(FPCore im_sqr (re im) :precision binary64 (+ (* re im) (* im re)))
double im_sqr(double re, double im) { return (re * im) + (im * re); }
real(8) function im_sqr(re, im) real(8), intent (in) :: re real(8), intent (in) :: im im_sqr = (re * im) + (im * re) end function
public static double im_sqr(double re, double im) { return (re * im) + (im * re); }
def im_sqr(re, im): return (re * im) + (im * re)
function im_sqr(re, im) return Float64(Float64(re * im) + Float64(im * re)) end
function tmp = im_sqr(re, im) tmp = (re * im) + (im * re); end
im$95$sqr[re_, im_] := N[(N[(re * im), $MachinePrecision] + N[(im * re), $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ re \cdot im + im \cdot re \end{array}
Sampling outcomes in binary64 precision:
Herbie found 1 alternatives:
Alternative | Accuracy | Speedup |
---|
(FPCore im_sqr (re im) :precision binary64 (+ (* re im) (* im re)))
double im_sqr(double re, double im) { return (re * im) + (im * re); }
real(8) function im_sqr(re, im) real(8), intent (in) :: re real(8), intent (in) :: im im_sqr = (re * im) + (im * re) end function
public static double im_sqr(double re, double im) { return (re * im) + (im * re); }
def im_sqr(re, im): return (re * im) + (im * re)
function im_sqr(re, im) return Float64(Float64(re * im) + Float64(im * re)) end
function tmp = im_sqr(re, im) tmp = (re * im) + (im * re); end
im$95$sqr[re_, im_] := N[(N[(re * im), $MachinePrecision] + N[(im * re), $MachinePrecision]), $MachinePrecision]
\begin{array}{l} \\ re \cdot im + im \cdot re \end{array}
(FPCore im_sqr (re im) :precision binary64 (* (+ im im) re))
double im_sqr(double re, double im) { return (im + im) * re; }
real(8) function im_sqr(re, im) real(8), intent (in) :: re real(8), intent (in) :: im im_sqr = (im + im) * re end function
public static double im_sqr(double re, double im) { return (im + im) * re; }
def im_sqr(re, im): return (im + im) * re
function im_sqr(re, im) return Float64(Float64(im + im) * re) end
function tmp = im_sqr(re, im) tmp = (im + im) * re; end
im$95$sqr[re_, im_] := N[(N[(im + im), $MachinePrecision] * re), $MachinePrecision]
\begin{array}{l} \\ \left(im + im\right) \cdot re \end{array}
Initial program 100.0%
lift-+.f64
N/A
lift-*.f64
N/A
lift-*.f64
N/A
*-commutative
N/A
distribute-lft-out
N/A
lower-*.f64
N/A
lower-+.f64
100.0
Applied rewrites100.0%
Final simplification100.0%
herbie shell --seed 2024282
(FPCore im_sqr (re im)
:name "math.square on complex, imaginary part"
:precision binary64
(+ (* re im) (* im re)))