(FPCore (x y z t) :precision binary64 (+ x (* (- y z) (- t x))))
double code(double x, double y, double z, double t) { return x + ((y - z) * (t - x)); }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t code = x + ((y - z) * (t - x)) end function
public static double code(double x, double y, double z, double t) { return x + ((y - z) * (t - x)); }
def code(x, y, z, t): return x + ((y - z) * (t - x))
function code(x, y, z, t) return Float64(x + Float64(Float64(y - z) * Float64(t - x))) end
function tmp = code(x, y, z, t) tmp = x + ((y - z) * (t - x)); end
code[x_, y_, z_, t_] := N[(x + N[(N[(y - z), $MachinePrecision] * N[(t - x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ x + \left(y - z\right) \cdot \left(t - x\right) \end{array}
Sampling outcomes in binary64 precision:
Herbie found 12 alternatives:
Alternative | Accuracy | Speedup |
---|
(FPCore (x y z t) :precision binary64 (+ x (* (- y z) (- t x))))
double code(double x, double y, double z, double t) { return x + ((y - z) * (t - x)); }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t code = x + ((y - z) * (t - x)) end function
public static double code(double x, double y, double z, double t) { return x + ((y - z) * (t - x)); }
def code(x, y, z, t): return x + ((y - z) * (t - x))
function code(x, y, z, t) return Float64(x + Float64(Float64(y - z) * Float64(t - x))) end
function tmp = code(x, y, z, t) tmp = x + ((y - z) * (t - x)); end
code[x_, y_, z_, t_] := N[(x + N[(N[(y - z), $MachinePrecision] * N[(t - x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ x + \left(y - z\right) \cdot \left(t - x\right) \end{array}
(FPCore (x y z t) :precision binary64 (+ x (* (- y z) (- t x))))
double code(double x, double y, double z, double t) { return x + ((y - z) * (t - x)); }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t code = x + ((y - z) * (t - x)) end function
public static double code(double x, double y, double z, double t) { return x + ((y - z) * (t - x)); }
def code(x, y, z, t): return x + ((y - z) * (t - x))
function code(x, y, z, t) return Float64(x + Float64(Float64(y - z) * Float64(t - x))) end
function tmp = code(x, y, z, t) tmp = x + ((y - z) * (t - x)); end
code[x_, y_, z_, t_] := N[(x + N[(N[(y - z), $MachinePrecision] * N[(t - x), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ x + \left(y - z\right) \cdot \left(t - x\right) \end{array}
Initial program 100.0%
(FPCore (x y z t) :precision binary64 (let* ((t_1 (* (- y z) t))) (if (<= z -1.02e+62) t_1 (if (<= z 2.3e+107) (fma (- t x) y x) (if (<= z 7e+182) t_1 (* z x))))))
double code(double x, double y, double z, double t) { double t_1 = (y - z) * t; double tmp; if (z <= -1.02e+62) { tmp = t_1; } else if (z <= 2.3e+107) { tmp = fma((t - x), y, x); } else if (z <= 7e+182) { tmp = t_1; } else { tmp = z * x; } return tmp; }
function code(x, y, z, t) t_1 = Float64(Float64(y - z) * t) tmp = 0.0 if (z <= -1.02e+62) tmp = t_1; elseif (z <= 2.3e+107) tmp = fma(Float64(t - x), y, x); elseif (z <= 7e+182) tmp = t_1; else tmp = Float64(z * x); end return tmp end
code[x_, y_, z_, t_] := Block[{t$95$1 = N[(N[(y - z), $MachinePrecision] * t), $MachinePrecision]}, If[LessEqual[z, -1.02e+62], t$95$1, If[LessEqual[z, 2.3e+107], N[(N[(t - x), $MachinePrecision] * y + x), $MachinePrecision], If[LessEqual[z, 7e+182], t$95$1, N[(z * x), $MachinePrecision]]]]]
\begin{array}{l} \\ \begin{array}{l} t_1 := \left(y - z\right) \cdot t\\ \mathbf{if}\;z \leq -1.02 \cdot 10^{+62}:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;z \leq 2.3 \cdot 10^{+107}:\\ \;\;\;\;\mathsf{fma}\left(t - x, y, x\right)\\ \mathbf{elif}\;z \leq 7 \cdot 10^{+182}:\\ \;\;\;\;t\_1\\ \mathbf{else}:\\ \;\;\;\;z \cdot x\\ \end{array} \end{array}
