Data.Colour.RGBSpace.HSL:hsl from colour-2.3.3, E

Percentage Accurate: 99.7% → 99.8%
Time: 4.0s
Alternatives: 13
Speedup: 1.1×

Specification

?
\[\begin{array}{l} \\ x + \left(\left(y - x\right) \cdot 6\right) \cdot z \end{array} \]
(FPCore (x y z) :precision binary64 (+ x (* (* (- y x) 6.0) z)))
double code(double x, double y, double z) {
	return x + (((y - x) * 6.0) * z);
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    code = x + (((y - x) * 6.0d0) * z)
end function
public static double code(double x, double y, double z) {
	return x + (((y - x) * 6.0) * z);
}
def code(x, y, z):
	return x + (((y - x) * 6.0) * z)
function code(x, y, z)
	return Float64(x + Float64(Float64(Float64(y - x) * 6.0) * z))
end
function tmp = code(x, y, z)
	tmp = x + (((y - x) * 6.0) * z);
end
code[x_, y_, z_] := N[(x + N[(N[(N[(y - x), $MachinePrecision] * 6.0), $MachinePrecision] * z), $MachinePrecision]), $MachinePrecision]
\begin{array}{l}

\\
x + \left(\left(y - x\right) \cdot 6\right) \cdot z
\end{array}

Sampling outcomes in binary64 precision:

Local Percentage Accuracy vs ?

The average percentage accuracy by input value. Horizontal axis shows value of an input variable; the variable is choosen in the title. Vertical axis is accuracy; higher is better. Red represent the original program, while blue represents Herbie's suggestion. These can be toggled with buttons below the plot. The line is an average while dots represent individual samples.

Accuracy vs Speed?

Herbie found 13 alternatives:

AlternativeAccuracySpeedup
The accuracy (vertical axis) and speed (horizontal axis) of each alternatives. Up and to the right is better. The red square shows the initial program, and each blue circle shows an alternative.The line shows the best available speed-accuracy tradeoffs.

Initial Program: 99.7% accurate, 1.0× speedup?

\[\begin{array}{l} \\ x + \left(\left(y - x\right) \cdot 6\right) \cdot z \end{array} \]
(FPCore (x y z) :precision binary64 (+ x (* (* (- y x) 6.0) z)))
double code(double x, double y, double z) {
	return x + (((y - x) * 6.0) * z);
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    code = x + (((y - x) * 6.0d0) * z)
end function
public static double code(double x, double y, double z) {
	return x + (((y - x) * 6.0) * z);
}
def code(x, y, z):
	return x + (((y - x) * 6.0) * z)
function code(x, y, z)
	return Float64(x + Float64(Float64(Float64(y - x) * 6.0) * z))
end
function tmp = code(x, y, z)
	tmp = x + (((y - x) * 6.0) * z);
end
code[x_, y_, z_] := N[(x + N[(N[(N[(y - x), $MachinePrecision] * 6.0), $MachinePrecision] * z), $MachinePrecision]), $MachinePrecision]
\begin{array}{l}

\\
x + \left(\left(y - x\right) \cdot 6\right) \cdot z
\end{array}

Alternative 1: 99.8% accurate, 1.1× speedup?

\[\begin{array}{l} \\ \mathsf{fma}\left(y - x, z \cdot 6, x\right) \end{array} \]
(FPCore (x y z) :precision binary64 (fma (- y x) (* z 6.0) x))
double code(double x, double y, double z) {
	return fma((y - x), (z * 6.0), x);
}
function code(x, y, z)
	return fma(Float64(y - x), Float64(z * 6.0), x)
end
code[x_, y_, z_] := N[(N[(y - x), $MachinePrecision] * N[(z * 6.0), $MachinePrecision] + x), $MachinePrecision]
\begin{array}{l}

\\
\mathsf{fma}\left(y - x, z \cdot 6, x\right)
\end{array}
Derivation
  1. Initial program 99.7%

    \[x + \left(\left(y - x\right) \cdot 6\right) \cdot z \]
  2. Add Preprocessing
  3. Step-by-step derivation
    1. lift-*.f64N/A

      \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot 6\right) \cdot z} \]
    2. lift--.f64N/A

      \[\leadsto x + \left(\color{blue}{\left(y - x\right)} \cdot 6\right) \cdot z \]
    3. lift-*.f64N/A

      \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot 6\right)} \cdot z \]
    4. lower-+.f64N/A

      \[\leadsto \color{blue}{x + \left(\left(y - x\right) \cdot 6\right) \cdot z} \]
    5. +-commutativeN/A

      \[\leadsto \color{blue}{\left(\left(y - x\right) \cdot 6\right) \cdot z + x} \]
    6. associate-*l*N/A

      \[\leadsto \color{blue}{\left(y - x\right) \cdot \left(6 \cdot z\right)} + x \]
    7. lower-fma.f64N/A

      \[\leadsto \color{blue}{\mathsf{fma}\left(y - x, 6 \cdot z, x\right)} \]
    8. lift--.f64N/A

      \[\leadsto \mathsf{fma}\left(\color{blue}{y - x}, 6 \cdot z, x\right) \]
    9. *-commutativeN/A

      \[\leadsto \mathsf{fma}\left(y - x, \color{blue}{z \cdot 6}, x\right) \]
    10. lower-*.f6499.8

      \[\leadsto \mathsf{fma}\left(y - x, \color{blue}{z \cdot 6}, x\right) \]
  4. Applied rewrites99.8%

    \[\leadsto \color{blue}{\mathsf{fma}\left(y - x, z \cdot 6, x\right)} \]
  5. Add Preprocessing

Alternative 2: 61.9% accurate, 0.5× speedup?

\[\begin{array}{l} \\ \begin{array}{l} t_0 := \left(z \cdot x\right) \cdot -6\\ \mathbf{if}\;z \leq -2.9 \cdot 10^{+82}:\\ \;\;\;\;t\_0\\ \mathbf{elif}\;z \leq -8 \cdot 10^{-40}:\\ \;\;\;\;\left(z \cdot y\right) \cdot 6\\ \mathbf{elif}\;z \leq 1.75 \cdot 10^{-20}:\\ \;\;\;\;x\\ \mathbf{elif}\;z \leq 3.4 \cdot 10^{+226}:\\ \;\;\;\;\left(z \cdot 6\right) \cdot y\\ \mathbf{else}:\\ \;\;\;\;t\_0\\ \end{array} \end{array} \]
(FPCore (x y z)
 :precision binary64
 (let* ((t_0 (* (* z x) -6.0)))
   (if (<= z -2.9e+82)
     t_0
     (if (<= z -8e-40)
       (* (* z y) 6.0)
       (if (<= z 1.75e-20) x (if (<= z 3.4e+226) (* (* z 6.0) y) t_0))))))
double code(double x, double y, double z) {
	double t_0 = (z * x) * -6.0;
	double tmp;
	if (z <= -2.9e+82) {
		tmp = t_0;
	} else if (z <= -8e-40) {
		tmp = (z * y) * 6.0;
	} else if (z <= 1.75e-20) {
		tmp = x;
	} else if (z <= 3.4e+226) {
		tmp = (z * 6.0) * y;
	} else {
		tmp = t_0;
	}
	return tmp;
}
module fmin_fmax_functions
    implicit none
    private
    public fmax
    public fmin

    interface fmax
        module procedure fmax88
        module procedure fmax44
        module procedure fmax84
        module procedure fmax48
    end interface
    interface fmin
        module procedure fmin88
        module procedure fmin44
        module procedure fmin84
        module procedure fmin48
    end interface
contains
    real(8) function fmax88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(4) function fmax44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
    end function
    real(8) function fmax84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmax48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
    end function
    real(8) function fmin88(x, y) result (res)
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(4) function fmin44(x, y) result (res)
        real(4), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
    end function
    real(8) function fmin84(x, y) result(res)
        real(8), intent (in) :: x
        real(4), intent (in) :: y
        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
    end function
    real(8) function fmin48(x, y) result(res)
        real(4), intent (in) :: x
        real(8), intent (in) :: y
        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
    end function
end module

real(8) function code(x, y, z)
use fmin_fmax_functions
    real(8), intent (in) :: x
    real(8), intent (in) :: y
    real(8), intent (in) :: z
    real(8) :: t_0
    real(8) :: tmp
    t_0 = (z * x) * (-6.0d0)
    if (z <= (-2.9d+82)) then
        tmp = t_0
    else if (z <= (-8d-40)) then
        tmp = (z * y) * 6.0d0
    else if (z <= 1.75d-20) then
        tmp = x
    else if (z <= 3.4d+226) then
        tmp = (z * 6.0d0) * y
    else
        tmp = t_0
    end if
    code = tmp
end function
public static double code(double x, double y, double z) {
	double t_0 = (z * x) * -6.0;
	double tmp;
	if (z <= -2.9e+82) {
		tmp = t_0;
	} else if (z <= -8e-40) {
		tmp = (z * y) * 6.0;
	} else if (z <= 1.75e-20) {
		tmp = x;
	} else if (z <= 3.4e+226) {
		tmp = (z * 6.0) * y;
	} else {
		tmp = t_0;
	}
	return tmp;
}
def code(x, y, z):
	t_0 = (z * x) * -6.0
	tmp = 0
	if z <= -2.9e+82:
		tmp = t_0
	elif z <= -8e-40:
		tmp = (z * y) * 6.0
	elif z <= 1.75e-20:
		tmp = x
	elif z <= 3.4e+226:
		tmp = (z * 6.0) * y
	else:
		tmp = t_0
	return tmp
function code(x, y, z)
	t_0 = Float64(Float64(z * x) * -6.0)
	tmp = 0.0
	if (z <= -2.9e+82)
		tmp = t_0;
	elseif (z <= -8e-40)
		tmp = Float64(Float64(z * y) * 6.0);
	elseif (z <= 1.75e-20)
		tmp = x;
	elseif (z <= 3.4e+226)
		tmp = Float64(Float64(z * 6.0) * y);
	else
		tmp = t_0;
	end
	return tmp
end
function tmp_2 = code(x, y, z)
	t_0 = (z * x) * -6.0;
	tmp = 0.0;
	if (z <= -2.9e+82)
		tmp = t_0;
	elseif (z <= -8e-40)
		tmp = (z * y) * 6.0;
	elseif (z <= 1.75e-20)
		tmp = x;
	elseif (z <= 3.4e+226)
		tmp = (z * 6.0) * y;
	else
		tmp = t_0;
	end
	tmp_2 = tmp;
end
code[x_, y_, z_] := Block[{t$95$0 = N[(N[(z * x), $MachinePrecision] * -6.0), $MachinePrecision]}, If[LessEqual[z, -2.9e+82], t$95$0, If[LessEqual[z, -8e-40], N[(N[(z * y), $MachinePrecision] * 6.0), $MachinePrecision], If[LessEqual[z, 1.75e-20], x, If[LessEqual[z, 3.4e+226], N[(N[(z * 6.0), $MachinePrecision] * y), $MachinePrecision], t$95$0]]]]]
\begin{array}{l}

\\
\begin{array}{l}
t_0 := \left(z \cdot x\right) \cdot -6\\
\mathbf{if}\;z \leq -2.9 \cdot 10^{+82}:\\
\;\;\;\;t\_0\\

\mathbf{elif}\;z \leq -8 \cdot 10^{-40}:\\
\;\;\;\;\left(z \cdot y\right) \cdot 6\\

\mathbf{elif}\;z \leq 1.75 \cdot 10^{-20}:\\
\;\;\;\;x\\

\mathbf{elif}\;z \leq 3.4 \cdot 10^{+226}:\\
\;\;\;\;\left(z \cdot 6\right) \cdot y\\

\mathbf{else}:\\
\;\;\;\;t\_0\\


\end{array}
\end{array}
Derivation
  1. Split input into 4 regimes
  2. if z < -2.9000000000000001e82 or 3.39999999999999979e226 < z

