3. Taylor expanded in z around 0

          \[\leadsto \color{blue}{x + y \cdot \left(t - x\right)} \]
        4. Step-by-step derivation
          1. +-commutativeN/A

            \[\leadsto y \cdot \left(t - x\right) + \color{blue}{x} \]
          2. *-commutativeN/A

            \[\leadsto \left(t - x\right) \cdot y + x \]
          3. lower-fma.f64N/A

            \[\leadsto \mathsf{fma}\left(t - x, \color{blue}{y}, x\right) \]
          4. lift--.f6475.7

            \[\leadsto \mathsf{fma}\left(t - x, y, x\right) \]
        5. Applied rewrites75.7%

          \[\leadsto \color{blue}{\mathsf{fma}\left(t - x, y, x\right)} \]
      5. Recombined 2 regimes into one program.
      6. Final simplification80.8%

        \[\leadsto \begin{array}{l} \mathbf{if}\;t \leq -3.15 \cdot 10^{-37} \lor \neg \left(t \leq 1.1 \cdot 10^{-23}\right):\\ \;\;\;\;\mathsf{fma}\left(y - z, t, x\right)\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(t - x, y, x\right)\\ \end{array} \]
      7. Add Preprocessing

      Alternative 8: 63.3% accurate, 0.7× speedup?

      \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;t \leq -3.15 \cdot 10^{-37} \lor \neg \left(t \leq 9.8 \cdot 10^{-45}\right):\\ \;\;\;\;\left(y - z\right) \cdot t\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(-x, y, x\right)\\ \end{array} \end{array} \]
      (FPCore (x y z t)
       :precision binary64
       (if (or (<= t -3.15e-37) (not (<= t 9.8e-45))) (* (- y z) t) (fma (- x) y x)))
      double code(double x, double y, double z, double t) {
      	double tmp;
      	if ((t <= -3.15e-37) || !(t <= 9.8e-45)) {
      		tmp = (y - z) * t;
      	} else {
      		tmp = fma(-x, y, x);
      	}
      	return tmp;
      }
      
      function code(x, y, z, t)
      	tmp = 0.0
      	if ((t <= -3.15e-37) || !(t <= 9.8e-45))
      		tmp = Float64(Float64(y - z) * t);
      	else
      		tmp = fma(Float64(-x), y, x);
      	end
      	return tmp
      end
      
      code[x_, y_, z_, t_] := If[Or[LessEqual[t, -3.15e-37], N[Not[LessEqual[t, 9.8e-45]], $MachinePrecision]], N[(N[(y - z), $MachinePrecision] * t), $MachinePrecision], N[((-x) * y + x), $MachinePrecision]]
      
      \begin{array}{l}
      
      \\
      \begin{array}{l}
      \mathbf{if}\;t \leq -3.15 \cdot 10^{-37} \lor \neg \left(t \leq 9.8 \cdot 10^{-45}\right):\\
      \;\;\;\;\left(y - z\right) \cdot t\\
      
      \mathbf{else}:\\
      \;\;\;\;\mathsf{fma}\left(-x, y, x\right)\\
      
      
      \end{array}
      \end{array}
      
      Derivation
      1. Split input into 2 regimes
      2. if t < -3.15000000000000011e-37 or 9.7999999999999996e-45 < t

        1. Initial program 100.0%

          \[x + \left(y - z\right) \cdot \left(t - x\right) \]
        2. Add Preprocessing
        3. Taylor expanded in x around 0

          \[\leadsto \color{blue}{t \cdot \left(y - z\right)} \]
        4. Step-by-step derivation
          1. *-commutativeN/A

            \[\leadsto \left(y - z\right) \cdot \color{blue}{t} \]
          2. lower-*.f64N/A

            \[\leadsto \left(y - z\right) \cdot \color{blue}{t} \]
          3. lift--.f6474.2

            \[\leadsto \left(y - z\right) \cdot t \]
        5. Applied rewrites74.2%

          \[\leadsto \color{blue}{\left(y - z\right) \cdot t} \]