if z < -1.02000000000000002e62 or 2.3e107 < z < 7.00000000000000045e182
Initial program 100.0%
Taylor expanded in x around 0
*-commutative
N/A
lower-*.f64
N/A
lift--.f64
64.1
Applied rewrites64.1%
if -1.02000000000000002e62 < z < 2.3e107
Initial program 100.0%
Taylor expanded in z around 0
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
N/A
lift--.f64
86.5
Applied rewrites86.5%
if 7.00000000000000045e182 < z
Initial program 100.0%
Taylor expanded in y around 0
+-commutative
N/A
associate-*r*
N/A
lower-fma.f64
N/A
mul-1-neg
N/A
lower-neg.f64
N/A
lift--.f64
92.4
Applied rewrites92.4%
Taylor expanded in t around 0
+-commutative
N/A
lower-fma.f64
58.8
Applied rewrites58.8%
Taylor expanded in z around inf
*-commutative
N/A
lower-*.f64
58.8
Applied rewrites58.8%
(FPCore (x y z t) :precision binary64 (if (<= y -1.8e+217) (* t y) (if (or (<= y -1700000000000.0) (not (<= y 26.0))) (* (- x) y) (fma x z x))))
double code(double x, double y, double z, double t) { double tmp; if (y <= -1.8e+217) { tmp = t * y; } else if ((y <= -1700000000000.0) || !(y <= 26.0)) { tmp = -x * y; } else { tmp = fma(x, z, x); } return tmp; }
function code(x, y, z, t) tmp = 0.0 if (y <= -1.8e+217) tmp = Float64(t * y); elseif ((y <= -1700000000000.0) || !(y <= 26.0)) tmp = Float64(Float64(-x) * y); else tmp = fma(x, z, x); end return tmp end
code[x_, y_, z_, t_] := If[LessEqual[y, -1.8e+217], N[(t * y), $MachinePrecision], If[Or[LessEqual[y, -1700000000000.0], N[Not[LessEqual[y, 26.0]], $MachinePrecision]], N[((-x) * y), $MachinePrecision], N[(x * z + x), $MachinePrecision]]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;y \leq -1.8 \cdot 10^{+217}:\\ \;\;\;\;t \cdot y\\ \mathbf{elif}\;y \leq -1700000000000 \lor \neg \left(y \leq 26\right):\\ \;\;\;\;\left(-x\right) \cdot y\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(x, z, x\right)\\ \end{array} \end{array}
if y < -1.8000000000000001e217
Initial program 100.0%
Taylor expanded in z around 0
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
N/A
lift--.f64
94.4
Applied rewrites94.4%
Taylor expanded in x around 0
lower-*.f64
73.6
Applied rewrites73.6%
if -1.8000000000000001e217 < y < -1.7e12 or 26 < y
Initial program 100.0%
Taylor expanded in y around inf
*-commutative
N/A
lower-*.f64
N/A
lift--.f64
80.0
Applied rewrites80.0%
Taylor expanded in x around inf
mul-1-neg
N/A
lift-neg.f64
49.1
Applied rewrites49.1%
if -1.7e12 < y < 26
Initial program 100.0%
Taylor expanded in y around 0
+-commutative
N/A
associate-*r*
N/A
lower-fma.f64
N/A
mul-1-neg
N/A
lower-neg.f64
N/A
lift--.f64
88.4
Applied rewrites88.4%
Taylor expanded in t around 0
+-commutative
N/A
lower-fma.f64
56.2
Applied rewrites56.2%
Final simplification54.3%
(FPCore (x y z t) :precision binary64 (if (or (<= y -0.5) (not (<= y 100.0))) (fma (- t x) y x) (fma (- z) (- t x) x)))
double code(double x, double y, double z, double t) { double tmp; if ((y <= -0.5) || !(y <= 100.0)) { tmp = fma((t - x), y, x); } else { tmp = fma(-z, (t - x), x); } return tmp; }
function code(x, y, z, t) tmp = 0.0 if ((y <= -0.5) || !(y <= 100.0)) tmp = fma(Float64(t - x), y, x); else tmp = fma(Float64(-z), Float64(t - x), x); end return tmp end
code[x_, y_, z_, t_] := If[Or[LessEqual[y, -0.5], N[Not[LessEqual[y, 100.0]], $MachinePrecision]], N[(N[(t - x), $MachinePrecision] * y + x), $MachinePrecision], N[((-z) * N[(t - x), $MachinePrecision] + x), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;y \leq -0.5 \lor \neg \left(y \leq 100\right):\\ \;\;\;\;\mathsf{fma}\left(t - x, y, x\right)\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(-z, t - x, x\right)\\ \end{array} \end{array}