    1. Initial program 99.8%

      \[x + \left(\left(y - x\right) \cdot 6\right) \cdot z \]
    2. Add Preprocessing
    3. Taylor expanded in x around inf

      \[\leadsto \color{blue}{x \cdot \left(1 + -6 \cdot z\right)} \]
    4. Step-by-step derivation
      1. *-commutativeN/A

        \[\leadsto \left(1 + -6 \cdot z\right) \cdot \color{blue}{x} \]
      2. lower-*.f64N/A

        \[\leadsto \left(1 + -6 \cdot z\right) \cdot \color{blue}{x} \]
      3. +-commutativeN/A

        \[\leadsto \left(-6 \cdot z + 1\right) \cdot x \]
      4. lower-fma.f6464.2

        \[\leadsto \mathsf{fma}\left(-6, z, 1\right) \cdot x \]
    5. Applied rewrites64.2%

      \[\leadsto \color{blue}{\mathsf{fma}\left(-6, z, 1\right) \cdot x} \]
    6. Taylor expanded in z around inf

      \[\leadsto -6 \cdot \color{blue}{\left(x \cdot z\right)} \]
    7. Step-by-step derivation
      1. *-commutativeN/A

        \[\leadsto \left(x \cdot z\right) \cdot -6 \]
      2. *-commutativeN/A

        \[\leadsto \left(z \cdot x\right) \cdot -6 \]
      3. lift-*.f64N/A

        \[\leadsto \left(z \cdot x\right) \cdot -6 \]
      4. lift-*.f6464.2

        \[\leadsto \left(z \cdot x\right) \cdot -6 \]
    8. Applied rewrites64.2%

      \[\leadsto \left(z \cdot x\right) \cdot \color{blue}{-6} \]

    if -2.9000000000000001e82 < z < -7.9999999999999994e-40

    1. Initial program 99.4%

      \[x + \left(\left(y - x\right) \cdot 6\right) \cdot z \]
    2. Add Preprocessing
    3. Taylor expanded in x around 0

      \[\leadsto \color{blue}{6 \cdot \left(y \cdot z\right)} \]
    4. Step-by-step derivation
      1. *-commutativeN/A

        \[\leadsto \left(y \cdot z\right) \cdot \color{blue}{6} \]
      2. lower-*.f64N/A

        \[\leadsto \left(y \cdot z\right) \cdot \color{blue}{6} \]
      3. *-commutativeN/A

        \[\leadsto \left(z \cdot y\right) \cdot 6 \]
      4. lower-*.f6454.2

        \[\leadsto \left(z \cdot y\right) \cdot 6 \]
    5. Applied rewrites54.2%

      \[\leadsto \color{blue}{\left(z \cdot y\right) \cdot 6} \]

    if -7.9999999999999994e-40 < z < 1.75000000000000002e-20

    1. Initial program 99.8%

      \[x + \left(\left(y - x\right) \cdot 6\right) \cdot z \]
    2. Add Preprocessing
    3. Taylor expanded in z around 0

      \[\leadsto \color{blue}{x} \]
    4. Step-by-step derivation
      1. Applied rewrites72.5%

        \[\leadsto \color{blue}{x} \]

      if 1.75000000000000002e-20 < z < 3.39999999999999979e226

      1. Initial program 99.7%

        \[x + \left(\left(y - x\right) \cdot 6\right) \cdot z \]
      2. Add Preprocessing
      3. Taylor expanded in x around 0

        \[\leadsto \color{blue}{6 \cdot \left(y \cdot z\right)} \]
      4. Step-by-step derivation
        1. *-commutativeN/A

          \[\leadsto \left(y \cdot z\right) \cdot \color{blue}{6} \]
        2. lower-*.f64N/A

          \[\leadsto \left(y \cdot z\right) \cdot \color{blue}{6} \]
        3. *-commutativeN/A

          \[\leadsto \left(z \cdot y\right) \cdot 6 \]
        4. lower-*.f6456.0

          \[\leadsto \left(z \cdot y\right) \cdot 6 \]
      5. Applied rewrites56.0%

        \[\leadsto \color{blue}{\left(z \cdot y\right) \cdot 6} \]
      6. Step-by-step derivation
        1. lift-*.f64N/A

          \[\leadsto \left(z \cdot y\right) \cdot 6 \]
        2. lift-*.f64N/A

          \[\leadsto \left(z \cdot y\right) \cdot \color{blue}{6} \]
        3. *-commutativeN/A

          \[\leadsto \left(y \cdot z\right) \cdot 6 \]
        4. *-commutativeN/A

          \[\leadsto 6 \cdot \color{blue}{\left(y \cdot z\right)} \]
        5. *-commutativeN/A

          \[\leadsto 6 \cdot \left(z \cdot \color{blue}{y}\right) \]
        6. associate-*r*N/A

          \[\leadsto \left(6 \cdot z\right) \cdot \color{blue}{y} \]
        7. lower-*.f64N/A

          \[\leadsto \left(6 \cdot z\right) \cdot \color{blue}{y} \]
        8. *-commutativeN/A

          \[\leadsto \left(z \cdot 6\right) \cdot y \]
        9. lift-*.f6456.0

          \[\leadsto \left(z \cdot 6\right) \cdot y \]
      7. Applied rewrites56.0%

        \[\leadsto \left(z \cdot 6\right) \cdot \color{blue}{y} \]
    5. Recombined 4 regimes into one program.
    6. Add Preprocessing

    Alternative 3: 62.0% accurate, 0.5× speedup?

    \[\begin{array}{l} \\ \begin{array}{l} t_0 := \left(z \cdot x\right) \cdot -6\\ t_1 := \left(z \cdot 6\right) \cdot y\\ \mathbf{if}\;z \leq -4.8 \cdot 10^{+107}:\\ \;\;\;\;t\_0\\ \mathbf{elif}\;z \leq -8 \cdot 10^{-40}:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;z \leq 1.75 \cdot 10^{-20}:\\ \;\;\;\;x\\ \mathbf{elif}\;z \leq 3.4 \cdot 10^{+226}:\\ \;\;\;\;t\_1\\ \mathbf{else}:\\ \;\;\;\;t\_0\\ \end{array} \end{array} \]
    (FPCore (x y z)
     :precision binary64
     (let* ((t_0 (* (* z x) -6.0)) (t_1 (* (* z 6.0) y)))
       (if (<= z -4.8e+107)
         t_0
         (if (<= z -8e-40)
           t_1
           (if (<= z 1.75e-20) x (if (<= z 3.4e+226) t_1 t_0))))))
    double code(double x, double y, double z) {
    	double t_0 = (z * x) * -6.0;
    	double t_1 = (z * 6.0) * y;
    	double tmp;
    	if (z <= -4.8e+107) {
    		tmp = t_0;
    	} else if (z <= -8e-40) {
    		tmp = t_1;
    	} else if (z <= 1.75e-20) {
    		tmp = x;
    	} else if (z <= 3.4e+226) {
    		tmp = t_1;
    	} else {
    		tmp = t_0;
    	}
    	return tmp;
    }
    
    module fmin_fmax_functions
        implicit none
        private
        public fmax
        public fmin
    
        interface fmax
            module procedure fmax88
            module procedure fmax44
            module procedure fmax84
            module procedure fmax48
        end interface
        interface fmin
            module procedure fmin88
            module procedure fmin44
            module procedure fmin84
            module procedure fmin48
        end interface
    contains
        real(8) function fmax88(x, y) result (res)
            real(8), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(x, max(x, y), y /= y), x /= x)
        end function
        real(4) function fmax44(x, y) result (res)
            real(4), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(y, merge(x, max(x, y), y /= y), x /= x)
        end function
        real(8) function fmax84(x, y) result(res)
            real(8), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
        end function
        real(8) function fmax48(x, y) result(res)
            real(4), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
        end function
        real(8) function fmin88(x, y) result (res)
            real(8), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(x, min(x, y), y /= y), x /= x)
        end function
        real(4) function fmin44(x, y) result (res)
            real(4), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(y, merge(x, min(x, y), y /= y), x /= x)
        end function
        real(8) function fmin84(x, y) result(res)
            real(8), intent (in) :: x
            real(4), intent (in) :: y
            res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
        end function
        real(8) function fmin48(x, y) result(res)
            real(4), intent (in) :: x
            real(8), intent (in) :: y
            res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
        end function
    end module
    
    real(8) function code(x, y, z)
    use fmin_fmax_functions
        real(8), intent (in) :: x
        real(8), intent (in) :: y
        real(8), intent (in) :: z
        real(8) :: t_0
        real(8) :: t_1
        real(8) :: tmp
        t_0 = (z * x) * (-6.0d0)
        t_1 = (z * 6.0d0) * y
        if (z <= (-4.8d+107)) then
            tmp = t_0
        else if (z <= (-8d-40)) then
            tmp = t_1
        else if (z <= 1.75d-20) then
            tmp = x
        else if (z <= 3.4d+226) then
            tmp = t_1
        else
            tmp = t_0
        end if
        code = tmp
    end function
    
    public static double code(double x, double y, double z) {
    	double t_0 = (z * x) * -6.0;
    	double t_1 = (z * 6.0) * y;
    	double tmp;
    	if (z <= -4.8e+107) {
    		tmp = t_0;
    	} else if (z <= -8e-40) {
    		tmp = t_1;
    	} else if (z <= 1.75e-20) {
    		tmp = x;
    	} else if (z <= 3.4e+226) {
    		tmp = t_1;
    	} else {
    		tmp = t_0;
    	}
    	return tmp;
    }
    
    def code(x, y, z):
    	t_0 = (z * x) * -6.0
    	t_1 = (z * 6.0) * y
    	tmp = 0
    	if z <= -4.8e+107:
    		tmp = t_0
    	elif z <= -8e-40:
    		tmp = t_1
    	elif z <= 1.75e-20:
    		tmp = x
    	elif z <= 3.4e+226:
    		tmp = t_1
    	else:
    		tmp = t_0
    	return tmp
    
    function code(x, y, z)
    	t_0 = Float64(Float64(z * x) * -6.0)
    	t_1 = Float64(Float64(z * 6.0) * y)
    	tmp = 0.0
    	if (z <= -4.8e+107)
    		tmp = t_0;
    	elseif (z <= -8e-40)
    		tmp = t_1;
    	elseif (z <= 1.75e-20)
    		tmp = x;
    	elseif (z <= 3.4e+226)
    		tmp = t_1;
    	else
    		tmp = t_0;
    	end
    	return tmp
    end
    
    function tmp_2 = code(x, y, z)
    	t_0 = (z * x) * -6.0;
    	t_1 = (z * 6.0) * y;
    	tmp = 0.0;
    	if (z <= -4.8e+107)
    		tmp = t_0;
    	elseif (z <= -8e-40)
    		tmp = t_1;
    	elseif (z <= 1.75e-20)
    		tmp = x;
    	elseif (z <= 3.4e+226)
    		tmp = t_1;
    	else
    		tmp = t_0;
    	end
    	tmp_2 = tmp;
    end
    
    code[x_, y_, z_] := Block[{t$95$0 = N[(N[(z * x), $MachinePrecision] * -6.0), $MachinePrecision]}, Block[{t$95$1 = N[(N[(z * 6.0), $MachinePrecision] * y), $MachinePrecision]}, If[LessEqual[z, -4.8e+107], t$95$0, If[LessEqual[z, -8e-40], t$95$1, If[LessEqual[z, 1.75e-20], x, If[LessEqual[z, 3.4e+226], t$95$1, t$95$0]]]]]]
    
    \begin{array}{l}
    
    \\
    \begin{array}{l}
    t_0 := \left(z \cdot x\right) \cdot -6\\
    t_1 := \left(z \cdot 6\right) \cdot y\\
    \mathbf{if}\;z \leq -4.8 \cdot 10^{+107}:\\
    \;\;\;\;t\_0\\
    
    \mathbf{elif}\;z \leq -8 \cdot 10^{-40}:\\
    \;\;\;\;t\_1\\
    
    \mathbf{elif}\;z \leq 1.75 \cdot 10^{-20}:\\
    \;\;\;\;x\\
    
    \mathbf{elif}\;z \leq 3.4 \cdot 10^{+226}:\\
    \;\;\;\;t\_1\\
    
    \mathbf{else}:\\
    \;\;\;\;t\_0\\
    
    
    \end{array}
    \end{array}
    
    Derivation
    1. Split input into 3 regimes
    2. if z < -4.8000000000000001e107 or 3.39999999999999979e226 < z