        if -3.15000000000000011e-37 < t < 9.7999999999999996e-45

        1. Initial program 100.0%

          \[x + \left(y - z\right) \cdot \left(t - x\right) \]
        2. Add Preprocessing
        3. Taylor expanded in z around 0

          \[\leadsto \color{blue}{x + y \cdot \left(t - x\right)} \]
        4. Step-by-step derivation
          1. +-commutativeN/A

            \[\leadsto y \cdot \left(t - x\right) + \color{blue}{x} \]
          2. *-commutativeN/A

            \[\leadsto \left(t - x\right) \cdot y + x \]
          3. lower-fma.f64N/A

            \[\leadsto \mathsf{fma}\left(t - x, \color{blue}{y}, x\right) \]
          4. lift--.f6475.5

            \[\leadsto \mathsf{fma}\left(t - x, y, x\right) \]
        5. Applied rewrites75.5%

          \[\leadsto \color{blue}{\mathsf{fma}\left(t - x, y, x\right)} \]
        6. Taylor expanded in x around inf

          \[\leadsto \mathsf{fma}\left(-1 \cdot x, y, x\right) \]
        7. Step-by-step derivation
          1. mul-1-negN/A

            \[\leadsto \mathsf{fma}\left(\mathsf{neg}\left(x\right), y, x\right) \]
          2. lift-neg.f6469.6

            \[\leadsto \mathsf{fma}\left(-x, y, x\right) \]
        8. Applied rewrites69.6%

          \[\leadsto \mathsf{fma}\left(-x, y, x\right) \]
      3. Recombined 2 regimes into one program.
      4. Final simplification72.2%

        \[\leadsto \begin{array}{l} \mathbf{if}\;t \leq -3.15 \cdot 10^{-37} \lor \neg \left(t \leq 9.8 \cdot 10^{-45}\right):\\ \;\;\;\;\left(y - z\right) \cdot t\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(-x, y, x\right)\\ \end{array} \]
      5. Add Preprocessing

      Alternative 9: 68.6% accurate, 0.7× speedup?

      \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;y \leq -2.4 \cdot 10^{-21} \lor \neg \left(y \leq 1.1\right):\\ \;\;\;\;\left(t - x\right) \cdot y\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(x, z, x\right)\\ \end{array} \end{array} \]
      (FPCore (x y z t)
       :precision binary64
       (if (or (<= y -2.4e-21) (not (<= y 1.1))) (* (- t x) y) (fma x z x)))
      double code(double x, double y, double z, double t) {
      	double tmp;
      	if ((y <= -2.4e-21) || !(y <= 1.1)) {
      		tmp = (t - x) * y;
      	} else {
      		tmp = fma(x, z, x);
      	}
      	return tmp;
      }
      
      function code(x, y, z, t)
      	tmp = 0.0
      	if ((y <= -2.4e-21) || !(y <= 1.1))
      		tmp = Float64(Float64(t - x) * y);
      	else
      		tmp = fma(x, z, x);
      	end
      	return tmp
      end
      
      code[x_, y_, z_, t_] := If[Or[LessEqual[y, -2.4e-21], N[Not[LessEqual[y, 1.1]], $MachinePrecision]], N[(N[(t - x), $MachinePrecision] * y), $MachinePrecision], N[(x * z + x), $MachinePrecision]]
      
      \begin{array}{l}
      
      \\
      \begin{array}{l}
      \mathbf{if}\;y \leq -2.4 \cdot 10^{-21} \lor \neg \left(y \leq 1.1\right):\\
      \;\;\;\;\left(t - x\right) \cdot y\\
      
      \mathbf{else}:\\
      \;\;\;\;\mathsf{fma}\left(x, z, x\right)\\
      
      
      \end{array}
      \end{array}
      
      Derivation
      1. Split input into 2 regimes
      2. if y < -2.3999999999999999e-21 or 1.1000000000000001 < y

