(FPCore (x y z) :precision binary64 (+ x (* (* (- y x) 6.0) z)))
double code(double x, double y, double z) { return x + (((y - x) * 6.0) * z); }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z code = x + (((y - x) * 6.0d0) * z) end function
public static double code(double x, double y, double z) { return x + (((y - x) * 6.0) * z); }
def code(x, y, z): return x + (((y - x) * 6.0) * z)
function code(x, y, z) return Float64(x + Float64(Float64(Float64(y - x) * 6.0) * z)) end
function tmp = code(x, y, z) tmp = x + (((y - x) * 6.0) * z); end
code[x_, y_, z_] := N[(x + N[(N[(N[(y - x), $MachinePrecision] * 6.0), $MachinePrecision] * z), $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ x + \left(\left(y - x\right) \cdot 6\right) \cdot z \end{array}
Sampling outcomes in binary64 precision:
Herbie found 13 alternatives:
Alternative | Accuracy | Speedup |
---|
(FPCore (x y z) :precision binary64 (+ x (* (* (- y x) 6.0) z)))
double code(double x, double y, double z) { return x + (((y - x) * 6.0) * z); }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z code = x + (((y - x) * 6.0d0) * z) end function
public static double code(double x, double y, double z) { return x + (((y - x) * 6.0) * z); }
def code(x, y, z): return x + (((y - x) * 6.0) * z)
function code(x, y, z) return Float64(x + Float64(Float64(Float64(y - x) * 6.0) * z)) end
function tmp = code(x, y, z) tmp = x + (((y - x) * 6.0) * z); end
code[x_, y_, z_] := N[(x + N[(N[(N[(y - x), $MachinePrecision] * 6.0), $MachinePrecision] * z), $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ x + \left(\left(y - x\right) \cdot 6\right) \cdot z \end{array}
(FPCore (x y z) :precision binary64 (fma (- y x) (* z 6.0) x))
double code(double x, double y, double z) { return fma((y - x), (z * 6.0), x); }
function code(x, y, z) return fma(Float64(y - x), Float64(z * 6.0), x) end
code[x_, y_, z_] := N[(N[(y - x), $MachinePrecision] * N[(z * 6.0), $MachinePrecision] + x), $MachinePrecision]
\begin{array}{l} \\ \mathsf{fma}\left(y - x, z \cdot 6, x\right) \end{array}
Initial program 99.7%
lift-*.f64
N/A
lift--.f64
N/A
lift-*.f64
N/A
lower-+.f64
N/A
+-commutative
N/A
associate-*l*
N/A
lower-fma.f64
N/A
lift--.f64
N/A
*-commutative
N/A
lower-*.f64
99.8
Applied rewrites99.8%
(FPCore (x y z) :precision binary64 (let* ((t_0 (* (* z x) -6.0))) (if (<= z -2.9e+82) t_0 (if (<= z -8e-40) (* (* z y) 6.0) (if (<= z 1.75e-20) x (if (<= z 3.4e+226) (* (* z 6.0) y) t_0))))))
double code(double x, double y, double z) { double t_0 = (z * x) * -6.0; double tmp; if (z <= -2.9e+82) { tmp = t_0; } else if (z <= -8e-40) { tmp = (z * y) * 6.0; } else if (z <= 1.75e-20) { tmp = x; } else if (z <= 3.4e+226) { tmp = (z * 6.0) * y; } else { tmp = t_0; } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8) :: t_0 real(8) :: tmp t_0 = (z * x) * (-6.0d0) if (z <= (-2.9d+82)) then tmp = t_0 else if (z <= (-8d-40)) then tmp = (z * y) * 6.0d0 else if (z <= 1.75d-20) then tmp = x else if (z <= 3.4d+226) then tmp = (z * 6.0d0) * y else tmp = t_0 end if code = tmp end function
public static double code(double x, double y, double z) { double t_0 = (z * x) * -6.0; double tmp; if (z <= -2.9e+82) { tmp = t_0; } else if (z <= -8e-40) { tmp = (z * y) * 6.0; } else if (z <= 1.75e-20) { tmp = x; } else if (z <= 3.4e+226) { tmp = (z * 6.0) * y; } else { tmp = t_0; } return tmp; }
def code(x, y, z): t_0 = (z * x) * -6.0 tmp = 0 if z <= -2.9e+82: tmp = t_0 elif z <= -8e-40: tmp = (z * y) * 6.0 elif z <= 1.75e-20: tmp = x elif z <= 3.4e+226: tmp = (z * 6.0) * y else: tmp = t_0 return tmp