if y < -0.5 or 100 < y
Initial program 100.0%
Taylor expanded in z around 0
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
N/A
lift--.f64
82.3
Applied rewrites82.3%
if -0.5 < y < 100
Initial program 100.0%
Taylor expanded in y around 0
+-commutative
N/A
associate-*r*
N/A
lower-fma.f64
N/A
mul-1-neg
N/A
lower-neg.f64
N/A
lift--.f64
91.5
Applied rewrites91.5%
Final simplification86.5%
(FPCore (x y z t) :precision binary64 (if (<= z -1.16e+44) (* z x) (if (<= z 2.5e-276) (* t y) (if (<= z 3.2e-21) x (* z x)))))
double code(double x, double y, double z, double t) { double tmp; if (z <= -1.16e+44) { tmp = z * x; } else if (z <= 2.5e-276) { tmp = t * y; } else if (z <= 3.2e-21) { tmp = x; } else { tmp = z * x; } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t real(8) :: tmp if (z <= (-1.16d+44)) then tmp = z * x else if (z <= 2.5d-276) then tmp = t * y else if (z <= 3.2d-21) then tmp = x else tmp = z * x end if code = tmp end function
public static double code(double x, double y, double z, double t) { double tmp; if (z <= -1.16e+44) { tmp = z * x; } else if (z <= 2.5e-276) { tmp = t * y; } else if (z <= 3.2e-21) { tmp = x; } else { tmp = z * x; } return tmp; }
def code(x, y, z, t): tmp = 0 if z <= -1.16e+44: tmp = z * x elif z <= 2.5e-276: tmp = t * y elif z <= 3.2e-21: tmp = x else: tmp = z * x return tmp
function code(x, y, z, t) tmp = 0.0 if (z <= -1.16e+44) tmp = Float64(z * x); elseif (z <= 2.5e-276) tmp = Float64(t * y); elseif (z <= 3.2e-21) tmp = x; else tmp = Float64(z * x); end return tmp end
function tmp_2 = code(x, y, z, t) tmp = 0.0; if (z <= -1.16e+44) tmp = z * x; elseif (z <= 2.5e-276) tmp = t * y; elseif (z <= 3.2e-21) tmp = x; else tmp = z * x; end tmp_2 = tmp; end
code[x_, y_, z_, t_] := If[LessEqual[z, -1.16e+44], N[(z * x), $MachinePrecision], If[LessEqual[z, 2.5e-276], N[(t * y), $MachinePrecision], If[LessEqual[z, 3.2e-21], x, N[(z * x), $MachinePrecision]]]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;z \leq -1.16 \cdot 10^{+44}:\\ \;\;\;\;z \cdot x\\ \mathbf{elif}\;z \leq 2.5 \cdot 10^{-276}:\\ \;\;\;\;t \cdot y\\ \mathbf{elif}\;z \leq 3.2 \cdot 10^{-21}:\\ \;\;\;\;x\\ \mathbf{else}:\\ \;\;\;\;z \cdot x\\ \end{array} \end{array}
if z < -1.1600000000000001e44 or 3.2000000000000002e-21 < z
Initial program 100.0%
Taylor expanded in y around 0
+-commutative
N/A
associate-*r*
N/A
lower-fma.f64
N/A
mul-1-neg
N/A
lower-neg.f64
N/A
lift--.f64
77.3
Applied rewrites77.3%
Taylor expanded in t around 0
+-commutative
N/A
lower-fma.f64
40.1
Applied rewrites40.1%
Taylor expanded in z around inf
*-commutative
N/A
lower-*.f64
39.6
Applied rewrites39.6%
if -1.1600000000000001e44 < z < 2.49999999999999984e-276
Initial program 99.9%
Taylor expanded in z around 0
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
N/A
lift--.f64
90.3
Applied rewrites90.3%
Taylor expanded in x around 0
lower-*.f64
41.8
Applied rewrites41.8%
if 2.49999999999999984e-276 < z < 3.2000000000000002e-21
Initial program 100.0%
Taylor expanded in z around 0
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
N/A
lift--.f64
91.5
Applied rewrites91.5%
Taylor expanded in y around 0
Applied rewrites44.6%
(FPCore (x y z t) :precision binary64 (if (or (<= z -9.8e+61) (not (<= z 2.9e+75))) (* (- z) (- t x)) (fma (- t x) y x)))
double code(double x, double y, double z, double t) { double tmp; if ((z <= -9.8e+61) || !(z <= 2.9e+75)) { tmp = -z * (t - x); } else { tmp = fma((t - x), y, x); } return tmp; }