      1. Initial program 99.8%

        \[x + \left(\left(y - x\right) \cdot 6\right) \cdot z \]
      2. Add Preprocessing
      3. Taylor expanded in x around inf

        \[\leadsto \color{blue}{x \cdot \left(1 + -6 \cdot z\right)} \]
      4. Step-by-step derivation
        1. *-commutativeN/A

          \[\leadsto \left(1 + -6 \cdot z\right) \cdot \color{blue}{x} \]
        2. lower-*.f64N/A

          \[\leadsto \left(1 + -6 \cdot z\right) \cdot \color{blue}{x} \]
        3. +-commutativeN/A

          \[\leadsto \left(-6 \cdot z + 1\right) \cdot x \]
        4. lower-fma.f6465.6

          \[\leadsto \mathsf{fma}\left(-6, z, 1\right) \cdot x \]
      5. Applied rewrites65.6%

        \[\leadsto \color{blue}{\mathsf{fma}\left(-6, z, 1\right) \cdot x} \]
      6. Taylor expanded in z around inf

        \[\leadsto -6 \cdot \color{blue}{\left(x \cdot z\right)} \]
      7. Step-by-step derivation
        1. *-commutativeN/A

          \[\leadsto \left(x \cdot z\right) \cdot -6 \]
        2. *-commutativeN/A

          \[\leadsto \left(z \cdot x\right) \cdot -6 \]
        3. lift-*.f64N/A

          \[\leadsto \left(z \cdot x\right) \cdot -6 \]
        4. lift-*.f6465.7

          \[\leadsto \left(z \cdot x\right) \cdot -6 \]
      8. Applied rewrites65.7%

        \[\leadsto \left(z \cdot x\right) \cdot \color{blue}{-6} \]

      if -4.8000000000000001e107 < z < -7.9999999999999994e-40 or 1.75000000000000002e-20 < z < 3.39999999999999979e226

      1. Initial program 99.6%

        \[x + \left(\left(y - x\right) \cdot 6\right) \cdot z \]
      2. Add Preprocessing
      3. Taylor expanded in x around 0

        \[\leadsto \color{blue}{6 \cdot \left(y \cdot z\right)} \]
      4. Step-by-step derivation
        1. *-commutativeN/A

          \[\leadsto \left(y \cdot z\right) \cdot \color{blue}{6} \]
        2. lower-*.f64N/A

          \[\leadsto \left(y \cdot z\right) \cdot \color{blue}{6} \]
        3. *-commutativeN/A

          \[\leadsto \left(z \cdot y\right) \cdot 6 \]
        4. lower-*.f6455.0

          \[\leadsto \left(z \cdot y\right) \cdot 6 \]
      5. Applied rewrites55.0%

        \[\leadsto \color{blue}{\left(z \cdot y\right) \cdot 6} \]
      6. Step-by-step derivation
        1. lift-*.f64N/A

          \[\leadsto \left(z \cdot y\right) \cdot 6 \]
        2. lift-*.f64N/A

          \[\leadsto \left(z \cdot y\right) \cdot \color{blue}{6} \]
        3. *-commutativeN/A

          \[\leadsto \left(y \cdot z\right) \cdot 6 \]
        4. *-commutativeN/A

          \[\leadsto 6 \cdot \color{blue}{\left(y \cdot z\right)} \]
        5. *-commutativeN/A

          \[\leadsto 6 \cdot \left(z \cdot \color{blue}{y}\right) \]
        6. associate-*r*N/A

          \[\leadsto \left(6 \cdot z\right) \cdot \color{blue}{y} \]
        7. lower-*.f64N/A

          \[\leadsto \left(6 \cdot z\right) \cdot \color{blue}{y} \]
        8. *-commutativeN/A

          \[\leadsto \left(z \cdot 6\right) \cdot y \]
        9. lift-*.f6455.1

          \[\leadsto \left(z \cdot 6\right) \cdot y \]
      7. Applied rewrites55.1%

        \[\leadsto \left(z \cdot 6\right) \cdot \color{blue}{y} \]

      if -7.9999999999999994e-40 < z < 1.75000000000000002e-20

      1. Initial program 99.8%

        \[x + \left(\left(y - x\right) \cdot 6\right) \cdot z \]
      2. Add Preprocessing
      3. Taylor expanded in z around 0

        \[\leadsto \color{blue}{x} \]
      4. Step-by-step derivation
        1. Applied rewrites72.5%

          \[\leadsto \color{blue}{x} \]
      5. Recombined 3 regimes into one program.
      6. Add Preprocessing

      Alternative 4: 61.6% accurate, 0.6× speedup?

      \[\begin{array}{l} \\ \begin{array}{l} t_0 := \left(z \cdot x\right) \cdot -6\\ \mathbf{if}\;z \leq -0.165:\\ \;\;\;\;t\_0\\ \mathbf{elif}\;z \leq 1.75 \cdot 10^{-20}:\\ \;\;\;\;x\\ \mathbf{elif}\;z \leq 3.4 \cdot 10^{+226}:\\ \;\;\;\;\left(6 \cdot y\right) \cdot z\\ \mathbf{else}:\\ \;\;\;\;t\_0\\ \end{array} \end{array} \]
      (FPCore (x y z)
       :precision binary64
       (let* ((t_0 (* (* z x) -6.0)))
         (if (<= z -0.165)
           t_0
           (if (<= z 1.75e-20) x (if (<= z 3.4e+226) (* (* 6.0 y) z) t_0)))))
      double code(double x, double y, double z) {
      	double t_0 = (z * x) * -6.0;
      	double tmp;
      	if (z <= -0.165) {
      		tmp = t_0;
      	} else if (z <= 1.75e-20) {
      		tmp = x;
      	} else if (z <= 3.4e+226) {
      		tmp = (6.0 * y) * z;
      	} else {
      		tmp = t_0;
      	}
      	return tmp;
      }
      
      module fmin_fmax_functions
          implicit none
          private
          public fmax
          public fmin
      
          interface fmax
              module procedure fmax88
              module procedure fmax44
              module procedure fmax84
              module procedure fmax48
          end interface
          interface fmin
              module procedure fmin88
              module procedure fmin44
              module procedure fmin84
              module procedure fmin48
          end interface
      contains
          real(8) function fmax88(x, y) result (res)
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
          end function
          real(4) function fmax44(x, y) result (res)
              real(4), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(y, merge(x, max(x, y), y /= y), x /= x)
          end function
          real(8) function fmax84(x, y) result(res)
              real(8), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
          end function
          real(8) function fmax48(x, y) result(res)
              real(4), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
          end function
          real(8) function fmin88(x, y) result (res)
              real(8), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
          end function
          real(4) function fmin44(x, y) result (res)
              real(4), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(y, merge(x, min(x, y), y /= y), x /= x)
          end function
          real(8) function fmin84(x, y) result(res)
              real(8), intent (in) :: x
              real(4), intent (in) :: y
              res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
          end function
          real(8) function fmin48(x, y) result(res)
              real(4), intent (in) :: x
              real(8), intent (in) :: y
              res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
          end function
      end module
      
      real(8) function code(x, y, z)
      use fmin_fmax_functions
          real(8), intent (in) :: x
          real(8), intent (in) :: y
          real(8), intent (in) :: z
          real(8) :: t_0
          real(8) :: tmp
          t_0 = (z * x) * (-6.0d0)
          if (z <= (-0.165d0)) then
              tmp = t_0
          else if (z <= 1.75d-20) then
              tmp = x
          else if (z <= 3.4d+226) then
              tmp = (6.0d0 * y) * z
          else
              tmp = t_0
          end if
          code = tmp
      end function
      
      public static double code(double x, double y, double z) {
      	double t_0 = (z * x) * -6.0;
      	double tmp;
      	if (z <= -0.165) {
      		tmp = t_0;
      	} else if (z <= 1.75e-20) {
      		tmp = x;
      	} else if (z <= 3.4e+226) {
      		tmp = (6.0 * y) * z;
      	} else {
      		tmp = t_0;
      	}
      	return tmp;
      }
      
      def code(x, y, z):
      	t_0 = (z * x) * -6.0
      	tmp = 0
      	if z <= -0.165:
      		tmp = t_0
      	elif z <= 1.75e-20:
      		tmp = x
      	elif z <= 3.4e+226:
      		tmp = (6.0 * y) * z
      	else:
      		tmp = t_0
      	return tmp
      
      function code(x, y, z)
      	t_0 = Float64(Float64(z * x) * -6.0)
      	tmp = 0.0
      	if (z <= -0.165)
      		tmp = t_0;
      	elseif (z <= 1.75e-20)
      		tmp = x;
      	elseif (z <= 3.4e+226)
      		tmp = Float64(Float64(6.0 * y) * z);
      	else
      		tmp = t_0;
      	end
      	return tmp
      end
      
      function tmp_2 = code(x, y, z)
      	t_0 = (z * x) * -6.0;
      	tmp = 0.0;
      	if (z <= -0.165)
      		tmp = t_0;
      	elseif (z <= 1.75e-20)
      		tmp = x;
      	elseif (z <= 3.4e+226)
      		tmp = (6.0 * y) * z;
      	else
      		tmp = t_0;
      	end
      	tmp_2 = tmp;
      end
      
      code[x_, y_, z_] := Block[{t$95$0 = N[(N[(z * x), $MachinePrecision] * -6.0), $MachinePrecision]}, If[LessEqual[z, -0.165], t$95$0, If[LessEqual[z, 1.75e-20], x, If[LessEqual[z, 3.4e+226], N[(N[(6.0 * y), $MachinePrecision] * z), $MachinePrecision], t$95$0]]]]
      
      \begin{array}{l}
      
      \\
      \begin{array}{l}
      t_0 := \left(z \cdot x\right) \cdot -6\\
      \mathbf{if}\;z \leq -0.165:\\
      \;\;\;\;t\_0\\
      
      \mathbf{elif}\;z \leq 1.75 \cdot 10^{-20}:\\
      \;\;\;\;x\\
      
      \mathbf{elif}\;z \leq 3.4 \cdot 10^{+226}:\\
      \;\;\;\;\left(6 \cdot y\right) \cdot z\\
      
      \mathbf{else}:\\
      \;\;\;\;t\_0\\
      
      
      \end{array}
      \end{array}
      
      Derivation
      1. Split input into 3 regimes
      2. if z < -0.165000000000000008 or 3.39999999999999979e226 < z