function code(x, y, z) t_0 = Float64(Float64(z * x) * -6.0) tmp = 0.0 if (z <= -2.9e+82) tmp = t_0; elseif (z <= -8e-40) tmp = Float64(Float64(z * y) * 6.0); elseif (z <= 1.75e-20) tmp = x; elseif (z <= 3.4e+226) tmp = Float64(Float64(z * 6.0) * y); else tmp = t_0; end return tmp end
function tmp_2 = code(x, y, z) t_0 = (z * x) * -6.0; tmp = 0.0; if (z <= -2.9e+82) tmp = t_0; elseif (z <= -8e-40) tmp = (z * y) * 6.0; elseif (z <= 1.75e-20) tmp = x; elseif (z <= 3.4e+226) tmp = (z * 6.0) * y; else tmp = t_0; end tmp_2 = tmp; end
code[x_, y_, z_] := Block[{t$95$0 = N[(N[(z * x), $MachinePrecision] * -6.0), $MachinePrecision]}, If[LessEqual[z, -2.9e+82], t$95$0, If[LessEqual[z, -8e-40], N[(N[(z * y), $MachinePrecision] * 6.0), $MachinePrecision], If[LessEqual[z, 1.75e-20], x, If[LessEqual[z, 3.4e+226], N[(N[(z * 6.0), $MachinePrecision] * y), $MachinePrecision], t$95$0]]]]]
\begin{array}{l} \\ \begin{array}{l} t_0 := \left(z \cdot x\right) \cdot -6\\ \mathbf{if}\;z \leq -2.9 \cdot 10^{+82}:\\ \;\;\;\;t\_0\\ \mathbf{elif}\;z \leq -8 \cdot 10^{-40}:\\ \;\;\;\;\left(z \cdot y\right) \cdot 6\\ \mathbf{elif}\;z \leq 1.75 \cdot 10^{-20}:\\ \;\;\;\;x\\ \mathbf{elif}\;z \leq 3.4 \cdot 10^{+226}:\\ \;\;\;\;\left(z \cdot 6\right) \cdot y\\ \mathbf{else}:\\ \;\;\;\;t\_0\\ \end{array} \end{array}
if z < -2.9000000000000001e82 or 3.39999999999999979e226 < z
Initial program 99.8%
Taylor expanded in x around inf
*-commutative
N/A
lower-*.f64
N/A
+-commutative
N/A
lower-fma.f64
64.2
Applied rewrites64.2%
Taylor expanded in z around inf
*-commutative
N/A
*-commutative
N/A
lift-*.f64
N/A
lift-*.f64
64.2
Applied rewrites64.2%
if -2.9000000000000001e82 < z < -7.9999999999999994e-40
Initial program 99.4%
Taylor expanded in x around 0
*-commutative
N/A
lower-*.f64
N/A
*-commutative
N/A
lower-*.f64
54.2
Applied rewrites54.2%
if -7.9999999999999994e-40 < z < 1.75000000000000002e-20
Initial program 99.8%
Taylor expanded in z around 0
Applied rewrites72.5%
if 1.75000000000000002e-20 < z < 3.39999999999999979e226
Initial program 99.7%
Taylor expanded in x around 0
*-commutative
N/A
lower-*.f64
N/A
*-commutative
N/A
lower-*.f64
56.0
Applied rewrites56.0%
lift-*.f64
N/A
lift-*.f64
N/A
*-commutative
N/A
*-commutative
N/A
*-commutative
N/A
associate-*r*
N/A
lower-*.f64
N/A
*-commutative
N/A
lift-*.f64
56.0
Applied rewrites56.0%
(FPCore (x y z) :precision binary64 (let* ((t_0 (* (* z x) -6.0)) (t_1 (* (* z 6.0) y))) (if (<= z -4.8e+107) t_0 (if (<= z -8e-40) t_1 (if (<= z 1.75e-20) x (if (<= z 3.4e+226) t_1 t_0))))))
double code(double x, double y, double z) { double t_0 = (z * x) * -6.0; double t_1 = (z * 6.0) * y; double tmp; if (z <= -4.8e+107) { tmp = t_0; } else if (z <= -8e-40) { tmp = t_1; } else if (z <= 1.75e-20) { tmp = x; } else if (z <= 3.4e+226) { tmp = t_1; } else { tmp = t_0; } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8) :: t_0 real(8) :: t_1 real(8) :: tmp t_0 = (z * x) * (-6.0d0) t_1 = (z * 6.0d0) * y if (z <= (-4.8d+107)) then tmp = t_0 else if (z <= (-8d-40)) then tmp = t_1 else if (z <= 1.75d-20) then tmp = x else if (z <= 3.4d+226) then tmp = t_1 else tmp = t_0 end if code = tmp end function
public static double code(double x, double y, double z) { double t_0 = (z * x) * -6.0; double t_1 = (z * 6.0) * y; double tmp; if (z <= -4.8e+107) { tmp = t_0; } else if (z <= -8e-40) { tmp = t_1; } else if (z <= 1.75e-20) { tmp = x; } else if (z <= 3.4e+226) { tmp = t_1; } else { tmp = t_0; } return tmp; }
def code(x, y, z): t_0 = (z * x) * -6.0 t_1 = (z * 6.0) * y tmp = 0 if z <= -4.8e+107: tmp = t_0 elif z <= -8e-40: tmp = t_1 elif z <= 1.75e-20: tmp = x elif z <= 3.4e+226: tmp = t_1 else: tmp = t_0 return tmp