        1. Initial program 100.0%

          \[x + \left(y - z\right) \cdot \left(t - x\right) \]
        2. Add Preprocessing
        3. Taylor expanded in y around inf

          \[\leadsto \color{blue}{y \cdot \left(t - x\right)} \]
        4. Step-by-step derivation
          1. *-commutativeN/A

            \[\leadsto \left(t - x\right) \cdot \color{blue}{y} \]
          2. lower-*.f64N/A

            \[\leadsto \left(t - x\right) \cdot \color{blue}{y} \]
          3. lift--.f6478.7

            \[\leadsto \left(t - x\right) \cdot y \]
        5. Applied rewrites78.7%

          \[\leadsto \color{blue}{\left(t - x\right) \cdot y} \]

        if -2.3999999999999999e-21 < y < 1.1000000000000001

        1. Initial program 100.0%

          \[x + \left(y - z\right) \cdot \left(t - x\right) \]
        2. Add Preprocessing
        3. Taylor expanded in y around 0

          \[\leadsto \color{blue}{x + -1 \cdot \left(z \cdot \left(t - x\right)\right)} \]
        4. Step-by-step derivation
          1. +-commutativeN/A

            \[\leadsto -1 \cdot \left(z \cdot \left(t - x\right)\right) + \color{blue}{x} \]
          2. associate-*r*N/A

            \[\leadsto \left(-1 \cdot z\right) \cdot \left(t - x\right) + x \]
          3. lower-fma.f64N/A

            \[\leadsto \mathsf{fma}\left(-1 \cdot z, \color{blue}{t - x}, x\right) \]
          4. mul-1-negN/A

            \[\leadsto \mathsf{fma}\left(\mathsf{neg}\left(z\right), \color{blue}{t} - x, x\right) \]
          5. lower-neg.f64N/A

            \[\leadsto \mathsf{fma}\left(-z, \color{blue}{t} - x, x\right) \]
          6. lift--.f6492.8

            \[\leadsto \mathsf{fma}\left(-z, t - \color{blue}{x}, x\right) \]
        5. Applied rewrites92.8%

          \[\leadsto \color{blue}{\mathsf{fma}\left(-z, t - x, x\right)} \]
        6. Taylor expanded in t around 0

          \[\leadsto x + \color{blue}{x \cdot z} \]
        7. Step-by-step derivation
          1. +-commutativeN/A

            \[\leadsto x \cdot z + x \]
          2. lower-fma.f6459.9

            \[\leadsto \mathsf{fma}\left(x, z, x\right) \]
        8. Applied rewrites59.9%

          \[\leadsto \mathsf{fma}\left(x, \color{blue}{z}, x\right) \]
      3. Recombined 2 regimes into one program.
      4. Final simplification70.4%

        \[\leadsto \begin{array}{l} \mathbf{if}\;y \leq -2.4 \cdot 10^{-21} \lor \neg \left(y \leq 1.1\right):\\ \;\;\;\;\left(t - x\right) \cdot y\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(x, z, x\right)\\ \end{array} \]
      5. Add Preprocessing

      Alternative 10: 48.5% accurate, 0.8× speedup?

      \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;y \leq -1.7 \cdot 10^{+123} \lor \neg \left(y \leq 5.5 \cdot 10^{+79}\right):\\ \;\;\;\;t \cdot y\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(x, z, x\right)\\ \end{array} \end{array} \]
      (FPCore (x y z t)
       :precision binary64
       (if (or (<= y -1.7e+123) (not (<= y 5.5e+79))) (* t y) (fma x z x)))
      double code(double x, double y, double z, double t) {
      	double tmp;
      	if ((y <= -1.7e+123) || !(y <= 5.5e+79)) {
      		tmp = t * y;
      	} else {
      		tmp = fma(x, z, x);
      	}
      	return tmp;
      }
      
      function code(x, y, z, t)
      	tmp = 0.0
      	if ((y <= -1.7e+123) || !(y <= 5.5e+79))
      		tmp = Float64(t * y);
      	else
      		tmp = fma(x, z, x);
      	end
      	return tmp
      end
      
