
(FPCore (x y z) :precision binary64 (+ x (* (* (- y x) 6.0) z)))
double code(double x, double y, double z) {
return x + (((y - x) * 6.0) * z);
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
code = x + (((y - x) * 6.0d0) * z)
end function
public static double code(double x, double y, double z) {
return x + (((y - x) * 6.0) * z);
}
def code(x, y, z): return x + (((y - x) * 6.0) * z)
function code(x, y, z) return Float64(x + Float64(Float64(Float64(y - x) * 6.0) * z)) end
function tmp = code(x, y, z) tmp = x + (((y - x) * 6.0) * z); end
code[x_, y_, z_] := N[(x + N[(N[(N[(y - x), $MachinePrecision] * 6.0), $MachinePrecision] * z), $MachinePrecision]), $MachinePrecision]
\begin{array}{l}
\\
x + \left(\left(y - x\right) \cdot 6\right) \cdot z
\end{array}
Sampling outcomes in binary64 precision:
Herbie found 13 alternatives:
| Alternative | Accuracy | Speedup |
|---|
(FPCore (x y z) :precision binary64 (+ x (* (* (- y x) 6.0) z)))
double code(double x, double y, double z) {
return x + (((y - x) * 6.0) * z);
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
code = x + (((y - x) * 6.0d0) * z)
end function
public static double code(double x, double y, double z) {
return x + (((y - x) * 6.0) * z);
}
def code(x, y, z): return x + (((y - x) * 6.0) * z)
function code(x, y, z) return Float64(x + Float64(Float64(Float64(y - x) * 6.0) * z)) end
function tmp = code(x, y, z) tmp = x + (((y - x) * 6.0) * z); end
code[x_, y_, z_] := N[(x + N[(N[(N[(y - x), $MachinePrecision] * 6.0), $MachinePrecision] * z), $MachinePrecision]), $MachinePrecision]
\begin{array}{l}
\\
x + \left(\left(y - x\right) \cdot 6\right) \cdot z
\end{array}
(FPCore (x y z) :precision binary64 (fma (- y x) (* z 6.0) x))
double code(double x, double y, double z) {
return fma((y - x), (z * 6.0), x);
}
function code(x, y, z) return fma(Float64(y - x), Float64(z * 6.0), x) end
code[x_, y_, z_] := N[(N[(y - x), $MachinePrecision] * N[(z * 6.0), $MachinePrecision] + x), $MachinePrecision]
\begin{array}{l}
\\
\mathsf{fma}\left(y - x, z \cdot 6, x\right)
\end{array}
Initial program 99.7%
lift-*.f64N/A
lift--.f64N/A
lift-*.f64N/A
lower-+.f64N/A
+-commutativeN/A
associate-*l*N/A
lower-fma.f64N/A
lift--.f64N/A
*-commutativeN/A
lower-*.f6499.8
Applied rewrites99.8%
(FPCore (x y z)
:precision binary64
(let* ((t_0 (* (* z x) -6.0)))
(if (<= z -2.9e+82)
t_0
(if (<= z -8e-40)
(* (* z y) 6.0)
(if (<= z 1.75e-20) x (if (<= z 3.4e+226) (* (* z 6.0) y) t_0))))))
double code(double x, double y, double z) {
double t_0 = (z * x) * -6.0;
double tmp;
if (z <= -2.9e+82) {
tmp = t_0;
} else if (z <= -8e-40) {
tmp = (z * y) * 6.0;
} else if (z <= 1.75e-20) {
tmp = x;
} else if (z <= 3.4e+226) {
tmp = (z * 6.0) * y;
} else {
tmp = t_0;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8) :: t_0
real(8) :: tmp
t_0 = (z * x) * (-6.0d0)
if (z <= (-2.9d+82)) then
tmp = t_0
else if (z <= (-8d-40)) then
tmp = (z * y) * 6.0d0
else if (z <= 1.75d-20) then
tmp = x
else if (z <= 3.4d+226) then
tmp = (z * 6.0d0) * y
else
tmp = t_0
end if
code = tmp
end function
public static double code(double x, double y, double z) {
double t_0 = (z * x) * -6.0;
double tmp;
if (z <= -2.9e+82) {
tmp = t_0;
} else if (z <= -8e-40) {
tmp = (z * y) * 6.0;
} else if (z <= 1.75e-20) {
tmp = x;
} else if (z <= 3.4e+226) {
tmp = (z * 6.0) * y;
} else {
tmp = t_0;
}
return tmp;
}
def code(x, y, z): t_0 = (z * x) * -6.0 tmp = 0 if z <= -2.9e+82: tmp = t_0 elif z <= -8e-40: tmp = (z * y) * 6.0 elif z <= 1.75e-20: tmp = x elif z <= 3.4e+226: tmp = (z * 6.0) * y else: tmp = t_0 return tmp