function code(x, y, z) t_0 = Float64(Float64(z * x) * -6.0) t_1 = Float64(Float64(z * 6.0) * y) tmp = 0.0 if (z <= -4.8e+107) tmp = t_0; elseif (z <= -8e-40) tmp = t_1; elseif (z <= 1.75e-20) tmp = x; elseif (z <= 3.4e+226) tmp = t_1; else tmp = t_0; end return tmp end
function tmp_2 = code(x, y, z) t_0 = (z * x) * -6.0; t_1 = (z * 6.0) * y; tmp = 0.0; if (z <= -4.8e+107) tmp = t_0; elseif (z <= -8e-40) tmp = t_1; elseif (z <= 1.75e-20) tmp = x; elseif (z <= 3.4e+226) tmp = t_1; else tmp = t_0; end tmp_2 = tmp; end
code[x_, y_, z_] := Block[{t$95$0 = N[(N[(z * x), $MachinePrecision] * -6.0), $MachinePrecision]}, Block[{t$95$1 = N[(N[(z * 6.0), $MachinePrecision] * y), $MachinePrecision]}, If[LessEqual[z, -4.8e+107], t$95$0, If[LessEqual[z, -8e-40], t$95$1, If[LessEqual[z, 1.75e-20], x, If[LessEqual[z, 3.4e+226], t$95$1, t$95$0]]]]]]
\begin{array}{l} \\ \begin{array}{l} t_0 := \left(z \cdot x\right) \cdot -6\\ t_1 := \left(z \cdot 6\right) \cdot y\\ \mathbf{if}\;z \leq -4.8 \cdot 10^{+107}:\\ \;\;\;\;t\_0\\ \mathbf{elif}\;z \leq -8 \cdot 10^{-40}:\\ \;\;\;\;t\_1\\ \mathbf{elif}\;z \leq 1.75 \cdot 10^{-20}:\\ \;\;\;\;x\\ \mathbf{elif}\;z \leq 3.4 \cdot 10^{+226}:\\ \;\;\;\;t\_1\\ \mathbf{else}:\\ \;\;\;\;t\_0\\ \end{array} \end{array}
if z < -4.8000000000000001e107 or 3.39999999999999979e226 < z
Initial program 99.8%
Taylor expanded in x around inf
*-commutative
N/A
lower-*.f64
N/A
+-commutative
N/A
lower-fma.f64
65.6
Applied rewrites65.6%
Taylor expanded in z around inf
*-commutative
N/A
*-commutative
N/A
lift-*.f64
N/A
lift-*.f64
65.7
Applied rewrites65.7%
if -4.8000000000000001e107 < z < -7.9999999999999994e-40 or 1.75000000000000002e-20 < z < 3.39999999999999979e226
Initial program 99.6%
Taylor expanded in x around 0
*-commutative
N/A
lower-*.f64
N/A
*-commutative
N/A
lower-*.f64
55.0
Applied rewrites55.0%
lift-*.f64
N/A
lift-*.f64
N/A
*-commutative
N/A
*-commutative
N/A
*-commutative
N/A
associate-*r*
N/A
lower-*.f64
N/A
*-commutative
N/A
lift-*.f64
55.1
Applied rewrites55.1%
if -7.9999999999999994e-40 < z < 1.75000000000000002e-20
Initial program 99.8%
Taylor expanded in z around 0
Applied rewrites72.5%
(FPCore (x y z) :precision binary64 (let* ((t_0 (* (* z x) -6.0))) (if (<= z -0.165) t_0 (if (<= z 1.75e-20) x (if (<= z 3.4e+226) (* (* 6.0 y) z) t_0)))))
double code(double x, double y, double z) { double t_0 = (z * x) * -6.0; double tmp; if (z <= -0.165) { tmp = t_0; } else if (z <= 1.75e-20) { tmp = x; } else if (z <= 3.4e+226) { tmp = (6.0 * y) * z; } else { tmp = t_0; } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8) :: t_0 real(8) :: tmp t_0 = (z * x) * (-6.0d0) if (z <= (-0.165d0)) then tmp = t_0 else if (z <= 1.75d-20) then tmp = x else if (z <= 3.4d+226) then tmp = (6.0d0 * y) * z else tmp = t_0 end if code = tmp end function
public static double code(double x, double y, double z) { double t_0 = (z * x) * -6.0; double tmp; if (z <= -0.165) { tmp = t_0; } else if (z <= 1.75e-20) { tmp = x; } else if (z <= 3.4e+226) { tmp = (6.0 * y) * z; } else { tmp = t_0; } return tmp; }
def code(x, y, z): t_0 = (z * x) * -6.0 tmp = 0 if z <= -0.165: tmp = t_0 elif z <= 1.75e-20: tmp = x elif z <= 3.4e+226: tmp = (6.0 * y) * z else: tmp = t_0 return tmp
function code(x, y, z) t_0 = Float64(Float64(z * x) * -6.0) tmp = 0.0 if (z <= -0.165) tmp = t_0; elseif (z <= 1.75e-20) tmp = x; elseif (z <= 3.4e+226) tmp = Float64(Float64(6.0 * y) * z); else tmp = t_0; end return tmp end
