(FPCore (x y z) :precision binary64 (* x (sqrt (- (* y y) (* z z)))))
double code(double x, double y, double z) { return x * sqrt(((y * y) - (z * z))); }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z code = x * sqrt(((y * y) - (z * z))) end function
public static double code(double x, double y, double z) { return x * Math.sqrt(((y * y) - (z * z))); }
def code(x, y, z): return x * math.sqrt(((y * y) - (z * z)))
function code(x, y, z) return Float64(x * sqrt(Float64(Float64(y * y) - Float64(z * z)))) end
function tmp = code(x, y, z) tmp = x * sqrt(((y * y) - (z * z))); end
code[x_, y_, z_] := N[(x * N[Sqrt[N[(N[(y * y), $MachinePrecision] - N[(z * z), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ x \cdot \sqrt{y \cdot y - z \cdot z} \end{array}
Sampling outcomes in binary64 precision:
Herbie found 3 alternatives:
Alternative | Accuracy | Speedup |
---|
(FPCore (x y z) :precision binary64 (* x (sqrt (- (* y y) (* z z)))))
double code(double x, double y, double z) { return x * sqrt(((y * y) - (z * z))); }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z code = x * sqrt(((y * y) - (z * z))) end function
public static double code(double x, double y, double z) { return x * Math.sqrt(((y * y) - (z * z))); }
def code(x, y, z): return x * math.sqrt(((y * y) - (z * z)))
function code(x, y, z) return Float64(x * sqrt(Float64(Float64(y * y) - Float64(z * z)))) end
function tmp = code(x, y, z) tmp = x * sqrt(((y * y) - (z * z))); end
code[x_, y_, z_] := N[(x * N[Sqrt[N[(N[(y * y), $MachinePrecision] - N[(z * z), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ x \cdot \sqrt{y \cdot y - z \cdot z} \end{array}
y_m = (fabs.f64 y) (FPCore (x y_m z) :precision binary64 (* (* (sqrt (+ z y_m)) (sqrt (- y_m z))) x))
y_m = fabs(y); double code(double x, double y_m, double z) { return (sqrt((z + y_m)) * sqrt((y_m - z))) * x; }
y_m = private module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y_m, z) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y_m real(8), intent (in) :: z code = (sqrt((z + y_m)) * sqrt((y_m - z))) * x end function
y_m = Math.abs(y); public static double code(double x, double y_m, double z) { return (Math.sqrt((z + y_m)) * Math.sqrt((y_m - z))) * x; }
y_m = math.fabs(y) def code(x, y_m, z): return (math.sqrt((z + y_m)) * math.sqrt((y_m - z))) * x
y_m = abs(y) function code(x, y_m, z) return Float64(Float64(sqrt(Float64(z + y_m)) * sqrt(Float64(y_m - z))) * x) end
y_m = abs(y); function tmp = code(x, y_m, z) tmp = (sqrt((z + y_m)) * sqrt((y_m - z))) * x; end
y_m = N[Abs[y], $MachinePrecision] code[x_, y$95$m_, z_] := N[(N[(N[Sqrt[N[(z + y$95$m), $MachinePrecision]], $MachinePrecision] * N[Sqrt[N[(y$95$m - z), $MachinePrecision]], $MachinePrecision]), $MachinePrecision] * x), $MachinePrecision]
\begin{array}{l} y_m = \left|y\right| \\ \left(\sqrt{z + y\_m} \cdot \sqrt{y\_m - z}\right) \cdot x \end{array}
Initial program 69.7%
lift-*.f64
N/A
lift-sqrt.f64
N/A
lift--.f64
N/A
lift-*.f64
N/A
lift-*.f64
N/A
*-commutative
N/A
lower-*.f64
N/A
lower-sqrt.f64
N/A
difference-of-squares
N/A
lower-*.f64
N/A
lower-+.f64
N/A
lower--.f64
70.6
Applied rewrites70.6%
lift-sqrt.f64
N/A
lift-+.f64
N/A
lift--.f64
N/A
lift-*.f64
N/A
sqrt-prod
N/A
lower-*.f64
N/A
lower-sqrt.f64
N/A
+-commutative
N/A
lower-+.f64
N/A
lower-sqrt.f64
N/A
lift--.f64
53.6
Applied rewrites53.6%
y_m = (fabs.f64 y) (FPCore (x y_m z) :precision binary64 (* (sqrt (+ z y_m)) (* (sqrt (- y_m z)) x)))
y_m = fabs(y); double code(double x, double y_m, double z) { return sqrt((z + y_m)) * (sqrt((y_m - z)) * x); }
y_m = private module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y_m, z) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y_m real(8), intent (in) :: z code = sqrt((z + y_m)) * (sqrt((y_m - z)) * x) end function
y_m = Math.abs(y); public static double code(double x, double y_m, double z) { return Math.sqrt((z + y_m)) * (Math.sqrt((y_m - z)) * x); }
y_m = math.fabs(y) def code(x, y_m, z): return math.sqrt((z + y_m)) * (math.sqrt((y_m - z)) * x)