        1. Initial program 99.7%

          \[x + \left(\left(y - x\right) \cdot 6\right) \cdot z \]
        2. Add Preprocessing
        3. Taylor expanded in x around inf

          \[\leadsto \color{blue}{x \cdot \left(1 + -6 \cdot z\right)} \]
        4. Step-by-step derivation
          1. *-commutativeN/A

            \[\leadsto \left(1 + -6 \cdot z\right) \cdot \color{blue}{x} \]
          2. lower-*.f64N/A

            \[\leadsto \left(1 + -6 \cdot z\right) \cdot \color{blue}{x} \]
          3. +-commutativeN/A

            \[\leadsto \left(-6 \cdot z + 1\right) \cdot x \]
          4. lower-fma.f6460.7

            \[\leadsto \mathsf{fma}\left(-6, z, 1\right) \cdot x \]
        5. Applied rewrites60.7%

          \[\leadsto \color{blue}{\mathsf{fma}\left(-6, z, 1\right) \cdot x} \]
        6. Taylor expanded in z around inf

          \[\leadsto -6 \cdot \color{blue}{\left(x \cdot z\right)} \]
        7. Step-by-step derivation
          1. *-commutativeN/A

            \[\leadsto \left(x \cdot z\right) \cdot -6 \]
          2. *-commutativeN/A

            \[\leadsto \left(z \cdot x\right) \cdot -6 \]
          3. lift-*.f64N/A

            \[\leadsto \left(z \cdot x\right) \cdot -6 \]
          4. lift-*.f6459.3

            \[\leadsto \left(z \cdot x\right) \cdot -6 \]
        8. Applied rewrites59.3%

          \[\leadsto \left(z \cdot x\right) \cdot \color{blue}{-6} \]

        if -0.165000000000000008 < z < 1.75000000000000002e-20

        1. Initial program 99.8%

          \[x + \left(\left(y - x\right) \cdot 6\right) \cdot z \]
        2. Add Preprocessing
        3. Taylor expanded in z around 0

          \[\leadsto \color{blue}{x} \]
        4. Step-by-step derivation
          1. Applied rewrites69.6%

            \[\leadsto \color{blue}{x} \]

          if 1.75000000000000002e-20 < z < 3.39999999999999979e226

          1. Initial program 99.7%

            \[x + \left(\left(y - x\right) \cdot 6\right) \cdot z \]
          2. Add Preprocessing
          3. Taylor expanded in x around 0

            \[\leadsto \color{blue}{6 \cdot \left(y \cdot z\right)} \]
          4. Step-by-step derivation
            1. *-commutativeN/A

              \[\leadsto \left(y \cdot z\right) \cdot \color{blue}{6} \]
            2. lower-*.f64N/A

              \[\leadsto \left(y \cdot z\right) \cdot \color{blue}{6} \]
            3. *-commutativeN/A

              \[\leadsto \left(z \cdot y\right) \cdot 6 \]
            4. lower-*.f6456.0

              \[\leadsto \left(z \cdot y\right) \cdot 6 \]
          5. Applied rewrites56.0%

            \[\leadsto \color{blue}{\left(z \cdot y\right) \cdot 6} \]
          6. Step-by-step derivation
            1. lift-*.f64N/A

              \[\leadsto \left(z \cdot y\right) \cdot 6 \]
            2. lift-*.f64N/A

              \[\leadsto \left(z \cdot y\right) \cdot \color{blue}{6} \]
            3. *-commutativeN/A

              \[\leadsto \left(y \cdot z\right) \cdot 6 \]
            4. *-commutativeN/A

              \[\leadsto 6 \cdot \color{blue}{\left(y \cdot z\right)} \]
            5. associate-*r*N/A

              \[\leadsto \left(6 \cdot y\right) \cdot \color{blue}{z} \]
            6. lower-*.f64N/A

              \[\leadsto \left(6 \cdot y\right) \cdot \color{blue}{z} \]
            7. lift-*.f6455.9

              \[\leadsto \left(6 \cdot y\right) \cdot z \]
          7. Applied rewrites55.9%

            \[\leadsto \left(6 \cdot y\right) \cdot \color{blue}{z} \]
        5. Recombined 3 regimes into one program.
        6. Add Preprocessing

        Alternative 5: 98.9% accurate, 0.7× speedup?

        \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;z \leq -0.175 \lor \neg \left(z \leq 0.165\right):\\ \;\;\;\;\left(\left(y - x\right) \cdot 6\right) \cdot z\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(y, z \cdot 6, x\right)\\ \end{array} \end{array} \]
        (FPCore (x y z)
         :precision binary64
         (if (or (<= z -0.175) (not (<= z 0.165)))
           (* (* (- y x) 6.0) z)
           (fma y (* z 6.0) x)))
        double code(double x, double y, double z) {
        	double tmp;
        	if ((z <= -0.175) || !(z <= 0.165)) {
        		tmp = ((y - x) * 6.0) * z;
        	} else {
        		tmp = fma(y, (z * 6.0), x);
        	}
        	return tmp;
        }
        
        function code(x, y, z)
        	tmp = 0.0
        	if ((z <= -0.175) || !(z <= 0.165))
        		tmp = Float64(Float64(Float64(y - x) * 6.0) * z);
        	else
        		tmp = fma(y, Float64(z * 6.0), x);
        	end
        	return tmp
        end
        
        code[x_, y_, z_] := If[Or[LessEqual[z, -0.175], N[Not[LessEqual[z, 0.165]], $MachinePrecision]], N[(N[(N[(y - x), $MachinePrecision] * 6.0), $MachinePrecision] * z), $MachinePrecision], N[(y * N[(z * 6.0), $MachinePrecision] + x), $MachinePrecision]]
        
        \begin{array}{l}
        
        \\
        \begin{array}{l}
        \mathbf{if}\;z \leq -0.175 \lor \neg \left(z \leq 0.165\right):\\
        \;\;\;\;\left(\left(y - x\right) \cdot 6\right) \cdot z\\
        
        \mathbf{else}:\\
        \;\;\;\;\mathsf{fma}\left(y, z \cdot 6, x\right)\\
        
        
        \end{array}
        \end{array}
        
        Derivation
        1. Split input into 2 regimes
        2. if z < -0.17499999999999999 or 0.165000000000000008 < z

          1. Initial program 99.7%

            \[x + \left(\left(y - x\right) \cdot 6\right) \cdot z \]
          2. Add Preprocessing
          3. Taylor expanded in z around inf

            \[\leadsto \color{blue}{6 \cdot \left(z \cdot \left(y - x\right)\right)} \]
          4. Step-by-step derivation
            1. *-commutativeN/A

              \[\leadsto 6 \cdot \left(\left(y - x\right) \cdot \color{blue}{z}\right) \]
            2. associate-*r*N/A

              \[\leadsto \left(6 \cdot \left(y - x\right)\right) \cdot \color{blue}{z} \]
            3. *-commutativeN/A

              \[\leadsto \left(\left(y - x\right) \cdot 6\right) \cdot z \]
            4. lift-*.f64N/A

              \[\leadsto \left(\left(y - x\right) \cdot 6\right) \cdot z \]
            5. lift--.f64N/A

              \[\leadsto \left(\left(y - x\right) \cdot 6\right) \cdot z \]
            6. lift-*.f6498.6

              \[\leadsto \left(\left(y - x\right) \cdot 6\right) \cdot \color{blue}{z} \]
          5. Applied rewrites98.6%

            \[\leadsto \color{blue}{\left(\left(y - x\right) \cdot 6\right) \cdot z} \]

          if -0.17499999999999999 < z < 0.165000000000000008

          1. Initial program 99.8%

            \[x + \left(\left(y - x\right) \cdot 6\right) \cdot z \]
          2. Add Preprocessing
          3. Step-by-step derivation
            1. lift-*.f64N/A

              \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot 6\right) \cdot z} \]
            2. lift--.f64N/A

              \[\leadsto x + \left(\color{blue}{\left(y - x\right)} \cdot 6\right) \cdot z \]
            3. lift-*.f64N/A

              \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot 6\right)} \cdot z \]
            4. lower-+.f64N/A

              \[\leadsto \color{blue}{x + \left(\left(y - x\right) \cdot 6\right) \cdot z} \]
            5. +-commutativeN/A

              \[\leadsto \color{blue}{\left(\left(y - x\right) \cdot 6\right) \cdot z + x} \]
            6. associate-*l*N/A

              \[\leadsto \color{blue}{\left(y - x\right) \cdot \left(6 \cdot z\right)} + x \]
            7. lower-fma.f64N/A

              \[\leadsto \color{blue}{\mathsf{fma}\left(y - x, 6 \cdot z, x\right)} \]
            8. lift--.f64N/A

              \[\leadsto \mathsf{fma}\left(\color{blue}{y - x}, 6 \cdot z, x\right) \]
            9. *-commutativeN/A

              \[\leadsto \mathsf{fma}\left(y - x, \color{blue}{z \cdot 6}, x\right) \]
            10. lower-*.f6499.9

              \[\leadsto \mathsf{fma}\left(y - x, \color{blue}{z \cdot 6}, x\right) \]
          4. Applied rewrites99.9%

            \[\leadsto \color{blue}{\mathsf{fma}\left(y - x, z \cdot 6, x\right)} \]
          5. Taylor expanded in x around 0

            \[\leadsto \mathsf{fma}\left(\color{blue}{y}, z \cdot 6, x\right) \]
          6. Step-by-step derivation
            1. Applied rewrites99.3%

              \[\leadsto \mathsf{fma}\left(\color{blue}{y}, z \cdot 6, x\right) \]
          7. Recombined 2 regimes into one program.
          8. Final simplification98.9%

            \[\leadsto \begin{array}{l} \mathbf{if}\;z \leq -0.175 \lor \neg \left(z \leq 0.165\right):\\ \;\;\;\;\left(\left(y - x\right) \cdot 6\right) \cdot z\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(y, z \cdot 6, x\right)\\ \end{array} \]
          9. Add Preprocessing

          Alternative 6: 85.5% accurate, 0.7× speedup?

          \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;y \leq -0.014 \lor \neg \left(y \leq 1.6 \cdot 10^{-162}\right):\\ \;\;\;\;\mathsf{fma}\left(y, z \cdot 6, x\right)\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(-6 \cdot x, z, x\right)\\ \end{array} \end{array} \]
          (FPCore (x y z)
           :precision binary64
           (if (or (<= y -0.014) (not (<= y 1.6e-162)))
             (fma y (* z 6.0) x)
             (fma (* -6.0 x) z x)))
          double code(double x, double y, double z) {
          	double tmp;
          	if ((y <= -0.014) || !(y <= 1.6e-162)) {
          		tmp = fma(y, (z * 6.0), x);
          	} else {
          		tmp = fma((-6.0 * x), z, x);
          	}
          	return tmp;
          }
          
          function code(x, y, z)
          	tmp = 0.0
          	if ((y <= -0.014) || !(y <= 1.6e-162))
          		tmp = fma(y, Float64(z * 6.0), x);
          	else
          		tmp = fma(Float64(-6.0 * x), z, x);
          	end
          	return tmp
          end
          
          code[x_, y_, z_] := If[Or[LessEqual[y, -0.014], N[Not[LessEqual[y, 1.6e-162]], $MachinePrecision]], N[(y * N[(z * 6.0), $MachinePrecision] + x), $MachinePrecision], N[(N[(-6.0 * x), $MachinePrecision] * z + x), $MachinePrecision]]
          
          \begin{array}{l}
          
          \\
          \begin{array}{l}
          \mathbf{if}\;y \leq -0.014 \lor \neg \left(y \leq 1.6 \cdot 10^{-162}\right):\\
          \;\;\;\;\mathsf{fma}\left(y, z \cdot 6, x\right)\\
          
          \mathbf{else}:\\
          \;\;\;\;\mathsf{fma}\left(-6 \cdot x, z, x\right)\\
          
          
          \end{array}
          \end{array}
          
          Derivation
          1. Split input into 2 regimes
          2. if y < -0.0140000000000000003 or 1.59999999999999988e-162 < y

            1. Initial program 99.7%

              \[x + \left(\left(y - x\right) \cdot 6\right) \cdot z \]
            2. Add Preprocessing
            3. Step-by-step derivation
              1. lift-*.f64N/A

                \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot 6\right) \cdot z} \]
              2. lift--.f64N/A

                \[\leadsto x + \left(\color{blue}{\left(y - x\right)} \cdot 6\right) \cdot z \]
              3. lift-*.f64N/A