function code(x, y, z) t_0 = Float64(Float64(z * x) * -6.0) tmp = 0.0 if (z <= -2.9e+82) tmp = t_0; elseif (z <= -8e-40) tmp = Float64(Float64(z * y) * 6.0); elseif (z <= 1.75e-20) tmp = x; elseif (z <= 3.4e+226) tmp = Float64(Float64(z * 6.0) * y); else tmp = t_0; end return tmp end
function tmp_2 = code(x, y, z) t_0 = (z * x) * -6.0; tmp = 0.0; if (z <= -2.9e+82) tmp = t_0; elseif (z <= -8e-40) tmp = (z * y) * 6.0; elseif (z <= 1.75e-20) tmp = x; elseif (z <= 3.4e+226) tmp = (z * 6.0) * y; else tmp = t_0; end tmp_2 = tmp; end
code[x_, y_, z_] := Block[{t$95$0 = N[(N[(z * x), $MachinePrecision] * -6.0), $MachinePrecision]}, If[LessEqual[z, -2.9e+82], t$95$0, If[LessEqual[z, -8e-40], N[(N[(z * y), $MachinePrecision] * 6.0), $MachinePrecision], If[LessEqual[z, 1.75e-20], x, If[LessEqual[z, 3.4e+226], N[(N[(z * 6.0), $MachinePrecision] * y), $MachinePrecision], t$95$0]]]]]
\begin{array}{l}
\\
\begin{array}{l}
t_0 := \left(z \cdot x\right) \cdot -6\\
\mathbf{if}\;z \leq -2.9 \cdot 10^{+82}:\\
\;\;\;\;t\_0\\
\mathbf{elif}\;z \leq -8 \cdot 10^{-40}:\\
\;\;\;\;\left(z \cdot y\right) \cdot 6\\
\mathbf{elif}\;z \leq 1.75 \cdot 10^{-20}:\\
\;\;\;\;x\\
\mathbf{elif}\;z \leq 3.4 \cdot 10^{+226}:\\
\;\;\;\;\left(z \cdot 6\right) \cdot y\\
\mathbf{else}:\\
\;\;\;\;t\_0\\
\end{array}
\end{array}
if z < -2.9000000000000001e82 or 3.39999999999999979e226 < z Initial program 99.8%
Taylor expanded in x around inf
*-commutativeN/A
lower-*.f64N/A
+-commutativeN/A
lower-fma.f6464.2
Applied rewrites64.2%
Taylor expanded in z around inf
*-commutativeN/A
*-commutativeN/A
lift-*.f64N/A
lift-*.f6464.2
Applied rewrites64.2%
if -2.9000000000000001e82 < z < -7.9999999999999994e-40Initial program 99.4%
Taylor expanded in x around 0
*-commutativeN/A
lower-*.f64N/A
*-commutativeN/A
lower-*.f6454.2
Applied rewrites54.2%
if -7.9999999999999994e-40 < z < 1.75000000000000002e-20Initial program 99.8%
Taylor expanded in z around 0
Applied rewrites72.5%
if 1.75000000000000002e-20 < z < 3.39999999999999979e226Initial program 99.7%
Taylor expanded in x around 0
*-commutativeN/A
lower-*.f64N/A
*-commutativeN/A
lower-*.f6456.0
Applied rewrites56.0%
lift-*.f64N/A
lift-*.f64N/A
*-commutativeN/A
*-commutativeN/A
*-commutativeN/A
associate-*r*N/A
lower-*.f64N/A
*-commutativeN/A
lift-*.f6456.0
Applied rewrites56.0%
(FPCore (x y z)
:precision binary64
(let* ((t_0 (* (* z x) -6.0)) (t_1 (* (* z 6.0) y)))
(if (<= z -4.8e+107)
t_0
(if (<= z -8e-40)
t_1
(if (<= z 1.75e-20) x (if (<= z 3.4e+226) t_1 t_0))))))
double code(double x, double y, double z) {
double t_0 = (z * x) * -6.0;
double t_1 = (z * 6.0) * y;
double tmp;
if (z <= -4.8e+107) {
tmp = t_0;
} else if (z <= -8e-40) {
tmp = t_1;
} else if (z <= 1.75e-20) {
tmp = x;
} else if (z <= 3.4e+226) {
tmp = t_1;
} else {
tmp = t_0;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8) :: t_0
real(8) :: t_1
real(8) :: tmp
t_0 = (z * x) * (-6.0d0)
t_1 = (z * 6.0d0) * y
if (z <= (-4.8d+107)) then
tmp = t_0
else if (z <= (-8d-40)) then
tmp = t_1
else if (z <= 1.75d-20) then
tmp = x
else if (z <= 3.4d+226) then
tmp = t_1
else
tmp = t_0
end if
code = tmp
end function
public static double code(double x, double y, double z) {
double t_0 = (z * x) * -6.0;
double t_1 = (z * 6.0) * y;
double tmp;
if (z <= -4.8e+107) {
tmp = t_0;
} else if (z <= -8e-40) {
tmp = t_1;
} else if (z <= 1.75e-20) {
tmp = x;
} else if (z <= 3.4e+226) {
tmp = t_1;
} else {
tmp = t_0;
}
return tmp;
}
def code(x, y, z): t_0 = (z * x) * -6.0 t_1 = (z * 6.0) * y tmp = 0 if z <= -4.8e+107: tmp = t_0 elif z <= -8e-40: tmp = t_1 elif z <= 1.75e-20: tmp = x elif z <= 3.4e+226: tmp = t_1 else: tmp = t_0 return tmp