y_m = abs(y) function code(x, y_m, z) return Float64(sqrt(Float64(z + y_m)) * Float64(sqrt(Float64(y_m - z)) * x)) end
y_m = abs(y); function tmp = code(x, y_m, z) tmp = sqrt((z + y_m)) * (sqrt((y_m - z)) * x); end
y_m = N[Abs[y], $MachinePrecision] code[x_, y$95$m_, z_] := N[(N[Sqrt[N[(z + y$95$m), $MachinePrecision]], $MachinePrecision] * N[(N[Sqrt[N[(y$95$m - z), $MachinePrecision]], $MachinePrecision] * x), $MachinePrecision]), $MachinePrecision]
\begin{array}{l} y_m = \left|y\right| \\ \sqrt{z + y\_m} \cdot \left(\sqrt{y\_m - z} \cdot x\right) \end{array}
Initial program 69.7%
lift-*.f64
N/A
lift-sqrt.f64
N/A
lift--.f64
N/A
lift-*.f64
N/A
lift-*.f64
N/A
*-commutative
N/A
lower-*.f64
N/A
lower-sqrt.f64
N/A
difference-of-squares
N/A
lower-*.f64
N/A
lower-+.f64
N/A
lower--.f64
70.6
Applied rewrites70.6%
lift-sqrt.f64
N/A
lift-+.f64
N/A
lift--.f64
N/A
lift-*.f64
N/A
sqrt-prod
N/A
lower-*.f64
N/A
lower-sqrt.f64
N/A
+-commutative
N/A
lower-+.f64
N/A
lower-sqrt.f64
N/A
lift--.f64
53.6
Applied rewrites53.6%
lift-*.f64
N/A
lift-*.f64
N/A
lift-+.f64
N/A
lift-sqrt.f64
N/A
lift--.f64
N/A
lift-sqrt.f64
N/A
associate-*l*
N/A
lower-*.f64
N/A
lift-sqrt.f64
N/A
lift-+.f64
N/A
lower-*.f64
N/A
lift-sqrt.f64
N/A
lift--.f64
53.6
Applied rewrites53.6%
y_m = (fabs.f64 y) (FPCore (x y_m z) :precision binary64 (* x y_m))
y_m = fabs(y); double code(double x, double y_m, double z) { return x * y_m; }
y_m = private module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y_m, z) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y_m real(8), intent (in) :: z code = x * y_m end function
y_m = Math.abs(y); public static double code(double x, double y_m, double z) { return x * y_m; }
y_m = math.fabs(y) def code(x, y_m, z): return x * y_m
y_m = abs(y) function code(x, y_m, z) return Float64(x * y_m) end
y_m = abs(y); function tmp = code(x, y_m, z) tmp = x * y_m; end
y_m = N[Abs[y], $MachinePrecision] code[x_, y$95$m_, z_] := N[(x * y$95$m), $MachinePrecision]
\begin{array}{l} y_m = \left|y\right| \\ x \cdot y\_m \end{array}
Initial program 69.7%
Taylor expanded in y around inf
Applied rewrites55.1%
(FPCore (x y z) :precision binary64 (if (< y 2.5816096488251695e-278) (- (* x y)) (* x (* (sqrt (+ y z)) (sqrt (- y z))))))
double code(double x, double y, double z) { double tmp; if (y < 2.5816096488251695e-278) { tmp = -(x * y); } else { tmp = x * (sqrt((y + z)) * sqrt((y - z))); } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8) :: tmp if (y < 2.5816096488251695d-278) then tmp = -(x * y) else tmp = x * (sqrt((y + z)) * sqrt((y - z))) end if code = tmp end function
public static double code(double x, double y, double z) { double tmp; if (y < 2.5816096488251695e-278) { tmp = -(x * y); } else { tmp = x * (Math.sqrt((y + z)) * Math.sqrt((y - z))); } return tmp; }
def code(x, y, z): tmp = 0 if y < 2.5816096488251695e-278: tmp = -(x * y) else: tmp = x * (math.sqrt((y + z)) * math.sqrt((y - z))) return tmp
function code(x, y, z) tmp = 0.0 if (y < 2.5816096488251695e-278) tmp = Float64(-Float64(x * y)); else tmp = Float64(x * Float64(sqrt(Float64(y + z)) * sqrt(Float64(y - z)))); end return tmp end
function tmp_2 = code(x, y, z) tmp = 0.0; if (y < 2.5816096488251695e-278) tmp = -(x * y); else tmp = x * (sqrt((y + z)) * sqrt((y - z))); end tmp_2 = tmp; end
code[x_, y_, z_] := If[Less[y, 2.5816096488251695e-278], (-N[(x * y), $MachinePrecision]), N[(x * N[(N[Sqrt[N[(y + z), $MachinePrecision]], $MachinePrecision] * N[Sqrt[N[(y - z), $MachinePrecision]], $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;y < 2.5816096488251695 \cdot 10^{-278}:\\ \;\;\;\;-x \cdot y\\ \mathbf{else}:\\ \;\;\;\;x \cdot \left(\sqrt{y + z} \cdot \sqrt{y - z}\right)\\ \end{array} \end{array}
herbie shell --seed 2025038
(FPCore (x y z)
:name "Diagrams.TwoD.Apollonian:initialConfig from diagrams-contrib-1.3.0.5, B"
:precision binary64
:alt
(! :herbie-platform default (if (< y 5163219297650339/200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000) (- (* x y)) (* x (* (sqrt (+ y z)) (sqrt (- y z))))))
(* x (sqrt (- (* y y) (* z z)))))