      code[x_, y_, z_, t_] := If[Or[LessEqual[y, -1.7e+123], N[Not[LessEqual[y, 5.5e+79]], $MachinePrecision]], N[(t * y), $MachinePrecision], N[(x * z + x), $MachinePrecision]]
      
      \begin{array}{l}
      
      \\
      \begin{array}{l}
      \mathbf{if}\;y \leq -1.7 \cdot 10^{+123} \lor \neg \left(y \leq 5.5 \cdot 10^{+79}\right):\\
      \;\;\;\;t \cdot y\\
      
      \mathbf{else}:\\
      \;\;\;\;\mathsf{fma}\left(x, z, x\right)\\
      
      
      \end{array}
      \end{array}
      
      Derivation
      1. Split input into 2 regimes
      2. if y < -1.70000000000000001e123 or 5.50000000000000007e79 < y

        1. Initial program 100.0%

          \[x + \left(y - z\right) \cdot \left(t - x\right) \]
        2. Add Preprocessing
        3. Taylor expanded in z around 0

          \[\leadsto \color{blue}{x + y \cdot \left(t - x\right)} \]
        4. Step-by-step derivation
          1. +-commutativeN/A

            \[\leadsto y \cdot \left(t - x\right) + \color{blue}{x} \]
          2. *-commutativeN/A

            \[\leadsto \left(t - x\right) \cdot y + x \]
          3. lower-fma.f64N/A

            \[\leadsto \mathsf{fma}\left(t - x, \color{blue}{y}, x\right) \]
          4. lift--.f6488.8

            \[\leadsto \mathsf{fma}\left(t - x, y, x\right) \]
        5. Applied rewrites88.8%

          \[\leadsto \color{blue}{\mathsf{fma}\left(t - x, y, x\right)} \]
        6. Taylor expanded in x around 0

          \[\leadsto t \cdot \color{blue}{y} \]
        7. Step-by-step derivation
          1. lower-*.f6448.9

            \[\leadsto t \cdot y \]
        8. Applied rewrites48.9%

          \[\leadsto t \cdot \color{blue}{y} \]

        if -1.70000000000000001e123 < y < 5.50000000000000007e79

        1. Initial program 100.0%

          \[x + \left(y - z\right) \cdot \left(t - x\right) \]
        2. Add Preprocessing
        3. Taylor expanded in y around 0

          \[\leadsto \color{blue}{x + -1 \cdot \left(z \cdot \left(t - x\right)\right)} \]
        4. Step-by-step derivation
          1. +-commutativeN/A

            \[\leadsto -1 \cdot \left(z \cdot \left(t - x\right)\right) + \color{blue}{x} \]
          2. associate-*r*N/A

            \[\leadsto \left(-1 \cdot z\right) \cdot \left(t - x\right) + x \]
          3. lower-fma.f64N/A

            \[\leadsto \mathsf{fma}\left(-1 \cdot z, \color{blue}{t - x}, x\right) \]
          4. mul-1-negN/A

            \[\leadsto \mathsf{fma}\left(\mathsf{neg}\left(z\right), \color{blue}{t} - x, x\right) \]
          5. lower-neg.f64N/A

            \[\leadsto \mathsf{fma}\left(-z, \color{blue}{t} - x, x\right) \]
          6. lift--.f6478.4

            \[\leadsto \mathsf{fma}\left(-z, t - \color{blue}{x}, x\right) \]
        5. Applied rewrites78.4%

          \[\leadsto \color{blue}{\mathsf{fma}\left(-z, t - x, x\right)} \]
        6. Taylor expanded in t around 0

          \[\leadsto x + \color{blue}{x \cdot z} \]
        7. Step-by-step derivation
          1. +-commutativeN/A

            \[\leadsto x \cdot z + x \]
          2. lower-fma.f6449.6

            \[\leadsto \mathsf{fma}\left(x, z, x\right) \]
        8. Applied rewrites49.6%

          \[\leadsto \mathsf{fma}\left(x, \color{blue}{z}, x\right) \]
      3. Recombined 2 regimes into one program.
      4. Final simplification49.4%

        \[\leadsto \begin{array}{l} \mathbf{if}\;y \leq -1.7 \cdot 10^{+123} \lor \neg \left(y \leq 5.5 \cdot 10^{+79}\right):\\ \;\;\;\;t \cdot y\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(x, z, x\right)\\ \end{array} \]
      5. Add Preprocessing

      Alternative 11: 36.7% accurate, 0.8× speedup?