function code(x, y, z, t) tmp = 0.0 if ((z <= -9.8e+61) || !(z <= 2.9e+75)) tmp = Float64(Float64(-z) * Float64(t - x)); else tmp = fma(Float64(t - x), y, x); end return tmp end
code[x_, y_, z_, t_] := If[Or[LessEqual[z, -9.8e+61], N[Not[LessEqual[z, 2.9e+75]], $MachinePrecision]], N[((-z) * N[(t - x), $MachinePrecision]), $MachinePrecision], N[(N[(t - x), $MachinePrecision] * y + x), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;z \leq -9.8 \cdot 10^{+61} \lor \neg \left(z \leq 2.9 \cdot 10^{+75}\right):\\ \;\;\;\;\left(-z\right) \cdot \left(t - x\right)\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(t - x, y, x\right)\\ \end{array} \end{array}
if z < -9.8000000000000005e61 or 2.8999999999999998e75 < z
Initial program 100.0%
Taylor expanded in z around inf
associate-*r*
N/A
lower-*.f64
N/A
mul-1-neg
N/A
lower-neg.f64
N/A
lift--.f64
82.1
Applied rewrites82.1%
if -9.8000000000000005e61 < z < 2.8999999999999998e75
Initial program 100.0%
Taylor expanded in z around 0
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
N/A
lift--.f64
88.5
Applied rewrites88.5%
Final simplification86.0%
(FPCore (x y z t) :precision binary64 (if (or (<= t -3.15e-37) (not (<= t 1.1e-23))) (fma (- y z) t x) (fma (- t x) y x)))
double code(double x, double y, double z, double t) { double tmp; if ((t <= -3.15e-37) || !(t <= 1.1e-23)) { tmp = fma((y - z), t, x); } else { tmp = fma((t - x), y, x); } return tmp; }
function code(x, y, z, t) tmp = 0.0 if ((t <= -3.15e-37) || !(t <= 1.1e-23)) tmp = fma(Float64(y - z), t, x); else tmp = fma(Float64(t - x), y, x); end return tmp end
code[x_, y_, z_, t_] := If[Or[LessEqual[t, -3.15e-37], N[Not[LessEqual[t, 1.1e-23]], $MachinePrecision]], N[(N[(y - z), $MachinePrecision] * t + x), $MachinePrecision], N[(N[(t - x), $MachinePrecision] * y + x), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;t \leq -3.15 \cdot 10^{-37} \lor \neg \left(t \leq 1.1 \cdot 10^{-23}\right):\\ \;\;\;\;\mathsf{fma}\left(y - z, t, x\right)\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(t - x, y, x\right)\\ \end{array} \end{array}
if t < -3.15000000000000011e-37 or 1.1e-23 < t
Initial program 100.0%
Taylor expanded in x around 0
Applied rewrites85.0%
lift-+.f64
N/A
+-commutative
N/A
lift--.f64
N/A
lift-*.f64
N/A
lower-fma.f64
N/A
lift--.f64
85.0
Applied rewrites85.0%
if -3.15000000000000011e-37 < t < 1.1e-23
Initial program 100.0%
Taylor expanded in z around 0
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
N/A
lift--.f64
75.7
Applied rewrites75.7%
Final simplification80.8%
(FPCore (x y z t) :precision binary64 (if (or (<= t -3.15e-37) (not (<= t 9.8e-45))) (* (- y z) t) (fma (- x) y x)))
double code(double x, double y, double z, double t) { double tmp; if ((t <= -3.15e-37) || !(t <= 9.8e-45)) { tmp = (y - z) * t; } else { tmp = fma(-x, y, x); } return tmp; }
function code(x, y, z, t) tmp = 0.0 if ((t <= -3.15e-37) || !(t <= 9.8e-45)) tmp = Float64(Float64(y - z) * t); else tmp = fma(Float64(-x), y, x); end return tmp end
code[x_, y_, z_, t_] := If[Or[LessEqual[t, -3.15e-37], N[Not[LessEqual[t, 9.8e-45]], $MachinePrecision]], N[(N[(y - z), $MachinePrecision] * t), $MachinePrecision], N[((-x) * y + x), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;t \leq -3.15 \cdot 10^{-37} \lor \neg \left(t \leq 9.8 \cdot 10^{-45}\right):\\ \;\;\;\;\left(y - z\right) \cdot t\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(-x, y, x\right)\\ \end{array} \end{array}
if t < -3.15000000000000011e-37 or 9.7999999999999996e-45 < t