                \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot 6\right)} \cdot z \]
              4. lower-+.f64N/A

                \[\leadsto \color{blue}{x + \left(\left(y - x\right) \cdot 6\right) \cdot z} \]
              5. +-commutativeN/A

                \[\leadsto \color{blue}{\left(\left(y - x\right) \cdot 6\right) \cdot z + x} \]
              6. associate-*l*N/A

                \[\leadsto \color{blue}{\left(y - x\right) \cdot \left(6 \cdot z\right)} + x \]
              7. lower-fma.f64N/A

                \[\leadsto \color{blue}{\mathsf{fma}\left(y - x, 6 \cdot z, x\right)} \]
              8. lift--.f64N/A

                \[\leadsto \mathsf{fma}\left(\color{blue}{y - x}, 6 \cdot z, x\right) \]
              9. *-commutativeN/A

                \[\leadsto \mathsf{fma}\left(y - x, \color{blue}{z \cdot 6}, x\right) \]
              10. lower-*.f6499.8

                \[\leadsto \mathsf{fma}\left(y - x, \color{blue}{z \cdot 6}, x\right) \]
            4. Applied rewrites99.8%

              \[\leadsto \color{blue}{\mathsf{fma}\left(y - x, z \cdot 6, x\right)} \]
            5. Taylor expanded in x around 0

              \[\leadsto \mathsf{fma}\left(\color{blue}{y}, z \cdot 6, x\right) \]
            6. Step-by-step derivation
              1. Applied rewrites88.2%

                \[\leadsto \mathsf{fma}\left(\color{blue}{y}, z \cdot 6, x\right) \]

              if -0.0140000000000000003 < y < 1.59999999999999988e-162

              1. Initial program 99.8%

                \[x + \left(\left(y - x\right) \cdot 6\right) \cdot z \]
              2. Add Preprocessing
              3. Taylor expanded in x around inf

                \[\leadsto \color{blue}{x \cdot \left(1 + -6 \cdot z\right)} \]
              4. Step-by-step derivation
                1. *-commutativeN/A

                  \[\leadsto \left(1 + -6 \cdot z\right) \cdot \color{blue}{x} \]
                2. lower-*.f64N/A

                  \[\leadsto \left(1 + -6 \cdot z\right) \cdot \color{blue}{x} \]
                3. +-commutativeN/A

                  \[\leadsto \left(-6 \cdot z + 1\right) \cdot x \]
                4. lower-fma.f6489.8

                  \[\leadsto \mathsf{fma}\left(-6, z, 1\right) \cdot x \]
              5. Applied rewrites89.8%

                \[\leadsto \color{blue}{\mathsf{fma}\left(-6, z, 1\right) \cdot x} \]
              6. Step-by-step derivation
                1. lift-fma.f64N/A

                  \[\leadsto \left(-6 \cdot z + 1\right) \cdot x \]
                2. lower-*.f64N/A

                  \[\leadsto \left(-6 \cdot z + 1\right) \cdot \color{blue}{x} \]
                3. *-commutativeN/A

                  \[\leadsto x \cdot \color{blue}{\left(-6 \cdot z + 1\right)} \]
                4. distribute-rgt-inN/A

                  \[\leadsto \left(-6 \cdot z\right) \cdot x + \color{blue}{1 \cdot x} \]
                5. *-lft-identityN/A

                  \[\leadsto \left(-6 \cdot z\right) \cdot x + x \]
                6. *-commutativeN/A

                  \[\leadsto x \cdot \left(-6 \cdot z\right) + x \]
                7. associate-*r*N/A

                  \[\leadsto \left(x \cdot -6\right) \cdot z + x \]
                8. *-commutativeN/A

                  \[\leadsto \left(-6 \cdot x\right) \cdot z + x \]
                9. lower-fma.f64N/A

                  \[\leadsto \mathsf{fma}\left(-6 \cdot x, \color{blue}{z}, x\right) \]
                10. lower-*.f6489.8

                  \[\leadsto \mathsf{fma}\left(-6 \cdot x, z, x\right) \]
              7. Applied rewrites89.8%

                \[\leadsto \mathsf{fma}\left(-6 \cdot x, \color{blue}{z}, x\right) \]
            7. Recombined 2 regimes into one program.
            8. Final simplification88.8%

              \[\leadsto \begin{array}{l} \mathbf{if}\;y \leq -0.014 \lor \neg \left(y \leq 1.6 \cdot 10^{-162}\right):\\ \;\;\;\;\mathsf{fma}\left(y, z \cdot 6, x\right)\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(-6 \cdot x, z, x\right)\\ \end{array} \]
            9. Add Preprocessing

            Alternative 7: 73.1% accurate, 0.7× speedup?

            \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;x \leq -2.2 \cdot 10^{-144} \lor \neg \left(x \leq 6 \cdot 10^{+55}\right):\\ \;\;\;\;\mathsf{fma}\left(-6, z, 1\right) \cdot x\\ \mathbf{else}:\\ \;\;\;\;\left(z \cdot y\right) \cdot 6\\ \end{array} \end{array} \]
            (FPCore (x y z)
             :precision binary64
             (if (or (<= x -2.2e-144) (not (<= x 6e+55)))
               (* (fma -6.0 z 1.0) x)
               (* (* z y) 6.0)))
            double code(double x, double y, double z) {
            	double tmp;
            	if ((x <= -2.2e-144) || !(x <= 6e+55)) {
            		tmp = fma(-6.0, z, 1.0) * x;
            	} else {
            		tmp = (z * y) * 6.0;
            	}
            	return tmp;
            }
            
            function code(x, y, z)
            	tmp = 0.0
            	if ((x <= -2.2e-144) || !(x <= 6e+55))
            		tmp = Float64(fma(-6.0, z, 1.0) * x);
            	else
            		tmp = Float64(Float64(z * y) * 6.0);
            	end
            	return tmp
            end
            
            code[x_, y_, z_] := If[Or[LessEqual[x, -2.2e-144], N[Not[LessEqual[x, 6e+55]], $MachinePrecision]], N[(N[(-6.0 * z + 1.0), $MachinePrecision] * x), $MachinePrecision], N[(N[(z * y), $MachinePrecision] * 6.0), $MachinePrecision]]
            
            \begin{array}{l}
            
            \\
            \begin{array}{l}
            \mathbf{if}\;x \leq -2.2 \cdot 10^{-144} \lor \neg \left(x \leq 6 \cdot 10^{+55}\right):\\
            \;\;\;\;\mathsf{fma}\left(-6, z, 1\right) \cdot x\\
            
            \mathbf{else}:\\
            \;\;\;\;\left(z \cdot y\right) \cdot 6\\
            
            
            \end{array}
            \end{array}
            
            Derivation
            1. Split input into 2 regimes
            2. if x < -2.20000000000000006e-144 or 6.00000000000000033e55 < x

              1. Initial program 99.8%

                \[x + \left(\left(y - x\right) \cdot 6\right) \cdot z \]
              2. Add Preprocessing
              3. Taylor expanded in x around inf

                \[\leadsto \color{blue}{x \cdot \left(1 + -6 \cdot z\right)} \]
              4. Step-by-step derivation
                1. *-commutativeN/A

                  \[\leadsto \left(1 + -6 \cdot z\right) \cdot \color{blue}{x} \]
                2. lower-*.f64N/A

                  \[\leadsto \left(1 + -6 \cdot z\right) \cdot \color{blue}{x} \]
                3. +-commutativeN/A

                  \[\leadsto \left(-6 \cdot z + 1\right) \cdot x \]
                4. lower-fma.f6479.4

                  \[\leadsto \mathsf{fma}\left(-6, z, 1\right) \cdot x \]
              5. Applied rewrites79.4%

                \[\leadsto \color{blue}{\mathsf{fma}\left(-6, z, 1\right) \cdot x} \]

              if -2.20000000000000006e-144 < x < 6.00000000000000033e55

              1. Initial program 99.6%

                \[x + \left(\left(y - x\right) \cdot 6\right) \cdot z \]
              2. Add Preprocessing
              3. Taylor expanded in x around 0

                \[\leadsto \color{blue}{6 \cdot \left(y \cdot z\right)} \]
              4. Step-by-step derivation
                1. *-commutativeN/A

                  \[\leadsto \left(y \cdot z\right) \cdot \color{blue}{6} \]
                2. lower-*.f64N/A

                  \[\leadsto \left(y \cdot z\right) \cdot \color{blue}{6} \]
                3. *-commutativeN/A

                  \[\leadsto \left(z \cdot y\right) \cdot 6 \]
                4. lower-*.f6469.4

                  \[\leadsto \left(z \cdot y\right) \cdot 6 \]
              5. Applied rewrites69.4%

                \[\leadsto \color{blue}{\left(z \cdot y\right) \cdot 6} \]
            3. Recombined 2 regimes into one program.
            4. Final simplification75.7%

              \[\leadsto \begin{array}{l} \mathbf{if}\;x \leq -2.2 \cdot 10^{-144} \lor \neg \left(x \leq 6 \cdot 10^{+55}\right):\\ \;\;\;\;\mathsf{fma}\left(-6, z, 1\right) \cdot x\\ \mathbf{else}:\\ \;\;\;\;\left(z \cdot y\right) \cdot 6\\ \end{array} \]
            5. Add Preprocessing

            Alternative 8: 73.1% accurate, 0.7× speedup?

            \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;x \leq -2.2 \cdot 10^{-144}:\\ \;\;\;\;\mathsf{fma}\left(-6 \cdot x, z, x\right)\\ \mathbf{elif}\;x \leq 6 \cdot 10^{+55}:\\ \;\;\;\;\left(z \cdot y\right) \cdot 6\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(-6, z, 1\right) \cdot x\\ \end{array} \end{array} \]
            (FPCore (x y z)
             :precision binary64
             (if (<= x -2.2e-144)
               (fma (* -6.0 x) z x)
               (if (<= x 6e+55) (* (* z y) 6.0) (* (fma -6.0 z 1.0) x))))
            double code(double x, double y, double z) {
            	double tmp;
            	if (x <= -2.2e-144) {
            		tmp = fma((-6.0 * x), z, x);
            	} else if (x <= 6e+55) {
            		tmp = (z * y) * 6.0;
            	} else {
            		tmp = fma(-6.0, z, 1.0) * x;
            	}
            	return tmp;
            }
            
            function code(x, y, z)
            	tmp = 0.0
            	if (x <= -2.2e-144)
            		tmp = fma(Float64(-6.0 * x), z, x);
            	elseif (x <= 6e+55)
            		tmp = Float64(Float64(z * y) * 6.0);
            	else
            		tmp = Float64(fma(-6.0, z, 1.0) * x);
            	end
            	return tmp
            end
            
            code[x_, y_, z_] := If[LessEqual[x, -2.2e-144], N[(N[(-6.0 * x), $MachinePrecision] * z + x), $MachinePrecision], If[LessEqual[x, 6e+55], N[(N[(z * y), $MachinePrecision] * 6.0), $MachinePrecision], N[(N[(-6.0 * z + 1.0), $MachinePrecision] * x), $MachinePrecision]]]
            
            \begin{array}{l}
            
            \\
            \begin{array}{l}
            \mathbf{if}\;x \leq -2.2 \cdot 10^{-144}:\\
            \;\;\;\;\mathsf{fma}\left(-6 \cdot x, z, x\right)\\
            
            \mathbf{elif}\;x \leq 6 \cdot 10^{+55}:\\
            \;\;\;\;\left(z \cdot y\right) \cdot 6\\
            
            \mathbf{else}:\\
            \;\;\;\;\mathsf{fma}\left(-6, z, 1\right) \cdot x\\
            
            
            \end{array}
            \end{array}
            
            Derivation
            1. Split input into 3 regimes
            2. if x < -2.20000000000000006e-144

              1. Initial program 99.8%

                \[x + \left(\left(y - x\right) \cdot 6\right) \cdot z \]
              2. Add Preprocessing
              3. Taylor expanded in x around inf

                \[\leadsto \color{blue}{x \cdot \left(1 + -6 \cdot z\right)} \]
              4. Step-by-step derivation
                1. *-commutativeN/A

                  \[\leadsto \left(1 + -6 \cdot z\right) \cdot \color{blue}{x} \]
                2. lower-*.f64N/A

                  \[\leadsto \left(1 + -6 \cdot z\right) \cdot \color{blue}{x} \]
                3. +-commutativeN/A

                  \[\leadsto \left(-6 \cdot z + 1\right) \cdot x \]
                4. lower-fma.f6473.4

                  \[\leadsto \mathsf{fma}\left(-6, z, 1\right) \cdot x \]
              5. Applied rewrites73.4%

                \[\leadsto \color{blue}{\mathsf{fma}\left(-6, z, 1\right) \cdot x} \]
              6. Step-by-step derivation
                1. lift-fma.f64N/A

                  \[\leadsto \left(-6 \cdot z + 1\right) \cdot x \]
                2. lower-*.f64N/A

                  \[\leadsto \left(-6 \cdot z + 1\right) \cdot \color{blue}{x} \]
                3. *-commutativeN/A

                  \[\leadsto x \cdot \color{blue}{\left(-6 \cdot z + 1\right)} \]
                4. distribute-rgt-inN/A

                  \[\leadsto \left(-6 \cdot z\right) \cdot x + \color{blue}{1 \cdot x} \]
                5. *-lft-identityN/A

                  \[\leadsto \left(-6 \cdot z\right) \cdot x + x \]
                6. *-commutativeN/A

                  \[\leadsto x \cdot \left(-6 \cdot z\right) + x \]
                7. associate-*r*N/A

                  \[\leadsto \left(x \cdot -6\right) \cdot z + x \]
                8. *-commutativeN/A