      \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;z \leq -9.8 \cdot 10^{-20} \lor \neg \left(z \leq 3.2 \cdot 10^{-21}\right):\\ \;\;\;\;z \cdot x\\ \mathbf{else}:\\ \;\;\;\;x\\ \end{array} \end{array} \]
      (FPCore (x y z t)
       :precision binary64
       (if (or (<= z -9.8e-20) (not (<= z 3.2e-21))) (* z x) x))
      double code(double x, double y, double z, double t) {
      	double tmp;
      	if ((z <= -9.8e-20) || !(z <= 3.2e-21)) {
      		tmp = z * x;
      	} else {
      		tmp = x;
      	}
      	return tmp;
      }
      
      module fmin_fmax_functions
          implicit none
          private
          public fmax
          public fmin
      
          interface fmax
              module procedure fmax88
              module procedure fmax44
              module procedure fmax84
              module procedure fmax48
          end interface
          interface fmin
              module procedure fmin88
              module procedure fmin44
              module procedure fmin84
              module procedure fmin48
          end interface
      contains
          real(8) function fmax88(x, y) result (res)
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
          end function
          real(4) function fmax44(x, y) result (res)
              real(4), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
          end function
          real(8) function fmax84(x, y) result(res)
              real(8), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
          end function
          real(8) function fmax48(x, y) result(res)
              real(4), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
          end function
          real(8) function fmin88(x, y) result (res)
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
          end function
          real(4) function fmin44(x, y) result (res)
              real(4), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
          end function
          real(8) function fmin84(x, y) result(res)
              real(8), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
          end function
          real(8) function fmin48(x, y) result(res)
              real(4), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
          end function
      end module
      
      real(8) function code(x, y, z, t)
      use fmin_fmax_functions
          real(8), intent (in) :: x
          real(8), intent (in) :: y
          real(8), intent (in) :: z
          real(8), intent (in) :: t
          real(8) :: tmp
          if ((z <= (-9.8d-20)) .or. (.not. (z <= 3.2d-21))) then
              tmp = z * x
          else
              tmp = x
          end if
          code = tmp
      end function
      
      public static double code(double x, double y, double z, double t) {
      	double tmp;
      	if ((z <= -9.8e-20) || !(z <= 3.2e-21)) {
      		tmp = z * x;
      	} else {
      		tmp = x;
      	}
      	return tmp;
      }
      
      def code(x, y, z, t):
      	tmp = 0
      	if (z <= -9.8e-20) or not (z <= 3.2e-21):
      		tmp = z * x
      	else:
      		tmp = x
      	return tmp
      
      function code(x, y, z, t)
      	tmp = 0.0
      	if ((z <= -9.8e-20) || !(z <= 3.2e-21))
      		tmp = Float64(z * x);
      	else
      		tmp = x;
      	end
      	return tmp
      end
      
      function tmp_2 = code(x, y, z, t)
      	tmp = 0.0;
      	if ((z <= -9.8e-20) || ~((z <= 3.2e-21)))
      		tmp = z * x;
      	else
      		tmp = x;
      	end
      	tmp_2 = tmp;
      end
      
      code[x_, y_, z_, t_] := If[Or[LessEqual[z, -9.8e-20], N[Not[LessEqual[z, 3.2e-21]], $MachinePrecision]], N[(z * x), $MachinePrecision], x]
      
      \begin{array}{l}
      
      \\
      \begin{array}{l}
      \mathbf{if}\;z \leq -9.8 \cdot 10^{-20} \lor \neg \left(z \leq 3.2 \cdot 10^{-21}\right):\\
      \;\;\;\;z \cdot x\\
      