Initial program 100.0%
Taylor expanded in x around 0
*-commutative
N/A
lower-*.f64
N/A
lift--.f64
74.2
Applied rewrites74.2%
if -3.15000000000000011e-37 < t < 9.7999999999999996e-45
Initial program 100.0%
Taylor expanded in z around 0
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
N/A
lift--.f64
75.5
Applied rewrites75.5%
Taylor expanded in x around inf
mul-1-neg
N/A
lift-neg.f64
69.6
Applied rewrites69.6%
Final simplification72.2%
(FPCore (x y z t) :precision binary64 (if (or (<= y -2.4e-21) (not (<= y 1.1))) (* (- t x) y) (fma x z x)))
double code(double x, double y, double z, double t) { double tmp; if ((y <= -2.4e-21) || !(y <= 1.1)) { tmp = (t - x) * y; } else { tmp = fma(x, z, x); } return tmp; }
function code(x, y, z, t) tmp = 0.0 if ((y <= -2.4e-21) || !(y <= 1.1)) tmp = Float64(Float64(t - x) * y); else tmp = fma(x, z, x); end return tmp end
code[x_, y_, z_, t_] := If[Or[LessEqual[y, -2.4e-21], N[Not[LessEqual[y, 1.1]], $MachinePrecision]], N[(N[(t - x), $MachinePrecision] * y), $MachinePrecision], N[(x * z + x), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;y \leq -2.4 \cdot 10^{-21} \lor \neg \left(y \leq 1.1\right):\\ \;\;\;\;\left(t - x\right) \cdot y\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(x, z, x\right)\\ \end{array} \end{array}
if y < -2.3999999999999999e-21 or 1.1000000000000001 < y
Initial program 100.0%
Taylor expanded in y around inf
*-commutative
N/A
lower-*.f64
N/A
lift--.f64
78.7
Applied rewrites78.7%
if -2.3999999999999999e-21 < y < 1.1000000000000001
Initial program 100.0%
Taylor expanded in y around 0
+-commutative
N/A
associate-*r*
N/A
lower-fma.f64
N/A
mul-1-neg
N/A
lower-neg.f64
N/A
lift--.f64
92.8
Applied rewrites92.8%
Taylor expanded in t around 0
+-commutative
N/A
lower-fma.f64
59.9
Applied rewrites59.9%
Final simplification70.4%
(FPCore (x y z t) :precision binary64 (if (or (<= y -1.7e+123) (not (<= y 5.5e+79))) (* t y) (fma x z x)))
double code(double x, double y, double z, double t) { double tmp; if ((y <= -1.7e+123) || !(y <= 5.5e+79)) { tmp = t * y; } else { tmp = fma(x, z, x); } return tmp; }
function code(x, y, z, t) tmp = 0.0 if ((y <= -1.7e+123) || !(y <= 5.5e+79)) tmp = Float64(t * y); else tmp = fma(x, z, x); end return tmp end
code[x_, y_, z_, t_] := If[Or[LessEqual[y, -1.7e+123], N[Not[LessEqual[y, 5.5e+79]], $MachinePrecision]], N[(t * y), $MachinePrecision], N[(x * z + x), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;y \leq -1.7 \cdot 10^{+123} \lor \neg \left(y \leq 5.5 \cdot 10^{+79}\right):\\ \;\;\;\;t \cdot y\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(x, z, x\right)\\ \end{array} \end{array}
if y < -1.70000000000000001e123 or 5.50000000000000007e79 < y
Initial program 100.0%
Taylor expanded in z around 0
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
N/A
lift--.f64
88.8
Applied rewrites88.8%
Taylor expanded in x around 0
lower-*.f64
48.9
Applied rewrites48.9%
if -1.70000000000000001e123 < y < 5.50000000000000007e79
Initial program 100.0%
Taylor expanded in y around 0
+-commutative
N/A
associate-*r*
N/A
lower-fma.f64
N/A
mul-1-neg
N/A
lower-neg.f64
N/A
lift--.f64
78.4
Applied rewrites78.4%
Taylor expanded in t around 0
+-commutative
N/A
lower-fma.f64
49.6
Applied rewrites49.6%
Final simplification49.4%
(FPCore (x y z t) :precision binary64 (if (or (<= z -9.8e-20) (not (<= z 3.2e-21))) (* z x) x))
double code(double x, double y, double z, double t) { double tmp; if ((z <= -9.8e-20) || !(z <= 3.2e-21)) { tmp = z * x; } else { tmp = x; } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t real(8) :: tmp if ((z <= (-9.8d-20)) .or. (.not. (z <= 3.2d-21))) then tmp = z * x else tmp = x end if code = tmp end function