                  \[\leadsto \left(-6 \cdot x\right) \cdot z + x \]
                9. lower-fma.f64N/A

                  \[\leadsto \mathsf{fma}\left(-6 \cdot x, \color{blue}{z}, x\right) \]
                10. lower-*.f6473.4

                  \[\leadsto \mathsf{fma}\left(-6 \cdot x, z, x\right) \]
              7. Applied rewrites73.4%

                \[\leadsto \mathsf{fma}\left(-6 \cdot x, \color{blue}{z}, x\right) \]

              if -2.20000000000000006e-144 < x < 6.00000000000000033e55

              1. Initial program 99.6%

                \[x + \left(\left(y - x\right) \cdot 6\right) \cdot z \]
              2. Add Preprocessing
              3. Taylor expanded in x around 0

                \[\leadsto \color{blue}{6 \cdot \left(y \cdot z\right)} \]
              4. Step-by-step derivation
                1. *-commutativeN/A

                  \[\leadsto \left(y \cdot z\right) \cdot \color{blue}{6} \]
                2. lower-*.f64N/A

                  \[\leadsto \left(y \cdot z\right) \cdot \color{blue}{6} \]
                3. *-commutativeN/A

                  \[\leadsto \left(z \cdot y\right) \cdot 6 \]
                4. lower-*.f6469.4

                  \[\leadsto \left(z \cdot y\right) \cdot 6 \]
              5. Applied rewrites69.4%

                \[\leadsto \color{blue}{\left(z \cdot y\right) \cdot 6} \]

              if 6.00000000000000033e55 < x

              1. Initial program 99.8%

                \[x + \left(\left(y - x\right) \cdot 6\right) \cdot z \]
              2. Add Preprocessing
              3. Taylor expanded in x around inf

                \[\leadsto \color{blue}{x \cdot \left(1 + -6 \cdot z\right)} \]
              4. Step-by-step derivation
                1. *-commutativeN/A

                  \[\leadsto \left(1 + -6 \cdot z\right) \cdot \color{blue}{x} \]
                2. lower-*.f64N/A

                  \[\leadsto \left(1 + -6 \cdot z\right) \cdot \color{blue}{x} \]
                3. +-commutativeN/A

                  \[\leadsto \left(-6 \cdot z + 1\right) \cdot x \]
                4. lower-fma.f6490.0

                  \[\leadsto \mathsf{fma}\left(-6, z, 1\right) \cdot x \]
              5. Applied rewrites90.0%

                \[\leadsto \color{blue}{\mathsf{fma}\left(-6, z, 1\right) \cdot x} \]
            3. Recombined 3 regimes into one program.
            4. Add Preprocessing

            Alternative 9: 60.4% accurate, 0.7× speedup?

            \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;z \leq -0.165 \lor \neg \left(z \leq 0.165\right):\\ \;\;\;\;\left(z \cdot x\right) \cdot -6\\ \mathbf{else}:\\ \;\;\;\;x\\ \end{array} \end{array} \]
            (FPCore (x y z)
             :precision binary64
             (if (or (<= z -0.165) (not (<= z 0.165))) (* (* z x) -6.0) x))
            double code(double x, double y, double z) {
            	double tmp;
            	if ((z <= -0.165) || !(z <= 0.165)) {
            		tmp = (z * x) * -6.0;
            	} else {
            		tmp = x;
            	}
            	return tmp;
            }
            
            module fmin_fmax_functions
                implicit none
                private
                public fmax
                public fmin
            
                interface fmax
                    module procedure fmax88
                    module procedure fmax44
                    module procedure fmax84
                    module procedure fmax48
                end interface
                interface fmin
                    module procedure fmin88
                    module procedure fmin44
                    module procedure fmin84
                    module procedure fmin48
                end interface
            contains
                real(8) function fmax88(x, y) result (res)
                    real(8), intent (in) :: x
                    real(8), intent (in) :: y
                    res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                end function
                real(4) function fmax44(x, y) result (res)
                    real(4), intent (in) :: x
                    real(4), intent (in) :: y
                    res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                end function
                real(8) function fmax84(x, y) result(res)
                    real(8), intent (in) :: x
                    real(4), intent (in) :: y
                    res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                end function
                real(8) function fmax48(x, y) result(res)
                    real(4), intent (in) :: x
                    real(8), intent (in) :: y
                    res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                end function
                real(8) function fmin88(x, y) result (res)
                    real(8), intent (in) :: x
                    real(8), intent (in) :: y
                    res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                end function
                real(4) function fmin44(x, y) result (res)
                    real(4), intent (in) :: x
                    real(4), intent (in) :: y
                    res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                end function
                real(8) function fmin84(x, y) result(res)
                    real(8), intent (in) :: x
                    real(4), intent (in) :: y
                    res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                end function
                real(8) function fmin48(x, y) result(res)
                    real(4), intent (in) :: x
                    real(8), intent (in) :: y
                    res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                end function
            end module
            
            real(8) function code(x, y, z)
            use fmin_fmax_functions
                real(8), intent (in) :: x
                real(8), intent (in) :: y
                real(8), intent (in) :: z
                real(8) :: tmp
                if ((z <= (-0.165d0)) .or. (.not. (z <= 0.165d0))) then
                    tmp = (z * x) * (-6.0d0)
                else
                    tmp = x
                end if
                code = tmp
            end function
            
            public static double code(double x, double y, double z) {
            	double tmp;
            	if ((z <= -0.165) || !(z <= 0.165)) {
            		tmp = (z * x) * -6.0;
            	} else {
            		tmp = x;
            	}
            	return tmp;
            }
            
            def code(x, y, z):
            	tmp = 0
            	if (z <= -0.165) or not (z <= 0.165):
            		tmp = (z * x) * -6.0
            	else:
            		tmp = x
            	return tmp
            
            function code(x, y, z)
            	tmp = 0.0
            	if ((z <= -0.165) || !(z <= 0.165))
            		tmp = Float64(Float64(z * x) * -6.0);
            	else
            		tmp = x;
            	end
            	return tmp
            end
            
            function tmp_2 = code(x, y, z)
            	tmp = 0.0;
            	if ((z <= -0.165) || ~((z <= 0.165)))
            		tmp = (z * x) * -6.0;
            	else
            		tmp = x;
            	end
            	tmp_2 = tmp;
            end
            
            code[x_, y_, z_] := If[Or[LessEqual[z, -0.165], N[Not[LessEqual[z, 0.165]], $MachinePrecision]], N[(N[(z * x), $MachinePrecision] * -6.0), $MachinePrecision], x]
            
            \begin{array}{l}
            
            \\
            \begin{array}{l}
            \mathbf{if}\;z \leq -0.165 \lor \neg \left(z \leq 0.165\right):\\
            \;\;\;\;\left(z \cdot x\right) \cdot -6\\
            
            \mathbf{else}:\\
            \;\;\;\;x\\
            
            
            \end{array}
            \end{array}
            
            Derivation
            1. Split input into 2 regimes
            2. if z < -0.165000000000000008 or 0.165000000000000008 < z

              1. Initial program 99.7%

                \[x + \left(\left(y - x\right) \cdot 6\right) \cdot z \]
              2. Add Preprocessing
              3. Taylor expanded in x around inf

                \[\leadsto \color{blue}{x \cdot \left(1 + -6 \cdot z\right)} \]
              4. Step-by-step derivation
                1. *-commutativeN/A

                  \[\leadsto \left(1 + -6 \cdot z\right) \cdot \color{blue}{x} \]
                2. lower-*.f64N/A

                  \[\leadsto \left(1 + -6 \cdot z\right) \cdot \color{blue}{x} \]
                3. +-commutativeN/A

                  \[\leadsto \left(-6 \cdot z + 1\right) \cdot x \]
                4. lower-fma.f6454.6

                  \[\leadsto \mathsf{fma}\left(-6, z, 1\right) \cdot x \]
              5. Applied rewrites54.6%

                \[\leadsto \color{blue}{\mathsf{fma}\left(-6, z, 1\right) \cdot x} \]
              6. Taylor expanded in z around inf

                \[\leadsto -6 \cdot \color{blue}{\left(x \cdot z\right)} \]
              7. Step-by-step derivation
                1. *-commutativeN/A

                  \[\leadsto \left(x \cdot z\right) \cdot -6 \]
                2. *-commutativeN/A

                  \[\leadsto \left(z \cdot x\right) \cdot -6 \]
                3. lift-*.f64N/A

                  \[\leadsto \left(z \cdot x\right) \cdot -6 \]
                4. lift-*.f6453.7

                  \[\leadsto \left(z \cdot x\right) \cdot -6 \]
              8. Applied rewrites53.7%

                \[\leadsto \left(z \cdot x\right) \cdot \color{blue}{-6} \]

              if -0.165000000000000008 < z < 0.165000000000000008

              1. Initial program 99.8%

                \[x + \left(\left(y - x\right) \cdot 6\right) \cdot z \]
              2. Add Preprocessing
              3. Taylor expanded in z around 0

                \[\leadsto \color{blue}{x} \]
              4. Step-by-step derivation
                1. Applied rewrites68.1%

                  \[\leadsto \color{blue}{x} \]
              5. Recombined 2 regimes into one program.
              6. Final simplification60.7%

                \[\leadsto \begin{array}{l} \mathbf{if}\;z \leq -0.165 \lor \neg \left(z \leq 0.165\right):\\ \;\;\;\;\left(z \cdot x\right) \cdot -6\\ \mathbf{else}:\\ \;\;\;\;x\\ \end{array} \]
              7. Add Preprocessing

              Alternative 10: 60.4% accurate, 0.7× speedup?

              \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;z \leq -0.165:\\ \;\;\;\;\left(z \cdot x\right) \cdot -6\\ \mathbf{elif}\;z \leq 0.165:\\ \;\;\;\;x\\ \mathbf{else}:\\ \;\;\;\;\left(-6 \cdot z\right) \cdot x\\ \end{array} \end{array} \]
              (FPCore (x y z)
               :precision binary64
               (if (<= z -0.165) (* (* z x) -6.0) (if (<= z 0.165) x (* (* -6.0 z) x))))
              double code(double x, double y, double z) {
              	double tmp;
              	if (z <= -0.165) {
              		tmp = (z * x) * -6.0;
              	} else if (z <= 0.165) {
              		tmp = x;
              	} else {
              		tmp = (-6.0 * z) * x;
              	}
              	return tmp;
              }
              
              module fmin_fmax_functions
                  implicit none
                  private
                  public fmax
                  public fmin
              
                  interface fmax
                      module procedure fmax88
                      module procedure fmax44
                      module procedure fmax84
                      module procedure fmax48
                  end interface
                  interface fmin
                      module procedure fmin88
                      module procedure fmin44
                      module procedure fmin84
                      module procedure fmin48
                  end interface
              contains
                  real(8) function fmax88(x, y) result (res)
                      real(8), intent (in) :: x
                      real(8), intent (in) :: y
                      res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                  end function
                  real(4) function fmax44(x, y) result (res)
                      real(4), intent (in) :: x
                      real(4), intent (in) :: y
                      res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                  end function
                  real(8) function fmax84(x, y) result(res)
                      real(8), intent (in) :: x
                      real(4), intent (in) :: y
                      res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                  end function
                  real(8) function fmax48(x, y) result(res)
                      real(4), intent (in) :: x
                      real(8), intent (in) :: y
                      res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                  end function
                  real(8) function fmin88(x, y) result (res)
                      real(8), intent (in) :: x
                      real(8), intent (in) :: y
                      res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                  end function
                  real(4) function fmin44(x, y) result (res)
                      real(4), intent (in) :: x
                      real(4), intent (in) :: y
                      res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                  end function
                  real(8) function fmin84(x, y) result(res)
                      real(8), intent (in) :: x
                      real(4), intent (in) :: y
                      res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                  end function
                  real(8) function fmin48(x, y) result(res)
                      real(4), intent (in) :: x
                      real(8), intent (in) :: y
                      res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                  end function
              end module
              
