(FPCore (t) :precision binary64 (let* ((t_1 (+ 1.0 (* t 2e-16)))) (+ (* t_1 t_1) (- -1.0 (* 2.0 (* t 2e-16))))))
double code(double t) { double t_1 = 1.0 + (t * 2e-16); return (t_1 * t_1) + (-1.0 - (2.0 * (t * 2e-16))); }
real(8) function code(t) real(8), intent (in) :: t real(8) :: t_1 t_1 = 1.0d0 + (t * 2d-16) code = (t_1 * t_1) + ((-1.0d0) - (2.0d0 * (t * 2d-16))) end function
public static double code(double t) { double t_1 = 1.0 + (t * 2e-16); return (t_1 * t_1) + (-1.0 - (2.0 * (t * 2e-16))); }
def code(t): t_1 = 1.0 + (t * 2e-16) return (t_1 * t_1) + (-1.0 - (2.0 * (t * 2e-16)))
function code(t) t_1 = Float64(1.0 + Float64(t * 2e-16)) return Float64(Float64(t_1 * t_1) + Float64(-1.0 - Float64(2.0 * Float64(t * 2e-16)))) end
function tmp = code(t) t_1 = 1.0 + (t * 2e-16); tmp = (t_1 * t_1) + (-1.0 - (2.0 * (t * 2e-16))); end
code[t_] := Block[{t$95$1 = N[(1.0 + N[(t * 2e-16), $MachinePrecision]), $MachinePrecision]}, N[(N[(t$95$1 * t$95$1), $MachinePrecision] + N[(-1.0 - N[(2.0 * N[(t * 2e-16), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} t_1 := 1 + t \cdot 2 \cdot 10^{-16}\\ t\_1 \cdot t\_1 + \left(-1 - 2 \cdot \left(t \cdot 2 \cdot 10^{-16}\right)\right) \end{array} \end{array}
Sampling outcomes in binary64 precision:
Herbie found 2 alternatives:
Alternative | Accuracy | Speedup |
---|
(FPCore (t) :precision binary64 (let* ((t_1 (+ 1.0 (* t 2e-16)))) (+ (* t_1 t_1) (- -1.0 (* 2.0 (* t 2e-16))))))
double code(double t) { double t_1 = 1.0 + (t * 2e-16); return (t_1 * t_1) + (-1.0 - (2.0 * (t * 2e-16))); }
real(8) function code(t) real(8), intent (in) :: t real(8) :: t_1 t_1 = 1.0d0 + (t * 2d-16) code = (t_1 * t_1) + ((-1.0d0) - (2.0d0 * (t * 2d-16))) end function
public static double code(double t) { double t_1 = 1.0 + (t * 2e-16); return (t_1 * t_1) + (-1.0 - (2.0 * (t * 2e-16))); }
def code(t): t_1 = 1.0 + (t * 2e-16) return (t_1 * t_1) + (-1.0 - (2.0 * (t * 2e-16)))
function code(t) t_1 = Float64(1.0 + Float64(t * 2e-16)) return Float64(Float64(t_1 * t_1) + Float64(-1.0 - Float64(2.0 * Float64(t * 2e-16)))) end
function tmp = code(t) t_1 = 1.0 + (t * 2e-16); tmp = (t_1 * t_1) + (-1.0 - (2.0 * (t * 2e-16))); end
code[t_] := Block[{t$95$1 = N[(1.0 + N[(t * 2e-16), $MachinePrecision]), $MachinePrecision]}, N[(N[(t$95$1 * t$95$1), $MachinePrecision] + N[(-1.0 - N[(2.0 * N[(t * 2e-16), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} t_1 := 1 + t \cdot 2 \cdot 10^{-16}\\ t\_1 \cdot t\_1 + \left(-1 - 2 \cdot \left(t \cdot 2 \cdot 10^{-16}\right)\right) \end{array} \end{array}
(FPCore (t) :precision binary64 (* (* (* t 2e-16) t) 2e-16))
double code(double t) { return ((t * 2e-16) * t) * 2e-16; }