public static double code(double x, double y, double z, double t) { double tmp; if ((z <= -9.8e-20) || !(z <= 3.2e-21)) { tmp = z * x; } else { tmp = x; } return tmp; }
def code(x, y, z, t): tmp = 0 if (z <= -9.8e-20) or not (z <= 3.2e-21): tmp = z * x else: tmp = x return tmp
function code(x, y, z, t) tmp = 0.0 if ((z <= -9.8e-20) || !(z <= 3.2e-21)) tmp = Float64(z * x); else tmp = x; end return tmp end
function tmp_2 = code(x, y, z, t) tmp = 0.0; if ((z <= -9.8e-20) || ~((z <= 3.2e-21))) tmp = z * x; else tmp = x; end tmp_2 = tmp; end
code[x_, y_, z_, t_] := If[Or[LessEqual[z, -9.8e-20], N[Not[LessEqual[z, 3.2e-21]], $MachinePrecision]], N[(z * x), $MachinePrecision], x]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;z \leq -9.8 \cdot 10^{-20} \lor \neg \left(z \leq 3.2 \cdot 10^{-21}\right):\\ \;\;\;\;z \cdot x\\ \mathbf{else}:\\ \;\;\;\;x\\ \end{array} \end{array}
if z < -9.8000000000000003e-20 or 3.2000000000000002e-21 < z
Initial program 100.0%
Taylor expanded in y around 0
+-commutative
N/A
associate-*r*
N/A
lower-fma.f64
N/A
mul-1-neg
N/A
lower-neg.f64
N/A
lift--.f64
73.0
Applied rewrites73.0%
Taylor expanded in t around 0
+-commutative
N/A
lower-fma.f64
37.1
Applied rewrites37.1%
Taylor expanded in z around inf
*-commutative
N/A
lower-*.f64
36.6
Applied rewrites36.6%
if -9.8000000000000003e-20 < z < 3.2000000000000002e-21
Initial program 100.0%
Taylor expanded in z around 0
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
N/A
lift--.f64
92.9
Applied rewrites92.9%
Taylor expanded in y around 0
Applied rewrites33.8%
Final simplification35.2%
(FPCore (x y z t) :precision binary64 x)
double code(double x, double y, double z, double t) { return x; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t code = x end function
public static double code(double x, double y, double z, double t) { return x; }
def code(x, y, z, t): return x
function code(x, y, z, t) return x end
function tmp = code(x, y, z, t) tmp = x; end
code[x_, y_, z_, t_] := x
\begin{array}{l} \\ x \end{array}
Initial program 100.0%
Taylor expanded in z around 0
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
N/A
lift--.f64
64.6
Applied rewrites64.6%
Taylor expanded in y around 0
Applied rewrites18.4%
(FPCore (x y z t) :precision binary64 (+ x (+ (* t (- y z)) (* (- x) (- y z)))))
double code(double x, double y, double z, double t) { return x + ((t * (y - z)) + (-x * (y - z))); }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z, t) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8), intent (in) :: t code = x + ((t * (y - z)) + (-x * (y - z))) end function
public static double code(double x, double y, double z, double t) { return x + ((t * (y - z)) + (-x * (y - z))); }
def code(x, y, z, t): return x + ((t * (y - z)) + (-x * (y - z)))
function code(x, y, z, t) return Float64(x + Float64(Float64(t * Float64(y - z)) + Float64(Float64(-x) * Float64(y - z)))) end
function tmp = code(x, y, z, t) tmp = x + ((t * (y - z)) + (-x * (y - z))); end
code[x_, y_, z_, t_] := N[(x + N[(N[(t * N[(y - z), $MachinePrecision]), $MachinePrecision] + N[((-x) * N[(y - z), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ x + \left(t \cdot \left(y - z\right) + \left(-x\right) \cdot \left(y - z\right)\right) \end{array}
herbie shell --seed 2025038
(FPCore (x y z t)
:name "Data.Metrics.Snapshot:quantile from metrics-0.3.0.2"
:precision binary64
:alt
(! :herbie-platform default (+ x (+ (* t (- y z)) (* (- x) (- y z)))))
(+ x (* (- y z) (- t x))))