function code(x, y, z) t_0 = Float64(Float64(z * x) * -6.0) t_1 = Float64(Float64(z * 6.0) * y) tmp = 0.0 if (z <= -4.8e+107) tmp = t_0; elseif (z <= -8e-40) tmp = t_1; elseif (z <= 1.75e-20) tmp = x; elseif (z <= 3.4e+226) tmp = t_1; else tmp = t_0; end return tmp end
function tmp_2 = code(x, y, z) t_0 = (z * x) * -6.0; t_1 = (z * 6.0) * y; tmp = 0.0; if (z <= -4.8e+107) tmp = t_0; elseif (z <= -8e-40) tmp = t_1; elseif (z <= 1.75e-20) tmp = x; elseif (z <= 3.4e+226) tmp = t_1; else tmp = t_0; end tmp_2 = tmp; end
code[x_, y_, z_] := Block[{t$95$0 = N[(N[(z * x), $MachinePrecision] * -6.0), $MachinePrecision]}, Block[{t$95$1 = N[(N[(z * 6.0), $MachinePrecision] * y), $MachinePrecision]}, If[LessEqual[z, -4.8e+107], t$95$0, If[LessEqual[z, -8e-40], t$95$1, If[LessEqual[z, 1.75e-20], x, If[LessEqual[z, 3.4e+226], t$95$1, t$95$0]]]]]]
\begin{array}{l}
\\
\begin{array}{l}
t_0 := \left(z \cdot x\right) \cdot -6\\
t_1 := \left(z \cdot 6\right) \cdot y\\
\mathbf{if}\;z \leq -4.8 \cdot 10^{+107}:\\
\;\;\;\;t\_0\\
\mathbf{elif}\;z \leq -8 \cdot 10^{-40}:\\
\;\;\;\;t\_1\\
\mathbf{elif}\;z \leq 1.75 \cdot 10^{-20}:\\
\;\;\;\;x\\
\mathbf{elif}\;z \leq 3.4 \cdot 10^{+226}:\\
\;\;\;\;t\_1\\
\mathbf{else}:\\
\;\;\;\;t\_0\\
\end{array}
\end{array}
if z < -4.8000000000000001e107 or 3.39999999999999979e226 < z Initial program 99.8%
Taylor expanded in x around inf
*-commutativeN/A
lower-*.f64N/A
+-commutativeN/A
lower-fma.f6465.6
Applied rewrites65.6%
Taylor expanded in z around inf
*-commutativeN/A
*-commutativeN/A
lift-*.f64N/A
lift-*.f6465.7
Applied rewrites65.7%
if -4.8000000000000001e107 < z < -7.9999999999999994e-40 or 1.75000000000000002e-20 < z < 3.39999999999999979e226Initial program 99.6%
Taylor expanded in x around 0
*-commutativeN/A
lower-*.f64N/A
*-commutativeN/A
lower-*.f6455.0
Applied rewrites55.0%
lift-*.f64N/A
lift-*.f64N/A
*-commutativeN/A
*-commutativeN/A
*-commutativeN/A
associate-*r*N/A
lower-*.f64N/A
*-commutativeN/A
lift-*.f6455.1
Applied rewrites55.1%
if -7.9999999999999994e-40 < z < 1.75000000000000002e-20Initial program 99.8%
Taylor expanded in z around 0
Applied rewrites72.5%
(FPCore (x y z)
:precision binary64
(let* ((t_0 (* (* z x) -6.0)))
(if (<= z -0.165)
t_0
(if (<= z 1.75e-20) x (if (<= z 3.4e+226) (* (* 6.0 y) z) t_0)))))
double code(double x, double y, double z) {
double t_0 = (z * x) * -6.0;
double tmp;
if (z <= -0.165) {
tmp = t_0;
} else if (z <= 1.75e-20) {
tmp = x;
} else if (z <= 3.4e+226) {
tmp = (6.0 * y) * z;
} else {
tmp = t_0;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8) :: t_0
real(8) :: tmp
t_0 = (z * x) * (-6.0d0)
if (z <= (-0.165d0)) then
tmp = t_0
else if (z <= 1.75d-20) then
tmp = x
else if (z <= 3.4d+226) then
tmp = (6.0d0 * y) * z
else
tmp = t_0
end if
code = tmp
end function
public static double code(double x, double y, double z) {
double t_0 = (z * x) * -6.0;
double tmp;
if (z <= -0.165) {
tmp = t_0;
} else if (z <= 1.75e-20) {
tmp = x;
} else if (z <= 3.4e+226) {
tmp = (6.0 * y) * z;
} else {
tmp = t_0;
}
return tmp;
}
def code(x, y, z): t_0 = (z * x) * -6.0 tmp = 0 if z <= -0.165: tmp = t_0 elif z <= 1.75e-20: tmp = x elif z <= 3.4e+226: tmp = (6.0 * y) * z else: tmp = t_0 return tmp
function code(x, y, z) t_0 = Float64(Float64(z * x) * -6.0) tmp = 0.0 if (z <= -0.165) tmp = t_0; elseif (z <= 1.75e-20) tmp = x; elseif (z <= 3.4e+226) tmp = Float64(Float64(6.0 * y) * z); else tmp = t_0; end return tmp end
