(FPCore (a b) :precision binary64 (sqrt (fabs (/ (- (* a a) (* b b)) (* a a)))))
double code(double a, double b) { return sqrt(fabs((((a * a) - (b * b)) / (a * a)))); }
real(8) function code(a, b) real(8), intent (in) :: a real(8), intent (in) :: b code = sqrt(abs((((a * a) - (b * b)) / (a * a)))) end function
public static double code(double a, double b) { return Math.sqrt(Math.abs((((a * a) - (b * b)) / (a * a)))); }
def code(a, b): return math.sqrt(math.fabs((((a * a) - (b * b)) / (a * a))))
function code(a, b) return sqrt(abs(Float64(Float64(Float64(a * a) - Float64(b * b)) / Float64(a * a)))) end
function tmp = code(a, b) tmp = sqrt(abs((((a * a) - (b * b)) / (a * a)))); end
code[a_, b_] := N[Sqrt[N[Abs[N[(N[(N[(a * a), $MachinePrecision] - N[(b * b), $MachinePrecision]), $MachinePrecision] / N[(a * a), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]
\begin{array}{l} \\ \sqrt{\left|\frac{a \cdot a - b \cdot b}{a \cdot a}\right|} \end{array}
Sampling outcomes in binary64 precision:
Herbie found 2 alternatives:
Alternative | Accuracy | Speedup |
---|
(FPCore (a b) :precision binary64 (sqrt (fabs (/ (- (* a a) (* b b)) (* a a)))))
double code(double a, double b) { return sqrt(fabs((((a * a) - (b * b)) / (a * a)))); }
real(8) function code(a, b) real(8), intent (in) :: a real(8), intent (in) :: b code = sqrt(abs((((a * a) - (b * b)) / (a * a)))) end function
public static double code(double a, double b) { return Math.sqrt(Math.abs((((a * a) - (b * b)) / (a * a)))); }
def code(a, b): return math.sqrt(math.fabs((((a * a) - (b * b)) / (a * a))))
function code(a, b) return sqrt(abs(Float64(Float64(Float64(a * a) - Float64(b * b)) / Float64(a * a)))) end
function tmp = code(a, b) tmp = sqrt(abs((((a * a) - (b * b)) / (a * a)))); end
code[a_, b_] := N[Sqrt[N[Abs[N[(N[(N[(a * a), $MachinePrecision] - N[(b * b), $MachinePrecision]), $MachinePrecision] / N[(a * a), $MachinePrecision]), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]
\begin{array}{l} \\ \sqrt{\left|\frac{a \cdot a - b \cdot b}{a \cdot a}\right|} \end{array}
(FPCore (a b) :precision binary64 (sqrt (fabs (fma (/ b a) (/ b a) -1.0))))
double code(double a, double b) { return sqrt(fabs(fma((b / a), (b / a), -1.0))); }
function code(a, b) return sqrt(abs(fma(Float64(b / a), Float64(b / a), -1.0))) end
code[a_, b_] := N[Sqrt[N[Abs[N[(N[(b / a), $MachinePrecision] * N[(b / a), $MachinePrecision] + -1.0), $MachinePrecision]], $MachinePrecision]], $MachinePrecision]
\begin{array}{l} \\ \sqrt{\left|\mathsf{fma}\left(\frac{b}{a}, \frac{b}{a}, -1\right)\right|} \end{array}
Initial program 82.4%
lift-fabs.f64
N/A
lift-/.f64
N/A
lift--.f64
N/A
div-sub
N/A
*-inverses
N/A
fabs-sub
N/A
lower-fabs.f64
N/A
sub-neg
N/A
lift-*.f64
N/A
associate-/l*
N/A
metadata-eval
N/A
lower-fma.f64
N/A
lower-/.f64
83.0
Applied rewrites83.0%
lift-fma.f64
N/A
lift-/.f64
N/A
associate-*r/
N/A
lift-*.f64
N/A
frac-times
N/A
lift-/.f64
N/A
lift-/.f64
N/A
lower-fma.f64
100.0
Applied rewrites100.0%
(FPCore (a b) :precision binary64 (sqrt (fabs 1.0)))
double code(double a, double b) { return sqrt(fabs(1.0)); }
real(8) function code(a, b) real(8), intent (in) :: a real(8), intent (in) :: b code = sqrt(abs(1.0d0)) end function
public static double code(double a, double b) { return Math.sqrt(Math.abs(1.0)); }
def code(a, b): return math.sqrt(math.fabs(1.0))
function code(a, b) return sqrt(abs(1.0)) end
function tmp = code(a, b) tmp = sqrt(abs(1.0)); end
code[a_, b_] := N[Sqrt[N[Abs[1.0], $MachinePrecision]], $MachinePrecision]
\begin{array}{l} \\ \sqrt{\left|1\right|} \end{array}
Initial program 82.4%
Taylor expanded in a around inf
Applied rewrites96.8%
herbie shell --seed 2024214
(FPCore (a b)
:name "Eccentricity of an ellipse"
:precision binary64
:pre (and (and (<= 0.0 b) (<= b a)) (<= a 1.0))
(sqrt (fabs (/ (- (* a a) (* b b)) (* a a)))))