real(8) function code(t) real(8), intent (in) :: t code = ((t * 2d-16) * t) * 2d-16 end function
public static double code(double t) { return ((t * 2e-16) * t) * 2e-16; }
def code(t): return ((t * 2e-16) * t) * 2e-16
function code(t) return Float64(Float64(Float64(t * 2e-16) * t) * 2e-16) end
function tmp = code(t) tmp = ((t * 2e-16) * t) * 2e-16; end
code[t_] := N[(N[(N[(t * 2e-16), $MachinePrecision] * t), $MachinePrecision] * 2e-16), $MachinePrecision]
\begin{array}{l} \\ \left(\left(t \cdot 2 \cdot 10^{-16}\right) \cdot t\right) \cdot 2 \cdot 10^{-16} \end{array}
Initial program 3.4%
Taylor expanded in t around 0
*-commutative
N/A
lower-*.f64
N/A
unpow2
N/A
lower-*.f64
99.3
Applied rewrites99.3%
Applied rewrites99.5%
Final simplification99.5%
(FPCore (t) :precision binary64 (* (* 4e-32 t) t))
double code(double t) { return (4e-32 * t) * t; }
real(8) function code(t) real(8), intent (in) :: t code = (4d-32 * t) * t end function
public static double code(double t) { return (4e-32 * t) * t; }
def code(t): return (4e-32 * t) * t
function code(t) return Float64(Float64(4e-32 * t) * t) end
function tmp = code(t) tmp = (4e-32 * t) * t; end
code[t_] := N[(N[(4e-32 * t), $MachinePrecision] * t), $MachinePrecision]
\begin{array}{l} \\ \left(4 \cdot 10^{-32} \cdot t\right) \cdot t \end{array}
Initial program 3.4%
Taylor expanded in t around 0
*-commutative
N/A
lower-*.f64
N/A
unpow2
N/A
lower-*.f64
99.3
Applied rewrites99.3%
Taylor expanded in t around 0
unpow2
N/A
associate-*r*
N/A
lower-*.f64
N/A
*-commutative
N/A
lower-*.f64
99.3
Applied rewrites99.3%
Final simplification99.3%
(FPCore (t) :precision binary64 (let* ((t_1 (+ 1.0 (* t 2e-16)))) (fma t_1 t_1 (- -1.0 (* 2.0 (* t 2e-16))))))
double code(double t) { double t_1 = 1.0 + (t * 2e-16); return fma(t_1, t_1, (-1.0 - (2.0 * (t * 2e-16)))); }
function code(t) t_1 = Float64(1.0 + Float64(t * 2e-16)) return fma(t_1, t_1, Float64(-1.0 - Float64(2.0 * Float64(t * 2e-16)))) end
code[t_] := Block[{t$95$1 = N[(1.0 + N[(t * 2e-16), $MachinePrecision]), $MachinePrecision]}, N[(t$95$1 * t$95$1 + N[(-1.0 - N[(2.0 * N[(t * 2e-16), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]), $MachinePrecision]]
\begin{array}{l} \\ \begin{array}{l} t_1 := 1 + t \cdot 2 \cdot 10^{-16}\\ \mathsf{fma}\left(t\_1, t\_1, -1 - 2 \cdot \left(t \cdot 2 \cdot 10^{-16}\right)\right) \end{array} \end{array}
herbie shell --seed 2024272
(FPCore (t)
:name "fma_test1"
:precision binary64
:pre (and (<= 0.9 t) (<= t 1.1))
:alt
(! :herbie-platform default (let ((x (+ 1 (* t 1/5000000000000000))) (z (- -1 (* 2 (* t 1/5000000000000000))))) (fma x x z)))
(+ (* (+ 1.0 (* t 2e-16)) (+ 1.0 (* t 2e-16))) (- -1.0 (* 2.0 (* t 2e-16)))))