function tmp_2 = code(x, y, z) t_0 = (z * x) * -6.0; tmp = 0.0; if (z <= -0.165) tmp = t_0; elseif (z <= 1.75e-20) tmp = x; elseif (z <= 3.4e+226) tmp = (6.0 * y) * z; else tmp = t_0; end tmp_2 = tmp; end
code[x_, y_, z_] := Block[{t$95$0 = N[(N[(z * x), $MachinePrecision] * -6.0), $MachinePrecision]}, If[LessEqual[z, -0.165], t$95$0, If[LessEqual[z, 1.75e-20], x, If[LessEqual[z, 3.4e+226], N[(N[(6.0 * y), $MachinePrecision] * z), $MachinePrecision], t$95$0]]]]
\begin{array}{l}
\\
\begin{array}{l}
t_0 := \left(z \cdot x\right) \cdot -6\\
\mathbf{if}\;z \leq -0.165:\\
\;\;\;\;t\_0\\
\mathbf{elif}\;z \leq 1.75 \cdot 10^{-20}:\\
\;\;\;\;x\\
\mathbf{elif}\;z \leq 3.4 \cdot 10^{+226}:\\
\;\;\;\;\left(6 \cdot y\right) \cdot z\\
\mathbf{else}:\\
\;\;\;\;t\_0\\
\end{array}
\end{array}
if z < -0.165000000000000008 or 3.39999999999999979e226 < z Initial program 99.7%
Taylor expanded in x around inf
*-commutativeN/A
lower-*.f64N/A
+-commutativeN/A
lower-fma.f6460.7
Applied rewrites60.7%
Taylor expanded in z around inf
*-commutativeN/A
*-commutativeN/A
lift-*.f64N/A
lift-*.f6459.3
Applied rewrites59.3%
if -0.165000000000000008 < z < 1.75000000000000002e-20Initial program 99.8%
Taylor expanded in z around 0
Applied rewrites69.6%
if 1.75000000000000002e-20 < z < 3.39999999999999979e226Initial program 99.7%
Taylor expanded in x around 0
*-commutativeN/A
lower-*.f64N/A
*-commutativeN/A
lower-*.f6456.0
Applied rewrites56.0%
lift-*.f64N/A
lift-*.f64N/A
*-commutativeN/A
*-commutativeN/A
associate-*r*N/A
lower-*.f64N/A
lift-*.f6455.9
Applied rewrites55.9%
(FPCore (x y z) :precision binary64 (if (or (<= z -0.175) (not (<= z 0.165))) (* (* (- y x) 6.0) z) (fma y (* z 6.0) x)))
double code(double x, double y, double z) {
double tmp;
if ((z <= -0.175) || !(z <= 0.165)) {
tmp = ((y - x) * 6.0) * z;
} else {
tmp = fma(y, (z * 6.0), x);
}
return tmp;
}
function code(x, y, z) tmp = 0.0 if ((z <= -0.175) || !(z <= 0.165)) tmp = Float64(Float64(Float64(y - x) * 6.0) * z); else tmp = fma(y, Float64(z * 6.0), x); end return tmp end
code[x_, y_, z_] := If[Or[LessEqual[z, -0.175], N[Not[LessEqual[z, 0.165]], $MachinePrecision]], N[(N[(N[(y - x), $MachinePrecision] * 6.0), $MachinePrecision] * z), $MachinePrecision], N[(y * N[(z * 6.0), $MachinePrecision] + x), $MachinePrecision]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;z \leq -0.175 \lor \neg \left(z \leq 0.165\right):\\
\;\;\;\;\left(\left(y - x\right) \cdot 6\right) \cdot z\\
\mathbf{else}:\\
\;\;\;\;\mathsf{fma}\left(y, z \cdot 6, x\right)\\
\end{array}
\end{array}
if z < -0.17499999999999999 or 0.165000000000000008 < z Initial program 99.7%
Taylor expanded in z around inf
*-commutativeN/A
associate-*r*N/A
*-commutativeN/A
lift-*.f64N/A
lift--.f64N/A
lift-*.f6498.6
Applied rewrites98.6%
if -0.17499999999999999 < z < 0.165000000000000008Initial program 99.8%
lift-*.f64N/A
lift--.f64N/A
lift-*.f64N/A
lower-+.f64N/A
+-commutativeN/A
associate-*l*N/A
lower-fma.f64N/A
lift--.f64N/A
*-commutativeN/A
lower-*.f6499.9
Applied rewrites99.9%
Taylor expanded in x around 0
Applied rewrites99.3%
Final simplification98.9%
(FPCore (x y z) :precision binary64 (if (or (<= y -0.014) (not (<= y 1.6e-162))) (fma y (* z 6.0) x) (fma (* -6.0 x) z x)))
double code(double x, double y, double z) {
double tmp;
if ((y <= -0.014) || !(y <= 1.6e-162)) {
tmp = fma(y, (z * 6.0), x);
} else {
tmp = fma((-6.0 * x), z, x);
}
return tmp;
}
function code(x, y, z) tmp = 0.0 if ((y <= -0.014) || !(y <= 1.6e-162)) tmp = fma(y, Float64(z * 6.0), x); else tmp = fma(Float64(-6.0 * x), z, x); end return tmp end