function tmp_2 = code(x, y, z) t_0 = (z * x) * -6.0; tmp = 0.0; if (z <= -0.165) tmp = t_0; elseif (z <= 1.75e-20) tmp = x; elseif (z <= 3.4e+226) tmp = (6.0 * y) * z; else tmp = t_0; end tmp_2 = tmp; end
code[x_, y_, z_] := Block[{t$95$0 = N[(N[(z * x), $MachinePrecision] * -6.0), $MachinePrecision]}, If[LessEqual[z, -0.165], t$95$0, If[LessEqual[z, 1.75e-20], x, If[LessEqual[z, 3.4e+226], N[(N[(6.0 * y), $MachinePrecision] * z), $MachinePrecision], t$95$0]]]]
\begin{array}{l} \\ \begin{array}{l} t_0 := \left(z \cdot x\right) \cdot -6\\ \mathbf{if}\;z \leq -0.165:\\ \;\;\;\;t\_0\\ \mathbf{elif}\;z \leq 1.75 \cdot 10^{-20}:\\ \;\;\;\;x\\ \mathbf{elif}\;z \leq 3.4 \cdot 10^{+226}:\\ \;\;\;\;\left(6 \cdot y\right) \cdot z\\ \mathbf{else}:\\ \;\;\;\;t\_0\\ \end{array} \end{array}
if z < -0.165000000000000008 or 3.39999999999999979e226 < z
Initial program 99.7%
Taylor expanded in x around inf
*-commutative
N/A
lower-*.f64
N/A
+-commutative
N/A
lower-fma.f64
60.7
Applied rewrites60.7%
Taylor expanded in z around inf
*-commutative
N/A
*-commutative
N/A
lift-*.f64
N/A
lift-*.f64
59.3
Applied rewrites59.3%
if -0.165000000000000008 < z < 1.75000000000000002e-20
Initial program 99.8%
Taylor expanded in z around 0
Applied rewrites69.6%
if 1.75000000000000002e-20 < z < 3.39999999999999979e226
Initial program 99.7%
Taylor expanded in x around 0
*-commutative
N/A
lower-*.f64
N/A
*-commutative
N/A
lower-*.f64
56.0
Applied rewrites56.0%
lift-*.f64
N/A
lift-*.f64
N/A
*-commutative
N/A
*-commutative
N/A
associate-*r*
N/A
lower-*.f64
N/A
lift-*.f64
55.9
Applied rewrites55.9%
(FPCore (x y z) :precision binary64 (if (or (<= z -0.175) (not (<= z 0.165))) (* (* (- y x) 6.0) z) (fma y (* z 6.0) x)))
double code(double x, double y, double z) { double tmp; if ((z <= -0.175) || !(z <= 0.165)) { tmp = ((y - x) * 6.0) * z; } else { tmp = fma(y, (z * 6.0), x); } return tmp; }
function code(x, y, z) tmp = 0.0 if ((z <= -0.175) || !(z <= 0.165)) tmp = Float64(Float64(Float64(y - x) * 6.0) * z); else tmp = fma(y, Float64(z * 6.0), x); end return tmp end
code[x_, y_, z_] := If[Or[LessEqual[z, -0.175], N[Not[LessEqual[z, 0.165]], $MachinePrecision]], N[(N[(N[(y - x), $MachinePrecision] * 6.0), $MachinePrecision] * z), $MachinePrecision], N[(y * N[(z * 6.0), $MachinePrecision] + x), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;z \leq -0.175 \lor \neg \left(z \leq 0.165\right):\\ \;\;\;\;\left(\left(y - x\right) \cdot 6\right) \cdot z\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(y, z \cdot 6, x\right)\\ \end{array} \end{array}
if z < -0.17499999999999999 or 0.165000000000000008 < z
Initial program 99.7%
Taylor expanded in z around inf
*-commutative
N/A
associate-*r*
N/A
*-commutative
N/A
lift-*.f64
N/A
lift--.f64
N/A
lift-*.f64
98.6
Applied rewrites98.6%
if -0.17499999999999999 < z < 0.165000000000000008
Initial program 99.8%
lift-*.f64
N/A
lift--.f64
N/A
lift-*.f64
N/A
lower-+.f64
N/A
+-commutative
N/A
associate-*l*
N/A
lower-fma.f64
N/A
lift--.f64
N/A
*-commutative
N/A
lower-*.f64
99.9
Applied rewrites99.9%
Taylor expanded in x around 0
Applied rewrites99.3%
Final simplification98.9%
(FPCore (x y z) :precision binary64 (if (or (<= y -0.014) (not (<= y 1.6e-162))) (fma y (* z 6.0) x) (fma (* -6.0 x) z x)))
double code(double x, double y, double z) { double tmp; if ((y <= -0.014) || !(y <= 1.6e-162)) { tmp = fma(y, (z * 6.0), x); } else { tmp = fma((-6.0 * x), z, x); } return tmp; }
function code(x, y, z) tmp = 0.0 if ((y <= -0.014) || !(y <= 1.6e-162)) tmp = fma(y, Float64(z * 6.0), x); else tmp = fma(Float64(-6.0 * x), z, x); end return tmp end