      \mathbf{else}:\\
      \;\;\;\;x\\
      
      
      \end{array}
      \end{array}
      
      Derivation
      1. Split input into 2 regimes
      2. if z < -9.8000000000000003e-20 or 3.2000000000000002e-21 < z

        1. Initial program 100.0%

          \[x + \left(y - z\right) \cdot \left(t - x\right) \]
        2. Add Preprocessing
        3. Taylor expanded in y around 0

          \[\leadsto \color{blue}{x + -1 \cdot \left(z \cdot \left(t - x\right)\right)} \]
        4. Step-by-step derivation
          1. +-commutativeN/A

            \[\leadsto -1 \cdot \left(z \cdot \left(t - x\right)\right) + \color{blue}{x} \]
          2. associate-*r*N/A

            \[\leadsto \left(-1 \cdot z\right) \cdot \left(t - x\right) + x \]
          3. lower-fma.f64N/A

            \[\leadsto \mathsf{fma}\left(-1 \cdot z, \color{blue}{t - x}, x\right) \]
          4. mul-1-negN/A

            \[\leadsto \mathsf{fma}\left(\mathsf{neg}\left(z\right), \color{blue}{t} - x, x\right) \]
          5. lower-neg.f64N/A

            \[\leadsto \mathsf{fma}\left(-z, \color{blue}{t} - x, x\right) \]
          6. lift--.f6473.0

            \[\leadsto \mathsf{fma}\left(-z, t - \color{blue}{x}, x\right) \]
        5. Applied rewrites73.0%

          \[\leadsto \color{blue}{\mathsf{fma}\left(-z, t - x, x\right)} \]
        6. Taylor expanded in t around 0

          \[\leadsto x + \color{blue}{x \cdot z} \]
        7. Step-by-step derivation
          1. +-commutativeN/A

            \[\leadsto x \cdot z + x \]
          2. lower-fma.f6437.1

            \[\leadsto \mathsf{fma}\left(x, z, x\right) \]
        8. Applied rewrites37.1%

          \[\leadsto \mathsf{fma}\left(x, \color{blue}{z}, x\right) \]
        9. Taylor expanded in z around inf

          \[\leadsto x \cdot z \]
        10. Step-by-step derivation
          1. *-commutativeN/A

            \[\leadsto z \cdot x \]
          2. lower-*.f6436.6

            \[\leadsto z \cdot x \]
        11. Applied rewrites36.6%

          \[\leadsto z \cdot x \]

        if -9.8000000000000003e-20 < z < 3.2000000000000002e-21

        1. Initial program 100.0%

          \[x + \left(y - z\right) \cdot \left(t - x\right) \]
        2. Add Preprocessing
        3. Taylor expanded in z around 0

          \[\leadsto \color{blue}{x + y \cdot \left(t - x\right)} \]
        4. Step-by-step derivation
          1. +-commutativeN/A

            \[\leadsto y \cdot \left(t - x\right) + \color{blue}{x} \]
          2. *-commutativeN/A

            \[\leadsto \left(t - x\right) \cdot y + x \]
          3. lower-fma.f64N/A

            \[\leadsto \mathsf{fma}\left(t - x, \color{blue}{y}, x\right) \]
          4. lift--.f6492.9

            \[\leadsto \mathsf{fma}\left(t - x, y, x\right) \]
        5. Applied rewrites92.9%

          \[\leadsto \color{blue}{\mathsf{fma}\left(t - x, y, x\right)} \]
        6. Taylor expanded in y around 0

          \[\leadsto x \]
        7. Step-by-step derivation
          1. Applied rewrites33.8%

            \[\leadsto x \]
        8. Recombined 2 regimes into one program.
        9. Final simplification35.2%

          \[\leadsto \begin{array}{l} \mathbf{if}\;z \leq -9.8 \cdot 10^{-20} \lor \neg \left(z \leq 3.2 \cdot 10^{-21}\right):\\ \;\;\;\;z \cdot x\\ \mathbf{else}:\\ \;\;\;\;x\\ \end{array} \]
        10. Add Preprocessing