code[x_, y_, z_] := If[Or[LessEqual[y, -0.014], N[Not[LessEqual[y, 1.6e-162]], $MachinePrecision]], N[(y * N[(z * 6.0), $MachinePrecision] + x), $MachinePrecision], N[(N[(-6.0 * x), $MachinePrecision] * z + x), $MachinePrecision]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;y \leq -0.014 \lor \neg \left(y \leq 1.6 \cdot 10^{-162}\right):\\
\;\;\;\;\mathsf{fma}\left(y, z \cdot 6, x\right)\\
\mathbf{else}:\\
\;\;\;\;\mathsf{fma}\left(-6 \cdot x, z, x\right)\\
\end{array}
\end{array}
if y < -0.0140000000000000003 or 1.59999999999999988e-162 < y Initial program 99.7%
lift-*.f64N/A
lift--.f64N/A
lift-*.f64N/A
lower-+.f64N/A
+-commutativeN/A
associate-*l*N/A
lower-fma.f64N/A
lift--.f64N/A
*-commutativeN/A
lower-*.f6499.8
Applied rewrites99.8%
Taylor expanded in x around 0
Applied rewrites88.2%
if -0.0140000000000000003 < y < 1.59999999999999988e-162Initial program 99.8%
Taylor expanded in x around inf
*-commutativeN/A
lower-*.f64N/A
+-commutativeN/A
lower-fma.f6489.8
Applied rewrites89.8%
lift-fma.f64N/A
lower-*.f64N/A
*-commutativeN/A
distribute-rgt-inN/A
*-lft-identityN/A
*-commutativeN/A
associate-*r*N/A
*-commutativeN/A
lower-fma.f64N/A
lower-*.f6489.8
Applied rewrites89.8%
Final simplification88.8%
(FPCore (x y z) :precision binary64 (if (or (<= x -2.2e-144) (not (<= x 6e+55))) (* (fma -6.0 z 1.0) x) (* (* z y) 6.0)))
double code(double x, double y, double z) {
double tmp;
if ((x <= -2.2e-144) || !(x <= 6e+55)) {
tmp = fma(-6.0, z, 1.0) * x;
} else {
tmp = (z * y) * 6.0;
}
return tmp;
}
function code(x, y, z) tmp = 0.0 if ((x <= -2.2e-144) || !(x <= 6e+55)) tmp = Float64(fma(-6.0, z, 1.0) * x); else tmp = Float64(Float64(z * y) * 6.0); end return tmp end
code[x_, y_, z_] := If[Or[LessEqual[x, -2.2e-144], N[Not[LessEqual[x, 6e+55]], $MachinePrecision]], N[(N[(-6.0 * z + 1.0), $MachinePrecision] * x), $MachinePrecision], N[(N[(z * y), $MachinePrecision] * 6.0), $MachinePrecision]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;x \leq -2.2 \cdot 10^{-144} \lor \neg \left(x \leq 6 \cdot 10^{+55}\right):\\
\;\;\;\;\mathsf{fma}\left(-6, z, 1\right) \cdot x\\
\mathbf{else}:\\
\;\;\;\;\left(z \cdot y\right) \cdot 6\\
\end{array}
\end{array}
if x < -2.20000000000000006e-144 or 6.00000000000000033e55 < x Initial program 99.8%
Taylor expanded in x around inf
*-commutativeN/A
lower-*.f64N/A
+-commutativeN/A
lower-fma.f6479.4
Applied rewrites79.4%
if -2.20000000000000006e-144 < x < 6.00000000000000033e55Initial program 99.6%
Taylor expanded in x around 0
*-commutativeN/A
lower-*.f64N/A
*-commutativeN/A
lower-*.f6469.4
Applied rewrites69.4%
Final simplification75.7%
(FPCore (x y z) :precision binary64 (if (<= x -2.2e-144) (fma (* -6.0 x) z x) (if (<= x 6e+55) (* (* z y) 6.0) (* (fma -6.0 z 1.0) x))))
double code(double x, double y, double z) {
double tmp;
if (x <= -2.2e-144) {
tmp = fma((-6.0 * x), z, x);
} else if (x <= 6e+55) {
tmp = (z * y) * 6.0;
} else {
tmp = fma(-6.0, z, 1.0) * x;
}
return tmp;
}
function code(x, y, z) tmp = 0.0 if (x <= -2.2e-144) tmp = fma(Float64(-6.0 * x), z, x); elseif (x <= 6e+55) tmp = Float64(Float64(z * y) * 6.0); else tmp = Float64(fma(-6.0, z, 1.0) * x); end return tmp end
code[x_, y_, z_] := If[LessEqual[x, -2.2e-144], N[(N[(-6.0 * x), $MachinePrecision] * z + x), $MachinePrecision], If[LessEqual[x, 6e+55], N[(N[(z * y), $MachinePrecision] * 6.0), $MachinePrecision], N[(N[(-6.0 * z + 1.0), $MachinePrecision] * x), $MachinePrecision]]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;x \leq -2.2 \cdot 10^{-144}:\\
\;\;\;\;\mathsf{fma}\left(-6 \cdot x, z, x\right)\\
\mathbf{elif}\;x \leq 6 \cdot 10^{+55}:\\