              real(8) function code(x, y, z)
              use fmin_fmax_functions
                  real(8), intent (in) :: x
                  real(8), intent (in) :: y
                  real(8), intent (in) :: z
                  real(8) :: tmp
                  if (z <= (-0.165d0)) then
                      tmp = (z * x) * (-6.0d0)
                  else if (z <= 0.165d0) then
                      tmp = x
                  else
                      tmp = ((-6.0d0) * z) * x
                  end if
                  code = tmp
              end function
              
              public static double code(double x, double y, double z) {
              	double tmp;
              	if (z <= -0.165) {
              		tmp = (z * x) * -6.0;
              	} else if (z <= 0.165) {
              		tmp = x;
              	} else {
              		tmp = (-6.0 * z) * x;
              	}
              	return tmp;
              }
              
              def code(x, y, z):
              	tmp = 0
              	if z <= -0.165:
              		tmp = (z * x) * -6.0
              	elif z <= 0.165:
              		tmp = x
              	else:
              		tmp = (-6.0 * z) * x
              	return tmp
              
              function code(x, y, z)
              	tmp = 0.0
              	if (z <= -0.165)
              		tmp = Float64(Float64(z * x) * -6.0);
              	elseif (z <= 0.165)
              		tmp = x;
              	else
              		tmp = Float64(Float64(-6.0 * z) * x);
              	end
              	return tmp
              end
              
              function tmp_2 = code(x, y, z)
              	tmp = 0.0;
              	if (z <= -0.165)
              		tmp = (z * x) * -6.0;
              	elseif (z <= 0.165)
              		tmp = x;
              	else
              		tmp = (-6.0 * z) * x;
              	end
              	tmp_2 = tmp;
              end
              
              code[x_, y_, z_] := If[LessEqual[z, -0.165], N[(N[(z * x), $MachinePrecision] * -6.0), $MachinePrecision], If[LessEqual[z, 0.165], x, N[(N[(-6.0 * z), $MachinePrecision] * x), $MachinePrecision]]]
              
              \begin{array}{l}
              
              \\
              \begin{array}{l}
              \mathbf{if}\;z \leq -0.165:\\
              \;\;\;\;\left(z \cdot x\right) \cdot -6\\
              
              \mathbf{elif}\;z \leq 0.165:\\
              \;\;\;\;x\\
              
              \mathbf{else}:\\
              \;\;\;\;\left(-6 \cdot z\right) \cdot x\\
              
              
              \end{array}
              \end{array}
              
              Derivation
              1. Split input into 3 regimes
              2. if z < -0.165000000000000008

                1. Initial program 99.6%

                  \[x + \left(\left(y - x\right) \cdot 6\right) \cdot z \]
                2. Add Preprocessing
                3. Taylor expanded in x around inf

                  \[\leadsto \color{blue}{x \cdot \left(1 + -6 \cdot z\right)} \]
                4. Step-by-step derivation
                  1. *-commutativeN/A

                    \[\leadsto \left(1 + -6 \cdot z\right) \cdot \color{blue}{x} \]
                  2. lower-*.f64N/A

                    \[\leadsto \left(1 + -6 \cdot z\right) \cdot \color{blue}{x} \]
                  3. +-commutativeN/A

                    \[\leadsto \left(-6 \cdot z + 1\right) \cdot x \]
                  4. lower-fma.f6457.1

                    \[\leadsto \mathsf{fma}\left(-6, z, 1\right) \cdot x \]
                5. Applied rewrites57.1%

                  \[\leadsto \color{blue}{\mathsf{fma}\left(-6, z, 1\right) \cdot x} \]
                6. Taylor expanded in z around inf

                  \[\leadsto -6 \cdot \color{blue}{\left(x \cdot z\right)} \]
                7. Step-by-step derivation
                  1. *-commutativeN/A

                    \[\leadsto \left(x \cdot z\right) \cdot -6 \]
                  2. *-commutativeN/A

                    \[\leadsto \left(z \cdot x\right) \cdot -6 \]
                  3. lift-*.f64N/A

                    \[\leadsto \left(z \cdot x\right) \cdot -6 \]
                  4. lift-*.f6455.3

                    \[\leadsto \left(z \cdot x\right) \cdot -6 \]
                8. Applied rewrites55.3%

                  \[\leadsto \left(z \cdot x\right) \cdot \color{blue}{-6} \]

                if -0.165000000000000008 < z < 0.165000000000000008

                1. Initial program 99.8%

                  \[x + \left(\left(y - x\right) \cdot 6\right) \cdot z \]
                2. Add Preprocessing
                3. Taylor expanded in z around 0

                  \[\leadsto \color{blue}{x} \]
                4. Step-by-step derivation
                  1. Applied rewrites68.1%

                    \[\leadsto \color{blue}{x} \]

                  if 0.165000000000000008 < z

                  1. Initial program 99.8%

                    \[x + \left(\left(y - x\right) \cdot 6\right) \cdot z \]
                  2. Add Preprocessing
                  3. Taylor expanded in x around inf

                    \[\leadsto \color{blue}{x \cdot \left(1 + -6 \cdot z\right)} \]
                  4. Step-by-step derivation
                    1. *-commutativeN/A

                      \[\leadsto \left(1 + -6 \cdot z\right) \cdot \color{blue}{x} \]
                    2. lower-*.f64N/A

                      \[\leadsto \left(1 + -6 \cdot z\right) \cdot \color{blue}{x} \]
                    3. +-commutativeN/A

                      \[\leadsto \left(-6 \cdot z + 1\right) \cdot x \]
                    4. lower-fma.f6452.4

                      \[\leadsto \mathsf{fma}\left(-6, z, 1\right) \cdot x \]
                  5. Applied rewrites52.4%

                    \[\leadsto \color{blue}{\mathsf{fma}\left(-6, z, 1\right) \cdot x} \]
                  6. Taylor expanded in z around inf

                    \[\leadsto \left(-6 \cdot z\right) \cdot x \]
                  7. Step-by-step derivation
                    1. lower-*.f6452.2

                      \[\leadsto \left(-6 \cdot z\right) \cdot x \]
                  8. Applied rewrites52.2%

                    \[\leadsto \left(-6 \cdot z\right) \cdot x \]
                5. Recombined 3 regimes into one program.
                6. Add Preprocessing

                Alternative 11: 60.4% accurate, 0.7× speedup?

                \[\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;z \leq -0.165:\\ \;\;\;\;\left(z \cdot x\right) \cdot -6\\ \mathbf{elif}\;z \leq 0.165:\\ \;\;\;\;x\\ \mathbf{else}:\\ \;\;\;\;\left(-6 \cdot x\right) \cdot z\\ \end{array} \end{array} \]
                (FPCore (x y z)
                 :precision binary64
                 (if (<= z -0.165) (* (* z x) -6.0) (if (<= z 0.165) x (* (* -6.0 x) z))))
                double code(double x, double y, double z) {
                	double tmp;
                	if (z <= -0.165) {
                		tmp = (z * x) * -6.0;
                	} else if (z <= 0.165) {
                		tmp = x;
                	} else {
                		tmp = (-6.0 * x) * z;
                	}
                	return tmp;
                }
                
                module fmin_fmax_functions
                    implicit none
                    private
                    public fmax
                    public fmin
                
                    interface fmax
                        module procedure fmax88
                        module procedure fmax44
                        module procedure fmax84
                        module procedure fmax48
                    end interface
                    interface fmin
                        module procedure fmin88
                        module procedure fmin44
                        module procedure fmin84
                        module procedure fmin48
                    end interface
                contains
                    real(8) function fmax88(x, y) result (res)
                        real(8), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                    end function
                    real(4) function fmax44(x, y) result (res)
                        real(4), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                    end function
                    real(8) function fmax84(x, y) result(res)
                        real(8), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                    end function
                    real(8) function fmax48(x, y) result(res)
                        real(4), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                    end function
                    real(8) function fmin88(x, y) result (res)
                        real(8), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                    end function
                    real(4) function fmin44(x, y) result (res)
                        real(4), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                    end function
                    real(8) function fmin84(x, y) result(res)
                        real(8), intent (in) :: x
                        real(4), intent (in) :: y
                        res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                    end function
                    real(8) function fmin48(x, y) result(res)
                        real(4), intent (in) :: x
                        real(8), intent (in) :: y
                        res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                    end function
                end module
                
                real(8) function code(x, y, z)
                use fmin_fmax_functions
                    real(8), intent (in) :: x
                    real(8), intent (in) :: y
                    real(8), intent (in) :: z
                    real(8) :: tmp
                    if (z <= (-0.165d0)) then
                        tmp = (z * x) * (-6.0d0)
                    else if (z <= 0.165d0) then
                        tmp = x
                    else
                        tmp = ((-6.0d0) * x) * z
                    end if
                    code = tmp
                end function
                
                public static double code(double x, double y, double z) {
                	double tmp;
                	if (z <= -0.165) {
                		tmp = (z * x) * -6.0;
                	} else if (z <= 0.165) {
                		tmp = x;
                	} else {
                		tmp = (-6.0 * x) * z;
                	}
                	return tmp;
                }
                
                def code(x, y, z):
                	tmp = 0
                	if z <= -0.165:
                		tmp = (z * x) * -6.0
                	elif z <= 0.165:
                		tmp = x
                	else:
                		tmp = (-6.0 * x) * z
                	return tmp
                
                function code(x, y, z)
                	tmp = 0.0
                	if (z <= -0.165)
                		tmp = Float64(Float64(z * x) * -6.0);
                	elseif (z <= 0.165)
                		tmp = x;
                	else
                		tmp = Float64(Float64(-6.0 * x) * z);
                	end
                	return tmp
                end
                
                function tmp_2 = code(x, y, z)
                	tmp = 0.0;
                	if (z <= -0.165)
                		tmp = (z * x) * -6.0;
                	elseif (z <= 0.165)
                		tmp = x;
                	else
                		tmp = (-6.0 * x) * z;
                	end
                	tmp_2 = tmp;
                end
                
                code[x_, y_, z_] := If[LessEqual[z, -0.165], N[(N[(z * x), $MachinePrecision] * -6.0), $MachinePrecision], If[LessEqual[z, 0.165], x, N[(N[(-6.0 * x), $MachinePrecision] * z), $MachinePrecision]]]
                
                \begin{array}{l}
                
                \\
                \begin{array}{l}
                \mathbf{if}\;z \leq -0.165:\\
                \;\;\;\;\left(z \cdot x\right) \cdot -6\\
                
                \mathbf{elif}\;z \leq 0.165:\\
                \;\;\;\;x\\
                
                \mathbf{else}:\\
                \;\;\;\;\left(-6 \cdot x\right) \cdot z\\
                
                
                \end{array}
                \end{array}
                
                Derivation
                1. Split input into 3 regimes
                2. if z < -0.165000000000000008

                  1. Initial program 99.6%

                    \[x + \left(\left(y - x\right) \cdot 6\right) \cdot z \]
                  2. Add Preprocessing
                  3. Taylor expanded in x around inf

                    \[\leadsto \color{blue}{x \cdot \left(1 + -6 \cdot z\right)} \]
                  4. Step-by-step derivation
                    1. *-commutativeN/A

                      \[\leadsto \left(1 + -6 \cdot z\right) \cdot \color{blue}{x} \]
                    2. lower-*.f64N/A

                      \[\leadsto \left(1 + -6 \cdot z\right) \cdot \color{blue}{x} \]
                    3. +-commutativeN/A

                      \[\leadsto \left(-6 \cdot z + 1\right) \cdot x \]
                    4. lower-fma.f6457.1

                      \[\leadsto \mathsf{fma}\left(-6, z, 1\right) \cdot x \]
                  5. Applied rewrites57.1%

                    \[\leadsto \color{blue}{\mathsf{fma}\left(-6, z, 1\right) \cdot x} \]
                  6. Taylor expanded in z around inf

                    \[\leadsto -6 \cdot \color{blue}{\left(x \cdot z\right)} \]
                  7. Step-by-step derivation
                    1. *-commutativeN/A

                      \[\leadsto \left(x \cdot z\right) \cdot -6 \]
                    2. *-commutativeN/A

                      \[\leadsto \left(z \cdot x\right) \cdot -6 \]
                    3. lift-*.f64N/A

                      \[\leadsto \left(z \cdot x\right) \cdot -6 \]
                    4. lift-*.f6455.3

                      \[\leadsto \left(z \cdot x\right) \cdot -6 \]
                  8. Applied rewrites55.3%

                    \[\leadsto \left(z \cdot x\right) \cdot \color{blue}{-6} \]

                  if -0.165000000000000008 < z < 0.165000000000000008

                  1. Initial program 99.8%

                    \[x + \left(\left(y - x\right) \cdot 6\right) \cdot z \]
                  2. Add Preprocessing
                  3. Taylor expanded in z around 0

                    \[\leadsto \color{blue}{x} \]
                  4. Step-by-step derivation
                    1. Applied rewrites68.1%

                      \[\leadsto \color{blue}{x} \]

                    if 0.165000000000000008 < z

                    1. Initial program 99.8%

                      \[x + \left(\left(y - x\right) \cdot 6\right) \cdot z \]
                    2. Add Preprocessing
                    3. Taylor expanded in z around inf

                      \[\leadsto \color{blue}{6 \cdot \left(z \cdot \left(y - x\right)\right)} \]
                    4. Step-by-step derivation
                      1. *-commutativeN/A