        Alternative 12: 18.3% accurate, 15.0× speedup?

        \[\begin{array}{l} \\ x \end{array} \]
        (FPCore (x y z t) :precision binary64 x)
        double code(double x, double y, double z, double t) {
        	return x;
        }
        
        module fmin_fmax_functions
            implicit none
            private
            public fmax
            public fmin
        
            interface fmax
                module procedure fmax88
                module procedure fmax44
                module procedure fmax84
                module procedure fmax48
            end interface
            interface fmin
                module procedure fmin88
                module procedure fmin44
                module procedure fmin84
                module procedure fmin48
            end interface
        contains
            real(8) function fmax88(x, y) result (res)
                real(8), intent (in) :: x
                real(8), intent (in) :: y
                res = merge(y, merge(x, max(x, y), y /= y), x /= x)
            end function
            real(4) function fmax44(x, y) result (res)
                real(4), intent (in) :: x
                real(4), intent (in) :: y
                res = merge(y, merge(x, max(x, y), y /= y), x /= x)
            end function
            real(8) function fmax84(x, y) result(res)
                real(8), intent (in) :: x
                real(4), intent (in) :: y
                res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
            end function
            real(8) function fmax48(x, y) result(res)
                real(4), intent (in) :: x
                real(8), intent (in) :: y
                res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
            end function
            real(8) function fmin88(x, y) result (res)
                real(8), intent (in) :: x
                real(8), intent (in) :: y
                res = merge(y, merge(x, min(x, y), y /= y), x /= x)
            end function
            real(4) function fmin44(x, y) result (res)
                real(4), intent (in) :: x
                real(4), intent (in) :: y
                res = merge(y, merge(x, min(x, y), y /= y), x /= x)
            end function
            real(8) function fmin84(x, y) result(res)
                real(8), intent (in) :: x
                real(4), intent (in) :: y
                res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
            end function
            real(8) function fmin48(x, y) result(res)
                real(4), intent (in) :: x
                real(8), intent (in) :: y
                res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
            end function
        end module
        
        real(8) function code(x, y, z, t)
        use fmin_fmax_functions
            real(8), intent (in) :: x
            real(8), intent (in) :: y
            real(8), intent (in) :: z
            real(8), intent (in) :: t
            code = x
        end function
        
        public static double code(double x, double y, double z, double t) {
        	return x;
        }
        
        def code(x, y, z, t):
        	return x
        
        function code(x, y, z, t)
        	return x
        end
        
        function tmp = code(x, y, z, t)
        	tmp = x;
        end
        
        code[x_, y_, z_, t_] := x
        
        \begin{array}{l}
        
        \\
        x
        \end{array}
        
        Derivation
        1. Initial program 100.0%

          \[x + \left(y - z\right) \cdot \left(t - x\right) \]
        2. Add Preprocessing
        3. Taylor expanded in z around 0

          \[\leadsto \color{blue}{x + y \cdot \left(t - x\right)} \]
        4. Step-by-step derivation
          1. +-commutativeN/A

            \[\leadsto y \cdot \left(t - x\right) + \color{blue}{x} \]
          2. *-commutativeN/A

            \[\leadsto \left(t - x\right) \cdot y + x \]
          3. lower-fma.f64N/A

            \[\leadsto \mathsf{fma}\left(t - x, \color{blue}{y}, x\right) \]
          4. lift--.f6464.6

            \[\leadsto \mathsf{fma}\left(t - x, y, x\right) \]
        5. Applied rewrites64.6%

          \[\leadsto \color{blue}{\mathsf{fma}\left(t - x, y, x\right)} \]
        6. Taylor expanded in y around 0

          \[\leadsto x \]
        7. Step-by-step derivation
          1. Applied rewrites18.4%

            \[\leadsto x \]
          2. Add Preprocessing

          Developer Target 1: 96.7% accurate, 0.6× speedup?