\;\;\;\;\left(z \cdot y\right) \cdot 6\\
\mathbf{else}:\\
\;\;\;\;\mathsf{fma}\left(-6, z, 1\right) \cdot x\\
\end{array}
\end{array}
if x < -2.20000000000000006e-144Initial program 99.8%
Taylor expanded in x around inf
*-commutativeN/A
lower-*.f64N/A
+-commutativeN/A
lower-fma.f6473.4
Applied rewrites73.4%
lift-fma.f64N/A
lower-*.f64N/A
*-commutativeN/A
distribute-rgt-inN/A
*-lft-identityN/A
*-commutativeN/A
associate-*r*N/A
*-commutativeN/A
lower-fma.f64N/A
lower-*.f6473.4
Applied rewrites73.4%
if -2.20000000000000006e-144 < x < 6.00000000000000033e55Initial program 99.6%
Taylor expanded in x around 0
*-commutativeN/A
lower-*.f64N/A
*-commutativeN/A
lower-*.f6469.4
Applied rewrites69.4%
if 6.00000000000000033e55 < x Initial program 99.8%
Taylor expanded in x around inf
*-commutativeN/A
lower-*.f64N/A
+-commutativeN/A
lower-fma.f6490.0
Applied rewrites90.0%
(FPCore (x y z) :precision binary64 (if (or (<= z -0.165) (not (<= z 0.165))) (* (* z x) -6.0) x))
double code(double x, double y, double z) {
double tmp;
if ((z <= -0.165) || !(z <= 0.165)) {
tmp = (z * x) * -6.0;
} else {
tmp = x;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8) :: tmp
if ((z <= (-0.165d0)) .or. (.not. (z <= 0.165d0))) then
tmp = (z * x) * (-6.0d0)
else
tmp = x
end if
code = tmp
end function
public static double code(double x, double y, double z) {
double tmp;
if ((z <= -0.165) || !(z <= 0.165)) {
tmp = (z * x) * -6.0;
} else {
tmp = x;
}
return tmp;
}
def code(x, y, z): tmp = 0 if (z <= -0.165) or not (z <= 0.165): tmp = (z * x) * -6.0 else: tmp = x return tmp
function code(x, y, z) tmp = 0.0 if ((z <= -0.165) || !(z <= 0.165)) tmp = Float64(Float64(z * x) * -6.0); else tmp = x; end return tmp end
function tmp_2 = code(x, y, z) tmp = 0.0; if ((z <= -0.165) || ~((z <= 0.165))) tmp = (z * x) * -6.0; else tmp = x; end tmp_2 = tmp; end
code[x_, y_, z_] := If[Or[LessEqual[z, -0.165], N[Not[LessEqual[z, 0.165]], $MachinePrecision]], N[(N[(z * x), $MachinePrecision] * -6.0), $MachinePrecision], x]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;z \leq -0.165 \lor \neg \left(z \leq 0.165\right):\\
\;\;\;\;\left(z \cdot x\right) \cdot -6\\
\mathbf{else}:\\
\;\;\;\;x\\
\end{array}
\end{array}
if z < -0.165000000000000008 or 0.165000000000000008 < z Initial program 99.7%
Taylor expanded in x around inf
*-commutativeN/A
lower-*.f64N/A
+-commutativeN/A
lower-fma.f6454.6
Applied rewrites54.6%
Taylor expanded in z around inf
*-commutativeN/A
*-commutativeN/A
lift-*.f64N/A
lift-*.f6453.7
Applied rewrites53.7%
if -0.165000000000000008 < z < 0.165000000000000008Initial program 99.8%
Taylor expanded in z around 0
Applied rewrites68.1%
Final simplification60.7%
(FPCore (x y z) :precision binary64 (if (<= z -0.165) (* (* z x) -6.0) (if (<= z 0.165) x (* (* -6.0 z) x))))
double code(double x, double y, double z) {
double tmp;
if (z <= -0.165) {
tmp = (z * x) * -6.0;
} else if (z <= 0.165) {
tmp = x;
} else {
tmp = (-6.0 * z) * x;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8) :: tmp
if (z <= (-0.165d0)) then
tmp = (z * x) * (-6.0d0)
else if (z <= 0.165d0) then
tmp = x
else
tmp = ((-6.0d0) * z) * x
end if
code = tmp
end function
public static double code(double x, double y, double z) {
double tmp;
if (z <= -0.165) {
tmp = (z * x) * -6.0;
} else if (z <= 0.165) {
tmp = x;
} else {
tmp = (-6.0 * z) * x;
}
return tmp;
}
def code(x, y, z): tmp = 0 if z <= -0.165: tmp = (z * x) * -6.0 elif z <= 0.165: tmp = x else: tmp = (-6.0 * z) * x return tmp