code[x_, y_, z_] := If[Or[LessEqual[y, -0.014], N[Not[LessEqual[y, 1.6e-162]], $MachinePrecision]], N[(y * N[(z * 6.0), $MachinePrecision] + x), $MachinePrecision], N[(N[(-6.0 * x), $MachinePrecision] * z + x), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;y \leq -0.014 \lor \neg \left(y \leq 1.6 \cdot 10^{-162}\right):\\ \;\;\;\;\mathsf{fma}\left(y, z \cdot 6, x\right)\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(-6 \cdot x, z, x\right)\\ \end{array} \end{array}
if y < -0.0140000000000000003 or 1.59999999999999988e-162 < y
Initial program 99.7%
lift-*.f64
N/A
lift--.f64
N/A
lift-*.f64
N/A
lower-+.f64
N/A
+-commutative
N/A
associate-*l*
N/A
lower-fma.f64
N/A
lift--.f64
N/A
*-commutative
N/A
lower-*.f64
99.8
Applied rewrites99.8%
Taylor expanded in x around 0
Applied rewrites88.2%
if -0.0140000000000000003 < y < 1.59999999999999988e-162
Initial program 99.8%
Taylor expanded in x around inf
*-commutative
N/A
lower-*.f64
N/A
+-commutative
N/A
lower-fma.f64
89.8
Applied rewrites89.8%
lift-fma.f64
N/A
lower-*.f64
N/A
*-commutative
N/A
distribute-rgt-in
N/A
*-lft-identity
N/A
*-commutative
N/A
associate-*r*
N/A
*-commutative
N/A
lower-fma.f64
N/A
lower-*.f64
89.8
Applied rewrites89.8%
Final simplification88.8%
(FPCore (x y z) :precision binary64 (if (or (<= x -2.2e-144) (not (<= x 6e+55))) (* (fma -6.0 z 1.0) x) (* (* z y) 6.0)))
double code(double x, double y, double z) { double tmp; if ((x <= -2.2e-144) || !(x <= 6e+55)) { tmp = fma(-6.0, z, 1.0) * x; } else { tmp = (z * y) * 6.0; } return tmp; }
function code(x, y, z) tmp = 0.0 if ((x <= -2.2e-144) || !(x <= 6e+55)) tmp = Float64(fma(-6.0, z, 1.0) * x); else tmp = Float64(Float64(z * y) * 6.0); end return tmp end
code[x_, y_, z_] := If[Or[LessEqual[x, -2.2e-144], N[Not[LessEqual[x, 6e+55]], $MachinePrecision]], N[(N[(-6.0 * z + 1.0), $MachinePrecision] * x), $MachinePrecision], N[(N[(z * y), $MachinePrecision] * 6.0), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;x \leq -2.2 \cdot 10^{-144} \lor \neg \left(x \leq 6 \cdot 10^{+55}\right):\\ \;\;\;\;\mathsf{fma}\left(-6, z, 1\right) \cdot x\\ \mathbf{else}:\\ \;\;\;\;\left(z \cdot y\right) \cdot 6\\ \end{array} \end{array}
if x < -2.20000000000000006e-144 or 6.00000000000000033e55 < x
Initial program 99.8%
Taylor expanded in x around inf
*-commutative
N/A
lower-*.f64
N/A
+-commutative
N/A
lower-fma.f64
79.4
Applied rewrites79.4%
if -2.20000000000000006e-144 < x < 6.00000000000000033e55
Initial program 99.6%
Taylor expanded in x around 0
*-commutative
N/A
lower-*.f64
N/A
*-commutative
N/A
lower-*.f64
69.4
Applied rewrites69.4%
Final simplification75.7%
(FPCore (x y z) :precision binary64 (if (<= x -2.2e-144) (fma (* -6.0 x) z x) (if (<= x 6e+55) (* (* z y) 6.0) (* (fma -6.0 z 1.0) x))))
double code(double x, double y, double z) { double tmp; if (x <= -2.2e-144) { tmp = fma((-6.0 * x), z, x); } else if (x <= 6e+55) { tmp = (z * y) * 6.0; } else { tmp = fma(-6.0, z, 1.0) * x; } return tmp; }
function code(x, y, z) tmp = 0.0 if (x <= -2.2e-144) tmp = fma(Float64(-6.0 * x), z, x); elseif (x <= 6e+55) tmp = Float64(Float64(z * y) * 6.0); else tmp = Float64(fma(-6.0, z, 1.0) * x); end return tmp end
code[x_, y_, z_] := If[LessEqual[x, -2.2e-144], N[(N[(-6.0 * x), $MachinePrecision] * z + x), $MachinePrecision], If[LessEqual[x, 6e+55], N[(N[(z * y), $MachinePrecision] * 6.0), $MachinePrecision], N[(N[(-6.0 * z + 1.0), $MachinePrecision] * x), $MachinePrecision]]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;x \leq -2.2 \cdot 10^{-144}:\\ \;\;\;\;\mathsf{fma}\left(-6 \cdot x, z, x\right)\\ \mathbf{elif}\;x \leq 6 \cdot 10^{+55}:\\ \;\;\;\;\left(z \cdot y\right) \cdot 6\\ \mathbf{else}:\\ \;\;\;\;\mathsf{fma}\left(-6, z, 1\right) \cdot x\\ \end{array} \end{array}