          \[\begin{array}{l} \\ x + \left(t \cdot \left(y - z\right) + \left(-x\right) \cdot \left(y - z\right)\right) \end{array} \]
          (FPCore (x y z t)
           :precision binary64
           (+ x (+ (* t (- y z)) (* (- x) (- y z)))))
          double code(double x, double y, double z, double t) {
          	return x + ((t * (y - z)) + (-x * (y - z)));
          }
          
          module fmin_fmax_functions
              implicit none
              private
              public fmax
              public fmin
          
              interface fmax
                  module procedure fmax88
                  module procedure fmax44
                  module procedure fmax84
                  module procedure fmax48
              end interface
              interface fmin
                  module procedure fmin88
                  module procedure fmin44
                  module procedure fmin84
                  module procedure fmin48
              end interface
          contains
              real(8) function fmax88(x, y) result (res)
                  real(8), intent (in) :: x
                  real(8), intent (in) :: y
                  res = merge(y, merge(x, max(x, y), y /= y), x /= x)
              end function
              real(4) function fmax44(x, y) result (res)
                  real(4), intent (in) :: x
                  real(4), intent (in) :: y
                  res = merge(y, merge(x, max(x, y), y /= y), x /= x)
              end function
              real(8) function fmax84(x, y) result(res)
                  real(8), intent (in) :: x
                  real(4), intent (in) :: y
                  res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
              end function
              real(8) function fmax48(x, y) result(res)
                  real(4), intent (in) :: x
                  real(8), intent (in) :: y
                  res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
              end function
              real(8) function fmin88(x, y) result (res)
                  real(8), intent (in) :: x
                  real(8), intent (in) :: y
                  res = merge(y, merge(x, min(x, y), y /= y), x /= x)
              end function
              real(4) function fmin44(x, y) result (res)
                  real(4), intent (in) :: x
                  real(4), intent (in) :: y
                  res = merge(y, merge(x, min(x, y), y /= y), x /= x)
              end function
              real(8) function fmin84(x, y) result(res)
                  real(8), intent (in) :: x
                  real(4), intent (in) :: y
                  res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
              end function
              real(8) function fmin48(x, y) result(res)
                  real(4), intent (in) :: x
                  real(8), intent (in) :: y
                  res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
              end function
          end module
          
          real(8) function code(x, y, z, t)
          use fmin_fmax_functions
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              real(8), intent (in) :: z
              real(8), intent (in) :: t
              code = x + ((t * (y - z)) + (-x * (y - z)))
          end function
          
          public static double code(double x, double y, double z, double t) {
          	return x + ((t * (y - z)) + (-x * (y - z)));
          }
          
          def code(x, y, z, t):
          	return x + ((t * (y - z)) + (-x * (y - z)))
          
          function code(x, y, z, t)
          	return Float64(x + Float64(Float64(t * Float64(y - z)) + Float64(Float64(-x) * Float64(y - z))))
          end
          
          function tmp = code(x, y, z, t)
          	tmp = x + ((t * (y - z)) + (-x * (y - z)));
          end
          
          code[x_, y_, z_, t_] := N[(x + N[(N[(t * N[(y - z), $MachinePrecision]), $MachinePrecision] + N[((-x) * N[(y - z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
          
          \begin{array}{l}
          
          \\
          x + \left(t \cdot \left(y - z\right) + \left(-x\right) \cdot \left(y - z\right)\right)
          \end{array}
          

          Reproduce

          ?
          herbie shell --seed 2025038 
          (FPCore (x y z t)
            :name "Data.Metrics.Snapshot:quantile from metrics-0.3.0.2"
            :precision binary64
          
            :alt
            (! :herbie-platform default (+ x (+ (* t (- y z)) (* (- x) (- y z)))))
          
            (+ x (* (- y z) (- t x))))