function code(x, y, z) tmp = 0.0 if (z <= -0.165) tmp = Float64(Float64(z * x) * -6.0); elseif (z <= 0.165) tmp = x; else tmp = Float64(Float64(-6.0 * z) * x); end return tmp end
function tmp_2 = code(x, y, z) tmp = 0.0; if (z <= -0.165) tmp = (z * x) * -6.0; elseif (z <= 0.165) tmp = x; else tmp = (-6.0 * z) * x; end tmp_2 = tmp; end
code[x_, y_, z_] := If[LessEqual[z, -0.165], N[(N[(z * x), $MachinePrecision] * -6.0), $MachinePrecision], If[LessEqual[z, 0.165], x, N[(N[(-6.0 * z), $MachinePrecision] * x), $MachinePrecision]]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;z \leq -0.165:\\
\;\;\;\;\left(z \cdot x\right) \cdot -6\\
\mathbf{elif}\;z \leq 0.165:\\
\;\;\;\;x\\
\mathbf{else}:\\
\;\;\;\;\left(-6 \cdot z\right) \cdot x\\
\end{array}
\end{array}
if z < -0.165000000000000008Initial program 99.6%
Taylor expanded in x around inf
*-commutativeN/A
lower-*.f64N/A
+-commutativeN/A
lower-fma.f6457.1
Applied rewrites57.1%
Taylor expanded in z around inf
*-commutativeN/A
*-commutativeN/A
lift-*.f64N/A
lift-*.f6455.3
Applied rewrites55.3%
if -0.165000000000000008 < z < 0.165000000000000008Initial program 99.8%
Taylor expanded in z around 0
Applied rewrites68.1%
if 0.165000000000000008 < z Initial program 99.8%
Taylor expanded in x around inf
*-commutativeN/A
lower-*.f64N/A
+-commutativeN/A
lower-fma.f6452.4
Applied rewrites52.4%
Taylor expanded in z around inf
lower-*.f6452.2
Applied rewrites52.2%
(FPCore (x y z) :precision binary64 (if (<= z -0.165) (* (* z x) -6.0) (if (<= z 0.165) x (* (* -6.0 x) z))))
double code(double x, double y, double z) {
double tmp;
if (z <= -0.165) {
tmp = (z * x) * -6.0;
} else if (z <= 0.165) {
tmp = x;
} else {
tmp = (-6.0 * x) * z;
}
return tmp;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
real(8) :: tmp
if (z <= (-0.165d0)) then
tmp = (z * x) * (-6.0d0)
else if (z <= 0.165d0) then
tmp = x
else
tmp = ((-6.0d0) * x) * z
end if
code = tmp
end function
public static double code(double x, double y, double z) {
double tmp;
if (z <= -0.165) {
tmp = (z * x) * -6.0;
} else if (z <= 0.165) {
tmp = x;
} else {
tmp = (-6.0 * x) * z;
}
return tmp;
}
def code(x, y, z): tmp = 0 if z <= -0.165: tmp = (z * x) * -6.0 elif z <= 0.165: tmp = x else: tmp = (-6.0 * x) * z return tmp
function code(x, y, z) tmp = 0.0 if (z <= -0.165) tmp = Float64(Float64(z * x) * -6.0); elseif (z <= 0.165) tmp = x; else tmp = Float64(Float64(-6.0 * x) * z); end return tmp end
function tmp_2 = code(x, y, z) tmp = 0.0; if (z <= -0.165) tmp = (z * x) * -6.0; elseif (z <= 0.165) tmp = x; else tmp = (-6.0 * x) * z; end tmp_2 = tmp; end
code[x_, y_, z_] := If[LessEqual[z, -0.165], N[(N[(z * x), $MachinePrecision] * -6.0), $MachinePrecision], If[LessEqual[z, 0.165], x, N[(N[(-6.0 * x), $MachinePrecision] * z), $MachinePrecision]]]
\begin{array}{l}
\\
\begin{array}{l}
\mathbf{if}\;z \leq -0.165:\\
\;\;\;\;\left(z \cdot x\right) \cdot -6\\
\mathbf{elif}\;z \leq 0.165:\\
\;\;\;\;x\\
\mathbf{else}:\\
\;\;\;\;\left(-6 \cdot x\right) \cdot z\\
\end{array}
\end{array}
if z < -0.165000000000000008Initial program 99.6%
Taylor expanded in x around inf
*-commutativeN/A
lower-*.f64N/A
+-commutativeN/A
lower-fma.f6457.1
Applied rewrites57.1%
Taylor expanded in z around inf
*-commutativeN/A
*-commutativeN/A
lift-*.f64N/A
lift-*.f6455.3
Applied rewrites55.3%
if -0.165000000000000008 < z < 0.165000000000000008Initial program 99.8%
Taylor expanded in z around 0
Applied rewrites68.1%
if 0.165000000000000008 < z Initial program 99.8%
Taylor expanded in z around inf
*-commutativeN/A
associate-*r*N/A
*-commutativeN/A
lift-*.f64N/A
lift--.f64N/A
lift-*.f6499.3