if x < -2.20000000000000006e-144
Initial program 99.8%
Taylor expanded in x around inf
*-commutative
N/A
lower-*.f64
N/A
+-commutative
N/A
lower-fma.f64
73.4
Applied rewrites73.4%
lift-fma.f64
N/A
lower-*.f64
N/A
*-commutative
N/A
distribute-rgt-in
N/A
*-lft-identity
N/A
*-commutative
N/A
associate-*r*
N/A
*-commutative
N/A
lower-fma.f64
N/A
lower-*.f64
73.4
Applied rewrites73.4%
if -2.20000000000000006e-144 < x < 6.00000000000000033e55
Initial program 99.6%
Taylor expanded in x around 0
*-commutative
N/A
lower-*.f64
N/A
*-commutative
N/A
lower-*.f64
69.4
Applied rewrites69.4%
if 6.00000000000000033e55 < x
Initial program 99.8%
Taylor expanded in x around inf
*-commutative
N/A
lower-*.f64
N/A
+-commutative
N/A
lower-fma.f64
90.0
Applied rewrites90.0%
(FPCore (x y z) :precision binary64 (if (or (<= z -0.165) (not (<= z 0.165))) (* (* z x) -6.0) x))
double code(double x, double y, double z) { double tmp; if ((z <= -0.165) || !(z <= 0.165)) { tmp = (z * x) * -6.0; } else { tmp = x; } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8) :: tmp if ((z <= (-0.165d0)) .or. (.not. (z <= 0.165d0))) then tmp = (z * x) * (-6.0d0) else tmp = x end if code = tmp end function
public static double code(double x, double y, double z) { double tmp; if ((z <= -0.165) || !(z <= 0.165)) { tmp = (z * x) * -6.0; } else { tmp = x; } return tmp; }
def code(x, y, z): tmp = 0 if (z <= -0.165) or not (z <= 0.165): tmp = (z * x) * -6.0 else: tmp = x return tmp
function code(x, y, z) tmp = 0.0 if ((z <= -0.165) || !(z <= 0.165)) tmp = Float64(Float64(z * x) * -6.0); else tmp = x; end return tmp end
function tmp_2 = code(x, y, z) tmp = 0.0; if ((z <= -0.165) || ~((z <= 0.165))) tmp = (z * x) * -6.0; else tmp = x; end tmp_2 = tmp; end
code[x_, y_, z_] := If[Or[LessEqual[z, -0.165], N[Not[LessEqual[z, 0.165]], $MachinePrecision]], N[(N[(z * x), $MachinePrecision] * -6.0), $MachinePrecision], x]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;z \leq -0.165 \lor \neg \left(z \leq 0.165\right):\\ \;\;\;\;\left(z \cdot x\right) \cdot -6\\ \mathbf{else}:\\ \;\;\;\;x\\ \end{array} \end{array}
if z < -0.165000000000000008 or 0.165000000000000008 < z
Initial program 99.7%
Taylor expanded in x around inf
*-commutative
N/A
lower-*.f64
N/A
+-commutative
N/A
lower-fma.f64
54.6
Applied rewrites54.6%
Taylor expanded in z around inf
*-commutative
N/A
*-commutative
N/A
lift-*.f64
N/A
lift-*.f64
53.7
Applied rewrites53.7%
if -0.165000000000000008 < z < 0.165000000000000008
Initial program 99.8%
Taylor expanded in z around 0
Applied rewrites68.1%
Final simplification60.7%
(FPCore (x y z) :precision binary64 (if (<= z -0.165) (* (* z x) -6.0) (if (<= z 0.165) x (* (* -6.0 z) x))))
double code(double x, double y, double z) { double tmp; if (z <= -0.165) { tmp = (z * x) * -6.0; } else if (z <= 0.165) { tmp = x; } else { tmp = (-6.0 * z) * x; } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8) :: tmp if (z <= (-0.165d0)) then tmp = (z * x) * (-6.0d0) else if (z <= 0.165d0) then tmp = x else tmp = ((-6.0d0) * z) * x end if code = tmp end function
public static double code(double x, double y, double z) { double tmp; if (z <= -0.165) { tmp = (z * x) * -6.0; } else if (z <= 0.165) { tmp = x; } else { tmp = (-6.0 * z) * x; } return tmp; }
def code(x, y, z): tmp = 0 if z <= -0.165: tmp = (z * x) * -6.0 elif z <= 0.165: tmp = x else: tmp = (-6.0 * z) * x return tmp
function code(x, y, z) tmp = 0.0 if (z <= -0.165) tmp = Float64(Float64(z * x) * -6.0); elseif (z <= 0.165) tmp = x; else tmp = Float64(Float64(-6.0 * z) * x); end return tmp end