                        \[\leadsto 6 \cdot \left(\left(y - x\right) \cdot \color{blue}{z}\right) \]
                      2. associate-*r*N/A

                        \[\leadsto \left(6 \cdot \left(y - x\right)\right) \cdot \color{blue}{z} \]
                      3. *-commutativeN/A

                        \[\leadsto \left(\left(y - x\right) \cdot 6\right) \cdot z \]
                      4. lift-*.f64N/A

                        \[\leadsto \left(\left(y - x\right) \cdot 6\right) \cdot z \]
                      5. lift--.f64N/A

                        \[\leadsto \left(\left(y - x\right) \cdot 6\right) \cdot z \]
                      6. lift-*.f6499.3

                        \[\leadsto \left(\left(y - x\right) \cdot 6\right) \cdot \color{blue}{z} \]
                    5. Applied rewrites99.3%

                      \[\leadsto \color{blue}{\left(\left(y - x\right) \cdot 6\right) \cdot z} \]
                    6. Taylor expanded in x around inf

                      \[\leadsto \left(-6 \cdot x\right) \cdot z \]
                    7. Step-by-step derivation
                      1. lower-*.f6452.2

                        \[\leadsto \left(-6 \cdot x\right) \cdot z \]
                    8. Applied rewrites52.2%

                      \[\leadsto \left(-6 \cdot x\right) \cdot z \]
                  5. Recombined 3 regimes into one program.
                  6. Add Preprocessing

                  Alternative 12: 99.8% accurate, 1.1× speedup?

                  \[\begin{array}{l} \\ \mathsf{fma}\left(\left(y - x\right) \cdot z, 6, x\right) \end{array} \]
                  (FPCore (x y z) :precision binary64 (fma (* (- y x) z) 6.0 x))
                  double code(double x, double y, double z) {
                  	return fma(((y - x) * z), 6.0, x);
                  }
                  
                  function code(x, y, z)
                  	return fma(Float64(Float64(y - x) * z), 6.0, x)
                  end
                  
                  code[x_, y_, z_] := N[(N[(N[(y - x), $MachinePrecision] * z), $MachinePrecision] * 6.0 + x), $MachinePrecision]
                  
                  \begin{array}{l}
                  
                  \\
                  \mathsf{fma}\left(\left(y - x\right) \cdot z, 6, x\right)
                  \end{array}
                  
                  Derivation
                  1. Initial program 99.7%

                    \[x + \left(\left(y - x\right) \cdot 6\right) \cdot z \]
                  2. Add Preprocessing
                  3. Step-by-step derivation
                    1. lift-+.f64N/A

                      \[\leadsto \color{blue}{x + \left(\left(y - x\right) \cdot 6\right) \cdot z} \]
                    2. lift-*.f64N/A

                      \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot 6\right) \cdot z} \]
                    3. lift--.f64N/A

                      \[\leadsto x + \left(\color{blue}{\left(y - x\right)} \cdot 6\right) \cdot z \]
                    4. lift-*.f64N/A

                      \[\leadsto x + \color{blue}{\left(\left(y - x\right) \cdot 6\right)} \cdot z \]
                    5. *-commutativeN/A

                      \[\leadsto x + \color{blue}{\left(6 \cdot \left(y - x\right)\right)} \cdot z \]
                    6. associate-*r*N/A

                      \[\leadsto x + \color{blue}{6 \cdot \left(\left(y - x\right) \cdot z\right)} \]
                    7. *-commutativeN/A

                      \[\leadsto x + 6 \cdot \color{blue}{\left(z \cdot \left(y - x\right)\right)} \]
                    8. +-commutativeN/A

                      \[\leadsto \color{blue}{6 \cdot \left(z \cdot \left(y - x\right)\right) + x} \]
                    9. *-commutativeN/A

                      \[\leadsto \color{blue}{\left(z \cdot \left(y - x\right)\right) \cdot 6} + x \]
                    10. lower-fma.f64N/A

                      \[\leadsto \color{blue}{\mathsf{fma}\left(z \cdot \left(y - x\right), 6, x\right)} \]
                    11. *-commutativeN/A

                      \[\leadsto \mathsf{fma}\left(\color{blue}{\left(y - x\right) \cdot z}, 6, x\right) \]
                    12. lower-*.f64N/A

                      \[\leadsto \mathsf{fma}\left(\color{blue}{\left(y - x\right) \cdot z}, 6, x\right) \]
                    13. lift--.f6499.8

                      \[\leadsto \mathsf{fma}\left(\color{blue}{\left(y - x\right)} \cdot z, 6, x\right) \]
                  4. Applied rewrites99.8%

                    \[\leadsto \color{blue}{\mathsf{fma}\left(\left(y - x\right) \cdot z, 6, x\right)} \]
                  5. Add Preprocessing

                  Alternative 13: 35.7% accurate, 17.0× speedup?

                  \[\begin{array}{l} \\ x \end{array} \]
                  (FPCore (x y z) :precision binary64 x)
                  double code(double x, double y, double z) {
                  	return x;
                  }
                  
                  module fmin_fmax_functions
                      implicit none
                      private
                      public fmax
                      public fmin
                  
                      interface fmax
                          module procedure fmax88
                          module procedure fmax44
                          module procedure fmax84
                          module procedure fmax48
                      end interface
                      interface fmin
                          module procedure fmin88
                          module procedure fmin44
                          module procedure fmin84
                          module procedure fmin48
                      end interface
                  contains
                      real(8) function fmax88(x, y) result (res)
                          real(8), intent (in) :: x
                          real(8), intent (in) :: y
                          res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                      end function
                      real(4) function fmax44(x, y) result (res)
                          real(4), intent (in) :: x
                          real(4), intent (in) :: y
                          res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                      end function
                      real(8) function fmax84(x, y) result(res)
                          real(8), intent (in) :: x
                          real(4), intent (in) :: y
                          res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                      end function
                      real(8) function fmax48(x, y) result(res)
                          real(4), intent (in) :: x
                          real(8), intent (in) :: y
                          res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                      end function
                      real(8) function fmin88(x, y) result (res)
                          real(8), intent (in) :: x
                          real(8), intent (in) :: y
                          res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                      end function
                      real(4) function fmin44(x, y) result (res)
                          real(4), intent (in) :: x
                          real(4), intent (in) :: y
                          res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                      end function
                      real(8) function fmin84(x, y) result(res)
                          real(8), intent (in) :: x
                          real(4), intent (in) :: y
                          res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                      end function
                      real(8) function fmin48(x, y) result(res)
                          real(4), intent (in) :: x
                          real(8), intent (in) :: y
                          res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                      end function
                  end module
                  
                  real(8) function code(x, y, z)
                  use fmin_fmax_functions
                      real(8), intent (in) :: x
                      real(8), intent (in) :: y
                      real(8), intent (in) :: z
                      code = x
                  end function
                  
                  public static double code(double x, double y, double z) {
                  	return x;
                  }
                  
                  def code(x, y, z):
                  	return x
                  
                  function code(x, y, z)
                  	return x
                  end
                  
                  function tmp = code(x, y, z)
                  	tmp = x;
                  end
                  
                  code[x_, y_, z_] := x
                  
                  \begin{array}{l}
                  
                  \\
                  x
                  \end{array}
                  
                  Derivation
                  1. Initial program 99.7%

                    \[x + \left(\left(y - x\right) \cdot 6\right) \cdot z \]
                  2. Add Preprocessing
                  3. Taylor expanded in z around 0

                    \[\leadsto \color{blue}{x} \]
                  4. Step-by-step derivation
                    1. Applied rewrites34.8%

                      \[\leadsto \color{blue}{x} \]
                    2. Add Preprocessing

                    Developer Target 1: 99.8% accurate, 1.0× speedup?

                    \[\begin{array}{l} \\ x - \left(6 \cdot z\right) \cdot \left(x - y\right) \end{array} \]
                    (FPCore (x y z) :precision binary64 (- x (* (* 6.0 z) (- x y))))
                    double code(double x, double y, double z) {
                    	return x - ((6.0 * z) * (x - y));
                    }
                    
                    module fmin_fmax_functions
                        implicit none
                        private
                        public fmax
                        public fmin
                    
                        interface fmax
                            module procedure fmax88
                            module procedure fmax44
                            module procedure fmax84
                            module procedure fmax48
                        end interface
                        interface fmin
                            module procedure fmin88
                            module procedure fmin44
                            module procedure fmin84
                            module procedure fmin48
                        end interface
                    contains
                        real(8) function fmax88(x, y) result (res)
                            real(8), intent (in) :: x
                            real(8), intent (in) :: y
                            res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                        end function
                        real(4) function fmax44(x, y) result (res)
                            real(4), intent (in) :: x
                            real(4), intent (in) :: y
                            res = merge(y, merge(x, max(x, y), y /= y), x /= x)
                        end function
                        real(8) function fmax84(x, y) result(res)
                            real(8), intent (in) :: x
                            real(4), intent (in) :: y
                            res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
                        end function
                        real(8) function fmax48(x, y) result(res)
                            real(4), intent (in) :: x
                            real(8), intent (in) :: y
                            res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
                        end function
                        real(8) function fmin88(x, y) result (res)
                            real(8), intent (in) :: x
                            real(8), intent (in) :: y
                            res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                        end function
                        real(4) function fmin44(x, y) result (res)
                            real(4), intent (in) :: x
                            real(4), intent (in) :: y
                            res = merge(y, merge(x, min(x, y), y /= y), x /= x)
                        end function
                        real(8) function fmin84(x, y) result(res)
                            real(8), intent (in) :: x
                            real(4), intent (in) :: y
                            res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
                        end function
                        real(8) function fmin48(x, y) result(res)
                            real(4), intent (in) :: x
                            real(8), intent (in) :: y
                            res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
                        end function
                    end module
                    
                    real(8) function code(x, y, z)
                    use fmin_fmax_functions
                        real(8), intent (in) :: x
                        real(8), intent (in) :: y
                        real(8), intent (in) :: z
                        code = x - ((6.0d0 * z) * (x - y))
                    end function
                    
                    public static double code(double x, double y, double z) {
                    	return x - ((6.0 * z) * (x - y));
                    }
                    
                    def code(x, y, z):
                    	return x - ((6.0 * z) * (x - y))
                    
                    function code(x, y, z)
                    	return Float64(x - Float64(Float64(6.0 * z) * Float64(x - y)))
                    end
                    
                    function tmp = code(x, y, z)
                    	tmp = x - ((6.0 * z) * (x - y));
                    end
                    
                    code[x_, y_, z_] := N[(x - N[(N[(6.0 * z), $MachinePrecision] * N[(x - y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
                    
                    \begin{array}{l}
                    
                    \\
                    x - \left(6 \cdot z\right) \cdot \left(x - y\right)
                    \end{array}
                    

                    Reproduce

                    ?
                    herbie shell --seed 2025038 
                    (FPCore (x y z)
                      :name "Data.Colour.RGBSpace.HSL:hsl from colour-2.3.3, E"
                      :precision binary64
                    
                      :alt
                      (! :herbie-platform default (- x (* (* 6 z) (- x y))))
                    
                      (+ x (* (* (- y x) 6.0) z)))