Applied rewrites99.3%
Taylor expanded in x around inf
lower-*.f6452.2
Applied rewrites52.2%
(FPCore (x y z) :precision binary64 (fma (* (- y x) z) 6.0 x))
double code(double x, double y, double z) {
return fma(((y - x) * z), 6.0, x);
}
function code(x, y, z) return fma(Float64(Float64(y - x) * z), 6.0, x) end
code[x_, y_, z_] := N[(N[(N[(y - x), $MachinePrecision] * z), $MachinePrecision] * 6.0 + x), $MachinePrecision]
\begin{array}{l}
\\
\mathsf{fma}\left(\left(y - x\right) \cdot z, 6, x\right)
\end{array}
Initial program 99.7%
lift-+.f64N/A
lift-*.f64N/A
lift--.f64N/A
lift-*.f64N/A
*-commutativeN/A
associate-*r*N/A
*-commutativeN/A
+-commutativeN/A
*-commutativeN/A
lower-fma.f64N/A
*-commutativeN/A
lower-*.f64N/A
lift--.f6499.8
Applied rewrites99.8%
(FPCore (x y z) :precision binary64 x)
double code(double x, double y, double z) {
return x;
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
code = x
end function
public static double code(double x, double y, double z) {
return x;
}
def code(x, y, z): return x
function code(x, y, z) return x end
function tmp = code(x, y, z) tmp = x; end
code[x_, y_, z_] := x
\begin{array}{l}
\\
x
\end{array}
Initial program 99.7%
Taylor expanded in z around 0
Applied rewrites34.8%
(FPCore (x y z) :precision binary64 (- x (* (* 6.0 z) (- x y))))
double code(double x, double y, double z) {
return x - ((6.0 * z) * (x - y));
}
module fmin_fmax_functions
implicit none
private
public fmax
public fmin
interface fmax
module procedure fmax88
module procedure fmax44
module procedure fmax84
module procedure fmax48
end interface
interface fmin
module procedure fmin88
module procedure fmin44
module procedure fmin84
module procedure fmin48
end interface
contains
real(8) function fmax88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(4) function fmax44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, max(x, y), y /= y), x /= x)
end function
real(8) function fmax84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmax48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x)
end function
real(8) function fmin88(x, y) result (res)
real(8), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(4) function fmin44(x, y) result (res)
real(4), intent (in) :: x
real(4), intent (in) :: y
res = merge(y, merge(x, min(x, y), y /= y), x /= x)
end function
real(8) function fmin84(x, y) result(res)
real(8), intent (in) :: x
real(4), intent (in) :: y
res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x)
end function
real(8) function fmin48(x, y) result(res)
real(4), intent (in) :: x
real(8), intent (in) :: y
res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x)
end function
end module
real(8) function code(x, y, z)
use fmin_fmax_functions
real(8), intent (in) :: x
real(8), intent (in) :: y
real(8), intent (in) :: z
code = x - ((6.0d0 * z) * (x - y))
end function
public static double code(double x, double y, double z) {
return x - ((6.0 * z) * (x - y));
}
def code(x, y, z): return x - ((6.0 * z) * (x - y))
function code(x, y, z) return Float64(x - Float64(Float64(6.0 * z) * Float64(x - y))) end
function tmp = code(x, y, z) tmp = x - ((6.0 * z) * (x - y)); end
code[x_, y_, z_] := N[(x - N[(N[(6.0 * z), $MachinePrecision] * N[(x - y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
\begin{array}{l}
\\
x - \left(6 \cdot z\right) \cdot \left(x - y\right)
\end{array}
herbie shell --seed 2025038
(FPCore (x y z)
:name "Data.Colour.RGBSpace.HSL:hsl from colour-2.3.3, E"
:precision binary64
:alt
(! :herbie-platform default (- x (* (* 6 z) (- x y))))
(+ x (* (* (- y x) 6.0) z)))