function tmp_2 = code(x, y, z) tmp = 0.0; if (z <= -0.165) tmp = (z * x) * -6.0; elseif (z <= 0.165) tmp = x; else tmp = (-6.0 * z) * x; end tmp_2 = tmp; end
code[x_, y_, z_] := If[LessEqual[z, -0.165], N[(N[(z * x), $MachinePrecision] * -6.0), $MachinePrecision], If[LessEqual[z, 0.165], x, N[(N[(-6.0 * z), $MachinePrecision] * x), $MachinePrecision]]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;z \leq -0.165:\\ \;\;\;\;\left(z \cdot x\right) \cdot -6\\ \mathbf{elif}\;z \leq 0.165:\\ \;\;\;\;x\\ \mathbf{else}:\\ \;\;\;\;\left(-6 \cdot z\right) \cdot x\\ \end{array} \end{array}
if z < -0.165000000000000008
Initial program 99.6%
Taylor expanded in x around inf
*-commutative
N/A
lower-*.f64
N/A
+-commutative
N/A
lower-fma.f64
57.1
Applied rewrites57.1%
Taylor expanded in z around inf
*-commutative
N/A
*-commutative
N/A
lift-*.f64
N/A
lift-*.f64
55.3
Applied rewrites55.3%
if -0.165000000000000008 < z < 0.165000000000000008
Initial program 99.8%
Taylor expanded in z around 0
Applied rewrites68.1%
if 0.165000000000000008 < z
Initial program 99.8%
Taylor expanded in x around inf
*-commutative
N/A
lower-*.f64
N/A
+-commutative
N/A
lower-fma.f64
52.4
Applied rewrites52.4%
Taylor expanded in z around inf
lower-*.f64
52.2
Applied rewrites52.2%
(FPCore (x y z) :precision binary64 (if (<= z -0.165) (* (* z x) -6.0) (if (<= z 0.165) x (* (* -6.0 x) z))))
double code(double x, double y, double z) { double tmp; if (z <= -0.165) { tmp = (z * x) * -6.0; } else if (z <= 0.165) { tmp = x; } else { tmp = (-6.0 * x) * z; } return tmp; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z real(8) :: tmp if (z <= (-0.165d0)) then tmp = (z * x) * (-6.0d0) else if (z <= 0.165d0) then tmp = x else tmp = ((-6.0d0) * x) * z end if code = tmp end function
public static double code(double x, double y, double z) { double tmp; if (z <= -0.165) { tmp = (z * x) * -6.0; } else if (z <= 0.165) { tmp = x; } else { tmp = (-6.0 * x) * z; } return tmp; }
def code(x, y, z): tmp = 0 if z <= -0.165: tmp = (z * x) * -6.0 elif z <= 0.165: tmp = x else: tmp = (-6.0 * x) * z return tmp
function code(x, y, z) tmp = 0.0 if (z <= -0.165) tmp = Float64(Float64(z * x) * -6.0); elseif (z <= 0.165) tmp = x; else tmp = Float64(Float64(-6.0 * x) * z); end return tmp end
function tmp_2 = code(x, y, z) tmp = 0.0; if (z <= -0.165) tmp = (z * x) * -6.0; elseif (z <= 0.165) tmp = x; else tmp = (-6.0 * x) * z; end tmp_2 = tmp; end
code[x_, y_, z_] := If[LessEqual[z, -0.165], N[(N[(z * x), $MachinePrecision] * -6.0), $MachinePrecision], If[LessEqual[z, 0.165], x, N[(N[(-6.0 * x), $MachinePrecision] * z), $MachinePrecision]]]
\begin{array}{l} \\ \begin{array}{l} \mathbf{if}\;z \leq -0.165:\\ \;\;\;\;\left(z \cdot x\right) \cdot -6\\ \mathbf{elif}\;z \leq 0.165:\\ \;\;\;\;x\\ \mathbf{else}:\\ \;\;\;\;\left(-6 \cdot x\right) \cdot z\\ \end{array} \end{array}
if z < -0.165000000000000008
Initial program 99.6%
Taylor expanded in x around inf
*-commutative
N/A
lower-*.f64
N/A
+-commutative
N/A
lower-fma.f64
57.1
Applied rewrites57.1%
Taylor expanded in z around inf
*-commutative
N/A
*-commutative
N/A
lift-*.f64
N/A
lift-*.f64
55.3
Applied rewrites55.3%
if -0.165000000000000008 < z < 0.165000000000000008
Initial program 99.8%
Taylor expanded in z around 0
Applied rewrites68.1%
if 0.165000000000000008 < z
Initial program 99.8%
Taylor expanded in z around inf
*-commutative
N/A
associate-*r*
N/A
*-commutative
N/A
lift-*.f64
N/A
lift--.f64
N/A
lift-*.f64
99.3
Applied rewrites99.3%
Taylor expanded in x around inf
lower-*.f64
52.2
Applied rewrites52.2%
(FPCore (x y z) :precision binary64 (fma (* (- y x) z) 6.0 x))
double code(double x, double y, double z) { return fma(((y - x) * z), 6.0, x); }
function code(x, y, z) return fma(Float64(Float64(y - x) * z), 6.0, x) end
code[x_, y_, z_] := N[(N[(N[(y - x), $MachinePrecision] * z), $MachinePrecision] * 6.0 + x), $MachinePrecision]
\begin{array}{l} \\ \mathsf{fma}\left(\left(y - x\right) \cdot z, 6, x\right) \end{array}
Initial program 99.7%
lift-+.f64
N/A
lift-*.f64
N/A
lift--.f64
N/A
lift-*.f64
N/A
*-commutative
N/A
associate-*r*
N/A
*-commutative
N/A
+-commutative
N/A
*-commutative
N/A
lower-fma.f64
N/A
*-commutative
N/A
lower-*.f64
N/A
lift--.f64
99.8
Applied rewrites99.8%
(FPCore (x y z) :precision binary64 x)
double code(double x, double y, double z) { return x; }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z code = x end function
public static double code(double x, double y, double z) { return x; }
def code(x, y, z): return x
function code(x, y, z) return x end
function tmp = code(x, y, z) tmp = x; end
code[x_, y_, z_] := x
\begin{array}{l} \\ x \end{array}
Initial program 99.7%
Taylor expanded in z around 0
Applied rewrites34.8%
(FPCore (x y z) :precision binary64 (- x (* (* 6.0 z) (- x y))))
double code(double x, double y, double z) { return x - ((6.0 * z) * (x - y)); }
module fmin_fmax_functions implicit none private public fmax public fmin interface fmax module procedure fmax88 module procedure fmax44 module procedure fmax84 module procedure fmax48 end interface interface fmin module procedure fmin88 module procedure fmin44 module procedure fmin84 module procedure fmin48 end interface contains real(8) function fmax88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(4) function fmax44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, max(x, y), y /= y), x /= x) end function real(8) function fmax84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, max(x, dble(y)), y /= y), x /= x) end function real(8) function fmax48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), max(dble(x), y), y /= y), x /= x) end function real(8) function fmin88(x, y) result (res) real(8), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(4) function fmin44(x, y) result (res) real(4), intent (in) :: x real(4), intent (in) :: y res = merge(y, merge(x, min(x, y), y /= y), x /= x) end function real(8) function fmin84(x, y) result(res) real(8), intent (in) :: x real(4), intent (in) :: y res = merge(dble(y), merge(x, min(x, dble(y)), y /= y), x /= x) end function real(8) function fmin48(x, y) result(res) real(4), intent (in) :: x real(8), intent (in) :: y res = merge(y, merge(dble(x), min(dble(x), y), y /= y), x /= x) end function end module real(8) function code(x, y, z) use fmin_fmax_functions real(8), intent (in) :: x real(8), intent (in) :: y real(8), intent (in) :: z code = x - ((6.0d0 * z) * (x - y)) end function
public static double code(double x, double y, double z) { return x - ((6.0 * z) * (x - y)); }
def code(x, y, z): return x - ((6.0 * z) * (x - y))
function code(x, y, z) return Float64(x - Float64(Float64(6.0 * z) * Float64(x - y))) end
function tmp = code(x, y, z) tmp = x - ((6.0 * z) * (x - y)); end
code[x_, y_, z_] := N[(x - N[(N[(6.0 * z), $MachinePrecision] * N[(x - y), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ x - \left(6 \cdot z\right) \cdot \left(x - y\right) \end{array}
herbie shell --seed 2025038
(FPCore (x y z)
:name "Data.Colour.RGBSpace.HSL:hsl from colour-2.3.3, E"
:precision binary64
:alt
(! :herbie-platform default (- x (* (* 6 z) (- x y))))
(+ x (* (* (- y x) 6.0) z)))